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ABSTRACT 
 

 

Herpes simplex virus type-1 (HSV-1) morphogenesis occurs in multiple stages within infected 

cells. Initially, the virion capsid assembles within the nucleus and buds through the nuclear membrane 

into the cytoplasm. Within the cytoplasm, additional tegument proteins attach to the capsid and the fully 

tegumented capsids bud into trans-Golgi network (TGN) derived vesicles. Enveloped virions are 

ultimately secreted to extracellular spaces. The process by which the cytoplasmic capsids bud into TGN-

derived vesicles is not well understood. The prevalent model calls for specific interactions among viral 

tegument proteins and membrane proteins and glycoproteins embedded within TGN membranes.  To 

further investigate the roles of tegument proteins in cytoplasmic virion envelopment, we constructed 

deletion mutants of UL11, UL20, both UL11 and UL20, and UL16.  UL11 is involved in cytoplasmic 

virion envelopment.  The ΔUL11 virus exhibits large amounts of unenveloped capsids in the cytoplasm 

of infected cells.  The phenotype of the double null virus most closely resembled that of the UL20 single 

null virus (ΔUL20) in all areas:  plaque phenotype, growth kinetics, and ultrastructural characteristics.  

To asses whether UL11 has any affect on UL20/gK localization, confocal experiments to determine the 

localization of UL11, UL20 and gK were undertaken, revealing that UL11 transport was completely 

independent of UL20/gK.  Taken together these results indicate that UL11 acts at a step in cytoplasmic 

envelopment downstream of UL20, and UL20 is required for proper UL11 function.  However, UL11 is 

not dependent upon the UL20/gK heterodimer for its transport.  To assess the role of UL16 in virion 

morphogenesis and egress, the YEbac102ΔUL16 virus was constructed using a recently described RED 

markerless recombination system.  ΔUL16 showed a large accumulation of intranuclear capsids not seen 

in the ΔUL11 virus.  This result indicates a two-fold role for UL16 in virion morphogenesis and egress: 

1) The nuclear accumulation of capsids seems to suggest that the first and most important role of UL16 



 xiii

is in intranuclear capsid assembly/egress.  2)  The cytoplasmic accumulation of capsids suggests that 

UL16 also plays a role in cytoplasmic envelopment.  These results indicate a possible pathway for the 

juxtaposition of cytoplasmic capsids with TGN-derived vesicles for final cytoplasmic envelopment. 
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CHAPTER 1 
INTRODUCTION  

 

STATEMENT OF PROBLEM AND HYPOTHESIS 

 Herpes Simplex Viruses are known to be the etiologic agents responsible for many 

human diseases including mucocutaneous oral and genital lesions, keratoconjunctivitis, and viral 

encephalitis.  The herpesvirus life cycle is characterized by a number of distinct events, including 

binding of the virus to the cellular membrane and subsequent fusion of the viral and cellular 

membranes, transport of virions to the nucleus, replication and transcription of viral DNA, 

assembly of capsids and DNA packaging, and acquisition of a final viral envelope and egress 

from the cell.  Investigating the viral proteins involved these different steps of the herpesvirus 

life cycle is an area of intense research interest.  While the viral molecular determinants involved 

in virus entry are relatively well understood, the mechanisms involved in viral morphogenesis 

and egress from infected cells are not well defined. 

 HSV-1 egress from the nucleus of the infected cell to extra-cellular spaces involves a 

number of distinct steps, including primary envelopment by budding into the peri-nuclear space, 

de-envelopment into the cytoplasm, cytoplasmic re-envelopment by budding into vesicles 

originating from the Trans-Golgi Network (TGN), and translocation of enveloped virions to 

extra-cellular spaces.  Initially, the virion capsid assembles within the nucleus and the virion 

acquires an envelope by budding into the peri-nuclear spaces (Roizman and Sears, 2001). 

Subsequently, these enveloped virions fuse with the outer nuclear lamellae leading to the 

accumulation of un-enveloped capsids into the cytoplasm. Within the cytoplasm, a number of 

additional tegument proteins attach to the capsid and the fully tegumented capsids bud into 
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cytoplasmic TGN- derived vesicles.  Enveloped virions are ultimately secreted to extra-cellular 

spaces through the utilization of cellular vesicular trafficking systems (Browne et al., 1996; 

Granzow et al., 2001; Harley, Dasgupta, and Wilson, 2001; Mettenleiter, 2002; Skepper et al., 

2001; Zhu et al., 1995) 

The process by which the tegumented cytoplasmic capsids bud into TGN-derived vesicles is not 

well-understood. The prevalent model calls for specific interactions among viral tegument proteins and 

membrane proteins and glycoproteins embedded within TGN membranes as key factors that drive 

cytoplasmic virion envelopment. This model is supported by evidence that specific mutations within 

tegument proteins and multiple membrane proteins and glycoproteins inhibit cytoplasmic envelopment 

(Mettenleiter, 2004; Mettenleiter, 2006).  

The overall hypothesis of the investigations described in this thesis, has been that  

there is a sequential and coordinate action of protein-protein interactions among tegument proteins and 

cytoplasmic portions of viral glycoproteins that bring about the cytoplasmic envelopment of tegumented 

virions. A priori, this hypothesis predicts that different defects exhibited by individual mutations or 

deletions of specific tegument proteins and viral glycoproteins that produce virions with partial defects 

in cytoplasmic virion morphogenesis can be ordered with respect to each other on the basis of their 

phenotypes and replication properties of mutant viruses that carry one or both sets of mutations affecting 

one or two different genes.  
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STATEMENT OF RESEARCH OBJECTIVES 

 The goal of this research was to investigate the functional relationship between Herpes 

Simplex Virus Type 1 tegument proteins UL11 and UL16 and membrane proteins UL20 and 

glycoprotein K (gK) in virion morphogenesis and egress.  The specific aims of this research 

were: 

 

I. To determine potential functional relationships between UL11 and UL20/gK. 

1. To delineate UL11 and UL20 functions during the herpesvirus life cycle, UL11-

null and UL11/UL20-double null viruses were constructed using a BAC 

mutagenesis system and extensively characterized by plaque morphology, viral 

growth (one-step growth curve), and viral ultra-structural characteristics were 

examined suing electron microscopy. 

2. To determine if UL11, a protein that localizes to the TGN during viral infection, 

can affect the intracellular transport and TGN localization of UL20 or gK.  UL20 

and gK are co-dependent on each other for transport.  Assesment of intracellular 

transport and TGN localization was achieved through the use of epitope tagged 

UL11, UL20, or gK were constructed (Foster et al., 2004c).  The transport of 

these proteins and their effect on each other was determined by confocal 

microscopy. 

II. To further investigate the known functinal relationship between the HSV-1 tegument 

proteins UL11 and UL16. 

1. UL11 is known to physically interact with UL16 in transient co-transfection 

experiments (Loomis, Courtney, and Wills, 2003; Vittone et al., 2005).  To further 
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investigate the UL11 and UL16 functions during the herpesvirus life cycle, UL16-

null and UL16/UL11-double null viruses were constructed using a bacterial 

artificial chromosome (BAC) mutagenesis system.  The phenotypes of these 

mutant viruses were extensively characterized by plaque morphology, viral 

growth (one-step growth curve), and viral ultra-structural characteristics. 

 

Overall, the results obtained from this research indicate that:   

A. UL20 acts at a step previous to that of UL11 during virion 

morphogenesis and egress, and this function is required for UL11 to 

function. 

B. Although UL11 is localized to the TGN during viral infections, it has 

no effect on the transport of UL20 or gK. 

C. UL16 is not absolutely required for HSV-1 replication in cell culture.  

However, UL16-null viruses exhibit less growth and cell to cell spread 

than wild type virus.  Also, ΔUL16 exhibits a marked defect in nuclear 

egress and cytoplasmic envelopment. 

 

The work is presented in individual chapters in a manuscript format having a specific title 

for the central theme of each chapter. 

 

Chapter 2: The UL20 Protein Functions Precede and are Required for UL11 Functions in Herpes 

Simplex Virus Type-1 (HSV-1) Cytoplasmic Virion Envelopment  
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Chapter 3. Herpes Simplex Virus Type-1 (HSV-1) UL16 is Required for Efficient Nuclear 

Egress and Cytoplasmic Envelopment 

 

LITERATURE REVIEW 

History of Herpesviruses 

 The first description of Herpes Simplex Virus (HSV) can be traced back to the ancient 

Greeks.  Hippocrates used the term “herpes” to describe lesions that appeared to creep or crawl 

along the skin (Wildy, 1973).  Descriptions of lesions resembling HSV were also found on a 

Sumerian Tablet dated to the 3rd Millennium BC and the Ebers Papyrus, circa 1500 BC (Whitley, 

2001).  Herodotus is noted as the first to describe an association between the cutaneous lesions 

and fever caused by HSV, and Galen recognized that recurrent HSV lesions develop at the same 

anatomical location (Whitley, 2001).  During the 18th century, Bateman accurately described the 

nature of HSV infection as a “restricted group of localized vesicles with a short, self-limiting 

course” (Bateman, 1814).  The first description of the link between HSV and the genital organs 

did not appear until De Morbis Venereis was published by John Astruc, physician for King Louis 

XIV, in 1736, after studying the afflictions of French prostitutes (Astruc, 1736).   

 During the late 19th and early 20th century, human volunteers were often used to test the 

transmission of infectious agents, and Vidal showed that HSV was infectious by passing it from 

human to another (Vidal, 1873).  Gruter, in a switch from human to animal studies, demonstrated 

that HSV could be transmitted from rabbit to rabbit, and he is widely credited with the isolation 

of HSV by the virology community (Gruter, 1924). In 1939, Burnett and Williams published an 

article describing the nature of latency, noting that HSV seems to persist for life and can be 

reactivated under stressful conditions to produce visible lesions (Burnet and Williams, 1939).   
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 The development of tissue culture technology was critical in the isolation of other 

members of the human herpesvirus family.  Between 1952 and 1956, varicella zoster virus 

(VZV), the causative agent of chicken pox, and cytomegalovirus (CMV) were isolated (Craig et 

al., 1957; Rowe et al., 1956; Smith, 1956; Weller and Stoddard, 1952).  The eventual cultivation 

of lymphoblastoid tumor cells and B lymphocytes led to the isolation and study of Epstein-Barr 

virus (EBV) (Epstein, Achong, and Barr, 1964).  In the 1990s, cultivation of T lymphocytes led 

to the isolation of human herpesviruses 6A, 6B, and 7 (Frenkel et al., 1990; Lopez et al., 1988; 

Salahuddin et al., 1986).  More recently, Representational Differential Analysis (RDA) led to the 

discovery of human herpesvirus 8 (Chang et al., 1994). 

 

Taxonomy of Herpesviridae 

 Identification of the new and apparently related viruses led to a scientific desire for 

classification.  However, it was not until 1981 that the current herpesvirus classification came 

into being.  All herpesviruses examined to date are capable of establishing a latent infection in 

their natural hosts in a specific set of cells, which varies from one virus to another.  Other 

biological properties vary, such as the length of the reproductive cycle, and these were used as 

the basis of classification, before DNA sequences of the viruses were known.  Members of the 

family Herpesviridae were initially classified by the Herpesvirus Study Group into three 

subfamilies: the Alphaherpesvirinae, the Betaherpesvirinae, and the Gammaherpesvirinae 

(Roizman, Bartha, and Biggs, 1973; Roizman et al., 1992; Van Regenmortel et al., 2000).  DNA 

sequence data has since supported and expanded the platform on which the classification system 

rests.  Table 1.1 shows the classification of the nine known human herpesviruses (bold type) as 
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well as other commonly studied herpesviruses (Roizman et al., 1992; Van Regenmortel et al., 

2000). 

 Alphaherpesvirinae were classified based on their variable host range, short reproductive 

cycle, rapid spread in tissue culture, efficient destruction of infected cells, and the ability to 

establish latent infections primarily in sensory ganglia.  The subfamily consists of the genera 

Simplexvirus, Varicellovirus, Marek’s disease-like virus, and Infectious laryngotracheitis-like 

virus (Roizman et al., 1992; Van Regenmortel et al., 2000). 

Betaherpesvirinae were characterized by a limited host range, long reproductive cycle, 

and slow infection progression in tissue culture.  Cells that are infected often become enlarged 

(cytomegalia), and the viruses can maintain latency in secretory glands, lymphoreticular cells, 

kidneys, and other tissues.  The subfamily consists of the genera Cytomegalovirus, 

Muromegalovirus, and Roseolovirus (Van Regenmortel et al., 2000).   

 Gammaherpesvirinae were classified by a limited host range and ability to replicate in 

lymphoblastoid cells, with some viruses also causing lytic infection in some types of epithelial 

and fibroblastic cells.  Viruses are usually specific for either B or T lymphocytes, and latent virus 

is frequently demonstrated in lymphoid tissue.  The Gammaherpesvirinae subfamily consists of 

the genera Lymphocryptovirus (EBV), and Rhadinovirus (Van Regenmortel et al., 2000). 
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Table 1.1:  Herpesvirus Taxonomy. 

 

Subfamily Designation Vernacular Name

Alphaherpesvirinae Human herpesvirus 1 (HHV-1) Herpes simplex virus type 1 (HSV-1)
Human herpesvirus 2 (HHV-2) Herpes simplex virus type 2 (HSV-2)
Human herpesvirus 3 (HHV-3) Varicella-zoster virus (VZV)
Cercopithecine herpesvirus 1 (CeHV-1) Herpesvirus B, Simian Herpesvirus
Gallid herpesvirus 1 (GaHV-1) Infectious laryngotracheitis virus
Gallid herpesvirus 2 (GaHV-2) Marek's disease herpesvirus 2
Suid herpesvirus 1 (SuHV-1) Pseudorabies virus, Aujesky's disease
Felid herpesvirus 1 (FeHV-1) Feline herpesvirus 1, Feline rhinotracheitis 

herpesvirus
Ictalurid herpesvirus 1 (IcHV-1) Channel catfish herpesvirus

Betaherpesvirinae Human herpesvirus 5 (HHV-5) Cytomegalovirus (CMV)
Cercopithecine herpesvirus 8 (CeHV-8) Rhesus monkey cytomegalovirus
Murid herpesvirus 1 (MuHV-1) Mouse cytomegalovirus
Murid herpesvirus 2 (MuHV-2) Rat cytomegalovirus
Suid herpesvirus 2 (SuHV-1) Pig cytomegalovirus
Felid herpesvirus 2 (FeHV-1) Cat cytomegalovirus
Human herpesvirus 6A (HHV-6A)
Human herpesvirus 6B (HHV-6B) Roseolovirus
Human herpesvirus 7 (HHV-7)

Gammaherpesvirinae Human herpesvirus 4 (HHV-4) Epstein-Barr virus (EBV)
Human herpesvirus 8 (HHV-8) Karposi's sarcoma-associated 

herpesvirus (KSHV)

Table 1: Members of the family Herpesviridae

  

 

Clinical Significance of Herpes Simplex Viruses 

 

Epidemiology 

 Infections caused by HSV occur worldwide in both developed countries and 

underdeveloped countries (Black, 1975).  There are no known animal carriers for HSV; 

therefore, humans remain solely responsible for transmitting virus to other humans. Virus 

transmission from an infected to a susceptible individual occurs during close personal contact.  
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The frequency of person to person contact appears to be the major mediator of infections 

(Whitley, 2001).  Due to the fact that HSV infection rarely results in fatality and the nature of 

latency, more than half of the world’s population probably has a recurring HSV infection, 

enabling the transmission of HSV.  Initial HSV infection usually occurs in children less than 5 

years old and is most often asymptomatic.  The mouth area is the most common location of 

infection (Whitley, 2001).  Primary infection leads to the shedding of virus from the mouth and 

stool for an average of 7 to 10 days (Amir et al., 1997), and neutralizing antibodies appear 

between 4 and 7 days after the onset of HSV infection and peak at approximately 3 weeks post 

infection (Buddingh et al., 1953).   

 The primary factors affecting the rate of HSV infection are location, socioeconomic 

status, and age.  In some studies, by the age of 15, over 95% of children were found to possess 

antibodies to HSV (Bader et al., 1978; Black et al., 1974).  HSV-1 seroprevalence is much more 

common than its counterpart HSV-2 (Fleming et al., 1997; Nahmias, Lee, and Beckman-

Nahmias, 1990).  Because HSV-2 is usually acquired through sexual contact, antibodies to HSV-

2 are rarely found before the onset of sexual activity. While most genital infections are caused by 

HSV-2, there is an ever-increasing proportion attributable to HSV-1 (Corey et al., 1983; 

Kalinyak, Fleagle, and Docherty, 1977).  Genital HSV-1 infections are usually both less severe 

than HSV-2 and less prone to recurrence (Corey et al., 1983; Reeves et al., 1981). 

 

Pathogenesis 

 Initially, virus must come in contact with a mucosal surface or abraded skin for HSV 

infection to be initiated.  After primary infection, viral replication at the infected location, 

usually oral or genital mucosal tissue, results in the infection of sensory nerve endings; and virus 
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is then transported to the dorsal root ganglia (Baringer and Swoveland, 1973; Bastian et al., 

1972).  In HSV-1 infection, the trigeminal ganglia becomes colonized and harbors latent virus; 

whereas in HSV-2 infection the sacral ganglia is the site of latency (Whitley, 2001).  After the 

establishment of latency, certain stimuli can cause reactivation to occur, and virus becomes 

evident at mucocutaneous sites as vesicles or ulcers.  A more severe primary infection can result 

in a higher rate of HSV reactivation.   

 Cellular changes induced by viral infection include enlargement of infected cells and the 

appearance of condensed chromatin within the nuclei, followed by degradation of the nuclei.  

Cells lose intact plasma membranes and form multinucleated giant cells.  In infected dermal 

regions, there is an intense inflammatory response, and the intensity decreases substantially with 

recurrent disease (Whitley, 2001). 

 

Mucocutaneous Infections 

 Primary HSV-1 infection can be either totally asymptomatic or can result in a symptoms 

in any combination of fever, sore throat, vesicular or ulcerative lesions.  However, asymptomatic 

infection is generally the rule rather than the exception (Whitley, 2001).  The duration of 

symptomatic disease in symptomatic children is generally 2 to 3 weeks, with a fever of 101°F to 

104°F.  The onset of a recurrent HSV-1 infection is generally marked pain, burning, tingling, or 

itching, which generally lasts for less than 6 hours, and is followed by vesicle formation within 

24 to 48 hours (Spruance and Crumpacker, 1982; Spruance et al., 1984; Spruance et al., 1977).  

Usually, 3 to 5 vesicles appear at the border of the lip and last no longer than 48 hours.  Pain is 

most severe at the outset of vesicle formation and resolves in 4 to 5 days.  The frequency of 

recurrences varies greatly among individuals, and the factors that influence reactivation are 
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poorly defined but may include fever, stress, and exposure to UV light (Segal et al., 1974; Ship, 

Miller, and Ram, 1977). 

 In HSV-2, the most severe clinical symptoms are encountered with primary infection, 

characterized by the appearance of macules and papules followed by vesicles, pustules, and 

ulcers.  The duration of lesions and viral secretion averages about 3 weeks.  Men and women 

experience both similar and dissimilar symptoms (Corey, 1982; Corey et al., 1983).  Preexisting 

immunity to HSV-1 can have a beneficial effect in reducing the severity of HSV-2 primary 

infections (Allen and Rapp, 1982; Corey et al., 1981; Kaufman et al., 1973).  Recurrent HSV-2 is 

milder than initial infection and is characterized by the appearance of 3 to 5 vesicles (Adams et 

al., 1976).  Symptoms usually last 7 to 10 days, and virus is shed for an average of 2 to 5 days.  

The biggest problem involving recurrent genital herpes is the frequency of recurrences, which 

varies by individual.  Recurrences usually occur several times per year; and, whether 

symptomatic or asymptomatic, transmission of the infection to sexual partners can occur with 

intimate contact (Corey et al., 1983). 

 

Fetal and Neonatal Infections 

 Neonatal HSV infections occur at a rate of about 1 in 3000 deliveries per year (Nahmias, 

Keyserling, and Kerrick, 1983; Nahmias, Keyserling, and Lee, 1989), and infection occurs far 

less frequently than genital infections in the adult population.  The type of maternal genital 

infection at the time of delivery is directly tied to the risk of fetal infection.  If the mother has a 

primary infection the risk of transmission is approximately 30%, while the risk for recurrent 

infection is 3% or less (Brown et al., 1991).  The most common route of infection, 75% to 80%, 

is intrapartum contact of the fetus with infected maternal secretions (Whitley, 2001).  The 
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clinical symptoms of neonatal HSV infection are a reflection of the site and extent of viral 

replication, with infection being almost always symptomatic and often lethal. Babies with HSV 

infection can have disease: localized to the skin, eye, and mouth; encephalitis with or without 

skin involvement; or disseminated infection involving multiple organs (Nahmias et al., 1970; 

Whitley et al., 1981).  The highest mortality rate occurs in babies with disseminated infection. In 

addition, frequently occurring HSV-2 cutaneous lesions defined a group at risk for neurological 

problems (Whitley et al., 1991). 

 

Infection of an Immunocompromised Host 

 Patients who are immunocompromised due to immunotherapy, malnutrition or acquired 

immunodeficiency syndrome are at risk for severe HSV infections, and these patients may 

develop progressive disease involving the respiratory tract, esophagus, or the gastrointestinal 

tract (Korsager et al., 1975; Montgomerie et al., 1969).  Recurrent HSV infection can occur in 

theses patients at multiple sites and healing occurs over an average of 6 weeks (Whitley et al., 

1984).   The repeated treatment required for these patients can lead to viral mutants resistant to 

antiviral therapy. 

 

Central Nervous System (CNS) Infections 

 Encephalitis caused by HSV the most common cause of sporadic, fatal encephalitis in 

this country (Olson et al., 1967).  Some studies estimate a rate as high as 1250 cases per year in 

the United States (Whitley, 2001).  Encephalitis is caused when then virus spreads past the dorsal 

root ganglia, in which latency is usually established, to the CNS.  The mechanisms responsible 

for this aberrant event in the virus life cycle are unclear.  The manifestations of HSV encephalitis 
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include primarily focal encephalitis along with fever, altered behavior, and localized 

neurological findings.  There is usually evidence of a localized temporal lobe disease (Whitley et 

al., 1977; Whitley et al., 1981).  In untreated patients, mortality exceeds 70% and only 2.5% of 

patients return to normal neurological function (Whitley, 2001). 

 

Keratoconjunctivitis 

 There are 300,000 new cases of HSV eye infection annually, ranking second behind 

trauma as the cause of corneal blindness (Binder, 1977).  Primary herpetic keratoconjunctivitis 

can occur in either a single eye or both eyes, and healing of the cornea can take as long as one 

month even with antiviral therapy.  Recurrent HSV eye infections occur at a similar rate to HSV-

1 mucocutaneous infections and most often involve only a single eye.  Repeated attacks can last 

for weeks or months and progressive disease can result in vision loss (Whitley, 2001). 

 

Prevention and Treatment of HSV Infection 

 The two methods for control of HSV infections are antiviral therapy and prevention.  

Antivirals such as acyclovir and valaciclovir are effective in limiting the extent of HSV infection 

and therefore helpful in limiting spread to uninfected individuals.  However, post-exposure 

antiviral treatment does not prevent lifelong infection of an individual.  Prevention of HSV 

infection is mainly achieved through avoiding contact with infectious secretions.  Vaccination 

would be the ideal method of HSV prevention; however, to date no HSV vaccine has been 

clinically successful.   
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Architecture of the Herpes Virion 

      Virions of herpes viruses can vary in size from 120nm to 300nm (Roizman and 

Furlong, 1974), and consist of:  an electron-dense core, an icosadeltahedral capsid around the 

core, an amorphous tegument around the capsid, and an outer envelope containing glycoprotein 

spikes (Roizman and Furlong, 1974).  The variability in the size of herpes virions is due mainly 

to variability in the makeup of the tegument and the state of the envelope.  A model of the virion 

architecture is presented below in Figure 1.1. 

                                                                                                                                                                                 

The Core 

 The core of a mature herpes virion contains the viral DNA in the form of a torus that may 

appear to be suspended by a proteinaceous spindle to the capsid (Falke, Siegert, and Vogell, 

1959; Furlong, Swift, and Roizman, 1972; Nazerian, 1974).  The toroidal structure is 50 nm 

high, with an inside diameter of 18nm and an outside diameter of 70 nm.  The arrangement of the 

viral DNA in the torus is not known.   

 

The Capsid 

 The capsid is approximately 125 nm in diameter in the form of an icosadeltahedron and 

features 162 capsomeres, characteristic of all herpesviruses.  Capsomeres are either pentons or 

hexons, consisting of 5 or 6 VP5 (major capsid protein) monomers, respectively.  In the capsid, 

the pentons are located on the icosahedral 5-fold vertices, and the hexons make up the faces and 

edges.  Hexons also contain 6 copies of VP26, attached to the upper edge of VP5 and form a 

continuous ring around each hexon (Zhou et al., 1995).  A heterotrimeric complex known as the 
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triplex connects the capsomeres; the triplex consists of two copies of VP23 and one copy of 

VP19C and acts as a sort of scaffold for the capsid (Spencer et al., 1998).  

 

The Tegument 

 The tegument is contained between the capsid and the virion envelope and appears 

fibrous on negative staining (Morgan et al., 1959; Morgan, Rose, and Mednis, 1968; Wildy and 

Watson, 1962).  The tegument can be distributed asymmetrically and its thickness can vary 

depending on the location of the virion particle within the infected cell.  There is less tegument 

that is more symmetrically arranged in peri-nuclear virions than in virions in cytoplasmic 

vesicles that contain more tegument distributed more asymmetrically (Falke, Siegert, and Vogell, 

1959).  Tegument proteins are important in various aspects of the virus life cycle and are 

believed to have key functions in the early events of infection and virion egress.  There is 

ordered tegument density around the pentons, suggesting symmetry where the capsid and 

tegument interact (Zhou et al., 1999).  This density may be due to the VP1-3 protein, an 

extremely large 336 kDa protein, thought to be involved in nucleocapsid attachment to the 

nuclear pore facilitating DNA release into the nucleoplasm (Batterson, Furlong, and Roizman, 

1983; Knipe et al., 1981; Ojala et al., 2000).  However, VP1-3 null mutants also accumulate 

newly assembled, DNA-filled capsids in the cytoplasm of infected cells, indicating that VP1-3 is 

involved in various stages of the virus life cycle (Desai, 2000). 

 

The Envelope 

 The outer covering of the herpesvirus, the envelope, has a typical trilaminar appearance 

(Epstein, 1962) and appears to be made up of altered cellular membranes (Armstrong, Pereira, 
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and Andrewes, 1961; Falke, Siegert, and Vogell, 1959; Morgan, Rose, and Mednis, 1968).  The 

herpesvirus envelope contains numerous glycoprotein extrusions, while the amounts of each 

glycoprotein vary.  HSV specifies at least 11 different glycoproteins, and the copy number of 

each glycoprotein can well exceed 1,000 per virion.  Envelope glycoproteins gB, gD, gH, and gL 

have been shown to be required for virion entry into susceptible cells.  

 

Organization of the Viral Genome 

 The viral DNA of herpesviruses is linear and double stranded, but the DNA becomes 

circular immediately after release from capsids into the nucleoplasm of the infected cells.  The 

length of the genome of different herpesviruses varies between 120 to 250 kbp, with the size of 

HSV-1 determined to be 152,261 bp (McGeoch et al., 1988). This variability is different than 

polymorphism in the genome length of individual viruses, which is due to terminal and internal 

repeated sequences that can vary in copy number, leading to variations in genome length of more 

than 10 kbp.  The total G+C content of herpesviruses varies from 31% to 75%, and this 

percentage can vary across the genome (Roizman and Pellett, 2001).  HSV-1 and HSV-2 contain 

approximately 68% and 69% G+C content, respectively (Becker, Dym, and Sarov, 1968; Kieff, 

Bachenheimer, and Roizman, 1971). The sequence arrangement of herpesvirus genomes varies 

on the presence and location of reiterated sequences that allow rearrangement to occur.  In 

Herpes Simplex Virus genomes, the sequences from both termini are repeated in an inverted 

orientation and juxtaposed internally. As a result, the genome is divided into two regions, 

consisting of the unique long (UL) and unique short (US) regions flanked by inverted repeats 

(Figure 1.2).  Both components are able to invert relative to the other to form four isomers;                                   
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Figure 1.1:  Herpesvirus virion structure.  Virions of herpes viruses can vary in size from 
120nm to 300nm (Roizman and Furlong, 1974). A virion consists of:  an electron-dense core 
containing the viral genome, an icosadeltahedral capsid around the core, an amorphous tegument 
around the capsid, and an envelope derived from cellular membranes containing glycoprotein 
spikes (Roizman and Furlong, 1974).   Figure from (Melancon, 2003). 
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and, as predicted, DNA purified from infected cells contains four equivalent populations, which 

differ in the relative orientation of the unique long and unique short regions (Roizman and 

Pellett, 2001). 

 The majority of herpesvirus genes contain:  a promoter region 50 to 200 bp upstream of a 

TATA box, a transcription initiation site 20 to 25 bp downstream of the TATA box, a 5’ 

untranslated leader sequence of 30 to 300 bp, a single major open reading frame (ORF) with a 

translation initiation codon meeting the host requirement for efficient initiation, 10 to 30 bp of 3’ 

untranslated sequence, and a polyadenylation signal with standard flanking sequences (Roizman 

and Pellett, 2001).  Some exceptions include genes without a TATA box or genes with a second 

in-frame initiator methionine (Chou and Roizman, 1986; Markovitz, Filatov, and Roizman, 

1999).  Most transcriptional gene products are not spliced, although every herpesvirus expresses 

a few spliced genes.  Herpesviruses also produce non-coding RNAs, such as the HSV-1 latency 

associated transcript (LAT) (Roizman and Pellett, 2001).  The different members of the 

herpesvirus family encode between 70 and 200 genes, estimated using various methods 

Figure 1.2.  Arrangement of the HSV-1 genome.  (A) The top line represents 
the prototypic arrangement of the HSV-1 genome with the unique long (UL) and 
unique short (US) regions flanked by the terminal repeat (TR) and internal repeat 
(IR) regions.  (B) The bottom line shows map units of the HSV-1 genome. 
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(Roizman and Pellett, 2001).  HSV-1 encodes about 90 gene products, with at least 84 of the 

transcriptional units encoding proteins (Roizman and Knipe, 2001). 

 

The Herpes Simplex Virus Lifecycle 

 

Virus Attachment and Entry 

 Herpesvirus entry is a multistep process involving multiple viral glycoproteins acting as 

ligands for multiple receptors on the surface of the target cell.  Entry is the most critical step in 

the HSV life cycle and greatly determines the tropism and pathology of each member of the 

herpesvirus family.  The wide host range of HSV and narrow host range of EBV can be in part 

explained by the ability of each virus to utilize a different array of cell surface binding and entry 

receptors.  Entry of HSV occurs is three distinct stages:  the first step involves virus binding to 

the surface of the cell, the second step involves an interaction of gD (HSV-1) with an entry 

receptor, and the third step involves fusion of the viral envelope with the plasma membrane of 

the cell, releasing the capsid-tegument complex into the cytoplasm of the infected cell (Figure 

1.4). 

 

Binding Receptors 

 Initial contact of herpesviruses with cells usually occurs through binding receptors, in 

which engagement of the virus with receptor is reversible and changes in the virion envelope 

required for fusion and entry do not occur.   Herpes Simplex viruses initial attachment to cells 

involves the interaction of glycoprotein C, and glycoprotein B to a lesser extent, with cell surface 
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Herpes Simplex Virus Life Cycle
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Figure 1.3: The Herpes Simplex Virus Life Cycle.  The first stage of the herpes virus life cycle 
consists of virus entry, capsid transport to the cell nucleus, deposition of viral DNA into the 
nucleoplasm, coordinate gene expression and viral DNA replication (black arrows).  The second 
stage is virion morphogenesis and egress comprised of primary envelopment at the inner nuclear 
membrane, de-envelopment at the outer nuclear membrane, final envelopment into cytoplasmic 
vesicles and transport to extra-cellular spaces (red arrows).  Figure from (Melancon, 2003). 
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glycosaminoglycans, usually heparan sulfate (Shieh et al., 1992; WuDunn and Spear, 1989).  

Heparan sulfate is synthesized as the glycosaminoglycan component of heparan sulfate 

proteoglycans, and it is widely distributed on cell surfaces in mammals.  The presence of heparan 

sulfate is not essential for virus entry, but it greatly increases the efficiency of virus entry into 

cells (Banfield et al., 1995).  Similarly, although glycoprotein C confers the greatest efficiency 

for virus attachment to cell surfaces, increasing the efficiency of virus binding by approximately 

10 fold, it is not essential for either virus entry or replication (Heine et al., 1974). 

 

Entry Receptors 

 Binding of the HSV glycoprotein D to an entry receptor sets in motion an irreversible 

chain of events leading to the fusion of the virion envelope with the plasma membrane of the 

target cell.  There have been three classes of HSV entry receptors classified to date, indicated 

below and shown in Figure 1.5. 

 

Tumor Necrosis Factor (TNF) Receptor Family   

 HVEM / Herpes Virus Entry Mediator A (HveA) is a member of the TNF receptor family 

and is expressed in a variety of different cell types including lymphocytes, other leukocytes, 

epithelial cells, and fibroblasts.  While HVEM is utilized by herpes simplex viruses as an entry 

receptor, the natural ligands for HVEM include LIGHT and lymphotoxin-alpha (Mauri et al., 

1998).  LIGHT can function as a second signal for T-cell activation, and the interactions between 

LIGHT and HVEM are the focus of active investigations of the regulation of immune responses 

(Kwon et al., 2003).  HVEM serves as an excellent entry mediator for both HSV-1 and HSV-2.  

Certain studies have shown that HSV-1 entry of activated T-cells is principally mediated by  
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Figure 1.4:  Herpes Simplex Virus Entry.  The first step of HSV entry is attachment to the 
plasma membrane of infected cells through interaction of gC (ligand for binding) with cell 
surface heparan sulfate (receptor for binding).  The second step is fusion of the viral envelope 
with the cell plasma membrane and occurs following attachment of gD (ligand for fusion) to 
either HVEM or a nectin (receptor for fusion) on cell surfaces.  Fusion requires the presence of 
gD and an entry receptor, as well as gB and the gH/gL heterodimer.  Figure from (Melancon, 
2003). 
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Figure 1.5:  Herpes Simplex Virus entry receptors.  The three classes of cell surface receptors 
for HSV entry are:  the tumor necrosis factor (TNF) receptor family consisting of HVEM, the 
immunoglobulin superfamily consisting of the nectins, and 3-O-sulfated heparin sulfate.  Only 
viral attachment can occur in the absence of an HSV entry receptor.  Figure from (Melancon, 
2003). 
 
 

HVEM, although in variety of other cell types HVEM was shown not to be the primary mediator 

of virus entry (Montgomery et al., 1996).   

 

Immunoglobulin Superfamily  

 The second family of herpes simplex virus entry receptors is part of the immunoglobulin 

superfamily and includes several isoforms present in both human and nonhuman cells encoded 



24 
 

by mRNAs that can vary due to alternative splicing.  Members of this family have been shown to 

act as intercellular adhesion molecules localized at adhesion junctions, in which the carboxyl-

terminal domains bind to L-afadin, a PDZ-binding protein that anchors the receptors to the 

cytoskeleton and adheren junctions.  These receptors have been named “nectins” on account of 

their cellular function (Takahashi et al., 1999).  Nectins are highly conserved among mammalian 

species in respect to structure, function, and the ability to mediate HSV entry (Milne et al., 2001; 

Shukla et al., 2000).  The nectins are expressed in a variety of cell types including epithelial 

cells, fibroblasts, and neurons (Takai and Nakanishi, 2003). In addition, the distribution of this 

class of receptors in human tissues reflects the susceptibility of cells to infection and probably 

accounts for both virus entry and cell-to-cell spread (Roizman and Knipe, 2001). 

 Nectin-1α (Herpes Virus Entry Mediator C, HveC) and nectin-1β (Herpesvirus 

Immunoglobulin-like receptor, HIgR) are two mRNA splicing variants containing a common 

ectodomain and are expressed on epithelial, fibroblastic, neural and hematopoietic cells; in 

keratinocytes; and in human tissues that are the target of HSV infection including skin, brain, 

and spinal ganglia (Cocchi et al., 1998; Geraghty et al., 1998).  Nectin-1α and nectin-1β have the 

ability to mediate entry of all HSV-1 strains, HSV-2, Pseudorabies virus (PrV) and bovine herpes 

virus 1 (BHV-1) (Geraghty et al., 1998).   

 Nectin-2α (Herpes Virus Entry Mediator B, HveB) and nectin-2δ are also mRNA splice 

variants, and they mediate the entry of HSV-2, PrV, and certain viable mutant forms of HSV-1 

but not wild-type HSV-1 (Lopez et al., 2000; Warner et al., 1998).  Nectin-1 and nectin-2 are 

related to nectin-3 and nectin-4, and the poliovirus receptor (Takai and Nakanishi, 2003). 

 Nectin-3 has been shown to be expressed on J cells, which lack HVEM, nectin-1, and 

nectin-2.  An HSV-1 mutant, designated HSV-1 (JMP), was able to enter into J cells expressing 
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nectin-3, but wild-type HSV-1 was not (Cocchi et al., 2004).    HSV-1 (JMP) contains mutations 

in glycoprotein K as well as glycoprotein D.  The mutations in both gK and gD were shown to be 

required for HSV-1 (JMP) entry into J cells (Cocchi et al., 2004). 

 

3-O-sulfated Heparan Sulfate (3-OS HS) 

 Modification of heparan sulfate by D-glucosaminyl 3-O-sulfotransferase isoforms-3 

and/or -5 creates 3-O-sulfated Heparan Sulfate (3-OS HS), generating a gD-binding site that 

allows heparan sulfate proteoglycans to function as entry receptors for HSV-1.  3-O-sulfated 

heparan sulfates are broadly distributed on human cells and tissue and mediate HSV-1 but not 

HSV-2 entry (Shukla et al., 1999).   

  

Other herpesvirus receptors 

 Only alphaherpesviruses (except VZV) encode members of the gD family.  

Betaherpesvirus and gammaherpesviruses rely on other viral proteins to serve as ligands for 

cellular receptors.  EBV uses gp42, which becomes a member of a gH-gL-gp42 complex, to 

serve as a ligand for human leukocyte antigen (HLA) class II molecules on B lymphocytes.  

Human CMV encodes glycoprotein O (gO), which is unrelated to gp42 but also forms a complex 

with gH-gL (Huber and Compton, 1998).  In addition, HHV-6A encodes glycoprotein Q (gQ), 

which forms a complex with gH-gL (Mori et al., 2003).  However, it is unclear whether or not 

gO or gQ are required for entry in CMV or HHV-6A, respectively. 
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Virus-to-Cell Fusion  

 After binding of gD to a HSV-1 virus entry receptor, the last step in virus entry is fusion 

of the virion envelope with the plasma membrane of the target cell (Morgan, Rose, and Mednis, 

1968).  The current belief is that gD (Ligas and Johnson, 1988), gB (Sarmiento, Haffey, and 

Spear, 1979), and the gH/gL heterodimer (Forrester et al., 1992) are required for the virus-to-cell 

fusion process to occur.  Since gD is required for entry receptor binding, it would be logical to 

hypothesize that receptor binding triggers a conformational change in gD that translates to a 

change in gB and gH/gL, resulting in activation of the HSV-1 membrane fusion machinery.  In 

some cells types, notably CHO cells that express an entry receptor such as nectin-1 and HeLa 

cells, endocytosis and acidification of endosomes are required for efficient virus entry.  

Interestingly, it was found that endocytic uptake of HSV virions from the cell surface is rapid 

and independent of any known gD receptor.  In addition, efficient entry through endocytosis 

requires cellular PI 3-kinase activity and the viral glycoproteins gB, gD, and gH/gL (Nicola, 

McEvoy, and Straus, 2003; Nicola and Straus, 2004).  While these two entry pathways are 

spatially distinct, they are still functionally similar in that both require the same set of viral 

glycoproteins and a gD entry receptor.   

 Recent studies involving the HSV-1 fusion machinery indicate that these glycoproteins 

act in a sequential manner, with gD being involved in Phase I, gH/L in Phase II, and gB in Phase 

III (Gianni, Forghieri, and Campadelli-Fiume, 2006; Subramanian and Geraghty, 2007).  

Additionally, the crystal structure of HSV-1 gB has been solved, revealing a remarkable 

homology to vesicular stomatitis virus (VSV) gB.  Along with the similarity to VSV gB, two 

domains that indicate HSV-1 gB is intricately involved in virus cell fusion were identified: an 

alpha-helical coiled-coil core reminiscent of class I fusion proteins, and two extended beta 
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hairpins with hydrophobic tips which are indicative of class II fusion proteins (Heldwein et al., 

2006).  Subsequent mutagenesis studies on HSV-1 gB showed that hydrophobic tips of the loops 

were vital for proper HSV-1 gB function (Hannah et al., 2007). 

 

Host Protein Shutoff 

 HSV shuts off the synthesis of cellular protein products in two stages.  First, the virus 

mediates degradation of the host cell mRNA.  Second, there is inhibition of further synthesis and 

processing of host mRNA.  The virion host shutoff (vhs) function involves structural components 

of the virion and does not require de novo protein synthesis after infection (Fenwick and Walker, 

1978; Nishioka and Silverstein, 1977; Nishioka and Silverstein, 1978a; Nishioka and Silverstein, 

1978b).  The isolation of vhs- mutants, which failed to shutoff host cell protein synthesis in HSV-

1 infected cells, allowed for more detailed study of the viral requirements for host shutoff (Read 

and Frenkel, 1983).  The UL41 ORF was identified as being responsible for the phenotype in the 

vhs- mutants (Fenwick, Morse, and Roizman, 1979; Kwong, Kruper, and Frenkel, 1988; Oroskar 

and Read, 1987).  The UL41 protein (VHS) is expressed as a γ1 gene (Frink, Anderson, and 

Wagner, 1981) and is translated to a 58,000 or 59,500 kDa phosphoprotein (Read, Karr, and 

Knight, 1993).  In addition, VHS was conclusively shown to be capable of functioning in the 

absence of any other viral proteins (Zelus, Stewart, and Ross, 1996).  VHS was shown to 

function at least in part by inducing endoribonucleolytic cleavage of mRNA in vitro (Elgadi and 

Smiley, 1999), and the 5’ end of mRNA is degraded before the 3’ end (Karr and Read, 1999).  

VHS appears to form a complex with the transcription factor eIF-4H, and the interaction is 

required for RNase activity possibly through targeting to polyribosomes.  The VHS and eIF-4H 

complex appears to decap cellular mRNA from the 5’ end (Roizman and Knipe, 2001).  
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 In the context of a vhs- mutant, host protein synthesis is not shut off early in infection and 

α and β gene expression is extended in comparison to a wild-type virus.  These effects are due to 

the fact that VHS accelerates the degradation of both cellular and viral mRNAs.  As a result, 

during the context of a HSV-1 infection, cellular mRNA levels diminish and as viral mRNA 

levels accumulate it is preferentially translated.  In this way, VHS may facilitate the transition 

from α to β to γ gene expression through shortening the life of the viral mRNAs (Kwong and 

Frenkel, 1987; Oroskar and Read, 1987).  As a γ1 gene product, VHS accumulates late in 

infection, but does not degrade viral mRNA as would be expected.  An interaction between 

VP16 and VHS at late times blocks the degradation of RNA by VHS (Lam et al., 1996).  As a 

result, the accumulation of VHS into tegument complexes accomplishes two crucial functions:  it 

brings VHS into the infected cell to shutoff host protein synthesis, and it regulates the activity of 

VHS late in infection when mostly viral mRNA is present. 

 

Virion Transport to the Nucleus 

 After fusion of the virion envelope with the plasma membrane of the infected cell, the 

capsid with its associated tegument complex is deposited into the cytoplasm.  Some tegument 

proteins disassociate from the complex and remain in the cytoplasm, while others, such as VP16 

(αTIF) are transported to the nucleus to effect their functions.  The remaining capsid-tegument 

complex is then transported along the cell’s microtubule network to a nuclear pore.  Studies have 

shown that dynein, the microtubule dependent motor, is bound to capsids after entry (Sodeik, 

Ebersold, and Helenius, 1997), and these results prompted the theory that incoming capsids bind 

to microtubules and utilize the cell’s dynein motor to transport them to nuclear pores.  Other 

experiments have shown that microtubules in proximity to the plasma membrane become 
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disrupted after entry, suggesting that the presence of the capsid-tegument complex may destroy 

normal cellular microtubule interactions (Ward et al., 1998).  After intracytoplasmic transport to 

the nucleus, capsids accumulate at the nuclear envelope and become associated with nuclear pore 

complexes.  Experiments have shown that the VP1/2 gene is required for DNA release at the 

nuclear pore (Batterson, Furlong, and Roizman, 1983; Knipe, Ruyechan, and Roizman, 1979), 

and antibodies to nuclear pore transport components block capsid binding (Ojala et al., 2000).  It 

is believed that binding to the nuclear pore complex produces a structural change in the HSV 

capsid, resulting in viral DNA release into the nucleus and an empty capsid docked at the nuclear 

pore. 

 

Coordinate Gene Expression 

 During the course of an HSV infection, there are more than 80 gene products expressed 

from the viral genome in a highly regulated cascade fashion (Figure 1.6) in a number of 

coordinately expressed groups (Honess and Roizman, 1974).  Transcription of viral DNA takes 

place in the nucleus, and the host RNA polymerase II is responsible for the transcription of all 

viral genes during infection (Alwine, Steinhart, and Hill, 1974; Costanzo et al., 1977).  There are 

several viral genes that play an important role in the regulation of gene expression at different 

times post-infection.   

 HSV encodes a function responsible for transactivation of α genes immediately after 

infection (Post, Mackem, and Roizman, 1981), and this was termed the α gene transactivating 

factor (α-TIF).  α-TIF was shown to be a component of the tegument capable of inducing the α 

genes, which contain the “TAATGArATT” promoter response element, which binds Oct-1.  

VP16 was identified as the viral protein responsible for the α-TIF function (Campbell, 
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Palfreyman, and Preston, 1984).  After entry, VP16 is released from its interaction with VHS and 

the tegument complex.  VP16 then binds to a cellular protein called the host cell factor (HCF) or 

C1 (Katan et al., 1990; Kristie and Sharp, 1990), and HCF carries VP16 into the nucleus, at 

which time the VP16-HCF complex binds to Oct-1 that is bound to viral DNA.  This event forms 

the activator complex that is responsible for transactivation of α genes (La Boissiere, Hughes, 

and O'Hare, 1999).  In addition to the Oct-1 binding sites, the promoters for α genes also contain 

binding sites for other cellular transcriptional activators upstream of a TATA box that may 

contribute to a basal level of α gene expression in rapidly dividing cells in the absence of VP16 

(Roizman and Knipe, 2001).  The viral requirement for VP16 may be different in resting cells, 

such as neuronal cells, where cellular transcription factors are not available.   After being 

deposited into the nucleus of the infected cell, the HSV-1 viral genome localizes to nuclear 

ND10 structures where the transcription of α genes takes place (Maul, Ishov, and Everett, 1996). 

At 2 to 4 hours post infection, the viral α genes are expressed at peak levels.  There are six viral 

α genes:  ICP0, ICP4, ICP22, ICP27, ICP47, and US1.5.  Five of the six α genes stimulate viral β 

gene expression in at least some cell types.  In particular, ICP4 is required for all post-α gene 

expression (Clements, Watson, and Wilkie, 1977; Dixon and Schaffer, 1980), and its effect is 

exerted at the transcriptional level (Godowski and Knipe, 1986).  However, the mechanism by 

which ICP4 exerts its transcriptional control over β gene expression is unclear.  ICP4 is also 

responsible for down regulation of α gene products including itself and ICP0, and the “pre α” 

gene products ORF P and ORF O.  In this case, specific consensus binding sites appear to be 

responsible for ICP4 mediated transcriptional regulation (Faber and Wilcox, 1986; Gelman and 

Silverstein, 1987; Kristie and Roizman, 1984; Kristie and Roizman, 1986; Muller, 1987).  In 

addition, ICP4 has different isoforms dependent on different post translational modifications, and 
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it is possible that the different functions may be somewhat dependent on the specific isoform 

present at different times during the course of the infection.  ICP0 promotes viral infection and 

gene expression, especially at a low multiplicity of infection (MOI) where its absence leads to a 

virus yield that is 100 fold less than a wild type virus (Sinclair et al., 1994; Stow and Stow, 

1986).  ICP0 is a nonspecific transactivator that induces the expression of the HSV α, β, and γ 

genes.  Because ICP0 does not bind DNA directly, it appears to act indirectly in modulation of 

transcription (Everett, Orr, and Elliott, 1991). 

 The HSV-1 β genes are produced at peak levels between 4 and 8 hours post infection.  

Expression of the viral β genes requires the presence of functional ICP4, but is not dependent on 

viral DNA synthesis.  β gene products include proteins involved in viral DNA replication and 

nucleotide metabolism.  These viral proteins promote viral DNA replication, which results in 

expression of the γ class of genes.  The β genes can be divided into two general groups: β1 genes, 

which are expressed shortly after the synthesis of α proteins; and β2 genes, which are expressed 

with more of a delay after a gene expression (Roizman and Knipe, 2001).  β1 genes are 

exemplified by the single-stranded DNA binding protein, ICP8, and the large subunit of 

ribonucleotide reductase, ICP6.  β2 genes are exemplified by the viral thymidine kinase encoded 

by UL23.  Some β2 genes require ICP27 for expression, and this dependence may correlate with 

the later expression of these genes (Roizman and Knipe, 2001). The HSV-1 γ (late) genes are 

produced at peak levels only after viral DNA replication has started, and require ICP4, ICP27 

and ICP8 for efficient levels of transcription.  The transition from β to γ gene expression is also 

marked by a change in the nuclear localization of transcription from sites near ND10 domains to  
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Figure 1.6: Coordinate gene expression in Herpes Simplex Virus.  1) α-TIF, a γ gene present 
in the tegument, activates initial transcription of the α genes. 2) Autoregulation of gene 
expression. 3) Activation of β gene expression. 4) Activation of γ gene expression by α and β 
genes, release of repression of γ genes, and replication of the viral genome. 5) γ genes turn off α 
and β genes late in infection (Roizman and Knipe, 2001). 
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replication compartments as evidenced by the localization of ICP4, RNA polymerase II, and 

ICP22 (Knipe et al., 1987; Leopardi et al., 1997; Rice et al., 1994).  γ gene products include 

structural proteins, glycoproteins, and tegument components required to prepare newly infected 

cells for an efficient infection.  The γ genes have been subdivided into two groups based on 

timing of expression and their dependence on viral DNA replication:  γ1 (leaky-late) genes, 

which are expressed relatively early in infection and transcription is increased only a few fold 

after DNA replication has occurred; and γ2 genes, which do not accumulate in appreciable 

amounts until after DNA replication and are not expressed in the presence of inhibitors of viral 

DNA synthesis (Wagner, 1985).  Typical γ1 genes include the major capsid protein ICP5, gB, gD, 

and ICP34.5, whereas typical γ2 genes include gC, UL41 (VHS), UL36, UL38, UL20, and gK.   

 

Viral DNA Replication 

 After the β genes have been expressed and translated, there are several proteins that are 

localized to the nucleus where they assemble on the parental viral DNA in punctuate “pre-

replicative sites” located near nuclear ND10 structures (Ishov and Maul, 1996; Uprichard and 

Knipe, 1996).  Initially, viral DNA replication initiates on the circular viral DNA, creating a 

“theta” structure, which as replication progresses transitions to a rolling circle mechanism of 

replication producing head-to-tail concatemers of viral DNA (Jacob, Morse, and Roizman, 

1979).  At this point, replication takes place in “replication compartments” that consist of 

accumulating DNA molecules and replication complexes (Quinlan, Chen, and Knipe, 1984). 

 There are seven viral proteins absolutely required for viral DNA replication and sufficient 

to replicate a viral origin transfected into cells.  These are the viral DNA polymerase (UL30) 

(Purifoy, Lewis, and Powell, 1977), its accessory protein (UL42) (Conley et al., 1981), an origin-
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binding protein (UL9), the single stranded DNA binding protein (ICP8), and the helicase-

primase complex that consists of three proteins:  UL5, UL8, and UL52 (Challberg, 1986; Wu et 

al., 1988).  Host cell factors may also be involved in DNA synthesis, and host enzymes that 

include the DNA polymerase α-primase, DNAligase, and topoisomerase II are almost certainly 

also required.  There are also three origins of replication located on the viral genome:  oriS, a 

palindromic sequence of 45 bp that is located in c sequences bounding the S component and 

present in two copies; and oriL, a palindromic sequence of 144 bp that is located between the 

transcriptional units of ICP8 and the DNA polymerase (UL29 and UL30, respectively) (Deb and 

Doelberg, 1988; Frenkel et al., 1976; Knopf, 1986; Locker, Frenkel, and Halliburton, 1982; 

Lockshon and Galloway, 1986; Mocarski and Roizman, 1982; Stow, 1982; Vlazny, Kwong, and 

Frenkel, 1982; Weller et al., 1985).  The reason for the presence of three origins of replication is 

not clear, although it may reflect the evolutionary history of the virus.  Only one origin of 

replication is needed for replication to occur (Igarashi et al., 1993; Polvino-Bodnar, Orberg, and 

Schaffer, 1987). 

 The basic model for the replication of HSV viral DNA proceeds as follows.  First, the 

parental viral DNA is circularized upon being deposited into the nucleus of the infected cell.  

After α and β gene expression, UL9 binds to specific elements in either oriL or oriS and begins 

to unwind the viral DNA.  UL9 then recruits the ssDNA binding protein ICP8 to the unwound 

portion of the viral DNA.  At this point, UL9 and ICP8 recruit the remaining five proteins to the 

replication forks.  The helicase–primase and viral DNA polymerase complexes assemble at each 

replication fork and initiate theta form replication.  Through an unknown mechanism, replication 

switches from theta form to the rolling circle form of replication, and UL9 is not required for 

rolling circle replication because it is not origin dependent.  The rolling circle replication forms 
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long head-to-tail concatamers of viral DNA, which become cleaved into individual units during 

packaging of viral DNA into capsids (Roizman and Knipe, 2001).  

 

Capsid Assembly and Packaging 

 After DNA replication has started, the γ proteins are transcribed, including the HSV-1 

capsid proteins.  First, empty shells containing an internal scaffold are assembled, with the 

internal scaffold lost upon viral DNA packaging into the capsid.  Then the mature capsid is able 

to proceed along the viral egress pathway.   At least some of the initial stages of capsid assembly 

occur in the cytoplasm of the infected cell (Nicholson et al., 1994; Rixon et al., 1996).  The 

major capsid protein (VP5), the outer tip of hexons (VP26), and a triplex protein (VP23) are not 

capable of nuclear localization on their own; however, VP5 can be carried into the nucleus by 

VP19C, another capsid triplex protein, or by pre-VP22a, a scaffolding protein.  VP23 localizes to 

the nucleus only in the presence of VP19C, while VP26 localizes to the nucleus only when it is 

expressed with both VP5 and VP19C or pre-VP22a (Nicholson et al., 1994; Rixon et al., 1996).  

Electron microscopic studies have shown that final envelopment occurs in the nucleus; and three 

types of capsids, called A, B, and C capsids have been identified by sucrose density gradient 

ultracentrifugation (Gibson and Roizman, 1972).  All three types of capsids are about 120 nm in 

diameter with an outer shell composed of hexons and pentons made up of VP5.  The individual 

capsomeres are linked by triplex structures consisting of VP19C and VP23, the two minor capsid 

proteins.  Each triplex consists of one molecule of VP19C and two molecules of VP23 

(Newcomb et al., 1993).  C-capsids are mature capsids that contain packaged viral DNA and can 

proceed to become infectious virions by budding through the nuclear membrane into the peri-

nuclear space (Perdue et al., 1976).  In contrast, A and B capsids lack viral DNA, but B capsids 
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are filled with VP22a and VP21, the cleaved scaffolding proteins, and a viral protease VP24 

(Gibson and Roizman, 1972; Newcomb et al., 1993).  The internal proteins VP22a, VP21, and 

VP24 are removed upon packaging of viral DNA to form C capsids (Davison, Rixon, and 

Davison, 1992; Gibson and Roizman, 1972).  A capsids do not contain viral DNA or scaffolding 

proteins and are believed to be an abortive result of failed attempts at DNA packaging. 

 In terms of the order of assembly, once in the nucleus, VP5-pre-VP22a complexes come 

together as a result of self assembly of pre-VP22a.  The triplex proteins VP19C and VP23 are 

then added to form a partial capsid.  As hexons and pentons are added, the structure assembles 

into a round procapsid (Newcomb et al., 1996). At his point, the procapsid undergoes a structural 

transformation and becomes polyhedral (Church and Wilson, 1997; Thomsen et al., 1995; Trus et 

al., 1996).  It is unknown at this time whether the round or polyhedral B capsids are the structure 

that viral DNA is packaged (Lee, Irmiere, and Gibson, 1988; Perdue et al., 1974; Trus et al., 

1996).  Encapsidation of viral DNA is a process in which unit length monomers of viral DNA are 

cleaved from concatamers and packaged into preformed B capsids, as originally shown for 

pseudorabies virus (Ladin, Blankenship, and Ben-Porat, 1980; Ladin et al., 1982).  Cleavage of 

concatamers occurs at specific sites and requires the pac1 and pac2 packaging signals (Deiss, 

Chou, and Frenkel, 1986; Smiley, Duncan, and Howes, 1990; Varmuza and Smiley, 1985).  The 

process of encapsidation of viral DNA into capsids is complex and requires several gene 

products, including the UL6, UL15, UL25, UL28, UL32, UL33, UL36 and UL37 gene products, 

but the mechanism of viral DNA packaging is not well defined (Roizman and Knipe, 2001). 
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Herpesvirus Egress 

 After encapsidation of genomic DNA, mature nucleocapsids acquire an primary envelope 

by budding through the inner nuclear membrane into the peri-nuclear space (Vlazny, Kwong, 

and Frenkel, 1982).  Two conserved herpesvirus proteins, UL31 and UL34 have recently been 

shown to be involved in the budding process.  UL34 is C-terminally anchored membrane protein 

present in the inner and outer nuclear membrane (Klupp, Granzow, and Mettenleiter, 2000), 

while UL31 is a nuclear phosphoprotein also present in the nuclear membrane of infected cells 

(Fuchs et al., 2002b; Reynolds et al., 2001).  The UL31 protein requires UL34 for proper nuclear 

targeting (Fuchs et al., 2002b), whereas the UL34 protein appears to possess an intrinsic nuclear 

targeting signal (Klupp, Granzow, and Mettenleiter, 2000).  However, the nuclear targeting of 

UL34 is increased by the presence of UL31 (Fuchs et al., 2002b; Reynolds et al., 2001).  

Analysis of UL31 and UL34 deletion mutants has indicated that the absence of either protein 

results in a drastic impairment in primary envelopment with capsids trapped within the nucleus  

(Chang et al., 1997; Fuchs et al., 2002b; Klupp, Granzow, and Mettenleiter, 2000; Reynolds et 

al., 2001; Roller et al., 2000).  In addition, partial dismantling of the nuclear lamina has been 

observed after HSV infection and may be required so that intranuclear capsids are able to gain 

access to the inner nuclear membrane (Scott and O'Hare, 2001).  Multiple lines of evidence 

indicate that UL31 and UL34 play a role in dismantling the nuclear lamina in infected cells.  

Over expression of the UL31 protein in uninfected cells was sufficient to relocalize lamin A/C 

from the nuclear rim into nucleoplasmic aggregates, while over expression of UL34 was 

sufficient to relocalize some lamin A/C into the cytoplasm (Reynolds, Liang, and Baines, 2004). 

More importantly, both UL31 and UL34 have been shown to directly bind lamin A/C, suggesting 

that the UL31 and UL34 proteins modify the conformation of the nuclear lamina in infected 
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cells, possibly by direct interaction with lamin A/C. Given that the nuclear lamina potentially 

excludes nucleocapsids from envelopment sites at the inner nuclear membrane, the lamina 

alteration may reflect a role of the UL31/UL34 protein complex in perturbing the lamina to 

promote nucleocapsid egress from the nucleus (Baines 2004).  It is unclear whether additional 

primary envelope and tegument proteins exist that are required for primary envelopment to take 

place.  The UL11 protein has been proposed to function in primary envelopment and increases 

the efficiency of envelopment at this step (Baines and Roizman, 1992b; MacLean et al., 1992).   

 

Egress from the Peri-nuclear Space: De-Envelopment  

 The subsequent steps in HSV-1 egress following primary envelopment have been in 

dispute for some time.  Two models were proposed to explain virion egress.  The first 

model, sometimes called the “lumenal” pathway (CH72 144), suggests that peri-nuclear virions 

retain their primary envelope and integrity as they leave the cell through the secretory pathway 

(Campadelli-Fiume et al., 1991; Darlington and Moss, 1968; Johnson and Spear, 1982; Johnson 

et al., 2001).  In this model, virion glycoproteins are modified in transit to the plasma membrane 

and peri-nuclear virions should contain the entire complement of tegument and envelope proteins 

present on mature extra-cellular virions.  The alternative model proposes that the primary 

envelope of peri-nuclear virions fuses with the outer nuclear lamellae, resulting in loss of the 

primary envelope and some tegument components and translocation of the capsid into the 

cytoplasm of the infected cells (Figure 1.7, step II) (Enquist et al., 1998; Mettenleiter, 2000).  In 

this “de-envelopment re-envelopment” pathway, final tegumentation and envelopment (re-

envelopment) occur in cytoplasmic compartments (Figure 1.7, step III).  In addition, in this 

model peri-nuclear and intracytoplasmic/extra-cellular virions should differ in composition.   
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Figure 1.7:  Representation of HSV-1 virion morphogenesis and egress. (I) Mature capsids 
budding through the inner nuclear membrane into the peri-nuclear space; (II) De-envelopment of 
peri-nuclear virions at the outer nuclear membrane; (III) Re-envelopment of cytoplasmic capsids 
by budding into cytoplasmic vesicles; (IV) Final egress to the extra-cellular space.  The steps at 
which UL20 and gK are thought to function in virion egress are indicated by red arrows.  Figure 
from (Melancon, 2003). 
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 There is evidence that supports both the “lumenal” and the alternative “de-envelopment 

re-envelopment” pathways.  However, the vast majority of recent evidence supports the “de-

envelopment re-envelopment” model of HSV-1 virus egress.  The first line of evidence 

supporting the alternative model is that primary envelope and primary tegument of peri-nuclear 

virions clearly differ in ultra-structural appearance from the final envelope and final tegument of 

extra-cellular virions when observed by electron microscopy (Gershon et al., 1994; Granzow et 

al., 2001).  In addition, while UL31 and UL34 localize on nuclear membranes and peri-nuclear 

virions, the UL31 and UL34 proteins were not detected in extra-cellular virions (Reynolds et al., 

2002).  In further support, the major tegument proteins UL46 and UL49 are present in 

intracytoplasmic/extra-cellular virions but absent from peri-nuclear virions (Klupp, Granzow, 

and Mettenleiter, 2000; Mettenleiter, 2002).  Also, the phospholipid composition on the final 

virion envelope differs substantially from the composition of the nuclear membrane, explained 

only by a two-step envelopment model of HSV virion egress (van Genderen et al., 1994).  

Electron microscopic analysis has also demonstrated the fusion of primary envelopes with the 

outer nuclear membrane with many herpesviruses including HSV-1 (Granzow et al., 2001; 

Harms et al., 2000).  As a result, the two-step “de-envelopment re-envelopment” model of virion 

egress is congruent with both biochemical and morphological data and constitutes a unified 

model for the morphogenesis of herpesviruses (Mettenleiter, 2002). 

 The mechanism of virion de-envelopment from the peri-nuclear space is unclear.  

Deletion of the major glycoproteins involved in other membrane fusion events does not affect the 

de-envelopment process as indicated by multiple studies (Cai et al., 1987; Granzow et al., 2001; 

Jayachandra, Baghian, and Kousoulas, 1997; Steven and Spear, 1997).  It is possible that these 
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glycoproteins function in a redundant manner, and that only deletion of multiple genes encoding 

glycoproteins would have an observable effect on virion de-envelopment at the outer nuclear 

membrane. 

 

Tegumentation in the Cytoplasm 

 While the complexity of the herpesvirus capsid is not much different than that of other 

icosahedral viral capsids such as the picornavirus capsid, the complexity of the herpesvirus 

tegument is drastically increased.  At least 15 proteins have been identified that are part of the 

HSV-1 tegument.  Even more proteins make up the tegument of other herpesviruses such as 

VZV or CMV (Gibson, 1996; Spengler et al., 2001).  Recent data indicate that tegumentation 

follows an intricate pattern of protein-protein interactions that contains significant levels of 

redundancy built in, at least as observed in cell culture (Mettenleiter, 2002).  The tegument 

proteins interact with the capsid on one side and the viral envelope proteins on the other side in 

order to link the structural components to the final envelope of the HSV-1 virion and to secure 

the integrity of the virus particle (Figure 1.7) (Mettenleiter, 2002).  For a long time the 

herpesvirus tegument was considered unstructured; however, cryoelectron microscopic analysis 

has indicated that at least the innermost portion of the tegument located adjacent to the capsid 

exhibits icosahedral symmetry, resulting from the interaction of a large tegument protein, 

presumably UL36, with the pentons of the capsid (Zhou et al., 1999).  The UL36 gene product 

has been shown to interact with the major capsid protein VP5, which forms both the pentons and 

hexons (Machtiger et al., 1980; McNabb and Courtney, 1992; Newcomb et al., 1993).  So, it 

appears that the first layer of tegument around the capsid is structured and composed of UL36.  

UL37 has been shown to interact with UL36 in co-immunoprecipitation and yeast two-hybrid 
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experiments, and capsids that accumulate in the absence of UL37 contain UL36 (Klupp et al., 

2002). UL36 and UL37 appear to be the only tegument proteins conserved in all herpesvirus 

subfamilies, and the absence of the HSV-1 UL36 and UL37 proteins abolishes virus maturation 

(Desai et al., 2001; Desai, 2000; Klupp et al., 2001).  Unfortunately, the subsequent steps in 

capsid tegumentation are still largely undefined.  Virion morphogenesis still proceeds in the 

absence of several other tegument proteins, including UL13, US3 (Purves et al., 1987), UL41, 

UL46, UL47 (Rafield and Knipe, 1984; Roizman and Knipe, 2001), and UL49 (Mettenleiter, 

2002).  So far the most dramatic effect has been seen upon deletion of UL48 (α-TIF), which is 

responsible for transducing α gene promoters and makes up a major part of the virus tegument 

(Batterson and Roizman, 1983; Heine et al., 1974).  The absence of UL48 may interfere with a 

later step in virion assembly, presumably affecting tegumentation and re-envelopment in the 

cytoplasm (Mossman et al., 2000).  Interestingly, UL48 has been shown to interact with other 

tegument components, UL49 and UL41 (VHS) (Smibert et al., 1994).  Mutant forms of UL41 

that do not bind UL48 do not become incorporated into the virion (Read, Karr, and Knight, 

1993).  Cross-linking studies have indicated that UL48 may interact with gB, gD, and gH (Zhu 

and Courtney, 1994), although these interactions have not been confirmed through more 

stringent methods. 

 

Final Envelopment and Egress to Extra-cellular Spaces 

Following tegumentation in the cytoplasm, HSV-1 capsids bud into cytoplasmic vesicles 

derived from the trans-Golgi Network (TGN) or endosomes, acquiring their final envelope 

(Figure 1.7, step III). Although the mechanism of secondary envelopment is not well defined, the 

study of mutants that contain deletions of certain glycoproteins has shed light on some 
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requirements of the final envelopment event. By far the most dramatic effect on secondary 

envelopment and final egress is caused by the deletion of either UL20 or gK, and ultra-structural 

study of UL20-null and gK-null infected cells reveals a dramatic accumulation of un-enveloped 

and aberrantly enveloped capsids in the cytoplasm of infected cells with a marked absence of 

extra-cellular virus.  With regard to gK-null and UL20-null virus titers, there is also a 

corresponding lack of infectious virus in the supernates of infected cells, with close to wild-type 

levels of intracellular virus (Foster et al., 2004b; Jayachandra, Baghian, and Kousoulas, 1997).  

The ultra-structural phenotypes of UL20-null and gK-null viruses are covered in more detail in 

Chapter III and Chapter IV.  Following the final envelopment step, nascent virions must still 

egress to extra-cellular spaces.  The current belief is that cellular transport machinery is utilized 

in this step, although the mechanisms are unclear.  It is apparent that the late stages in viral 

egress may differ depending on the cell type that is infected.  For example, deletion of gE and gI, 

which have been shown to interact and form a complex, does not impair productive replication of 

HSV-1 (Enquist et al., 1998).  However, in polarized epithelial cells, wild-type HSV-1 virions 

are sorted predominantly to cell junctions, while gE/gI null virions are non-specifically released 

into supernatants (Dingwell and Johnson, 1998).   Delivery of virus particles to cell junctions 

would be expected to enhance virus spread and enable viruses to avoid host immune defenses. 

 Deletion of multiple genes encoding envelope glycoproteins has revealed that certain 

aspects of final envelopment and egress may feature redundant mechanisms, each of which is 

sufficient for function, at least in cell culture.  For instance, while neither gE/gI or gM is required 

for productive replication in PrV or HSV-1, simultaneous deletion of gE/gI and gM results in 

drastic inhibition of plaque formation and replication in PrV (Brack et al., 1999).  In addition, 

simultaneous deletion of UL11 and gM resulted in similar egress defect in PrV (Kopp et al., 
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2004).  In contrast, simultaneous deletion of gE/gI and gM does not have a major effect in HSV-

1 (Browne, Bell, and Minson, 2004); however, a triple mutant lacking gD, gE, and gI had a 

severe defect in the final envelopment step. The authors proposed that HSV gD and the gE/gI 

heterodimeric complex act in a redundant fashion to anchor the virion envelope onto tegument-

coated capsids (Farnsworth, Goldsmith, and Johnson, 2003).  In contrast, it is also possible that 

deletion of multiple glycoproteins indirectly disrupts the integrity of many different protein-

protein interactions required for the final envelopment step and that the resulting phenotype 

results from the compounded effects of an abnormal glycoprotein profile.  More study of the 

reason for defects in double and triple-null viruses is required before conclusions can be drawn 

regarding mechanisms of final envelopment. 

 

Formation of Light (L) Particles 

The presence of egressing capsids in the cytoplasm is not required for tegument assembly 

and subsequent envelopment to take place.  The formation of extra-cellular herpesvirus light (L) 

particles that lack capsids, consist of only tegument and envelope, and are formed independent of 

normal virus maturation have been thoroughly studied in HSV-1 (McLauchlan and Rixon, 1992; 

Rixon, Addison, and McLauchlan, 1992).  L particles appear to contain the full complement of 

tegument proteins as well as an authentic envelope containing all appropriate glycoproteins.  

Studies of PrV have shown that L particle formation occurs in the absence of UL36 and UL37, 

which are tegument components that are critical for capsid tegumentation.  It is possible that 

normal tegumentation may be centered on UL36 and UL37 interactions with the capsid and that 

UL49 may be required for proper interactions with viral glycoproteins in the final budding and 
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envelopment steps.  In the absence of capsids, tegument assembly could proceed anchored on 

UL49, resulting in the formation of L particles (Mettenleiter, 2002). 

 

HSV-1 Glycoproteins and Their Putative Functions 

 

Glycoprotein B (UL27) 

 The HSV-1 UL27 gene encodes the 904 aa glycoprotein B (gB). gB is highly conserved 

across all subfamilies of herpesviruses.  HSV-1 gB is homotrimeric (aa) type I membrane 

glycoprotein composed of a 696-aa ectodomain that is N-glycosylated at multiple sites 

(Claesson-Welsh and Spear, 1986; Claesson-Welsh and Spear, 1987; Highlander et al., 1991; 

Laquerre, Person, and Glorioso, 1996; Spear, 1993b; Whitley, 2001), a 69-aa transmembrane 

domain, and a 109-aa carboxyl-terminal domain. The cytoplasmic domain of gB is the longest 

among HSV-1 glycoproteins, implying a crucial role for this domain in gB-mediated functions.  

A variety of evidence indicates that gB plays important roles in membrane fusion phenomena 

during virus entry and virus-induced cell fusion: HSV-1 mutant viruses lacking gB are not able 

to enter into cells (Cai et al., 1987) due to a post-attachment defect that can be resolved by 

polyethylene glycol mediated fusion of viral envelopes with cellular membranes (Cai, Gu, and 

Person, 1988); Single amino acid substitutions and truncations of the carboxyl terminus of gB 

cause extensive virus-induced cell fusion (Baghian et al., 1993; Bzik et al., 1984; Cai et al., 

1988; Gage, Levine, and Glorioso, 1993); Transient co-expression of gB with gD, gH and gL 

causes cell-to-cell fusion, which is substantially increased by carboxyl terminal truncations of gB 

(Foster, Melancon, and Kousoulas, 2001; Haan, Lee, and Longnecker, 2001; Klupp, Nixdorf, and 

Mettenleiter, 2000; Pertel, 2002). Recent evidence suggests that these glycoproteins act in a 
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sequential manner, with gD being involved in Phase I, gH/L in Phase II, and gB in Phase III 

(Gianni, Forghieri, and Campadelli-Fiume, 2006; Subramanian and Geraghty, 2007).  The crystal 

structure of HSV-1 gB has been recently solved, revealing a remarkable homology to vesicular 

stomatitis virus (VSV) gB.  In addition to homology with VSV gB, two domains that indicate 

HSV-1 gB is intricately involved in virus cell fusion were identified: an alpha-helical coiled-coil 

core reminiscent of class I fusion proteins, and two extended beta hairpins with hydrophobic tips 

which are indicative of class II fusion proteins (Heldwein et al., 2006).  Subsequent mutagenesis 

studies on HSV-1 gB showed that hydrophobic tips of the loops were vital for proper HSV-1 gB 

function (Hannah et al., 2007). 

 

Glycoprotein C (UL44) 

 The 1,536 bp HSV-1 UL44 gene encodes for the 511 aa long precursor of glycoprotein C 

(gC) (Frink et al., 1983).  gC contains a 25 aa signal sequence at the N-terminus, a long 453 aa 

extra-cellular domain, a 23 aa transmembrane anchoring domain, and a short 10 aa C-terminal 

cytoplasmic tail (Homa et al., 1986).  The first contact of virions with the surface of susceptible 

cells is through glycosaminoglycans (GAGs).  gC can mediate the initial binding of HSV-1 virus 

to a cell surface GAG, heparan sulfate (HS). The heparan sulfate binding site of gC has been 

localized to the N-terminal 120 aa (Tal-Singer et al., 1995).  The aminoglycoside neomycin 

interferes with the binding of virus to HS mediated by gC (Herold et al., 1994).  Although gC is 

dispensable for the infection of cultured cells, its presence can increase the efficiency of virus 

binding almost 10-fold, at least for HSV-1.  The main function of gC binding to GAGs seems to 

be concentration of the virus on cell surfaces, enabling the more stable interaction of gD with an 

entry receptor. 
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Another important function of gC is its ability to inactivate complement to facilitate 

immune evasion by HSV-1.  The gC of many herpesviruses has the ability to bind C3b 

(Eisenberg et al., 1987; Friedman et al., 1984; Huemer et al., 1993; Huemer et al., 1995).  The 

presence of gC protects the virus and infected cell from antibody (Ab)-independent complement 

neutralization and cell lysis (Lubinski et al., 1999; Lubinski et al., 1998), antibody dependant 

complement neutralization (Hook et al., 2006), and is an important virulence factor in vivo 

(Isaacs, Kotwal, and Moss, 1992; Kotwal et al., 1990; Sahu et al., 1998).  HSV-1 mutant viruses 

lacking gC are rapidly inactivated by human complement, resulting in up to a 5000 fold loss of 

titer (Friedman et al., 1996).  While Ab is not required for neutralization of a gC null virus, the 

presence of Ab enhances neutralization (Friedman et al., 1996; Harris et al., 1990). 

An unresolved issue regarding gC function is the relationship of gC to virus-induced 

syncytia formation.  Several spontaneously arising syncytial virus strains were found to be gC-

deficient.  In particular the MP strain variant MP10311 contains a syncytial mutation in gK and 

is gC-deficient (Bartoletti et al., 1985).  In general, the syncytial phenotype of these strains was 

found to be more effectively expressed in the absence of gC, especially in Hep-2 cells (Bond, 

Person, and Warner, 1982; Goodman and Engel, 1991; Manservigi, Spear, and Buchan, 1977; 

Pertel and Spear, 1996; Tognon et al., 1984).  One possible explanation of the enhancement of 

the syncytial phenotype is that in the absence of gC, because extra-cellular virus does not bind to 

cell surfaces as rapidly, virus-induced cell fusion acts as the preferential method of cell-to-cell 

spread of HSV-1.   
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Glycoprotein D (US6) 

 The 1182 bp long US6 gene specifies a 394 aa precursor to glycoprotein D (gD).  gD 

consists of a 25 aa signal peptide, a long 315 aa ectodoamin containing three glycosylation sites 

(McGeoch et al., 1985; Watson et al., 1982), a 22 aa transmembrane domain, and a 32 aa C-

terminal cytoplasmic domain (Minson et al., 1986).  The ectodomain of gD has 6 cysteine 

residues at positions 66, 106, 118, 127, 189, 202 forming disulfide bonds (Long et al., 1992). 

Importantly, gD has been shown to act as the viral ligand for all known HSV-1 entry receptors 

(Spear, Eisenberg, and Cohen, 2000).  As a result, gD is absolutely required for virus entry and 

virus-induced cell-to-cell fusion to occur. As discussed earlier, HSV-1 gD has the ability to bind 

HVEM, nectin-1, nectin-2, and other cell surface receptors to mediate virus entry.  In addition, 

cells that express gD are resistant to HSV infection in a dose-dependent manner due to a 

saturation of the corresponding entry receptors (Campadelli-Fiume et al., 1988; Johnson, Burke, 

and Gregory, 1990).  X-ray structures of HSV-1 gD alone and in complex with HVEM revealed 

that a portion of gD assumes an Ig-like fold with unconventional disulfide-bonding patterns 

(Carfi et al., 2001). There is an N-terminal extension from the Ig-like fold that forms a hairpin 

loop in the complex with HVEM but is disordered in the crystals of gD alone. The contacts in gD 

for HVEM have been localized to amino acids 7 to 15 and 24 to 32 within the N-terminal hairpin 

(Spear and Longnecker, 2003). Mutagenic analysis of HSV-1 gD revealed that the first 32 amino 

acids of the N-terminal extension have a critical role in functional interactions of gD with all the 

HSV entry-fusion receptors, except for nectin-1, and that the amino acid sequence within this 

region governs whether nectin-2 can be recognized as an entry and fusion receptor (Yoon et al., 

2003; Zago and Spear, 2003).   
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Glycoproteins E (US8) and I (US7) 

 The 1652 bp long US8 gene encodes the 550 aa glycoprotein E (gE) (Lee, Para, and 

Spear, 1982), while the 1172 bp long US7 gene encodes 390 aa glycoprotein I (gI) (Longnecker 

et al., 1987).  HSV, VZV, and PrV express a heterodimer of gE and gI that functions to mediate 

cell-to-cell spread in epithelial and neuronal tissues (Balan et al., 1994; Card et al., 1992; Cohen 

and Nguyen, 1997; Dingwell et al., 1994; Dingwell and Johnson, 1998; Jacobs et al., 1993; 

Johnson and Feenstra, 1987; Johnson et al., 1988; Kimura et al., 1998; Kritas, Pensaert, and 

Mettenleiter, 1994; Kudelova et al., 1991; Mettenleiter et al., 1987b; Mulder et al., 1994; 

Neidhardt, Schroder, and Kaerner, 1987; Polcicova et al., 2005; Tirabassi and Enquist, 1998; 

Tirabassi et al., 1997; Whealy et al., 1993). HSV and PRV gE/gI complexes are required for 

efficient spread of viruses between certain cultured epithelial cells, neurons, and other polarized 

cells with extensive cell junctions but are not needed for spread between highly transformed, 

nonpolarized cells, such as Vero or HeLa cells, which do not form cell junctions (Dingwell et al., 

1994; Dingwell, Doering, and Johnson, 1995; Mettenleiter et al., 1987a; Tirabassi et al., 1997; 

Wisner et al., 2000; Zsak et al., 1992). For example, plaques formed by a gE-negative HSV 

mutant on monolayers of a keratinocyte cell line included eightfold fewer cells than plaques 

produced by wild-type HSV-1, yet there was no difference in cell-to-cell spread in monolayers of 

HeLa cells (Wisner et al., 2000). Moreover, PRV and HSV gE/gI complexes are required for 

spread within synaptically connected neuronal circuitry in the peripheral and central nervous 

systems (Babic et al., 1996; Dingwell, Doering, and Johnson, 1995; Mulder et al., 1994; 

Tirabassi and Enquist, 1998; Tirabassi et al., 1997; Whealy et al., 1993). gE and gI are 

extensively complexed in virus-infected cells (Johnson and Feenstra, 1987; Johnson et al., 1988), 

and it is the gE/gI complex that functions in cell-to-cell spread (Dingwell et al., 1994; Dingwell, 
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Doering, and Johnson, 1995; Johnson and Feenstra, 1987; Johnson et al., 1988; Olson and Grose, 

1998; Tirabassi et al., 1997; Zuckermann et al., 1988). In contrast to their effects on cell-to-cell 

spread, HSV and PRV gE/gI complexes do not appear to be required for entry of cell-free virus, 

i.e., virus particles applied to the apical surfaces of cells (Dingwell et al., 1994; Mettenleiter et 

al., 1987a).  HSV-1 gE/gI localizes specifically to the TGN during early phases of infection but 

moves out to cell junctions at intermediate to late times.  One mechanism by which gE/gI 

facilitates cell-to-cell spread of HSV-1 involves the sorting of newly assembled virions to lateral 

cell surfaces and cell junctions.  Mutant HSV-1 lacking gE accumulated more extensively in the 

cytoplasm, at apical cell surfaces, and in cell culture supernatants than did wild-type HSV-1 

particles, which were found predominantly at cell junctions (Alconada et al., 1999; Kimura et al., 

1998).  

 The gE/gI complex is also known as the HSV Fc Receptor (FcR) because of its high 

affinity for the Fc portion of IgG.  Through binding of the Fc portion of IgG, the gE/gI complex 

contributes to the immune evasion capabilities of HSV-1, reducing the effectiveness of antibody-

dependent cellular cytotoxicity (ADCC) targeting the virus and infected cells (Eberle et al., 

1995). 

 

Glycoprotein G (US4) 

 The 716 bp long US4 gene encodes the 238 aa glycoprotein G (gG).  During infection, 

gG is incorporated into nuclear and cytoplasmic membranes in the cell (Frame, Marsden, and 

McGeoch, 1986; Sullivan and Smith, 1987).  The relevant function of gG in the herpesvirus life 

cycle has been difficult to identify. Mutant HSV-1 lacking US4 showed no discernible 

phenotypic abnormalities relative to the wild-type HSV-1 virus in non-polarized cells in culture, 
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and the absence of gG resulted in only marginal attenuation of the virus in certain in vivo models 

(Atkinson, Barr, and Timbury, 1978). However, at the primary site of infection, HSV-1 is 

required to infect the apical surfaces of mucosal epithelial cells.  Recombinant viruses lacking 

gG were shown to be defective in the gC-dependent infection of the apical surfaces of polarized 

epithelial cells in culture and also in infection of the apical surfaces of corneal epithelial cells in 

vivo (Tran et al., 2000).  It is not known whether the gG function in infection is mediated in a 

cooperative manner with gC, whereby gG would assist with gC binding, or in an independent 

manner, whereby gG would be necessary in a second step that renders the gC interaction 

irreversible. 

 

Glycoproteins H (UL22) and L (UL1) 

 The 2517 bp UL22 gene encodes the 838 aa glycoprotein H (gH).  gH is a type I 

membrane glycoprotein containing an 18 aa signal peptide, a long 785 aa ectodomain, a single 

21 aa transmembrane hydrophobic domain close to the C-terminus, and a 14 aa C-terminal 

cytoplasmic tail.  The 675 bp UL1 gene encodes the 224 aa glycoprotein L. gL contains a 25 aa 

signal peptide; however, unlike other herpesvirus glycoproteins, gL does not contain a 

transmembrane domain.  It appears that gL is not an integral membrane protein; rather, its 

membrane association and incorporation into virus particles is dependent on its interaction with 

gH (Dubin and Jiang, 1995).  Infected cell membranes contain a heterodimer of gH and gL 

(gH/gL).  When gH is expressed in transfected cells in the absence of gL, the resulting gH 

polypeptide is neither folded nor processed correctly.  The malformed gH remains in the 

endoplasmic reticulum and undergoes self-aggregation (Foa-Tomasi et al., 1991; Forrester et al., 

1991; Roberts et al., 1991).  Similarly, cells infected with a gL-null virus do not produce virions 
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containing gH.  When cells are infected with a gH-null virus, gL is neither correctly processed 

nor incorporated into the plasma membrane or viral envelope (Hutchinson et al., 1992a; Roop, 

Hutchinson, and Johnson, 1993).  Due to the lack of a transmembrane region, the gL polypeptide 

is secreted into the medium (Dubin and Jiang, 1995).  When both UL22 and UL1 are co-

transfected into cells, the antigenic conformation of the gH/gL heterodimer is identical to that of 

virus infected cells, indicating that no other viral proteins are necessary for heterodimer 

formation.  The mutual interaction of both glycoproteins is mediated by the N-terminal region of 

the first 69 aa of gL after cleavage of the 25 aa signal peptide (Roop, Hutchinson, and Johnson, 

1993), while gH interacts through a central region of the its extra-cellular domain.  C-terminal 

cysteine residues are required for proper gH/gL function; however the N-terminal cysteines, 

which are located within the putative gH/gL binding site are not required for gH/gL interaction 

or function (Cairns et al., 2005).A properly formed gH/gL heterodimer is required for both virus 

entry and virus-induced cell-to-cell fusion.  Although viruses lacking gH/gL are unable to enter 

cells, they are able to attach to the cell surface. Therefore, the role of gH/gL in virus entry is in 

during the virus envelope-plasma membrane fusion event and not required for virion attachment 

or receptor binding.  An interesting result concerning the mechanism of gH/gL functions was 

obtained when using anti-gL mAbs directed to the C-terminal portion of gL.  Certain mAbs 

inhibited virus-induced cell-to-cell fusion resulting from syncytial mutations but not virus entry, 

indicating a fundamentally different mechanism may be at work in the two processes (Novotny, 

Parish, and Spear, 1996). 
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Glycoprotein J (US5) 

 The 279 bp US5 gene encodes the 92 aa glycoprotein J (gJ) (Ghiasi et al., 1998).  gJ 

contains a predicted signal peptide as well as a hydrophobic transmembrane domain.  The 

current function of gJ is unknown.  Deletion viruses that lack the US5 ORF show no phenotypic 

deficiencies either in vitro or in vivo (Balan et al., 1994).  More specifically, a gJ-null HSV-1 

was capable of multiplying from an inoculation site in mice and entering and replicating in the 

peripheral and central nervous system (Balan et al., 1994).  However, it has been shown that 

another gene in the unique long (UL) region of the viral genome, UL27.5, has amino acid 

sequences common to US5.  UL27.5 was discovered due to the fact that antibodies generated 

against the 23 kDa gJ cross reacted with an unknown 43 kDa product (Chang et al., 1998).  In 

contrast to gJ, UL27.5 accumulates in the cytoplasm of infected cells; nevertheless, it may be 

possible that UL27.5 and gJ could function redundantly and an observable change in phenotype 

would not be seen unless both US5 and UL27.5 were disrupted. 

 

Glycoprotein K (UL53) 

 The 1017 bp UL53 gene encodes the 338 aa precursor of glycoprotein K (gK) (Debroy, 

Pederson, and Person, 1985; Pertel and Spear, 1996).  gK contains a cleavable 30 aa signal 

sequence as well as two asparagine residues at positions 48 and 58 that are glycosylated by N-

linked mannose (Hutchinson et al., 1992b; Ramaswamy and Holland, 1992).  gK is extremely 

hydrophobic and was originally proposed to contain four transmembrane domains, with both the 

N-terminus and C-terminus predicted to lie on the lumenal/extra-cellular side of cellular 

membranes (Debroy, Pederson, and Person, 1985).  In contrast, experiments with in vitro 

translated gK in the presence of microsomal membranes predicted gK to contain three 
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transmembrane domains, with the C-terminal tail located intracellularly (Debroy, Pederson, and 

Person, 1985; Mo and Holland, 1997; Ramaswamy and Holland, 1992).  However, recent 

experiments by our laboratory utilizing epitope tags inserted into specific regions of gK 

confirmed the original prediction for the membrane topology of gK (Foster, Alvarez, and 

Kousoulas, 2003).  

 Original attempts to isolate gK-deficient viruses through substitution of UL53 with the 

lacZ gene were unsuccessful and it was determined that gK was essential for HSV replication in 

vivo (MacLean et al., 1991).  A subsequent attempt at the isolation of a F-strain gK-null virus 

was successful, resulting in an insertion-deletion mutation in gK that expressed a fusion protein 

containing the N-terminal 112 aa of gK.  The aberrant virions were significantly less infectious 

and did not reach the extra-cellular space, with a high number of naked capsids and aberrant 

virions in the cytoplasm (Hutchinson and Johnson, 1995).  Furthermore, cells infected with the F 

strain gK-null virus caused cell fusion in 143TK- cells.  However, a KOS strain containing a 

more precise deletion of the UL53 gene resulted in a slightly different phenotype (Jayachandra, 

Baghian, and Kousoulas, 1997).  While the egress of virions in the KOS gK-null virus was still 

severely impaired relative to a wild-type virus, the KOS gK-null did not cause cell fusion in 

143TK- cells.  A KOS virus that was constructed to mirror the F strain insertion-deletion resulted 

in syncytia formation in 143TK- cells, so the syncytial phenotype of the “gK-null” viruses was 

attributed to the expression of the N-terminal 112 aa of gK (Jayachandra, Baghian, and 

Kousoulas, 1997).  Importantly, a precise insertion-deletion gK mutation recently constructed in 

an F-strain BAC was not syncytial and showed a similar egress defect, confirming previous 

results (Melancon et al., 2005). 



55 
 

Studies of gK localization in infected cells had previously shown that gK was exclusively 

localized in the peri-nuclear spaces and contained unprocessed carbohydrates added in the rough 

endoplasmic reticulum, indicating that gK was not transported to the golgi complex and never 

reached the cell surface (Hutchinson, Roop-Beauchamp, and Johnson, 1995).  Interestingly, 

while spontaneous mutations leading to syncytia formation can arise in UL20 (Baines et al., 

1991; MacLean et al., 1991), UL24 (Jacobson, Martin, and Coen, 1989; Sanders, Wilkie, and 

Davison, 1982), UL27 (gB) (Bzik et al., 1984; Pellett et al., 1985), and UL53 (gK) (Bond and 

Person, 1984; Debroy, Pederson, and Person, 1985; Pogue-Geile et al., 1984; Ruyechan et al., 

1979), a large majority of syncytial mutations map to the UL53 (gK) gene.  The number of 

syncytial mutation found in gK would seem to be at odds with data indicating that gK never 

reaches the surface of infected cells; however, data obtained in our laboratory utilizing viruses 

engineered to contain epitope tags in the putative extra-cellular domains of gK indicates that gK 

does indeed reach the surface of infected cells, resolving the paradox of how gK could 

potentially function in virus induced cell-to-cell fusion (Foster, Alvarez, and Kousoulas, 2003).  

In transiently transfected cells, gK localized in the ER and did not reach the cell surface.  It was 

originally reported for PrV that gK is not correctly processed in a UL20 deletion mutant, and that 

coexpression of gK and UL20 restored gK processing at least partially (Dietz et al., 2000).  In 

support of these original findings, our laboratory showed that coexpression of gK and UL20 in 

transfected cells restored the transport of gK to cell surfaces (Foster, Alvarez, and Kousoulas, 

2003).  Nevertheless, while coexpression of UL20 also restored the transport of syncytial gK 

genes in transfected cells, syncytia formation did not result in these experiments, indicating that 

additional viral proteins are needed to activate the membrane fusion potential of gK (Foster, 

Alvarez, and Kousoulas, 2003). 



56 
 

Glycoprotein M (UL10) and Glycoprotein N (UL49.5) 

 The 1422 bp UL10 gene encodes the 473 aa glycoprotein M (gM), which contains eight 

predicted hydrophobic transmembrane regions (Babic et al., 1996; Baines and Roizman, 1993). 

gM is a component of the virion envelope and is present in the cytoplasmic membranes of 

infected cells (MacLean, Robertson, and Jamieson, 1993).  However, recent evidence suggests a 

role for gM in nuclear egress (Baines et al., 2007).  Viruses deficient in the expression of gM 

exhibit a 10 to 20 fold reduction in virus titers in Vero or BHK cells and form slightly smaller 

plaques (MacLean et al., 1991; MacLean, Robertson, and Jamieson, 1993).  The 276 bp UL49.5 

(UL49A) gene encodes a 91 aa integral membrane protein (Baines and Roizman, 1993). The 

UL49.5 polypeptide contains a 23 aa cleaved signal peptide and a C-terminal hydrophobic 

transmembrane domain (Barnett et al., 1992).  There are also potential sites for O-glycosylation, 

leading to the naming of UL49.5 as glycoprotein N (gN) in some cases.  In PrV, the UL49.5 

homolog was found to be O-glycosylated and incorporated into virions as a 14kDa envelope 

protein (Jons et al., 1996).  However, the UL49.5 gene product showed no evidence of 

glycosylation in HSV-1 infected cells, and appeared to be abundantly present in virions, linked to 

the tegument by disulfide bonds (Adams et al., 1998).  While initial attempts at deletion of 

UL49.5 were unsuccessful and indicated the possibility that UL49.5 was required for virus 

replication (Barker and Roizman, 1992), a more recent attempt utilizing a more precise deletion 

resulted in a UL49.5-deficient virus that showed no phenotypic differences in plaque yield or 

morphology and only a marginal two-fold difference in virus yield (Adams et al., 1998). 

 gM and UL49.5 (gN) are conserved throughout alpha, beta-, and gammaherpesviruses 

and have been shown to form a complex in a number of herpesviruses analyzed to date (Jons, 

Dijkstra, and Mettenleiter, 1998; Koyano et al., 2003; Lake, Molesworth, and Hutt-Fletcher, 
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1998; Mach et al., 2000; Wu, Zhu, and Letchworth, 1998).  The PrV gM has been shown to act 

as an inhibitor of cell fusion resulting from cotransfection of either the PrV gB, gD and gH/gL or 

the F protein of bovine respiratory syncytial virus, indicating a general mechanism of fusion 

inhibition by gM (Klupp, Nixdorf, and Mettenleiter, 2000). While no definitive interaction 

between has been shown between the HSV-1 gM and UL49.5, an enhancement of function has 

been demonstrated when both are present, inasmuch as cotransfection of the HSV-1 gM and 

UL49.5 significantly inhibited cell fusion caused by the HSV-1 gB, gD and gH/gL or the 

Molony murine leukemia virus envelope protein, while transfection of the HSV-1 gM alone did 

not inhibit membrane fusion (Koyano et al., 2003).  A requirement of both gM and gN for 

inhibition of cell fusion was also shown for HHV-8 (Koyano et al., 2003).  At this point in time, 

the mechanism by which gM and UL49.5 mediate inhibition of cell-to-cell fusion is unknown. 

 

Characterization of the UL20 Protein 

 

The UL20 ORF 

 The UL20 open reading frame is situated between the UL19 gene and the recently 

confirmed UL20.5 gene in the unique long region of the HSV-1 genome.  UL20 is expressed as a 

γ1 (late) gene that does not require viral DNA replication for expression (Ward et al., 1994), and 

is conserved in the alphaherpesviruses. 

 

Membrane Topology of UL20p 

 Based on its predicted amino acid sequence, the UL20 protein was suggested to be an 

integral membrane protein containing two or three hydrophobic transmembrane domains 



58 
 

(McGeoch et al., 1988).  However, when the hydrophobic and membrane-spanning domains of 

UL20p were calculated by using the TMPred and SOSUI computer algorithms (Hirokawa, Boon-

Chieng, and Mitaku, 1998; Hofmann and Stoffel, 1993) and used to derive a predicted membrane 

spanning model of UL20p, four hydrophobic regions were predicted, with no predicted signal 

peptide. This putative UL20p model features four membrane spanning regions, placing both the 

66 amino acid amino terminus and the 14 amino acid carboxyl terminus of UL20p within the 

cytoplasm (domains I and V). In addition, a third small 10 amino acid domain is predicted to be 

located intracellularly (domain III), while the two other domains are predicted to be located 

extracellularly (domains II and IV).  Domain II is predicted to contain 7 amino acids, while 

domain IV is predicted to contain 32 amino acids.  As the largest extra-cellular domain, domain 

IV holds the best chance for interactions with the extra-cellular portions of other membrane 

proteins.  This predicted model of the UL20p membrane topology has been partially confirmed 

in our laboratory with FLAG epitope tags located either on the N-terminus of UL20p, shown to 

be intracellular, or inside of domain IV, shown to be present on the extra-cellular/lumenal side of 

cellular membranes (Foster et al., 2004c). 

 

Interdependence With gK for Transport 

 Initial reports on the cellular localization of the UL20 protein indicated that it was not 

expressed at the cell surface but was present in virions purified from extra-cellular fluid and from 

the cytoplasm. The UL20 protein was found to be present in the nuclear membranes, in the Golgi 

apparatus, and dispersed in the cytoplasm, but was not detected in the plasma membranes of 

infected cells (Ward et al., 1994).  In contrast, recent experiments performed by our laboratory 

show that independently expressed gK or UL20p failed to be transported from the ER in Vero 



59 
 

cells. Similarly, infection of Vero cells with either a gK-null or UL20-null virus resulted in ER 

entrapment of UL20p or gK, respectively.  In contrast, transiently coexpressed gK and UL20p 

predominantly localized to the TGN, and TGN-localized gK and UL20p were shown to originate 

from internalized gK and UL20p expressed at cell surfaces.  In all experiments, UL20p and gK 

were seen to colocalize, consistent with the hypothesis that gK and UL20p directly interact and 

that this interaction is important for their TGN localization and function in the virus life cycle 

(Foster et al., 2004c). 

 

Function of UL20p in the HSV-1 Lifecycle 

 The original description of the role of UL20p in the virus life cycle was predicated on the 

observation that an F-strain UL20-null virus, R7225, had a peri-nuclear block in virus egress, 

resulting in a large accumulation of virions between the inner and outer nuclear lamellae as well 

as an abnormal level of un-enveloped capsids in the cytoplasm.  In addition, the R7225 virus 

formed small syncytia on 143TK- cells (Baines et al., 1991).  However, at the time it was 

unknown that the UL20.5 gene was located adjacent to UL20, and the R7225 virus contains an 

aberrantly fused gene consisting of the 5’ half of the UL20.5 ORF and the 3’ half of the UL20 

gene.  As such, it was unknown whether or not the description of the UL20-null phenotype could 

be attributed to the aberrant gene.  To resolve the true phenotype of an HSV-1 virus lacking the 

UL20 gene, our laboratory constructed an insertion-deletion mutation into the HSV-1 KOS-strain 

UL20 gene that consisted of removal of the 5’ region of the UL20 ORF, while maintaining the 

integrity of both the UL20.5 gene and the promoter for the major capsid protein, UL19.  In 

accordance with the R7225 virus, the KOS strain UL20-null virus exhibited a defect in virion 

egress; however, the block in virion egress consisted solely of an accumulation of un-enveloped 
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capsids in the cytoplasm, and no accumulation of peri-nuclear virions was observed (Foster et 

al., 2004b).  Furthermore, the KOS UL20-null virus did not form syncytial plaques on 143TK- 

cells.  The observable phenotypes of the KOS UL20-null virus were in agreement with the 

phenotype described for a PrV virus lacking UL20 (Fuchs et al., 1997), indicating that the 

previously described phenotype of the R7225 virus was in all likelihood due to the presence of 

the aberrantly fused gene.  In addition, we found that the UL20 protein was required for virus-

induced cell-to-cell fusion resulting from syncytial mutations in either gB or gK, implying that 

UL20 may serve to regulate membrane fusion events in HSV-1 (Foster et al., 2004b).  In Chapter 

IV, we investigate the domains of UL20 that function in gB and/or gK-induced syncytia 

formation as well as in virion egress. 

 

Characterization of the UL11 Protein 

The UL11 ORF encodes a 96 amino acid tegument protein, which is N-terminally myristylated 

(MacLean, Clark, and McGeoch, 1989) and palmitylated (Loomis et al., 2001).  The UL11 protein 

localizes to nuclear and TGN-derived apparatus derived membranes in infected cells (Baines et al., 

1995), but only to the TGN-membranes in non-infected cells (Bowzard et al., 2000). UL11 was shown 

to specifically interact with the UL16 tegument protein, providing a potential docking mechanism for 

tegumented capsids onto TGN-membranes(Loomis, Courtney, and Wills, 2003; Vittone et al., 2005). An 

HSV UL11-null mutant obtained by deletion of most of the UL11 coding  region accumulated capsids 

into the nucleus and un-enveloped capsids in the cytoplasm (Baines and Roizman, 1992b), while  a 

PRV-null virus with the entire UL11 gene deleted showed accumulation of un-enveloped capsids in the 

cytoplasm of infected cells embedded in tegument-like material (Kopp et al., 2003).  
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Function of the UL11 Protein in the HSV-1 Lifecycle 

 Previously, the role of UL11 in HSV-1 virion morphogenesis and egress was described based on 

the observations of a UL11-null virus obtained by deleting the majority of the UL11 ORF (176 of 291 

bps).  This virus (R7219) exhibited a major defect in capsid envelopment via budding through the nuclear 

membrane resulting in an unusual accumulation of intra-nuclear capsids as well as a reduced number of 

enveloped capsids in the cytoplasm (Baines and Roizman, 1992b). 

 

Characterization of the UL16 Protein 

 The UL16 ORF encodes a 373 amino acid protein (Nalwanga et al., 1996) that exhibits a late 

(γ1) expression profile (Costa et al., 1985) and requires viral DNA synthesis for its replication.  UL15 is 

a rarity among herpes-virus genes in that it consist of 2 exons and 1 intron that are spliced together 

(Baines and Roizman, 1992a).  The UL16 ORF is located within this intron on the anti-sense strand, and 

is conserved among herpesviruses (Costa et al., 1985; Wing, Lee, and Huang, 1996). 

 

Function of the UL16 Protein in the HSV-1 Life Cycle 

 Initial studies of the function of UL16 involving a UL16 deletion mutant (R7210) revealed that 

UL16 protein was dispensable for HSV-1 replication in cell culture, although the virus did replicate at 

titres 3 to 10 fold lower than those of the wild type virus (Baines and Roizman, 1991).   To investigate 

the possibility that the UL15 intron acted to downregulate UL16 expression by an antisense mechanism, 

the growth of viruses as well as UL16 protein production with and without the UL15 intro were 

compared, with no differences found.  However the UL15 splicing event has been shown to be 

dispensable for virus replication (Baines and Roizman, 1992a).  These two findings make the 

importance of the UL15 intron and splicing events unknown. 
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 The UL16 protein initially appears in the nuclei of infected cells in discrete sites which also 

contain large amounts of capsid proteins (Nalwanga et al., 1996; Ward, Barker, and Roizman, 1996).  

These sites, known as assemblons, are believed to be sites at which capsid assembly and/or DNA 

cleavage and packaging may occur (Ward, Ogle, and Roizman, 1996).  These results suggest a possible 

role for UL16 in intra-nuclear capsid assembly (Nalwanga et al., 1996).  Later in the virus life-cycle, 

UL16 protein becomes associated with peri-nuclear virions and is found as a component of purified 

virions (Nalwanga et al., 1996).  This finding is similar to that of the human cytomegalovirus UL16 

homolog, UL94 (Wing, Lee, and Huang, 1996).  Interestingly, this finding is not duplicated in HSV-2 

(Oshima et al., 1998). 

 UL16 has been shown to specifically interact with UL11 (Loomis, Courtney, and Wills, 2003; 

Vittone et al., 2005).  This interaction is dependant upon the presence of an acidic amino acid cluster 

and a di-leucine motif located within the first 50 amino acids of UL11 (Loomis, Courtney, and Wills, 

2003).  UL11 is associated with TGN-derived vesicles via N-terminal palmitolation and myristylation.  

The interaction between UL11 on TGN-membranes and the capsid associated UL16 presents a possible 

pathway for the recruitment of cytoplasmic capsids to TGN-derived membranes for final envelopment.  

In work presented in Chapter 3, we seek to further elucidate the roles of UL11 and UL16 in virion 

morphogenesis and egress. 
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CHAPTER 2 
THE UL20 PROTEIN FUNCTIONS PRECEDE AND ARE REQUIRED FOR 

UL11 FUNCTIONS IN HERPES SIMPLEX VIRUS TYPE-1 (HSV-1) 
CYTOPLASMIC VIRION ENVELOPMENT 

 
Introduction 

 

Herpes simplex virus type-1 (HSV-1) morphogenesis occurs in multiple stages within infected 

cells. Initially, the virion capsid assembles within the nucleus and the virion acquires an initial envelope 

by budding into the perinuclear spaces (Roizman and Sears, 2001). Subsequently, these enveloped 

virions fuse with the outer nuclear lamellae leading to the accumulation of unenveloped capsids into the 

cytoplasm. Within the cytoplasm, a number of additional tegument proteins attach to the capsid and the 

fully tegumented capsids bud into cytoplasmic vesicles, which mostly likely originate from the trans-

Golgi network (TGN). Enveloped virions are ultimately secreted to extracellular spaces through the 

utilization of cellular vesicular trafficking systems (Browne et al., 1996; Granzow et al., 2001; Harley, 

Dasgupta, and Wilson, 2001; Mettenleiter, 2002; Skepper et al., 2001; Zhu et al., 1995). The process by 

which the tegumented cytoplasmic capsids bud into TGN-derived vesicles is not well-understood. The 

prevalent model calls for specific interactions among viral tegument proteins and membrane proteins 

and glycoproteins embedded within TGN membranes as key factors that drive cytoplasmic virion 

envelopment. This model is supported by evidence that specific mutations within tegument proteins and 

multiple membrane proteins and glycoproteins inhibit cytoplasmic envelopment (Mettenleiter, 2004; 

Mettenleiter, 2006). Apparently, multiple glycoproteins may be concurrently involved in cytoplasmic 

virion envelopment. Simultaneous absence of both gM and gE, or gM and the gE cytoplasmic tail result 

in inhibition of cytoplasmic envelopment for pseudorabies virus (PRV) (Brack et al., 1999; Brack et al., 

2000); however, deletion of gM or gE does not appear to affect HSV-1 cytoplasmic envelopment. In 

contrast, deletion of both HSV-1 gD and gE cause accumulation of capsids into the cytoplasm of 
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infected cells presumably due to loss of contacts with tegument proteins (Mettenleiter, 2004; 

Mettenleiter, 2006). These results suggest that PRV and HSV-1 cytoplasmic envelopment may rely on 

different repertoires of protein-protein interactions to drive cytoplasmic virion envelopment.  

Of particular interest to these investigations are the membrane proteins: UL11 (Baines and 

Roizman, 1992b; Kopp et al., 2004; Kopp et al., 2003), UL20 (Baines et al., 1991; Foster et al., 2004b; 

Fuchs et al., 1997; Melancon, Foster, and Kousoulas, 2004b), and UL53 (gK) (Foster and Kousoulas, 

1999; Hutchinson and Johnson, 1995; Jayachandra, Baghian, and Kousoulas, 1997), which are known to 

be important determinants of cytoplasmic envelopment for both PRV and HSV-1. The UL11 gene 

encodes a 96 amino acid tegument protein, which is N-terminally myristylated (MacLean, Clark, and 

McGeoch, 1989) and palmitylated (Loomis et al., 2001).  The UL11 protein localizes to nuclear and 

TGN-derived apparatus derived membranes in infected cells (Baines et al., 1995), but only to the TGN-

membranes in non-infected cells (Bowzard et al., 2000). UL11 was shown to specifically interact with 

the UL16 tegument protein, providing a potential docking mechanism for tegumented capsids onto 

TGN-membranes(Loomis, Courtney, and Wills, 2003; Vittone et al., 2005). An HSV UL11-null mutant 

obtained by deletion of most of the UL11 coding  region accumulated capsids into the nucleus and 

unenveloped capsids in the cytoplasm (Baines and Roizman, 1992b), while  a PRV-null virus with the 

entire UL11 gene deleted showed accumulation of unenveloped capsids in the cytoplasm of infected 

cells embedded in tegument-like material (Kopp et al., 2003).  

The UL20 and UL53 (gK) genes encode multipass transmembrane proteins of 222 and 338 

amino acids, respectively, and are conserved in all alphaherpesviruses (Debroy, Pederson, and Person, 

1985; MacLean et al., 1991; Ramaswamy and Holland, 1992). UL20p and gK localize to TGN 

membranes after endocytosis from cell surfaces (Foster et al., 2004b). UL20p and gK are essential for 

cytoplasmic virion morphogenesis, since mutant viruses lacking either gK or UL20p accumulate capsids 
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within the cytoplasm that are unable to acquire envelopes by budding into TGN-associated membranes 

(Dietz et al., 2000; Foster, Alvarez, and Kousoulas, 2003; Foster et al., 2004b; Fuchs et al., 1997; 

Melancon, Foster, and Kousoulas, 2004b).  Furthermore, UL20p is essential for virus-induced cell 

fusion caused by either gB or gK syncytial mutations, and it is necessary for gK cell-surface expression. 

Recently, our laboratory has shown that gK and UL20 interact and that this interaction is essential for 

their co-transport and membrane fusion and virion morphogenesis functions (Foster et al., 2004d; 

Melancon et al., 2005).   

The purpose of the present investigations was two-fold: 1) To revisit the role of UL11 in virion 

morphogenesis and egress by constructing a new recombinant UL11-null virus in the HSV-1(F) genetic 

background that could be directly compared to our previously constructed gK-null and UL20-null 

viruses. 2) To investigate whether UL11 and the gK/UL20 heterodimer functioned synergistically or 

independently of each other in the late stages of cytoplasmic virion morphogenesis. The bacterial 

artificial chromosome (BAC) cloned HSV-1 (F) viral genome was used to generated UL11-single null 

and UL11/UL20-double null viruses. Characterization of replication and ultrastructural characteristics of 

these recombinant viruses revealed that UL11 played an important role in cytoplasmic virion 

envelopment. Furthermore, although UL11 and UL20 were independently transported and localized at 

the TGN, UL20 functions preceded and were required for UL11 functions in cytoplasmic virion 

envelopment. 

  

Materials and Methods 

Cells, viruses, and plasmids 

 African green monkey kidney (Vero) cells were obtained from the American Type Culture 

Collection (Rockville, Md.). Cells were maintained in Dulbecco’s modified Eagle’s medium (Gibco-
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BRL; Grand Island, N.Y.), supplemented with 10% fetal calf serum and antibiotics.  The UL19- and 

UL20-complementing cell line G5 was a gift of P. Desai (Johns Hopkins Medical Center) (Desai et al., 

1993). A plasmid encoding UL11-GFP was a gift of J Wills (Loomis, Courtney, and Wills, 2003). 

Construction of both a UL20-3xFLAG plasmid and a gK-V5 plasmid was described previously (Foster 

et al., 2004d).  Cell line Fd20-1 constitutively expressing UL20 was constructed in this laboratory 

(Melancon, Foster, and Kousoulas, 2004b). 

 

Construction of HSV-1 mutants with deletions of the UL11, and/or UL20 genes (pYEbac102, 

pYEbac102ΔUL11, pYEbac102ΔUL20, and pYEBac102ΔUL11ΔUL20)  

Insertion-deletion mutagenesis of pYEbac102 DNA was accomplished in Escherichia coli with 

the λ gam recE recT (GET) recombination system (Narayanan et al., 1999; Orford et al., 2000) as 

described previously for mutagenesis of the KSHV genome (Luna et al., 2004). Electrocompetent 

YEBAC102 Escherichia coli DH10B cells were transformed with plasmid pGETrec, which contains the 

genes encoding recE, recT, and bacteriophage λ gam, grown on plates containing chloramphenicol (12.5 

μg/ml) and ampicillin (100 μg/ml). Individual colonies were picked and grown overnight in Luria-

Bertani (LB) medium containing chloramphenicol and ampicillin. The next day, the culture was 

inoculated into 250 ml of LB containing chloramphenicol and ampicillin until an optical density at 600 

nm of 0.4 was reached. Addition of L-arabinose to a final concentration of 0.2% (wt/vol) and further 

incubation for 40 min induced expression of the recE, recT and λ gam genes from plasmid pGETrec. 

The cells were then harvested and made electrocompetent.   

For the ΔUL11-Kan mutation, a PCR fragment containing a kanamycin resistance (Kan) gene 

cassette flanked by ~50 bp of viral sequences on both sides was used for recombination to construct 

pYEbacΔUL11, containing the Kan gene cassette within the targeted UL11 genomic region. 



97 
 

Specifically, the Kan gene cassette was inserted 94 nucleotides downstream of the UL11 ATG codon, to 

avoid interruption of the UL12 open reading frame (ORF) that overlaps with the 5’ terminus of the 

UL11 gene by 87 nucleotides. The remaining coding sequence of the UL11 gene was deleted up to three 

nucleotides past the TAA termination codon. The construction of the ΔUL20-GFP-Zeo mutation was 

described previously (Melancon et al., 2005).  For the ΔUL11ΔUL20 mutation, a PCR fragment 

containing either a kanamycin resistance (Kan) gene cassette or a GFP-Zeocin resistance cassette 

flanked by ~50 bp of viral sequences on both sides was used for recombination to construct 

pYEbac102ΔUL11ΔUL20. Briefly, 40μl of electrocompetent DH10B cells harboring both pYEbac102 

and pGETrec were electroporated with 200 ng of each PCR product to delete the target gene(s) (UL11 

or UL20) with standard electroporation parameters (1.8 kV/cm, 200 Ω, and 25 μF). Following 

electroporation, cells were grown in 1 ml of LB for 60 min and subsequently streaked onto LB agar 

plates containing chloramphenicol (12.5 μg/ml) as well as either kanamycin (50 μg/ml) or zeocin (25 

μg/ml). Mutant pYEbac102 DNA containing a deletion in the UL11 or UL20 gene was isolated from 

bacterial colonies, and a second round of electroporation was performed to remove plasmid pGETrec. 

Following electroporation, cells were grown on agar plates containing chloramphenicol as well as either 

kanamycin or zeocin.  

 

Confirmation of the targeted mutations in pYEbac102 DNA 

HSV-1 BAC DNAs (pYEbac102, pYEbac102ΔUL11, and pYEbac102ΔUL11ΔUL20 were 

purified from 500 ml of BAC cultures with the Qiagen large-construct kit (Qiagen; Valencia, Calif.).  

PCR primers were designed that lie outside both UL11 and UL20.  A PCR test was performed to verify 

that the desired mutations were present.  All mutations were sequenced to verify the presence of the 

desired mutations in the BACs. To verify that no spurious mutations were introduced into the viral 
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genome of the individual BAC mutants during mutagenesis or during the transfection procedure, each 

null mutation was complimented by expression vectors containing the appropriate gene or genes.  Each 

complemented virus was verified to have the plaque phenotype characteristics of the wild-type BAC 

YEbac102. 

 

Transfection of HSV-1 BAC DNAs 

Transient transfection of cells with BAC DNAs was performed with Lipofectamine 2000 

(Invitrogen). VERO cells (pYEbacΔUL11) and Fd20-1 cells (pYEbacΔUL11ΔUL20) were grown to 

95% confluency in six-well plates. Cells were transfected with BAC DNA mixed with Lipofectamine 

2000 in Opti-MEM medium as recommended by the manufacturer (Invitrogen). After 6 h of incubation 

at 37°C, the medium was removed from the transfected cells, cells were washed with phosphate buffered 

saline, and subsequent fresh Dulbecco’s modified Eagle’s medium with 10% fetal calf serum was added. 

At 72 h post transfection, virus stocks were collected. 

 

One-step growth kinetics of YEbac102 mutants 

Analysis of one-step growth kinetics was as described previously (Foster, Alvarez, and 

Kousoulas, 2003; Foster, Rybachuk, and Kousoulas, 2001). Briefly, each virus at an MOI of 2 was 

adsorbed to approximately 6 x 105 Vero cells at 4°C for 1 h. Thereafter, warm medium was added, and 

virus was allowed to penetrate for 2 h at 37°C. Any remaining extra-cellular virus was inactivated by 

low-pH treatment (0.1Mglycine, pH 3.0). Cells and supernatants were harvested immediately thereafter 

(0 h) or after 4, 8, 12, 18, 24, or 36 h of incubation at 37°C. Virus titers were determined by endpoint 

titration of virus stocks on Vero cells for pYEbacΔUL11 or G5 cells for pYEbac102ΔUL11ΔUL20. 
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Electron microscopy 

Cell monolayers were infected with the indicated virus at an MOI of 3. All cells were prepared 

for transmission electron microscopy (TEM) examination 24 h post infection. Infected cells were fixed 

in a mixture of 2% paraformaldehyde and 1.5% glutaraldehyde in 0.1 M sodium cacodylate buffer, pH 

7.3. Following treatment with 1% OsO4 and dehydration in an ethanol series, the samples were 

embedded in Epon-Araldyte resin and polymerized at 70°C. Thin sections were made on an MTXL 

ultratome (RMC Products), stained with 5% uranyl acetate and citrate/nitrate/acetate lead, and observed 

with a Zeiss 10 transmission electron microscope as described previously (Foster et al., 2004b; 

Melancon, Foster, and Kousoulas, 2004b). 

 

Confocal microscopy 

To determine intracellular localization of UL20 and gK in the presence or absence of UL11, 

Vero cells were grown on cover slips in 6 well plates to 95% confluency and then transfected with 

UL11, UL11 and UL20, UL11 and gK, or UL11, UL20 and gK using Lipofectamine 2000 (Invitrogen) 

as recommended by the manufacturer.  After 6 h of incubation at 37°C, the medium was removed from 

the transfected cells, cells were washed with phosphate buffered saline, and subsequent fresh Dulbecco’s 

modified Eagle’s medium with 10% fetal calf serum was added.  At 48h post-transfection cells were 

washed with TBS and fixed with electron microscopy grade 3% paraformaldehyde (Electron 

Microscopy Sciences, Fort Washington, PA) for 15 minutes, washed twice with PBS-50 mM glycine, 

and permeabilized with 1.0% Triton X-100.  Monolayers were subsequently blocked for 1 h with 7% 

normal goat serum and 7% BSA in TBS (TBS-blocking buffer) before incubation for 2h with either anti-

GFP (Immunology Consultants Laboratory, Newberg, OR ) for detection of UL11, anti-FLAG (Sigma 

Chemical) for detection of UL20, anti-V5 (Invitrogen, Carlsbad, CA) for detection of gK, anti-TGN 46 
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(Serotec, Raleigh, NC)  for detection of the Trans-Golgi network, or a combination of these antibodies 

as indicated. Alternatively, to determine the intracellular localization of UL11 and UL20 during an 

active virus infection, 143 TK- cells were prepared as described above with the exception that 24 h post 

transfection the cells were infected with YEbac102ΔUL11ΔUL20 at an MOI of 2.  At 48 h post-

infection, the cells were prepared as described above. 

To visualize specific fluorescence, secondary antibodies were added to the cells.  Briefly, cells 

were washed thoroughly and Alexafluor 488, Alexafluor 594, and Alexafluor 647 at a 1:750 dilution 

were added and incubated for 1 h.  Cells were washed again and mounted on slides.  The fluorescence 

was then visualized using a Leica TCS SP2 laser scanning confocal microscope (Leica Microsystems, 

Exton, PA) fitted with a CS APO 63x Leica objective (1.4 numerical aperture). Individual optical 

sections in the z-axis, averaged 6 times, were collected at the indicated zoom in series in the different 

channels at 1024 x 1024 pixel resolution as described previously (Foster et al., 2004b; Foster et al., 

2004d; Foster, Rybachuk, and Kousoulas, 2001; Fuchs et al., 2002a). Images were compiled and 

rendered in Adobe Photoshop. 

 

Results 

Construction of the HSV-1 BACs pYEbac102ΔUL11 and pYEbac102ΔUL11ΔUL20 

 The complete HSV-1(F) genome has been cloned into a bacterial artificial chromosome (BAC; 

pYEbac102) enabling the genetic manipulation of the HSV-1 genome in E. coli.  (Tanaka et al., 2003). 

Previously, we utilized the  BAC-based GET homologous recombination system to construct deletions 

within the gB, UL20 and gK genes in E. coli (Melancon et al., 2005).  A similar strategy was utilized to 

construct a HSV-1 BAC with most of the UL11 ORF deleted. Deletion of the UL11 gene was 

accomplished using specific oligonucleotide primers (Table 2.1). Specifically, the UL11 deletion 
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encompassed 194 bps of the UL11 open reading frame (ORF), while 97 bps of the 5’ UL11 ORF 

remained intact. This deletion was engineered to ensure that the UL12 ORF, which overlaps with the 

UL11 ORF by 86 bps, was unaffected (see Materials Methods). A similar deletion of the UL11 gene was 

constructed in the pYEbac102ΔUL20 genetic background. 

 For construction of the ΔUL11-Kan mutation, primers A and B were used for homologous 

recombination and positioned to remove a 198 bp region of the UL11 gene upon insertion of the 

kanamycin cassette extending from nucleotide 96 of UL11 to 3 bases past the UL11 stop codon (Table 

2.1; Fig 2.1).  The UL11 deletion was constructed so that it does not disrupt the UL12 ORF, which 

overlaps the 5’ end of UL11 by 85 bases (see Materials & Methods).  An identical UL11 

insertion/deletion was constructed on both the wild type pYEbac102 genetic background as well as on 

the pYEbac102 ΔUL20 genetic background.  A similar methodology was previously used to construct a 

recombinant virus carrying a deletion of the UL20 gene after insertion of a GFP-Zeocin gene cassette 

(ΔUL20-GFPZeo)(Foster et al., 2004b). This construction deleted a 353 bp region of the UL20 gene 

extending from the UL20 ATG to the HpaI site located within the UL20 ORF (Table 2.1; Fig.2. 1).  

Each pYEbac102 mutant construct contains one or more of the insertion-deletion mutations mentioned 

above:  pYEbac102ΔUL11 contains the ΔUL11-Kan mutation; pYEbacΔUL20 contains the ΔUL20-

GFPZeo mutation; and pYEbac102ΔUL11ΔUL20 contains both the ΔUL11-Kan and the ΔUL20-

GFPZeo mutations (Fig. 2.1).  

 

PCR-based confirmation of the pYEbac102ΔUL11 and pYEbac102ΔUL11ΔUL20 genotypes 

 The YEbac102-based genomic constructs were tested for the presence of the engineered insertion-

deletion mutations via diagnostic PCR. Primers a and b (Table 2.1; Fig. 2.1), located outside and 

bracketing the UL11 gene, amplified the predicted 794 bp UL11 DNA fragments from pYEbac102 and  
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pYEbac102ΔUL20 (Fig. 2.2; lanes 1, 2).  Primers c and d (Table 1; Fig 1), located outside and 

bracketing the UL20 gene, amplified the predicted 909 bp UL20 DNA fragments from pYEbac102 and 

pYEbac102ΔUL11 (Fig. 2.2; lanes 5, 7).  In contrast, diagnostic PCR against the pYEbac102ΔUL11 and 

pYEbac102ΔUL11ΔUL20 DNAs using primers a and b (Table 2.1; Fig 2.1) produced PCR-amplified 

DNA fragment of 1608 bp, as predicted due to the insertion of the kanamycin  gene cassette (Fig. 2.2; 

lanes 3, 4). Primers c and d (Table 2.1; Fig. 2.1) located outside and bracketing the UL20 gene amplified  

 
 

 
 
 
 
Figure 2.1:  Construction of mutant YEbac102s.  Schematic of the strategy for the 
construction of pYEbac102 mutant BACs.  (A)  The top line represents the prototypic 
arrangement of the HSV-1 genome, with the unique long (UL) and unique short (US) regions 
flanked by the terminal repeat (TR) and internal repeat (IR) regions.  (B)  Shown below are the 
expanded genomic regions of the UL11 and UL20 ORFs, the approximate locations of the 
genomic sites to which insertion of the marker genes was targeted, and the primers used in 
diagnostic PCR to confirm the presence of each mutation.  (C)  PCR fragments containing the 
kanamycin resistance or GFP-Zeocin resistance gene cassette flanked by approximately 50 bp of 
viral sequences on both sides were used for targeted GET recombination in E. coli to construct 
pYEbac102 mutant BACs with insertion-deletion mutations in the UL11 and/or UL20 ORFs, 
respectively.  The approximate locations of the primers used in amplification of each PCR 
fragment are also shown.  
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Figure 2.2:  PCR diagnostics.  PCR-based diagnostic analysis of pYEbac102ΔUL11 and 
pYEbac102ΔUL20 mutants. Oligonucleotide primers a, b (Table 1) were utilized to amplify DNA 
fragments containing the Kan inserted gene cassette. (i) Amplification with primers a and b produced the 
predicted 1701 size DNA fragment for the pYEbac102ΔUL11 and pYEbac102ΔUL11ΔUL20 genomes 
consistent with the insertion of the kan gene cassette, and the predicted 794 bp size fragment for the 
pYEbac102 and pYEbac102ΔUL20 controls. (ii) Amplification with primers c and d (Table 1) produced 
the predicted 2,469 bp size DNA fragment for the pYEbac102ΔUL20 and pYEbac102ΔUL11ΔUL20 
consistent with insertion of the GZ gene cassette, and the 999 bp predicted DNA fragment for the 
pYEbac102 and pYEbac102ΔUL11ΔUL20 controls.   
 
 
the predicted 2,469 bp DNA fragment from pYEbac102ΔUL20 and pYEbac102ΔUL11ΔUL20 due to 

the insertion of the GFP-Zeocin gene cassette (Fig. 2.2; lanes 6, 8).  

 
 
Production of infectious virus from pYEbac102-based constructs 

 To generate virus stocks from the mutant pYEbac102 constructs, transient transfection of individual 

BAC DNAs was performed into Vero cells, or the Fd20-1 cell line, which is transformed with the UL20 
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gene and was shown to efficiently complement UL20-null viruses (Melancon, Foster, and Kousoulas, 

2004b).  Specifically, pYEbac102 and pYEbac102ΔUL11 were transfected into Vero cells, while 

pYEbac102ΔUL20 and pYEbac102ΔUL11ΔUL20 were transfected into the UL20 complementing 

Fd20-1 cells (Melancon, Foster, and Kousoulas, 2004b).  For all transfection experiments, virus plaques 

became visible 72 hours post transfection, and virus stocks were collected at appropriate points 

exhibiting maximum cytopathic effects. 

 

Plaque morphology and replication kinetics of HSV-1 YEbac102 mutants 

 As we have noted previously (Melancon et al., 2005), construction of mutant HSV-1 viruses using 

the YEbac102 plasmid allows for the rapid generation of recombinant viruses carrying desired mutations 

without the need for extensive plaque purification, which is normally needed when recombinant viruses 

are produced via classical homologous recombination in cell culture. To assess and compare the effect 

of the deletion of the UL11 and UL20 genes in the context of the same viral HSV-1(F) genome on cell-

to-cell spread, the plaque morphologies of the YEbac102, YEbac102ΔUL11, YEbacΔUL20 and 

YEbac102ΔUL11ΔUL20 viruses were examined in Vero cells in the presence or absence of 

complementation by either the UL11 or UL20 proteins provided in trans via transient expression (Fig. 

2.3). Complementation experiments were performed by transfection of UL20, UL11 or both UL20 and 

UL11 expression plasmids followed by infection with the ΔUL11, ΔUL20, or ΔUL11ΔUL20 viruses at 

24 hours post transfection.  As expected, the wild type YEbac102 produced large plaques on all infected 

cells (Fig 2.3: A, B).  Infection of non-complementing cells with either YEbac102ΔUL20 or 

YEbac102ΔUL20ΔUL11 resulted in very small plaques containing on average 1 to 2 cells (Fig 2.3: E, 

G), while infection of non-complementing cells with the pYEbac102ΔUL11 virus resulted in plaques, 

which were approximately one-third the average size of the wild-type virus (Fig. 2. 3, C).  



106 
 

Complementation of the YEbac102ΔUL11, YEbac102ΔUL20, or YEbac102ΔUL11/UL20 by UL11, 

UL20 or UL20+UL11, respectively, produced viral plaques similar in size to those of the parental wild- 

type virus (Fig. 2.3: D, F, H). Furthermore, complementation of the YEbacΔUL20ΔUL11 with the UL20 

alone produced a viral plaque similar in size to that of the YEbacΔUL11 virus (not shown).  

Complementation of the mutant viruses to wild-type plaque phenotypes was observed at a rate of 60-

70% for all mutant viruses, indicating the absence of any secondary mutations that could account for the 

observed mutant phenotypes. 

 To examine the effect of the various mutations on virus replication, Vero cells were infected at an 

MOI of 2 with either the wild-type or each mutant virus. Virus stocks were prepared at 0, 4, 8, 12, 18, 

24, and 36 h.p.i. and titrated in triplicate onto complementing cells (Fig. 2.4).  The kinetics of both 

YEbac102ΔUL20 and YEbac102ΔUL11ΔUL20 were similar to each other and substantially slower than 

that of the YEbac102 virus with maximum titers of more than 3-logs reduced in comparison to the 

YEbac102 at 36 h.p.i. The replication kinetics of the YEbac102ΔUL11 virus was reduced in comparison 

to the YEbac102, with maximum titers reduced by more than one-log at 36 h.p.i.  

 

Ultrastructural characterization of the YEbac102ΔUL11 and YEbac102ΔUL11ΔUL20 mutant 

viruses 

 The ultrastructural phenotypes of the Ybac102ΔUL20, YEbac102ΔUL11 and 

YEbac102ΔUL11ΔUL20 viruses relative to the YEbac102 parental virus were investigated utilizing 

transmission electron microscopy at 24 h.p.i.  As expected, the YEbac102 virus exhibited no apparent 

defects in virion egress as exemplified by the presence of fully enveloped virions extracellularly, as well 

as the presence of fully enveloped virions intracellularly (Melancon et al., 2005)(not shown).  Unlike the 

wild-type virus, ultrastructural visualization of YEbac102ΔUL11, YEbac102ΔUL20, and  
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Figure 2.3:  Plaque morphology of mutant viruses.  Plaque phenotypes of UL11-, UL20-, and 
UL11/UL20-double null viruses under complementing and non-complementing conditions.  
Vero cell monolayers were either mock transfected or transfected with plasmids expressing 
UL11, UL20, or both UL11 and UL20.  Transfected cells were infected 24 hrs post transfection 
with the corresponding viruses, pYEbac102, pYEbac102ΔUL11, pYEbac102ΔUL20 and 
pYEbac102ΔUL11ΔUL20.  Individual viral plaques were visualized at 24 hrs post-infection by 
immunohistochemistry.   
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Figure 2.4:  Viral replication kinetics.  Comparison of the viral replication characteristics of 
YEbac102 (●), YEbac102ΔUL20 (■), YEbac102ΔUL11 (▲), and YEbac102ΔUL11ΔUL20 (○) 
on Vero cells.  One-step growth kinetics of infections virus production was calculated after 
infection at an MOI of 2 followed by incubation at 37°C. 
 
 
 

YEbac102ΔUL11ΔUL20 infected Vero cells revealed cytoplasmic defects in virion envelopment.  The 

YEbac102ΔUL11 mutant produced largely unenveloped capsids in the cytoplasm embedded within 

morphologically darker stained areas that may be caused by the accumulation of tegument proteins (Fig.  

2.5A). This ultrastructural phenotype appeared to be dissimilar to that of a previously constructed HSV-

1(F)-null virus (Baines and Roizman, 1992b), in as much, there was no noticeable accumulation of 

capsids within nuclei of infected cells.  In contrast, the YEbac102�UL11 ultrastructural morphology 

was similar to that produced by a pseudorabies (PRV) recombinant virus that lacked the UL11 

homologous gene, although the tegument-like staining material surrounding the unenveloped capsids did 

not appear to be as concentrated as in the PRV case(Kopp et al., 2003).  As reported previously 

(Melancon et al., 2005), the YEbac102ΔUL20 mutant virus produced unenveloped capsids in the 

cytoplasm as well as aberrantly enveloped virions (Fig. 2.5B). Ultrastructural examination of Vero cells  
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Figure 2.5:  Ultrastructural characterization of mutant viruses.  Ultrastructural morphology 
of the YEbac102ΔUL11 (a), YEbac102ΔUL20 (b), and YEbac102ΔUL11ΔUL20 (c) viruses.  a) 
Confluent cell monolayers were infected with the YEbac102ΔUL11 virus at an MOI of 2, 
incubated for 24 hrs at 37°C, and prepared for transmission electron microscopy. Panel A: low 
magnification of an (c) infected cell. Panels B, C: higher magnifications of cell shown in panel 
A. b) Confluent cell monolayers were infected with the YEbac102ΔUL20 at an MOI of 2, 
incubated for 24 hrs at 37°C, and prepared for transmission electron microscopy. Panel A: low 
magnification of an (c) infected cell. Panels B, C: higher magnifications of cell shown in panel 
A. c) Confluent cell monolayers were infected with the YEbac102ΔUL11ΔUL20 virus at an MOI 
of 2, incubated for 24 hrs at 37°C, and prepared for transmission electron microscopy. Panel A: 
low magnification of an (c) infected cell. Panels B, C: higher magnifications of cell shown in 
panel A. Nuclear (N),cytoplasmic (C) and extracellular (E) spaces are marked, as well as a bar 
shown the relative magnification scale. 
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infected with the YEbac102ΔUL11ΔUL20 double-null virus revealed virion morphogenetic defects that 

were quite similar to the UL20-null and different to that of the UL11-null virus (Fig. 2.5C).  

 

UL11 and UL20 are independently transported to the TGN 

 It has been previously reported that UL11 localizes to the TGN (Loomis et al., 2001). In agreement 

with these findings, transient expression of UL11 in Vero cells resulted in localization of the UL11 

protein in the TGN (Fig.2. 6).  Previously, we showed that gK or UL20 alone remained at the rough 

endoplasmic reticulum when expressed alone. However, co-expression of gK and UL20 resulted in the 

TGN localization of both proteins strongly suggesting that these two proteins interact and that this 

interaction is necessary for the coordinate transport to the TGN  (Foster et al., 2004b). To determine 

whether either UL20 or gK expression was able to alter the TGN localization of the UL11 protein, the 

UL11 gene was transiently expressed in Vero cells concurrently with either the UL20 or gK gene alone 

or with both gK and UL20 genes. UL11 localized to the TGN in the presence of either UL20, gK or both 

UL20 and gK (Fig. 2.7).  Additional experimentation was performed to ascertain whether the presence 

or absence of the UL20 or gK could affect the TGN localization of the UL11 protein in the context of 

other viral proteins. In these experiments, 143 TK- cells were transfected with either the UL11, UL20, or 

both UL11 and UL20 and 24 hours post transfection, cells were infected with the 

YEbac102ΔUL11ΔUL20 virus. Again, the UL11 protein localized efficiently to the TGN (Fig. 2.8). 
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Figure 2.6:  Confocal microscopy.  Digital images of confocal micrographs showing UL11 
localization.  Vero cell monolayers were transfected with the UL11-GFP expressing plasmid.  At 
24 hrs post transfection, cells were washed thoroughly, fixed, and stained with the anti-GFP 
antibody (A1), or stained with the Golgi specific marker TGN46 (A2) and fluorescence was 
visualized by confocal microscopy. Magnification, x63; zoom x2. 
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Figure 2.7:  Confocal microscopy.  Comparison of UL11 intracellular localization in the 
presence or absence of gK/UL20.  Vero cells were transfected with a combination of plasmids 
expressing UL11-GFP, UL20, and/or gK.  At 24 hrs post transfection, cells were washed 
thoroughly, fixed, and prepared for confocal microscopy after staining with the appropriate 
conditions and antibodies. UL11 was stained with the anti-GFP antibody, UL20 with the anti-
FLAG antibody and gK with the anti-V5 antibody. (A)  UL11+UL20 localization.  (B)  
UL11+gK localization.  (C)  UL20+gK localization.  (D)  UL11+UL20+gK localization. 
Magnification, x63; zoom x2. 
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Figure 2.8:  Confocal microscopy.  Intracellular localization of the UL11 and UL20 proteins in 
virus-infected cells.  Vero cells were transfected with plasmids expressing UL11-GFP, UL20, or 
both.  At 24 hrs post-transfection, cells were infected at an MOI of 2 with 
YEbac102ΔUL11ΔUL20. At 24 hrs post infection, cells were washed thoroughly, fixed, stained 
with appropriate antibodies, and prepared for confocal microscopy.  (A)  UL11 localization.  (B)  
UL20 localization.  (C) UL11+UL20 localization. Magnification, x63; zoom x2. 
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Discussion 
 

HSV-1 cytoplasmic virion envelopment is thought to be mediated by complex interactions 

among tegument proteins and viral glycoproteins embedded in the TGN membranes. A number of viral 

glycoproteins have been shown to either interact with tegument proteins or otherwise affect cytoplasmic 

envelopment.  In this manuscript, we examined potential physical and functional relationships between 

the UL11 protein and the gK/UL20 heterodimer in cytoplasmic virion envelopment. Specifically, it was 

of interest to compare the ultrastructural phenotype of a newly constructed UL11-null virus in the HSV-

1(F) background with that of the gK-null and UL20-null viruses and to determine whether UL11 and the 

gK/UL20 heterodimer functioned in a dependent or independent manner to each other. The salient 

features of our results are: 1) The HSV-1 UL11 protein functioned exclusively in cytoplasmic 

envelopment as evidenced by the accumulation of cytoplasmic capsids in cells infected with the HSV-

1(F) UL11-null virus in a manner similar to the previously described PRV UL11-null virus(Kopp et al., 

2003); 2) The UL20-null and UL11-null plaque morphology, as well as their ultrastructural phenotypes 

were substantially different; 3) A double UL20/UL11-null virus produced plaques and ultrastructural 

morphologies closely resembling those of the UL20-null viral phenotype; 4) The UL11/UL20- double 

null virus replicated with replication kinetics similar to that of the UL20-null virus; 5) UL11 and UL20 

were transported independently of each other in transient transfection experiments.  These results led to 

the conclusion that UL20 and UL11 transport and localize at the TGN independently of each other; 

however UL20 must function at a virion morphogenetic step occurring prior to and required for UL11 

function. 

Recently, we constructed and characterized deletion mutants of the gK, UL20, and gB genes 

utilizing the HSV-1(F) genome cloned into a bacterial artificial chromosome (BAC) system (Melancon 

et al., 2005). The HSV-1 gK-null and UL20-null viruses produced smaller plaques than the original gK-
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null and UL20-null viruses, which were constructed via classical recombination/deletion methodologies 

in the HSV-1(KOS) genetic background (Foster et al., 2004b; Jayachandra, Baghian, and Kousoulas, 

1997). This apparent very small plaque phenotype could be due to the difference in viral strains. 

Alternatively, we favor the hypothesis that the BAC-assisted construction of mutant viruses allowed the 

rapid generation of mutant genomes in E. coli substantially lowering the possibility that compensatory 

mutations that increase plaque size may be selected after serial passage of the KOS gK or UL20-null 

viruses.  Appreciably, the very small plaque phenotype of the UL20/gK null viruses exemplify that the 

gK/UL20 proteins are essential for virus spread. 

To compare the role of UL11 in virion morphogenesis, The YEbac102ΔUL11 (ΔUL11) virus was 

produced using our previously described BAC-assisted mutagenesis (Luna et al., 2004; Melancon et al., 

2005). The ΔUL11 virus was constructed by deleting most of the UL11 ORF taking care not to interrupt 

the UL12 ORF that overlaps with the UL11 ORF by 87 bps. Previously, a similar UL11-null virus, 

R7219, carrying a UL11 deletion of 176 bps was constructed using classical recombination experiments 

(Baines and Roizman, 1992b). In comparison, the ΔUL11 virus carried an additional deletion of 18 bps. 

Overall, the new ΔUL11virus confirmed previous findings with the R7219 virus, since both viruses 

exhibited a significant reduction in virus replication. However, the R7219 virus exhibited a major defect 

in capsid envelopment via budding through the nuclear membrane resulting in an unusual accumulation 

of intra-nuclear capsids as well as a reduced number of enveloped capsids in the cytoplasm (Baines and 

Roizman, 1992b). In contrast to these findings, the ΔUL11virus accumulated capsids in the cytoplasm of 

infected cells that failed to acquire cytoplasmic envelopes. There was no apparent defect in nuclear 

egress as evidenced by the lack of accumulation of capsids into the nucleus or incomplete nuclear 

budding processes.  Importantly, the ΔUL11 virus accumulated capsids in the cytoplasm of infected cells 

in large aggregates surrounded by electron-dense material, which may be derived by tegument proteins. 
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A similar ultrastructural phenotype was observed for the pseudorabies (PRV) UL11-null virus, with the 

exception that capsid aggregates were embedded within strongly electron-dense structures of uniform 

density attributed to the accumulation of capsid proteins (Kopp et al., 2003). Therefore, the HSV-1(F) 

UL11 gene functions in cytoplasmic envelopment in a similar manner to that of the PRV UL11 gene. 

The UL11 protein is anchored to TGN membranes through an N-terminal myristylate anchor. In 

addition, the UL11 protein contains a di-Leucine and an acidic amino acid motif, which are known to be 

involved in physical interactions with the UL16 protein, as well as recycling from the plasma 

membranes to TGN. Deletion of either motif abrogates UL16 interaction and plasma membrane TGN 

recycling (Loomis et al., 2001; Loomis, Courtney, and Wills, 2003). The ΔUL11 virus is predicted to 

code for the first 32 amino acids of the UL11 protein effectively retaining the di-Leucine motif, while 

deleting the entire acidic motif. In contrast, the R7219 virus is predicted to code for the first 39 amino 

acids of the UL11 protein, effectively retaining the di-Leucine motif as well as three of the seven amino 

acids of the acidic acid motif. Thus, it can be predicted that both UL11 peptides coded by the ΔUL11 

and R7219 viruses could be myristylated and anchored to TGN membranes. However, the ΔUL11 

protein could not interact with the UL16 protein since the entire acidic motif is deleted. In contrast, it is 

possible that the R7219 UL11 protein may be able to interact with the UL16 protein since the di-Leucine 

motif is intact and three of the 7 acidic amino acids remain with the protein. It has been reported that the 

UL16 tegument protein is present on intranuclear assemblons and a structural component of mature 

virions (Nalwanga et al., 1996). Therefore, these subtle differences in the UL11 amino terminal peptides 

may account for the reported delay of nuclear egress for the R7219 virus, which may be caused by an 

aberrant interaction of the UL11 amino terminal peptide encoded by the R7219 virus with UL16 at the 

nuclear membrane.  
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 The ΔUL11 ultrastructural phenotype is similar to the PRV UL11-null virus, with the exception 

that PRV-UL11-null virus formed capsids within a highly uniform electron dense material, which 

appeared to be derived from tegument proteins. In contrast, the ΔUL11 appeared to have a diffuse 

electron dense material surrounding the unenveloped capsids. The 32 amino acid UL11 peptide coded 

by the UL11-null virus retains the site of myristilation at its N- terminus, and thus, could be anchored to 

the TGN membranes. The PRV-UL11-null virus does not code for any UL11-derived peptide, since the 

UL11 initiation codon was altered by site-directed mutagenesis(Kopp et al., 2003). Therefore, the 

ΔUL11 amino terminal peptide within TGN membranes as well as in the cytoplasm may interact with 

other tegument proteins preventing the more pronounced aggregation of tegument proteins produced by 

the PRV UL-11-null virus. 

To address potential synergistic effects between the UL11 and UL20 genes in cytoplasmic 

envelopment, we constructed the ΔUL20/UL11 double-null virus. Surprisingly, the ΔUL20/UL11 

double-null virus exhibited replication characteristics very similar to the UL20-null virus. Similarly, the 

ultrastructural phenotype of the double-null virus was largely similar to the UL20-null virus, without 

any apparent contribution by the UL11-null mutation. Additional studies in transient expression systems 

revealed that UL11 and UL20/gK were transported to TGN independently of each other indicating that 

they did not physically or otherwise functionally interact in either cells expressing only the UL11 and 

UL20/gK genes, or in cells infected with virus. Taken together, these results suggest that the UL11 

functions in cytoplasmic envelopment are totally dependent on UL20 expression. One way to interpret 

this apparent dependence of UL11 on UL20 is that the UL20 protein functions in an earlier cytoplasmic 

envelopment step with UL11, which is required for UL11 function. However, this prediction is contrary 

to the observation that the UL11-null virions accumulate capsids with aberrant tegument-derived 

structures, apparently distal to TGN-membranes. One interpretation of these results is that in the absence 
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of UL20 protein there is an irreversible attachment to TGN membranes that cannot be overcome by the 

UL11-null mutation. In contrast, the UL11-null mutation may allow initial binding of tegumented 

capsids to membranes followed by capsid release forming the observed aggregates of capsids embedded 

in tegument-like material. In this instance, the known physical interaction of UL11 with UL16 may in 

part, be responsible for the observed defect in tegument protein accumulation in the cytoplasm, since in 

the absence of UL11, UL16 as well as other tegument proteins that may interact with UL11 would not 

bind to TGN membranes, but remain free in the cytoplasm. An alternative scenario is based on the 

observation that the cellular intracytoplasmic membranes seemed to be restructured in the absence of the 

PRV UL11 indicating that UL11 may play some stabilization role in Golgi-TGN membranes in infected 

cells (Kopp et al., 2003). In this regard, it is possible that gK/UL20 may play a similar stabilization role 

for TGN membranes and specifically at capsid budding sites. In Vero cells Golgi stacks are largely 

fragmented during infection (Campadelli et al., 1993), which would argue against overall Golgi-TGN 

stabilization roles for either gK or UL20. However, concurrent action of gK/UL20 and UL11 at TGN 

budding sites may occur with gK/UL20 playing a dominant role over UL11. 

The UL20/gK heterodimer is of paramount importance in cytoplasmic envelopment, since deletion 

of either gene causes profound accumulation of cytoplasmic capsids and reduction of viral titers by more 

than three logs, while viral plaques are greatly diminished in size. It is important to determine if the 

UL20/gK functions precedes those of other viral glycoproteins that are known to function in cytoplasmic 

virion envelopment such as gE/gI and gM. In this regard, an investigation of the phenotype of double 

mutants carrying deletions in more than one gene may shed some light in the sequence of events that 

control cytoplasmic envelopment.  
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CHAPTER 3 
HERPES SIMPLEX VIRUS TYPE-1 (HSV-1) UL16 IS REQUIRED FOR 

EFFICIENT NUCLEAR EGRESS AND CYTOPLASMIC VIRION 
ENVELOPMENT 

 
Introduction 

Herpes simplex virus type-1 (HSV-1) morphogenesis occurs in multiple stages within infected 

cells. Initially, the virion capsid assembles within the nucleus and the virion acquires an initial envelope 

by budding into the perinuclear spaces (Roizman and Sears, 2001). Subsequently, these enveloped 

virions fuse with the outer nuclear lamellae leading to the accumulation of unenveloped capsids into the 

cytoplasm. Within the cytoplasm, a number of additional tegument proteins attach to the capsid, and the 

fully tegumented capsids bud into cytoplasmic vesicles, which most likely originate from the trans-

Golgi network (TGN). Enveloped virions are ultimately secreted to extracellular spaces through the 

utilization of cellular vesicular trafficking systems (Browne et al., 1996; Granzow et al., 2001; Harley, 

Dasgupta, and Wilson, 2001; Mettenleiter, 2002; Skepper et al., 2001; Zhu et al., 1995). The process by 

which the tegumented cytoplasmic capsids bud into TGN-derived vesicles is not well-understood. The 

prevalent model calls for specific interactions among viral tegument proteins and the cytoplasmic 

portions of membrane proteins and glycoproteins embedded within TGN membranes as key factors that 

drive cytoplasmic virion envelopment. This model is supported by evidence that specific mutations 

within tegument proteins and multiple membrane proteins and glycoproteins inhibit cytoplasmic 

envelopment (Mettenleiter, 2004; Mettenleiter, 2006). 

One pair of viral proteins, which is thought to contribute to cytoplasmic virion envelopment is 

the tegument protein UL16 and the lipid membrane anchored tegument protein UL11.  Specifically, 

UL16 was shown to specifically interact with UL11 (Loomis, Courtney, and Wills, 2003; Vittone et al., 

2005). The UL16 ORF encodes a 373 amino acid protein (Nalwanga et al., 1996) that is associated with 

intra-nuclear assemblons early in the HSV-1 life cycle. Later it is found associated with peri-nuclear 
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virions and is a component of purified virions in HSV-1 and HCMV (Nalwanga et al., 1996; Ward, 

Barker, and Roizman, 1996; Wing, Lee, and Huang, 1996), but not HSV-2 (Oshima et al., 1998).  

Assemblons are believed to be sites at which capsid assembly and/or DNA cleavage and packaging may 

occur (Ward, Ogle, and Roizman, 1996), suggesting a possible role for UL16 in these processes.  

However, studies on a UL16 null virus (R7210) indicate that the UL16 protein was dispensable for 

HSV-1 replication in cell culture, although the virus did replicate at titers 3 to 10 fold lower than those 

of the wild type virus (Baines and Roizman, 1991).   

The UL11 ORF encodes a 96 amino acid tegument protein, which is N-terminally myristylated 

(MacLean, Clark, and McGeoch, 1989) and palmitylated (Loomis et al., 2001).  The UL11 protein 

localizes to nuclear and TGN-derived apparatus derived membranes in infected cells (Baines et al., 

1995), but only to the TGN-membranes in non-infected cells (Bowzard et al., 2000).  UL11 is believed 

to play a significant role in cytoplasmic envelopment as UL11 deletion mutants display a severe defect 

at this step in both HSV-1 (Baines and Roizman, 1992b; Fulmer et al., 2007) and PRV (Kopp et al., 

2003).  The interaction of UL11 with UL16 is dependant upon the presence of an acidic amino acid 

cluster and a di-leucine motif located within the first 50 amino acids of UL11 (Loomis, Courtney, and 

Wills, 2003).   

The UL16 ORF is encoded on the antisense genomic strand completely embedded within UL15, 

which is coded by the sense genomic strand.  UL15 is a rarity among HSV-1 genes in that it is encoded 

by two exons separated by an intron.  UL16 is encoded within this intron.  It was initially thought that 

the UL15 intron could serve to down-regulate UL16 protein production by an antisense mechanism, but 

this turned out not to be the case.  In addition, the UL15 splicing event itself seems to have no effect on 

viral growth (Baines and Roizman, 1992a).  The initial studies with a UL16-null virus involved deletion 

of the UL16 gene (Baines and Roizman, 1991).  Due to the fact that the significance of the UL15 intron 
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and UL15 splicing event is not known, for this study, we sought to delete UL16 without disrupting the 

amino acid coding sequence of UL15.  To achieve this, we employed a recently described marker-less 

recombination system to introduce single point mutations into the HSV-1 bacterial artificial 

chromosome (BAC), pYEBac102 (Tischer et al., 2006).  Using this system we were able to silence the 

start codon of UL16 without altering the amino acid sequence of UL15. 

 
Materials and Methods 

Cells, viruses and plasmids 

African green monkey kidney (Vero) cells were obtained from the American Type Culture 

Collection (Rockville, Md.). Cells were maintained in Dulbecco’s modified Eagle’s medium (Gibco-

BRL; Grand Island, N.Y.), supplemented with 10% fetal calf serum and antibiotics.   

  

PCR Primer Design 

 Marker-less RED recombination in E. coli is accomplished mostly through a novel idea for the 

targeting of mutations using specific PCR primers (Tischer et al., 2006) .  The 5’ end of the first primer 

contains approximately 40 bps upstream of the site to be mutated, followed by the mutant DNA 

sequence(s), and followed by an additional 20 bps downstream of the target site.  The 3’ end of the 

forward primer anneals to pEPkan-S so that it overlaps an I-SceI site.  The 5’ end of the reverse primer 

was designed so that it contains the reverse complement of 40 bps downstream of the target site, 

followed by the reverse complement of the target site, and then an additional 20bps upstream of the 

target site.  The 3’ end is designed to anneal to reverse complement sequences downstream of the 

AphA1conferring Kanamycin resistance encoded by pEPkan-S.  Using these primers to amplify the 

AphA1 gene on pEDkan-S, results in a PCR product that contains identical sequences containing the 
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desired mutation flanking both an I-SceI site and the Kanamycin resistance cassette.  Primer sequences 

used in this study are given in Table 3.1. 

 

Construction of HSV-1 mutants containing deletions of the UL16 or UL11 gene (pYEBacΔUL16, 

pYEBacΔUL11) 

Mutagenesis of pYEbac102 DNA was accomplished in Escherichia coli using the RED 

recombination machinery as described previously (Tischer et al., 2006).  To create pYEBacΔUL16 BAC 

maintenance and mutagenesis were performed in E. coli strain EL250 which contains a λ prophage 

which encodes recombination enzymes Exo, Beta, and Gam under a heat inducible promoter (Lee et al., 

2001).  EL250 cells were made electrocompetent and were transformed with pYEBac102 to produce 

EL250-BAC.  RED recombination was induced in the EL250-BAC cells and they were once again made 

electrocompetent.  EL250-BAC with RED induced was then transformed with pBAD-I-SceI, containing 

an arabinose inducible I-SceI homing endonuclease cassette, and the UL16-Kan PCR product.  The 

transformation was plated on plates containing chloramphenicol (12.5 μg/ml), ampicillin (100 μg/ml), 

and kanamycin (50 μg/ml).  Colonies were screened for correct integration of the UL16-Kan PCR 

product using the UL16 test primers from Table 1.  Clones that were confirmed to have the correct 

integration were grown from a 1:1000 dilution for 2 hours, followed by addition of .5% final 

concentration of arabinose and another 1 hour of growth.  Cultures were then placed in a 42OC water 

bath for 30 minutes, followed by a final 1 hour of growth.  100μL of culture was plated on 

chloramphenicol and ampicillin plates.  After 24 hours, colonies were screened for loss of kanamycin 

resistance.  Kanamycin sensitive colonies were prepared and sent for sequencing to confirm the presence 

of the desired mutation.  Construction of pYEBacΔUL11 was described previously (Fulmer et al., 2007).  

All mutations were confirmed by DNA sequencing. 
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Table 3.1 Primer Design for RED Recombiniation. 

 

 

 

 

Primer 
designat

ion 

Name Sequence1 Purpose  

A 3’ UL11-
Kan 

5’-
GGGTTTTTTAAAAACGACACGCGTGCGACCGTATACAGAAATTGTTTTGGcggttgatgagag
ctttgttgtaggtggac-3’ 

UL11 GET 
recombination  

B 5’ UL11-
Kan 

5’-
AACGTCCTCATCACCGACGACGGGGAGGTCGTCTCGCTGACCGCCCACGACTagccacgt
tgtgtctcaaaatctctgatgtta-3’ 

 

 3’ UL16-
Mut 

5’-
GACCAGGCGGCGCCAGGGGCCGCCGGGGTCCCAGCTGCGCTATGCCGGGGGCGGG
GGGAGGGCaggatgacgacgataagt aggg -3’ 

UL16 RED 
recombination  

 5’ UL16-
Mut 

5’-
GGCCCCCGCCTCTGGGGTTTGCCCTCCCCCCGCCCCCGGCATAGCGCAGCTGGGAC
CCCGGCGgcaaccaattaaccaattct gattag-3’ 

 

a 3’ UL11-
Rev 

5’-GCACCAGCGCGGAGGAGGGC-3’ Diagnostic PCR for 
wt UL11 or ΔUL11-
Kan 

b 5’UL11-For 5’-ATTGTACGCCCAAGATACAACACCG-3’  

c 3’ UL16-
Rev 

5’- AATCGCCGCCTCTGTGGCATAGTTG -3’ Test PCR for 
confirmation of 
correct PCR 
product integration  

d 5’ UL16-For 5’- GACGGAGTTGACAATGCGCGCG -3’  

 
 

                                                 
1HSV-1 homologous regions are denoted by uppercase letters, lowercase letters signify sequences which bind to the 
marker gene, point mutations in red. 

 
 

Table 3.1 
Primers 
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Transfection of HSV-1 BAC DNAs 

Transient transfection of cells with BAC DNAs was performed with Lipofectamine 2000 

(Invitrogen) and infectious virus was recovered as detailed previously (Fulmer et al., 2007; Melancon et 

al., 2005). VERO cells were grown to 95% confluency in   

six-well plates. Cells were transfected with BAC DNA mixed with Lipofectamine 2000 in Opti-MEM 

medium as recommended by the manufacturer (Invitrogen). After 6 h of incubation at 37°C, the medium 

was removed from the transfected cells, cells were washed with phosphate buffered saline, and 

subsequent fresh Dulbecco’s modified Eagle’s medium with 10% fetal calf serum was added. At 72 h 

post transfection, virus stocks were collected. 

 

One-step growth kinetics and plaque morphology of YEbac102 mutants 

Analysis of one-step growth kinetics was as described previously (Foster, Alvarez, and 

Kousoulas, 2003; Foster, Rybachuk, and Kousoulas, 2001). Briefly, each virus at an MOI of 2 was 

adsorbed to approximately 6 x 105 Vero cells at 4°C for 1 h. Thereafter, warm medium was added, and 

virus was allowed to penetrate for 2 h at 37°C. Any remaining extra-cellular virus was inactivated by 

low-pH treatment (0.1M glycine, pH 3.0). Cells and supernatants were harvested immediately thereafter 

(0 h) or after 4, 8, 12, 24, or 36h of incubation at 37°C. Virus titers were determined by endpoint 

titration of virus stocks on Vero cells. 

Analysis of plaque morphology of mutant viruses was as follows.  Confluent Vero cell 

monolayers in 6 well plates were infected with the indicated virus.  To visualize the plaques, cells were 

stained with a polyclonal HRP conjugated HSV-1 antibody as directed by the manufacturer 

(DakoCytomation), and as described previously (Fulmer et al., 2007; Melancon, Foster, and Kousoulas, 

2004b; Melancon et al., 2005).  Briefly, cells were washed with PBS to remove methylcellulose media, 
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and fixed with 4°C methanol for 15 minutes.  TBS containing a 1:750 dilution of the polyclonal HSV-1 

antibody was added to the cells and placed on a rocker at 4°C for 1 h.  Cells were washed with TBS and 

developed using the VECTOR NovaRED peroxidase substrate kit as directed by the manufacturer 

(VECTOR, Inc). 

 

Electron microscopy 

Cell monolayers were infected with the indicated virus at an MOI of 3. All cells were prepared 

for transmission electron microscopy (TEM) examination at 24 h post infection. Infected cells were 

fixed in a mixture of 2% paraformaldehyde and 1.5% glutaraldehyde in 0.1 M sodium cacodylate buffer, 

pH 7.3. Following treatment with 1% OsO4 and dehydration in an ethanol series, the samples were 

embedded in Epon-Araldyte resin and polymerized at 70°C. Thin sections were made on an MTXL 

ultratome (RMC Products), stained with 5% uranyl acetate and citrate/nitrate/acetate lead, and observed 

with a Zeiss 10 transmission electron microscope as described previously (Foster et al., 2004b; 

Melancon, Foster, and Kousoulas, 2004b). 

 
Results 

Construction of the HSV-1 BAC pYEbacΔUL16   

The complete HSV-1(F) genome has been cloned into a bacterial artificial chromosome (BAC; 

pYEbac102) enabling the genetic manipulation of the HSV-1 genome in E. coli.  (Tanaka et al., 2003). 

Previously, we utilized the  BAC-based GET homologous recombination system to construct deletions 

within the gB, UL20 and gK genes in E. coli (Melancon et al., 2005).  A similar strategy was utilized to 

construct a HSV-1 BAC with most of the UL11 ORF deleted(Fulmer et al., 2007).  A recently described 

markerless RED recombination system was used to generate the pYEbac102ΔUL16 mutant.  This 

system allowed for the construction of a pYEbac102 mutant with a single point G to A mutation that 
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silenced the ATG start codon of UL16, while leaving the amino acid sequence of the overlapping UL15 

gene intact.  pYEbac102ΔUL16 contains the ΔUL16 mutation and pYEbac102ΔUL11 contains the 

ΔUL11 mutation (Figure 3.1). 

 

 

Figure 3.1:  Schematic of the strategy for the construction of mutant BACs ΔUL16 and 
ΔUL11 YEbac102.  (A)  The top line represents the prototypic arrangement of the HSV-1 
genome, with the unique long (UL) and unique short (US) regions flanked by the terminal repeat 
(TR) and internal repeat (IR) regions.  (B)  Shown below are the expanded genomic regions of 
the UL11 and UL16 ORFs.  (C)  PCR fragments containing the kanamycin resistance gene 
cassette flanked by approximately 50 bp of viral sequences on both sides were used for targeted 
GET recombination in E. coli to construct pYEbac102 mutant UL11 BACs with insertion-
deletion mutations in the UL11 ORF.  The approximate locations of the primers used in 
amplification of each PCR fragment are also shown.  For construction of the ΔUL16 mutant, a 
single point mutation was introduced to silence the UL16 ORF, shown in red. 



132 

Production of infectious virus from pYEbac102-based constructs   

 To generate virus stocks from the mutant pYEbac102 constructs, transient transfection of individual 

BAC DNAs was performed into Vero cells (see Materials and Methods).  For all transfection 

experiments, virus plaques became visible 72 hours post transfection, and virus stocks were collected. 

 

Plaque morphology and replication kinetics of HSV-1 YEbac102 mutants 

  As we have noted previously, construction of mutant HSV-1 viruses using the YEbac102 plasmid 

allows for the rapid generation of recombinant viruses carrying desired mutations without the need for 

extensive plaque purification, which is normally needed when recombinant viruses are produced via 

classical homologous recombination in cell culture (Melancon et al., 2005). To assess and compare the 

effect of the deletion of the UL16 and UL11 genes in the context of the same viral HSV-1(F) genomic 

background on cell-to-cell spread, the plaque morphologies of the YEbac102, YEbac102ΔUL16, and 

YEbacΔUL11viruses were examined in Vero cells (Fig. 3.2).  As expected, the wild-type YEbac102 

produced large plaques on infected cells.  In contrast, the YEbac102ΔUL16 and YEbac102ΔUL11 

viruses produced plaques approximately one third the size of the wild-type virus.  To ensure this 

phenotype was due only to the deletion of the intended gene, and not some other spurious mutation, 

YEbacΔUL16 and YEbac102ΔUL11 rescued viruses were also examined.  The YEbac102ΔUL16 rescue 

was achieved by designing primers for the RED recombination system that simply reversed the original 

mutation.  The YEbac102ΔUL11 rescue was achieved by transient complementation of the mutant virus 

with UL11 on Vero cells as described previously for the  YEbac102ΔUL11 virus (Fulmer et al., 2007).  

Rescue of the YEbac102ΔUL16 mutation produced the expected wild-type morphology, indicating that 

the UL16 viral plaque phenotype was as in the case of UL11, solely due to the introduced UL16 

silencing mutation (Fig. 3.2). 
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Figure 3.2:  Plaque morphology of mutant viruses.  Plaque morphology of wild-type YEbac102 (A), 
ΔUL16 (B), ΔUL11 (C), ΔUL16 rescue (D), and ΔUL11 rescue (E).  Viruses were infected on VERO 
cell monolayers, and plaques were visualized by immunohistochemistry 24 h.p.i. 
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Figure 3.3:  Viral replication kinetics.  Comparison of the viral replication characteristics of 
YEbac102 (♦), YEbac102ΔUL11 (■), and YEbac102ΔUL16 (▲) on Vero cells.  One-step 
growth kinetics of infections virus production was calculated after infection at an MOI of 2 
followed by incubation at 37°C. 
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To examine the effect of the various mutations on virus replication, Vero cells were infected at an MOI 

of 2 with either the wild-type or each mutant virus. Virus stocks were prepared at 0, 4, 8, 12, 24, and 36 

h.p.i and titrated in triplicate onto VERO cells.  Viral titers of ΔUL16 and ΔUL11 were similar to each 

other, with both viruses exhibiting more than a log reduction in growth when compared to the wild-type 

virus, YEbac102 (Fig. 3.3). 

 
Ultrastructural characterization of the YEbac102ΔUL16 and YEbac102ΔUL11 mutant viruses  
  
  The ultrastructural phenotypes of the Ybac102ΔUL16, and YEbac102ΔUL11 viruses relative to the 

YEbac102 parental virus were investigated utilizing transmission electron microscopy at 24 h.p.i.  As 

expected, the YEbac102 virus exhibited no apparent defects in virion egress as exemplified by the 

presence of fully enveloped virions extracellularly, as well as the presence of fully enveloped virions 

intracellularly (Melancon et al., 2005)(not shown).  Additionally, the YEbac102ΔUL11 virus exhibited a 

phenotype similar to that described in previous experiments, notably, accumulations of largely 

unenveloped capsids in the cytoplasm associated with a more electron dense material presumed to be 

composed of tegument proteins (Fulmer et al., 2007)(not shown). In contrast, the YEbac102ΔUL16 

virus exhibited a phenotype suggesting a block in nuclear egress.  Uncommon accumulation of 

nucleocapsids  were found in the nucleus, while a low number of cytoplasmic virions and extracellular 

fully enveloped virions were also noted (Fig. 3.4).   

 

Discussion 

 HSV-1 cytoplasmic virion envelopment is thought to be mediated by complex interactions among 

tegument proteins and viral glycoproteins embedded in the TGN membranes.  A number of viral 

glycoproteins have been shown to either interact with tegument proteins or otherwise affect cytoplasmic 

envelopment.  Likewise, specific tegument proteins have been implicated in cytoplasmic virion  
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Figure 3.4:  Ultrastructural characterization of ΔUL16.  Confluent cell monolayers were infected 
with the YEbac102ΔUL16 virus at an MOI of 2, incubated for 24 hrs at 37°C, and prepared for 
transmission electron microscopy.  Typical intranuclear accumulation of capsids (black arrow).  Also 
indicated are unenveloped cytoplasmic virions (white arrow). 
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envelopment, presumably because they either directly or indirectly affect proper interactions with the 

cytoplasmic domains of viral membrane proteins and glycoproteins embedded within TGN-derived 

vesicles. Of particular interest to this study was the interaction between the membrane associated 

tegument protein UL11 and the virion associated tegument protein UL16.  In this manuscript we created 

a HSV-1 mutant that contained a single point mutation to silence the UL16 start codon.  We compared 

this virus, ΔUL16, with our previously constructed UL11-null virus, ΔUL11.  We found that: 1)  ΔUL16 

exhibits similar plaque morphology to that of ΔUL11; 2)  However, unlike ΔUL11, ΔUL16 exhibited 

predominantly  a nuclear egress defect; 3) UL16 may also have a defect in cytoplasmic envelopment, 

because examination of multiple electron micrographs suggested the presence of unenveloped capsids in 

the cytoplasm at time points, where wild-type infections did not contain any unenveloped capsids in the 

cytoplasm.  These results led to the conclusion that UL16 functions primarily in nuclear virion assembly 

and egress, while secondarily may also function in cytoplasmic virion envelopment. To assess the role 

of UL16 in virion morphogenesis and egress, the YEbac102ΔUL16 virus was constructed using a 

recently described RED markerless recombination system (Tischer et al., 2006).  This allowed for the 

construction of ΔUL16 without changing the amino acid coding sequence of the gene found on the 

complementary strand, UL15.  UL15 is involved in HSV-1 viral genome cleavage and packaging into 

mature virions (Abbotts et al., 2000; Beard, Taus, and Baines, 2002).  UL16 is encoded on the 

complementary strand to UL15, located completely within the single intron of UL15.  The role of this 

intron is not well understood. Previous studies have shown that the UL15 intron did not serve to 

downregulate UL16 expression by an antisense mechanism, nor is the splicing event itself necessary for 

proper UL15 function (Baines and Roizman, 1992a).  Because the roles of the UL15 splicing event and 

its intron are not well understood, we sought to create a UL16-null virus that did not alter the amino acid 

sequence of UL15.  This was accomplished by introducing a single point mutation into the UL16 ATG 
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to change it to ATA.  Introduction of this mutation effectively silenced UL16 production, while only 

altering the UL15 coding sequence from GCC to GCT, both of which code for alanine.  ΔUL16 

exhibited a similar defect in growth kinetics to that of a previously described UL16-null virus, R710 

(Baines and Roizman, 1991). 

However, ΔUL16 showed a markedly different ultrastructural phenotype than that of R7210 (Baines and 

Roizman, 1991)(not shown).  Specifically, ΔUL16 virions exhibited predominantly a nuclear defect 

resulting in accumulation of virions within the nucleus, as well as a slight accumulation of unenveloped 

virions in the cytoplasm.  This observation seems to suggest two roles for UL16, one in nuclear capsid 

assembly/egress, and a second role in cytoplasmic envelopment.  The differences in the ultrastructural 

phenotypes between ΔUL16 and R7210 may be attributed to a possible role for the UL15 intron 

sequences deleted in R7210, but remaining in ΔUL16. 

 The UL11 protein is anchored to TGN membranes through an N-terminal myristylate anchor. In 

addition, the UL11 protein contains a di-Leucine and an acidic amino acid motif, which are known to be 

involved in physical interactions with the UL16 protein, as well as recycling from the plasma 

membranes to TGN. Deletion of either motif abrogates UL16 interaction and plasma membrane TGN 

recycling (Loomis et al., 2001; Loomis, Courtney, and Wills, 2003).  Interaction of this TGN membrane 

associated UL11 and the capsid associated UL16 provides a potential pathway for interactions between 

mature cytoplasmic virions and glycoprotein bearing TGN-vesicles for final cytoplasmic envelopment 

and egress from infected cells. The relatively minor accumulation of cytoplasmic tegumented capsids in 

ΔUL16 infected cells indicates that cytoplasmic capsids, which escaped the nuclear egress block, may 

not be able to efficiently envelope by budding into TGN membranes, in agreement with the known 

interactions between UL11 and UL16. However, the presence of fully enveloped virions suggests that 

this interaction does not play a major role in cytoplasmic virion envelopment.  HSV proteins appear to 
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be multifunctional contain separable domains that possess different functions in the life cycle of the 

virus. Therefore, generation of a cadre of UL16 mutations and truncations may be able to segregate 

domains of UL16 that function in nuclear egress from those that function in cytoplasmic virion 

envelopment. 
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CHAPTER 4 
CONCLUDING REMARKS 

 
Summary 
  

Herpes simplex virus type-1 (HSV-1) morphogenesis occurs in multiple stages within 

infected cells. Initially, the virion capsid assembles within the nucleus and the virion acquires an 

initial envelope by budding into the perinuclear spaces (Roizman and Sears, 2001). 

Subsequently, these enveloped virions fuse with the outer nuclear lamellae leading to the 

accumulation of unenveloped capsids into the cytoplasm. Within the cytoplasm, a number of 

additional tegument proteins attach to the capsid and the fully tegumented capsids bud into 

cytoplasmic vesicles, which mostly likely originate from the trans-Golgi network (TGN). 

Enveloped virions are ultimately secreted to extracellular spaces through the utilization of 

cellular vesicular trafficking systems (Browne et al., 1996; Granzow et al., 2001; Harley, 

Dasgupta, and Wilson, 2001; Mettenleiter, 2002; Skepper et al., 2001; Zhu et al., 1995). The 

process by which the tegumented cytoplasmic capsids bud into TGN-derived vesicles is not well-

understood. The prevalent model calls for specific interactions among viral tegument proteins 

and membrane proteins and glycoproteins embedded within TGN membranes as key factors that 

drive cytoplasmic virion envelopment. This model is supported by evidence that specific 

mutations within tegument proteins and multiple membrane proteins and glycoproteins inhibit 

cytoplasmic envelopment (Mettenleiter, 2004; Mettenleiter, 2006). 

To further investigate the roles of tegument proteins in cytoplasmic virion envelopment, we 

constructed deletion mutants of UL11 (ΔUL11), UL20 (ΔUL20), both UL11 and UL20 (ΔUL11ΔUL20), 

and UL16 (ΔUL16).  The UL11 ORF encodes a 96 amino acid tegument protein, which is N-terminally 

myristylated (MacLean, Clark, and McGeoch, 1989) and palmitylated (Loomis et al., 2001).  The UL11 
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protein localizes to nuclear and TGN-derived apparatus derived membranes in infected cells (Baines et 

al., 1995), but only to the TGN-membranes in non-infected cells (Bowzard et al., 2000).  UL11 is 

believed to play a significant role in cytoplasmic envelopment as UL11 deletion mutants display a 

severe defect at this step in both HSV-1 (Baines and Roizman, 1992b; Fulmer et al., 2007) and PRV 

(Kopp et al., 2003).  The interaction of UL11 with UL16 is dependant upon the presence of an acidic 

amino acid cluster and a di-leucine motif located within the first 50 amino acids of UL11 (Loomis, 

Courtney, and Wills, 2003).  The interaction between UL11 on TGN-membranes and the capsid 

associated UL16 presents a possible pathway for the recruitment of cytoplasmic capsids to TGN-derived 

membranes for final envelopment.  The UL20 ORF encodes a multipass transmembrane proteins of 222 

amino acids and is conserved in all alphaherpesviruses (Debroy, Pederson, and Person, 1985; MacLean 

et al., 1991; Ramaswamy and Holland, 1992). UL20p localizes to TGN membranes after endocytosis 

from cell surfaces (Foster et al., 2004b). UL20p is essential for cytoplasmic virion morphogenesis, since 

mutant viruses lacking UL20p accumulate capsids within the cytoplasm that are unable to acquire 

envelopes by budding into TGN-associated membranes (Dietz et al., 2000; Foster, Alvarez, and 

Kousoulas, 2003; Foster et al., 2004b; Fuchs et al., 1997; Melancon, Foster, and Kousoulas, 2004b).  

Furthermore, UL20p is essential for virus-induced cell fusion caused by either gB or gK syncytial 

mutations, and it is necessary for gK cell-surface expression. Recently, our laboratory has shown that gK 

and UL20 interact and that this interaction is essential for their co-transport and membrane fusion and 

virion morphogenesis functions (Foster et al., 2004d; Melancon et al., 2005).  The UL16 ORF encodes a 

373 amino acid protein (Nalwanga et al., 1996) that is associated with intra-nuclear assemblons early in 

the HSV-1 life cycle and is later found associated with peri-nuclear virions and is a component of 

purified virions in HSV-1 and HCMV(Nalwanga et al., 1996; Ward, Barker, and Roizman, 1996; Wing, 

Lee, and Huang, 1996), but not HSV-2 (Oshima et al., 1998).  Assemblons are believed to be sites at 
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which capsid assembly and/or DNA cleavage and packaging may occur (Ward, Ogle, and Roizman, 

1996), suggesting a possible role for UL16 in these processes. 

Chapter 2 presents evidence that UL11 is involved in cytoplasmic virion envelopment.  The 

ΔUL11 virus exhibits large amounts of unenveloped capsids in the cytoplasm of infected cells.  To 

examine if UL11 worked synergistically with UL20 in cytoplasmic envelopment, the ΔUL11ΔUL20 

virus containing deletions of both UL11 and UL20 was examined.  The phenotype of the double null 

virus most closely resembled that of the UL20 single null virus (ΔUL20) in all areas:  plaque phenotype, 

growth kinetics, and ultrastructural characteristics.  Similar to the UL20/gK heterodimer, UL11 localizes 

to TGN-derived vesicles during virus infection (Foster et al., 2004b; Loomis, Courtney, and Wills, 2003; 

Vittone et al., 2005).  To asses whether UL11 has any affect on UL20/gK localization, confocal 

experiments to determine the localization of UL11, UL20 and gK, revealing that UL11 transport was 

completely independent of UL20/gK.  Taken together these results indicate that UL11 acts at a step in 

cytoplasmic envelopment downstream of UL20, and UL20 is required for proper UL11 function.  

However, UL11 is not dependent upon the UL20/gK heterodimer for its transport. 

Chapter 3 presents evidence that UL16 serves a two-fold purpose in HSV-1 virion 

morphogenesis and egress from infected cells.  To assess the role of UL16 in virion morphogenesis and 

egress, the YEbac102ΔUL16 virus was constructed using a recently described RED markerless 

recombination system (Tischer et al., 2006).  This allowed for the construction of ΔUL16 without 

changing the amino acid coding sequence of the gene found on the complementary strand, UL15.  UL15 

is involved in HSV-1 viral genome cleavage and packaging into mature virions (Abbotts et al., 2000; 

Beard, Taus, and Baines, 2002).  UL16 is encoded on the complementary strand to UL15, located 

completely within the single intron of UL15.  The role of this intron is not well understood, past studies 

have shown that it does not serve to downregulate UL16 production by an antisense mechanism, nor is 
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the splicing event itself necessary for proper UL15 function (Baines and Roizman, 1992a).  Because the 

role of the UL15 splicing event and its intron are not well understood, we sought to create a UL16-null 

virus that did not alter the amino acid sequence of UL15.  This was accomplished by introducing a 

single point mutation into the UL16 ATG to change it to ATA.  This effectively silenced UL16 

production while altering the UL15 coding sequence from GCC to GCT, both of which code for 

alanine(Baines and Roizman, 1991).  ΔUL16 exhibited a plaque phenotype and growth kinetics similar 

to that of the ΔUL11 virus.  However, the viruses differed slightly with respect to their ultrastructural 

characteristics.  While both ΔUL16 and ΔUL11 exhibited a cytoplasmic envelopment defect, the defect 

seen in ΔUL16 was much less severe than that of ΔUL11.  Instead, ΔUL16 showed a large accumulation 

of intranuclear capsids not seen in the ΔUL11 virus.  This result indicates a two-fold role for UL16 in 

virion morphogenesis and egress: 1) The nuclear accumulation of capsids seems to suggest that the first 

and most important role of UL16 is in intranuclear capsid assembly/egress.  2)  The cytoplasmic 

accumulation of capsids suggests that UL16 also plays a role in cytoplasmic envelopment.  These results 

indicate a possible pathway for the juxtaposition of cytoplasmic capsids with TGN-derived vesicles for 

final cytoplasmic envelopment. 

In conclusion, this dissertation has capitalized on the recent availability of herpes simplex virus 

type-1 BAC mutagenesis protocols to quickly and precisely make targeted mutations to any gene of 

HSV-1.  This work has led to a greater understanding of how HSV-1 undergoes cytoplasmic 

envelopment and egress from infected cells. 

 

Current and future research 

 The work presented in Chapter 3 leaves open the question of whether or not UL11 and UL16 act 

synergistically in HSV-1 cytoplasmic envelopment.  Our original hypothesis was that UL16 functioned 
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in cytoplasmic events of the lifecycle based on a previous publication with a partially deleted U16 virus, 

which was reported to exhibit replication defects due to the accumulation of unenveloped capsids in the 

cytoplasm (ref). Based on our previous work comparing the relative contributions of UL20 and UL11 

genes to cytoplasmic virion envelopment (ref), we constructed a double-null UL16/UL11 virus and 

begun to characterize its replication and phenotypic properties. This work is currently in progress. The 

finding that the DUL16 virus constructed with the pYEBac102 plasmid accumulated capsids within the 

nucleus, apparently, unable to properly egress from the nucleus to the cytoplasm, does not allow an 

ordering of the UL11 and U16 functions with respect to the potential roles of these proteins in 

cytoplasmic virion envelopment, by a simple  comparison of the replication and other characteristics of 

the single mutants versus that of the double-null mutant virus. It is anticipated that the double-null virus 

will possess the defects of  the individual null mutations exhibiting approximately two logs of inhibition 

of virus replication versus one log inhibition of infectious virus production by each of the null mutants.  

 Based on the observation that a number of HSV proteins and glycoproteins are multifunctional, it 

can be predicted that potential roles of UL16 in virion assembly within the nucleus and in cytoplasmic 

tegumentation and concomitant cytoplasmic virion assembly may be discerned through the investigation 

of UL16 mutants that can affect one, but not necessarily the other function. An example of this 

experimental approach is the delineation of functional domains of the UL20 protein (UL20p) by alanine-

scanning mutations, single amino acid mutations and truncations (refs), which allowed for the 

segregation of UL20p domains that functioned in virion assembly from those that functioned in 

intracellular transport of UL20p and its interacting partner gK (ref).  In this regard, a collection of UL16 

mutants with different mutations can be quickly tested in conjunction with the U16-null virus using 

complementation analysis to segregate functional domains of UL16 protein. 
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The ultimate goal of these studies was to begin dissecting the order of molecular events that are 

responsible for intracellular virion envelopment. The most current and prevalent hypothesis is that 

cytoplasmic nucleocapsids mature by the addition of a limited number of tegument proteins in the 

cytoplasm, while another set of tegument proteins bind independently of the virion capsid to the 

cytoplasmic portions of the membrane bound proteins and glycoproteins (ref Metenleiter). 

Subsequently, tegument-tegument and tegument-membrane protein interactions drive the budding of 

cytoplasmic capsids into the TGN derived vesicles.  The molecular genetics approach used in these 

investigations revealed valuable information about the sequence of  cytoplasmic virion maturation 

events that require the UL11 and UL20 functions suggesting that UL20 functions preceded those of 

UL11.  Construction of the UL16-null mutant virus revealed an unexpected role of UL16 in nuclear 

egress of virions. In this regard, the genetic approach followed here  provides one pathway for mining 

the necessary information required for understanding intracellular virion assembly. Additional 

experimental approaches need to be pursued including proteomic characterization of the components  of 

fully and partially assembled virions. Furthermore, reconstitution of intracellular cytoplasmic 

envelopment using cellular extracts may become possible in the future in which individual mutant virion 

particles can be tested for their ability to acquire envelopes by budding into TGN-derived vesicles. 

Ultimately, complete knowledge of virion assembly may enable future researchers to build “custom” 

viruses as tailored “nanomachines” that could deliver specific payloads and/or perform specific tasks. 
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APPENDIX  

ADDITIONAL WORK 
 

Disclaimer 

The work presented in this appendix was begun in our lab by a previous student, Jeff 

Melancon.  Jeff left the lab before this work could be completed, so I finished the project.  This 

work has not been presented before, either in Jeff’s dissertation, or in a peer-reviewed 

publication.  However, as I was not the sole party responsible for the body of the work, I did not 

feel it warranted a separate chapter and instead it is presented here.  The work presented in this 

appendix highlights my contributions to the project. 

 

Introduction 

 Herpes simplex viruses (HSV) specify at least eleven virus-specified glycoproteins, as 

well as several non-glycosylated membrane associated proteins, most of which play important 

roles in multiple membrane fusion events during virus entry and intracellular virion 

morphogenesis and egress (Roizman and Sears, 1996; Spear, 1993a; Spear, 1993b; Spear, 

Eisenberg, and Cohen, 2000). Spread of infectious virus occurs either by release of virions to 

extracellular spaces or through virus-induced cell-to-cell fusion. In vivo, the latter mechanism 

allows for virus spread without exposing virions to extracellular spaces containing neutralizing 

antibodies. Mutations that cause extensive virus-induced cell fusion predominantly arise in four 

genes of the HSV genome: the UL20 gene (Baines et al., 1991; MacLean et al., 1991), the UL24 

gene (Jacobson et al., 1998; Sanders, Wilkie, and Davison, 1982), the UL27 gene encoding 

glycoprotein B (gB) (Bzik et al., 1984; Pellett et al., 1985), and the UL53 gene coding for 

glycoprotein K (gK) (Bond and Person, 1984; Debroy, Pederson, and Person, 1985; Hutchinson 



154 

et al., 1992b; Pogue-Geile et al., 1984; Ryechan et al., 1979). Of these four membrane associated 

proteins, only UL20 and gK are absolutely essential for the intracellular transport of virions to 

extracellular spaces in all cell types (Baines et al., 1991; Foster and Kousoulas, 1999; Fuchs et 

al., 1997; Hutchinson and Johnson, 1995; Jayachandra, Baghian, and Kousoulas, 1997). Virus-

induced cell fusion requires the coordinate action of multiple viral glycoproteins including gD, 

gH, gL, gB, gM, gK, as well as UL20p. This conclusion is supported by the fact that gB syncytial 

mutations do not cause virus-induced cell fusion in the absence of either gH, gM, gK, or UL20. 

Similarly, syncytial mutations in gK do not cause virus-induced cell fusion in the absence of gB, 

or gH.  

The most prevalent model of morphogenesis and egress of infectious herpes virions is 

thought to involve sequential de-envelopment and re-envelopment steps in transit to extracellular 

spaces: a) primary envelopment by budding of capsids assembled in the nuclei through the inner 

nuclear leaflet leading to the production of enveloped virions within perinuclear spaces; b) de-

envelopment by fusion of viral envelopes with the outer nuclear leaflet leading to the 

accumulation of unenveloped capsids in the cytoplasm; c) assembly of sets of tegument proteins 

on the cytoplasmic capsids, as well as potentially on vesicle sites to be used for cytoplasmic 

envelopment; d) re-envelopment of cytoplasmic tegumented capsids into TGN-derived vesicles. 

This final event in cytoplasmic virion envelopment is thought to be largely mediated by 

interactions between tegument proteins and cytoplasmic portions of viral glycoproteins 

embedded within the TGN-derived membranes. Cytoplasmically enveloped viruses  are thought 

to be transported to extracellular spaces within Golgi or TGN-derived vesicles (reviewed in: 

(Johnson and Huber, 2002; Mettenleiter, 2002; Tomishima, Smith, and Enquist, 2001).  
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The UL20 gene encodes a 222 amino acid non-glycosylated transmembrane protein that is 

conserved by all alphaherpesviruses. The UL20p is a structural component of extracellular 

enveloped virions and it is expressed in infected cells assuming a predominantly perinuclear and 

cytoplasmic distribution (Ward et al., 1994). An initial report indicated that partial deletion of the 

UL20 gene resulted in perinuclear accumulation of capsids indicating that the UL20 gene 

functioned, most likely, in the de-envelopment of enveloped virions found within perinuclear 

spaces (Baines et al., 1991). However, we showed previously that a precise deletion of the UL20 

gene revealed that the UL20 gene strictly functioned in cytoplasmic envelopment of capsids 

(Foster et al., 2004a). In addition, syncytial mutations in either gB or gK failed to cause fusion in 

the absence of the UL20 gene, suggesting that the UL20 protein was essential for virus-induced 

cell fusion (Foster et al., 2004a). Furthermore, we showed that UL20 is required for cell-surface 

expression of gK and TGN localization, suggesting a functional interdependence between gK and 

UL20 for virus egress and cell-to-cell fusion (Dietz et al., 2000; Foster, Alvarez, and Kousoulas, 

2003). Recently, we delineated via site-directed mutagenesis the functional domains of UL20p 

involved in infectious virus production and virus-induced cell fusion. Importantly, we showed 

that both amino and carboxyl terminal portions of UL20p, which are predicted to lie within the 

cytoplasmic side of cellular membranes, function both in cytoplasmic virion envelopment and 

virus-induced cell fusion.  

In this manuscript, we extend our previous findings by examining the effect previous as 

well as new mutations within UL20p in intracellular transport, cell surface expression and TGN 

localization of UL20 and gK. Our findings show that the amino and carboxyl termini of UL20p 

contain distinct domains that function in infectious virion production and intracellular transport 

and suggest that putative phosphorylation sites in the amino terminus of UL20p play important 
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roles in infectious virus production and virus-induced cell fusion, but not intracellular transport 

of UL20p and gK.  

 

Materials and Methods 

Cells and viruses 

African green monkey kidney (Vero) cells were obtained from ATCC (Rockville, MD). 

The Vero-based UL20 complementing cell line, G5, was a gift of Dr. P. Desai, (John Hopkins 

Medical Center) (Desai et al., 1993). Cells were maintained as previously described (Desai et al., 

1993; Foster, Alvarez, and Kousoulas, 2003; Foster and Kousoulas, 1999). The parental wild-

type strain used in this study HSV-1 (KOS) was originally obtained from P. A. Schaffer (Harvard 

Medical School). Δ20DIV5, Δ20gBsyn3 and Δ20gKsyn1DIV5 viruses were as described 

previously (Foster et al., 2004a). Virus stocks were grown on the UL20 complementing cell line 

Fd20-1, the construction of which was described previously (Melancon, Foster, and Kousoulas, 

2004a). In this paper, for simplification purposes, the Δ20DIV5 virus is referred to as Δ20 virus 

and the Δ20syngK1DIV5 virus is referred to as Δ20gKsyn1 virus (Melancon, Foster, and 

Kousoulas, 2004a). 

 

Plasmids 

pCR2.1-UL20, which was used as the parental vector for UL20 mutagenesis, was generated 

by cloning a 773bp DNA fragment containing the UL20 gene, obtained by PCR amplification of 

HSV-1(KOS) viral DNA, into pCR2.1/TOPO (Invitrogen) as described in detail previously 

(Melancon, Foster, and Kousoulas, 2004a). The generation of UL20 cluster to alanine mutants 

CL38, Cl49, CL153, and CL209, the single point mutant Y49A, and truncation mutants, 204t, 
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211t, 216t  were reported previously (Melancon, Foster, and Kousoulas, 2004a). A set of new 

UL20 mutants generated for this study included, a UL20 mutant containing both the CL38 and 

CL49 mutations (CL38—CL49), the alanine cluster UL20 mutant CL61, and the single point 

mutants Y38A, and the UL20 mutant Y-Y containing both the Y38A and Y49A mutations. The 

additional single point UL20 mutants as well as the double mutants were generated by splice-

overlap extension (SOE) PCR (Aiyar, Xiang, and Leis, 1996) as described previously (Melancon, 

Foster, and Kousoulas, 2004a) .  CL2 and CL61 mutants were generated using the GeneTailor™ 

Site-Directed Mutagenesis Kit as directed by the manufacturer (Invitrogen), and as described 

previously for the other CL mutants (Melancon, Foster, and Kousoulas, 2004a). 

 

UL20 complementation assay for infectious virion production 

Confluent Vero monolayers in six well plates were transfected with 2 μg of wild-type or 

mutant UL20 plasmid with Lipofectamine 2000 as described by the manufacturer (Invitrogen).  

Six hours post-transfection, the monolayers were infected with a UL20-null virus at an MOI of 1. 

Infections were placed on a rocker for 1 hour at 4°C, and then transferred to 37°C for 2 hours. 

Residual virus was inactivated using an acid wash (PBS containing .5M glycine, pH3) for 2 min, 

and monolayers were subsequently washed 3 times with DMEM to restore the pH to a normal 

level. Infections were incubated at 37°C for 24 hours.  After repeated freeze/thaw cycles, virus 

stocks were titered in triplicate on Fd20-1 cells, which effectively complement the UL20-null 

defect (Melancon, Foster, and Kousoulas, 2004a).  The complementation ratio for each mutant 

was calculated with the formula (virus titer of mutant / virus titer of positive control). 
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UL20 complementation assay for virus-induced cell-to-cell fusion 

Confluent Vero monolayers in six-well plates were transfected with 2 μg of wild-type or 

mutant UL20 plasmid with Lipofectamine 2000 as described by the manufacturer (Invitrogen).  

18 hours post transfection, the monolayers were infected at an MOI of 0.1 with either 

Δ20gKsyn1 or Δ20gBsyn3 viruses.  Infections were placed on a rocker at room temperature for 1 

hour, then transferred to 37°C for 30 minutes. Cells were overlaid with DMEM containing 1% 

methylcellulose.  24 hours post-infection, cell fusion was determined by visualization of syncitia 

formation by light microscopy.  Cells were stained with a polyclonal HRP conjugated HSV-1 

antibody as directed by the manufacturer (DakoCytomation).  Briefly, cells were washed with 

PBS to remove methylcellulose media, and fixed with 4°C methanol for 15 minutes.  TBS 

containing a 1:750 dilution of the polyclonal HSV-1 antibody was added to the cells and placed 

on a rocker at 4°C for 1 h.  Cells were washed with TBS and developed using the VECTOR 

NovaRED peroxidase substrate kit as directed by the manufacturer (VECTOR , Inc). 

 

Results 

Mutagenesis of HSV-1 UL20 

 Previously, we reported on the construction and characterization of a panel of 31 mutations 

within the UL20 gene (Melancon, Foster, and Kousoulas, 2004a).  These mutations included: 1) 

cluster-to-alanine mutants in which a cluster of proximal amino acids were changed to alanine 

residues; 2) single amino acid replacement mutants within alanine cluster regions; 3) carboxyl 

terminal truncations of UL20p. Two additional double mutants where constructed for the present 

study. UL20 mutant CL38—CL49 combined the two cluster mutations targeting the two putative 

phosphorylation sites in the amino terminus of UL20p. Similarly, the Y38A—Y49A double 
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mutant combined the two specific tyrosine modifications without altering adjacent amino acids. 

In addition, UL20 mutants CL2, CL61, Y38A, and Y117A, which were not reported previously, 

were included in these investigations. All UL20 mutants were tested for their ability to 

complement UL20-null infectious virus production as well as either gB or gK-mediated virus-

induced cell fusion. The mutated amino acids for each type of mutation included in this study are 

shown in Table 1. The carboxyl terminal truncations are identified with the number of the last 

remaining amino acid (i.e. 204t retains UL20p amino acids 1-204). The location of each mutation 

with respect to the predicted and experimentally confirmed topology of UL20p  (Melancon, 

Foster, and Kousoulas, 2004a) is shown in Figure A.1.  

 

Complementation assay for infectious virus production. 

 It was previously shown that deletion of the HSV-1 UL20 and the PRV UL20 genes 

resulted in up to two logs reduction in infectious virus production relative to their parental wild 

type strains (Baines et al., 1991; Foster et al., 2004a; Fuchs et al., 1997).  The cadre of single or 

double UL20 mutants and UL20p truncations were tested for their ability to complement the 

HSV-1(KOS) UL20-null virus. Complementation experiments involved transfection of Vero 

cells with plasmids encoding wild-type or mutant UL20 genes, followed by infection with the 

UL20-null virus as reported previously (Foster et al., 2004a) and described in Materials and 

Methods. A complementation ratio was calculated for each mutant UL20 plasmid as a percent 

ratio to complementation levels provided by the wild-type UL20 gene. The UL20 wild-type gene 

effectively complemented UL20-null virus infectious virus production, while most of the UL20 

mutants failed to complement the UL20-null virus with the exception of the CL2 and Y117A 

mutants (Figure A.2).  
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Figure A.1:  Predicted membrane topology of UL20p and location of the 15 cluster-to-
alanine mutations.  Membrane topology was predicted using the TMPred and SOSUI algorithms 
(19, 20). UL20p domains where cluster-to-alanine mutations are located are indicated by a shaded 
oval.  Naming of cluster mutations is based on the first amino acid mutated in each cluster. 
Transmembrane region (TM), Cluster mutant (CL). 
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Figure A.2:  Complementation by UL20 mutants.  Ratios of complementation for various 
UL20 mutants.  Vero cells were transfected with the indicated mutant then infected with the 
ΔUL20 virus. 
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Complementation for virus-induced cell-to-cell fusion 

We previously showed that syncytial mutations in either gB or gK failed to cause virus-

induced cell fusion in the absence of the UL20 gene (Foster et al., 2004a).  Furthermore, a panel 

of 31 different UL20 mutants revealed that UL20 domains that functioned in infectious virus  

production segregated from those that functioned in virus-induced cell fusion (Melancon, Foster, 

and Kousoulas, 2004a). The panel of UL20 mutants shown in Table 1 containing additional 

UL20 mutants was tested for the ability to complement UL20-null viruses containing syncytial 

mutations in either gB (syn3) or gK (syn1) for virus-induced cell fusion as described previously 

(Melancon, Foster, and Kousoulas, 2004a). Briefly, confluent Vero monolayers were transfected 

with plasmids encoding either wild type or mutant UL20p, and subsequently infected with either 

Δ20gKsyn1 or Δ20gBsyn3 viruses. Viral plaques appearing as larger plaques in a background of 

uniformly small UL20-null viral plaques were stained with anti-HSV-1 polyclonal antibody as 

described in Materials and Methods (Figure A.3). In this complementation assay, 20-40% of all 

viral plaques appeared considerably larger than the uniformly small UL20-null plaques (not 

shown). The CL2 UL20 mutant (Figure A. 3) and Y117A (not shown) complemented effectively 

both gB and gK-mediated virus-induced cell fusion producing rescued viral plaques similar in 

size to those produced by the wild-type UL20 gene. The CL49 and Y49A mutations partially 

complemented virus-induced cell fusion caused by syncytial mutations in either gB or gK, as 

evidenced by the production of visibly larger than the UL20-null viral plaques; however, these 

plaques were substantially smaller than those produced by complementation with the wild-type 

UL20 gene. For comparative purposes, previously, we showed that the 204t and 211t UL20 
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truncations failed to complement virus induced cell fusion, while the 216t truncation efficiently 

complemented virus-induced cell fusion (Melancon, Foster, and Kousoulas, 2004a).  
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Figure A.3:  UL20 mutant complementation for fusion.  Vero cells were transfected with the 
indicated mutant and then infected with either ΔUL20gBsyn or ΔUL20gKsyn virus. 
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