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ABSTRACT 

 Rickettsia parkeri is an emerging human pathogen and spotted fever group Rickettsia that 

is transmitted via Amblyomma maculatum (the Gulf Coast tick) in the United States. Since these 

ticks must feed for several days in order to molt to the next life cycle, they must be able to 

counteract the host immune response. Despite this fact, there have been few studies that evaluate 

the immunomodulatory effect of this vector and the resultant influence on rickettsial disease. The 

hypothesis of this research is that, if A. maculatum feeding modifies the host immune response, 

this immunomodulation will enhance disease caused by R. parkeri. In order to assess this 

interaction in vivo, rhesus macaques were used to compare intradermal needle inoculation of R. 

parkeri alone to inoculation during A. maculatum feeding and A. maculatum feeding alone. Tick 

feeding enhanced local disease and the systemic inflammatory response induced by R. parkeri, 

resulting in increased rickettsial dissemination early in infection, and increased persistence at the 

inoculation site. In order to quantify the role of A. maculatum on the acute rickettsial immune 

response, C3H/HeN mice were intradermally inoculated with R. parkeri both alone and in the 

presence of A. maculatum saliva. The cellular influx of neutrophils and macrophages was 

significantly downregulated in the R. parkeri + saliva group as compared to R. parkeri 

inoculation alone. However, rickettsial load and the cutaneous cytokine response were not 

significantly modified by A. maculatum saliva. Taken together these studies indicate that A. 

maculatum feeding enhances cutaneous pathology in R. parkeri rickettsiosis despite the fact that 

tick saliva inhibits the acute cutaneous cellular infiltrate. Therefore, the immunomodulatory 

properties of tick feeding cannot be attributed to just the inoculation of saliva alone by the ticks. 

Future study should evaluate the overall impact of these effects on the establishment of 

rickettsiosis in the mammalian host in order to develop novel anti-transmission therapeutics. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

1.1. The Genus Rickettsia 

The genus Rickettsia belongs to the phylum Proteobacteria, the class 

Alphaproteobacteria, the order Rickettsiales, and the family Rickettsiaceae. Several species of 

Rickettsia have been identified as human pathogens and are transmitted to vertebrate hosts via 

various hematophagous arthropods (fleas, lice, and mites including ticks) (Table 1.1) (Raoult and 

Roux 1997, Walker and Ismail 2008). The clinical signs and mortality rate associated with these 

pathogens is variable, ranging from no reported fatalities (R. africae, R. parkeri, R. felis, R. 

akari) to mortality rates greater than 15% (R. rickettsii, R. prowazekii) (Walker and Ismail 2008). 

Several other species are characterized as endosymbionts of arthropods and have not been 

definitively identified as human pathogens to date (ex. R. peacockii, R. rhipicephali, and R. 

bellii) (Raoult and Roux 1997, Perlman et al. 2006, Walker and Ismail 2008).  

Despite this variable pathogenicity, rickettsial species have several basic characteristics 

in common. Rickettsiae are small pleomorphic coccobacilli that measure 0.3 to 0.5 µm in width 

with a variable length from 2 µm to up to 4 µm (Weiss 1973). Atypical “long form” morphology 

of rickettsiae has been reported for several species including R. prowazekii, R. felis, and R. bellii 

in both unfavorable and stable environmental conditions where lengths of up to 15 µm have been 

reported (Gulevskaia et al. 1975, Wisseman et al. 1976, Phillip et al. 1983, Sunyakumthorn et al. 

2008). Rickettsia are obligate intracellular bacteria that live primarily in the cytoplasm and 

occasionally the nucleus of host cells (Raoult and Roux 1997). This intracellular niche is 

required due to the fact that they utilize several host cell molecules such as amino acids, 

nucleotides, carbohydrates, and enzymes for growth that they cannot synthesize de novo (Audia 

2012). Furthermore, these organisms are incapable of movement on their own. Therefore, several 
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Table 1.1 Selected rickettsial diseases in humans (Walker and Ismail 2008). 

Disease Organism Arthropod vector Eschar Rash Regional 

lymph-

adenopathy 

Symptoms  

or fever 

Mortality 

rate* 

Tick-transmitted spotted fevers         

Rocky Mountain 

spotted fever 

Rickettsia 

rickettsii 

Dermacentor variabilis, 

Dermacentor andersoni, 

Rhipicephalus sanguineus, 

Amblyomma cajennense, and 

Amblyomma aureolatum 

Rare Yes No Yes High 

Boutonneuse  

fever 

Rickettsia 

conorii 

Rh. sanguineus,  

Rhipicephalus pumilio 

Frequent Maculopapular No Yes Mild to 

moderate 

African tick bite 

fever 

Rickettsia 

africae 

Amblyomma hebraeum, 

Amblyomma variegatum 

Frequent  

and often 

multiple 

Papular or 

vesicular; often 

sparse or absent 

Yes Yes None 

reported 

Maculatum  

disease 

Rickettsia 

parkeri 

Amblyomma maculatum, 

Amblyomma triste 

Yes Often Yes Yes None 

reported 

Flea-transmitted diseases         

Flea-borne  

spotted fever 

Rickettsia 

felis 

Ctenocephalides felis Sometimes Sometimes No Yes None 

reported 

Murine typhus Rickettsia 

typhi 

Xenopsylla cheopis, 

Ctenocephalides felis 

No Yes No Yes Low 

Louse-transmitted disease         

Epidemic typhus Rickettsia 

prowazekii 

Pediculus humanus  

humanus 

No Yes No Yes High 

Epidemic typhus Rickettsia 

prowazekii 

Fleas and lice of flying 

squirrels (Glaucomys volans 

volans) 

No Yes No Yes Low 

Mite-transmitted diseases         

Rickettsialpox Rickettsia 

akari 

Liponyssoides sanguineus Yes Yes Yes Yes None 

reported 

*High mortality is >15%; moderate mortality is 7–15%; mild-to-moderate mortality is 2–7% and low mortality is ≤1%. 
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species have the ability to polymerize host cell actin, forming actin tails for intracellular 

movement (Teysseire et al. 1992, Heinzen et al. 1993, Simser et al. 2002, Ogata et al. 2005, 

Ogata et al. 2006, Serio et al. 2010). Future investigations are needed to determine how this cell-

assisted motility impacts rickettsial pathogenicity. 

Rickettsiae have fine ultrastructural morphology similar to other Gram negative bacteria, 

e.g. Escherichia coli (Figure 1.1). They possess a cell envelope that contains an inner membrane 

surrounded by a thin layer of peptidoglycan and an outer membrane that contains 

lipopolysaccharide (LPS) and is surrounded by a capsule (Anacker et al. 1967, Anacker et al. 

1984, Teysseire and Raoult 1992). LPS elicits a strong immune response via activation of host 

Toll-like receptor 4 (TLR4). This TLR4-mediated response is important in the rickettsial 

immune response, as demonstrated by C3H/HeJ mice with defective TLR4 that have increased 

susceptibility to rickettsial infections (Jordan et al. 2008, Grasperge et al. 2012). Rickettsiae also 

possess proteins that insert into the outer membrane of the cell envelope that are called surface 

cell antigens (Sca). Some of these proteins have been shown to play an important role in 

rickettsial-host cell interactions. For example, rickettsial outer membrane protein B (rOmpB) 

binds Ku70 on mammalian cells for adhesion and subsequent invasion (Chan et al. 2009). Other 

proteins, such as rOmpA, Sca2, and Sca1 also play a role in Rickettsia-host cell binding and 

invasion, although their receptors on host cells have yet to be identified (Li and Walker 1998, 

Cardwell and Martinez 2009, Chan et al. 2010, Riley et al. 2010).  

1.1.1. Rickettsial Classification 

The genus Rickettsia has recently been reclassified into four groups based on 

phylogenetic analysis: spotted fever group (SFG), typhus group, transitional group, and ancestral 

group (Table 1.2) (Gillespie et al. 2007, Sahni et al. 2013). Species within the SFG are associated  
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Figure 1.1. The fine structure of R. prowazekii as revealed in the thin section of the chick yolk 

sac. CL = capsule-like structure, CM = cytoplasmic membrane, CW = cell wall, IM = 

intracytoplasmic membrane (Anacker et al. 1967). 

 

Table 1.2. Select Rickettsia species divided into subgroups (adapted from (Sahni et al. 2013)). 

Spotted fever group Typhus group 

R. africae R. prowazekii 

R. conorii R. typhi 

R. heilongjiangensis  

R. helvetica Transitional group 

R. honei R. australis 

R. japonica R. akari 

R. massiliae R. felis 

R. montanensis  

R. parkeri Ancestral group 

R. peacockii R. bellii 

R. philipi             R. canadensis 

R. rhipicephali  

R. rickettsii  

R. sibirica  

R. slovaca  

R. endosymbiont of Ixodes scapularis  

R. amblyommii  
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with hard ticks belonging to the Ixodidae family. This rickettsial group contains species that have 

been identified as human pathogens as well as species that have no known human pathogenicity. 

The characteristics of SFG Rickettsia will be discussed further in the next section. The typhus 

group contains two human pathogens, R. prowazekii and R. typhi that are transmitted by lice and 

fleas, respectively (Gillespie et al. 2007, Sahni et al. 2013). The name typhus arises from the 

Greek word typhos meaning smoky or hazy referring to the predilection for central nervous 

system involvement and the altered mental state frequently associated with these pathogens 

(Dumler 2012). The ancestral group consists of two species, R. bellii and R. canadensis that have 

no known pathogenicity and appear to be restricted to their tick hosts. The transitional group 

contains three human pathogens, R. australis, R. akari, and R. felis transmitted by ticks, mites, 

and fleas, respectively. R. felis possesses characteristics that are common to both the typhus and 

SFG of Rickettsia (Gillespie et al. 2007). Similar to members of the typhus group, R. felis is 

transmitted by insects and has hemolytic activity (Gillespie et al. 2007). However, R. felis is 

serologically cross-reactive to SFG Rickettsia, can polymerize actin, and is maintained 

transovarially within its vector like the SFG species (Gillespie et al. 2007). Interestingly, 

plasmids have been found within the ancestral and transitional groups and members of the SFG 

with no known pathogenicity, but not within highly pathogenic species of Rickettsia, such as R. 

rickettsii, R. prowazekii, or R .conorii (Gillespie et al. 2007, Baldridge et al. 2010). This suggests 

that primitive Rickettsia species contained plasmids, but they were lost as these species gained 

pathogenicity due to the fitness cost associated with retaining plasmids (Gillespie et al. 2007). 

The remainder of this section will focus on SFG Rickettsia, particularly the pathogen of interest 

for the subsequently presented studies, R. parkeri. 
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1.1.2. Spotted Fever Group Rickettsia Pathogenesis 

 The members of the SFG of Rickettsia are currently classified together based on 

phylogenetic and bioinformatic analysis of rickettsial genomes (Gillespie et al. 2007). Despite 

the fact that this group contains both human pathogens and species of no known pathogenicity, 

there are several general characteristics that these bacteria share. These bacteria express the 

surface protein rOmpA, which is absent in typhus group Rickettsia (Blanc et al. 2005). The role 

of rOmpA in rickettsial infection has not been fully elucidated. In murine fibroblast cells, 

antibodies against rOmpA inhibited rickettsial adherence (Li and Walker 1998). However, 

recently it was shown that an R. rickettsii rOmpA knock out did not result in attenuation of 

virulence when compared to the wildtype infection (Noriea et al. 2015). SFG Rickettsia are also 

all maintained transovarially and transstadially in tick vectors as will be described in the next 

section (Gillespie et al. 2007, Macaluso and Paddock 2013). Lastly, most SFG Rickettsia harness 

host cell actin for intracellular movement in a similar fashion. With the exception of R. 

peacockii, both pathogenic and non-pathogenic members of the SFG of Rickettsia have been 

shown to consistently polymerize host actin, forming long straight actin tails (Heinzen et al. 

1993, Simser et al. 2002, Ogata et al. 2005, Serio et al. 2010). This is in contrast to typhus group 

organisms that either do not associate with actin – R. prowazekii, or form short hooked tails – R. 

typhi (Figure 1.2) (Teysseire et al. 1992, Heinzen et al. 1993).  

1.1.2.a. Maintenance and Transmission by Tick Vectors 

 As previously mentioned, SFG Rickettsia are found within and transmitted to vertebrate 

hosts including humans by hard tick vectors. These bacteria are primarily maintained in the wild 

tick populations via transovarial and transstadial transmission (Figure 1.3) (Eremeeva and Dasch 

2015). These routes of transmission are essential for rickettsial maintenance as they allow for  
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Figure 1.2 Dual fluorescent staining of rickettsiae and F-actin in infected Vero cells. (A) Doubly 

stained Vero cells infected for 23 h with virulent R. rickettsii R strain showing fluorescein-

labeled R. rickettsii R (apple green) and F-actin (yellow). Note the colocalization of F-actin 

fibrils with one pole of Rickettsia, giving the appearance of a tail. (F) R. typhi with short, hook-

shaped F-actin tails. Arrows identify typical organisms. All panels are of equal magnification 

(adapted from (Heinzen et al. 1993)). 

 

 

Figure 1.3. Life cycle of Ixodid ticks and natural transmission of rickettsiae. Blue arrows indicate 

main steps of the tick natural cycle: (1) oviposition by engorged female; (2) eggs hatched into 

larvae; (3) larvae feed on small animals; (4) engorged larvae hatch into nymphs; (5) nymphs feed 

on large or small animals; and (6) nymphs molt into adult ticks that feed on large animals or bite 

humans. Broken red arrows indicate transovarial (7) and transstadial transmission (8) of 

rickettsiae, and solid red arrows indicate transmission of rickettsiae to humans through a bite of a 

nymph (9) or an adult tick (10) (Eremeeva and Dasch 2015). 
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persistence of rickettsial infection in the environment without the need for an infected vertebrate 

host, and can result in significant expansion of the numbers of infected ticks given that a single 

engorged female can potentially produce thousands of infected eggs (Eremeeva and Dasch 

2015). Furthermore, since hard ticks molt to a new life stage after each feeding, transstadial 

transmission is essential to ensure that newly molted ticks will be infectious to their  

next vertebrate host (Socolovschi et al. 2009c). That being said, the success of these transmission 

routes varies depending on the species and strain of Rickettsia (Socolovschi et al. 2009c, 

Eremeeva and Dasch 2015). The rates of successful transovarial transmission for rickettsial 

endosymbionts, such as R. peacockii and R. amblyommii have been shown to be 100% in their 

respective tick hosts (Simser et al. 2001, Stromdahl et al. 2008). In contrast, the transovarial 

transmission rates for strains of the pathogen R. rickettsii vary from 35-100% in Dermacentor 

andersoni ticks (Price 1954, Burgdorfer and Brinton 1975). The reasons for this variability in 

transmission success are unknown, but may be associated with a fitness cost to the tick host as a 

result of rickettsial infection. Infections with R. peacockii and R. montanensis (another 

endosymbiont) have no detrimental effect on their respective tick hosts (Niebylski et al. 1999, 

Macaluso et al. 2002). However, infections of D. andersoni with the virulent strains of R. 

rickettsii have been shown to have a detrimental effect on tick survival, molting success, 

oviposition, and fecundity (Niebylski et al. 1999). For other rickettsial species such as R. conorii, 

there is a strain-dependent fitness cost to rickettsial infection, where infections with certain 

strains do not affect the tick host and others adversely affect molting success and survival 

(Matsumoto et al. 2005, Levin et al. 2009, Socolovschi et al. 2009a, Socolovschi et al. 2009b).  

In tick-Rickettsia pairs with a low success rate of transovarial transmission, infected 

vertebrate hosts may be a source for ticks to acquire rickettsial infection. In this scenario, human 
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beings are thought to be dead end incidental hosts of the bacteria when fed upon by infected ticks 

and do not participate in further transmission of the pathogen (Figure 1.3) (Eremeeva and Dasch 

2015). Several wild and domestic animals such as mice, rats, quail, squirrels, chipmunks, rabbits, 

hares, woodchucks, opossums, deer, black bears, dogs, cats, and cattle have been shown to be 

rickettsemic, seropositive, and/or harbor Rickettsia-infected ticks in natural and experimental 

settings (reviewed in (Eremeeva and Dasch 2015)). Ricketts was able to infect squirrels, 

groundhogs, chipmunks, and rats with blood from Rocky Mountain spotted fever (RMSF) 

patients and ticks fed on guinea pigs that were inoculated with blood from RMSF patients 

(Ricketts 1909). Blood from these animals was then subsequently used to produce disease in 

naïve guinea pigs (Ricketts 1909). Several decades later, Burgdorfer demonstrated that meadow 

mice, squirrels, hares, and chipmunks developed rickettsemia in response to intraperitoneal 

inoculations of R. rickettsii and ticks fed on these animals during peak rickettsemia acquired the 

infection (Burgdorfer et al. 1966). While these experiments demonstrate that rickettsemic 

animals can serve as potential sources for rickettsial infection of ticks, the extent to which these 

infections can be transmitted to humans has not been determined.  

Ticks can also transmit Rickettsia to each other via co-feeding, where an uninfected tick 

acquires rickettsial infection from an infected tick feeding in close proximity on the same animal 

host. This route of transmission does not require rickettsemia within the host, and has been 

experimentally demonstrated for at least two SFG Rickettsia species (Zemtsova et al. 2010, 

Wright et al. 2015b). In the first study, experimentally-infected adult Rhipicephalus sanguineus 

transmitted R. conorii to uninfected nymphs that co-fed at the same location on dogs (Zemtsova 

et al. 2010). In the second study, uninfected lone star tick (Amblyomma americanum) nymphs 

acquired R. parkeri infection after feeding with naturally-infected, adult A. maculatum on guinea 
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pigs (Wright et al. 2015b). In both cases, the infection was maintained transstadially after one 

molt (Zemtsova et al. 2010, Wright et al. 2015b). Lastly, sexual transfer of SFG Rickettsia 

between infected males and uninfected females has been described in Ixodes ricinus ticks; 

however, subsequent transovarial transmission was unsuccessful, indicating that this 

transmission route may not contribute to rickettsial maintenance in nature (Hayes et al. 1980).  

1.1.2.b. Established and Emerging SFG Rickettsioses in the United States 

 RMSF caused by R. rickettsii has historically been recognized as the most prevalent and 

most pathogenic SFG rickettsial disease in the United States. This disease was first described in 

1896 as a spotted fever of an unknown origin in an annual report of the Surgeon General 

(Spencer 1929). In 1906, Ricketts was the first to establish an animal model of RMSF in guinea 

pigs and monkeys (Ricketts 1906a). He was also the first to implicate the tick as a vector for this 

pathogen, demonstrating that ticks fed on infected guinea pigs could be used to transmit the 

disease-causing agent to other guinea pigs as well as other small animals (Ricketts 1906b, 

Ricketts 1909). The most consistent clinical signs of RMSF include headache, rash, and fever 

with the fever usually developing first and the rash as the hallmark of the disease occurring 

several days after the fever (Kirk et al. 1990, Cunha 2008, Lin and Decker 2012). Severe 

sequelae of RMSF include hypovolemia, hypotension, and rarely disseminated intravascular 

coagulation, which occur as a result of vascular injury due to multiplication of bacteria within 

vascular endothelium (Harrell and Aikawa 1949, Rao et al. 1988, Elghetany and Walker 1999, 

Lin and Decker 2012). Complications that can occur in severe RMSF include central nervous 

system involvement due to meningitis or meningoencephalitis, renal, hepatic, and pulmonary 

dysfunction (Lin and Decker 2012). Death can occur in 7 to 15 days after onset of clinical 

symptoms if appropriate antibiotic therapy is not instituted early in the course of disease (Lin and 
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Decker 2012). Doxycycline is the treatment of choice for RMSF and should be administered as 

soon as possible based on clinical suspicion to avoid serious sequelae (Lin and Decker 2012). 

 In the 2000’s, at least two other SFG rickettsioses have emerged as human pathogens: R. 

parkeri rickettsiosis and Rickettsia 364D rickettsiosis in the United States. These rickettsioses 

are just two examples of a number of emerging rickettsioses diagnosed around the world that 

were discovered several to many years after the original description of the rickettsial species 

itself (Table 1.3) (Paddock 2009). It is also important to note that these emerging pathogens were 

originally misdiagnosed as other established rickettsioses likely due to the overlap in clinical 

signs between these rickettsioses and cross-reaction on commonly used diagnostic tests (Paddock 

2009). While the exact reasons for the emergence of these pathogens is unclear, other rickettsial 

species have been identified as having the potential for emergence as pathogens based on the fact 

that they are found in ticks that may bite humans and that they have been demonstrated to cause 

disease in animals (Table 1.4) (Paddock 2009).  

In 2004, the first case of R. parkeri rickettsiosis was reported in a man in Southeast 

Virginia (Paddock et al. 2004). This was the first report of SFG rickettsiosis not attributed to R. 

rickettsii in the United States. Through 2014, at least 37 cases of R. parkeri rickettsiosis have 

been identified (Whitman et al. 2007, Paddock et al. 2008, Cragun et al. 2010, Myers et al. 2013, 

Ekenna et al. 2014, Kaskas et al. 2014, Paddock and Goddard 2015). Clinically, R. parkeri 

rickettsiosis (also called “Tidewater spotted fever”, “American boutonneuse fever”, and 

“Maculatum rickettsiosis”) is defined by a fever, headache, maculopapular rash, myalgia, and the 

presence of multiple eschars (Paddock et al. 2004, Whitman et al. 2007, Paddock et al. 2008, 

Cragun et al. 2010, Jiang et al. 2012, Ekenna et al. 2014, Kaskas et al. 2014). An eschar is 

defined as a 0.5–2 cm in diameter, crusted, non-pruritic ulcer, surrounded by an indurated, 
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Table 1.3. Interval between discovery of selected rickettsiae and confirmation of these agents as 

pathogens of humans (Paddock 2009).  

Agent Year of discovery 

(initial designation) 

Year reported as a 

confirmed pathogen 

(interval from 

discovery) 

Initial diagnosis of index 

patient(s) 

Rickettsia 

parkeri 

1937 (maculatum 

agent) 

2004 (67) Rickettsialpox 

R. honei 1962 (TT-118) 1992 (30) Queensland tick typhus 

R. slovaca 1968 (strains B, D) 1997 (29) Lyme borreliosis 

R. felis 1990 (ELB agent) 1994 (4)  Murine typhus 

R. massiliae 1992 (strains Mtu1, 

Mtu5) 

2006 (14) Mediterranean spotted 

fever (MSF) 

R. aeschlimannii 1995 (strain PoTiR8) 2002 (7)  MSF 

R. raoultii 1999 (genotypes 

RpA4, DnS14, 

DnS28) 

2006 (7)  Tick-borne 

lymphadenopathy 

R. monacensis 2002 (R. monacensis) 2007 (5)  MSF 

Rickettsia 364D 1966 (serotype 364D) 2010 (44) RMSF, anthrax 

 

Table 1.4. Characteristics of selected North American rickettsiae of suspected or undetermined 

pathogenicity in humans (adapted from (Paddock 2009)). 

Rickettsia 

species or 

strain 

Tick(s) infected with 

Rickettsia in nature 

Frequency with 

which tick(s) will 

bite humans 

Demonstrated 

pathogenicity of 

Rickettsia (route of 

infection) 

Rickettsia 

bellii 

Multiple genera, 

including Dermacentor 

and Amblyomma 

Frequent Eschars in rabbits and 

guinea pigs (ID) 

Rickettsia 

canadensis 

Multiple genera, including 

Haemaphysalis and 

Dermacentor 

Infrequent to 

Frequent 

Fever in guinea pigs 

(IP) 

Strain 

Parumapertus 

Dermacentor parumapertus Infrequent Fever and scrotal 

erythema in guinea 

pigs (IP) 

Strain 

Tillamook 

Ixodes pacificus Frequent Death in mice (IP) 

Rickettsia 

rhipicephali 

Multiple genera, 

including Dermacentor 

and Rhipicephalus 

Frequent Fever, scrotal 

swelling, and death in 

meadow voles (IP) 

ID = intradermal, IP = intraperitoneal 
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erythematous halo (Figure 1.4) (Paddock et al. 2004). Histologically, extensive necrosis of the 

epidermis and superficial dermis and prominent lymphohistiocytic vasculitis of dermal vessels is 

present (Figure 1.5) (Paddock et al. 2004, Paddock et al. 2008, Cragun et al. 2010, Kaskas et al. 

2014). Clinically, R parkeri rickettsiosis can be differentiated from RMSF by the presence of an 

inoculation eschar and milder illness (Table 1.5) (Paddock et al. 2004, Paddock et al. 2008, 

Paddock and Goddard 2015). Less than a third of the patients diagnosed with R. parkeri 

rickettsiosis require hospitalization, and to date there have been no reported central nervous 

system manifestations or fatalities (Paddock and Goddard 2015). Similar to RMSF, patients 

respond favorably to treatment with doxycycline (Paddock et al. 2004, Paddock et al. 2008).  

In addition to R. parkeri, Rickettsia 364D, another SFG Rickettsia, was recently 

discovered as a human pathogen in the United States with the first case series of four individuals 

reported in California in 2010 (Shapiro et al. 2010). Subsequently, three more cases were 

diagnosed in children in California (Johnston et al. 2013). All of these patients presented with an 

eschar with only one child developing a macular rash (Shapiro et al. 2010, Johnston et al. 2013).  

More than half of the patients also presented with fever, fatigue, headache, lymphadenopathy, 

and myalgia/arthralgia (Shapiro et al. 2010, Johnston et al. 2013). All of the patients responded 

to treatment with doxycycline without the need for hospitalization (Shapiro et al. 2010, Johnston 

et al. 2013). Due to the fact that R. parkeri and Rickettsia 364D were recently described as 

pathogens, there is a lack of knowledge and need for research regarding their biology and how 

their vectors influence the pathogenesis of these organisms. Additionally, these rickettsiae may 

have an impact on the epidemiology of SFG rickettsioses in the United States as will be 

discussed in the next section.  



14 

 

 
 

Figure 1.4. Cutaneous lesions in a patient infected with R. parkeri. A. A diffuse, pink macular 

rash involving the abdomen. B, A small pustule on the medial aspect of the first digit. C and D, 

Eschars located on the pretibial aspects of the right and left lower legs, respectively (Paddock et 

al. 2004). 

 

 
 

Figure 1.5. Histopathologic and immunohistochemical evaluation of a biopsy specimen from the 

margin of an eschar, and ultrastructure of R. parkeri (strain Portsmouth) isolated in cell culture. 

A, Lymphohistiocytic perivascular infiltrates (arrow, representative focus) involving the 

superficial and deep dermis, and subepidermal blistering at the periphery of the eschar 

represented grossly in figure 1.4D (hematoxylin and eosin stain; original magnification x25). B, 

Immunohistochemical staining of SFG rickettsiae (red) in the cytoplasm of a cell in a focus of 

perivascular inflammation (immunoalkaline phosphatase with naphthol-fast red substrate and 

hematoxylin counterstain; original magnification x250). C, Ovoid and rod-shaped bacteria in the 

cytoplasm of a Vero E6 cell (an electron micrograph; uranyl acetate and lead citrate stain; bar 

equals 1 mm) (Paddock et al. 2004). 
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Table 1.5. Comparison of the clinical characteristics of R. parkeri rickettsiosis and Rocky 

Mountain spotted fever (RMSF) in the United States (Paddock and Goddard 2015). 

Characteristic R. parkeri 

Rickettsiosis
  

(n = 21) 

RMSF (n = 398) 

Percentage of patients with 

characteristic
a 

Fever 100 99 

Inoculation eschar 95 NR
b 

Any rash 90 92 

    Any macules or papules 86 53 

 Any vesicles or pustules 33 NR
b 

 Any petechiae 14 52 

Headache 86 80 

Myalgia 76 60 

Nausea or vomiting 10 66 

Diarrhea 0 25 

Coma, seizures, delirium, or confusion 0 27 

Death 0 8 
a
Percentages determined from the number of patients for whom the clinical characteristic 

was specifically evaluated. 
b
NR, not reported in the clinical description of any case series. 

 

1.1.2.c. The Evolving Eco-epidemiology of SFG Rickettsia and Their Tick Vectors in the 

United States  

 From 2000-2013, there has been a 6-fold increase in the number of human cases of SFG 

Rickettsia per 100,000 people that were reported to the Centers for Disease Control and 

Prevention (CDC) in the United States (Figure 1.6) (Koo et al. 1994, Groseclose et al. 2004, 

Adams et al. 2015). The exact cause of this dramatic increase in incidence is unknown, but it is 

likely multifactorial due to a combination of a true increase in disease as well an increase in 

incidence rate due to increased reporting. One of the potential causes for true increased incidence 

is the emergence of previously unrecognized SFG rickettsioses that clinically resemble RMSF. 

In fact, approximately 95% of the cases of RMSF between 1981 and 2005 were diagnosed via 

serologic tests that do not differentiate between SFG rickettsial species (Paddock et al. 2008). 

Therefore it is possible that other SFG Rickettsia, other than R. rickettsii, have contributed to the  
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Figure 1.6. Historical incidence rate and case fatality rate of spotted fever group rickettsiosis in 

the United States, 1920–2013. Depicted is a dramatic rise in disease incidence over the last 15 

years with a concurrent decrease in case fatality rate (Koo et al. 1994, Groseclose et al. 2004, 

Openshaw et al. 2010, Adams et al. 2015, Dahlgren et al. 2016, Drexler et al. 2016) 

 

overall increase in SFG rickettsiosis. Thus, in 2009, the terminology for reporting rickettsial 

diseases to the CDC in the United States was changed from cases of RMSF to SFG rickettsioses 

to include other SFG pathogens such as R. parkeri. Additionally, as the incidence of SFG 

Rickettsia has increased, there has been a concomitant decrease in fatality rate (Figure 1.6) 

(Dahlgren et al. 2016). This decreased fatality rate implicates that these cases of SFG 

rickettsioses may be due to less pathogenic emergent SFG rickettsiae, like R. parkeri, instead of 

R. rickettsii (Raoult and Parola 2008). In fact, one report indicated that one-third of cases 

diagnosed as RMSF by immunofluorescence antibody tests were actually caused by R. parkeri 

based on western blot (Raoult and Paddock 2005). R. amblyommii, a SFG species of unknown 

pathogenicity, carried by A. americanum has also been suggested to play a role in the changing 

epidemiology of SFG rickettsiosis in the United States (Apperson et al. 2008, Dahlgren et al. 

2016). This proposed role is based on the high prevalence of R. amblyommii in lone star ticks, 

the overlap in tick range with the majority of SFG Rickettsia cases, serologic cross-reactivity to 

R. rickettsii, and little to no pathogenicity demonstrated for the organism (Dahlgren et al. 2016). 
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While the increase in SFG rickettsial cases can partially be explained by the emergence 

of newly reported rickettsial pathogens, a new tick vector for R. rickettsii has also recently been 

identified. The only previously recognized vectors of R. rickettsii in the United States are D. 

andersoni, the Rocky Mountain wood tick, found in the Western United States (Figure 1.7), and 

D. variabilis, the American dog tick, in the Eastern and Central United States (Figure 1.8). 

However, a newly recognized vector, Rh. sanguineus, (the brown dog tick) was responsible for 

transmission of R. rickettsii during an outbreak of RMSF in Arizona in 2002 (Demma et al. 

2005). The presence of R. rickettsii in these ticks may have an impact on RMSF incidence as Rh. 

sanguineus are found across the entire United States (Figure 1.9). Lastly, while there likely is a 

true increase in incidence of SFG Rickettsia, there has also been an increase in reported 

incidence due to an increase in surveillance. This increased surveillance can be attributed to 

newly implemented, standardized, national guidelines for reporting of SFG rickettsial disease as 

well as increased federal funding of public health programs (Openshaw et al. 2010). 

.  

 

Figure 1.7. Approximate distribution of the Rocky Mountain Wood tick, D. andersoni 

in the United States. (Courtesy of Centers of Disease Control and Prevention) 
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Figure 1.8. Approximate distribution of the American dog tick, D. variabilis in the United States. 

(Courtesy of Centers of Disease Control and Prevention)  

 

 

Figure 1.9. Approximate distribution of the brown dog tick, Rh. sanguineus in the United States. 

(Courtesy of Centers of Disease Control and Prevention) 

 

1.1.2.d. Rickettsia parkeri Ecology  

The primary vector of R. parkeri is believed to be the Gulf Coast tick, Amblyomma 

maculatum. This is supported by the fact that R. parkeri is transovarially maintained in A. 

maculatum and has been found in ovaries and salivary glands in infected ticks (Edwards et al. 

2011, Wright et al. 2015a). Furthermore, all of the cases of R. parkeri rickettsiosis have been 
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reported in the thirteen states where R. parkeri was also detected in A. maculatum (Figure 1.10) 

(Paddock and Goddard 2015). The percentage of R. parkeri positive A. maculatum found either 

free in the environment or attached to vertebrate hosts in these states varies from 1.4% to 65% 

with the highest prevalence reported from surveys in Virginia, Louisiana, and Mississippi 

(Sumner et al. 2007, Cohen et al. 2009, Paddock et al. 2010, Trout et al. 2010, Fornadel et al. 

2011, Varela-Stokes et al. 2011, Wright et al. 2011, Ferrari et al. 2012, Jiang et al. 2012, Florin 

et al. 2013, Leydet and Liang 2013, Florin et al. 2014, Nadolny et al. 2014, Pagac et al. 2014, 

Mays et al. 2016). Interestingly, in several field surveys from Oklahoma and Kansas including 

hundreds of ticks, only one R. parkeri positive A. maculatum has been found in Oklahoma and 

none in Kansas (Sumner et al. 2007, Jiang et al. 2012, Barrett et al. 2014, Paddock et al. 2015). 

Concurrently, surveys have found high prevalence of the endosymbiont Candidatus “R. 

andeanae” in these tick populations, suggesting that this symbiont may interfere with R. parkeri 

acquisition in these ticks (Paddock et al. 2015). However, as no such interference effect has been 

experimentally confirmed for Candidatus “R. andeanae”, further research is needed. In South 

America, Amblyomma triste and Amblyomma tigrinum are implicated as the primary vectors of 

R. parkeri rickettsiosis based on finding these infected tick species in regions where R. parkeri 

rickettsiosis has been diagnosed (Romer et al. 2011, Portillo et al. 2013, Romer et al. 2014).  

R. parkeri DNA has also been detected in a variety of other hard tick species including A. 

americanum, D. variabilis, Rh. sanguineus, Haemaphysalis leporispalustris, and Ixodes 

scapularis in the United States and Amblyomma dubitatum and Amblyomma nodosum in South 

America (Cohen et al. 2009, Ogrzewalska et al. 2009, Leydet and Liang 2013, Gaines et al. 

2014, Henning et al. 2014, Lado et al. 2014). There is evidence that A. americanum may be able 

to acquire and transmit R. parkeri, as experimentally infected ticks have been shown to maintain  
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Figure 1.10. Case-patient locations of R. parkeri rickettsiosis in the United States, 2002–2014. 

States where R. parkeri has been identified in adult Gulf Coast ticks are shaded gray (Paddock 

and Goddard 2015). 

 

this infection transstadially and transovarially (Goddard 2003). Furthermore, guinea pigs 

exposed to these ticks developed a fever and scrotal reactions (Goddard 2003). However, 

sequencing of rickettsial amplicons was not performed in infected ticks casting some doubt on 

the validity of these results. A. americanum have also been shown to acquire R. parkeri while 

feeding concurrently with infected A. maculatum on guinea pigs and then transstadially maintain 

this infection, indicating the possibility of spread of R. parkeri between tick populations (Wright 

et al. 2015b). On the other hand, infestation by A. americanum has not been reported in 

documented cases of R. parkeri rickettsiosis and field surveys have shown that ≤ 1% wild-caught 

A. americanum are R. parkeri positive (Cohen et al. 2009, Gaines et al. 2014). Therefore, despite 

their large, expanding range, abundant numbers in nature and predilection for biting humans 

(Paddock and Yabsley 2007, Dahlgren et al. 2016), the role of these ticks in the transmission of 

R. parkeri rickettsiosis is unknown.  
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1.1.2.e. SFG Rickettsia of Unknown Pathogenicity 

 In addition to the known pathogens that belong to the SFG of Rickettsia, there are several 

species that have been classified as symbionts of their associated tick species and have yet to be 

definitively identified as human pathogens. However, it is still important to study these 

organisms as they affect pathogen ecology and may emerge as pathogens in the future. Some 

examples of SFG rickettsial species of unknown pathogenicity are R. montanensis, R. 

amblyommii, and Candidatus “R. andeanae”. These rickettsiae have been found in ticks that 

carry known pathogenic Rickettsia species. While frequent horizontal (infectious) transmission 

favors virulent microbes, vertical (inherited) transmission favors evolution of benign and 

mutualistic (endosymbiont) associations (Werren 1997). Certain endosymbionts, such as R. 

montanensis have been reported to be abundant in ticks in the United States (Azad and Beard 

1998). This abundance in nature likely influences the ecology and epidemiology of RMSF, 

which shares a tick host in common with R. montanensis. Burgdorfer et al. reported that 

competition between non-pathogenic and pathogenic Rickettsia results in decreased vertical 

transmission of the pathogenic Rickettsia (Burgdorfer et al. 1981). This competition phenomenon 

is termed interference (Lane 1994). As previously mentioned, a similar interference effect has 

been speculated, but not confirmed, with Candidatus “R. andeanae” preventing R. parkeri 

infection of A. maculatum in Oklahoma and Kansas (Paddock et al. 2015).  

 Not only are SFG Rickettsia of unknown pathogenicity important due to their ability to 

alter the ecology of pathogenic Rickettsia, but they have the potential to emerge as pathogens 

themselves. This type of emergence would have a major effect on public health due to the 

ubiquitous nature of these organisms in their tick hosts. For example, R. amblyommii and R. 

montanensis, symbionts of A. americanum and D. variabilis, respectively, have been implicated 
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as suspected pathogens based on finding DNA of these organisms in ticks that were feeding on 

humans that developed a rash (Billeter et al. 2007, McQuiston et al. 2012). However, these 

studies did not confirm that the patients were infected with these organisms, since samples from 

the lesions of the patients were not collected for rickettsial culture or PCR. In future cases, in 

order to definitely determine if these organisms are indeed human pathogens, it is imperative that 

inoculation site samples be collected for DNA detection or rickettsial culture. Lastly, another 

application of studying these bacteria of unknown pathogenicity is that, by comparing non-

pathogen to pathogen, there is the potential to discover factors that are necessary for vector 

transmission to the host and ability to cause disease, which may lead to novel transmission-

blocking preventatives. 

1.2. Amblyomma maculatum 

 The Gulf Coast tick, Amblyomma maculatum, is an important arthropod due to its impact 

on human and animal health both directly by inducing disease through biting vertebrate hosts and 

indirectly by transmitting pathogens. This tick species belongs to the phylum Arthropoda, the 

class Arachnida, the order Acari, and the family Ixodidae. The original description of this hard, 

ornate tick with long mouthparts was recorded by Carl Ludwig Koch in 1844 based on ticks 

collected in the Carolinas (Koch 1844). However, it wasn’t until 1912 that the pathology caused 

by these ticks feeding on cattle was documented (Hooker et al. 1912). Several years later, studies 

by R. R. Parker were the first to document an organism isolated from A. maculatum that when 

inoculated in guinea pigs resulted in a mild self-limiting fever and scrotal reaction (Parker et al. 

1939). It wasn’t until 2004 that R. parkeri rickettsiosis was described in a human patient after A. 

maculatum infestation (Paddock et al. 2004). The following sections will discuss the habitat and 

life cycle of A. maculatum and detail its medical and veterinary importance.  
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1.2.1. Life Cycle and Distribution 

 A. maculatum is a three host tick that requires feeding on three separate hosts in order to 

get nutrients to progress to the next life stage and complete its life cycle. In the natural setting, 

larvae and nymphs are typically found on small rodents and small birds, with nymphs and 

primarily adults feeding on larger animals such as large carnivores, ruminants, horses, or humans 

(Teel et al. 2010). However, a recent report demonstrated that similar to A. americanum, larval 

A. maculatum will feed on humans in an experimental setting (Portugal and Goddard 2015). The 

longevity of unfed ticks is variable depending on the life stage and environmental conditions 

with adults surviving twice as long as nymphs and up to four times as long as larvae when 

maintained at 27°C and a constant relative humidity (Teel et al. 2010). Once attached to the host, 

females take 8-21 days to fully engorge and drop off the host (Hixson 1940, Drummond and 

Whetstone 1970). It generally takes engorged females 4-9 days to oviposit, although that period 

may be prolonged in low temperatures (Hixson 1940, Drummond and Whetstone 1970, Wright 

1971). A single engorged female produces an average of greater than 8,000 eggs with egg 

production peaking during the first week of oviposition and lasting up to 26 days (Hooker et al. 

1912, Bishopp and Hixson 1936, Hixson 1940, Wright 1971). The incubation time of eggs before 

eclosion is also variable depending on environmental conditions, but is on average 30-60 days 

(Teel et al. 2010). Larvae engorge within a few days after attachment to the vertebrate host and 

molt into nymphs after 11-17 days (Hooker et al. 1912, Hixson 1940, Koch and Hair 1975). 

Nymphs engorge in 5-8 days after attachment to their vertebrate host and molt to adults within an 

average of 24-38 days, with longer molting times in adverse environments (Koch and Hair 

1975).  
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 The historical range of A. maculatum in the United States was limited to 150 miles of 

land lining the Gulf Coast states (Figure 1.11) (Hooker et al. 1912, Bishopp and Hixson 1936, 

Cooley and Kohls 1944, Bishopp and Trembley 1945, Paddock and Goddard 2015). However, in 

the past 50 years that range has extended greater than 250 miles inland, extending into land 

locked states (Figure 1.12) (Semtner and Hair 1973, Goddard and Paddock 2005, Goddard 2007, 

Teel et al. 2010, Trout et al. 2010, Pagac et al. 2014, Paddock and Goddard 2015). It was 

originally postulated that the narrow range of A. maculatum was due to its requirement for high 

humidity and temperature (Bishopp and Hixson 1936). However, this tick is also well adapted to 

drier, open grasslands and prairies within its expanded range, which is attributed to its low 

transpiration rate and ability to conserve moisture (Yoder et al. 2008). It is also likely that the 

movement of wildlife and domestic vertebrate hosts due to anthropogenic activities have 

contributed to this expanded geographical range (Paddock and Goddard 2015). Examples of 

these activities include the relocation of cattle from the Gulf Coast to the prairies of the Midwest 

and the introduction of free-ranging feral swine to the southeastern United States that serve as 

hosts for Gulf Coast ticks (Semtner and Hair 1973, Paddock and Goddard 2015). Furthermore, 

conservation efforts in the southeastern United States in the 20
th

 century have resulted in a 

dramatic increase in populations of the white-tailed deer, another preferred host for A. 

maculatum (Paddock and Yabsley 2007, Teel et al. 2010, Paddock and Goddard 2015). Lastly, 

the increasing populations of migratory birds may play a role in the relocation of immature A. 

maculatum to new geographical ranges (Florin et al. 2014, Paddock and Goddard 2015). The 

habitats for these birds and the ticks that they harbor have grown in recent years due to 

prescribed burning of forests (Madden et al. 1999, Wilcox and Giuliano 2011). This phenomenon 

occurred in Ft. Campbell, an army base on the border of Kentucky and Tennessee, where  
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Figure 1.11. A distribution map of A. maculatum in the United States for 1945. This map was 

determined using tick collection data from the United States Bureau of Entomology and Plant 

Quarantine (Bishopp and Trembley 1945). Large dots indicate specific sites from which Gulf 

Coast ticks were collected, and small dots represent the probable distribution of the Gulf Coast 

tick, determined by the authors (Paddock and Goddard 2015). 

 

 
 

Figure 1.12. An estimated distribution of A. maculatum in the United States for 2014 that 

interpolates contemporary data (Wilson and Baker 1972, Goddard and Norment 1983, Harrison 

et al. 1997, Clark et al. 1998, Williams et al. 1999, Reeves et al. 2002, Barker et al. 2004, 

Goddard and Paddock 2005, Cohen et al. 2009, Teel et al. 2010, Trout et al. 2010, Brown et al. 

2011, Fornadel et al. 2011, Varela-Stokes et al. 2011, Wright et al. 2011, Florin et al. 2014, 

Pagac et al. 2014). The range is shown as dark red stippling against a physical geographical base 

map. Loose stippling along borders represent areas where distribution and abundance may be 

expected to vary annually. The colors of the relief topographic map depict modern land cover 

conditions (naturalearthdata.com). Map courtesy of R. Ryan Lash, Centers for Disease Control 

and Prevention, Atlanta, GA (Paddock and Goddard 2015). 
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prescribed burns restored the breeding habitats for grassland birds which led to the establishment 

of A. maculatum populations in an area where they previously had not been identified (Hunter et 

al. 2001, Jiang et al. 2012, Pagac et al. 2014, Paddock and Goddard 2015). The expanding range 

of this tick has tremendous implications on tick-borne disease due to the medical and veterinary 

importance of this tick as will be discussed in the following section. 

1.2.2. Medical and Veterinary Importance 

 While the major impact of the Gulf Coast tick on human health, as previously discussed, 

is due to its ability to transmit R. parkeri, bites of this tick may also be a nuisance to its human 

hosts and can also lead to tick paralysis (Paffenbarger 1951, Espinoza-Gomez et al. 2011, 

Paddock and Goddard 2015). There have been at least two reports of tick paralysis in human 

patients caused by A. maculatum with neurological deficits, such as paresis/paralysis and ataxia 

which resolved upon tick removal (Paffenbarger 1951, Espinoza-Gomez et al. 2011). In addition 

to R. parkeri, other human pathogens have rarely been found in A. maculatum, including 

Ehrlichia chaffeensis and R. felis, however the role of this tick in the transmission of these 

disease-causing agents is unknown (Williamson et al. 2010, Jiang et al. 2012, Paddock and 

Goddard 2015).  

 In addition to its medical importance, A. maculatum can cause dramatic, life threatening 

disease in other mammalian hosts including several domestic animal species. Infestations by A. 

maculatum on cattle can lead to a significant negative economic impact due to weight loss or 

failure to gain weight (Gladney et al. 1977, Stacey et al. 1978, Williams et al. 1978). 

Additionally, the open wounds caused by these arthropods can provide an ideal environment for 

the development of myiasis (Bishopp and Hixson 1936). In fact, prior to its eradication from the 

United States, as many as 40-80% of infestations by the primary screwworm, Cochliomyia 
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hominivorax, in livestock were secondary to feeding by Gulf Coast ticks (Paddock and Goddard 

2015). Furthermore, due to their long mouthparts and preference for feeding on the ears of large 

mammals, infestations by A. maculatum can result in a condition called “gotch ear”, where the 

pinna is thickened and curved due to extensive dermatitis and edema that eventually leads to 

destruction of the supporting cartilage and drooping of the ears (Figure 1.13) (Bishopp and 

Hixson 1936, Paddock and Goddard 2015). The pathophysiology of this condition is unknown, 

but the combination of the annoyance of the ticks feeding as well a buildup of exudate from the 

bite site causes the affected animals to rub their ears exacerbating their disease (Gladney et al. 

1977). Gotch ear has been reported primarily in cattle as well as horses, mules, sheep, and goats 

(Bishopp and Trembley 1945, Drummond and Whetstone 1970, Gladney 1976, Ivey et al. 1978, 

Williams et al. 1978, Byford et al. 1992, Edwards 2011).  

 
 

Figure 1.13. Gotch ear in cattle. The images depict the drooped and stiffened appearance that 

results from attachment and feeding by multiple adult A. maculatum to the inner surface of the 

ear. The irritation caused by attached A. maculatum ticks may result in generalized edema, 

inflammation, and proteinaceous exudates and eventually lead to destruction of the supporting 

cartilage (adapted from (Paddock and Goddard 2015)). 
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 A. maculatum is also the primary vector, and the only definitive host for the protozoa 

Hepatozoon americanum, the causative agent of American canine hepatozoonosis (Ewing et al. 

2002). This hepatozoonosis is a frequently fatal disease of domestic dogs is characterized by 

fever, lethargy, and muscle wasting (Ewing and Panciera 2003). Laboratory findings in these 

animals include a marked mature neutrophilia, hypoglycemia, hypoalbuminemia, and elevated 

levels of serum alkaline phosphatase (Ewing and Panciera 2003). Canines are accidental hosts 

that are infected by either ingesting ticks that contain oocysts or infected mice or rabbits that 

contain tissue cystozoites (Ewing and Panciera 2003, Johnson et al. 2008). Once inside the host, 

the organism encysts in muscle and then undergoes merogony to release large numbers of 

merozoites inciting marked pyogranulomatous myositis (Ewing and Panciera 2003, Paddock and 

Goddard 2015). Macrophages engulf these merozoites, which then undergo gametogeny to form 

gamonts. These gamonts can be found in low numbers of circulating monocytes and when found 

are diagnostic for this disease (Ewing and Panciera 2003, Paddock and Goddard 2015). 

Treatment of American canine hepatozoonosis relies on a combination of antiprotozoals and 

non-steroidal anti-inflammatory drugs for pain relief (Ewing and Panciera 2003). A prolonged 

therapeutic course may be required as relapse is likely to occur (Macintire et al. 2001). 

 In addition to its role as a vector of animal and human pathogens, certain wild-caught 

populations of A. maculatum also harbor a rickettsial species of unknown pathogenicity, 

Candidatus “Rickettsia andeanae” (Blair et al. 2004, Jiang et al. 2005, Paddock et al. 2010, 

Fornadel et al. 2011, Varela-Stokes et al. 2011, Wright et al. 2011, Ferrari et al. 2012, Jiang et al. 

2012, Luce-Fedrow et al. 2012, Ferrari et al. 2013, Flores-Mendoza et al. 2013, Leydet and 

Liang 2013, Nadolny et al. 2014, Paddock et al. 2015). This bacterial species has been identified 

via immunohistochemistry in low numbers in the skin of mice which were infested by A. 
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maculatum (Grasperge et al. 2014). However, no pathology was associated with inoculation of 

these organisms (Grasperge et al. 2014). Therefore, future study to identify factors that determine 

rickettsial pathogenicity could be performed by comparing rickettsial inoculation by ticks 

infected with Candidatus “Rickettsia andeanae” to those infected by R. parkeri. These studies 

would investigate whether the differences in pathogenicity are due to intrinsic bacterial 

properties or whether the pathogenicity is determined by the amount of rickettsiae inoculated by 

ticks. Similarly, other future investigations of tick-borne pathogens, such as R. parkeri should 

involve evaluation of the role that the vector plays in rickettsial transmission and subsequent 

disease progression.  

1.3. Mammalian Immune Response to SFG Rickettsia 

 Studies that utilize animal models are indispensable to infectious disease research as they 

are essential to elucidate the pathogenesis and immune response for a particular pathogen in 

order to develop potential therapeutics, and vaccine strategies. The ideal goal of designing an 

animal model should be to replicate human disease via the natural route of infection in an easy, 

highly reproducible and cost-effective manner. This section of the review will highlight some of 

the models that have been developed to study SFG rickettsioses, as well as the advantages and 

disadvantages of each of these models. The insights gained through these studies with regards to 

innate and adaptive immunity will then be discussed.  

1.3.1. Animal Models of SFG Rickettsia 

Within the SFG of Rickettsia most of the studies using animal models have been done 

with R. rickettsii and R. conorii and some recent work on R. parkeri. Several animal species have 

been used to model different aspects of SFG rickettsial disease via a variety of inoculation 

routes. As previously mentioned, the preliminary research in the field of rickettsiology carried 
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out by Ricketts in the early 20
th

 century utilized guinea pigs as a model (Ricketts 1906a). When 

inoculated intraperitoneally with R. rickettsii, these animals developed fever, macular rash, 

scrotal swelling and bruising, and died by two weeks post-inoculation (Ricketts 1906a). These 

results have since been recapitulated with the addition of the characterization of the typical 

vasculitis and detection of rickettsiae within lesions (Walker et al. 1977). Similarly, R. conorii 

causes a fever and scrotal edema when inoculated intraperitoneally in guinea pigs, but, did not 

cause disease when injected subcutaneously (Hass and Pinkerton 1936). While intradermal 

inoculation of R. conorii results in the formation of a local cutaneous inoculation site eschars and 

rickettsemia in guinea pigs, this more natural inoculation route does not induce a fever or other 

signs of illness (Walker et al. 1992, La Scola et al. 2009). Similarly, guinea pigs also developed 

eschars without systemic illness when intradermally inoculated with 15 other rickettsial species, 

and 13 of these species had been previously associated with eschars in humans (La Scola et al. 

2009). While these studies demonstrate that guinea pigs can be susceptible to some SFG 

rickettsial species, other models are necessary that do not rely on the intraperitoneal route of 

infection to induce systemic disease. Rhesus macaques have also been used to model RMSF and 

are susceptible to intravenous inoculation, developing a fever, erythema, cyanosis, and rash as 

well as a high fatality rate when inoculated with high doses. Fatality in these animals is 

associated with thrombocytopenia, elevated fibrin degradation products, and prolonged clotting 

times (Ricketts 1906a, Mosher et al. 1977). While these animals may be better models for human 

disease, their cost and restrictions on availability limit their widespread use as animal models. 

Many other animals including ferrets, gerbils, hamsters, rabbits, cotton rats, miniature pigs, and 

sheep have been shown to be resistant to SFG rickettsioses via intraperitoneal and subcutaneous 

inoculations (Sammons et al. 1977). Additionally, cotton rats have been shown to develop a 
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transient rickettsemia after intracardiac or intraperitoneal inoculation with R. rickettsii, but 

remain asymptomatic (Shirai et al. 1967). Pine voles are susceptible to R. rickettsii via 

intraperitoneal inoculation with high morbidity and mortality (Eremeeva et al. 2003). However, 

the lack of available reagents for this species limits the usefulness of this model.  

Due to the previously described limitations on animal susceptibility, availability, ease of 

use, and artificial route of inoculation in the above models, there is a need to explore other 

models, which has led to a number of studies evaluating various inbred mouse strains as models 

for SFG rickettsioses. The biggest advantages to using these animals are the widespread 

availability, ease of use, reproducibility of disease due to similar genetic makeup, and large 

number of reagents available for use with these animals. However, similar to other rodents, the 

various strains of mice have varying susceptibility to SFG Rickettsia and frequently rely on 

artificial routes of inoculation in order to produce disease. For example, in a study of R. conorii 

in 20 inbred mouse strains, only C3H/HeJ mice proved to be susceptible, where 10 plaque 

forming units inoculated intraperitoneally resulted in fatality 50% of the time (Eisemann et al. 

1984). However, subcutaneous inoculations in these animals did not result in death even at doses 

of up to 5x10
10

 organisms (Eisemann et al. 1984). C3H/HeN mice have also been shown to be 

susceptible to high doses of R. conorii inoculated intravenously developing endothelial infection, 

interstitial pneumonia, and hepatic granulomas (Walker et al. 1994). This model still avoids the 

natural route of inoculation via tick inoculation. However, lesions seen in human cases of SFG 

rickettsioses are consistently reproduced, and therefore this model has been used subsequently 

for immunology studies as will be described in the following sections (Feng et al. 1994, Billings 

et al. 2001, Valbuena et al. 2003, Rydkina et al. 2004, Valbuena and Walker 2004, Valbuena and 

Walker 2005, Fang et al. 2009, Jordan et al. 2009, Riley et al. 2015, Riley et al. 2016).  
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While all of the previously mentioned models utilize the artificial route of needle 

inoculation of SFG Rickettsia, two recent animal models of RMSF have been established where 

dogs were infected with two different strains of R. rickettsii via experimentally infected ticks 

(Piranda et al. 2008, Levin et al. 2014). Dogs exposed to a Brazilian strain of R. rickettsii via 

infected A. aureolatum ticks developed fever, lethargy, anorexia, ocular lesions, 

thrombocytopenia, anemia, rickettsemia and anti-Rickettsia antibodies post-inoculation and 

recovered from their illness without treatment (Piranda et al. 2008). Dogs that were inoculated 

with the American strain of R. rickettsii via infected D. variabilis also developed fever, lethargy, 

anorexia, ocular lesions, anemia, and thrombocytopenia in addition to mucosal petechiae, 

tremors, skin rash, and inflammatory leukograms (Levin et al. 2014). One dog was euthanized 

after exhibiting convulsions, and typical vasculitis was demonstrated in multiple organs (Levin et 

al. 2014). The remainder of the dogs recovered either without treatment or after treatment with 

doxycycline, although one dog required two rounds of treatment after its clinical signs returned 

two weeks after completion of the initial treatment (Levin et al. 2014).  

In addition to the models described above for R. conorii and R. rickettsii, there are a few 

reports describing animal models for R. parkeri. The original research on R. parkeri, well before 

it was discovered to be a pathogen, was performed in guinea pigs via intraperitoneal inoculation, 

and inoculated animals were either asymptomatic or developed a mild fever and swelling and 

erythema of the scrotum (Parker et al. 1939). Opossums inoculated intraperitoneally with R. 

parkeri are asymptomatic, but develop transient rickettsemia and can transmit this infection to 

uninfected ticks (Horta et al. 2010). Additionally, R. parkeri persists in the tissues of cotton rats 

after subcutaneous inoculation; however no pathology or clinical signs were reported in response 

to these inoculations (Moraru et al. 2013). The most promising animal model for R. parkeri 
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rickettsiosis is the C3H/HeJ mouse, which develops facial edema, splenomegaly, and high tissue 

rickettsial loads in response to intravenous inoculation (Grasperge et al. 2012). Furthermore, 

eschar-like lesions characterized histologically by marked vasculitis were noted when these 

animals were inoculated intradermally in the tail (Figure 1.14) (Grasperge et al. 2012). A. 

maculatum feeding after intradermal inoculation in these mice exacerbated cutaneous pathology 

with increased rickettsial load, demonstrating the role of the vector in R. parkeri rickettsiosis 

(Grasperge et al. 2014). While these mice are valuable to model the lesions of R. parkeri 

rickettsiosis, they have a mutation in TLR4, which is needed for stimulation of dendritic cells 

and activation of the cell-mediated immune response necessary for anti-rickettsial immunity 

(Hoshino et al. 1999, Jordan et al. 2008). Therefore, in order to evaluate the immune response to 

R. parkeri rickettsiosis, a different, immunocompetent, animal model would be needed.  

 

Figure 1.14. Gross histopathology of eschar-like lesions in C3H/HeJ mice following intradermal 

inoculation of R. parkeri at 27 dpi. (A) Gross lesions associated with inoculation site in R. 

parkeri-infected C3H/HeJ mouse (white arrow). (B) Immunohistochemistry displaying positive 

staining (black arrows) in the cytoplasm of endothelial cells and macrophages of R. parkeri-

infected C3H/HeJ mice. (C) Marked vasculitis in R. parkeri-infected C3H/HeJ mouse. (D) 

Uninfected C3H/HeJ mouse histopathology (for comparison) (Grasperge et al. 2012).  
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1.3.2. Innate Immune Response to SFG Rickettsia  

 Studies both of human cases of rickettsioses and those utilizing the animal models 

described in the preceding section have demonstrated that SFG Rickettsia target endothelial cells 

as well as macrophages and dendritic cells leading to an anti-rickettsial immune response and 

resulting in the characteristic vasculitis seen with rickettsial disease (Walker and Ismail 2008, 

Mansueto et al. 2012). Both the innate and adaptive arms of the immune response play a role in 

anti-rickettsial immunity as summarized in this and the following section (Figure 1.15) (Walker 

and Ismail 2008). The innate immune response is initiated through the interaction of pathogens 

with pattern-recognition receptors such as the TLRs (Mansueto et al. 2012, Sahni et al. 2013). 

TLR pathway activation results in activation of NF-κB and the production of numerous pro-

inflammatory cytokines and the acute phase inflammatory response (Sahni et al. 2013). The 

acute phase response has been demonstrated in humans with Mediterranean spotted fever (MSF) 

caused by R. conorii as indicated by elevations in serum inflammatory cytokines such as 

interferon γ (IFN γ), interleukin-6 (IL-6), and tumor necrosis factor α (TNFα), as well as the 

acute phase protein, C-reactive protein during the first 1-2 weeks of infection (Mansueto et al. 

1994, Vitale et al. 2001). Furthermore, increased expression of IFN γ and TNFα has been noted 

in biopsies of skin lesions from patients with MSF and was correlated with mild to moderate 

disease as opposed to severe disease; however, a cause and effect relationship was not 

demonstrated (de Sousa et al. 2007). As previously discussed the importance of TLR4 in 

rickettsial infection has been suggested by the fact that C3H/HeJ mice, that have a mutation in 

TLR4, are more susceptible to various SFG rickettsioses than other inbred mouse strains (Jordan 

et al. 2008, Grasperge et al. 2012). Furthermore, studies of R. conorii infection in TLR4-deficient 

mice showed that TLR4 activation of dendritic cells via rickettsial LPS was important for the  
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Figure 1.15. Model of protective immunity in rickettsial infection (Walker and Ismail 2008). 
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subsequent activation of natural killer (NK) cells and production of large quantities of IFNγ 

(Jordan et al. 2009). The importance of TLR4 signaling through MyD88 in rickettsial immunity 

was also recently demonstrated as MyD88 knockout mice have decreased ability to clear 

rickettsial infection with lower inflammatory infiltrates and expression of IFNγ, IL-12, IL-6 and 

granulocyte colony stimulating factor (G-CSF) (Bechelli et al. 2016). NK cells are also important 

in the acute innate immune response to SFG Rickettsia, as depletion of these cells results in 

enhanced susceptibility to R. conorii infection as well as a decrease in the serum concentrations 

of IFNγ and IL-12 (Billings et al. 2001). 

Dendritic cells, in addition to activating NK cells, are also infected by Rickettsia, which 

are found both within the cytoplasm and endosomes of these cells indicating that they can 

present antigen via both major histocompatibility complex (MHC) class I and II (Fang et al. 

2007). In R. conorii-resistant mice, infected dendritic cells produce cytokines such as IL-12 that 

stimulate a protective Th1 immune response and production of IFNγ by CD4+ T cells as opposed 

to the proliferation of Foxp3+ regulatory T cells seen in susceptible mice (Fang et al. 2007). The 

production of cytokines such as IFNγ and TNFα are important to the activation of phagocytic 

cells as depletion of these cytokines in mice infected with a sublethal dose of R. conorii resulted 

in mortality and overwhelming rickettsial load due to impaired nitric oxide (NO) production by 

phagocytes (Feng et al. 1994). Once infected and stimulated by cytokines, human endothelial 

cells, macrophages, and hepatocytes are capable of killing R. conorii in vitro via a variety of 

mechanisms including the induction of NO, oxidative burst, production of hydrogen peroxide, 

and/or tryptophan degradation (Feng and Walker 2000). Using animal models, it has been 

determined that a variety of cell types such as NK cells, macrophages, and dendritic cells, which 

are activated via receptors such as TLRs and various stimulatory cytokines play an important 
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role in the initiation of the anti-rickettsial immune response. This innate response is not only 

important in the acute phase of infection, but also drives the formation of the specific, long-term 

adaptive immune response.  

1.3.3. Adaptive Immune Response to SFG Rickettsia 

 While the innate immune response is essential for the initial response against SFG 

Rickettsia, studies of human cases of rickettsiosis and animals models have also demonstrated 

the important role of the adaptive immune system in this response (Walker and Ismail 2008, 

Mansueto et al. 2012, Sahni et al. 2013). Both CD4+ helper T cells and CD8+ cytotoxic T cells 

have been found in perivascular infiltrates in R. conorii eschars (Herrero-Herrero et al. 1987). As 

indicated earlier, the production of Th1 cytokines such as TNFα and IFNγ by CD4+ T helper 

cells is crucial for anti-rickettsial immunity (Fang et al. 2007). Cytotoxic CD8+ T cells are also 

integral to the anti-rickettsial response via secretion of IFNγ as well as MHC class I-mediated 

killing of Rickettsia infected cells via secretion of cytolytic enzymes like perforin, and have been 

shown to reduce tissue rickettsial loads in IFNγ knockout mice (Walker et al. 2001, Walker and 

Ismail 2008). In addition to cell-mediated immunity, the antibody response to Rickettsia has been 

shown to be important to combat disease. Antibodies to R. conorii OmpA and OmpB protected 

SCID mice from R. conorii infection as opposed to those receiving anti-LPS antibodies or Fab 

fragments of antibody (Feng et al. 2004a). Furthermore, in vitro studies in endothelial and 

macrophage-like cell lines demonstrated that this Fc-dependent effect was due to opsonization 

and enhanced killing of R. conorii within phagolysosomes (Feng et al. 2004b). In opposition to 

the protective role of the cell-mediated immune response, CD4+ CD25+ Foxp3- regulatory T 

cells have been shown to play an immunosuppressive role (Fang et al. 2009). Higher numbers of 

these cells were found in lethal R. conorii infection, and splenocytes from these mice produced 
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lower concentrations of protective Th1 cytokines such as IL-2 and IFNγ and higher 

concentrations of the inhibitory cytokine, IL-10 (Fang et al. 2009). While the studies described 

above have detailed several aspects of the anti-rickettsial immune response, it should be noted 

that most of these studies rely on intravenous needle inoculation of the organisms, as opposed to 

the natural route of tick inoculation. It is important to consider the role of the vector in SFG 

Rickettsia immunity, because, as described in the next section, tick feeding and salivary 

components have been shown to significantly alter several aspects of both the innate and 

adaptive vertebrate host immune response. 

1.4. Tick-Host Interactions 

 As stated previously, A. maculatum and other hard ticks require an uninterrupted blood 

meal of several days duration in order to mature from one life stage to the next. Therefore, these 

arthropods must be able to counteract host defenses such as the host pain and itch response, 

hemostasis, wound healing, and the cellular and secreted components of the host immune 

response. As such, their salivary components have been investigated as therapeutics that 

counteract these processes. Interestingly, these molecules are also gaining interest in the field of 

oncology research as anti-tumor drugs due to their cytotoxic and cytolytic properties that act 

against various cell types as well as anti-angiogenic properties (reviewed in (Sousa et al. 2015)). 

Due to the importance of ticks as vectors of several infectious organisms of bacterial, viral, and 

protozoal origin, there also has been significant research on the immunomodulatory properties of 

their saliva and salivary gland extracts (reviewed in (Kotal et al. 2015)). Additionally, numerous 

studies have been performed to identify the various immunomodulatory components in the 

salivary glands of a number of tick species including A. maculatum via high-throughput 

transcriptomics and proteomics (reviewed in (Chmelar et al. 2015)). These studies can also be 
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performed to compare salivary gland composition in various stages of development/feeding as 

well as the effect of pathogen infection on these components. Using these techniques researchers 

may be able to identify specific molecules that are only expressed by ticks during pathogen 

transmission and discover potential targets of transmission-blocking therapeutics. The following 

section will describe the current knowledge of how tick salivary components modulate many 

aspects of the mammalian host immune response followed by a discussion of the studies that 

have shown that tick salivary components or feeding can augment pathogen infection.  

1.4.1. Tick Immunomodulation 

 As ticks attach to a vertebrate host, they encounter several immune cells as well as 

secreted molecules that must be counteracted in order to feed to repletion. Complement is an 

example of one of these non-cellular factors. The saliva of various species of Ixodes ticks as well 

as specific factors such as Isac, IRAC, and Salp20 have been shown to inhibit the formation and 

inactivate the end products of the alternative complement pathway (Ribeiro and Spielman 1986, 

Ribeiro 1987, Valenzuela et al. 2000, Daix et al. 2007, Tyson et al. 2007, Hourcade et al. 2016). 

Furthermore, as reviewed in Kotal et. al. (2015), tick saliva or salivary gland extract (SGE) from 

various tick species as well as the presence of feeding ticks have been shown to alter the function 

of a variety of host immune cells involved in the innate immune response (Table 1.6), as well as 

T and B lymphocytes of the adaptive immune response (Table 1.7). SGE from a variety of hard 

ticks has been shown to decrease NK cell activity and cytotoxicity. Saliva or SGE from several 

hard tick species has also been shown to inhibit neutrophil chemotaxis, adhesion, phagocytosis, 

and killing ability. Additionally, macrophage phagocytosis, NO and cytokine production is 

inhibited by the saliva and/or SGE of hard tick species. Dendritic cell maturation, differentiation, 

migration, proliferation, and cytokine production is inhibited by saliva collected from a number  
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Table 1.6. The effects of tick saliva, SGE, or tick feeding on innate immune cell populations 

(adapted from (Kotal et al. 2015)).  

Tick Saliva/SGE/

Feeding 

Effect 

NK cells   

A. variegatum SGE Decreased NK cell activity 

Dermacentor reticulatus SGE Decreased NK cell activity 

Haemaphysalis inermis SGE Decreased NK cell activity 

I. ricinus SGE Suppression of NK cell cytotoxicity 

Macrophages   

Dermacentor variabilis Saliva Impaired phagocytosis and altered gene 

expression, stimulation of migration 

  Stimulation of PGE2 production, inhibition of 

cytokine production 

Ixodes ricinus SGE Inhibition of superoxide and NO production 

  Inhibition of phagocytosis and TNF production 

Ixodes scapularis Saliva Inhibition of cytokine production 

  Inhibition of NO production 

Rhipicephalus 

appendiculatus 

SGE Inhibition of cytokine and NO production 

Rhipicephalus microplus SGE Altered surface molecule expression, inhibition 

of cytokine production 

Rhipicephalus sanguineus Saliva Inhibition of NO production 

Dendritic cells   

Amblyomma cajennense Saliva Inhibited maturation and differentiation; 

reduced migration due to decreased expression 

of receptors; polarization towards Th2 

cytokines 

I. ricinus Saliva Inhibited maturation, migration and antigen 

presentation; blocked Th1 and Th17 

polarization 

  Inhibited proliferation, phagocytosis and 

cytokine production 

  Impaired maturation and cytokine production 

  Inhibition of signaling pathways 

I. scapularis Saliva Inhibition of proliferation and cytokine 

production 

Rh. Sanguineus Saliva Reduced migration, maturation and cytokine 

production 

Eosinophils   

Soft and hard ticks Feeding Increased amount of eosinophils in feeding 

cavity 

Hard ticks SGE Inhibition of attraction to the feeding site 

I. ricinus Saliva Basophil activation via MCP-1 released from 

splenocytes 
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(Table 1.6 continued) 

Tick Saliva/SGE/

Feeding 

Effect 

Basophils   

Amblyomma cajennense Feeding Increased amount of basophils in feeding cavity 

Amblyomma dubitatum Feeding Increased amount of basophils in feeding cavity 

Neutrophils   

Soft and hard ticks SGE Anti-IL-8 activity 

Amblyomma americanum SGE Altered dynamics of chemokine activity 

I. ricinus Saliva Decrease in ROS production 

I. scapularis Saliva Inhibition of granule release, infiltration, 

phagocytosis 

  Reduced adhesion of polymorphonuclear 

leukocytes 

Rh. Appendiculatus SGE Altered cytokines mRNA production by 

peripheral blood leukocytes 

Rh. Microplus SGE Inhibition of phagocytosis 

 

 

of hard ticks. Conversely, feeding of ticks has been documented to result in an infiltrate of 

basophils and eosinophils at the cutaneous tick bite site. Lastly, the saliva, SGE, and/or feeding 

of several Ixodid tick species has been shown to inhibit B and T lymphocyte proliferation and 

suppress their responsiveness, as well as inhibit the production of Th1 cytokines (such as IL-2, 

IFNγ, and IL-12), while increasing the production of Th2 cytokines (such as IL-4 and IL-10). 

The major limitation of these studies is that with few exceptions, the immune cells studied were 

either derived from bone marrow, spleen, or peripheral blood, which may not function similarly 

to those found in the skin. Furthermore, SGE, which is produced by sonication of whole salivary 

glands removed from ticks, likely has a different composition than what is inoculated during tick 

feeding. Even saliva, which is collected only at one time point during feeding, may not 

completely represent the various factors inoculated during the entire tick feeding process. In fact, 

a study of salivary glands collected from A. americanum determined that there was a marked 

difference in the expression of transcripts of secretory proteins at different time points during 

tick feeding (Karim and Ribeiro 2015).  
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Table 1.7. The effects of tick saliva, SGE, or tick feeding on lymphocytes (adapted from (Kotal 

et al. 2015)). 

Tick Saliva/SGE/

Feeding 

Effect 

Soft and hard ticks Saliva, SGE Polarization of the immune response towards 

Th2 via cytokines 

Amblyomma variegatum SGE Inhibition of lymphocyte proliferation 

Dermacentor andersoni SGE Reduced T cells proliferation 

  Reduced Th1 cytokine production 

 Saliva, SGE, 

feeding 

Inhibition of integrin expression 

 SGE, feeding Increased IL-4 and IL-10 levels 

Haemaphysalis bispinosa Feeding Reduction in T lymphocyte count and 

proliferation, increased CD4 +/CD8 + ratio 

Hyalomma anatolicum 

anatolicum 

Feeding Reduction in T lymphocyte count and 

proliferation, increased CD4 +/CD8 + ratio,  

increase in circulating B lymphocyte count 

I. ricinus SGE Inhibition of lymphocyte proliferation 

  Suppression of B cell proliferation, inhibition of 

IL-10 production, reduction of markers on the 

surface of T and B cells 

 Saliva Inhibition of T cell proliferation 

  Induction of Th2 differentiation of CD4 + T 

cells via dendritic cells 

 Feeding Increased CD4 +/CD8 + ratio 

  Inhibited proliferation and responsiveness 

  Reduced amount of specific Ig against antigen, 

no change in total Ig amount 

I. scapularis Saliva Inhibition of IL-2 production by T cells, 

inhibition of splenic T cell proliferation 

 Feeding Inhibition of Th17 immunity, priming of a 

mixed Th1/Th2 response during secondary 

infestation 

 SGE, feeding Increased IL-4 levels 

Rh. appendiculatus SGE Inhibition of lymphocyte proliferation 

Rh. microplus Feeding Decreased T and B lymphocyte percentage 

among PBLs 

 Saliva Decreased PBL responsiveness to 

phytohemagglutinin 

  Inhibition of the blastogenic response of 

mononuclear cells 

Rh. sanguineus Feeding Suppressed response to mitogens 

 Saliva Suppressed response to mitogens 

 SGE Suppressed Ig production by PBL 
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1.4.2. Saliva Enhanced Transmission of Tick-borne Pathogens 

 It is no surprise that with a profound effect on the vertebrate host immune response, tick 

feeding has also been associated with facilitation of pathogen transmission and subsequent 

infection. This effect has been reported for the transmission of a variety of bacteria, protozoa, 

and viruses by a number of hard tick species (reviewed in (Kazimirova and Stibraniova 2013)). 

The majority of this work has been performed in Ixodes spp. ticks and the pathogens that they 

transmit including Borrelia spp., Francisella tularensis, Anaplasma phagocytophilum and tick-

borne encephalitis virus (reviewed in (Kazimirova and Stibraniova 2013)). Inoculation with 

SGE, saliva, or specific salivary molecules (ex. Salps) from these ticks increases transmission 

and/or infectivity to co-feeding ticks secondary to host immunomodulation (reviewed in 

(Kazimirova and Stibraniova 2013)). A similar effect has been noted with the SGE of 

Rhipicephalus appendiculatus and transmission of both Thogoto virus and the protozoa Theileria 

parva (Jones et al. 1989, Shaw et al. 1993). Again, it is important to note that most of these 

studies rely on the inoculation of saliva or SGE and do not investigate the role of the feeding tick 

on transmission. There are a few studies that have investigated how tick feeding augments 

pathogen transmission including studies on SFG Rickettsia and their tick vectors. One such 

experiment, as was previously described, demonstrated that A. maculatum feeding after R. 

parkeri inoculation resulted in increased rickettsial load and pathology as compared to R. parkeri 

inoculation alone (Grasperge et al. 2014). Another study found a decrease in RNA levels of IL-1 

and NF-κB in the lungs of mice inoculated with R. conorii and infested with Rh. sanguineus as 

opposed to R. conorii inoculation alone (Milhano et al. 2015). However, the significance of this 

finding is unknown because tick infestation did not alter rickettsial load or lung infiltrates. 



44 

 

Therefore, there is still a need for research of the immune response to Rickettsia and the 

immunomodulatory role of ticks at the cutaneous inoculation site.  

1.5. Summary 

 As presented in this review, R. parkeri has only relatively recently been described as a 

human pathogen. Therefore, there are very few studies evaluating the biology and the immune 

response incited by this organism. Furthermore, while there has been a large body of research on 

rickettsial immunity and tick modulation of the host immune response, there is a lack of research 

detailing how tick feeding at the cutaneous bite site alters the host immune response to rickettsial 

infection and the role that this modification plays on pathogen transmission. Therefore, two 

animal models were used to evaluate the effect of A. maculatum feeding/saliva on the vertebrate 

immune response and rickettsial infection. The goal of these studies was to test the overall 

hypothesis that if A. maculatum feeding plays an in immunomodulatory role in the vertebrate 

host, then this immunomodulation enhances infection and pathology of R. parkeri. 

The first study utilized rhesus macaques as an immunocompetent mammalian host to 

evaluate intradermal R. parkeri inoculation in the presence and absence of tick feeding. The 

hypothesis was that tick feeding at the rickettsial inoculation site would alter the host response 

and result in increased local disease. All animals developed cutaneous eschars in response to 

intradermal R. parkeri inoculation alone with evidence of a systemic inflammatory response. 

Furthermore, tick feeding during inoculation resulted in larger eschars as well as exacerbation of 

the inflammatory response, presumably due to immunomodulatory factors in the tick saliva. 

The second study was performed in immunocompentent C3H/HeN mice to evaluate the 

cutaneous acute innate immune response to rickettsial inoculation in the presence and absence of 

A. maculatum saliva. The hypothesis being tested was that A. maculatum saliva enhances R. 
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parkeri infection via downregulation of the acute cutaneous cellular and cytokine immune 

response. This study revealed that tick saliva inhibited the cutaneous infiltration of macrophages 

and neutrophils within 24 hours of rickettsial inoculation as evaluated via flow cytometry and 

cytological evaluation. Furthermore, cutaneous inflammatory cytokines were elevated in 

response to R. parkeri inoculation, but this response was not modulated by the addition of A. 

maculatum saliva. Taken together, these studies indicate that despite the immunosuppressive role 

of saliva, tick feeding itself exacerbates the local cutaneous lesions associated with the pathogen. 

This research highlights the role of the vector in rickettsiosis and the need for future 

investigations into the immunomodulatory factors inoculated by ticks during feeding. 
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CHAPTER 2 

AMBLYOMMA MACULATUM FEEDING AUGMENTS RICKETTSIA PARKERI INFECTION 

IN A RHESUS MACAQUE MODEL: A PILOT STUDY
1 

 

2.1. Introduction 

 Within the past fifteen years, there has been a more than four-fold increase in the number 

of tick-borne rickettsial disease cases in humans in the United States (Dumler 2010, Adams et al. 

2014). During this time frame, Rickettsia parkeri, a member of the spotted fever group (SFG) of 

Rickettsia transmitted by Amblyomma maculatum (the Gulf coast tick), was first identified as a 

human pathogen (Paddock et al. 2004) with several cases reported in North and South America 

(Whitman et al. 2007, Paddock et al. 2008, Cragun et al. 2010, Romer et al. 2011, Portillo et al. 

2013, Kaskas et al. 2014, Romer et al. 2014). Clinical signs include fever, headache, malaise, 

myalgia, arthralgia, formation of a maculopapular rash and multiple eschars (Whitman et al. 

2007, Paddock et al. 2008, Cragun et al. 2010, Romer et al. 2011, Portillo et al. 2013, Kaskas et 

al. 2014, Romer et al. 2014). The eschar, along with milder symptoms, can be used to 

differentiate this disease from the more virulent R. rickettsii, which causes Rocky Mountain 

spotted fever (RMSF) (Paddock et al. 2004, Paddock et al. 2008). An R. parkeri-associated 

eschar is a 0.5–2 cm in diameter, crusted, non-pruritic ulcer, surrounded by an indurated, 

erythematous halo. These lesions are characterized histologically by extensive necrosis of the 

epidermis and superficial dermis and prominent lymphohistiocytic vasculitis of dermal vessels 

(Paddock et al. 2004, Paddock et al. 2008, Cragun et al. 2010, Kaskas et al. 2014).  

Despite the recent emergence of R. parkeri, there have been few experimental models 

detailing the pathology, immune response and transmission of R. parkeri in mammalian hosts. A 

murine model has been developed in C3H/HeJ mice (Grasperge et al. 2012). Using this model, 

A. maculatum nymph feeding subsequent to intradermal injection of R. parkeri resulted in 

et al. (2015) PLoS One (Open access) 
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increased pathogen load and associated pathology when compared to needle inoculation alone 

(Grasperge et al. 2014). However, C3H/HeJ mice have a mutation in toll-like receptor 4 (TLR4) 

(Hoshino et al. 1999). Signaling via TLR4 is needed for stimulation of dendritic cells and 

activation of natural killer cells, which kill SFG Rickettsia-infected cells (Jordan et al. 2008). 

Therefore, in order to study the immune response to R. parkeri, an immunocompentent host 

would be necessary. While immunocompentent cotton rats become infected with R. parkeri after 

subcutaneous injection, they do not develop characteristic eschars (Moraru et al. 2013). Eschars 

formed after intradermal inoculation of R. parkeri in a guinea pig model; however, the effect of 

inoculation on other organ systems and the underlying immune reaction were not evaluated (La 

Scola et al. 2009). In order to model human disease and immune response, immunocompentent 

rhesus macaques were used in this pilot study. 

As reviewed recently by Wikel (Wikel 2013), tick saliva contains substances that are 

capable of inhibiting a variety of cytokines, chemokines, and several other bioactive molecules. 

Tick saliva also has the ability to impair the function of several immune cells including natural 

killer cells, macrophages, neutrophils, and T and B lymphocytes (Wikel 2013). While much of 

this work is based on other hard tick species, salivary molecules of Amblyomma sp. have been 

shown to inhibit chemokine, natural killer cell, and dendritic cell functions (Kubes et al. 2002, 

Hajnicka et al. 2005, Vancova et al. 2007, Peterkova et al. 2008, Carvalho-Costa et al. 2015). It 

is no surprise that with this immunosuppressive ability, tick feeding has been found to enhance 

transmission of a variety of tick-borne pathogens including viruses (Thogotovirus and tick-borne 

encephalitis virus) and bacteria (Borrelia afzelii, B. burgdorferi, B. lusitaniae, Anaplasma 

marginale, A. phagocytophilum, and Francisella tularensis) (Nuttall and Labuda 2004, Wikel 
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2013). However, the effect of A. maculatum feeding on R. parkeri rickettsiosis and the immune 

response in a mammalian model has not been comprehensively studied.  

The experiments detailed in this report were designed to reproduce disease caused by R. 

parkeri via intradermal inoculation during adult A. maculatum feeding in rhesus macaques as 

compared to two other treatments: R. parkeri inoculation and A. maculatum feeding alone. The 

broad hypothesis is that by modulating the host immune response, tick feeding enhances 

infection and pathology of pathogenic SFG Rickettsia. We demonstrated that tick feeding during 

R. parkeri inoculation resulted in larger areas of necrosis with delayed healing as compared to R. 

parkeri inoculation alone. Furthermore, greater neutrophilia and interleukin (IL)-6 

concentrations were noted in animals inoculated during tick feeding. Lastly, in a tick + R. parkeri 

animal, rickettsial DNA was detected in a draining lymph node in the acute phase of infection 

and in the skin at the inoculation site in the chronic phase of infection suggesting the possibility 

of  greater dissemination and persistence of Rickettsia in response to tick feeding. Taken 

together, these results reveal the utility of a primate model of R. parkeri infection and 

demonstrate that tick feeding can modify the pathogenesis of tick-borne rickettsiosis.  

2.2. Materials and Methods 

2.2.1. Tick and Rickettsia Preparation 

A colony of R. parkeri-free A. maculatum was maintained on rodents as previously 

described (Troughton and Levin 2007, Grasperge et al. 2014). All animals that were used for 

tick-rearing purposes were housed at the Louisiana State University (LSU) Division of 

Laboratory Animal Medicine (DLAM) vivarium on a 12-hour light-dark cycle with ad libitum 

rodent feed and water. Animals were housed in social pairs or groups appropriate to the species 

until tick placement; at which point, they were housed individually in order to prevent partner 
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manipulation of tick containment devices. Larvae were fed on adult BALB/c mice (LSU DLAM, 

Baton Rouge, LA, USA) that were housed on wire grates over fresh water, and engorged larvae 

were collected twice daily as the water was changed. Nymphal and adult ticks were fed on adult 

Sprague-Dawley rats (LSU DLAM) or adult Hartley guinea pigs (Charles River Laboratories, 

Wilmington, MA, USA) within capsules fashioned from plastic 50 ml conical tubes and attached 

with a 3:1 tree rosin to bee wax mixture. After tick collection following feeding to repletion and 

dropping off of their hosts, animals were humanely euthanized with carbon-dioxide followed by 

cervical dislocation. Animal care and use for tick rearing purposes was approved by the 

Louisiana State University Institutional Animal Care and Use Committee (IACUC) (Protocol 

Number: 13-034).  

The ticks used in this experiment were determined to be free of R. parkeri via DNA 

extraction and traditional semi-nested PCR using the 190.70p and 190.602n and 190.70p and 

190.701 primer pairs for Rickettsia ompA as previously described (Regnery et al. 1991, Fournier 

et al. 1998, Pornwiroon et al. 2006, Grasperge et al. 2014). Thirty female and fifteen male adult 

ticks were utilized in this study. Semi-purified rickettsiae were recovered from R. parkeri 

(Portsmouth strain) (Paddock et al. 2004) passage 4 infected Vero cells (3 days post-inoculation) 

using the modified protocol of Weiss et al. (Weiss 1973) as previously described (Petchampai et 

al. 2014). Rickettsiae were enumerated after staining with the LIVE/DEAD BacLight Bacterial 

Viability Kit (Molecular Probes, Carlsbad, CA, USA) in a Petroff–Hausser bacterial counting 

chamber (Hausser Scientific, Horsham, PA, USA) and examined with a Leica microscope (Leica 

Microsystems, Buffalo Grove, IL, USA) (Kurtti et al. 2005). The rickettsiae were resuspended in 

sucrose-phosphate-glutamic acid buffer (SPG) (Feng et al. 2004) to obtain the desired 

inoculation dose of 1 × 10
7
 live rickettsiae/200 µL, a dose that is at the high end of the range of 
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total R. parkeri DNA found in wild-caught Amblyomma ticks (Monje et al. 2014) and is similar 

to the dose used in previous animal models of rickettsioses (Sammons et al. 1977, Feng et al. 

1993, Eremeeva et al. 2003, Bechah et al. 2007, Horta et al. 2010, Grasperge et al. 2012, 

Grasperge et al. 2014). The same volume of uninfected Vero cell culture was prepared in SPG as 

above with the exception of bacterial inoculation and counting. 

2.2.2. Non-human Primates 

The five adult male Indian rhesus macaques (Macaca mulatta) used in the study were 

housed at the Tulane National Primate Research Center. Practices in the housing and care of 

nonhuman primates conformed to the regulations and standards of the Public Health Service 

Policy on Humane Care and Use of Laboratory Animals, and the Guide for the Care and Use of 

Laboratory Animals. The Tulane National Primate Research Center (TNPRC) is fully accredited 

by the Association for Assessment and Accreditation of Laboratory Animal Care International. 

The IACUC at the TNPRC approved all animal-related protocols specific to this study, including 

R. parkeri inoculation, tick infestation and sample collection from nonhuman primates (Protocol 

number: P0222) and all efforts were made to minimize animal suffering. All animals received 

standard primate feed as well as fresh fruit and enrichment daily, and had continual access to 

water. Primates were housed in pairs within treatment groups prior to and after tick infestation. 

Single housing was required during tick infestation in order to prevent partner manipulation of 

jackets and tick containment devices. Single cages are 4.3ft
2
 x 30”. Pairs were housed in larger 

cages, which at a minimum provide at least 4.3ft
2
 x 30” per animal. Animals greater than 10 kg 

were allocated twice this amount of space. All animals received standard enrichment tailored to 

the species as dictated by the Animal Welfare Act and outlined in the TNPRC Policy on 

Environmental Enrichment (e.g., objects to manipulate in cage, varied food supplements, 
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foraging and task-oriented feeding methods, interaction with caregivers and research staff). All 

animal procedures were overseen by TNPRC veterinarians and their staff and their welfare was 

monitored daily. Complete physical exams (including evaluation of the integumentary, 

musculoskeletal, lymphatic, gastrointestinal, cardiovascular, and respiratory systems) were 

performed, and rectal temperatures and weights were taken prior to each procedure. In order to 

alleviate animal suffering, the macaques were anesthetized for all procedures with 5-8 mg/kg 

Telazol intramuscularly (IM) followed by ketamine in small increments of 2-5 mg/kg IM as 

needed. In addition to this anesthetic protocol, all animals were pre-emptively given 0.01 mg/kg 

buprenorphine IM as additional analgesia for biopsies. None of the animals in this study 

demonstrated any deterioration in physical condition that required euthanasia during the 

experiment as determined by the standard TNPRC endpoint policy; therefore, the experimental 

endpoint for this study was 31-35 days post-R. parkeri/Vero cell lysate inoculation (31-35 dpi). 

At this point, the macaques were humanely euthanized via administration of 5-8 mg/kg Telazol 

IM and 0.01 mg/kg buprenorphine IM followed by an overdose with 156 mg/kg sodium 

pentobarbital via intracardiac injection, a method that is consistent with the recommended 

guidelines of the American Veterinary Medical Association. Tulane University complies with 

NIH policy on animal welfare, the Animal Welfare Act, and all other applicable federal, state 

and local laws. 

2.2.3. Tick Feeding and Rickettsia parkeri Inoculation  

The macaques were split into three groups (Figure 2.1). Two animals each were placed in 

the R. parkeri-only and the tick + R. parkeri groups, and one was placed in the tick-only group. 

All animals were shaved and fitted with primate jackets (Lomir Biomedical, Inc., Notre-Dame  
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Figure 2.1. Experimental design for tick feeding, R. parkeri/Vero cell inoculation, and sample 

collection. Adult Amblyomma maculatum ticks were placed on the hosts as indicated. Either a 

partially purified low passage human isolate of R. parkeri or an uninfected Vero cell inoculum 

was administered at the indicated time points. Blood collection, physical exams (PE), rectal 

temperatures, and skin and lymph node biopsies were taken from all animals at the indicated 

time points. Complete necropsies were performed at the end of the study as indicated. 

 

de-l’Île-Perrot, QC, Canada) one week prior to tick infestation to allow the primates to become 

acclimated to them. The tick exposure groups were infested with five male and ten female adult 

ticks using a tick containment device as previously described (Embers et al. 2013). The number 

of ticks was chosen based on the fact that they could comfortably feed and engorge in the space 

allowed within the containment device. Male ticks were placed on the host and allowed to attach 

one day after applying the tick containment device, followed by female tick infestation two days 

later to stimulate the production of pheromones secreted during male feeding, such as the 
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attraction-aggregation-attachment pheromone, which facilitate female tick attachment and 

feeding (Sonenshine 2004). The tick feeding sites and containment devices were assessed, 

cleaned, and reinforced as needed at 3, 7, and 12 days post female tick infestation. All of the 

animals were inoculated intradermally 13 days after jacket placement (3 days after female tick 

infestation for the tick groups) with three 200 µL injections of either partially purified Vero cell 

lysate or R. parkeri at the tick feeding site for the tick groups or at a similar location on the 

cranial back for the R. parkeri-only group. Ticks, containment devices, and jackets were 

removed 12 days after female tick infestation. 

2.2.4. Sample Collection 

For all groups, blood, skin biopsies (4-mm punch), and excisional axillary or inguinal 

lymph node biopsies were collected at several time points (Figure 2.1). Skin biopsies were taken 

both at the site of R. parkeri inoculation/tick feeding and away from the inoculation/infestation 

site on the caudal dorsum. At necropsy, skin both at the inoculation site and at a distant location 

from the inoculation site, axillary and inguinal lymph nodes, lung, heart,  liver, spleen, and bone 

marrow were collected. All tissues, including biopsies and tissues collected at necropsy, were 

split into two portions. One portion was frozen at -20º C until DNA extraction was performed 

and the other portion was fixed in Z-fix fixative (Anatech, Ltd., Battle Creek, MI, USA) and 

routinely processed for histopathological evaluation. 

2.2.5. Hematology 

 Blood was collected into serum separator clot tubes for serum chemistry, cytokine 

concentrations, and indirect enzyme-linked immunosorbent assays (ELISAs) for anti-R. parkeri 

antibody determination. Serum chemistries including aspartate aminotransferase, alanine 

transaminase, alkaline phosphatase, sodium, chloride, potassium, total protein, albumin, 
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globulin, blood urea nitrogen, creatinine, glucose, and C-reactive protein were performed 

immediately. Serum for cytokine evaluation and ELISAs was separated from the cellular 

component after centrifugation and stored at -20º C. Blood was also collected into EDTA tubes 

for complete blood count (CBC) determination and DNA extraction for R. parkeri quantification. 

CBCs were performed immediately, whereas blood for DNA extraction was stored at -20º C. As 

part of the CBC, fresh blood smears stained with Diff-Quick
TM

 (Siemens Corporation, 

Washington, D.C., USA) were evaluated in a randomized manner by a board-certified veterinary 

clinical pathologist to determine the manual leukocyte cell differential and to evaluate 

erythrocyte, leukocyte, and platelet morphology.  

 Serum cytokine concentrations of 23 analytes (granulocyte-colony stimulating factor [G-

CSF], granulocyte macrophage-colony stimulating factor (GM-CSF), interferon [IFN]-γ, IL-10, 

IL-12/23 (p40), IL-13, IL-15, IL-17, IL-18, IL-1 receptor antagonist [IL-1ra], IL-1β, IL-2, IL-4, 

IL-5, IL-6, IL-8, monocyte chemotactic protein-1 [MCP-1], macrophage inflammatory protein-

1α [MIP-1α], MIP-1β, transforming growth factor-α [TGF-α], tumor necrosis factor-α [TNF-α], 

vascular endothelial growth factor [VEGF], soluble cluster of differentiation 40 ligand 

[sCD40L]) were measured with a 23 plex Milliplex MAP non-human primate cytokine magnetic 

bead panel (EMD Millipore, Billerica, MA, USA) according to the manufacturer’s instructions. 

Each sample was evaluated in duplicate without dilution, along with duplicates of seven dilutions 

of provided standards and a low and high concentration quality control sample provided by the 

manufacturer. Data were acquired on a Luminex 100 system and analyzed using bioplex 

manager software (Bio-Rad Laboratories, Hercules, CA, USA).  

Indirect ELISAs to detect anti-R. parkeri IgG were performed on the serum samples from 

three time points (7 days prior to R. parkeri exposure, 11 dpi, and 31-35 dpi) as adapted from a 
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previously described protocol (Graf et al. 2008). Briefly, half of the wells of 96-well plate were 

coated with R. parkeri whole cell antigen and half without antigen followed by incubation 

overnight at 4° C with blocking buffer (5% skim milk/0.1% Tween-20 in phosphate-buffered 

saline). The macaque serum samples were used as primary antibody, goat anti-monkey IgG 

conjugated to horseradish peroxidase (Kirkegaard & Perry Laboratories, Inc., Gaithersburg, MD, 

USA) diluted 1:5000 in blocking buffer was used as the secondary antibody, and the reaction 

was visualized with the OptEIA
TM

 tetramethylbenzidine substrate reagent set (BD Biosciences, 

San Jose, CA, USA). After a 15-minute incubation, the reaction was stopped with 2N sulfuric 

acid, and optical densities (ODs) were read with a Spectramax M2 spectrophotometer (Molecular 

Devices, Sunnyvale, CA, USA) at 450 nm minus the absorbance at 650 nm. Additionally, serum 

from a mouse previously inoculated with R. parkeri followed by goat anti-mouse IgG conjugated 

to horseradish peroxidase (Thermo Fisher Scientific, Waltham, MA, USA) as the secondary 

antibody and wells without serum were used as positive and negative controls, respectively. 

Samples were run in triplicate and the mean ODs were calculated after subtracting the ODs in the 

wells without antigen from the ODs in the wells with antigen. Samples that were positive at 1:64 

were then subjected to two-fold serial dilutions until negative to get an endpoint titer, as has been 

previously reported (Paddock et al. 2008). A sample was considered positive at a certain dilution 

if the mean of the net ODs was greater than 0.200 or greater than the mean OD of the negative 

controls plus three standard deviations, whichever was larger. Endpoint titers were determined to 

be the highest positive dilution for each sample (Graf et al. 2008). 

2.2.6. Histopathology and Immunohistochemistry 

 After fixation, tissues were routinely embedded in paraffin, sectioned, and stained with 

hematoxylin and eosin (H&E) for histopathological evaluation. Tissue sections were evaluated in 
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a randomized, blinded manner by a board-certified veterinary anatomic pathologist. Skin from 

the inoculation sites and lymph node sections for all groups were assessed by 

immunohistochemistry (IHC) for the presence of Rickettsia using an anti-RCPFA polyclonal 

rabbit primary antibody (Chan et al. 2011). Cross-reactivity of this antibody to R. parkeri was 

confirmed by staining R. parkeri (Portsmouth strain) infected Vero cells. Briefly, slides were 

stained using a DAKO autostainer LINK 48 after proteinase K antigen retrieval (Dako, 

Carpinteria, CA, USA) with anti-RCPFA (1:2000) and a biotinylated anti-rabbit secondary 

antibody (Vector Laboratories, Burlingame, CA, USA), and visualized using the 

avidin/biotinylated enzyme complex (Vector Labs) and the ImmPACT
TM

 NovaRED
TM

 

peroxidase substrate (Vector Labs), followed by counterstaining with Mayer’s hematoxylin. 

False positives due to non-specific binding of the secondary antibody were ruled out by 

comparing sample staining to staining in tissue sections that were stained without primary 

antibody.  

2.2.7. PCR for Detection of Rickettsial DNA 

 Genomic DNA was extracted from blood and tissue samples using the DNeasy Blood and 

Tissue Kit (Qiagen, Germantown, MD) according to the manufacturer’s instructions. Extracted 

DNA was stored at -80º C until real-time quantitative PCR (qPCR) was performed. In order to 

detect rickettsial and rhesus macaque DNA, Rickettsia ompB primers (Wright et al. 2011), an R. 

parkeri species-specific fluorescent-labeled probe (5’-/Cy-

5/TTTG+A+G+C+A+G+CA/3IABkFQ/-3’), and rhesus macaque oncostatin M (OSM) primers 

and probe (Bruce et al. 2005) were used. The Rickettsia ompB gene is a single copy gene that 

encodes a common rickettsial surface antigen protein, and the rhesus macaque OSM gene is a 

single copy gene that encodes the oncostatin M cytokine. To quantify R. parkeri DNA in 
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macaque tissues, serial dilutions of a plasmid containing single-copies of the R. parkeri ompB 

and rhesus macaque OSM genes were amplified along with the unknown samples, environmental 

DNA extraction controls, and water (negative controls) using iTaq
TM

 Universal Probes Supermix 

(Bio-Rad Laboratories) and the LightCycler® 480 system II (Roche, Indianapolis, IN, USA) as 

previously described (Reif et al. 2011). To confirm that the positive qPCR results were due to R. 

parkeri and to assess potential transmission of Candidatus “R. andeanae” (an A. maculatum 

symbiont), a 631bp segment of the Rickettsia ompA gene was amplified from all qPCR positive 

tissue sample DNA extracts and skin DNA extracts at the site of tick infestation at 4 and 9 dpi in 

the tick-only animal using 190.70p and 190.701 primers and thermocycling conditions as 

previously described (Regnery et al. 1991, Fournier et al. 1998, Pornwiroon et al. 2006). The 

products were visualized on a 2% agarose gel. Amplicons were extracted from the gel using a 

PCR Clean-up System (Promega, Madison, WI, USA), cloned into pCR 4-TOPO vector and at 

least five clones from each sample were sequenced at Louisiana State University. Nucleotide 

similarities of the sequences were evaluated on the GenBank BLAST database 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). Engorged female ticks from the animals in this 

experiment were allowed to oviposit in humidified chambers and eggs from these ticks were 

allowed to hatch. Genomic DNA was extracted from pools of 10-20 larvae as described above 

after freezing in liquid nitrogen and grinding them with a sterile pestle. Traditional PCR with the 

190.70p and 190.701 primers, cloning, and sequencing were performed on the amplicons as 

described above.   

 

 

 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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2.3. Results 

2.3.1. Tick Feeding 

 At 3 days post female tick placement, the majority of the female ticks had attached in all 

of the tick infestation groups (7/10 in the tick-only group, 9/10 and 10/10 in the tick feeding + R. 

parkeri animals). Furthermore, all males were attached at this time, except for one in the tick-

only group. The remaining ticks were stuck in the glue surrounding the tick containment 

apparatus and did not feed. At the time of tick removal, most of the females that had attached 

were fully engorged in all tick infestation groups.  

2.3.2. Clinical Data and Hematology 

  No differences in weight or temperature were noted between treatment groups during the 

study. Mild to marked peripheral lymphadenopathy was noted in all animals from 4 dpi to 11 dpi 

primarily affecting the axillary lymph nodes. At 1 dpi, moderate neutrophilia (greater than 4-fold 

pre-inoculation values) was noted in both primates in the tick + R. parkeri group as compared to 

mild neutrophilia (less than 3-fold baseline concentrations) in both R. parkeri-only primates 

(Figure 2.2, A). All of these animals had mild neutrophilia at 4 dpi that resolved by the time of 

necropsy in all animals except for macaque #1 in the tick + R. parkeri group. The tick-only 

macaque developed mild neutrophilia at 4 dpi (less than 3-fold pre-inoculation levels), with 

values returning to baseline at necropsy. All of the animals inoculated with R. parkeri were 

lymphopenic at 1 and 4 dpi (less than or equal to half of baseline values), except for macaque #1 

in the R. parkeri-only group, with values returning to baseline in all animals by the date of 

necropsy (Figure 2.2, B). There were no apparent relevant differences between treatment groups 

for the rest of the CBC data.  
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C-reactive protein (CRP) concentration was mildly to markedly elevated (5 to greater 

than 50-fold increase from pre-inoculation concentrations) at 1 dpi in all R. parkeri-inoculated 

animals, with the highest concentration in primate #2 from the tick + R. parkeri group (Figure 

2.2, C). At 4 dpi, the CRP concentrations in these animals were mildly to moderately increased 

(5 to 18-fold pre-inoculation values), and returned to baseline for the remainder of the study. The 

tick-only macaque had mild elevation (less than 4-fold) in CRP concentration at 11 dpi only. 

 
Figure 2.2. Evidence of an acute phase inflammatory response after R. parkeri inoculation. 

Comparisons of neutrophil (A), lymphocyte (B), and C-reactive protein (C) concentrations in 

peripheral blood of all animals at the various time points indicated. Neutrophilia, lymphopenia, 

and elevated C-reactive protein were noted in the acute phase of infection after R. parkeri 

inoculation with greater neutrophilia noted in the tick + R. parkeri group. For presentation 

purposes all of the final time points are plotted as 31 dpi as opposed to 31, 32, and 35 dpi for the 

tick-only, tick feeding + R. parkeri, and R. parkeri-only groups, respectively. 
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There were no apparent relevant differences between treatment groups for the rest of the 

chemistry analytes evaluated during the study.  

There were 17-20-fold increases in IL-6 concentrations in both of the tick + R. parkeri 

macaques at 1 dpi as compared to pre-inoculation values, with moderate elevations (8-12-fold 

baseline concentrations) noted at 4 dpi for the same two animals and macaque #1 from the R. 

parkeri-only group (Figure 2.3, A). Moderate elevations (13-fold greater than pre-inoculation 

values) were noted in IFNγ concentration in primate #1 from the tick + R. parkeri group at 1 dpi 

with mild elevations (less than 7-fold pre-inoculation data) in all R. parkeri-inoculated animals at 

4 dpi (Figure 2.3, B). Also, there were mild increases (1.7 to 2.3-fold greater than baseline) in 

IL-15 concentration in both animals from the tick + R. parkeri group as well as R. parkeri-only 

macaque #2 at 4 dpi, with mild increases (1.5-fold greater than pre-inoculation data) at 4 dpi and 

11 dpi in the tick-only animal (Figure 2.3, C). There were no apparent differences between 

groups for the remainder of the cytokines evaluated. All animals inoculated with R. parkeri had 

anti-R. parkeri IgG titers of at least 1:256 at 11 dpi with at least a 4-fold increase in titers by 31-

35 dpi (Table 2.1). Anti-Rickettsia IgG was not detected in the tick-only animal during the 

experiment, nor in any of the animals prior to inoculation.  

2.3.3. Gross Pathology 

 At 4 dpi, the skin at the site of tick infestation in the tick-only animal was diffusely 

erythematous, raised and thickened, encompassing the majority of the 5-cm tick containment 

area (Figure 2.4, A). In the R. parkeri-inoculated animals, at 4 dpi, eschars formed at all 

inoculation sites (Figure 2.4, B). In the R. parkeri-only group, these eschars were characterized 

by crusted ulcers that measured approximately 0.5-1 cm in diameter and were surrounded by 0.5-

1.5 cm erythematous halos. The eschars were larger in both tick + R. parkeri primates, with areas  
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Figure 2.3. Concentrations of serum inflammatory cytokines are increased in response to R. 

parkeri inoculation. Comparisons of interleukin-6 (A), interferon γ (B), and interleukin-15 (C) 

concentrations in serum of all animals at the various indicated time points as determined by a 

magnetic cytokine bead panel kit. Measurements were performed in duplicate with the bars 

indicating standard error. For presentation purposes all of the final time points are plotted as 31 

dpi as opposed to 31, 32, and 35 dpi for the tick-only, tick feeding + R. parkeri, and R. parkeri-

only groups, respectively.  

 

Table 2.1. Rise in anti-R. parkeri IgG titers in response to R. parkeri inoculation.  

Animal Pre-exposure (-7 dpi) 11 dpi Necropsy (31-35 dpi) 

Tick-only - - - 

R. parkeri-only #1 - 1:8,192 1:32,768 

R. parkeri-only #2 - 1:256 1:4,096 

Tick + R. parkeri #1 - 1:256 1:2,048 

Tick + R. parkeri #2 - 1:256 1:4,096 

All animals inoculated with R. parkeri had detectable anti-R. parkeri IgG during the acute        

phase of infection with at least a 4-fold increase in titers during convelscence as determined 

via indirect ELISA. A minus sign (-) designates that the samples are negative (titers <1:64).       
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of ulceration measuring up to 1.5 × 3 cm surrounded by diffusely erythematous, raised, and 

thickened skin of up to 5 cm in diameter (Figure 2.4, C). At 9 dpi, the R. parkeri-only eschars 

began to heal with scar formation as opposed to increased erythema and ulceration that 

developed in all tick infestation groups. At necropsy, eschars in the R. parkeri-only primates had 

been replaced by scars measuring up to 0.1 × 0.3 cm (Figure 2.4, D); whereas, healing ulcers 

with scar tissue were noted in all tick infestation groups that measured up to 1 × 2 cm in the tick 

+ R. parkeri macaques (Figure 2.4, E). These healing ulcers were surrounded by maculopapular 

rashes measuring approximately 3-6 × 4.5-6 cm in both tick + R. parkeri macaques.   

 
Figure 2. 4. Eschars form after intradermal R. parkeri inoculation and are exacerbated by tick 

feeding during inoculation. Photographs of gross lesions at the tick feeding/inoculation site of 

each group at 4 dpi (A-C), the same locations as pictured in B and C at 31-35 dpi (D and E), and 

another tick feeding/inoculation site at 0 dpi for comparison (F). (A) Tick feeding alone results in 

cutaneous erythema at 4 dpi. (B) Intradermal inoculation of R. parkeri results in eschar formation 

(well circumscribed ulcer surrounded by an erythematous halo) at 4 dpi. (C) Intradermal 

inoculation of R. parkeri during tick feeding results in a large area of necrosis surrounded by 

erythema at the inoculation site at 4 dpi. (D) R. parkeri inoculation alone results in the formation 

of a small scar at 35 dpi. (E) A large healing ulcer has replaced the eschar from the tick feeding + 

R. parkeri animal at 32 dpi. (F) No gross alterations are noted at the time of R. parkeri 

inoculation (3 days post female tick infestation) for comparison. Black marks were made 

adjacent to inoculation sites. 
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2.3.4. Histopathology and Immunohistochemistry 

 The cutaneous histologic findings are summarized in Table 2.2. At 4 dpi, marked, diffuse 

dermatitis extending throughout the superficial and deep dermis and characterized by infiltration 

of many neutrophils and fewer macrophages was observed in all macaques, except the R. 

parkeri-only macaque #1 in which the inflammation was moderate and perivascular. Epidermal 

necrosis was found only in the R. parkeri-inoculated animals (Figure 2.5, A-B, Table 2.2). At 9 

dpi, moderate to marked diffuse infiltration of the superficial and deep dermis by macrophages 

and neutrophils was noted in the tick + R. parkeri animals with moderate to marked epidermal 

necrosis. This was opposed to mild perivascular dermatitis characterized by aggregates of 

variable numbers of neutrophils, macrophages, lymphocytes and plasma cells noted in the tick-

only and R. parkeri-only macaques with mild epidermal necrosis in the R. parkeri-only animals. 

At 17 dpi and at necropsy, mild to moderate perivascular lymphocytic to lymphoplasmacytic 

inflammation was noted in the tick infestation groups with mild to moderate epidermal necrosis 

in the tick + R. parkeri group at 17 dpi and mild epidermal necrosis in the tick-only group at 31 

dpi. The R. parkeri-only group had no significant histopathological lesions at these time points 

except for the R. parkeri-only macaque #1, which had mild perivascular lymphoplasmacytic 

inflammation at necropsy. Furthermore, marked dermal vasculitis was noted in the R. parkeri-

only macaque #2 at 4 dpi mild vasculitis was noted in the tick + R. parkeri animal #1 at 4 and 9 

dpi. This vasculitis was characterized by intramural fibrin deposition, endothelial cell 

degeneration/necrosis, and/or inflammatory cells (neutrophils and macrophages) within vessel 

walls (Figure 2.5, B). Mild to moderate lymphadenitis characterized by infiltrates of 

macrophages and neutrophils with lymphoid hyperplasia was noted in all animals at various time 

points after inoculation/infestation. No significant lesions were noted in the other tissues 
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collected. IHC revealed few to many positively staining coccobacilli primarily within 

macrophages and few within neutrophils in both R. parkeri-inoculated groups at 4 and 9 dpi 

(Figure 2.6, B-C, Table 2.2). Rare organisms were noted in macrophages in the tick-only animal 

at 4 dpi (Figure 2.6, A, Table 2.2) and in a lymph node from the tick + R. parkeri macaque #2 at 

4 dpi.  

 
Figure 2.5. Intradermal inoculation of R. parkeri results in marked diffuse dermatitis. This 

dermatitis characterized by infiltrates of neutrophils and macrophages, epidermal necrosis, and 

dermal vasculitis at 4 dpi. Photomicrographs of an H&E-stained skin section from a primate 

from the R. parkeri-only group at 4 dpi. (A) The epidermis is diffusely necrotic and superficial 

dermis is effaced by inflammatory cells. (B) Magnified view showing a dermal vessel (arrow) 

effaced by neutrophils and macrophages (vasculitis) and another dermal vessel with intact 

endothelium (arrowhead) surrounded by neutrophils and macrophages. 

 
Animal Epidermal Necrosis Dermatitis Anti-Rickettsia IHC 

  4 dpi 9 dpi 17 dpi 31-35 dpi 4 dpi 9 dpi 17 dpi 31-35 dpi 4 dpi 9 dpi 17 dpi 31-35 dpi 

Tick-only 0 0 0 + +++* + + ++ + 0 0 0 
R. parkeri-only #1 +++ + 0 0 ++ + 0 + ++ ++ 0 0 

R. parkeri-only #2 +++ + 0 0 +++* + 0 0 +++ +++ 0 0 

Tick + R. parkeri #1 +++ +++ ++ 0 +++* +++* + ++ ++ ++ 0 0 
Tick + R. parkeri #2 +++ ++ + 0 +++* ++* + ++ + ++ 0 0 

Figure 2.6. Marked dermatitis and epidermal necrosis developed at R. parkeri inoculation sites. 

Histopathologic findings associated with intradermal inoculation of R. parkeri include marked 

epidermal necrosis and dermatitis during the acute phase of infection. Tick feeding during R. 

parkeri inoculation resulted in persistence of dermatitis in the chronic phase of infection. Anti-

Rickettsia IHC revealed variable numbers of organisms in the skin at inoculation site during the 

acute phase of infection. 0 = absence of the specified parameter, + = mild histologic change 

(finding is rare to infrequent at high-power), ++ = moderate histologic change (change is found 

in multiple high-power fields or large foci are present in selected areas), +++ = marked 

histologic change (changes are frequently observed in multiple high-power fields or change is 

severe in focal areas). * Denotes diffuse dermatitis affecting the superficial and deep dermis as 

opposed to perivascular dermatitis denoted by the lack of an asterisk (*).  
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Figure 2.7. Anti-Rickettsia IHC demonstrating numerous organisms in the skin of animals 

inoculated with R. parkeri at 4 dpi as opposed to rare Rickettsia in the tick-only animal. 

Photomicrographs of skin sections stained with a polyclonal anti-Rickettsia antibody at 4 dpi. (A) 

Rare cells contain positive, brown-staining, rickettsial organisms in the tick-only animal. (B) 

Abundant positive, brown-staining, organisms in a section from an animal in the R. parkeri-only 

group. (C) Similarly, many organisms are noted in an animal from the tick + R. parkeri group. 

The red-framed images at the bottom are higher magnification views of the red-boxed areas in 

the top images. Black-framed insets are higher magnification images of the black-boxed areas 

and highlight the coccobacilli morphology of the positively stained rickettsial organisms.  

 

2.3.5. PCR for Detection of Rickettsial DNA 

 R. parkeri DNA was detected in the skin at the inoculation site in all of the R. parkeri-

inoculated animals via qPCR at 4 and 9 dpi, with lower copy numbers detected in both tick + R. 

parkeri animals at 9 dpi (Figure 2.7). Furthermore, R. parkeri DNA was detected at the 

cutaneous inoculation site at necropsy and in a lymph node at 4 dpi from the tick + R. parkeri 

monkey #2. No rickettsial DNA was detected in the other tissue or blood samples from any 

animal via qPCR, including all tissues from the tick-only group at all time points, the extraction 

and negative control samples. qPCR positive tissue samples were then subjected to traditional 

PCR for sequencing of a segment of rickettsial ompA. Sequence analysis of amplicons from all 

of the qPCR positive tissue samples revealed a sequence identity of ≥ 99% with several different 
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strains of R. parkeri (GenBank accession numbers CP00341.1, KF782320.1, U43802.1, 

FJ986616.1, JX134641.1, KC003476.1, EU715288.1, and FJ172358.1). No amplicons were 

observed after traditional PCR using skin DNA extracts at the site of tick infestation from the 

tick-only animal at 4 and 9 dpi as template. Ten of 26 (38%) engorged female ticks collected in 

this experiment laid eggs that produced viable larvae. Rickettsial DNA was detected in one of the 

10 larval pools (10% positive). This larval pool came from a female tick from the R. parkeri + 

tick macaque #2. Sequence analysis of this amplicon revealed a sequence identity of 100% to 

two strains of Candidatus “Rickettsia andeanae” (GenBank accession numbers KF179352.1 and 

KF030932.1).   

 
Figure 2.8. Rickettsial DNA was detected in the skin of R. parkeri-inoculated animals at 4 and 9 

dpi. Rickettsial load as detected by qPCR in skin samples from 4 and 9 dpi expressed as R. 

parkeri ompB copies per 10,000 M. mulatta OSM copies. No rickettsial DNA was isolated from 

the tick-only macaque at any time point.  

 

2.4. Discussion 

 In this study, rhesus macaques were shown to be a suitable animal model of R. parkeri 

rickettsiosis, developing an acute phase inflammatory response, lymphadenopathy, anti-R. 
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parkeri IgG, and characteristic eschars and maculopapular rashes with histologic evidence of 

dermal vasculitis after intradermal inoculation. The route of rickettsial inoculation used in this 

study, intradermal inoculation during tick feeding, while not replicating natural tick transmission 

of R. parkeri, was chosen in order to evaluate the effect of tick feeding on rickettsial 

pathogenesis as compared to the same dose of R. parkeri inoculated alone. If tick inoculation of 

R. parkeri was used instead, an appropriate Rickettsia-only control would be lacking as the dose 

and time-course of tick inoculation of R. parkeri remains undefined. Despite the fact that too few 

animals were utilized to perform statistical analysis, several conclusions can be made from this 

pilot study. All four rhesus macaques that were inoculated with R. parkeri developed an 

inflammatory leukogram characterized by mild to moderate neutrophilia and lymphopenia. 

Furthermore, moderate to marked elevations in CRP concentration, a major acute phase protein 

in rhesus macaques (Cray et al. 2009), and IL-6 concentration were noted during the same time 

frame. These abnormalities indicate activation of the innate immune response. Local 

inflammatory mediators, such as IL-6, are produced by innate immune cells in response to 

foreign substances (Murphy 2012), in this case R. parkeri. This leads to production of acute 

phase proteins, like CRP, by hepatocytes (Ceron et al. 2005, Cray et al. 2009) and release of 

neutrophils from the bone marrow storage pool within hours after the inciting stimulus 

(Stockham and Scott 2008). Inflammatory mediators also cause reduction of the circulating 

lymphocyte pool due to multiple factors including increased migration to inflamed tissues, 

increased homing to lymph nodes, and decreased migration from lymphoid tissue back to blood 

(Imhof and Dunon 1995). A similar pattern of inflammation was noted in experimental R. 

parkeri infection in mice (Grasperge et al. 2012) as well as in natural infection of humans with 

R. conorii (Vitale et al. 2001). Elevation of serum IFNγ and IL-15 concentrations were also 
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noted in R. parkeri-inoculated animals at 1 and 4 dpi indicating evidence of a Th1 response in 

these animals, which has been well described in SFG rickettsiosis (Vitale et al. 2001, Walker and 

Ismail 2008). Mild increases in serum IL-15 concentrations were also noted in the tick-only 

animal at 4 and 11 dpi, which is unexpected as tick feeding has been shown to downregulate the 

Th1 response (Schoeler and Wikel 2001, Brossard 2008, Kazimirova and Stibraniova 2013, 

Wikel 2013). While this finding could simply be an anomaly due to subject variability, further 

study is needed to define the role of this cytokine in the response to tick infestation. Tick feeding 

has also been shown to result in a Th2 response (Schoeler et al. 1999, Schoeler et al. 2000, 

Schoeler and Wikel 2001, Brossard 2008, Kazimirova and Stibraniova 2013, Wikel 2013); 

however, differences in Th2 cytokines were not detected in the serum of tick infested animals in 

this study, which could be attributed to the fact that these cytokines act locally at the feeding site 

and are not produced in large enough quantities to be detected in the peripheral blood. However, 

it is worth noting that many of the previous studies reporting cytokines induced by tick feeding 

were performed in BALB/c mice, which have a Th2-biased immune response (Locksley et al. 

1987, Muller et al. 1989, Reiner and Locksley 1995). Future experiments should include 

evaluation of cutaneous cytokine concentrations at the tick bite site in larger numbers of non-

human primates to see if the Th1 versus Th2 cytokine paradigm is valid in this species. 

Furthermore, all animals inoculated with R. parkeri developed anti-Rickettsia IgG titers greater 

than or equal to 1:256 at 11 dpi with at least a 4-fold increase in convalescent titers indicating 

exposure and the appropriate antibody response to the pathogen (Paddock et al. 2008). Although 

rickettsial infections are typically associated with fever, elevated body temperature was not 

detected in any of the animals during the study. All animals were anesthetized during 

temperature evaluations; therefore, the induced hypothermia could have masked a potential 
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fever. Continuous temperature monitoring could be of benefit to detect fever in future studies, as 

has been reported in rhesus macaques inoculated with B. turicatae (Lopez et al. 2014). 

Experimentally-induced eschars, the hallmark gross lesions consistently found in human 

cases of R. parkeri rickettsiosis, (Paddock et al. 2004, Whitman et al. 2007, Paddock et al. 2008, 

Cragun et al. 2010, Romer et al. 2011, Portillo et al. 2013, Kaskas et al. 2014, Romer et al. 

2014), were reproduced at all cutaneous R. parkeri inoculation sites in this study. Histologically 

these lesions were characterized by diffuse infiltrates of macrophages and neutrophils in the 

acute phase of infection and perivascular dermatitis with infiltrates of predominantly 

lymphocytes and plasma cells in the chronic phase of infection, both of which have been 

described in human cases of R. parkeri rickettsiosis (Paddock et al. 2004, Whitman et al. 2007, 

Paddock et al. 2008, Cragun et al. 2010, Romer et al. 2011, Kaskas et al. 2014). Furthermore, 

similar to human cases of R. parkeri rickettsiosis, dermal vasculitis was noted in two macaques 

inoculated with R. parkeri during the acute phase of infection and maculopapular rashes were 

noted in both macaques in the tick + R. parkeri group (Paddock et al. 2004, Whitman et al. 2007, 

Paddock et al. 2008, Cragun et al. 2010, Romer et al. 2011, Portillo et al. 2013, Romer et al. 

2014). Anti-Rickettsia IHC confirmed the presence of organisms within cutaneous inoculation 

sites primarily within macrophages and occasionally within neutrophils as identified by nuclear 

morphology of the infected cells. The presence of R. parkeri primarily within inflammatory cells 

within cutaneous lesions as opposed to endothelial cells is similar to what is reported in the 

literature for human cases of R. parkeri rickettsiosis (Paddock et al. 2004, Whitman et al. 2007, 

Paddock et al. 2008, Cragun et al. 2010), an interesting finding that requires further study given 

the predilection of other SFG Rickettsia for endothelial cell infection.   
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Tick feeding during R. parkeri inoculation consistently resulted in enhanced gross lesions 

as well as a greater systemic inflammatory response in the acute phase of infection. Interestingly, 

tick feeding during R. parkeri inoculation did not have an effect on cutaneous rickettsial load at 4 

dpi with decreased numbers of R. parkeri detected at 9 dpi. This is in contrast to previous studies 

in mice, where nymphal tick feeding post-R. parkeri inoculation resulted in increased bacterial 

load in the skin at 8 dpi (Grasperge et al. 2014). This difference could be an artifact of sampling, 

where, despite our best efforts, the 4-mm biopsies may not have been representative of the 

overall lesion. We also cannot rule out the possibility that tick feeding prior to inoculation 

primed the immune response leading to increased clearance of bacteria at the inoculation site. 

Nevertheless, R. parkeri DNA and rare organisms were detected in a lymph node of an animal in 

the tick + R. parkeri group by qPCR and IHC, as well as at the site of inoculation at 32 dpi by 

qPCR. These results suggest that tick feeding may facilitate dissemination and persistence of R. 

parkeri. However, the significance of these findings should not be overstated since they are 

based on data from one animal. Future study with larger animal numbers would be needed to 

confirm these results.     

The presence of rare Rickettsia noted in the tick-only animal at 4 dpi in the skin by IHC is 

attributed to transmission of Candidatus “Rickettsia andeanae,” a rickettsial species with no 

known pathogenicity, which has been detected in wild-caught A. maculatum (Blair et al. 2004, 

Jiang et al. 2005, Paddock et al. 2010, Fornadel et al. 2011, Varela-Stokes et al. 2011, Wright et 

al. 2011, Ferrari et al. 2012, Jiang et al. 2012, Luce-Fedrow et al. 2012, Ferrari et al. 2013, 

Flores-Mendoza et al. 2013, Leydet and Liang 2013, Nadolny et al. 2014, Paddock et al. 2015) 

and was detected in low prevalence in the larval progeny of the ticks used in this experiment. 

The observed transmission of low numbers of Candidatus “Rickettsia andeanae” has been 
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previously reported when persistently infected A. maculatum nymphs were fed on mice 

(Grasperge et al. 2014). Similar to this previous report, rare bacteria were noted in the tick-only 

animal in this study via IHC, but not by either qPCR or two rounds of traditional PCR. This 

finding could indicate that IHC is more sensitive than PCR in detecting low rickettsial loads after 

DNA extraction, or it could be a result of sampling error, where low numbers of Rickettsia were 

present in the tissue sample for IHC, but not sampled in the tissue section for PCR. The amount 

of disease caused by transmission of Candidatus “Rickettsia andeanae” in this study is uncertain, 

as mild peripheral neutrophilia and marked neutrophilic dermatitis were detected at 4 dpi in this 

animal without elevations of inflammatory cytokines or acute phase proteins in the peripheral 

blood. This inflammation could be attributed to the tick inoculation of bacteria; however, an 

inflammatory reaction to the partially purified Vero cell lysate injection or tick feeding could not 

be ruled out. Ideally, future study would include Vero lysate injection alone, Candidatus 

“Rickettsia andeanae” injection alone, and Rickettsia-free tick feeding as additional experimental 

groups. The lack of anti-Rickettsia antibody production in the tick-only animal indicates that the 

innate immune response alone is likely sufficient to clear the Candidatus “Rickettsia andeanae.” 

Further study is needed to characterize the pathogenic potential of this organism in comparison 

to a known human pathogen like R. parkeri. However, such a study would rely upon the in vitro 

propagation of Candidatus “Rickettsia andeanae,” which has been proven difficult to culture, 

growing slowly and in low numbers in mammalian, insect and tick cell lines (Luce-Fedrow et al. 

2012, Ferrari et al. 2013).     

In summary, rhesus macaques prove to be a valuable animal model for studying the 

immunobiology of R. parkeri rickettsiosis. Intradermal inoculation with R. parkeri resulted in 

eschar and rash formation with characteristic dermatitis, dermal vasculitis, and epidermal 
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necrosis that has been well described in human cases of R. parkeri rickettsiosis (Paddock et al. 

2004, Paddock et al. 2008, Cragun et al. 2010, Kaskas et al. 2014). Tick feeding during R. 

parkeri inoculation led to increased lesion size and a greater acute phase response with increased 

persistence of the pathogen and inflammation in the chronic phase. Further study to characterize 

the influence of immunomodulatory factors introduced by tick feeding at the cutaneous interface 

that potentially enhance R. parkeri pathogenicity is required and should be considered when 

developing therapeutic strategies and vaccine candidates aimed at blocking transmission of SFG 

rickettsioses.  
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CHAPTER 3 

EFFECT OF AMBLYOMMA MACULATUM SALIVA ON THE ACUTE CUTANEOUS 

IMMUNE RESPONSE TO RICKETTSIA PARKERI INFECTION IN A MURINE MODEL 

 

3.1. Introduction 

 Rickettsia parkeri rickettsiosis is a tick-borne spotted fever group (SFG) rickettsiosis 

characterized by fever, headache, malaise, myalgia, arthralgia, the presence of a maculopapular 

rash and multiple eschars (non-pruritic ulcers surrounded by erythematous halos) (Paddock et al. 

2004, Whitman et al. 2007, Paddock et al. 2008, Cragun et al. 2010, Romer et al. 2011, Portillo 

et al. 2013, Kaskas et al. 2014, Romer et al. 2014). Since the first confirmed case of R. parkeri 

rickettsiosis in 2004 (Paddock et al. 2004), there have been at least 37 confirmed cases in the 

United States (Whitman et al. 2007, Paddock et al. 2008, Cragun et al. 2010, Myers et al. 2013, 

Ekenna et al. 2014, Kaskas et al. 2014, Paddock and Goddard 2015) in addition to several 

confirmed cases in South America (Romer et al. 2011, Portillo et al. 2013, Romer et al. 2014). 

Since the year 2000, there has been a dramatic six-fold rise in cases of SFG rickettsiosis in the 

United States (Groseclose et al. 2004, Adams et al. 2015). R. parkeri rickettsiosis has been 

implicated in contributing to this increase in rickettsiosis, due to suspected underreporting, which 

is attributable to the overlapping geographical range, clinical signs, and antibodies that cross-

react with Rickettsia rickettsii, the agent that causes Rocky Mountain spotted fever (RMSF) 

(Paddock et al. 2008, Paddock 2009). Therefore, it is important to investigate the factors that 

contribute to the pathogenesis of this rickettsiosis, especially those that play a role in the acute 

phase of infection and contribute to the establishment of infection and subsequent rickettsiosis in 

the vertebrate host.  

Once rickettsiae are inoculated by ticks into the mammalian host, they immediately come 

into contact with the cells and extracellular factors of the innate immune system. The cellular 
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infiltrate reported in biopsies of eschars from natural human cases of R. parkeri rickettsiosis 

primarily consists of macrophages and lymphocytes with rare reports of primarily neutrophilic 

pustules (Paddock et al. 2004, Paddock et al. 2008, Cragun et al. 2010, Kaskas et al. 2014). 

However, the acute phase infiltrate in natural cases is largely unknown, since most biopsies are 

taken several days after onset of clinical signs. In a pilot study with experimental inoculations of 

R. parkeri in rhesus macaques, neutrophils and macrophages predominated within eschars early 

in the course of disease with lymphoplasmacytic and histiocytic infiltrates in chronic lesions 

(Banajee et al. 2015). Furthermore, these animals developed an acute phase inflammatory 

response with elevated serum concentrations of interleukin (IL)-6 and interferon (IFN) γ 

(Banajee et al. 2015). Elevations of these cytokines have also been demonstrated in the serum of 

humans with Mediterranean spotted fever (MSF), caused by Rickettsia conorii, in addition to IL-

10 (Vitale et al. 2001). Also, studies evaluating eschars from patients with MSF demonstrated 

elevated mRNA expression IFNγ, and IL-10 as compared to control skin biopsies (de Sousa et al. 

2007). While these studies have characterized the acute inflammatory response induced by SFG 

rickettsiosis, they did not quantify the effect of factors introduced by the tick vector on this 

response.  

As recently reviewed by Kotal et al. (Kotal et al. 2015), salivary gland extract or tick 

saliva from a variety of hard tick species, has been shown to alter several aspects of the innate 

immune system including the cellular and cytokine responses. The effects of these components 

on neutrophils include inhibition of granule release and reactive oxygen species, decreased 

chemotaxis, and inhibition of phagocytosis (Kotal et al. 2015). Similarly, phagocytosis, nitric 

oxide production, and cytokine production of macrophages are inhibited by tick saliva or salivary 

gland extract (SGE) (Kotal et al. 2015). Lastly, tick saliva has also been shown to inhibit 
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maturation, proliferation, and cytokine production of dendritic cells, which not only play a role 

in the innate immune response, but promote the development of the appropriate adaptive immune 

response (Kotal et al. 2015). Taken together, these effects may play a large role in how the host 

responds to a pathogen and the development of tick-borne diseases.  

While powerful immunomodulatory effects of tick salivary components are evident based 

on the previously described studies, it should also be noted that the vast majority of this research 

is not based on immune cells found in the skin, but rather either immune cells derived from 

internal organs, peripheral blood, or cell lines. Furthermore, while it has been shown that tick 

feeding at the rickettsial inoculation site enhances rickettsial disease in murine and primate 

models and rickettsial proliferation in the mouse model (Grasperge et al. 2014, Banajee et al. 

2015), the effect of the tick saliva on the cutaneous immune response to rickettsial infection has 

not been quantified. Therefore, the aim of this study was to evaluate the acute murine cutaneous 

immune response to R. parkeri with and without the influence of A. maculatum saliva as 

compared to saliva inoculation alone and untouched controls. In order to achieve these goals, 

cutaneous inoculation site cellular infiltrates and inflammatory cytokines were quantified at 

several time points within two days of each inoculation. Furthermore, inoculation site samples 

were evaluated via real-time quantitative PCR (qPCR) to assess for alterations in rickettsial load. 

We hypothesized that A. maculatum saliva enhances R. parkeri infection via downregulation of 

the acute cellular and cytokine immune response. The results of this study suggest that tick saliva 

has the ability to downregulate cellular recruitment during the acute phase of infection, but the 

long-term effects of this immunomodulation require further study.  
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3.2. Materials and Methods 

3.2.1. Tick Preparation and Saliva Collection 

A colony of Rickettsia-free A. maculatum were acquired from BEI resources and 

maintained on rodents as previously described (Troughton and Levin 2007, Grasperge et al. 

2014, Banajee et al. 2015). Animal care and use for tick rearing purposes was approved by the 

LSU Institutional Animal Care and Use Committee (IACUC) (Protocol Number: 13-034). The 

ticks used in this experiment were determined to be free of Rickettsia via DNA extraction and 

traditional semi-nested PCR using the 190.70p and 190.602n and 190.70p and 190.701 primer 

pairs for Rickettsia ompA as previously described (Regnery et al. 1991, Fournier et al. 1998, 

Pornwiroon et al. 2006, Grasperge et al. 2014, Banajee et al. 2015). Saliva was collected from 

nearly fully engorged adult female ticks as previously described (Patton et al. 2012) with few 

modifications. These ticks were forcibly removed from adult Hartley guinea pigs (Charles River 

Laboratories) at approximately 7-10 days post attachment. Briefly, these ticks were taped to 

slides and 5 µL of 3% pilocarpine HCL (MP Biochemicals) in methanol was applied to their 

dorsum. A pulled 25 µL microcapillary pipet (Kimble Chase Life Science and Research 

Products) was applied to just their hypostome splitting the palps. The slides were then placed 

upright with the capillary tubes pointing down in an incubator at 37° C and saliva was collected 

for four hours, pooled, sterile-filtered, and stored at -80° C for further use. Prior to use, saliva 

protein concentration was estimated via the Dc protein assay (Bio-Rad Laboratories) according to 

the manufacturer’s instructions. Pilocarpine concentration in the extracted saliva was determined 

via an electrospray ionization time-of-flight mass spectrometer 6210 (Agilent Technologies). 

The sample was delivered through a C8 column (Agilent Technologies) using the 1200 series 

high-performance liquid chromatography system (Agilent Technologies). A standard curve was 
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constructed using serial dilutions of a known concentration of pilocarpine (molar mass = 209 

g/mol) by calculating the area under the curve for each dilution at the 209 mass to charge (m/z) 

peak. The concentration of pilocarpine in the saliva sample was determined by comparing the 

area under the curve for that sample at the 209 m/z peak to the standard curve.  

3.2.2. Rickettsia Preparation 

Partially-purified rickettsiae were recovered from R. parkeri (Portsmouth strain) 

(Paddock et al. 2004) passage 4 infected Vero cells (3 days post-inoculation) using the modified 

protocol of Weiss (Weiss 1973) as previously described (Petchampai et al. 2014). Rickettsiae 

were enumerated after staining with the LIVE/DEAD BacLight Bacterial Viability Kit 

(Molecular Probes) in a Petroff–Hausser bacterial counting chamber (Hausser Scientific) and 

examined with a Leica microscope (Leica Microsystems) (Kurtti et al. 2005). The rickettsiae 

were resuspended in sucrose-phosphate-glutamic acid buffer (SPG) (Feng et al. 2004) to obtain 

the desired inoculation dose of 5.5 × 10
6
 live rickettsiae/25 µL. The same volume of uninfected 

Vero cell culture was prepared in SPG as above with the exception of bacterial inoculation and 

counting. 

3.2.3. Mouse Inoculations 

Animal care and use for all mouse inoculations and skin collection was approved by the 

LSU IACUC (Protocol Number: 13-034). Eighty male C3H/HeN mice of seven to eight weeks 

of age were obtained from Charles River Laboratories for use in this study (two independent 

experiments, forty mice per experiment). The animals were randomly divided into four 

experimental groups: untouched controls (n = 4/replicate), saliva only (n = 4/replicate/time 

point), R. parkeri only (n = 4/replicate/time point), and R. parkeri + saliva (n = 4/replicate/time 

point). The hair on the dorsum was clipped and the mice from the groups other than the 
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untouched control animals were inoculated in five spots intradermally with 25 µL of the 

appropriate inoculum (three cranial inoculations in line with the shoulders and two caudal in 

each pelvic region). For saliva inoculation alone, uninfected Vero cell lysate was prepared as 

previously described with addition of A. maculatum saliva (15 µg saliva protein per inoculation). 

For R. parkeri inoculation alone partially purified rickettsiae were prepared as described above 

and resuspended in SPG spiked with 16 µM pilocarpine (which equals the pilocarpine 

concentration that was found in each saliva inoculation). This pilocarpine was added as a control 

measure since this compound has been found to have inhibitory effects on lymphocyte 

stimulation, although this effect was noted at higher concentrations (50-500 µM) (Arzt et al. 

1989, Prync et al. 1992). The last group received an inoculation of R. parkeri with the addition of 

saliva. Both rickettsiae and saliva were prepared as previously described.  

3.2.4. Sample Collection 

 Each inoculation group was euthanized at 6 hours post inoculation (hpi), 24 hpi, or 48 hpi 

along with an untouched control group euthanized without any inoculation. They were then 

shaved and all of the hair on the dorsum was removed with a chemical depilatory agent, Nair® 

(Church & Dwight). The skin was then cleaned with ethanol and a 3 cm
2
 area surrounding the 

three cranial inoculations was collected from each mouse in order to evaluate the cellular 

infiltrate and processed immediately as described below. Additionally two 1 cm
2
 sections of skin 

were collected surrounding each of the caudal inoculations for cytokine concentrations and PCR 

evaluation of rickettsial DNA. For the untouched control animals, skin of the same dimensions 

was collected at similar locations on the dorsum of the animals. For cytokine analysis, the skin 

pieces were immediately processed as described below. Skin collected for PCR analysis was 

frozen at -80° C until DNA extraction could be performed. 
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3.2.5. Cellular Infiltrate Analysis via Flow Cytometry and Microscopy 

 Single cell suspensions of epidermis and dermis were made from the skin sections of 

each mouse for analysis of the cutaneous cellular infiltrate as previously described (Bajaña et al. 

2012) with modifications. After subcutaneous fat removal, skin sections were incubated in 0.5% 

trypsin (Affymetrix) at 37° C for one hour and the dermis was separated from the epidermis. 

Epidermis and dermis were minced with dissection scissors, combined, and incubated for an 

additional hour at 37° C in RPMI 1640 media (Sigma Life Science) plus 5% fetal bovine serum 

(FBS), 3 mg/mL collagenase D (Roche Diagnostics), 1.5 mg/mL hyaluronidase (Sigma Life 

Sciences), and 0.2 mg/mL DNase I (Sigma Life Sciences). This suspension was then passed 

through a 70 µm filter and washed twice with cold Hank’s balanced salt solution (Life 

technologies) + 5% FBS prior to staining for flow cytometry. Suspensions were stained with the 

following antibodies for flow cytometric analysis after blocking Fc receptors with CD16/CD32 

(BD Biosciences): fluorescein isothiocyanate-labeled Ly6G, clone 1A8 (BD Biosciences), 

phycoerythrin labeled F4/80, clone BM8 (eBioscience), peridinin-chlorophyll protein-cyanine 

5.5 labeled CD45, clone 30-F11 (BD Biosciences), and allophycocyanin labeled CD11c, clone 

HL3 (BD Biosciences) for 30 minutes in the dark at 4° C. The cell suspensions were then 

washed with 2 mL phosphate buffered saline (PBS) and fixed with 1% paraformaldehyde in PBS 

prior to flow cytometric analysis. All cells from each suspension were acquired using a 

FACSCalibur flow cytometer (BD Biosciences), and the data were analyzed using FlowJo 

software, version 10.1r5.  

To confirm the flow cytometry findings, cytocentrifuged preparations were made from 

pooled skin single cell suspensions, one from each time point, for the R. parkeri only and R. 

parkeri + saliva groups using a Cytopro® cytocentrifuge (Wescor). These suspensions were then 
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stained with Diff-Quick (Siemens). The slides were then examined microscopically at 100x 

magnification by a board certified veterinary clinical pathologist (KHB) and percentages of 

neutrophils and macrophages were determined after counting 300 cells per sample.  

3.2.6. Cytokine Analysis 

For cytokine analysis, the skin pieces from each mouse were placed in 

radioimmunoprecipitation assay (RIPA) buffer with proteinase inhibitor prepared as previously 

described (McCracken et al. 2014) with addition of 0.2% w/v collagenase, type IV (Worthington 

Biochemical Corporation) and incubated at 37° C for one hour. Further digestion was achieved 

via a TissueLyser (QIAGEN) with glass beads as previously described (McCracken et al. 2014). 

The samples were centrifuged at 14,800 rpm for 20 minutes and the supernatant was stored at     

-80° C until cytokine analysis was performed. Cytokine concentrations of three analytes (IFN-γ, 

IL-6, and IL-10) were determined using a Milliplex MAP mouse cytokine magnetic bead panel 

(EMD Millipore) according to the manufacturer’s instructions. Each sample was evaluated 

without dilution, along with duplicates of seven dilutions of provided standards and a low and 

high concentration quality control sample provided by the manufacturer. Data were acquired on a 

Luminex 100 system and analyzed with bioplex manager software (Bio-Rad Laboratories). 

3.2.7. PCR for Detection of Rickettsial DNA 

 Genomic DNA was extracted from skin samples using the DNeasy Blood and Tissue Kit 

(QIAGEN) performed according to the manufacturer’s instructions. Extracted DNA was stored 

at -80º C until qPCR was performed. In order to detect rickettsial and mouse DNA, Rickettsia 

17kDa primers and an R. parkeri species-specific fluorescent-labeled probe were used as well as 

mouse cfd primers and fluorescent-labeled probe as previously described (Grasperge et al. 2012). 

The 17 kDa antigen gene encodes a common rickettsial surface antigen protein while the mouse 
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cfd encodes the complement factor D protein common to most mammals (Grasperge et al. 2012). 

To quantify R. parkeri DNA in mouse skin, serial dilutions of a plasmid containing single-copies 

of the R. parkeri 17kDa antigen gene and the mouse cfd genes were amplified along with the 

unknown samples, environmental DNA extraction controls, and water (negative controls) using 

the iTaq
TM

 Universal Probes Supermix (Bio-Rad Laboratories) and the LightCycler® 480 system 

II (Roche Diagnostics) as previously described (Reif et al. 2011). 

3.2.8. Statistics 

 Data were tested for normality via the Kolmogorov-Smirnov test. Normally distributed 

data were expressed as means ± the standard error of the mean (SEM). Statistically significant 

differences of normally distributed data were determined via one-way analysis of variance 

(ANOVA) followed by Tukey’s post hoc tests when significance was observed. Data that were 

not normally distributed were expressed as medians with interquartile ranges and statistically 

significant differences were determined via Kruskal-Wallis tests followed by Dunn’s multiple 

comparisons when significance was observed. All statistical analyses were performed using 

GraphPad Prism Software version 6, and differences were considered significant at P < 0.05.  

3.3. Results 

3.3.1. R. parkeri Induces Cutaneous Infiltration of Macrophages and Neutrophils, Which is 

Inhibited by A. maculatum Saliva 

  

No gross abnormalities were noted in any mice at any time point during the study, similar 

to what was previously reported for R. parkeri inoculation of C3H/HeN mice (Grasperge et al. 

2012). Flow cytometry was used to determine the numbers of cutaneous neutrophils and 

macrophages for each experimental group after their respective inoculation as compared to 

untouched control mice. Neutrophils were defined as F4/80-, CD45+, Ly6G+ cells and were 

enumerated via the gating strategy depicted in Figure 3.1, A. Macrophages were defined as   
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Figure 3.1. Gating strategy to determine numbers of macrophages in skin suspensions via flow 

cytometry. (A) Neutrophils were identified based on first eliminating cell debris followed by 

elimination of F4/80+ cells and then gating on cells that stained positive for Ly6G and CD45. 

Data shown is from the R. parkeri only group at 6 hpi. (B) Macrophages were identified based 

on first eliminating cell debris followed by elimination of Ly6G+ cells and then gating on cells 

that stained positive for F4/80 and CD45. Data shown is from the R. parkeri only group at 24 

hpi.  

 

Ly6G-, CD45+, F4/80+ cells and enumerated via the gating strategy depicted in Figure 3.1, B. A 

definitive population of dendritic cells could not be established via gating on a population of 

F4/80-, CD45+, and CD11c+ cells; therefore, they were not quantified in this study. Absolute 

numbers of neutrophils were significantly increased at 6 hpi for both R. parkeri inoculation 

groups as compared to the saliva only group at this time point and the untouched control group 

(Figure 3.2, A). Additionally at 6 hpi, neutrophil numbers were significantly decreased for the R. 

parkeri + saliva group as compared R. parkeri inoculation alone. Absolute numbers of 

macrophages were also significantly increased with respect to untouched controls for the R. 

parkeri only group at 24 and 48 hpi, as well as the saliva only and R. parkeri + saliva groups at 

48 hpi (Figure 3.2, B). Also, there were significantly higher numbers of macrophages in the R.  
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Figure 3.2. Intradermal inoculation of R. parkeri results in an influx of neutrophils and 

macrophages, which is inhibited by A. maculatum saliva as identified by flow cytometry and 

microscopy. (A, B) Flow cytometric analysis of inoculation site skin suspensions revealed 

significant neutrophil and macrophage influx 6 and 24 hpi of R. parkeri, respectively, as 

compared to saliva inoculation alone and untouched controls. These infiltrates were significantly 

inhibited by the addition of A. maculatum saliva to the inoculum at these time points. The data 

are presented as the means ± SEM. P < 0.05 was significant. An asterisk (*) denotes a significant 

difference when compared to the untouched control group, a pound sign (#) denotes a significant 

differences from the untouched control group and the saliva only group at the indicated time 

point, and a dagger (†) denotes significant differences from the untouched control group, the 

saliva only group, and the Rickettsia + saliva group at the indicated time points. Results are from 

two independent experiments (n = 4 mice per time point per experiment). (C, D) Microscopic 

evaluation of cytocentrifuged samples of inoculation site cell suspensions confirmed the flow 

cytometry findings that more neutrophils and macrophages were found in the inoculation sites of 

R. parkeri only animals at 6 and 24 hpi respectively when compared to inoculation of R. parkeri 

+ saliva. Data are representative of pools of cell suspensions from all mice at a given time point 

and are from two independent experiments. Percentages of neutrophils and macrophages are 

taken out of total cells after counting 300 cells from each sample. The data are presented as the 

medians and interquartile ranges. 

 

parkeri only group as compared to saliva only and R. parkeri + saliva groups at 24 hpi. In order 

to confirm the flow cytometry findings for the R. parkeri-inoculated groups, skin suspensions 

from each mouse within each group and time point were pooled and evaluated microscopically 
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after cytocentrifugation. There was a more than two-fold increase in percentage of neutrophils 

and macrophages at 6 hpi and 24 hpi respectively for the R. parkeri only group as compared to 

the R. parkeri + saliva group at these time points (Figure 3.2, C-D). Additionally, while 

evaluating the cytocentrifuged samples, low numbers of rickettsiae were found phagocytized 

mostly within macrophages and rarely within neutrophils in both R. parkeri- inoculated groups at 

all time points evaluated (Figure 3.3, A-B).  

 
Figure 3.3. R. parkeri are phagocytized by macrophages and neutrophils after intradermal 

inoculation. Photomicrographs of cytocentrifuged preparations from mice in the R. parkeri only 

group at 6 hpi. Low numbers of R. parkeri (denoted by arrows) are found in macrophages (A) 

and neutrophils (B). Bars = 5 µm.  

 

3.3.2. R. parkeri Inoculation Results in Elevated Inflammatory Cytokines, Which are Not 

Modulated by A. Maculatum Saliva  

 

 Several cutaneous cytokines that play a role in the early immune response to Rickettsia 

were evaluated at each inoculation site and in untouched controls via a cytokine magnetic bead 

panel. For IFNγ, R. parkeri inoculation alone resulted in significantly increased concentrations at 

24 and 48 hpi as compared to untouched controls, with concentrations significantly increased as 

compared to the saliva alone group at 48 hpi (Figure 3.4, A). Additionally, R. parkeri + saliva  
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Figure 3.4. Concentrations of skin inoculation site inflammatory cytokines are increased in 

response to intradermal R. parkeri inoculation, but not significantly altered by the addition of A. 

maculatum saliva to the rickettsial inoculum. Concentrations of interferon γ (A), interleukin-6 

(B), and interleukin 10 (C) at the cutaneous inoculation site were determined at the indicated 

time points post inoculation by a magnetic cytokine bead panel kit. These cytokines were 

significantly elevated at various time points both in response to R. parkeri inoculation alone as 

well as in response to R. parkeri inoculation with A. maculatum saliva. However, no significant 

differences were found between the R. parkeri only group and the R. parkeri + saliva group at 

any time point. The data are presented as the medians and interquartile ranges. P < 0.05 was 

significant. An asterisk (*) denotes a significant difference when compared to the untouched 

control group, and a pound sign (#) denotes a significant differences between the untouched 

control group and the saliva only group at the indicated time points. Results are from two 

independent experiments (n = 4 mice per time point per experiment). 

 

inoculation resulted in significantly increased IFNγ concentrations at all time points as compared 

to untouched controls and to the saliva only group at 6 hpi. IL-6 was significantly elevated at all 

time points for the R. parkeri + saliva group as well as at 24 and 48 hpi for the R. parkeri only 

group as compared to untouched controls (Figure 3.4, B). At 6 hpi, there was also a significant 
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increase in IL-6 concentrations of the R. parkeri + saliva group as compared to the respective 

saliva only group at this time point. Lastly, at 24 and 48 hpi, R. parkeri inoculation alone 

resulted in significantly elevated IL-10 concentrations as compared to the untouched control 

group in addition to the saliva only group at 48 hpi (Figure 3.4, C). Furthermore, at 6 hpi and 24 

hpi, there were significantly increased IL-10 concentrations in the R. parkeri + saliva group as 

compared to untouched controls and the saliva only groups at these time points. There were no 

significant differences in cutaneous cytokine concentrations between the two R. parkeri 

inoculation groups for any cytokine at any time point assessed. Also, there were no significant 

differences between the saliva alone group and untouched controls at any time point assessed.  

3.3.3. A. maculatum Saliva Does Not Alter R. parkeri Inoculation Site DNA in the Acute Phase 

of Infection 

 

 To assess if there was a difference in rickettsial proliferation or destruction at the 

cutaneous inoculation site for R. parkeri inoculation only as compared to inoculation of R. 

parkeri + saliva, rickettsial load was evaluated via qPCR. Rickettsial DNA was detected at all 

time points assayed from the R. parkeri inoculation groups, but not from the untouched control 

or saliva only groups. There were no significant differences in rickettsial DNA between the R. 

parkeri only groups and the R. parkeri + saliva groups at any of the time points assessed (Figure 

3.5).  

3.4. Discussion 

In this study, the cutaneous acute phase immune response to intradermal inoculation of R. 

parkeri was evaluated in C3H/HeN mice and compared to rickettsial inoculation with A. 

maculatum saliva as well as saliva alone and untouched controls. Flow cytometry and 

microscopic evaluation of single cell suspensions created from the inoculation sites demonstrated  
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Figure 3.5. A. maculatum saliva did not significantly alter R. parkeri numbers in inoculation site 

skin in the acute phase after inoculation. Rickettsial load as detected by qPCR in skin samples at 

the indicated time points is presented as R. parkeri 17kDa copies per Mus musculus cfd copies 

times 10,000. No significant differences were detected between each inoculation group at each 

time point. No rickettsial DNA was isolated from the untouched control or saliva only mice at 

any time point. The data are presented as the medians and interquartile ranges. P < 0.05 was 

significant. 

 

that R. parkeri inoculation resulted in an inflammatory response that was characterized by 

predominately neutrophils at 6 hpi and by macrophages at 24 hpi. These tissue inflammatory cell 

numbers were significantly higher than the saliva only and untouched control groups. A similar 

dermal infiltrate of neutrophils and macrophages has been reported in histologic sections of 

experimentally induced eschars in rhesus macaques four days after inoculation (Banajee et al. 

2015). Furthermore, biopsies of human eschars caused by R. parkeri rickettsiosis collected later 

in the disease course are characterized by an influx of mononuclear cells including macrophages 

(Paddock et al. 2004, Paddock et al. 2008, Cragun et al. 2010, Kaskas et al. 2014). Also, similar 

to previous reports of natural cases of R. parkeri rickettsiosis in humans and experimental 

inoculation of SFG Rickettsia in experimental models, rickettsiae were microscopically detected 

within macrophages (Paddock et al. 2004, Whitman et al. 2007, Paddock et al. 2008, Cragun et 

al. 2010, Banajee et al. 2015, Riley et al. 2016). Given that this finding is in contrast to what is 

typically described for SFG Rickettsia, which have a predilection for endothelial cell infection, 

the role of macrophages in the progression of SFG rickettsiosis requires further study.  
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The current study demonstrates that A. maculatum saliva inhibited the cellular infiltrate 

induced by R. parkeri inoculation during the acute phase of infection. This confirms our 

hypothesis that A. maculatum saliva contains immunosuppressive properties. This hypothesis 

was based on the fact that A. maculatum saliva possesses transcripts of several anti-inflammatory 

molecules, such as cystatins, serpins, apyrases, and evasins (Karim et al. 2011). In fact, 

sialostatin L, a cystatin from another hard tick, Ixodes scapularis, has been shown to reduce 

myeloperoxidase levels in inflammatory lesions in mice which correlate to neutrophil 

recruitment as well as decrease the numbers of granulocytes seen histologically after Anaplasma 

phagocytophilum injection (Kotsyfakis et al. 2006, Chen et al. 2014). Likewise, evasins from 

Rhipicephalus sanguineus ticks have been found to bind to chemokines like CXCL8 (the 

chemokine responsible for neutrophil recruitment) and inhibit neutrophilic infiltrates in response 

to various stimuli (Deruaz et al. 2008). Furthermore, SGE from a variety of hard ticks, including 

another Amblyomma sp., A. variegatum, have been shown to inhibit the activity of CXCL8 in 

vitro (Hajnicka et al. 2001, Hajnicka et al. 2005, Vancova et al. 2007). Additionally, 

Dermacentor variabilis saliva has also been shown to inhibit murine macrophage migration in 

vitro (Poole et al. 2013). Therefore, it is not surprising that A. maculatum saliva was shown to 

inhibit cutaneous inflammation in response to R. parkeri inoculation potentially due to 

alterations in chemokines induced by saliva at the inoculation site. One of the limitations of this 

study is that the panel of markers used in this study (CD45, CD11c, F4/80, Ly6G) was not able 

to definitively identify a population of dendritic cells in mouse skin suspensions despite the fact 

that previous studies have used CD45 and CD11c double staining to identify these cells in the 

murine dermis (Dupasquier et al. 2004). It is possible that the enzymes used to prepare the skin 

suspensions may have cleaved CD11c off of the dendritic cells. Therefore, future studies of 
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cutaneous dendritic cells via flow cytometry should either be performed with different markers, 

such as Langerin or DC-sign or utilize a different skin disruption protocol. 

Our results also indicate that R. parkeri inoculation both with and without saliva resulted 

in significant elevations of the cutaneous cytokine concentrations of IFNγ, IL-6, and IL-10 when 

compared to both saliva alone and untouched control groups at several time points. These results 

are similar to what is documented in the literature for SFG rickettsioses. Elevations in IFNγ and 

IL-6 have also been identified in the serum of macaques intradermally inoculated with R. parkeri 

during the acute phase of rickettsiosis as well as in humans with acute illness due to MSF (in 

addition to IL-10) (Vitale et al. 2001, Banajee et al. 2015). Furthermore, similar to our study 

IFNγ and IL-10 mRNA expression has also been shown to be elevated in biopsies of eschars of 

humans as compared to controls (de Sousa et al. 2007). In the current study, the addition of 

saliva to the R. parkeri inoculum did not significantly alter cutaneous cytokine concentrations as 

compared to inoculation of R. parkeri alone. As previously stated, the saliva, SGE, and various 

isolated salivary components from a variety of hard tick species have been shown to alter 

cytokine production and gene expression from murine and human immune cells or cell lines in 

vitro (Kotal et al. 2015). These studies either rely on artificial immune stimulants (i.e. concavalin 

A), bacterial components (i.e. lipopolysaccharide), or live viral or bacterial pathogens to assess 

for potential immunomodulation of tick salivary components on these cells (Kotal et al. 2015). 

They indicate that pro-inflammatory and Th1 cytokines such as IL-6 and IFNγ are significantly 

inhibited by tick salivary components, whereas concentrations of the anti-inflammatory and Th2 

cytokine, IL-10, can either be unchanged, inhibited, or increased by tick salivary components 

(Kotal et al. 2015). In contrast to the results of these experiments and similar to the current study, 

when epidermal cells were isolated from C3H/HeN mice and exposed to I. scapularis SGE and 
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the pathogen Borrelia afzelii, the cytokine production of IL-6 and IL-10 was not altered when 

compared to B. afzelii exposure alone (Pechová et al. 2004). Further study of cutaneous immune 

cells is needed to determine if these cells behave uniquely when compared to cells isolated from 

other sources, with regards to production of cytokines in response to pathogens. The lack of a 

significant effect of tick saliva on the cytokine response in this study could also be potentially 

explained by the large variation in cytokine response seen with R. parkeri inoculation. This 

effect could simply be due to normal biological variation. However, sampling error cannot be 

ruled out, where the area sampled may not have been representative of the inflammatory 

response. Furthermore, the R. parkeri dose used in this study is a large dose that may have 

overpowered the anti-inflammatory effects of A. maculatum saliva despite the fact that it is at the 

high end of the range of total R. parkeri DNA found in wild-caught Amblyomma ticks (Monje et 

al. 2014), and is similar to the dose used in previous animal models of rickettsioses (Sammons et 

al. 1977, Feng et al. 1993, Eremeeva et al. 2003, Bechah et al. 2007, Horta et al. 2010, Grasperge 

et al. 2012, Grasperge et al. 2014, Banajee et al. 2015). Additional research is needed to 

determine the rickettsial load injected by naturally-infected ticks in order to better mimic the 

natural tick-host-pathogen relationship.  

While rickettsial DNA was detected at all time points evaluated post-R. parkeri exposure 

at the inoculation site, R. parkeri tissue load was not significantly altered by A. maculatum saliva 

in the acute phase of infection. This result is in contrast to a previous study which documented 

that tick feeding plus R. parkeri inoculation resulted in increased rickettsial load in the late stages 

of infection as compared to R. parkeri inoculation alone (Grasperge et al. 2014). There are 

several potential reasons for this difference of results. In order to assess and quantify the 

mammalian immune response in an immunocompetent animal, the current set of experiments 
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were performed on C3H/HeN mice which have previously been shown to be resistant to R. 

parkeri infection (Grasperge et al. 2012), as opposed to the susceptible C3H/HeJ mice used in 

the previous study. C3H/HeJ mice have a mutation in Toll-like receptor 4, which is important to 

for dendritic cell function and the development of anti-rickettsial immunity (Hoshino et al. 1999, 

Jordan et al. 2008). Also, while not determined in vivo, the in vitro doubling time of SFG 

Rickettsia is reported to be 10-12 hours (Wisseman et al. 1976), therefore any effect of saliva on 

rickettsial proliferation, may not yet be evident in the early time points studied in this report. 

Additionally, the current study relied on a single injection of saliva and examined the response in 

the acute phase as opposed to examining rickettsial load after several days of tick feeding and a 

continuous exposure to tick saliva. Therefore, it is possible that the strong anti-rickettsial 

immune response incited by the resistant C3H/HeN mice was not altered enough by a single dose 

of saliva to allow for increased rickettsial proliferation in the acute phase of infection.  

 In summary, the experiments performed in this study allow for the in vivo evaluation of 

the local cutaneous murine immune response to a pathogen inoculated via the intradermal route. 

The results indicate that intradermal inoculation of R. parkeri induces an acute immune response 

characterized by neutrophils and macrophages as well as elevations in both pro-inflammatory 

and anti-inflammatory cytokines in the C3H/HeN mouse model. A. maculatum saliva, while 

suppressing the cellular influx does not significantly alter concentrations of these cytokines or 

rickettsial load in the acute phase of infection. Further study should be performed to determine if 

this early decrease in cellular recruitment caused by tick immunomodulation may have an impact 

on shaping the adaptive immune response thus enhancing rickettsial pathogenicity in the chronic 

phase of infection. Future studies of tick immunomodulatory factors and their interaction with 
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rickettsiae at the cutaneous bite site are needed in order to identify novel vaccine targets to 

prevent transmission of these pathogens and the subsequent development of rickettsioses.  
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CHAPTER 4 

DISCUSSION OF RESULTS AND FUTURE DIRECTIONS 

4.1. Discussion of Results and Future Directions 

 Rickettsia parkeri is the cause of an emerging rickettsiosis transmitted by the Gulf Coast 

tick (Amblyomma maculatum) in the United States. Since the first description of this organism as 

a human pathogen in 2004 (Paddock et al. 2004), cases of R. parkeri rickettsiosis have now been 

identified in nine US states across the range of the Gulf Coast tick (Paddock et al. 2008, Cragun 

et al. 2010, Myers et al. 2013, Ekenna et al. 2014, Kaskas et al. 2014, Paddock and Goddard 

2015). Despite this recent emergence of disease, there is a dearth of research regarding the 

immunology and pathogenesis of this rickettsiosis. While there is an established animal model 

for the recapitulation of the pathology seen with R. parkeri rickettsiosis in C3H/HeJ mice 

(Grasperge et al. 2012), these mice have a mutation in Toll-like receptor 4 and a deficient anti-

rickettsial immune response (Hoshino et al. 1999, Jordan et al. 2008). Therefore, two other 

immunocompetent mammals were used in the present studies, rhesus macaques and C3H/HeN 

mice. These newly established models can be used in future rickettsial immunology research, 

because they produce a fully functional immune response and may better mimic the disease 

found in humans.   

There is also a need for studies that explore the various factors that lead to establishment 

of R. parkeri infection in the mammalian host including the role of tick-associated molecules that 

are inoculated into the cutaneous bite site along with rickettsiae. Based on research on other hard 

tick species, we know that tick saliva, salivary gland extract (SGE), or specific salivary 

molecules have immunosuppressive properties on a variety of immune cell types (Kotal et al. 

2015). However, these experiments, designed to characterize immunomodulatory attributes, were 

mostly performed in vitro or on immune cells derived from internal organs rather than the 
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cutaneous inoculation site. Consequently, the studies presented in this dissertation fill a need by 

addressing the effect of tick immunomodulation on rickettsial immunity at the cutaneous 

inoculation site. The overall hypothesis is that if tick saliva has immunomodulatory capabilities, 

then these factors enhance rickettsial infection via downregulation of the host immune response. 

 To address the need for an immunocompetent animal model for R. parkeri rickettsiosis 

that would effectively replicate natural disease and explore the role of tick feeding in 

pathogenesis, rhesus macaques were utilized. These animals were intradermally inoculated with 

R. parkeri both alone and during adult A. maculatum feeding and the disease in these animals 

was compared to an animal infested with adult ticks alone. In order to asses both rickettsial load 

and immune response to infection, peripheral blood, lymph nodes, and skin at the inoculation 

sites were evaluated at several time points during the study. Using this system, we were able to 

test our hypothesis that by modulating the host immune response, tick feeding enhances infection 

and pathology of spotted fever group (SFG) Rickettsia in the mammalian host.  

As opposed to the tick-only animal, all R. parkeri-inoculated macaques developed 

inflammatory leukograms characterized by neutrophilia and lymphopenia, as well as elevated C-

reactive protein and interleukin (IL)-6 concentrations (acute phase inflammatory proteins) post-

inoculation of R. parkeri. This acute phase inflammatory response is similar to what has 

previously been reported in an experimental mouse model of R. parkeri rickettsiosis (Grasperge 

et al. 2012) and human cases of Mediterranean spotted fever (Vitale et al. 2001). Elevated serum 

Th1 cytokines (interferon [IFN]γ, IL-15) were also detected in the acute phase after inoculation 

of R. parkeri, which has also been described in SFG rickettsiosis (Mansueto et al. 1994, Vitale et 

al. 2001, Walker and Ismail 2008). Additionally, cutaneous eschars, the characteristic lesions 

reported in human R. parkeri rickettsiosis (Paddock et al. 2004, Whitman et al. 2007, Paddock et 
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al. 2008, Cragun et al. 2010, Romer et al. 2011, Portillo et al. 2013, Kaskas et al. 2014, Romer et 

al. 2014) formed at all R. parkeri inoculation sites, as opposed the tick infestation control animal. 

The eschars were characterized grossly by cutaneous ulceration surrounded by erythema. 

Histologically, the dermis of these animals was infiltrated by numerous macrophages and 

neutrophils and had evidence of vasculitis. These results indicate that rhesus macaques are a 

good model of R. parkeri rickettsiosis, which develop the characteristic pathological 

manifestations of disease after cutaneous inoculation.  

In addition to the inflammatory response described above, animals inoculated with R. 

parkeri during tick feeding had greater neutrophilia and IL-6 concentrations as compared to the 

R. parkeri only groups. Furthermore, larger and slower healing eschars were observed in the tick 

feeding plus R. parkeri group as compared to the group inoculated with R. parkeri alone. Also, 

enhanced dissemination of R. parkeri to draining lymph nodes early in infection and increased 

persistence at the inoculation site were observed in the tick plus R. parkeri group. These results 

indicate that tick feeding enhanced the disease induced by intradermal R. parkeri inoculation. 

Despite the interesting conclusions that were derived from this study, there are several 

limitations of this research that should be addressed in future studies. First, the number of 

animals in the current study was too low to perform statistical analysis. Therefore, future studies 

should include larger numbers of primates if financially feasible. Also, the animals in this report 

did not develop a fever, which is uniformly reported in human patients with R. parkeri 

rickettsiosis (Paddock and Goddard 2015). This effect is likely due to the fact that the animals 

were anesthetized during temperature recording, therefore the induced hypothermia could have 

masked a fever. Future studies may utilize telemetry to continuously monitor temperature in 

these animals and detect a fever. Additionally, elevated Th2 cytokines were not detected in any 
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of the primates in the tick feeding groups, which has been reported in other studies evaluating the 

immune response to tick feeding or salivary compounds (Kotal et al. 2015). The possibility that 

these cytokines may have been elevated locally at the bite site but not systemically in the serum 

is a hypothesis that requires further investigation. Lastly, rare rickettsial organisms were found 

via immunohistochemistry within dermal macrophages at the cutaneous bite site in the tick only 

group. This is likely due to the fact that these ticks were infected with Candidatus “Rickettsia 

andeanae”. Interestingly, this group did not develop cutaneous eschars in response to this 

inoculation. One hypothesis for this difference in disease is that ticks infected with the non-

pathogenic rickettsial species release low numbers of Rickettsia into the bite site when feeding as 

opposed to the larger numbers inoculated by ticks infected with R. parkeri. Another possibility is 

that there may be inherent differences in pathogenicity in these organisms due to various 

undetermined virulence factors. Future research is required in order to identify why there is a 

difference in pathogenicity for various rickettsial species, and should include study of the tick-

related factors that may play a role in altered virulence. Despite these limitations, the results of 

this study suggest that immunomodulatory factors introduced during tick feeding may enhance 

the pathogenicity of SFG Rickettsia, and their role in the establishment of rickettsial infection at 

the cutaneous inoculation site requires further investigation. 

 While the previously described work provides evidence of acute inflammation in R. 

parkeri rickettsiosis and an effect of tick feeding augmenting this acute inflammatory response, 

this immunomodulation was not quantified and fully evaluated at the cutaneous inoculation site. 

Therefore, further study was performed in C3H/HeN mice to characterize the immune response 

to intradermal inoculation of R. parkeri during the acute phase of infection in the presence and 

absence of tick saliva as compared to saliva inoculation alone and untouched controls. The 
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hypothesis was that by downregulating the acute innate immune response, A. maculatum saliva 

enhances R. parkeri infection in the mammalian host. Flow cytometric analysis of cutaneous 

inoculation site cell suspensions showed that there was a significant increase in the cellular 

influx of neutrophils and macrophages at 6 and 24 hours post inoculation, respectively, as 

compared to saliva inoculation alone and untouched controls, similar to what was reported in the 

primate study. This infiltrate was significantly downregulated by the addition of A. maculatum 

saliva to the inoculum at these time points, which is consistent with the anti-inflammatory effect 

of tick saliva described in the literature (Hajnicka et al. 2001, Hajnicka et al. 2005, Kotsyfakis et 

al. 2006, Vancova et al. 2007, Deruaz et al. 2008, Chen et al. 2014).  

Furthermore, three cytokines were evaluated at all cutaneous inoculation sites and in 

untouched controls: IFNγ, IL-6, and IL-10. All three of these cytokines were significantly 

increased in response to R. parkeri inoculation at various time points both with and without the 

addition of A. maculatum saliva as compared to saliva inoculation alone and/or untouched 

controls. This cytokine response to SFG rickettsiosis is consistent with what is reported in the 

literature for SFG rickettsiosis (Mansueto et al. 1994, Vitale et al. 2001, de Sousa et al. 2007) 

and in the previously presented primate model of R. parkeri rickettsiosis. However, there were 

no differences in cytokine concentrations between the R. parkeri only and R. parkeri + saliva 

groups at any time point evaluated, unlike what has been reported with in vitro tick saliva studies 

(Kotal et al. 2015). This discrepancy may be due to the fact that cutaneous immune cell 

responses may differ from those reported in other ex vivo studies, where cells were isolated from 

internal organs. However, the cytokine concentrations in R. parkeri-inoculated animals were 

highly variable, possibly due to a sampling error, where samples that were fully representative of 

the inoculation site may not have been collected. Lastly, rickettsial tissue load as evaluated by 



122 

 

quantitative real-time PCR was not significantly affected by the addition of A. maculatum saliva 

to the R. parkeri inoculum at any time point evaluated. This may be due to the combination of 

the nature of the C3H/HeN mice that produce a strong immune response to the pathogen, and/or 

due to the large rickettsial dose that was administered, which may have overpowered the ant-

inflammatory effects induced by saliva in the acute phase of infection. Furthermore, as the 

rickettsial doubling time is approximately 10-12 hours in vitro (Wisseman et al. 1976), an effect 

of saliva on rickettsial proliferation may not be apparent within 48 hours post infection. The 

results of this work describe the acute immune response to R. parkeri and how it is impacted by 

the saliva of its vector. They pave the way for future research into tick immunomodulatory 

molecules and their effect on Rickettsia transmission and pathology. 

Despite the studies described in this dissertation laying down a solid foundation, future 

research of R. parkeri, the mammalian immune response induced by this pathogen and how that 

immune response is augmented by the feeding of A. maculatum is still needed. For example, 

future studies should include investigations of how tick feeding affects the cutaneous rickettsial 

response of other inflammatory cells such as dendritic cells or NK cells early in the infection and 

then how these alterations shape the adaptive cell-mediated immune response and progression of 

disease. Furthermore, research of tick saliva-induced immunomodulatory effects on rickettsial 

killing by inflammatory cells such as macrophages, dendritic cells, neutrophils, NK cells and 

cytotoxic T cells should also be explored. These studies could ultimately lead to the discovery of 

tick salivary molecules necessary for rickettsial establishment in the mammalian host and the 

development of potential transmission-blocking therapeutics that target these molecules. 
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APPENDIX A 

COMMONLY USED ABBREVIATIONS 

ANOVA – analysis of variance 

BLAST – basic local alignment search tool 

CBC – complete blood count 

CD – cluster of differentiation 

cfd – complement factor D 

CRP – C-reactive protein 

DLAM – Division of Laboratory Animal Medicine 

DNA – deoxyribonucleic acid 

dpi – days post inoculation 

EDTA - ethylenediaminetetraacetic acid 

ELISA – enzyme-linked immunosorbent assay 

FBS – fetal bovine serum 

G-CSF – granulocyte colony stimulating factor 

GM-CSF – granulocyte macrophage-colony stimulating factor 

H&E – hematoxylin and eosin 

hpi – hours post inoculation 

IACUC – Institutional Animal Care and Use Committee 

IFN - interferon 

IgG – immunoglobulin G 

IHC – immunohistochemistry 

IL – interleukin 

IM – intramuscularly 
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kDa - kiloDalton 

LPS – lipopolysaccharide 

LSU – Louisiana State University 

MCP-1 – monocyte chemotactic protein 1 

MHC – major histocompatibility complex 

mRNA – messenger ribonucleic acid 

MSF – Mediterranean spotted fever 

NK – natural killer 

NO – nitric oxide 

OD – optical density 

OSM – oncostatin M 

PCR – polymerase chain reaction 

PE – physical exam 

qPCR – quantitative real-time polymerase chain reaction 

RIPA – radioimmunoprecipitation assay 

RMSF – Rocky Mountain spotted fever  

RNA – ribonucleic acid 

rOmp – rickettsial outer membrane protein 

RPMI – Roswell Park Memorial Institute 

Sca – surface cell antigen 

sCD40L – soluble cluster of differentiation 40 ligand 

SEM – standard error of the mean 

SFG – spotted fever group 
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SGE – salivary gland extract 

SPG – sucrose phosphate-glutamic acid 

Th1 – type 1 helper T cell 

Th2 – type 2 helper T cell 

TLR – Toll-like receptor 

TNF – tumor necrosis factor 

TNPRC – Tulane National Primate Research Center 

VEGF – vascular endothelial growth factor 
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APPENDIX B 

CONSENT FORMS 

 

PloS ONE is an open access journal and applies the Creative Commons Attribution (CC 

BY) to works that are published. This license was developed to facilitate open access – namely, 

free immediate access to, and unrestricted reuse of, original works of all types. Under this 

license, authors agree to make articles legally available for reuse, without permission or fees, for 

virtually any purpose. Anyone may copy, distribute or reuse these articles, as long as the author 

and original source are properly cited. Additionally, the journal platform that PLOS uses to 

publish research articles is Open Source. Further information about the PLOS open access policy 

can be read here.  

  

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.ambraproject.org/
https://www.plos.org/open-access/
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