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ABSTRACT 

 Monocyte chemoattractant protein-1 is critical for monocyte recruitment to the lungs 

in response to bacterial infection.  MCP-1 is also essential for protective neutrophil 

recruitment to the lungs during Escherichia coli and Klebsiella pneumoniae infection.  

Staphylococcus aureus pneumonia, specifically strain USA300, carries a high morbidity and 

mortality rate and is an important pathogen in hospital/ventilator and community acquired 

pneumonia.  In the current study, we investigated the role of MCP-1 in pulmonary innate 

immunity to S. aureus in C57Bl/6, MCP-1-/- and MCP-1 AB blocked mice.  As compared to 

C57Bl/6, MCP-1-/- mice showed increased concentrations of neutrophils in the airways and 

lung parenchyma as assessed by nucleated cell concentrations in BALF, myeloperoxidase 

activity (MPO) in lung tissue, and lung histopathology, and increased concentrations of the 

pro-inflammatory cytokines TNF-α and IL-6.  However, this increase in inflammatory 

cytokines and augmented neutrophilic response did not correlate with increased bacterial 

clearance, as determined by CFUs from BALF, lung, liver and spleen.  MCP-1 AB blocked 

mice trended towards higher BALF nucleated cell counts and MPO activity in lung tissue, 

but were not significantly different from negative controls.  In conclusion, MCP-1 appears to 

be differentially regulated during bacterial pneumonia, and in an S. aureus model, MCP-1-/- 

mice have moderately enhanced neutrophilic inflammation which does not improve bacterial 

clearance.
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CHAPTER 1 
INTRODUCTION 

 
! Staphylococcus!aureus!is!a!leading!cause!of!bacterial!infection!worldwide,!and!in!

the!United!States!is!the!principle!isolate!from!hospitalIassociated!bacterial!infections.1!!

Among!the!spectrum!of!S.!aureus!disease!manifestations,!the!majority!are!skin!and!soft!

tissue!infections,!however!other!sites!including!the!bloodstream!and!lower!respiratory!

tract!are!also!wellIdescribed.1!Notably,!while!pneumonia!is!far!less!common!than!soft!

tissue!infection,!it!is!responsible!for!the!majority!of!fatalities!associated!with!methicillin!

resistant!strains!of!S.!aureus!(MRSA).!!In!2005!MRSA!strains!were!responsible!for!

18,000!deaths!in!the!U.S.,!more!than!¾!of!which!were!due!to!pneumonia.2!

! On!the!basis!of!pulse!field!gel!electrophoresis!(PFGE),!the!CDC!categorized!the!

most!common!isolates!of!S.!aureus!using!the!USA!naming!system,!which!currently!

includes!strains!USA100IUSA1200,!all!of!which!display!methicillin!resistance!with!the!

exception!of!strains!USA900!and!USA1200.3!In!addition!to!PFGE!classification,!S.!aureus!

strains!are!often!grouped!according!to!epidemiologic!associations,!namely!community!

acquired!infections!!(CAIMRSA),!or!those!associated!with!hospitalization!or!ventilator!

support!(HA/VAPIMRSA).!

! Strain!USA300,!initially!described!in!the!1990s!as!a!sporadic!cause!of!community!

acquired!infection!among!healthy!individuals,!continues!to!be!the!leading!cause!of!CAI

MRSA!infections.2!Since!that!time,!however,!it!has!also!been!described!as!a!principle!

strain!in!HA/VAPIMRSA!cases.!!In!a!2012!analysis!of!MRSA!isolates!from!251!intensive!

care!unit!(ICU)!patients!USA300!was!the!second!most!common!isolate!(23.9%).4!

HA/VAPIMRSA!pneumonia!has!a!high!mortality!rate!(up!to!37%!in!one!study)!

compared!to!other!HA!bacterial!pneumonias,!and!is!also!a!large!drain!on!health!care!
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resources/costs,!with!HA/VAPIMRSA!cases!averaging!$8,000!more!in!medical!costs!

than!pneumonia!caused!by!methicillin!sensitive!strains.4I6!

! Gross!and!histopathologic!pulmonary!findings!in!USA300!pneumonia!are!

distinctive!among!bacterial!pathogens,!consisting!of!severe!hemorrhage!and!necrosis!

with!intralesional!bacteria!but!no!appreciable!suppurative/neutrophilic!response.7!!The!

severity!of!USA300!pneumonia!is!not!reliant!solely!on!the!immunocompromised!nature!

of!hospitalized!individuals,!as!it!causes!similar!lesions!in!otherwise!healthy!individuals!

acquiring!infections!as!a!result!of!CAIMRSA.!!Methicillin!resistance!is!another!unlikely!

explanation,!as!many!other!common!HA/VAP!MRSA!strains!actually!display!broader!

antibiotic!resistance!to!multiple!drug!classes.4!!Ultimately!several!virulence!factors!

likely!contribute!although!the!exact!pathologic!basis!for!the!necrotizing!hemorrhagic!

features!of!USA300!remains!unclear.!!!

 Panton-Valentine leukocidin (PVL), is a virulence factor which has!received!much!

research!attention, and is expressed by a large number of USA300 isolates, and by 

relatively few other MRSA or MSSA strains.8,9 PVL is a pore-forming toxin shown to cause 

apoptosis of neutrophils in low doses and neutrophil necrosis in high doses, which may 

provide an explanation for the paucity of neutrophils seen histologically in USA300 affected 

lungs.9,10 It is unlikely, however, to be the sole mediator, as similar pathologic lesions are 

described post-infection with USA300 strains not expressing PVL, and other virulence 

factors including phenol soluble modulins (PSMs) and the super antigen Selx have been 

shown experimentally to induce similar lesions.11,12!

! S.!aureus!pneumonia!has!an!acute!clinical!course!in!naturally!occurring!human!

infections!and!animal!models.13!!As!such!innate!immune!defenses!generated!at!early!
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time!points!are!critical!for!bacterial!clearance!and!host!survival.!!!In!addition!to!soluble!

mediators!such!as!complement,!collectins!and!ficolins,!S.!aureus!interacts!with!

pulmonary!epithelial!cells!and!macrophages!via!pattern!recognition!receptors!(PRRs)!

such!as!TLR2,!NOD2,!and!NLRP3,!initiating!proIinflammatory!signaling!cascades!which!

upregulate!expression!of!genes!important!for!host!defense!and!leukocyte!recruitment. 

While undoubtedly some degree of pro-inflammatory signaling is necessary for bacterial 

clearance and neutrophil recruitment, it remains unclear which signaling cascades are vital, 

dispensable, or actually counter productive for protective immunity.  Interestingly while mice 

deficient in the TLR2 adaptor protein MYD88 are highly susceptible to systemic infection 

with S. aureus, these mice are able to control pulmonary infection with maintained 

cytokine/chemokine and neutrophil responses.14  In contrast NOD2-/- mice challenged intra-

tracheally with S. aureus do have diminished cytokine/chemokine responses and neutrophil 

influx, however, reduced inflammatory signaling in this model lead to improved bacterial 

clearance.15 !

 Despite its role in neutrophil chemotaxis and ability to augment neutrophil and 

macrophage mediated microbe killing, TNF-α levels were inversely correlated with outcome 

in one study, while in another publication mice deficient in TNFR1, the TNF-α receptor, 

cleared S. aureus more efficiently than wild type mice.13,16  Similarly there is an ill-defined 

tipping point at which a robust neutrophilic response transitions from protective to 

deleterious.  Left unchecked, neutrophils can impart as much harm to the surrounding tissue 

as to the pathogen via toxic mediators such as elastase, collagenase, and free radicals.1!

Ultimately the factors delineating what constitutes a protective versus harmful immune 
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response to S. aureus continue to be elusive, warranting further studies into the pulmonary 

innate immune response to this important pathogen.  

 Monocyte chemoattractant protein one (MCP-1) is a chemokine principally described 

as a monocyte chemattractant, but has also been shown to recruit neutrophils to the airways 

at early time points in E. coli and K. pneumoniae infection models, leading to generation of a 

robust and protective neutrophilic response.17,18 MCP-1 is constitutively produced in the 

lung, but production in epithelial cells and alveolar macrophages can also be upregulated 

downstream of pattern recognition receptor or inflammatory cytokine signaling mediated by 

substance including LPS and TNF-α.19 In a Pseudomonas aeruginosa pneumonia model, 

immunohistochemistry demonstrated strong labeling of intracytoplasmic MCP-1 in murine 

alveolar epithelial cells and alveolar macrophages post-infection.20  

 Secreted MCP-1 binds to its principal receptor CC chemokine receptor 2 (CCR2) 

present on a variety of cells including monocytes/macrophages, fibroblasts, epithelial and 

endothelial cells.19  CCR2 is a G-protein coupled receptor which is also integrated with 

JAK/STAT signaling cascades.21,22 While receptor signaling allows for mobilization of 

intracellular calcium stores necessary for polymerization of cytoskeletal components and 

chemotaxis, the cascades initiated on CCR2 binding can be multiple and diverse, with other 

important functions.21,22 For example, pulmonary epithelial cells stimulated with MCP-1 can 

upregulate mucus production, MCP-1 is up-regulated in atherosclerotic lesions, MCP-1 

levels correlate with progressive organ fibrosis in some models, and MCP-1 promotes 

angiongenesis and macrophage infiltration in gastric carcinoma.23-26  

 Anti-MCP-1 therapies including MCP-1 blocking antibodies and gene therapy have 

been developed to moderate chronic or deleterious inflammatory responses, fibrosis, 
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angiongenesis, and tumor burden. To date parenteral administration of anti-MCP-1 or MCP-1 

gene therapy have been utilized in a number of animal trials which collectively have 

produced many promising results including decreasing intimal proliferation in 

artheriosclerotic plaques, reducing vessel restenosis post-angioplasty, decreasing organ 

fibrosis, and reducing overall tumor burden and angiongenesis in cancer models.24-27 As these 

therapies progress towards human clinical trials, understanding the role of MCP-1 in innate 

immune defenses and delineating important risk factors for patients receiving such treatments 

becomes a priority; especially within the context of a hospitalized population, where S. 

aureus infection is a common cause of comorbidity.     

 For these reasons we wanted to investigate the role of MCP-1 in pulmonary innate 

immune responses in S. aureus pneumonia and hypothesized that MCP-1 would impart a 

protective response.  C57Bl/6, MCP-1-/- and MCP-1 AB blocked mice were infected intra-

tracheally with S. aureus strain USA300 followed by analysis of local and disseminated 

bacterial burden, pro-inflammatory cytokine, chemokine and pulmonary leukocyte 

recruitment profiles, and lung histopathology. 
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CHAPTER 2 
THE ROLE OF NOD-LIKE-RECEPTORS IN THE PULMONARY SYSTEM 

 
2.1. Abstract  

 Innate immunity is the first line of defense against microbes and as such innate 

responses to infectious stimuli frequently dictate outcomes including survival. Whereas Toll-

like receptors have been extensively studied and their importance in pathogen detection and 

clearance well documented, the importance of NOD-like receptor (NLR) family members is 

emerging.  The lung contains resident immune cells such as leukocytes and epithelial cells 

and is physiologically positioned to have constant and close contact with inhaled irritants and 

invading microbial pathogens. As bacterial lung infections are a significant cause of world-

wide mortality and innate immune responses often dictate survival from lung infections, 

understanding the role of NLRs in the pulmonary system is of particular importance.  This 

review highlights recent advances in our understanding of NLR family members, with 

specific focus on how these proteins sense and respond to pathogens and host-derived 

substances during respiratory bacterial infections. 

2.2. Introduction 

 The respiratory tract provides a unique microenvironment in which to explore the 

complex interplay between host immune responses and exogenous stressors such as microbes 

and environmental irritants is manifest. To be effective, respiratory immune responses must 

be sensitive, rapid, and diverse; these requirements are driven by constant contact with both 

commensal and pathogenic microbes and inhaled irritants such as smoke (e.g cigarette, 

biomass burning) that may possess immuno-modulatory properties. Globally, bacterial 

pneumonia represents an enormous burden of illness and is associated with substantial 

morbidity and mortality and the expenditure of significant economic resources. In the last 
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decade, the role of specific innate immune proteins in protecting the lungs from devastating 

infections such as bacterial pneumonia has been widely investigated. The availability of 

resources including specific gene-deficient mice has been a major driving force in this effort. 

However, the regulation of immune responses during bacterial infection that eventually 

contribute to host resistance has not been fully delineated. In this review, we focus on recent 

advances in understanding the importance of NOD-like receptors (NLRs) in orchestrating the 

innate immune response to bacterial infection.  

2.3. Bacterial pneumonia 

 Pneumonia is an infection of lung parenchyma, usually with bacteria. Bacterial 

pneumonia is common; in the United States, the incidence of bacterial pneumonia is 4 

million adults per year. Moreover, bacterial pneumonia is responsible for significant 

morbidity and mortality, accounting for 1.1 million hospitalizations, and 50,000 deaths per 

year.28 In fact, despite treatment with antibiotics and supportive measures, bacterial 

pneumonia remains the most common infectious cause of death in the U.S. Bacterial 

pneumonia is characterized clinically by the acute onset of productive cough, fever, and 

shortness of breath. Severe cases may progress to sepsis and respiratory failure requiring 

mechanical ventilation. The diagnosis is confirmed by radiographic imaging. 

 Although the lungs are constantly exposed to inhaled pathogens, a sophisticated host 

defense system is usually highly effective in the killing and clearance of microorganisms. In 

the event of exposure to a high burden or high virulence of pathogens or in the setting of a 

susceptible host, clinical pneumonia can develop. Certain bacteria have developed 

sophisticated virulence factors to evade a normal host defense system; host characteristics 

such as underlying structural lung disease, advanced age, and immunocompromised states 
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such as HIV, chemotherapy, and chronic steroid use predispose to pneumonia. The most 

common pathogens responsible for bacterial pneumonia are Streptococcus pneumoniae, 

Haemophilus influenzae, group A streptococci, Moraxella catarrhalis, Staphylococcus 

aureus, anaerobes, and aerobic Gram-negative enteric bacilli such as Escherichia coli, 

Legionella spp., Mycoplasma pneumoniae, and Chlamydophila pneumoniae.  

 In response to bacterial infection, sentinel cells such as macrophages become 

activated and secrete chemokines, which induce neutrophil migration into the lungs. 

Neutrophils clear bacteria by phagocytosis followed by killing via proteases and reactive 

oxygen species. Both the activation of sentinel cells and the phagocytosis and killing by 

neutrophils are critically dependent on the recognition of pathogens by the innate immune 

system.29 

2.4. Host defense 

 The innate immune response, the first line of defense against invading pathogens, is 

initiated when pattern recognition receptors (PRRs) on the surface or in the cytosol of 

sentinel immune cells sense pathogen-associated molecular patterns (PAMPs) in their 

vicinity. Following the interaction of PAMPs with PRRs, downstream signaling cascades are 

activated leading to increased production of cytokines and chemokines that promote 

recruitment of professional phagocytes and antigen-presenting cells to the site of infection 

and/or tissue injury. Four major groups of PRRs have been identified: Toll-like receptors 

(TLRs), Nucleotide recognition domain (NOD)-like receptors (NLRs), RIG (retinoic acid 

inducible gene)-1-like receptors (RLRs) and lectin receptors. The PAMP ligands for specific 

PRRs are highly conserved “non-self” molecular motifs of microbial origin; examples 

include lipopolysaccharide (LPS), peptidoglycan (PGN), flagellin, and CpG nucleotides. As 
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these motifs are common to both pathogenic and commensal microbes, PAMPs may be 

regarded as a misnomer for which a more inclusive acronym MAMP (microbe-associated 

molecular patterns) has been proposed.30 PRRs can also interact with another set of 

molecular motifs known as damage (or danger) associated molecular patterns which are 

endogenous (“self”) molecules emanating from stressed (dying/infected/neoplastic) cells.  

2.5. The NLR family 

 The NLR family consists of 22 members in humans, with protein orthologs in both 

vertebrates and invertebrates.31 NLRs are critical to the innate immune response. Unlike the 

transmembrane TLRs that detect either extracellular or endosomal ligands, NLRs exclusively 

sense cytosolic ligands.32 All NLR family members are characterized by a tripartite domain 

structure with C terminal leucine rich repeat (LRR) domain, a central NACHT (NAIP, CIIA, 

HET-E, TP1) /NOD domain and a variable N-terminal effector domain.33 NLRs are classified 

into 4 sub-families based on the N-terminal effector domain they contain: NLRA members 

have transactivator domains (AD); NLRBs have BIR (baculoviral inhibitor of apoptosis 

repeat) domains; NLRCs have CARD (caspase activation/ recruitment domains), and NLRPs 

have PYD (PYRIN domains) 31,34 (Figure 1). Each domain of the NLR molecule has a unique 

function. The C terminal LRR sensing domain recognizes and binds to a variety of cytosolic 

ligands.  This is followed by oligomerization of NACHT domains, a crucial but incompletely 

understood step. Oligomerization leads to the formation of an N-terminal platform where 

diverse adaptor molecules and downstream effectors may bind.31,34 The variable molecular 

makeup at the N terminus ascribes a degree of structural heterogeneity that is utilized during 

activation of diverse signaling pathways depending on the specificity of NLR and/or their 

ligands (Figure 2).   
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Figure 1. A schematic comparing molecular structures of different NLR family members. All 
NLR family members have a tri-partite domain organization comprising of C-terminal LRR, 
middle NACHT and a variable N-terminal domain. The variability of N-terminal domains is 
the basis for the division of NLRs into distinct subgroups.  
 



! 11 
!

 

 

 
Figure 2. A schematic representation of NLR signaling pathways. Various PAMPs ligands 
that bind cytosolic NLRs and activate downstream pro-inflammatory signaling pathways in 
the respiratory tract are indicated.    
 

The NLR ligands range from bacterial and viral components to particulate matter and 

crystals.  For intracellular pathogens and pathogens equipped with trans-membrane secretion 

systems (e.g., the type III secretion system of Pseudomonas aeruginosa and Dot/Icm type IV 

secretion system of Legionella pneumophila (Lp) 35,36), the PAMPs are delivered to the 

cytosol. Recent work demonstrates that extracellular Gram-negative bacteria can shed outer 

membrane vacuoles or “blebs” containing bacterial products  that can be transported by lipid 

rafts to the cytosol of non-phagocytic cells for interaction with the NOD1 NLRs.37 Apart 
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from these examples, the exact molecular mechanism(s) for transport of the majority of NLR 

ligands across the host cell membrane remains elusive.  

2.6. NOD1/NOD2 signaling 

 The cytosolic proteins NOD1 and NOD2 contain CARD domains at their N-termini. 

While NOD1 is expressed in a wide variety of cells and tissues, NOD2 is expressed in  

relatively few cell types including macrophages, dendritic cells, keratinocytes, and lung and 

intestinal epithelium.31 Principally described ligands for NOD receptors are components of 

bacterial peptidoglycan. Specifically, m-DAP (L-Ala-γ -D-Glu-m-diaminopimelic acid) 

found in most Gram-negative and some Gram-positive bacteria binds NOD1while the MDP 

(muramyl dipeptide) motif present in the peptidoglycans of both Gram-positive and Gram-

negative bacteria binds NOD2 LRR.31 Peptidoglycan binding is followed by oligomerization 

of the central NACHT domains and recruitment of the cytosolic adaptor molecule receptor 

interacting protein 2 (RIP2 at the N-terminus by CARD-CARD interaction. RIP2 is then 

ubiquitinated, leading to the activation of downstream NF-κB signaling and upregulation of 

genes involved in host defense and apoptosis (Figure 2).15,31,38,39 In certain infection models, 

membrane localization of the NOD-RIP2 complex is a prerequisite for activation of NF-κB 

signaling 40 For example, the respiratory syncytial virus (RSV) induces the NOD2-RIP2 

complex to bind the adaptor MAVS (mitochondrial viral signaling) on the mitochondrial 

membrane 41, while the Shigella flexneri induced the NOD1-RIP2 complex to bind to the 

host plasma membrane.40  

2.7. Role of NOD receptors in bacterial pneumonia 

 The importance of NOD receptors in pulmonary defense is highlighted by studies 

using murine models of bacterial pneumonia. In comparison with their WT counterparts, 
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mice deficient in specific NOD receptors (NOD1-/- or NOD2-/-) or RIP2 (RIP2-/- , which  are 

functionally equivalent to NOD1-/-/NOD2-/- double knockouts) consistently show reduced 

levels of pulmonary cytokines and chemokines accompanied by reduced inflammation and 

impaired neutrophil recruitment to the lungs following infection with Escherichia coli 38, 

Staphylococcus aureus 15 or Chlamydophila pneumoniae 39. In contrast, results from 

pulmonary bacterial burden assays are not as consistent. NOD2-/- mice exhibit reduced 

neutrophil killing and hence increased bacterial burdens following infection with E. coli. 38 

Similar results (impaired cytokine/chemokine expression, delayed neutrophil recruitment and 

bacterial clearance) are observed when RIP2-/- , NOD1-/-, and NOD2-/- deficient mice are 

infected with C. pneumonia. 39  Surprisingly, in NOD2-/- mice infected with S. aureus, 

reduced pulmonary neutrophils counts are accompanied by reduced bacterial CFUs.15 

Similarly, in murine models of Legionella pneumonia, NOD1-/-, NOD2-/-  and RIP2-/- mice 

show impaired neutrophil recruitment compared to WT mice, although a small increase in 

bacterial CFUs was observed only in the lungs of RIP2-/-mice.35 These results suggest a 

possible co-operation between NOD1 and NOD 2 receptors in mediating Legionella-induced 

activation of RIP2. Taken together, these observations firmly establish NOD receptors at the 

crossroads of bacterial PAMP identification, pro-inflammatory pathways and neutrophil 

recruitment. Their importance in resolution of infection by promoting bacterial clearance 

varies with specific pathogens. 

 In addition to the well-documented role of NOD receptors in neutrophil recruitment, 

NOD1/NOD2 signaling also contributes to the production of soluble anti-bacterial and anti-

viral molecules. Synthetic PAMPs have been shown to induce human oropharyngeal 

epithelial cells to produce the antibacterial molecule β-defensin 2 in an NF-κB dependent 
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manner in vitro.42 NOD2 is also involved in induction of type I interferon (IFN) in response 

to intraphagosomal Mycobacterium tuberculosis in murine macrophages 43 and also in 

response to RSV ssRNA, a non-peptidoglycan PAMP.41   

2.8. NLR inflammasomes  

 Upon ligand binding, NLR proteins NLRC4, NLRP1, and NLRP3 form distinct 

hetero-oligomeric structures known as inflammasomes, which are platforms for the 

recruitment of pro-caspase1 zymogen by CARD-CARD interaction followed by activation by 

proteolytic cleavage. Caspase 1 protease in turn activates pro-IL1β and pro-IL-18 to IL1β 

and IL-18 respectively inducing inflammation and/or cell death, a process termed 

‘pyroptosis’. The CARD in an inflammasome may belong to either a constituent NLR such 

as NLRC4 (NLR family, CARD domain containing 4), or alternatively, to a CARD 

containing adaptor protein ASC (apoptosis-associated speck like protein containing a CARD 

1) recruited by a homotypic PYD interaction between ASC and NLRP1 or NLRP3.34,44 The 

molecular components of different inflammasomes, downstream signaling cascades, and 

their relevance to bacterial pneumonia will be discussed below.  

2.9. NLRC4 and NAIPs 

 NLRC4 and NAIP (NLR family apoptosis inducing protein) are two structurally 

dissimilar NLR proteins that form inflammasomes following activation by two bacterial 

PAMP ligands, flagellin, and the type III secretion system needle apparatus constituent 

protein PrgJ.44,45 Similar to NOD1/NOD2, NLRC4 consists of an N terminal CARD (Figure 

1), although oligomerization of the central NACHT/NOD domains by NLRC4 proteins 

results in the formation of an inflammasome (Figure 2).44 The concept of the NAIP-NLRC4 

inflammasome originates in observations that the macrophages from A/J mice are highly 
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permissive to Legionella replication in comparison to macrophages from other mouse strains 

such as C57BL/6, Balb/C and C3H/HeN.46 This phenotypic difference was subsequently 

mapped to the presence of a chromosome 13 locus containing a family of Naip (neuronal 

apoptotic inhibitory protein) genes in non-permissive mouse strains.44,46 Today we know that 

there are four Naip paralogs in mice  (i. e. Naip1, Naip2, Naip5, and Naip6), while only one 

functional protein, NAIP, has been detected in humans.44,47  Polymorphism of the Naip5 gene 

in A/J mice has been implicated in their relative susceptibility to Legionella,  based on the 

observation that  Naip5-/- mice  in a C57/BL6 background are highly susceptible to Lp.48  

Similarly, the replication of Lp in human macrophages which precedes the development of 

Legionarre’s disease in people, is likely explained by the lack of human Naip to respond to 

bacterial flagellin.45 

Naips exhibit tripartite protein structure with C-terminal LRR, middle NBD and N-

terminal BIR domain akin to other NLR family members. Three tandem repeats of BIR at the 

N-terminus is a feature that Naips share with members of the apoptosis inhibitory protein 

(AIP) family (Figure 1), although most experimental evidence indicates that the primary role 

of Naips is in the regulation of innate immunity rather than apoptosis.44 Naip5 and NLRC4 

functionally complement one another as inflammasome constituents with Naip-LRR acting 

as a PAMP sensor while NLRC4-CARD recruits and activates pro-casapse1 by CARD-

CARD interaction. The role of the BIR domains in the organization of inflammasomes, their 

downstream signaling and their relevance to immune defense against bacterial pathogens 

remains to be elucidated, although it is proposed that all three BIR domains are necessary for 

PAMP-induced oligomerization of NLRC4.49 
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In the case of Legionella, murine Naip5 and human NAIP act as cytosolic sensors that 

oligomerize with NLRC4 in response to flagellin. While the molecular mechanism leading to 

inflammasome assembly remains nebulous, the NLRC4-Naip interaction has been fairly 

well-defined.44 In contrast, the concept of NLRC4-Naip functional complementarity is well-

established. As Naip5 lacks CARD, it is structurally incapable of recruiting and activating 

caspase1 by itself. Thus NLRC4-/- mice are defective in mounting an inflammaory response 

to cytosolic flagellin from Salmonella typhimurium.44,50 Also, macrophages from Naip5-/- 

mice fail to activate caspase-1 and IL-1β and do not undergo pyroptotic death in response to 

Legionella.48 Additional biochemical evidence further strengthens this concept: constitutively 

active NAIP5ΔLRR induces oligomerization of NLRC4, a step necessary for production of 

Caspase-1 even in the absence of flagellin ligand, while constitutively active NLRC4ΔLRR 

activates caspase-1 even in absence of NAIP5.49 The dispensability of Naip5, as observed in 

certain models of NLRC4 inflammasome activation, spearheaded the investigation of other 

Naips as potential cytosolic sensors involved in ligand binding. Naip paralogs are proposed 

to be involved in differential ligand recognition. For example, Naip5 LRR (and to some 

extent Naip6 LRR) selectively recognizes flagellin, Naip2 LRR recognizes PrgJ (T3SS 

needle protein) while Naip1 is an orphan member with an unknown PAMP ligand.45,49   

These observations clearly establish Naips as cytosolic sensors of different PAMPs that act 

upstream of NLRC4 effectors.  

A recent publication has documented that both murine and human macrophages 

respond to Klebsiella pneumoniae via NLRC4 activation, and that NLRC4 activation is 

critical for development of protective immunity in a murine in vivo model.51  Further studies 

are needed to determine the importance of NLRC4 in innate immune responses to other 
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relevant pulmonary pathogens, including both murine models and human cell lines, given the 

dissimilarities present in NAIP expression between mice and humans.  

Since NLRC4 is equipped with its own CARD domain, whether the ASC adaptor is 

necessary for NLRC4 inflammasome function is not fully established 44.  Legionella activates 

two independent pathways of caspase1 activation via induction of ASC or NLRC4-NAIP 

inflammasomes.52 Ligands and upstream effectors of ASC-dependent pathway are unknown. 

Activation of both pathways is required for maximal production of IL1β and IL18 although 

NLRC4-NAIP-mediated pyroptosis is independent of ASC activity.52 Based on more recent 

microscopic evidence, ASC appears to be involved in spatial sequestration of NLRC4 -

caspase1 complexes.53 This suggests convergence of these two pathways at a centralized 

ASC platform which may help in maintaining a delicate balance between two caspase 1-

induced downstream processes; pyroptosis and proinflammatory cytokine release. 

2.10. NLRP1 

 NLRP1 is structurally distinct from other NLRs in that it has two signal transduction 

domains; PYD at the N-terminus and CARD at the C-terminus. The LRR domain is 

positioned between PYD and the central NOD (Figure 1). It is proposed that the C-terminal 

CARD binds caspase 5 while the N-terminal PYD homotypically binds PYD of ASC. ASC is 

a bipartite adaptor that in turn contributes CARD for recruitment and induction of pro 

caspase-1.34,54 The NLRP1 inflammasome platform composed of CARD8, ASC, caspase-5, 

and caspase-1 was first described in a cell-free system.34,55 It has been suggested that the 

activities of both caspase 1 and 5 are necessary for NLRP1 inflammasome mediated IL1β 

maturation.34,55 Biochemical evidence suggests that NLRP1 inflammasome activation is a 

two-step process. In the first step, bacterial MDP PAMP binds NLRP1 LRR and primes the 
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central NACHT domain for NTP binding leading to the second step of NLRP1 

oligomerization and procaspase-1 recruitment. ASC may augment the function of NLRP1 but 

is not required for inflammasome function, as NLRP1 equipped with C-terminal CARD may 

interact with procaspase-1 bypassing the requirement of ASC.34,56   

Unlike humans with a single functional nlrp1 gene, the murine genome encodes three 

highly homologous, tandem paralogs; nrlp1a, nlrp1b, nlrp1c. Nlrp1b is a highly polymorphic 

paralog that is activated by proteolytic cleavage mediated by Bacillus anthracis virulence 

factor, anthrax lethal toxin.57 This leads to caspase1 activation which is the molecular event 

that determines strain-specific susceptibility of murine macrophages to anthrax lethal 

toxin.34,58 Activation of NLRP1 by anthrax lethal toxin has been shown to result in 

irreversible acute lung injury that is dependent on caspase1 activation and not on IL1β 

maturation. In contrast, the ligand for highly conserved NLRP1a is undefined 59, while the 

NLRP1c is a truncated protein with unknown relevance to inflammasome assembly/function. 

Notably, anthrax lethal toxin does not activate human NLRP1.  Although the role of NLRP1 

in human health and disease remains elusive, the interaction of murine NLRP1 and LT 

illustrates that NLR activation can be responsible for significant end organ damage.   

2.11. NLRP3 

 The defining feature of NLRP3 (NLR family; PYD containing 3) is the N terminal 

PYD (Figure 1) that homotypically binds PYD of ASC. The NLRP3 inflammasome is 

prototypical in its requirement for two distinct signals for activation. The pre-assembly 

“priming” signal comes from TLR activation that induces NLRP3 expression via NF-κB 

activation. Once the cytosolic amount of NLRP3 reaches a threshold, inflammasome 

assembly is initiated in response to a second signal in the form of one or more of NLRP3 
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ligands.60 The two signal process may act as a cellular safeguard against hyper-activation of 

the NLRP3 inflammasome. NLRP3 ligands are a curiously heterogeneous group of 

compounds ranging from exogenous materials such as bacterial PAMPs, ozone, asbestos, 

silicon and particulate matter to endogenous alarmins such as uric acid from DNA damage, 

ATP and mitochondrial contents.61-66 Hyperactivation of NLRP3 resulting in increased 

accumulation of pro-inflammatory cytokines such as IL1β is involved in the pathogenesis of 

pulmonary fibrosis.67,68 The ability of the NLRP3 inflammasome to respond to an array of 

structurally and chemically diverse signals points to convergence on a common sub-cellular 

signaling event upstream of inflammasome assembly. Presently, three signaling pathways 

have been proposed to be involved in these processes: ROS (reactive oxygen species), 

intracellular electrolyte shift (K+ efflux), and lysosomal disruption.69-71 Needless to say, each 

of these models has limitations. ROS production may qualify as the common upstream 

signaling effector based on the observations that ‘frustrated phagocytosis’ of large crystals 

(e.g.; asbestos) activates mitochondrial NADPH oxidase (NOX) and that NLRP3 

inflammasome assembly is affected by ROS inhibitors.65,72 Recently, Bauernfiend et al have 

suggested that ROS activation is an important upstream event required for the priming of 

NLRP3 inflammasome formation.69 Large crystal phagocytosis is also implicated in 

lysosomal rupture, release of lysosomal protein cathepsin B in the cytosol and subsequent 

activation of NLRP3 based on the observation that cathepsin B inhibitors abrogate crystal-

mediated NLRP3 inflammasome activation while artificial lysosomal disruption (mediated 

by osmolarity alterations) activates NLRP3 inflammasome.71  ATP mediated potassium 

efflux and calcium influx activates ion channel function of purinergic receptor P2X7 also 

resulting in the activation of the NLRP3 inflammasome.70  Conversely, the presence of high 
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K+ containing buffers blocks NlRP3 inflammasomes.66  Pore formation by P2X7-activated 

Pannexin or by the activity of microbial toxins activates the NLRP3 inflammasome.73 

Bacterial pore-forming toxins (PFTs) such as streptolysin O (Streptococcus pyogenes), alpha-

hemolysin (S. aureus), and hemolytic pneumolysin (ply, Streptococcus pneumoniae) are 

particularly relevant virulence factors involved in the pathophysiology of bacterial 

pneumonia and are established as inducers of NLRP3 inflammasomes.61-63,74,75 The 

variability of PFT expression among bacterial strains in part dictates the immunologic 

response generated.  For instance S. pneumoniae strains producing non-hemolytic variants of 

ply are capable of establishing infection without activating IL-1β production via NLRP3.62 

Whether the membrane channels/pores induce K+ efflux or function as trans-membrane 

gateways facilitating entry of ligands into the cytosol allowing for direct interaction with 

NLRP3 is not clear.  

 What is apparent, is that NLRP3, through cross-talk with TLRs, and ability to 

recognize diverse ligands, may play a crucial role in pulmonary immunity. The inflammation 

resulting from NLRP3 activation may facilitate clearance of pneumococci producing 

hemolytic pneumolysin, or it may abrogate replication of the atypical mycobacterial 

pathogen M. kanasii in human macrophages.61,76 In other instances, such as asbestosis and 

silicosis, NLRP3 activation is deleterious as it promotes chronic inflammation and fibrosis.72  

Furthermore, its ability to sense and respond to endogenous alarmins that leak from necrotic 

cells, indicates it could be activated downstream of any pulmonary condition that induces 

necrosis.63      
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2.12. NLRP6 and NLRP12 

 The newly recognized NLRP6 and NLRP12 are inflammasome-forming NLRs that 

oligomerize with ASC, although details about the downstream signaling pathways are 

lacking.77-80  However, in this context the term inflammasome may be a misnomer, as 

NLRP6 and NLRP12 may induce anti-inflammatory immune responses.  Detection of high 

levels of nlrp6 transcripts in neutrophils, T cells, macrophages and epithelial cells 81 suggests 

that NLRP6 may be relevant in the immune defense of respiratory tract and other organs. 

NLRP6 -/- mice display reduced IL-18 levels and colonic dysbiosis (alteration in the structure 

of normal intestinal microflora) leading to inflammatory colitis.77,78 NLRP6 is dispensable 

for Listeria monocytogenes induced neutrophil IL-1β release.82 Moreover, in a mouse model 

of infection with Listeria, NLRP6-/- mice have a survival advantage over their WT 

counterparts and show increased levels of circulating levels of neutrophils and macrophages 

accompanied by increased clearance of bacteria from liver and spleen.  Whether NLRP6 

suppresses innate immune function in response to other bacterial pathogens is unknown.83 

NLRP12 is a prototypical member of anti-inflammatory NLRs; it is exclusively produced by 

eosinophils, granulocytes and monocytes and it is an established negative regulator of the 

non-canonical pathway of NF-κB activation.80,84 NLRP12 suppresses IL1β and IL18 

production (and IFNγ production via IL18) mediated by Yersinia pestis 79 although no 

differences were observed in survival profiles, disease progression, and host response 

mounted by NLRP12 -/- and WT mice after airway exposure to M. tuberculosis or K. 

pneumonia.85 
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2.13. Perspective 

 With the rapidly expanding knowledge of innate immune responses at the molecular 

level, a more comprehensive approach is needed to link seemingly unrelated molecular 

effectors and parallel signaling pathways in relation to one another is urgent. This will not 

only generate comprehensive maps of intricate molecular mechanisms of innate immune 

responses to invading pathogens, but identifynovel targets  for future therapeutic 

interventions.  Discovery of inflammasomes, and the description of crosstalk between TLRs 

and NLRs to generate proinflammatory cytoking responses, represent the initial steps 

towards a more complete understanding 86 It is evident that the specificity between 

interacting PRRs and PAMP ligands is not exclusive, and that activation of a particular PRR 

may lead to the simultaneous induction of different signaling pathways.87 Despite these 

major discoveries , many crucial questions remain unanswered, including 1) What are the 

PAMP ligands activating inflammasomes such as NLRP4 and NLRC4?; 2) How are the 

molecular patterns of extracellular pathogens transported across the cytoplasmic membrane?; 

3) What factors determine whether activation of inflammasome pathways result in an 

inflammatory response or cell death? A better understanding of interplay between different 

PRRs in response to a pathogenic insult will pave the way for more sophisticated therapies 

for a number of infectious, autoimmune, and neoplastic diseases in the lung and other organs. 
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CHAPTER 3  
LITERATURE REVIEW 

 
3.1. Innate immunity in bacterial pneumonia 

 Innate immunity is the body’s first line defense system, and consists of molecular 

sensors and effectors that are activated in response to invading pathogens or endogenous 

signals. Cellular components of innate immunity  include surface epithelium and leukocytes 

such as  histiocytes (macrophages and dendritic cells), neutrophils, natural killer cells, mast 

cells, eosinophils and basophils.  A wide array of intracellular and extracellular proteins 

assist in innate immunity including soluble and cell associated pattern recognition receptors, 

enzymes capable of hydrolyzing cell wall components or creating toxic oxygen/nitrogen 

compounds, as well as constituents of the complement cascade and acute phase response.22 

The ways in which cells sense invading microbes, the signaling cascades which occur 

downstream of pathogen recognition, and the antimicrobial properties of various innate 

immune effectors are outlined below, with particular focus on those central to bacterial 

clearance in pneumonia. 

3.1.1. Cellular effectors 

3.1.1.a. Neutrophils 

 Neutrophils are short-lived bone marrow derived granulocytic cells that provide the 

first line of defense against many invading microbes.  Neutrophils are professional 

phagocytic cells that contain granules replete with bactericidal substances.  The 

primary/azurophilic granules in neutrophils contain myeloperoxidase (MPO), other 

proteolytic enzymes (cathepsins, elastase), and defensins.1  Secondary/specific granules, so 

called as they develop second in neutrophil maturation, contain important membrane proteins 

including lactoferrin and collagenase as well as receptors for chemotactic molecules, 
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cytokines, opsonins, and extracellular matrix proteins.  In health, murine neutrophils circulate 

for 10-24hrs before entering tissues where senescent neutrophils become apoptotic and are 

engulfed by macrophages.1  During inflammation, microbe and host-derived signals initiate 

immune cascades resulting in production of neutrophil chemotactic molecules (i.e. IL-8, G-

CSF) which can bind to receptors on neutrophils initiating chemotaxis towards sites of 

inflammation, while altering expression of integrins on endothelial cells to promote 

neutrophil extravasation into tissues. 

 Neutrophils are equipped with cell associated pattern recognition receptors (PRRs) 

including Toll-like receptors (TLRs) and Nod-like receptors (NLRs).  PRRs recognize highly 

conserved motifs of pathogens, known as pathogen associated molecular patterns (PAMPs) 

as well as substances (i.e. mitochondrial DNA, heat shock proteins) liberated from stressed or 

dying host cells, known as danger associated molecular patterns (DAMPs).  Activation of the 

cell-associated PRRs by PAMPs/DAMPs in neutrophils initiates intracellular signaling 

cascades resulting in neutrophil phagocytosis, degranulation, reactive oxygen species 

production, and cytokine/chemokine generation.1  Additionally neutrophils have receptors for 

soluble PRRs such as collectins, as well as complement, both of which enhance phagocytosis 

of bacteria via opsonization. 

 Once bacteria are inside neutrophil phagosomes, the contents of primary and 

secondary granules can fuse with the phagosome, exposing organisms to bactericidal 

products including oxygen dependent (i.e. ROS, superoxide, MPO) and independent (i.e anti-

microbial peptides, elastase, lactoferrin) substances.1  A more recently identified means of 

neutrophil-mediated microbe killing is via formation of neutrophil extracellular traps (NETs).  

NETs are comprised of chromatin, histones, azurophilic granules and cytosolic proteins with 
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bactericidal activity demonstrated against a variety of pathogens including S. aureus.  It 

appears that generation of ROS is a prerequisite in some experimental models for NET 

formation, however whether NETs constitute a unique form of cell death, or are cast from 

live cells is still an issue of debate.1 

 Neutrophil apoptosis is a form of anti-inflammatory cell death that occurs both in 

healthy cells as a natural regulator of neutrophil numbers, and in states of 

inflammation/infection.  While the mechanisms governing neutrophil apoptosis differ in 

health and disease, the net result is caspase-mediated cleavage of nuclear contents, 

preservation of the cell membrane (preventing liberation of highly inflammatory neutrophil 

products into the extracellular space) and exposure of phosphatidylserine (PS) onto the 

extracellular lipid bilayer.  PS acts as a signal for macrophages to engulf these senescent cells 

(efferocytosis).  In addition to freeing the extracellular space of the many toxic products 

present within neutrophils, the action of efferocytosis by macrophages causes these 

professional phagocytes to produce the anti-inflammatory cytokines IL-10 and TGF-β, 

further contributing to resolution of inflammation.1 

3.1.1.b. Alveolar macrophages 

 Alveolar macrophages (AMs) are specialized macrophages that reside in the alveoli.  

Studies support both monocyte and pulmonary derived sources of AMs.  Studies in mice 

estimate 15% of blood monocytes migrate to the lungs to replace AMs.  However maturation 

of AMs from pulmonary cells of intermediate differentiation has also been demonstrated.13  

Alveolar macrophages respond to invading pathogens by both phagocytosis and immune 

signaling via PRRs.  Phagocytosis is mediated by binding of opsonized or non-opsonized 

microbes to a plethora of receptors.  Within macrophages nitric oxide is produced via 
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inducible nitric oxide synthase.  Theorized to perhaps protect the lung tissue in their 

surrounding specialized micro-environment, AMs in humans produce NO to a lesser extent 

than inflammatory macrophages in other tissues and also have efficient anti-oxidant 

mechanisms.13  While these cells are professional phagocytes, their ability to ingest 

pathogens is ultimately limited.  In addition to phagocytosis, sensing of microbial PAMPs by 

AMs occurs via PRRs (TLRs and NLRs).  These signaling cascades not only enhance 

microbe killing and phagocytosis by AMs but also recruit neutrophils to the airways. 

3.1.1.c. Epithelial cells 

 A heterogenous population of epithelial cells exists from the trachea to the alveoli 

including basal cells, secretory and ciliated epithelial cells, neuroendocrine cells and type I 

and type II alveolar pneumocytes.95  The production of mucus and movement of cilia serve to 

trap inhaled irritants and microbes and propel them back towards the oropharynx.  Surfactant 

proteins A and D produced by type II alveolar pneumocytes are anti-bacterial collectins.13  In 

addition to these constitutive anti-bacterial functions, epithelial cells are able to initiate 

immune responses via pathogen sensing and subsequent pro-inflammatory signaling 

cascades.  As previously mentioned, NFκ-B is an important transcription factor in pro-

inflammatory signaling.  In pneumonia models where NFκ-B was selectively blocked in 

alveolar epithelial cells, generation of cytokines and chemokines and degree of inflammatory 

cell infiltrate after pathogen challenge were severely blunted.13  In separate experiments 

using mice deficient in the TLR adaptor MYD88, it was shown that the NF-κB mediated 

signaling was reestablished after selectively restoring MyD88 function to alveolar epithelial 

cells, suggesting TLRs are central to NFκ-B cascades generated in epithleial cells.13   
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 Another transcription factor important in epithelial cell response in pneumonia is 

STAT3.  Unlike NFκ-B, STAT3 activation does not appear to occur via PAMP/PRR 

interactions on epithelial cells, but rather via cross talk between epithelial cells and resident 

leukocytes.  The importance of STAT3 in pulmonary immunity is obvious in the naturally 

occurring human disorder hyperimmunoglobulin E syndrome (HIES) in which patients have 

severely decreased levels of STAT3.  While all cells in the body are deficient in STAT3 

expression, the clinical course of this disease is typified by recurrent pulmonary infections, 

often beginning early in childhood, with pneumonia being the major cause of death in these 

patients.13  Increased susceptibility to pneumonia in these patients may involve epithelial 

cells directly and indirectly.  STAT3 is activated downstream of IL-6 and IL-23 and is vital 

in differentiation of TH17 T cells.  TH17 cytokines (IL-17, IL-22) play important roles in 

pulmonary immunity, some of which is achieved via signaling with epithelial cells and 

inducing these cells to produce β-defensins and CXC chemokines.13 However, selectively 

blocking STAT3 in T cells fails to recapitulate the HIES phenotype.13  When STAT3 was 

selectively blocked in the alveolar epithelial cells of mice, animals had more severe lung 

injury as compared to WT controls, the degree of which did not correlate with neutrophil 

recruitment between the groups, suggesting a role for STAT3 in maintaining epithelial cell 

health independent of inflammatory signaling.13 

3.1.2. Pattern recognition receptors 

 Pattern recognition receptors (PRRs) are cell associated or secreted molecules that 

recognize “non-self” signals known as pathogen-associated molecular patterns (PAMPs) 

including bacterial and viral components or endogenous danger associated molecular patterns 

(DAMPs) such as mitochondrial DNA and heat shock proteins liberated from dying cells.  
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Some cell associated PRRs, including CD14 and C-type lectin receptors, are endocytic 

receptors that initiate internalization and phagocytosis of pathogens upon PAMP binding.  

Similarly soluble PRRs including collectins and ficolins opsonize pathogens, tagging them 

for phagocytosis, and also aid in complement associated killing.14  In contrast the cell 

associated Toll-like receptors (TLRs) and NOD-like receptors (NLRs) initiate intracellular 

signaling cascades upon PAMP binding, which culminate in pro-inflammatory chemokine 

and cytokine production, and in some instances, programmed cell death. 

 The TLR family includes unique transmembrane receptors expressed by a wide 

variety of cells such as lymphocytes, histiocytes, epithelial cells, endothelial cells, and 

fibroblasts, which vary slightly in number across mammalian species (i.e. 12 murine TLRs 

and 10 human TLRs).13  Cell membrane associated TLRs (TLR 1,2,4,5,6) sense an array of 

peptides and lipopeptides including bacterial cell wall components and flagellin, whereas 

endosomal TLRs (3,7,9) sense nucleic acids.14  These receptors are comprised of PRR 

sensing C terminal leucine rich repeats (LRR), a trasmembrane domain, and a N terminal toll 

and interleukin receptor (TIR) which associates with downstream adaptor proteins (most 

importantly MyD88) to initiate intracellular signaling.  The TLR signaling cascade leads to 

NFκ-B and MAP kinase activation culminating in increased production of inflammatory 

cytokines such as TNF-α and IL-6 and neutrophil and monocyte chemotactic molecules such 

as IL-8 and MCP-1 (Figure 3).14  
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Figure!3.!Innate!immune!signaling.!!Signaling!cascades!initiated!by!S.!aureus!interaction!
with!TLR2!and!NLRs!(i.e.!NOD2,!NLRP3)!in!pulmonary!epithelial!cells.!!
 

 NLRs similarly display tripartite structure with a C terminal leucine rich repeat 

domain, a central NACHT (NAIP, CIIA, HET-E, TP133)/NOD domain and a variable N-

terminal effector domain.31  The NLR ligands range from bacterial and viral components, to 

particulate matter and crystals.  For the well studied NLRs such as NOD1/NOD2, ligands 

include components of bacterial peptidoglycan. Specifically, m-DAP (L-Ala-γ -D-Glu-m-

diaminopimelic acid) found in most Gram-negative and some Gram positive bacteria, is 

detected by NOD1while MDP (muramyl dipeptide) motif, ubiquitously present in the 

peptidoglycans of both Gram-positive and Gram-negative bacteria, is detected by NOD2 

LRR.31 PGN binding is followed by oligomerization of the central NACHT domains and 

recruitment of the cytosolic adaptor molecule RIP2 (receptor interacting protein 2) at the N-

terminus by CARD-CARD interaction. RIP2 is then ubiquitinated leading to the activation of 
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downstream NF-κB signaling and upregulation of genes involved in host defense and 

apoptosis (Figure 2).31 

 Upon ligand binding, some NLR proteins (NLRC4, NLRP1, and NLRP3) form 

distinct hetero-oligomeric structures known as inflammasomes which are platforms for the 

recruitmentof pro-caspase 1 zymogen followed by its activation to caspase 1 by proteolytic 

cleavage. Caspase 1 protease in turn activates pro-IL1β and pro-IL-18 to IL-1β and IL-18 

respectively, inducing inflammation and/or inflammatory cell death termed pyroptosis 

(Figure 3).65  Of the inflammasomes NLRP3 arguably has the most relevance to pulmonary 

pathology, as it is documented to respond to a curiously heterogenous group of compounds 

ranging from exogenous materials such as bacterial PAMPs, ozone, asbestos, silica and 

particulate matter to endogenous alarmins such as uric acid from DNA damage, ATP and 

mitochondrial contents.65,75   

3.1.3. Cytokines and chemokines 

 Cytokines are small soluble proteins secreted by immune (ie monocytes, dendritic 

cells, granulocytes, lymphocytes) and non-immune cells (fibroblasts, epithelial and 

endothelial cells).  Cytokines can be broadly grouped into five families based on 

functionality: interleukins, interferons, TNF ligands, growth factors, and chemokines.  Major 

cytokines and chemokines of interest at early time points in pulmonary innate immune 

responses to bacterial pathogens are described below.   

3.1.3.a. TNF-α 

 Part of the TNF super family, TNF-α is produced predominately by macrophages but 

is made by a wide array of other cells including neutrophils, mast cells, endothelial cells, 

fibroblasts, NK cells and CD4+ T cells in response to microbial products and cytokines such 
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as Il-1, IL-2, and interferon.96,97  The cell associated form of  TNF-α is released by the action 

of ADAM 17 (also termed TNF-α converting enzyme) in a homotrimer form, necessary for 

binding to its receptor.97  TNF-α induces endothelial cells to express neutrophil adhesion 

molecules (ICAM-1 and VCAM-1), augments immune cell function such as macrophage 

phagocytosis, cytokine secretion, release of reactive oxygen species, and provides positive 

feed back for NFκ-B activation to increase levels of pro-inflammatory cytokines.96  It also 

has distant effects that include crossing the blood brain barrier to interact with the 

hypothalamus to induce fever, and causing hepatocytes to upregulate the production of acute 

phase proteins such as protein C which enhances complement function.96 

3.1.3.b. IL-6  

 IL-6 is produced primarily by monocytes and macrophages in response to signaling 

via other cytokines (i.e. IL-1, TNF-α) or PAMPs (LPS, microbial nucleotides).  IL-6 binds its 

receptor (IL-6R) α chain and the signal transducing component gp130.97  It is the most 

important signaling molecule for induction of the acute phase response.  The acute phase 

response refers to the modulation of protein synthesis, which occurs in the liver upon 

stimulation with increased concentrations of cytokines such as IL-6, TNF-α and IL-1β.  

During times of inflammation the liver down regulates production of albumin (the major 

negative acute phase protein) presumably to use the amino acid precursors for formation of 

positive acute phase proteins (APPs).  There are many APPs with species specific relative 

importance but ultimately, regardless of species, the concerted function of these proteins is to 

enhance multiple facets of innate immunity including complement activation, opsonization, 

scavenging of free radicals, protease inhibition, and coagulation.98  Additionally IL-6 



! 32 
!

activates cytotoxic T cells and is involved in the differentiation of B cells into 

immunoglobulin producing plasma cells.97 

3.1.3.c. IL-1β and IL-18 

  IL-1β and IL-18 are both part of the IL-1 family.  These cytokines are unique in that 

they are synthesized in an inactive pro-enzyme form, requiring the activity of caspase-1 

generated by inflammasome assembly to be cleaved into their active forms.97  IL-1β is 

important in activating T-lymphocytes by enhancing production of IL-2 but also shares 

biological functions with both TNF-α and IL-6 including upregulation of leukocyte adhesion 

molecules (ie  ICAM-1, VCAM-1, E-selectin) on endothelial cells, and mediating systemic 

effects such as pyrexia and induction of the acute phase response.  The final steps in ICAM-1 

expression as mediated by IL-1 and TNF-α requires IL-18.  Along with IL-12, IL-18 is also 

an important inducer of INF-γ.97 

3.1.3.d. IL-17 

 The IL-17 family is comprised of 6 members (IL-17A through IL17F) which share 

virtually no sequence homology to other cytokines.  IL-17A is often referred to 

interchangeably as IL-17 and is primarily produced by a subset of CD4+ T cells (Th17 cells), 

with other possible cellular sources including neutrophils, eosinophils and CD8+ T cells.97  

Immune responses of IL-17A include induction of IL-6, IL-8, and granulocyte colony 

stimulating factor (GM-CSF) in cellular targets (ie fibroblasts, endothelial cells, epithelial 

cells) bearing the IL-17 receptor.97  Via its induction of IL-8 and G-CSF, IL-17 is an 

important player in neutrophil recruitment to the airways, however its effect on pulmonary 

immunity extend beyond leukocyte recruitment, as it can also induce goblet cell hyperplasia 

and increase mucus production by pulmonary epithelium.97 
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3.1.3.e. IL-8 

 While initially termed as an interleukin, IL-8 is also referred to interchangeably as 

CXCL-8, a more suitable nomenclature that denotes its major role as a chemokine, as well as 

its structure.  Chemokines are divided into four subclasses (CC, CXC, CX3, C) where C 

denotes the arrangement of cysteines within the molecule.99  CXC chemokines such as 

CXCL-8 have one intervening amino acid (ie X) between their cysteine residues.  IL-

8/CXCL-8 is a potent neutrophil chemoattractant produced by many cell types (i.e.  

leukocytes, endothelial cells, epithelial cells, fibroblasts) which binds to its receptors 

(CXCR1 and CXCR2) to stimulate leukocyte transmigration, among other effects.99  CXCL-

8 is involved in removal of L-selectin and expression of integrins on neutrophils, and 

facilitates transmigration of neutrophils across fibroblasts, endothelial and epithelial cells.  

Additionally CXCL-8 induces many neutrophil mediated immune functions including 

respiratory burst, degranulation, release of leukotriene B4 and synthesis of platelet activating 

factor.99  It should be noted that both mice and rats, do not express CXCL-8, and its orthologs 

responsible for neutrophil chemotaxis in these species include KC, MIP-2, and LIX. 

3.2. Monocyte chemoattractant protein-1 

 Monocyte chemoattractant protein-1 (MCP-1) belongs to the chemokine family of 

cytokines.100 Chemokines are small (8-10 kD) proteins primarily involved in leukocyte 

trafficking during inflammation, infection, wound healing and in health.  The term 

chemokine is reserved for proteins with a conserved structure, and many potent 

chemoattractants (C3a, C5a, leukotriene B4) are not classified as such.  MCP-1 is a CC 

chemokine, and is referred to interchangably as CC ligand 2 (CCL2) a pseudonym that 

reflects its structure rather than functionality.100 All members of the CC chemokine group 
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have the first two cysteines adjacent to each other while all members of CXC chemokine 

group have one amino acid separating the cysteines.100  The structural similarity of 

chemokines within subgroups allows for a certain degree of promiscuity in terms of 

receptor/chemokine interaction.  While chemokine receptor 2 (CCR2) is considered the main 

receptor for MCP-1 (CCL2), human MCP-1 can also bind CCR1, CCR3, and CCR5.  

Likewise CCR2 has other secondary ligands, including CCL7 and CCL12. 100,101  

3.2.1. MCP-1/CCR2 signaling 

Chemokines such as MCP-1 mediate their effects by binding to seven transmembrane 

G protein coupled receptors (GPCRs) (Figure 4).  The N terminus of the GPCR is present 

extracellularly and is the site of ligand interaction.  The intracellular C terminus interacts 

with the alpha subunit of a trimeric G protein.100,102 The G protein subunits subsequently 

dissociate and the alpha subunit is free to activate downstream effectors such as 

phospholipase C (PLC).  PLC catalyzes the formation of inositol triphosphate (IP3) and 

diacyl-glycerol (DAG).  IP3 can then open channels to release intracellular calcium into the 

cytosol while DAG activates protein kinase C (PKC).  PKC also mobilizes cellular calcium 

stores.100  Increase in intracytosolic calcium is important for the ultimate function of 

chemokine signaling, namely cell mobility.  To move along the chemotactant gradient 

requires the cell to move its cytoskeletal framework, a process dependent on polymerization 

of the actin cytoskeleton and calcium/calmodulin interactions.100  

Signaling through the GPCR may have other functions unrelated to mobility       

(Figure 4).  
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Figure!4.!General!schematic!of!a!CC!chemokine!binding!a!chemokine!receptor.!!
Chemokine!receptors!are!transmembrane!G!protein!coupled!receptors!but!are!also!
linked!to!JAK/STAT!signaling!pathways.!!Chemokine!binding!can!lead!to!activation!of!
multiple!downstream!signaling!cascades!resulting!in!cellular!motility!and!
transcriptional!activity!among!other!functions.!

 

For instance, PKC also plays important roles in polarization and adhesion, and is also 

involved in the activation of transcription factor NF-κB mediated signaling reestablished 

after selectively restoring MyD88 function to alveolar epithelial cells.100  G proteins can also 

activate MAP kinases (p38 and ERK) which in turn activate a number of transcription factors 

(CREB and c-jun).100 Additionally, chemokine receptors can directly recruit JAK proteins, 

thereby allowing the activation of the JAK-STAT pathway, and subsequent STAT 

dimerization and translocation to the nucleus to upregulate transcription of pro-inflammatory 

cytokines.100 This paradigm proves true for murine macrophages that demonstrated tyrosine 

phosphorylation of JAK2, STAT3 and STAT5 when cultured with MCP-1.21   JAK-STAT 
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and GPCR pathways may in fact work in concert, as in some models where pharmacologic 

inhibition or mutation of JAK caused defects in both JAK-STAT and GPCR signaling 

cascades.103 

 The promiscuity of the chemokine ligand/receptor interaction and induction of 

various intracellular cascades provides a high level of plasticity and intricacy to chemokine 

signaling, which is further amplified by the finding that CCR2 has two isoforms (CCR2a, 

CCR2b), and can also form heterodimers.104-106  Early experiments evaluating isoform 

mRNA expression, and later work using isoform specific antibodies, support that CCR2b is 

the predominant form expressed.105  CCR2b/CCR5 heterodimer formation has also been 

found to occur in macrophages co-stimulated with the major ligands for these individual 

receptors, MCP-1 and RANTES (regulated upon activation, normal T cell-expressed and 

secreted) respectively, and shows preferential induction of leukocyte adhesion rather than 

chemotaxis. 106  

3.2.2.  MCP-1 physiologic and pathophysiologic roles 

 Cellular sources of MCP-1 are diverse and include macrophages and dendritic cells, 

endothelial cells, smooth muscle, fibroblasts, and some epithelial cells.  CCR2 is expressed 

on many of these same cell types such as macrophages and dendritic cells, endothelial and 

some epithelial cells and fibroblasts, as well as on other immune cells including T-

lymphocytes and neutrophils.107-17,108,109 Given the expression of CCR-2 by many MCP-1 

producing cell types, studies have demonstrated autocrine feedback.108  While chemotaxis is 

an obvious prerequisite for migration of inflammatory cells, it is also important to sessile cell 

types.  Stimulation with MCP-1 resulted in migration of endothelial cells as well as vessel 

formation and migration of epithelial cells to cover denuded areas.107,109  Some of these cells 
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constitutively produce MCP-1, production can also be upregulated or completely induced in 

other cell types, with the same being true for CCR2 expression.20,108 Stimuli that induce 

MCP-1 production or CCR2 expression vary with the cell type and model in question often 

reflecting the underlying pathophysiology.  For instance, in a model of vascular disease 

MCP-1 production was induced by oxidized lipid and shear stress.110  However other known 

MCP-1 inducers such as LPS, inflammatory cytokines (TNFα, IL-1) and a variety of TLR 

agonists are more relevant within the context of infection models.19,111,112 

3.2.2.a. The lung microenvironment 

 Pulmonary epithelial cells, alveolar macrophages, and endothelial cells are all 

possible contributors as well as targets of MCP-1 within the lung.  Both constitutive and 

inducible expression of MCP-1 has been demonstrated in human bronchial epithelial cells 

and alveolar macrophages (AMs) grown in vitro.19  In a model of bacterial pneumonia with 

Pseudomonas aeruginosa, immunohistochemistry demonstrated strong labeling of 

intracytoplasmic MCP-1 in murine alveolar epithelial cells 24 hours post infection, and in 

both epithelial cells and alveolar macrophages by 48 hours post-infection. 20  In vitro work 

also supports the expression of the CCR2 receptor on bronchiolar epithelial cells.  Human 

bronchiolar epithelial cell cultures incubated with MCP-1 were shown to upregulate both 

mucus and MCP-1 production via the CCR2 receptor. 23 In addition to initiating protective 

responses in the early phases of respiratory insult, interaction between MCP-1 and CCR-2 

bearing epithelial cells and AMs may also contribute to healing via epithelial regeneration.  

When incubated with MCP-1, alveolar epithelial cells from CCR2-/- mice or wild type mice 

(WT) treated with MCP-1 antibody showed delayed mechanical wound closure compared to 

WT controls.109  Additionally, in cell culture, MCP-1 causes murine AMs to increase the 
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production of hepatocyte growth factor, a mitogen for bronchial and alveolar epithelial 

cells.20 

3.2.2.b. Bacterial pneumonia 

 To date the role of MCP-1/CCR2 has been investigated in a number of murine 

pneumonia models using Gram-negative agents such as Escherichia coli, Klebsiella 

pneumoniae, Burkholderia mallei, and Pseudomonas aeruginosa and the Gram-positive 

agent Streptococcus pneumoniae.17,18,101,113-115  In K.pneumoniae and E.coli models, MCP-1-/- 

mice had increased bacterial burden, decreased neutrophil influx, and attenuated 

cytokine/chemokine production and NF-κB and MAPK activation following infection as 

compared to C57Bl/6 mice.  Furthermore, through the use of migration experiments and flow 

cytometry, it was shown that neutrophils present in blood and lung express the CCR2 

receptor and migrate in response to MCP-1.17 In a similar study, E.coli endotoxin or MCP-1 

were administered as sole agents, or given in concert to immunocompetent Balb/c mice.  

MCP-1 given alone elicited monocyte recruitment without increasing pro-inflammatory 

cytokines, whereas E.coli endotoxin caused neutrophil influx and increases in pro-

inflammatory cytokines (IL-6, TNFα) and the neutrophil chemokine MIP-2 at the 6 hour time 

point.113  Interestingly, co-administration of MCP-1 and E.coli endotoxin intratracheally 

resulted in marked increase in pro-inflammatory cytokines/chemokines and a 22-fold higher 

neutrophil lavage concentration than with endotoxin administration alone, supporting the 

idea that MCP-1 may be exerting some of its neutrophil chemotactic and pro-inflammatory 

effects via synergism with endotoxin.113  

 The role of MCP-1 in innate immune response to Gram-positive bacterial pneumonia 

has only been investigated in two studies using various strains of Streptococcus pneumoniae, 
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an important pathogen in community-acquired pneumonia.  While these experiments differ in 

inoculation methods, dosage, strains of S. pneumoniae, and timeline, neither demonstrate a 

strong role for MCP-1 in neutrophil chemotaxis or pro-inflammatory cytokine production at 

early time points (6-48 hours).101,114  In one study S. pneumoniae was administered 

intranasaly at varying dosages with no difference in bacterial CFUs, inflammatory cytokine 

profiles or lethality observed over 0-48 hour time points when comparing C57Bl/6 and MCP-

1-/- mice.114  In a second study, mice were inoculated intratracheally with either a highly 

virulent or less virulent strain of S. penuemoniae. While both C57Bl/6 and MCP-1-/- mice 

were highly susceptible to the more virulent strain, C57Bl/6 mice were protected from 

mortality when challenged with the less virulent strain, as compared to MCP-1-/- mice.101  In 

contrast to the K. pneumoniae and E.coli models, this protective phenotype was most likely 

conferred by an increased influx of macrophages and dendritic cells observed at later time 

points, as no appreciable difference in cytokine/chemokine profile were observed at early 

time points and neutrophil concentrations were actually significantly higher in MCP-1-/- mice 

at 1 day post-infection.101 

 From these studies one may speculate that the role of MCP-1 in innate immune 

response to bacterial pneumonia is dictated by the presence or absence of lipopolysaccharide, 

however other Gram-negative pneumonia models may not support this conclusion.  In a B. 

mallei pneumonia model both MCP-1-/- and CCR2-/-  mice had increased mortality, local 

bacterial burdens and dissemination compared to C57Bl/6 mice at 72 hours, however CCR2-/- 

mice had increased neutrophils in the lung tissue, and increased TNFα and KC in lung tissue 

at 48 hours post-infection.115 
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 While the factors dictating how MCP-1 synergizes with pathogens such as K. 

pneumoniae and E.coli to produce robust neutrophilic responses remains unknown, a model 

of Pseudomonas aeruginosa pneumonia has provided a plausible explanation for models in 

which loss of MCP-1/CCR2 has resulted in mild to moderately increased neutrophil influx 

and cytokine production, and increased mortality.20  Mice administered anti-MCP-1 antibody 

and P. aeruginosa showed increased neutrophilic inflammation, hemorrhage and exudation 

in lung tissue, increased neutrophil concentrations and MPO activity in BALF, and 

interestingly, decreased efferocytosis as compared to control Abs-treated mice, despite no 

differences in BALF macrophage concentrations.20  In vitro work by the same group 

demonstrated macrophages co-cultured with MCP-1 and aged neutrophils exhibited 

increased phagocytosis of apoptotic cells in a dose dependent manner.20   

 These findings suggest that in some models of pneumonia increased neutrophil influx, 

persistence of MPO activity and increases in inflammatory cytokines may perhaps be due to 

a decreased efficiency of macrophages to phagocytize aged neutrophils in MCP-1-/- or AB-

blocked mice, allowing for continued release of inflammatory mediators from these dying 

cells.  Central to all of these studies however, is that among the repertoire of pathogens 

currently investigated, MCP-1 plays a protective role in innate pulmonary immune responses.  

3.2.2.c. Inflammatory and neoplastic disease 

 MCP-1 and CCR2 are of central importance to many non-infectious disease 

processes, with the MCP-1/CCR2 axis proving a promising target for pharmacologic 

blockade and therapeutic intervention.  In chronic inflammatory diseases the continued 

accumulation of macrophages can lead to fibrosis and further end-organ damage.  Studies in 

humans and rodents have demonstrated that MCP-1 levels correlate with increasing degrees 
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of fibrosis in models of pulmonary and renal fibrosis.25  Additionally MCP-1 is central to the 

pathogenesis of arteriosclerosis and re-stenosis after vascular injury as it recruits 

macrophages to the vessel wall.24  MCP-1 may also be important in many neoplastic 

diseases, owing to expression of MCP-1/CCR2 by endothelial cells and tumor infiltrating 

macrophages, both key players in neoangiogenesis.26 

3.2.3. MCP-1 therapies 

 Anti-MCP-1 therapies including MCP-1 blocking antibodies and gene therapy have 

been developed to moderate chronic or deleterious inflammatory responses, fibrosis, 

angiongenesis, and tumor burden.24-26,116  While these therapies contrast in method of 

delivery, they are functionally similar, as the end result of gene therapy is incorporation and 

transcription of a DNA sequence encoding for a non-functional MCP-1 competitive 

antagonist.25  To date parenteral administration of anti-MCP-1 antibodies have been utilized 

in a number of animal trials as well as a human trial for treatment of rheumatoid arthritis, 

while gene therapy has only been used in animal models.24-26,116  Collectively these trials 

have produced many promising results including decreasing intimal proliferation in 

artheriosclerotic plaques, reducing vessel restenosis post-angioplasty, decreasing organ 

fibrosis, and reducing overall tumor burden and angiongenesis in cancer models24-27   As 

these therapies progress towards human clinical trials, understanding the role of MCP-1 in 

innate immune defenses and delineating important risk factors for patients receiving such 

treatments becomes a priority.  

3.3. Staphylococcus aureus 

 Staphylococcus aureus is a Gram-positive bacterial cocci that can be both a 

commensal or invasive pathogen in humans.  Microscopically S. aureus appears in clusters, 
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and when cultured can be differentiated from other types of staphylococci by positive 

coagulase, mannitol fermentation, and deoxyribonuclease testing.117  While capsular antigens 

can be used to serotype S. aureus, pulse-field gel electrophoresis (PFGE) is considered the 

method of choice for determining bacterial strain.3,117 For the purposes of simplifying 

nomenclature, the CDC assigned strain names to S. aureus based on PFGE results from 

common isolates within the United States (ie the USA strains).3  Originally 8 strains were 

identified but this number has since grown ranging from USA100-USA1200.3  Notably the 

majority of these are methicillin resistant (ie MRSA) with the exception of strains USA900 

and USA1200.3   

3.3.1. Ecology and epidemiology 

 The human nares are a well-documented site for S. aureus colonization and much of 

our data concerning prevalence of S. aureus colonization come from epidemiologic studies of 

nasal carriage.25,118-120 In one such study conducted in the United States from 2001-2004 

approximately 30% of subjects had nasal colonization with S. aureus, however a relatively 

low number of these cases were due to colonization with a MRSA strain (0.8-1.5%).120  

Colonization with S. aureus has long been considered a risk factor for development of 

invasive disease; although only a low number of those with nasal carriage go on to develop 

infection.118-120  The majority of S. aureus infections occur in the skin and soft tissues, but 

other manifestations such as pneumonia and septicemia constitute a substantial cause of 

MRSA mortality.117  In 2005 MRSA strains were responsible for 18,000 deaths in the United 

States, greater than 75% of which were caused by pneumonia.2  While within a hospitalized 

setting comorbidity such as underlying disease, immunosuppression, or recent surgery play a 

role in development of infection, community acquired cases often occur in healthy 
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individuals with no apparent risk factors.3,13,119 Given the dissimilarities between community 

and hospital acquired S. aureus infections, they are addressed individually below with a 

predominate focus on MRSA. 

3.3.1.a. Community acquired MRSA  

 Community acquired MRSA (CA-MRSA) refers to cases that lack an association 

with health care.  Other traits that typify CA-MRSA often include PFGE type USA300 and 

genes encoding certain virulence factors that are often expressed by, but not specific to, 

USA300.3,119,120 In addition, while the name itself implies resistance to β-lactam antibiotics, 

CA-MRSA strains are generally susceptible to a wider range of antibiotics than hospital or 

ventilator acquired strains (HA/VAP-MRSA).119,121  USA300 was recognized as a 

predominant  cause of CA-MRSA in the late 1990s and early 2000s, before which USA400 

was the most frequent isolate.3,119  While these outbreaks often occurred among seemingly 

healthy individuals including members of sports teams and military units, these cases did 

highlight potential risk factors including shared use of personal items (towels/razors), 

previous antibiotic use, or ineffectual wound care.3  A multi-institutional survey conducted in 

2006 indicated MRSA strain USA300 to be the leading cause of skin and soft tissue 

infections among emergency room patients.11   

 While USA300 less commonly causes pneumonia, when it occurs, it is often severe, 

necrotizing and fatal.  The necrotizing and hemorrhagic features of USA300 pneumonia are 

well-documented, however a conserved mechanism to explain development of these lesions 

has yet to be delineated.7  A commonly implicated contributor is Panton-Valentine 

leukocidin, a virulence factor expressed by many USA300 isolates, but other factors are 

likely at play, as strains not expressing this virulence factor have been documented to cause 
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similar lesions.8  For individuals developing MRSA as a result of compromised immunity 

after influenza infection, interferon may play an important role.13  In murine models severe S. 

aureus pneumonia can be induced at lower inoculum dosages in animals previously infected 

with influenza.122  Additionally mice deficient in interferon-α/β receptor 1, which are 

incapable of responding to interferon, were protected from a lethal challenge with S. aureus 

as compared to wild type mice.16  

3.3.1.b. Hospital/Ventilator acquired MRSA 

 Hospital acquired MRSA (HA-MRSA) and ventilator acquired pneumonia due to 

MRSA (VAP-MRSA) pose a significant health risk to hospitalized populations, with reported 

mortality rates as high as 37%.4  Prior to the rise of USA300 in CA-MRSA, commonly 

isolated HA-MRSA strains included USA100, USA200, and USA500.119  While both CA 

and HA-MRSA strains are resistant to methicillin, the genetic determinants which confer this 

resistance differ, with HA-MRSA strains often showing resistance to a wider array of 

antibiotic classes.119,121 As USA300 continues to be the most prevalent cause of CA-MRSA 

cases, these distinctions are becoming less clear and growing epidemiologic evidence 

supports that USA300 is also now a leading cause of HA-MRSA.4  In 2012, MRSA isolates 

from 251 intensive care unit (ICU) patients were obtained and while USA100 predominated 

(55%), USA300 was the second most common isolate (23.9%).4   

 Compared to HA/VAP caused by methicillin sensitive strains, HA/VAP MRSA is 

documented to have increased mortality, and is responsible for increased utilization of 

hospital resources and cost burden, with treatment of MRSA cases averaging $8,000 more 

than MSSA cases in one retrospective.5,6 Infection with HA/VAP may occur in patients with 

nasal colonization, although transient skin colonization of health care workers and patients is 
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also a proposed mode of transmission.  Interestingly a genotypic determinant named arginine 

catabolix mobile element (acme) present in some isolates of USA300 may improve fitness 

and increase the ability of the organisms to remain on the skin by encoding an arginine 

deaminase, which allows for the formation of ammonia.  This pathway may allow USA300 

to maintain its pH in the relatively acidic environment of human skin.123  If this is indeed the 

case, much of our current epidemiologic investigations involving MRSA may be far from 

complete, as they focus largely on screening via nasal carriage.  

3.3.2. Major virulence factors  

3.3.2.a. Protein A 

 Protein A (Spa) is a well-studied and abundant S. aureus surface protein.  Although 

Spa serotyping was often employed in older epidemiological studies of S. aureus, this has 

largely been surplanted by newer molecular techniques.  While PFGE is the gold standard for 

classification of  S. aureus strains the Xr region of spa  is highly genetically diverse, and 

provides the basis for spa typing.13  Immunologically, the Xr region is responsible for 

promoting a type I interferon response.  Spa encoding strains have been shown to induce 

IFN-β production in pulmonary epithelial cells.16  Interestingly this type I interferon response 

increases the pathogenicity of S. aureus in the context of pneumonia, as demonstrated by 

Ifnar-/- mice which are protected from lethal S. aureus challenge as compared to wild type 

mice.13  These findings provide some mechanistic support for the long held observation that 

individuals acquiring S. aureus pneumonia as a sequel to influenza, a potent inducer of the 

type I interferon response, suffer dramatically increased morbidity and mortality.13    

 Spa is equipped with 5 IgG binding domains that bind the Fc component of IgG.  

These structures have proven useful experimentally, as they provide the basis for 
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immunoprecipitation experiments, however conflicting information exists as to if coating 

with IgG protects the organism from phagocytosis as originally thought.13  Spa is also 

capable of binding immunoglobulin receptors, notably the B-cell IgM receptor, which has 

earned it the term B-cell super antigen.124  Binding of the B-cell IgM receptor is believed to 

cause rapid clonal expansion and apoptosis of B-cells, ultimately resulting in the inability to 

mount an effectual B-cell response to the organism.13 

 The IgG binding domains mentioned above are relatively promiscuous, and have also 

been demonstrated to bind TNFR1, EGFR, and ADAM17.125-127  Binding of TNFR1 induces 

TNF production, where as binding to EGFR can lead to cleavage of TNFR-1 and ADAM17 

binding produces soluble proteins that neutralize IL-6.126,127 Thus, depending on the context, 

spa can generate both pro and anti-inflammatory cytokine responses.   

3.3.2.b. α-Hemolysin 

 α-Hemolysin (Hla) is a ubiquitously expressed S. aureus heptameric pore-forming 

toxin which penetrates eukaryotic lipid bilayers.  It is a well-documented contributor to S. 

aureus induced lung pathology, with a broad range of target cells including histiocytes, 

epithelial cells and endothelial cells.13  The cellular receptor for α-Hemolysin, ADAM-10, is 

a matrix metalloproteinase which regulates cellular adhesion and mobility.128  The Hla-

ADAM10 interaction has been shown experimentally to disrupt focal cellular adhesions and 

integrin signaling in epithelial cells and cause vascular endothelial-cadherin cleavage and 

loss of endothelial barrier function.128,129 This relationship may explain some of the 

pathology induced by α-Hemolysin including pulmonary hemorrhage and edema formation.13  

Additionally it provides a putative mechanism for S.aureus dissemination throughout the 

lung, as well as systemically, via interaction with endothelial cells, granting the organism 
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access to the blood stream.128,129  Regardless of the exact mechanisms, experimental evidence 

supports the important contribution of this interaction to lung pathology, as ADAM-10-/- mice 

were found to be significantly less susceptible to fatal S. aureus pneumonia as compared to 

wild type mice.13 α-Hemolysin also serves as a ligand for the NLRP3 inflammasome, leading 

to induction of IL-1β and IL-18 production and pyroptosis.75 

3.3.2.c. Panton-Valentine leukocidin 

 Panton-Valentine leukocidin (PVL) is a pore-forming toxin shown to cause apoptosis 

of neutrophils in low doses and neutrophil necrosis in high doses.  These effects appear to 

vary with species, and have been demonstrated in humans and rabbit models, where as 

murine neutrophils appear relatively resistant.9,10 In addition to inducing inflammation via 

leukocyte necrosis, PVL has been shown experimentally to induce transcription of genes 

encoding for pro-inflammatory cytokines in alveolar macrophages.  PVL mediated gene 

transcription occurs in an NF-κB mediated manner, resulting in upregulation of TNF-α and 

MIP2.130  This function appears to be mediated via binding of PVL to TLR2, and occurs 

independent of its pore forming capabilities.130   

 While by no means pathognomonic, the severe necrotizing and hemorrhagic 

pneumonia seen in many cases of CA-MRSA is characteristic of USA300 infection.  PVL, 

which is expressed by a large number of USA300 isolates, and by relatively few other MRSA 

or MSSA strains, has often been implicated as a major cause of these pathologic changes.8,9  

It is unlikely, however, to be the sole mediator, as similar pathologic lesions are described 

post-infection with USA300 strains not expressing PVL.8  Furthermore, conflicting 

information exists as to PVL expression and clinical outcome.  Another virulence factor that 

may contibute are phenol soluble modulins (PSMs).  PSMs have been shown experimentally 
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to have similar leukocytic effects, which may also be relevant in a broader range of host 

species.9,11   

3.3.2.d. Super antigens  

 Super antigens (SAgs) are molecules that stimulate T-cell hyperactivation resulting in 

massive cytokine release, and underpin the pathogenesis of toxic shock syndromes associated 

with certain strains of Staphylococcus and Streptococcus.  SAgs exert this effect by 

sidestepping traditional antigen presentation, and bind MHC class II molecules of antigen-

presenting cells and the variable region of the T-cell receptor β-chain simultaneously.12  This 

allows SAgs to activate all T-cells expressing a Vβ-TCR (as much as 50% of cells) rather 

than the 0.01% of T-cells that would normally respond to an antigen.12  While most described 

SAgs are small-secreted molecules encoded on mobile elements with variable strain 

expression, recently staphylococcal enterotoxin like toxin (Selx) has been discovered, which 

is a super antigen encoded by the core genome of over 95% of S. aureus strains, including 

MRSA 300.  Expression of Selx by USA300 does appear to interact with the Vβ-TCR, and 

contribute to the necrotizing pneumonia characteristic of USA300 in a rabbit model of 

pneumonia.12  

3.3.3. Host immune response  

 Various cell wall components of S. aureus (peptidoglycan, lipoteichoic acid, 

lipoprotein) are recognized by PRRs including TLR2, NOD2 present on resident epithelial 

cells and alveolar macrophages, as well as by the soluble PRRs mannose binding lectins and 

ficolins.14  While association with lectins and ficolins marks S. aureus for complement 

mediated destruction it may prove ineffectual as the bacteria encodes many complement 

blocking proteins.13 Additionally, while mice deficient in the TLR2 adaptor protein MyD88 
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are highly susceptible to systemic infection with S. aureus, these mice are able to control 

pulmonary infection with maintained cytokine/chemokine and neutrophil responses.14  In 

contrast NOD2-/- mice challenged intratracheally with S. aureus do have diminished 

cytokine/chemokine responses and neutrophil influx, however, reduced inflammatory 

signaling in this model lead to improved bacterial clearance.15  These findings illustrate the 

complex interaction between the pathogen and host, and stress the necessity of in vivo 

models to assess the true relative contributions of putative immune players. 

 While undoubtedly some degree of pro-inflammatory signaling is necessary for 

bacterial clearance and neutrophil recruitment, it remains unclear which signaling cascades 

are vital, dispensable, or actually counter productive for protective immunity.  Despite its 

role in neutrophil chemotaxis and ability to augment neutrophil and macrophage mediated 

microbe killing, higher TNF-α concentrations are not necessarily protective. In one study 

TNF-α levels were inversely correlated with outcome in an S. aureus pneumonia model.13  

Likewise mice deficient in TNFR1 clear S. aureus more efficiently than wild type mice, 

however this effect may be mediated by decreased binding of not only TNF- α, but also 

Protein A, an S. aureus virulence factor known to bind and signal through this receptor.16 

  Numerous S. aureus derived antigens such as capsular antigens, staphylococcal 

enterotoxin A and B, and lipoteichoic acid, as well as host derived substances such as the 

complement component C5a contribute to neutrophil chemotaxis and induction of IL-8.1 In 

addition to IgG binding domains of protein A and complement inhibitors encoded by S. 

aureus preventing its phagocytosis, the bacteria also encodes proteins that promote its 

survival post phagocytosis.  These include the pore forming HLA or PVL that can liberate 

the organism from phagocytic cells, and catalase and proteases to combat both oxygen 
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dependent and independent killing.1  Additionally phagocytosis of S. aureus can accelerate 

apoptosis of neutrophils, resulting in secondary lysis of neutrophils and release of their 

inflammatory contents prior to efficient efferocytosis by macrophages.1 

 Regardless of these varied immune evading techniques organisms are none the less 

readily phagocytized and killed by neutrophils, and there is long standing evidence 

supporting the critical role of neutrophils in clearance of S. aureus from the lungs.  This point 

is illustrated in people afflicted with immune-deficiencies involving neutrophil function, such 

as chronic granulomatous disease and hyper IgE syndromes, in which the incidence of 

recurrent and unresolving S. aureus infections are well-documented.1  Left unchecked, 

however, neutrophils can impart as much harm to the surrounding tissue as to the pathogen 

via toxic mediators such as elastase, collagenase, and free radicals.1  The factors delineating 

what constitutes a protective versus harmful immune response to S. aureus continue to be 

elusive, warranting further studies into the pulmonary innate immune response to this 

important pathogen.  

3.3.4. Animal models  

 The majority of in vivo animal studies have been performed in mice.13  Given the 

ready availability of specific gene deficient strains, murine models have offered much insight 

into immunologic responses during S. aureus infection.  One major limitation of the murine 

model is the relative resistance of mice to S. aureus infection, developing only mild disease 

at doses of 1x108 CFU/ml, with as much as 3-4x108 CFU/ml constituting a “high dose” 

causing significant mortality.131  Additionally while PVL causes neutrophil influx to murine 

lungs, the toxic pore forming principle does not appear to affect murine leukocytes.130 The 

failure of murine models to recapitulate the severity of human USA300 pneumonic lesions 
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has lead to the use of a rabbit model. While rabbits also require much higher inoculation 

dosages of S. aureus than would be expected in naturally occurring human pneumonia, they 

are similarly sensitive to PVL and the T cell superantigen Selx, both of which appear to 

contribute to severe hemorrhagic pneumonia in this species.10,12  
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CHAPTER 4 
MATERIALS AND METHODS 

 
4.1. Mice 

  8- to 10-week-old female mice genetically deficient in MCP-1 (Jackson 

Laboratories) were used, while age- and gender matched C57Bl/6 mice were used as 

controls.132 Animal studies were approved by the Louisiana State University Animal Care 

and Use Committe. The mice ranged from 19 to 25 g in weight. 

4.2. Infection model 

  Bacteria were prepared for mouse inoculation, as described in previous studies.133 

Methicillin resistant S. aureus (MRSA) strain USA300 (from F. DeLeo, Rocky Mountain 

Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT) was 

grown in Trypticase soy broth (TSB) at 37°C overnight under constant agitation. Bacteria 

were harvested, washed, and resuspended in sterile 0.9% saline at a concentration of 20x108 

CFU/ml. Mouse strains were anesthetized with intraperitoneal ketamine-xylazine (250 

mg/kg), followed by intratracheal (i.t.) inoculation of 50 ul of bacteria (108 CFU/mouse). The 

initial mouse inocula were confirmed by plating serial 10-fold dilutions on tryptic soy agar 

(TSA) plates. For enumerating bacterial CFU in the lung, liver and spleen, whole spleens and 

whole lung and liver lobes were homogenized in 1 ml sterile deionized water for 30 s, and 20 

ul of the resulting homogenates was plated by serial 10-fold dilutions on TSA plates.  

Bacterial colonies were counted after incubation overnight at 37°C.  

4.3. Blocking antibodies 

  C57Bl/6 mice were treated i.t. with MCP-1 (R&D systems) or IgG2B antibody (10 

ug/mouse) 30 minutes prior to S. aureus infection (108 CFUs/mouse). 
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4.4. Bronchoalveolar lavage fluid collection 

 Bronchoalveolar lavage fluid (BALF) was collected, and total and differential cell 

counts and cytokine/chemokine levels were determined. Approximately 3 ml of lavage fluid 

was retrieved per mouse. Total leukocytes in BALF were determined using a hemocytometer. 

Cytospin samples were subsequently prepared from BALF cells and stained with Wright-

Geimsa. Differential cell counts were determined by direct counting of stained slides. For 

examination of cytokines/chemokines, the remainder (2 ml) of the undiluted cell-free BALF 

was used immediately or stored at -80°C. 

4.5. Cytokine and chemokine ELISA 

  We used BALF and lungs that were obtained from animals after S. aureus infection 

or control animals. Enzyme-linked immunosorbent assay (ELISA) kits for tumor necrosis 

factor alpha (TNF-alpha), interleukin-6 (IL-6), Interleukin-1β (IL-1β), Interleukin-17 (IL-

17), IL-17A, and IL-17F and MCP-1 were obtained from eBiosciences, PA, whereas kits for 

KC and MIP-2 and LIX were obtained from R&D Systems, MN. The minimum detection 

limit is 8 pg/ml cytokine protein.  

4.6. Myeloperoxidase activity assay 

  Myeloperoxidase (MPO) release by the neutrophils was measured as previously 

described.134  

4.7. Histopathology 

 The lungs of C57Bl/6 and MCP-1-/- mice were perfused from the right ventricle of the 

heart with 10 ml isotonic saline at 6 hours and 24 hours post-infection. Lungs 

were then removed and fixed in 4% phosphate-buffered formalin. Fixed tissue samples were 

processed in paraffin blocks, and 5µm sections were cut with a microtome and stained with 
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hematoxylin-eosin (H&E). Analysis of histopathology was performed in blinded fashion by a 

veterinary pathologist using an amended version of a previously published scoring system 

(Table 1) with scores for each category assigned to individual lung lobes based on 

microscopic assessment at an objective of x400.135 

4.8. Statistics 

 All statistical calculations were performed using GraphPad Prism (version 5.0) 

software. Data are displayed as median and interquartile ranges.  Groups were compared 

using the Wilcoxon rank-sum test.  Differences were considered significant at *p<0.05; 

**p<0.01;***p<0.001.
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 Figure 5. Quantitative scoring of lung histopathology. 
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CHAPTER 5 
RESULTS 

 
5.1. MCP-1-/- mice have increased neutrophils in the airways and lung parenchyma post      
S.aureus challenge 
 
 Recruitment of leukocytes, specifically neutrophils, is an important step in achieving 

clearance of  S. aureus as well as other bacterial pathogens. To investigate the extent of 

leukocyte recruitment to the airways, we determined total and differential leukocyte counts in 

BALF at 6 and 24 hours post-infection with S. aureus (108 CFU/mouse).  We observed that 

both C57Bl/6 and MCP-1-/- mice responded to S. aureus challenge with increased leukocyte 

influx at 6 hours with highest concentrations measured at 24 hours, and that in both groups 

neutrophils predominated [Figure 6 (6a and 6c)].  Additionally, while total leukocyte and 

neutrophil concentrations were similar between experimental groups at 24 hours, MCP-1-/- 

mice had increased numbers of neutrophils at the 6 hour time point [Figure 6 (6a and 6c)].  

To assess neutrophil activity and infiltration of lung tissue, a myeloperoxidase activity assay 

was performed on lung tissue from MCP-1-/- and C57Bl/6 mice.  While both experimental 

groups showed increased MPO activity in lung homogenates, with highest activity at 24 

hours post-infection, MCP-1-/- mice had significantly higher MPO activity at both 6 hours 

and 24 hours [Figure 6 (6a and 6c)].  Intraalveolar inflammation and tissue involvement were 

assessed in individual lung lobes from C57Bl/6 and MCP-1-/- mice. Higher scores for 

intraalveolar inflammation and tissue involvement were more frequent in lung lobes from 

MCP-1-/- mice at 6 hours, at which time 9/10 had a score of 1 for intraalveolar inflammation, 

and 9/10 a score of 1 or 2 for tissue involvement, compared to a score of 0 in 9/10 lobes from 

C57Bl/6 mice for both intraalveolar inflammation and tissue involvement (Figure 7).  At 24 

hours post infection scores of 1 and 2 for both intraalveolar inflammation and tissue 
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involvement predominated, and occurred in similar frequency between groups.  Alveolar 

hemorrhage and congestion of alveolar septae were also evaluated histologically and 

appeared similar between groups.     

 
 
Figure 6. Leukocyte recruitment to airways and lungs of MCP-1-/- mice . A MCP-1-/- mice 
have increased concentrations of leukocytes in BALF at 6 hours post S. aureus infection as 
compared to C57Bl/6 mice.  Both experimental groups have increased concentrations of 
leukocytes in BALF post- infection as compared to negative controls (NC) (levels of 
significance not graphically displayed). B MCP-1-/- mice have increased myeloperoxidase 
(MPO) activity in lung tissue at 6 and 24 hours post S. aureus infection as compared to 
C57Bl/6 mice.  Both experimental groups have increased MPO activity as compared to 
negative controls (NC) (levels of significance not graphically displayed).  C  Representative 
cytocentrifuged preparation of BALF from a C57Bl/6 mouse (top) and MCP-1-/- mouse 
(bottom) 6 hours post S. aureus infection. 50x objective, Wright-Geimsa (WG). Inset: a 
neutrophil containing clusters of bacterial cocci. 100x objective WG. 
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Figure 7. Lung histology in MCP-1-/- mice following S. aureus infection. Mice were 
inoculated with S. aureus (108 CFU/mouse), lungs were obtained at 6 hours post-infection. 
This picture is a representative of 2 separate mice with comparable results.  
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5.2. MCP-1-/- mice have increased levels of inflammatory cytokines at 6 hours post S. aureus 
infection 
 
 Numerous cytokines and chemokines produced during inflammation can exert effects 

on neutrophil dynamics and recruitment.  Since neutrophil recruitment appeared enhanced at 

the 6 hour time point in MCP-1-/- mice, we examined the concentrations of many known 

inflammatory mediators of neutrophil recruitment in BALF and lung tissue.  We found 

increased concentrations of the inflammatory cytokines TNF-α and IL-6 in MCP-1-/- mice at 

the 6 hour time point (Figure 8).  IL-1β increased in both experimental groups with infection 

but was not significantly different between groups.  The neutrophil chemoattractant 

chemokines KC, MIP-2, and LIX increased with infection and LIX concentration were 

significantly higher in MCP-1-/- mice 24 hours post-infection (Figure 8). 

5.3. Local bacterial burden and dissemination are equivocal in MCP-1-/- and C57Bl/6 mice 

 While adequate neutrophil recruitment is a proven necessity in bacterial clearance, 

protective immunity does not always correlate directly to neutrophil numbers.  In some 

models excess neutrophil accumulation and/or pro-inflammatory cytokine production are 

accompanied by poor prognosis and outcome in S. aureus infection.1  For this reason we 

assessed both local bacterial burden and dissemination as determined by bacterial load in 

BALF, lung, liver and spleen.  Mice were infected with S. aureus i.t. and sacrificed at 6 and 

24 hours post-infection and BALF, lung, liver, and spleen were collected to quantitate 

bacterial CFUs.  While both experimental groups had highest bacterial burdens in BALF and 

lung at 6 hours that decreased at the 24 hour time point, MCP-1-/- mice had significantly 

fewer bacterial CFUs in BALF at 6 hours as compared to C57Bl/6 mice (Figure 9).  

Dissemination to the liver and spleen was present at 6 hours and persisted at 24 hours in both 

groups (Figure 9).      
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Figure 8. Cytokine and chemokine profile in MCP-1-/- mice. A Cytokine Profile. MCP-1-/- 

mice have increased concentrations of IL-6 and TNF-α in BALF at 6 hours post- infection 
compared to C57Bl/6 mice.  Experimental groups have increased concentrations of IL-6 and 
TNF-α as compared to negative controls (NC) (levels of significance not graphically 
displayed, IL-6 and TNF-α NC below detection limit). IL1-β levels increase with infection 
but are not different between experimental groups (levels of significance not graphically 
displayed). B Chemokine Profile.  MCP-1-/- mice have higher levels of LIX at 24 hours post-
infection compared to C57Bl/6.  MIP-2 levels are higher in negative control C57Bl/6 than 
MCP-1-/- mice.  For both groups KC and MIP-2 increase significantly at 6 hours and decrease 
significantly by 24 hours, whereas LIX continues to increase at 24 hours post-infection 
(levels of significance not graphically displayed, KC below limit of detection for NC).   
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Figure 9. Bacterial burden in MCP-1-/- mice. MCP-1-/- mice have lesser numbers of bacterial 
CFUs in BALF at 6 hours post S. aureus infection as compared to C57Bl/6 mice.  BALF and 
lung CFUs decrease in both experimental groups 24 hours post- infection.  Bacterial 
dissemination is present in liver and spleen at 6 hour and 24 hour time points. 
 
5.4. MCP-1 AB-blocked mice trend towards higher BALF leukocyte concentrations and lung 
MPO activity 
 
 The same infection model was performed using MCP-1 and isotype control AB-

blocked mice to ensure that the MCP-1-/- phenotype correlated with that of MCP-1 AB 

blocked animals.  MCP-1 AB blocked mice trended towards higher total leukocyte 

concentrations in BALF and higher MPO activity in lung tissue, despite similar CFU in 

BALF and lung homogenates (Figure 10). A cytokine/chemokine profile including IL-6, 

TNF-α, IL-1β, KC, MIP2, and LIX revealed no significant differences between groups, with 
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the exception of LIX, which was higher in MCP-1 AB blocked mice at 6 hours post-infection 

(Figure 11).  

 

 
               
                
 
 
Figure 10.  Neutrophil recruitment to the lungs and airways and local bacterial burden in 
MCP-1 AB-blocked mice. MCP-1 AB blocked mice trend towards higher leukocyte counts 
in BALF and higher MPO activity in lung tissue as compared to AB-blocked control mice.  
Bacterial CFUs do not differ between groups, but do decrease significantly by 24 hours post-
infection in both experimental groups (level of significance not graphically displayed.)  
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Figure 11. Cytokine and chemokine profile in MCP-1 AB-blocked mice. MCP-1 AB blocked 
mice have higher levels of LIX at 6 hours post S. aureus infection, while levels of IL-6, TNF-
α, IL-1β, KC, and MIP2 do not differ between groups. 
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CHAPTER 6 
DISCUSSION 

 
 Adequate neutrophil recruitment to the lungs and airways is vital for protective 

immunity against a number of pulmonary pathogens including S. aureus.  In E.coli and K. 

pneumoniae models MCP-1 enhances neutrophil recruitment and bacterial clearance, 

however in our model MCP-1-/- mice had higher neutrophil numbers in BALF, and increased 

MPO activity in lung tissue, with no appreciable improved bacterial clearance.17,18 A number 

of other pneumonia models support increased neutrophil influx to the lungs and increased 

pro-inflammatory cytokine profiles in MCP-1-/- or CCR2-/- mice including studies with the 

gram negative pathogen Burkholderia mallei and the gram positive pathogen S. pneumoniae.  

Interestingly, MCP-1 was still protective in these models, with knock out mice demonstrating 

increased mortality and bacterial burden as compared to wild type controls.101,115 Unlike in 

the E.coli and K. pneumoniae models, however, the protective role of MCP-1 appeared to be 

via recruitment of macrophages to airways at later time points, rather than an effect on 

neutrophil recruitment.  

 Increased numbers of neutrophils present in the airways and lungs of MCP-1/CCR2-/- 

mice may be the result of one or more of three general mechanisms.  Firstly MCP-1/CCR2-/- 

mice may produce an altered inflammatory signaling cascade during certain infections 

leading to the generation of increased neutrophil chemotactic molecules as compared to wild 

type mice.  Second, neutrophil lifespan may be prolonged/enhanced in the absence of MCP-

1/CCR2.  Thirdly MCP-1/CCR2-/- mice may have impaired clearance of senescent 

neutrophils.   

 In our model IL-6 and TNF-α concentrations were higher in MCP-1-/- mice, but 

neutrophil chemotactic substances (KC, MIP2, LIX) were not significantly different between 
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groups, with the exception of higher LIX in MCP-1-/- mice at the 24hr time point, and higher 

MIP2 in C57B/l6 mice at baseline.  Ultimately, however, sample collection at the 4 hour time 

point would have been ideal to asses if neutrophil chemotactic molecules were higher in 

MCP-1-/- mice prior to the increased influx of neutrophils to the lung and airways noted in 

this group at 6 hours.  The increased concentration of LIX at the 24 hour time point may 

simply reflect the slower kinetics of this chemokine compared to KC and MIP2 as has been 

previously reported.136  A biological reason for the difference in MIP2 between control 

groups is less evident, and may simply be a statistically relevant but biologically irrelevant 

difference, reflective of low sample size. 

  While chemokine receptors generate many down-stream signaling cascades, no 

experimental evidence currently exists to support the conclusion that neutrophil lifespan is 

regulated via the MCP-1/CCR2 axis, or would be enhanced in the absence of MCP-1/CCR2 

signaling, making this scenario less likely.  There is, however, currently experimental support 

that MCP-1 deficient mice demonstrate decreased efferocytosis of senescent neutrophils, 

which may contribute to secondary necrosis of these cells, prolonging both pro-inflammatory 

signaling and neutrophil number and MPO activity in tissue. 

 Mice administered anti-MCP-1 antibody and P. aeruginosa showed increased 

neutrophilic inflammation, hemorrhage and exudation in lung tissue, increased neutrophil 

concentrations and MPO activity in BALF, and interestingly, decreased efferocytosis as 

compared to control Abs-treated mice, despite no differences in BALF macrophage 

concentrations.20!!In vitro work by the same group demonstrated macrophages co-cultured 

with MCP-1 and aged neutrophils exhibited increased phagocytosis of apoptotic cells in a 

dose dependent manner.20 These findings suggest that in some models of pneumonia 
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increased neutrophil influx, persistence of MPO activity and increases in inflammatory 

cytokines may perhaps be due to a decreased efficiency of macrophages to phagocytize aged 

neutrophils in MCP-1-/- or AB-blocked mice, allowing for continued release of inflammatory 

mediators from these dying cells. 

 While our model shares similarities with some of those previously mentioned (S. 

pneumoniae, B. mallei, P. aeruginosa) in terms of immune response generated, these 

experiments also demonstrated increased bacterial burden and/or mortality in MCP-1/CCR2-/- 

mice, findings that were not present in our study.  One explanation for this is the relative 

resistance of mice to S. aureus pneumonia.  The inoculum dose used in this experiment 

(1x108 CFU/mouse), which would be exceedingly high for other important pulmonary 

pathogens such as K. pneumoniae or S. pneumoniae, is considered a low i.t. dose of S. aureus 

for mice.131  This is consistent with other pulmonary inoculation models in which S. aureus 

doses of 3-4x108 CFU/mouse are considered a high dose inoculum resulting in significant 

mortality.131  If high dose inoculum had been used in the current experiment, it may have 

allowed for significant differences to emerge between MCP-1-/- and C57Bl/6 mice with 

respect to bacterial burden and tissue damage as assessed histologically. 

 The experimental protocol used in MCP-1-/- and C57Bl/6 mice was also performed in 

antibody-blocked mice for two main reasons.  First, administration of anti-MCP-1 antibody 

has more translational relevance, as it is most similar to the techniques currently employed in 

experiments assessing efficacy of anti-MCP-1 antibodies and gene therapy.  Second, 

correspondence between MCP-1-/- and antibody blocked phenotypes supports the conclusion 

that differences present between experimental groups are directly related to MCP-1/CCR2 

signaling, rather than any intracellular alterations in gene expression, transcription, or 
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translation of proteins that may be occurring in MCP-1-/- as a results of gene deletion.  While 

antibody blocked mice did not recapitulate the phenotype of MCP-1-/- mice, BALF leukocyte 

concentration and MPO activity in lung tissue did trend in similar directions, and LIX was 

significantly higher in MCP-1 AB blocked mice at the 6 hour time point.  We originally 

attempted antibody blocking at a dose of 1ug/mouse and did not observe this trend (data not 

shown) supporting the concept that 10 ug/mouse may still be a suboptimal dose of blocking 

antibody.  Ultimately we expect that MCP-1-/- and AB-blocked phenotypes correspond, as 

this has been demonstrated in other models.  However to date these experiments have 

employed systemic administration of Anti- MCP-1 antibody, and an effective intrapulmonary 

dose remains to be described.20  

 Ultimately how MCP-1 is differentially regulated in models of pneumonia, causing 

robust and protective neutrophil influx in K. pneumoniae and E. coli models while absence of 

MCP-1/CCR2 in other models results in ineffectual bacterial clearance despite augmented 

neutropilic responses, remains unclear.  Central to all of these studies however, is that among 

the repertoire of pathogens currently investigated, MCP-1 plays a protective role in innate 

pulmonary immune responses.  It is likely that MCP-1 plays a protective role in pulmonary S. 

aureus infection as well, however further studies are warranted; both to more clearly 

delineate the pathology in MCP-1-/- mice using a higher S. aureus inoculation dosage, and 

also to investigate the putative role of MCP-1 in efferocytosis in this model. 
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