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Abstract 

 During the past century, many species of the Spotted Fever Group Rickettsia (SFGR) 

have been described, especially, through the introduction of a variety of molecular techniques 

applied to detect rickettsiae inside of their host. In this study we developed a quantitative real-

time polymerase chain reaction (qPCR) assay (1) to characterize the growth and the distribution 

of a SFGR of unrecognized pathogenicity in naturally infected Amblyomma americanum ticks 

during physiological events; and (2) to determinate the influence of the host cell specificity in the 

replication patterns of recognized and unrecognized SFGR during a reciprocal rickettsiae 

challenge in both mammalian and tick cell lines. Rickettsia amblyommii was identified in the 

tissue samples of naturally infected A. americanum ticks at ratios of ≤ 1 rickettsiae per tick cell. 

Significant variability in the ratio of rickettsial to tick gene copy numbers between the tissues 

was identified; however, no single tissue was consistently observed to have the greatest 

rickettsial burden throughout the feeding event. Furthermore, the ratio of rickettsial to tick gene 

copy numbers did not significantly differ between eggs, immature ticks, and feeding events. In 

the in vitro study, differences in the ratio of rickettsiae per cell were observed within each cell 

line. The ratio of rickettsiae per host cell was greatest in Rickettsia-infected ISE6 cells, compared 

to Vero cells. Rickettsia parkeri infection load was consistently greater in both cell lines 

compared to R. amblyommii and Rickettsia montanensis; and considerable variability between 

these last two Rickettsia species was observed when the ratio of rickettisae per host cell was 

calculated for each individual cell line. The implications of the use of this technique to 

understand the pathogenic nature of some SFGR and to investigate the host specificity in the 

tick-SFGR interactions is further presented and discussed. 
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Chapter 1: General Introduction 
 
 Ticks transmit a greater variety of pathogenic microorganisms compared to any other 

arthropod vector group; and they are among the most important vector of diseases affecting 

humans and animals (Jongejan and Uilenberg, 2004). Within this milieu of possible infectious 

agents, tick-borne rickettsioses have a special importance because zoonoses of the Spotted Fever 

Group Rickettsia (SFGR) are among the oldest known tick-borne diseases (Parola et al., 2005), 

accounting, therefore, to one of the highest morbidity and mortality rates in humans (Jongejan 

and Uilenberg, 2004). 

 Spotted fever group Rickettsia (SFGR) are obligate intracellular gram-negative bacteria 

that belong to the α-subdivision of Proteobacteria. They are members of the genus Rickettsia 

within the family Rickettsiaceae in the order Rickettsiales (Bechah et al., 2008). The name of this 

genus honors Howard Taylor Ricketts, who first described the role of ticks in the transmission of 

SFGR (Ricketts, 1906), and who unfortunately died of typhus fever (another rickettsiosis) in 

1910 while studying the causative agent in an outbreak of this disease in Mexico City. 

Phylogenetically, members of the SFGR are closely related (Stothard et al., 1994); however, 

pathogenicity ranges considerably among the officially named SFGR, because recognized tick-

transmitted spotted fevers share the same group with SFGR of unknown pathogenicity, that, in 

some instances, have been reported to utilize a truly symbiotic life style with their tick-hosts 

(Table 1). A good illustration of this phenomenon is the fact that only two of the five officially 

named SFGR presently identified in the United States are currently associated with human 

disease (Bechah et al., 2008).  

 Ticks are the principal vectors and reservoirs of SFGR, effectively sustaining the 

rickettsial cycle through horizontal transmission to vertebrate hosts during bloodmeal acquisition 

and vertical (transstadial and transovarial) transmission (Munderloh and Kurtti, 1995). 
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Table 1. Officially named Spotted Fever Group Rickettsia (SFGR), their tick vectors, life cycle 
and geographical distribution in the Unites States. 

Adapted from Macaluso and Azad (2005) 
  

Tick-borne 
SFGR 

Organism Arthropod vector Life cycle Geographical 
distribution 

T
ic

k-
tr

an
sm

itt
ed

 sp
ot

te
d 

fe
ve

r 
Rickettsia rickettsii Dermacentor variabilis, 

Dermacentor 
andersoni, 
Rhipicephalus 
sanguineus, 
Amblyomma. 
cajennense and 
Amblyomma 
aureolatum 
 

Transovarian and 
transtadial 

Western 
hemisphere 

Rickettsia parkeri Amblyomma 
maculatum, 
Amblyomma triste, 
Amblyomma dubitatum, 
A. cajennense, 
Amblyomma 
americanum 

Transovarian and 
transtadial 

Western 
hemisphere 

N
on

-p
at

ho
ge

ni
c 

Sp
ot

te
d 

Fe
ve

r 

Rickettsia 
montanensis 

D. variabilis, 
D. andersoni 

Transovarian and 
transtadial 

Montana, Virginia,
Ohio, New York, 
Massachusetts, 
Connecticut, 
North 
Carolina, South 
Carolina  
 

Rickettsia peacockii D. andersoni Transovarian and 
transtadial 

Montana, 
Colorado  
 

Rickettsia 
rhipicephali 

R. sanguineus, D. 
andersoni, 
Dermacentor 
occidentalis, 
Haemaphysalis 
juxtakochi 

Transovarian and 
transtadial 

Mississippi, 
Connecticut, 
Montana, 
California, Brazil 

O
th

er
 r

ic
ke

tt
si

ae
 

Rickettsia felis Ctenocephalides felis Transovarian and 
transtadial 

Worldwide 

Rickettsia akari Liponyssoides 
sanguinus 

Transovarian and 
transtadial 

Wordwide 

Rickettsia canadensis  Haemaphysalis 
leporispalustris 

Transovarian and 
transtadial 

Montana  
 

Rickettsia bellii D. variabilis, 
D. andersoni Ixodes 
loricatus, H. juxtakochi, 
Amblyomma neumanni, 
A. aureolatum 

Transovarian and 
transtadial 

Western 
hemisphere 
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 To date, some consensus exists when considering the tick-SFGR interactions, since only 

hard ticks (Ixodidae) have been incriminated in maintaining the rickettsial life cycle; however it 

is now believed that other arthropods could potentially play a role in the epidemiology of these 

microorganisms, because experimental infections of two SFGR (R. rickettsia and Rickettsia 

conorii) have been recently reported in lice (Houhamdi et al., 2003; Houhmadi et al., 2006). 

Globally, the complex tick-SFGR relationships have unclear boundaries. Spotted Fever 

Group Rickettsia can only be identified where their specific tick-hosts are naturally found. In the 

Western hemisphere, R. rickettsii and R. parkeri, the causative agents of Rocky Mountain 

Spotted Fever (RMSF) and Maculatum disease (MD), respectively, are only isolated from 

infected patients or in field-caught ticks where Dermacentor (RMSF), Rhipicephalus sanguineus 

(RMSF) and Amblyomma (RMSF and MD) ticks are also localized. For the same reason, 

rickettsioses transmitted by R. conorii and Rickettsia africae, the causative agents of 

Boutonneuse fever (BF) and African tick-bite fever (ATBF), respectively, are only reported in 

Southern Europe (BF), Africa (BF and ATBF), Southern Asia (BF) and West Indies (ATBF), 

where Rhipicephalus (BF) and Amblyomma (ATBF) ticks are naturally distributed (Walker and 

Ismail, 2008). Since the first report in 1896 in the Snake River Valley of Idaho (Ricketts, 1909), 

R. rickettsii has been assigned as the conclusive tick-borne rickettsiosis associated with human 

disease in the Western Hemisphere, with the highest incidence rates in regions of the United 

States, followed by Mexico, Costa Rica, Panama, Colombia, Brazil and Argentina (Parola et al., 

2005; Walker, 2007). In fact, for approximately the next 90 years since the first isolation, cases 

of RMSF in the United States and in Latin America were directly associated with Dermacentor, 

Amblyomma and Rhipicephalus ticks, particularly D. variabilis and D. andersoni, in the US; and 

A. cajennense, A. aureolatum and R. sanguineus in Latin America (Parola et al., 2005). Recent 

shifts in the rickettsial distribution in the United States identified R. sanguineus as an unexpected 



4 
 

vector for RMSF in Arizona (Demma et al., 2005). R. parkeri, was first isolated in 1937 from A. 

maculatum ticks found on cattle in the Gulf Coast region of Texas (Parker et al., 1939), but its 

role as a human pathogen remained unknown for more than 60 years. For many years, 

investigators speculated that agents other than R. rickettsii, including R. parkeri, caused mild 

RMSF-like illnesses in the United States (Walker and Fishbein, 1991; Stothard et al., 1995). 

However, the role of R. parkeri as a pathogen of humans was not confirmed until 2002, when R. 

parkeri was isolated from a patient with a relatively mild febrile illness and multiple eschars 

(Paddock et al., 2004). Conscious education of physicians about this SFGR in the United States 

was crucial to add one more differential diagnose to mild-illness followed by tick bite, 

especially, within susceptible individuals (Whitman et al., 2007). The recognition of the R. 

parkeri in the Western Hemisphere is progressively increasing. Once believed to be naturally 

maintained in a single tick species (Parker et al., 1939), A. triste (Venzal et al., 2008a; Venzal et 

al., 2008b; Silveira et al., 2007), A. dubitatum and A. cajennense (Pacheco et al., 2007) are now 

associated with R. parkeri infection in Latin America countries, such as Uruguay and Brazil, 

even though experimental infection of this microorganism (Goddard, 2003; Sangione et al., 

2005) has demonstrated that A. americanum and A. cajennense ticks could potentially maintain 

R. parkeri.  

In Europe, the first case of SFGR was reported in Tunis (Conor and Bruch, 1910) but the 

role of the R. sanguineus ticks in the rickettsial epidemiology was not described until the 1930s 

(Brumpt, 1932). For many years, R. conorii was considered to be the sole tick transmitted 

spotted fever in the old continent. Recent advances in diagnostic methods offered better 

differentiation of the R. conorii strains as soon as new human cases were diagnosed in Europe, 

Africa and Southern Asia countries. R. conorii is now subdivided by genetic isotypes and 

location where new phenotypes are isolated (Bechah et al., 2008). Even though R. sanguineus is 
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still the major vector for BF in those countries, in 1994, Rhipicephalus pumilio ticks were also 

found to be infected with the R. conorii subsp caspia (Eremeeva et al., 1994). ATBF was first 

described in 1911 (McNaught, 1911), but the agent related with the cases reported in 

Mozambique and South Africa during that time remained uncharacterized for 80 years. In 1990, 

R. africae was isolated from Amblyomma hebraum ticks in Zimbabwe (Kelly and Mason, 1991) 

and isolation of the bacterium from a patient suffering from a tick bite fever was confirmed 2 

years later in the same country (Kelly et al., 1992). The rickettsial strain isolated from A. 

hebraum ticks in 1990 could not be compared with the first strain identified (Pijper, 1934) 

because such culture was lost and further studies at that time were unable to confirm the previous 

findings (Pijper, 1936); however, the strain isolated by Kelly and Mason (1991) was identical to 

the microorganism isolated from naturally infected Amblyomma variegatum ticks 20 years earlier 

in Ethiopia (Burgdorfer et al., 1973). To date, ATBF cases are restricted to African and West 

Indies countries where these Amblyomma ticks are found (Walker and Ismail, 2008).  

During the past century, many others SFGR rickettsiae were isolated from ticks, 

especially in the United States. Due to the lack of apparent pathogenicity, the role of these 

microorganisms in the tick-SFGR interactions was basically overlooked. Contributions regarding 

the characterization of most of these SFGR of unknown pathogenicity remain contradictory as 

novel techniques are applied with the aim of taxonomically including them as new species 

(Walker, 2007). In the Western hemisphere, R. montanensis, R. peacockii, R. rhipicephali, are 

officially named tick-borne SFGR of unrecognized pathogenicity (Parola et al., 2005). In the 

United States, the distribution of these SFGR is well established (Macaluso and Azad, 2005). R. 

montanensis (formerly R. montana) was first isolated from D. variabilis and D. andersoni ticks 

in eastern Montana (Bell et al., 1963). In the past 45 years, the presence of R. montanensis has 

been also reported in naturally infected Dermacentor ticks collected in the states of Maryland 
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(Ammerman et al., 2004), Ohio (Pretzman et al., 1990), Massachusetts (Feng et al., 1980), 

Connecticut (Anderson et al., 1986), North Carolina (Breitschwerdt et al., 1988), South Carolina, 

Virginia and New York (Ammerman et al., 2004). R. peacockii (Niebylski et al., 1997), also 

known as the East Side agent, was first isolated from D. andersoni ticks found in the east side of 

Bitterroot Valley in western Montana (Burgdorfer and Brinton, 1975). Additional reports of the 

presence of this endosymbiont SFGR in others states is only available from wood ticks collected 

in Colorado (Baldridge et al., 2004; Simser et al., 2001). R. rhipicephali (Burgdorfer et al., 1978) 

was first isolated from R. sanguineus ticks in Mississippi (Burgdorfer et al., 1975). Further 

detection of R. rhipicephali in the United States was reported in R. sanguineus collected in 

Connecticut (Magnarelli et al., 1982), D. andersoni in Montana (Philip and Casper, 1981) and D. 

occidentalis in California (Philip et al., 1981; Wikswo et al., 2008). Phylogenetic analyses of 

Rickettsia-like organisms isolated from Haemaphysalis juxtakochi ticks also confirmed the 

presence of R. rhipicephali in Brazil (Labruna et al., 2005; 2007a).  

 Human migration patterns toward the South and Western United States during the past 

300 years have been recently correlated with the geographic distribution and increased incidence 

of some tick-transmitted pathogens. Contributing factors include the gradual, but continuous 

human environmental interventions, which provided favorable microclimatic conditions for tick 

survival and an optimum habitat for their vertebrate hosts (Childs and Paddock, 2003). In 1754, 

A. americanum became the first North American tick species to be formally described by 

European naturalists due to its relative abundance (Figure 1). The population of the wood ticks, 

as they were known during that time, rapidly decreased due to the profound changes in regional  

microclimate, hydrology, and soil mechanics provoked, mainly, by the expansion of the 

deforestation of the virgin longleaf pine (Pinus palustris) forests of the Southeast to produce 

charcoal and land for crops and pastures. 



7 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The lone star tick. Photography illustrating the different life stages of A. 
americanum ticks. (A) male, (B) female, (C) larva and (D) nymph. Bar 0.5 mm Source: 
http://www.ticktexas. org/ticks/afaa_lone_star_tick. 
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The vast cleared lands rapidly became inhospitable to the survival of these moisture-sensitive 

ticks. By 1870, A. americanum ticks once described as abundant were considered extinct in 

many North American regions (Paddock and Yabsley, 2007). During the first half of the 

twentieth century, reforestation of the extensively longleaf harvested regions took place by 

replacing P. palustris partly or entirely by mixed pines and hardwoods, particularly scrub oak 

(Quercus sp), which was observed to be accompanied by vigorous growth of formerly 

suppressed understory flora, creating, once again, ideal microclimatic conditions for the lone star 

tick survival through the establishment of ecotones comprised of smaller trees and more 

abundant surface vegetation (Wahlenberg, 1946). This profuse source of accessible vegetal 

protein coupled with the lack of natural predators and the increased hunting regulations 

contributed to a resurgence of the white-tailed deer population in the mid-1900s. White-tailed 

deer are the major wildlife host of A. americanum in the United States (Kollars et al., 2000). 

They play a dual role in the survival and proliferation of A. americanum ticks by serving as a 

preferred food source for all tick life stages and as a vehicle for transport and localization within 

the preferred habitat (Paddock and Yabsley, 2007). Due to the increased number of deer in the 

United States, estimated to be around 18 million animals in 1992 (Mcdonald and Miller, 1993), 

and therefore, the increased number of A. americanum ticks in the vegetations where the 

vertebrate host circulates, the number of tick-biting incidents among humans dramatically 

increased during the past few decades (Childs and Paddock, 2003). As humans can be 

accidentally bitten by all three tick life stages (larvae, nymphs and adults), and microclimate 

conditions favor optimal proliferation of these ticks, we might be facing one of the most serious 

problems with ticks in the entire American history. 

 As a consequence, the number of tick-borne diseases transmitted by A. americanum ticks 

also increased. Once believed to be a tick of minor public health importance, the lone star ticks 
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are now known to be the vector of important zoonotic pathogens (Table 2). It is accepted that the 

human ehrlichioses are the most important diseases transmitted by A. americanum ticks, since a 

total of 1,050 human monocytic ehrlichiosis (HME) cases have being reported in a 6 year study 

of several United States locations (Paddock and Yabsley, 2007). However, natural infections of 

lone star ticks with other recognized pathogens and with agents of undetermined pathogenicity 

have been extensively identified throughout the range of A. americanum. More recently, 

laboratory-reared and field-collected lone star ticks were described to be highly infected with 

Coxiella and Rickettsia spp (Jasinkas et al., 2007; Zhong et al., 2007). Coxiella burnetii, the 

causative agent of Q fever, had already been identified (Parker and Kohls 1943; Philip and 

White, 1955), but it is thought that the transmission of this bacterium to humans is not 

significantly important in these ticks, even though ticks can be naturally infected (Childs and 

Paddock, 2003). The ascendency of A. americanum ticks as vectors of SFGR in the United States 

is well substantiated. R. rickettsii is believed to be the cause of infection in two fatal cases 

reported in a region heavily infested with A. americanum ticks back almost 70 years ago 

(Anigstein and Bader, 1943), even though attempts to isolate this SFGR in large field collections 

of A. americanum were unsuccessful (Burgdorfer et al., 1981b; Goddard and Norment, 1986).  

 R. parkeri has only been isolated from A. maculatum ticks in the United States (Parker et 

al., 1939; Whitman et al., 2007), but artificial infection of this microorganism has already been 

demonstrated in A. americanum ticks (Goddard, 2003). According to the current literature, 

‘Rickettsia amblyommii’ is the most prevalent SFGR in A. americanum ticks (Mixson et al., 

2006; Apperson et al., 2008, Stromdahl et al., 2008). The WB-8-2 agent, as official 

classifications still designate this SFGR (Rault et al., 2005), was first isolated, at high levels, in 

1974 during an unsuccessful attempt to associate A. americanum ticks with R. rickettsii  
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Table 2. Bacteria isolated or identified from Amblyomma americanum. 
 
Bacterial agent 

 
Disease in humans 

 
Comments 

   
   
Ehrlichia chaffeensis Human monocytic ehrlichiosis 

(HME) 
The most severe of the three ehrlichioses of 
humans in the United States. Underreported and 
probably as common as Rocky Mountain spotted 
fever. 
 

Ehrlichia ewingii E. ewingii ehrlichiosis Most commonly diagnosed in 
immunosuppressed persons. Less than 20 cases 
documented. 
 

Rickettsia rickettsii Rocky Mountain spotted fever Role of lone star ticks in transmission is 
uncertain, as recent surveys have not identified 
R. rickettsii in ticks. 
 

Coxiella burnetii Q fever Tick transmission is not thought to play a 
significant role in human disease, although many 
species of ticks are naturally infected 
 

Francisella tularensis Tularemia Tick transmission remains important in endemic 
occurrence. Other routes of transmission, such as 
direct contact with wild rabbits, are also 
significant. 
 

“Borrelia lonestari” Probable cause of southern tick- 
associated rash numbers 

Likely to become recognized as a common 
disease where lone star ticks exist in high. Agent 
as yet uncultivable. 
 

85-1034 (“Rickettsia 
amblyommii”) 

Possible mild spotted fever 
rickettsiosis 

Association with human disease based on 
serologic reactivity only. 
 

Rickettsia parkeri Maculatum disease Originally isolated from Amblyomma maculatum 
in Texas. 
 

WB-8-2 None described Nonpathogenic or mildly pathogenic in guinea 
pigs and meadow voles. Most closely related to 
MOAa.  
 

MOAa None described Most closely related to WB-8-2. 
Source: Childs and Paddock (2003) modified. 
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infections in field-collected ticks from Arkansas, South Carolina and Tennessee (Burgdorfer et 

al., 1981b). Subsequently, molecular analysis of a SFGR isolated from field-collected A. 

americanum ticks (MOAa) in Missouri (Weller et al., 1998) was found to be closed related with 

WB-8-2. In fact, both WB-8-2 and MOAa strains are believed to represent the same SFGR 

(Paddock and Yabsley, 2007). The most comprehensive survey examining infection of A. 

americanum with ‘R. amblyommii’ was performed between 1998 and 2005 in nine states 

(Mixson et al., 2006). From the 2,038 adult ticks collected, the outer membrane protein A gene 

(OmpA), encoding the ‘R. amblyommii’ DNA sequence was detected in 42% of those ticks, with 

infection prevalence ranging as high as 97% in all 29 sites surveyed. ‘R. amblyommii’ has also 

being identified in other countries, particularly in Brazil, Argentina and French Guyana, where 

Amblyomma coelebs (Labruna et al., 2004a; Parola et al., 2007), A. cajennese (Labruna et al., 

2004b) and A. neumanni (Labruna et al., 2007b) are the major vectors. Considering the 

pathogenic nature of this microorganism, a lot of speculation based on serological evidences 

(Dasch et al., 1993; Sanchez et al.,1992; Labruna et al., 2007b; Apperson et al., 2008; Saito et 

al., 2008), epidemiological studies (Mixson et al., 2006) and molecular analyses (Billeter et al., 

2007) suggest that this SFGR might be the cause of mild-illness in humans, however the lack of 

classical RMSF clinical signs (Sanchez et al.,1992), and the impossibility to replicate the 

infection in animal models (Burgdorfer et al., 1981b) coupled with the failure to isolate the 

bacterium from human patients previously exposed to infected A. americanum ticks (Billeter et 

al., 2007), make the inclusion of this Rickettsia in the group of tick-transmitted spotted fever 

difficult (Walker and Ismail, 2008). As noted by Childs and Paddock (2003), some of these 

obstacles will sooner or later be overcome and ‘R. amblyommii’ transmitted by A. americanum 

will eventually be isolated from human patients, as has been reported in the past, but for the best 

of our knowledge ‘R. amblyommii’ is still considered as a SFGR of unrecognized pathogenicity. 
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 Ticks have a complex and very old association with the rickettsiae species that they 

harbor. It is fascinating to note that R. rickettsii (Parola et al., 2005; Demma et al., 2005), R. 

rhipicephali (Burgdorfer et al., 1975; Magnarelli et al., 1982; Philip and Casper, 1981; Philip et 

al., 1981; Labruna et al., 2005; 2007a; Wikswo et al., 2008) and R. bellii (Gordon et al., 1984; 

Labruna e t al., 2004b; Horta et al., 2006; Pinter et al., 2006; Labruna et al., 2007a; 2007b) 

throughout their evolution became highly capable to associate with tick vectors from several 

different genera, while R. peacockii, seems to be restricted to D. andersoni ticks only 

(Burgdorfer and Brinton, 1975; Niebylski et al., 1997). Discrepancy between these ranges seems 

to be also true, because R. parkeri (Parker et al., 1939; Goddard et al 2003; Pacheco et al 2007; 

Silveira et al 2007; Venzal et al 2008a; Venzal et al 2008b), R. conorii (Brumpt, 1932; Eremeeva 

et al., 1994), R. africae (Burgdorfer et al., 1973; Kelly and Mason, 1991), R. montanensis (Bell 

et al., 1963) and ‘R. amblyommii’ (Burgdorfer et al., 1981b; Labruna et al., 2004a; 2004b; Parola 

et al., 2007; Labruna et al., 2007b), apparently hold an intrinsic relationship with several 

different species within the same tick genus. One possibility for why these phenomena might 

happen seems to be related with the way that the genome of each one of these bacteria split from 

the common α-proteobacteria-like ancestor, the same eubacterial ancestor that mitochondria are 

believed to originate from, early in the rickettsial evolution (Gray 1998; Gray et al., 2001). 

According to this hypothesis, rickettsial species that retained homology with some eukaryotic 

mitochondria proteins after the process of reductive evolution that both rickettsiae and 

mitochondria, independently, originate from, are more likely prone to better associate with each 

other (Ogata et al., 2006; Fitzpatrick et al., 2006); therefore, rickettsiae species that share some 

similarities with the tick host cell proteome, could potentially develop more malleable 

interactions, sustaining infection in tick vectors of more than one genus. In this process, some 

rickettsiae could take advantage of the favorable conditions and proliferate more than the load 
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supported by the tick host, crossing a line that could ultimately result in the end of their 

interactions (Niebylski et al., 1999). This argument, even though plausible, seems to be novel 

among rickettsiologists, since no investigations have being conducted so far to address the 

question at this level.  

 In order to understand the tick-Rickettsia interactions, a variety of methods have been 

used by scientists throughout the years. Burgdorfer and coworkers (1981b) were some of the first 

scientists to describe rickettsial interspecies competition inside the tick host. According with 

these authors, R. rickettsii transovarial transmission was observed to be interfered by the 

presence of R. peacockii in natural infected D. andersoni ticks (Burgdorfer et al., 1981a). Similar 

responses have been demonstrated under laboratory conditions (Burgdorfer, 1988; Macaluso et 

al., 2002). Dermacentor ticks infected either with R. montanensis or R. riphicephali were unable 

to transmit transovarially acquired R. rickettsii infection (Burgdorfer, 1988). In a similar fashion, 

detection of R. montanensis or R. riphicephali in the progenies (F1 and F2) of R. montanensis or 

R. riphicephali-infected cohorts of D. variabilis ticks (Macaluso et al., 2001) was not observed 

after reciprocal rickettsial challenges (Macaluso et al., 2002). Under these circumstances, 

blockage of transovarial transmission was suggested to be related with shifts in the expression of 

some molecules in the ovaries of D. variabilis ticks (Macaluso et al., 2002; 2003). The ability 

that some rickettsiae have to propagate their life cycle without negatively impacting fecundity of 

infected female ticks and the number of viable post-embryonic tick stages is consistent with 

endosymbiosis (Azad and Beard, 1998). Strictly vertically transmitted symbionts can manipulate 

the host reproductive fitness to their own benefit (Burgdorfer et al., 1981a; Lawson et al., 2001; 

Hagimori et al., 2006; Zhong et al., 2007). R. peacockii, for example, is only found in the 

oocytes and interstitial cells of the ovarian tissues of D. andersoni ticks (Munderloh et al., 2005; 

Niebylski et al., 1997); while R. rickettsii is responsible for high mortality rates in post-
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embryonic stages of D. andersoni ticks (Niebylski et al., 1999). When R. peacockii-infected D. 

andersoni ticks are exposed to R. rickettsii, interspecies competition in the reproductive system 

of female ticks may be one of the reasons for the blockage of R. rickettsii transovarial 

transmission (Burgdorfer et al., 1981a). R. bellii-like bacteria were demonstrated to be related 

with male-killing and arthropod host parthenogenesis (Lawson et al., 2001; Hagimori et al., 

2006). In order to enhance their own transmission, these microorganisms alter the embryonic 

maturation in infected insects to increase the number of females in the next generation. 

Antibiotic-treated insects were related with increases in the production of male offspring 

(Lawson et al., 2001; Hagimori et al., 2006). Similarly, Coxiella sp-infected A. americanum ticks 

suffered substantial reduction in reproductive fitness after antibiotic administration. Reduction of 

Coxiella sp loads in antibiotic-treated ticks was correlated with decreased weight, prolonged time 

to oviposition and lower progeny viability (Zhong et al., 2007). Understanding the underlying 

mechanisms in some of these processes could lead to the development of alternative approaches 

to control ticks and tick-borne diseases. Throughout the years, though, studies have being 

focused mainly on the vector competence of ticks, with considerably less attention to the 

relationships of SFGR and various tick cells, tissues, organs and with specific physiologic 

processes of acarines (Parola et al., 2005).  

 In a tick host, SFGR utilize both horizontal and vertical transmission pathways. As a 

general rule, pathogenic SFGR are horizontally transmitted to vertebrate hosts during blood 

feeding of infected ticks, while nonpathogenic or SFGR of unrecognized pathogenicity are those 

microorganisms that lack such ability, maintaining the rickettsial life cycle in nature principally 

by transovarial transmission and transstadial survival in ticks. The tick’s role in the pathogenic 

SFGR life cycle is believed to take place after ticks are exposed to infected blood during feeding 

on rickettsemic vertebrates (Munderloh and Kurtti, 1995). Cofeeding infection has also been 
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suggested as a method of rickettsial acquisition by ticks, since R. rickettsii infection was 

observed in previously uninfected-D. andersoni ticks when R. rickettsii-infected D. andersoni 

ticks were allowed to feed in the same host in closely situated bite sites (Philip, 1959). Once 

inside the tick host, most SFGR can infect all tick tissues, including the salivary glands, midgut, 

and ovaries (Munderloh and Kurtti, 1995); however, the contributing arthropod and Rickettsia-

derived factors that facilitate host infection are not clearly defined. Transovarial and transtadial 

transmissions serve as the primary mechanism for maintenance of rickettsiae of low or no 

pathogenicity, and may serve a lesser role in the maintenance of pathogenic rickettsiae, as 

evidenced by the lethal effects of R. rickettsii on ticks (Burgdorfer and Brinton, 1975, Niebylski 

et al., 1999). R. peacockii, seems to be restricted to the oocytes and interstitial cells of the 

ovarian tissues of D. andersoni ticks (Munderloh et al., 2005; Niebylski et al., 1997), a fact 

attributed to the lack of functional OmpA, a putative adhesion protein (Li and Walker, 1998). 

Rickettsia monacensis transformed to express green fluorescent protein (GFP) can be easily 

visualized in Ixodes scapularis, A. americanum and D. variabilis tick tissues after infection by 

capillary feeding (Baldridge et al., 2007). This SFGR migrate to the midgut first, before 

disseminate to other organs, particularly salivary glands and ovaries in I. scapularis ticks, but not 

in A. americanum and D. variabilis. In those ticks, dissemination of GFP-transformed rickettsiae 

was restricted to the midgut. GFP-R. monacensis was not transmitted to vertebrate hosts during 

feeding and the life cycle was maintained exclusively through vertical transmission in I. 

scapularis, a feature related to the nonpathogenic nature of this SFGR (Baldridge et al., 2007). 

 Serological analyses had been the golden standard for the detection of SFGR in both 

vertebrate and tick hosts (Parola et al., 2005). However, the development of molecular methods 

to diagnose rickettsial infection in the past 20 years facilitated the recognition of several distinct 

tick-borne SFGR. Polymerase chain reaction (PCR) rapidly became a reliable tool to diagnose 
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rickettsioses in the blood, tissues or within the tick vectors (Macaluso et al., 2001; Paddock et al., 

2004; Mixson et al. 2006; Walker, 2007). Several different genes are targeted in the diagnosis of 

SFGR. For phylogenetic analysis purposes, the outer membrane protein A (ompA), citrate 

synthase and Rickettsia genus-specific 17-kDa-antigen are the most common genes (Roux et al., 

1996; 1997; Ellison et al. 2008), and SFGR differentiation through restriction fragment length 

polymorphism (RFLP) is suitable only in ompA amplicons (Roux et al., 1996). Quantitative real-

time polymerase chain reaction (qPCR) was recently introduced as a tool to enumerate 

rickettsiae infection in the host (Rolain et al., 2002; Eremeeva et al., 2003). To date, qPCR has 

been used to quantify SFGR in cell culture and whole ticks and for diagnostics of SFGR in field-

caught ticks (Rolain et al., 2002; Eremeeva et al., 2003; Labruna et al., 2004a, 2004b; Stenos et 

al., 2005; Zhong et al., 2007). However, the application of qPCR to quantify SFGR in specific 

tick tissues during tick physiologic events has not been described.  

 Deciphering the tick-SFGR interactions is complicated; to examine the roles that 

pathogenic and nonpathogenic SFGR play within the tick host in relation to the epidemiology of 

tick-borne rickettsioses, the mechanisms of rickettsial infection within the tick must first be 

characterized. In this study, a qPCR assay was used as a tool to investigate the tick-SFGR 

interactions by accessing the ratio of Rickettsia per tick cell during tick feeding events and in 

atypical host cells. The importance of A. americanum tick as a vector of SFGR in the United 

States was stressed by using this tick as a model in the tick feeding experiment. To explore the 

pathogenic nature of SFGR, the ratio of Rickettsia per tick cells in selected tissues of A. 

americanum ticks and post-embryonic life stages was accessed in unrecognized SFGR. “R. 

amblyommii”-naturally infected A. americanum ticks were allowed to feed and mate on 

vertebrate hosts before salivary glands, midgut and ovaries tissues were dissected out for DNA 

extraction and qPCR analysis of rickettsial infection. A portion of the mated infected female 
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ticks were allowed to complete the life cycle and the F1 generation (eggs, larvae and nymphs) 

were also accessed for rickettsial infection. To investigate if host specificity plays a role in the 

tick-SFGR interactions, equal amounts of R. montanensis, “R. amblyommii” and R. parkeri were 

inoculated in an atypical tick cell line (ISE6) and followed infectivity rates and rickettsial burden 

inside the cell throughout the experiment. The working hypotheses in this study are that (1) The 

ratio of Rickettsia per tick cell during tick feeding and transovarial/transtadial transmissions in A. 

americanum ticks infected with unrecognized rickettsiae is directly correlated to the significance 

of the horizontal versus vertical route of transmission in SFGR; (2) The specificity of 

associations among rickettsiae and a particular tick species is correlated with replication under 

laboratory conditions. The conclusions presented in this study offer insightful thoughts about the 

tick-SFGR interactions. Due to the apparent low prevalence of R. parkeri-naturally infected A. 

americanum (Goddard and Norment, 1986; Chils and Paddock, 2003), further investigations 

should be conducted to establish R. parkeri-artificially infected cohorts of A. americanum to 

examine the potential roles of this SFGR in selected tissues and post-embryonic life stages 

during physiologic tick events. At the same time, the in vitro model established in this study 

should be expanded to other tick cell lines for a better understanding of the role of host 

specificity among SFGR. 
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Chapter 2. Characterization of Rickettsial Infection in Amblyomma americanum Ticks 
(Acari: Ixodidae) by Quantitative Real-Time Polymerase Chain Reaction 

 
2.1. Introduction 
 
 Spotted fever group Rickettsia (SFGR) are obligate intracellular gram-negative bacteria 

that belong to the α-subdivision of Proteobacteria. Phylogenetically, members of the SFGR are 

closely related (Stothard et al., 1994); however, pathogenicity ranges considerably among the 

officially named SFGR, because only four of the nine SFGR presently identified in the United 

States are currently associated with human disease (Macaluso and Azad, 2005). Ticks and mites 

serve as the principal vectors and reservoirs of SFGR, effectively sustaining the rickettsial cycle 

through horizontal transmission to vertebrate hosts during bloodmeal acquisition and vertical 

(transstadial and transovarial) transmission (Munderloh and Kurtti, 1995). Infection with some 

SFGR, e.g., R. rickettsii, is detrimental to both the vertebrate and tick hosts (Burgdorfer and 

Brinton, 1975, Niebylski et al., 1999), whereas other SFGR, not associated with vertebrate 

infection, employ a symbiotic lifestyle with unapparent effects on their invertebrate hosts (Noda 

et al., 1997; Macaluso et al., 2001, 2002). Interestingly, there are several distinct tick-associated 

rickettsiae that have yet to be formally classified. Within the genus Amblyomma, Burgdorfer et 

al., (1981b) provided microscopic analysis of infection by SFGR designated WB-8-2 in A. 

americanum (L.). The A. americanum-associated Rickettsia was referred to as “R. amblyommii” 

(Stothard and Fuerst, 1995), and molecular analysis of a SFGR isolated from A. americanum 

(MOAa) found it to be closely related to WB-8-2 (Weller et al., 1998); subsequent surveys and 

molecular analysis of SFGR in Amblyomma ticks (Labruna et al., 2004b; 2007b) identified 

additional genotypes of the SFGR, referred to here as R. amblyommii. The influence of 

nonpathogenic SFGR on the ecology of tick-borne rickettsioses (Burgdorfer et al., 1981a) has 

facilitated the discovery of numerous tick-associated SFGR, which serve as models to explore 
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the complex Rickettsia-arthropod relationship. Most SFGR can infect all tick tissues, including 

the salivary glands, gut, and ovaries (Munderloh and Kurtti, 1995); however, the contributing 

arthropod and Rickettsia-derived factors that facilitate host infection are not clearly defined. 

SFGR respond to cues coupled with tick bloodmeal acquisition; ultrastructural changes in the 

SFGR, associated with tick feeding, are correlated with infectivity for the vertebrate host (Hayes 

and Burgdorfer, 1982), and replication of SFGR during tick feeding has been demonstrated 

(Santos et al., 2002, Baldridge et al., 2007). Quantitative real-time polymerase chain reaction 

(qPCR) has been used to enumerate SFGR in cell culture and whole ticks and for diagnostics of 

SFGR in field-caught ticks (Rolain et al., 2002; Eremeeva et al., 2003; Labruna et al., 2004a, 

2004b; Stenos et al., 2005; Zhong et al., 2007). However, the application of qPCR to quantify 

SFGR in specific tick tissues during tick feeding events has not been described. Deciphering the 

tick-SFGR interactions is complicated; to examine the roles that pathogenic and nonpathogenic 

SFGR play within the tick host in relation to the epidemiology of tick-borne rickettsioses, the 

mechanisms of rickettsial infection within the tick must first be characterized. Therefore, in the 

current study, a qPCR assay was applied to describe the growth and tissue distribution of R. 

amblyommii in selected tissues of constitutively infected A. americanum, collected on regular 

intervals during tick bloodmeal acquisition events. Comparable bacterial load was observed 

between adult tick tissues during tick feeding and among life cycle stages; these results suggest a 

physiological balance in bacterial load exists during vertical transmission.  

 
2.2. Materials and Methods 

2.2.1. Ticks 

 Unfed R. amblyommii-infected adult A. americanum ticks were obtained from a colony 

maintained by the Tick Research Lab, Department of Entomology, Texas A&M University 
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(College Station, TX). Ticks used in this study were originally collected in Sutton Co., TX. This 

colony of ticks is maintained without regular introduction of wild-caught ticks. At the Louisiana 

State University School of Veterinary Medicine (LSU-SVM), adult male and female ticks 

were fed on a male New Zealand White rabbit as described previously (Sonenshine, 1993). 

Engorged females were maintained in a mini incubator (Labnet, Woodbridge, NJ) at 28ºC, 91% 

RH, and a photoperiod of 14:10 (L:D) hours through oviposition. The subsequent postembryonic 

stages, larvae and nymphs, were fed on BALB/c mice by using an encapsulation method as 

described previously (Macaluso and Wikel, 2001) (Figure 2). All use of animals in this research 

was done in accordance with protocols approved by the Louisiana State University Institutional 

Animal Care and Use Committee. The approved protocols are on file in the office of the Division 

of Laboratory Animal Medicine at Louisiana State University. 

2.2.2. Tick Feeding and Sample Collection 

 In total, 64 female ticks were fed on a rabbit host for up to 19 days (d). In the first 4d, 

groups of three partially fed virgin female ticks were forcibly detached from the host at 0, 12, 24, 

36, 48, 60, 72, 84, and 96 hours (h) postattachment. The capsule was partitioned and a portion of 

female ticks were exposed to male ticks at a ratio of 2:1 (male: female) on day 5. During the next 

5d, groups of three ticks, mated and unmated females, were collected at 120 (mated only), 144, 

168, 192, and 216h postattachment. Ten female ticks were allowed to feed to repletion naturally 

detach, and undergo oviposition. 

All egg clutches were collected between 5 and 11d postdetachment. The postembryonic stages, 

larvae and nymphs, were fed for 3 and 5d, respectively. An aliquot of each egg clutch, ≈ 300 

eggs from each engorged female, and F1 immature ticks (n = 40 larvae and n = 8 nymphs) were 

used for the vertical transmission study. At each collection time point and for each life stage, tick 

weights were determined using an analytical balance (Denver Instrument, Arvada, CO).  
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Figure 2. Lab-reared A. americanum ticks. At 
SVM/LSU A. americanum ticks are allowed to 
complete their life cycle in laboratory animals. 
Larvae and nymphs (A) are usually fed on Balb/c 
mice, while adult ticks (B) are fed on New Zealand 
White rabbits. 
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2.2.3. Tissue Recovery and DNA Isolation 

 Ticks were surface sterilized by immersion in 70% ethanol for 10 min followed by three 

washes in sterile water. Selected tick tissues (salivary glands, guts, and ovaries) were dissected 

out from adult females and rinsed in phosphate-buffered saline by using standard microdissection 

technique (Macaluso et al., 2003) (Figure 3). Individual adult tick tissues, egg clutches, whole 

larvae, and nymphal ticks were homogenized in ATL buffer (DNeasy tissue 

kit,QIAGEN,Valencia,CA) with plastic pestles in 1.5-ml microcentrifuge tubes and immediately 

stored at -80ºC until used for genomic DNA (gDNA) extraction. All sample preparation followed 

the manufacturer’s protocol for purification of total gDNA from animal tissues with the DNeasy 

tissue kit (QIAGEN). The Final elution of gDNA was in 100 µl of elution buffer, and the sample 

was stored at -20ºC until used as PCR template.  

2.2.4. Rickettsial Detection and Identification by PCR 

 Rickettsia infection in the adult tick gut samples and the subsequent vertical transmission 

of SFGR to the eggs, larvae, and nymphs was detected by PCR amplification of portions of the 

genes encoding the Rickettsia genus-specific 17-kDa-antigen and the SFGR specific outer 

membrane protein A (ompA). The mitochondrial 16S rDNA (mt16SrDNA) primer set of A. 

americanum was used as a control to check the integrity of the template DNA. 

All primers used for standard PCR and qPCR were synthesized by Integrated DNA 

Technologies, Inc. (Coralville, IA), and they are listed in Table 3. PCR products were amplified 

using PCRMaster Mix (Promega, Madison, WI) together with the gene-specific primers. 

Rickettsia montanensis (M5/6) gDNA and water served as the positive and negative controls, 

respectively, for the PCR. The conditions were as follows: initial denaturation at 94ºCfor 3 min, 

followed by 35 cycles of denaturation at 94ºC for 30s, annealing at 55º (ompA) or 60ºC (17-kDa  

antigen gene and mt16SrDNA) for 45s, extension at 72ºC for 1 min, and a final extension at  
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72ºC for 7 min. The target PCR products were visualized by electrophoresis on an ethidium 

bromide stained 1.5% agarose gel. Three clones of a single PCR amplicon for ompA were 

sequenced as described previously (Pornwiroon et al., 2006). 

2.2.5. Construction of an Internal-Control Plasmid for Quantitative Real-Time PCR 

 To quantify the copy numbers of rickettsial and tick genes in samples of tick tissues 

during tick feeding, egg clutches, and immature stages, serial dilutions of a plasmid harboring a 

single copy of both rickettsial and host genes were used to generate a standard curve. The 128-

base pair (bp) fragment of the 17-kDa antigen gene of R. amblyommii was PCR amplified with 

Ra17kDaF and Ra17kDaR primers and cloned into the pCR4-TOPO vector (Invitrogen, 

Carlsbad, CA). The insert fragment (Ra17kDa) was sequenced to confirm its identification as the 

rickettsial 17-kDa antigen gene. Likewise, the 188-bp portion of the gene encoding A. 

americanum macrophage migration inhibitory factor (AaMIF) (Jaworski et al., 2001) was PCR 

amplified using the primers AaMIFF and AaMIFR, cloned, and sequenced. Both amplicons 

(Ra17kDa and AaMIF) were amplified using a gene-specific primer and either M13forward or 

M13reverse primer. 

The obtained PCR products, the template for the primer pair Ra17kDaF and AaMIFF were 

digested with EcoRI and ligated together. 

The PCR product, containing both amplicons, was cloned and sequenced; the resulting plasmid, 

pCR4-TOPO-AaMIF_Ra17kDa, served as the standard template (Figure 4).  

2.2.6. Quantitative Real-Time PCR 

 For each gene, a qPCR reaction mixture was created in a Final volume of 35µl with 2X 

iTaq SYBRGreen Supermix (Bio-Rad, Hercules, CA), 100nM of each primer, DNase/RNasefree 

water; and either gDNA template, water, or serial 10-fold dilutions (1 X 107 to 10 copies) of 

pCR4- TOPO-AaMIF_Ra17kDa (Figure 5). 
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Because the amount of tissue, and therefore gDNA recovered, from individual ticks varied, we 

used 100-600 ng of gDNA in 5µl added to the qPCR master mix for each reaction. Copy 

numbers per 5µl were calculated, and the total copy numbers per sample was based on the 100µl 

elution volume. For each assay, reaction components and template were premixed in 96-well 

plates for both genes of interest; a qPCR of selected tick tissues, egg clutches, and immature 

samples were conducted in individual 384-well plates. For each sample, three wells were filled 

with 10µl of the reaction mixture. qPCR was performed with an ABI 7900HT unit (Applied 

Biosystems, Foster City, CA) at the LSU-SVM under the following cycling condition; 

denaturation step at 95ºC for 10 min, 40 cycles of denaturation at 95ºC for 15s, and annealing at 

60ºCfor 1 min. The dissociation stage (melting curve) was performed with one cycle at 95ºC for 

15s, 60ºC for 15s, and 95ºC for 15s. Analysis of the amplification was carried out with ABI 

7900HT sequence detection system (SDS version 2.3) software. To determine the specificity of 

the PCR assay, the dissociation curve was assessed for each sample; the expected single peak 

was verified present in the pCR4-TOPO-Ra17kDa/AaMIF and gDNA wells and absent in the 

water (negative control) samples. The baseline and threshold were optimized for each gene to 

maximize efficiency. Additionally, representative PCR products were verified by gel analysis to 

confirm the specificity of the reaction (data not shown), and they were sequenced to confirm 

specific amplification. Both of the genes encoding for Ra17kDa and AaMIF are single copy 

genes; therefore, infection was quantified in terms of rickettsiae 17-kDa copy numbers per tick 

MIF copy numbers (Ra17kDa/AaMIF).  

2.2.7. Statistical Analysis 

The SAS statistical package (version 9.1.3) GLM procedure in an analysis of variance (ANOVA) 

was used to examine potential differences between the weights of mated and unmated female 

ticks, larvae, and nymphs during feeding. 
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Figure 5. 10-fold serial dilutions of both genes used to quantify rickettsiae in A. 
americanum ticks. 
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Enumeration data presented are from one of two qPCR assays with similar results. The ratios of 

rickettsial to tick copy numbers were calculated after the logarithmic transformation of the 

quantity of both genes (Ra17kDa and AaMIF) was analyzed. When the overall significance was 

found, Tukey’s honestly significant difference (HSD) post hoc test was used to examine pairwise 

differences of means of main effects. Pairwise t-tests of least square means were performed for 

interaction effects to identify significant differences in the ratio of Ra17kDa/AaMIF and weights, 

between tissues and time points, in addition to comparing the rickettsial load among egg 

clutches, fed, and unfed  immature ticks. An F-test was used for a general comparison of grouped 

means. For all comparisons, a P value < 0.05 was considered significantly different. 

2.3. Results 

2.3.1 Tick Biology 

 Four-day-fed unmated female ticks (n = 27) and 5-9d-fed groups of unmated (n = 12) 

and mated (n = 15) female ticks were forcibly detached at 12- and 24h intervals, respectively. Of 

the remaining mated female ticks (n = 10) that were left feeding, only seven ticks underwent 

oviposition, beginning 4d postdetachment. Eggs began to hatch at 21d postoviposition. Larvae 

were immediately fed on BALB/c mice, and molting was observed in fed larvae at 19d 

posthatch. Nymphs were subsequently fed on BALB/c mice for 7-10d. Although not quantified, 

a portion of both immature feeding stages failed to molt after feeding. Changes in the mean 

weight of adult ticks were associated with feeding events (Figure 6). Significant differences were 

observed between the average weights of the virgin females during early stages of feeding (0-

96h; 6.7 ± 3.8 mg) and the average of the weights of both mated (14.4 ± 3.7 mg; P < 0.002; t-

test) and unmated (10.0 ± 0.70 mg; P< 0.01; t-test) female ticks in the late stage of feeding (120-

216h). Mating also influenced tick weight as mated ticks weighed more than unmated ticks on 

each day 6 through 9 (P < 0.02; t-test). A subsample of each egg clutch (300 eggs) weighed on 
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average 26.0 ± 6.4 mg. The average weights of unfed larvae (n = 20) and nymphs (n = 4) were 

0.05 and 0.25 mg, respectively. Upon feeding, significant increases in the average weights of 

larvae (0.69 mg) and nymphs (10.4 mg) were observed (P < 0.001; t-test).  

2.3.2. Rickettsia Prevalence and Identification in Tick Samples 

 The presence of rickettsiae in the homogenized guts of mated and unmated female ticks, 

a subsample of each egg clutch, and immature ticks was confirmed by PCR amplification and 

sequencing a portion of the SFGR-specific ompA. 

For all tick samples, 100% of the tested samples generated a 128-bp band for the 17-kDa antigen 

gene. For every gut from the adult ticks, a 628-bp portion of ompA was amplified by PCR. The 

partial sequence of ompA from a representative sample was determined and deposited in the 

GenBank database under accession no. EF194096. Comparative analysis of our sequence to 

other sequences deposited in GenBank demonstrated a 99% identity (529/531) to R. amblyommii 

(accession no. AY062007). 

2.3.3. Analysis of Rickettsial Infection by qPCR 

 A standard curve generated using serial dilutions of pCR4- TOPO-AaMIF_Ra17kDa 

allowed for the determination of both tick and rickettsial gene copy numbers. For both genes, 

there was no patterned variation in copy numbers between individual time points during adult 

tick feeding (data not shown); the mean quantities (copy number) in each life cycle stage and 

individual tissue are presented in Table 4. The minimum detection limit for pCR4-TOPO-

AaMIF_Ra17kDa was 10 copies. The number of DNA copies of AaMIF ranged from 1.9 X 104 

to 7.4 X 105, and the average copy number was greatest in egg samples, followed by salivary 

gland, gut, unfed larvae, unfed and fed nymphs, ovary, and fed larvae. During adult tick feeding, 

the average AaMIF copy number in the ovary was significantly lower compared with the salivary 

gland (4.2-fold) and gut (3.3-fold; P < 0.001; f-test), and no statistical differences were observed  
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between the average AaMIF copy number in the salivary gland and gut (P< 0.05; f-test). AaMIF 

copy number also significantly differed between samples of fed larvae compared with the other 

immature life stages (P < 0.05; f-test). 

 The average number of R. amblyommii ranged from 1.3 X 102 to 2.5 X 105, with the 

greatest rickettsial numbers in the salivary glands, followed by the egg samples, gut, ovary, 

unfed nymphs and larvae, and fed nymphs and larvae. 

Similar to AaMIF copy numbers in the adult, the average rickettsial load in ovary samples was 

significantly less than rickettsial numbers in the salivary glands (10.3-fold; P < 0.001; f-test) and 

in the gut (5.2-fold; P < 0.001; f-test). The number of rickettsiae in the salivary glands was 

significantly greater than that observed in the gut (two-fold; P < 0.05; f-test). Significant 

variation in rickettsial numbers in immature ticks was observed for fed larvae compared with 

other postembryonic stages (P < 0.05; f-test) (Table 4). 

2.3.4. Rickettsial Distribution and Growth in Tick Samples 

 To compare the rickettsial load in individual tick samples, a ratio of R. amblyommii 17-

kDa antigen gene copy numbers per A. americanum MIF copy numbers was generated for each 

sample by logarithmic transformation of the copy numbers for rickettsial Ra17kDa and tick 

AaMIF then calculating the ratio Ra17kDa/AaMIF) for each sample or for individual ticks, when 

combined ratios from each sample were assessed. In adult ticks, significant decreases in ratios of 

Ra17kDa/AaMIF were observed during early and late feeding time points (Figure 7). 

Compared with unfed ticks, the mean ratio of Ra17kDa/AaMIF, when tissue sample ratios were 

combined, was significantly lower up to 48h of feeding, and in some unmated (144 and 192h 

postattachment) and mated (168 and 216h postattachment) ticks (P < 0.05; HSD). When 

examining the 54 samples (three ticks per 18 time points) for each tissue, significant variability 

was also observed in the ratio of Ra17kDa/AaMIF for each tissue, between time points, with an
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average of 0.82 ± 0.02 Ra17kDa/AaMIF in the salivary glands during the entire tick feeding 

event, followed by 0.79 ± 0.02 Ra17kDa/AaMIF in the gut and 0.74 ± 0.02 Ra17kDa/AaMIF in 

the ovaries (P < 0.05; HSD). Within each time point assessed, except after 12 and 168h 

postattachment (P < 0.143; t-test), there was significant variability in the ratio of 

Ra17kDa/AaMIF between individual tissues (Figure 8). Although salivary glands and guts were 

generally observed to have the greatest ratio of Ra17kDa/AaMIF, no single tissue was 

consistently observed to maintain the highest rickettsial burden throughout the feeding event. 

Likewise, analyses of individual tissue samples identified unique patterns of rickettsial load 

during the course of adult bloodmeal acquisition (Figure 8). In comparison with unfed female 

ticks, a decrease in the ratio of Ra17kDa/AaMIF was followed by both salivary gland and gut 

ratios at, or above (≤ 36h postattachment) those observed in unfed ticks for both salivary glands 

and gut samples (≤ 168h postattachment). During the tick-feeding event, the ratio of 

Ra17kDa/AaMIF in the ovaries was similar to that observed after the first 12h postattachment. 

Tick mating had little effect on the ratio of Ra17kDa/AaMIF in the gut samples, while in the 

salivary glands, unmated ticks typically had higher ratios compared with mated ticks. Similar to 

the salivary glands, unmated female ticks had increased ratios of Ra17kDa/AaMIF in ovary 

samples compared with mated counterparts. Finally, the ratio of Ra17kDa/ AaMIF in the egg 

clutches and immature ticks identified no significant differences between life cycle stages or in 

association with larval or nymphal tick feeding events (P < 0.05; HSD) (Figure 9). 

2.4. Discussion 

 In the present report, a qPCR assay was used to analyze the growth and distribution of R. 

amblyommii in individual A. americanum tissues during tick feeding and in whole ticks through 

transovarial and transstadial transmission events. The infection of A. americanum by SFGR has 

been examined with regards to the prevalence of different species of SFGR, transmission  
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potential, and influence of SFGR on tick fitness (Goddard and Norment, 1986; Goddard, 2003; 

Mixson et al., 2006; Jasinskas et al., 2007; Zhong et al., 2007). This study now provides the 

kinetics of SFGR growth in A. americanum, an emerging vector in the United States (Childs and 

Paddock, 2003). 

 Molecular detection of SFGR has been accomplished via real-time PCR in arthropod 

hosts (Labruna et al., 2004a, Henry et al., 2007), whereas the analysis of growth and 

quantification of SFGR have been assessed via qPCR in cell culture and arthropod models in 

terms of rickettsial whole numbers and ratio to host cell (Rolain et al., 2002; Jasinskas et al., 

2007; Zhong et al., 2007). Eremeeva et al., (2003) described a qPCR technique for SFGR in cell 

culture, clinical samples, and tick hosts. The SYBR Green-based assay used primers designed on 

a conserved region of ompA to quantify R. rickettsii in A. americanum; however, tick sample 

details (i.e., life cycle stage, sex, whole tick or specific tissue, and feeding status) were not 

provided and the quantification of SFGR in ticks (106-107 rickettsiae per tick) cannot be directly 

compared with the number of rickettsiae (≈ 105 per tick) for combined tissues (salivary gland, 

gut, and ovary) from adult ticks in our study. The tick model described here facilitates the 

understanding of infection and rickettsial growth by representing the natural variability SFGR 

infection in ticks. The amount of tissue, and therefore DNA, from individual ticks varies; to 

account for this variation, the copy numbers for rickettsial 17-kDa antigen gene and A. 

americanum MIF were determined and then the rickettsial burden was calculated as a ratio of 

single copy genes Ra17kDa/AaMIF. Although R. amblyommii is present in all samples assessed, 

variability was observed in both the copy number of tick MIF and rickettsial 17-kDa antigen 

genes counted among the individual tissues and between the life cycle stages. Both rickettsial 

species and source of ticks (field-caught versus laboratory reared) may influence rickettsial 

burden as A. americanum collected in state parks had greater ratio of a Rickettsia bellii-like  
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Figure 9. R. amblyommii burden in immature A. americanum. Mean ± SEM log10 
ratios of rickettsial (17-kDa antigen gene) to tick (A. americanum MIF) genes were 
calculated for pooled A. americanum eggs, larvae, and nymphs. Single copy tick and 
rickettsial genes quantified by qPCR were subjected to logarithmic transformation 
and the ratio of R. amblyommii 17 kDa per A. americanum MIF gene copy numbers 
was calculated for each sample.  
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species to tick cell (4.3) compared with laboratory-reared R. amblyommii-infected A. 

americanum (Jasinskas et al., 2007). For example, analyses of rickettsial burden in a R. 

amblyommii-A. americanum model by using genes encoding rickettsial citrate synthase (gltA) 

and A. americanum MIF, identified the ratio of gltA/MIF in postmolt larvae (0.002) and adult 

ticks (0.002-0.71) consistent with the whole tick ratios in this study. As the ratio of less than one 

Rickettsia per host cell suggests, not every cell was infected. An infection of Ixodes scapularis 

(Say) with R. monacensis expressing green fluorescent protein demonstrated the organisms 

growing in intracellular clusters, in a stage-dependent manner (Baldridge et al., 2007). Based on 

the different cell types within the assessed tissues and the preferential infection of distinct cell 

types by some SFGR (Santos et al., 2002), the authors suspect certain cell types within each 

tissue become infected with more than one organism per cell. Analysis of R. amblyommii in 

field-caught A. americanum also identified “light” infection predominately in ovary and 

Malpighian tubules, with only 10% of the tick hemocytes infected with small numbers (< 10 per 

cell) of rickettsiae (Burgdorfer et al., 1981b, Goddard and Norment, 1986); although consistent 

with the results of this study, every tissue was infected. Most SFGR are maintained in nature via 

vertical and horizontal transmission by ticks; the data presented here compliment our 

understanding of rickettsial infection in ticks by enumerating SFGR in individual tick tissues 

during bloodmeal acquisition and vertical transmission events. A direct correlation between 

specific tick tissue infection and SFGR pathogenicity has been proposed (Santos et al., 2002; 

Matsumoto et al., 2005) and a potential role for R. amblyommii in human disease has been 

suggested (Marshall et al., 2003; Parola et al., 2005). However, the generalized infection of ticks 

by most SFGR, combined with the observed infection of salivary glands by both pathogenic and 

nonpathogenic SFGR, indicates that presence alone in the salivary glands is not sufficient criteria 

for the pathogenic classification of SFGR for vertebrate hosts. In the current study, no adverse 
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effects to animal hosts and no distinct shift in growth of SFGR in any individual tissue during 

feeding were observed, consistent with studies in which R. amblyommii (WB-8-2) was observed 

to be nonpathogenic to meadow voles (Microtus pennsylvanicus) and guinea pig (Cavia 

porcellus) hosts via both needle and tick inoculation (Burgdorfer et al., 1981b). Some SFGR may 

have characteristics typically associated with endosymbiotic and pathogenic SFGR (Baldridge et 

al., 2007); therefore, vertebrate infectivity should be further assessed for R. amblyommii. Vertical 

transmission of the human pathogens R. rickettsii and R. conorii is associated with decreased tick 

fitness (Niebylski et al., 1999; Burgdorfer and Brinton, 1975; Santos et al., 2002); whereas the 

toll on tick fitness in the transmission of other pathogenic and nonpathogenic SFGR is less clear 

(Macaluso et al., 2001; 2002; Goddard, 2003; Matsumoto et al., 2005; Zhong et al., 2007). 

Consistent with the previous analysis of vertical transmission of R. amblyommii by ticks, 

transovarial transmission was observed in 100% of the adult ticks that laid eggs. The filial 

infection rate for R. amblyommii by A. americanum is between 30 and 100% (Goddard and 

Norment, 1986). In this study, filial infection rates were not assessed, therefore, infection cannot 

be presumed in all eggs. It is possible that R. amblyommii infection did affect the ticks, as seen in 

A. americanum experimentally infected with R. parkeri (Goddard, 2003), because in this study 

not all ticks underwent oviposition, and mortality in larvae and nymphs was not observed. A 

SFGR-free line of A. americanum was not available; therefore, even though a 70% survivorship 

is typical for these ticks under laboratory conditions for this study, correlation between SFGR 

infection and tick fitness cannot be made. Several factors (e.g., temperature and humidity) are 

associated with tick survivorship when maintained in a laboratory, particularly if the ticks are 

Rickettsia infected (Niebylski et al., 1999). Additionally, the association between alternate 

bacterial symbionts and tick fitness must be furthered examined, because recent analyses 

demonstrated that Coxiella symbionts, not rickettsiae, were correlated to tick fitness (Zhong et 
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al., 2007). In the current study, a relatively constant level of infection during transmission and 

feeding events was observed. The rickettsial burden was slightly lower in immature ticks 

compared with adult ticks. Groves and Kelly (1989) reported that among different strains of 

Orientia (Rickettsia) tsutsugamushi, the rate of bacterial replication was the contributing factor 

to virulence. Likewise, rickettsial replication (R. rickettsii) during tick feeding is considered to be 

a component of reactivation and contributes to rickettsial infectivity for vertebrate hosts (Hayes 

and Burgdorfer, 1982). A similar Orientia-like scenario may exist for SFGR, and defining the 

kinetics of growth for highly pathogenic SFGR is part of ongoing studies. Although assessing 

rickettsial growth in vitro can lend insight into the pathogenic nature of rickettsiae, to fully 

understand the mechanisms of SFGR transmission, the whole-tick model of analyses is required 

and will provide accurate representation of the dynamics of rickettsial growth in nature and 

facilitate our understanding of rickettsial pathogenicity. 
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Chapeter 3: Dynamics of Growth and Infectivity of Rickettsia amblyommii (WB-8-2), 
Rickettsia parkeri and Rickettsia montanensis in Vertebrate and Tick Cells: A Preliminary 

Study 
 

3.1. Introduction 
 

 During the past century, many Spotted Fever Group Rickettsia (SFGR) were isolated 

from ticks, especially in the United States. They account for a mixed cluster of microorganisms 

where recognized tick-transmitted spotted fevers are combined with SFGR of unknown 

pathogenicity, that, in some instances, are reported to engage in a truly symbiotic life style with 

their tick hosts (Niebylski et al., 1997, Simser et al., 2002). Of the five officially named tick-

borne SFGR in the United States, specificity ranges among the different tick vectors available. R. 

rickettsii (Parola et al., 2005; Demma et al., 2005) and R. rhipicephali (Burgdorfer et al., 1975; 

Magnarelli et al., 1982; Philip and Casper, 1981; Philip et al., 1981; Labruna et al., 2005; 2007a; 

Wikswo et al., 2008) have evolved to associate with tick vectors from several different genera 

(Parola et al., 2005), while R. peacockii seems to be restricted to D. andersoni (Burgdorfer and 

Brinton, 1975; Niebylski et al., 1997) ticks only. Discrepancy between these ranges seems also 

true, since R. parkeri (Parker et al., 1939; Goddard et al., 2003; Pacheco et al., 2007; Silveira et 

al., 2007; Venzal et al., 2008a; 2008b) and R. montanensis (Bell et al., 1963), apparently hold an 

intrinsic relationship with several different species within the same tick genus. Recently, R. 

amblyommii loads in naturally infected A. americanum ticks was reported to remain relatively 

constant during tick physiologic events (Zanetti et al., 2008). R. amblyommii is a SFGR of 

unknown pathogenicity isolated exclusively from Amblyomma ticks (Burgdorfer et al., 1981b; 

Labruna et al., 2004a; 2004b; Parola et al., 2007; Labruna et al., 2007b). The replication pattern 

observed in this study is apparently correlated with the pathogenic nature of this SFGR (Hayes 

and Burgdorfer, 1982; Groves and Kelly, 1989). Due to the lack of information regarding the 

specificity of associations among SFGR and their tick hosts (Parola et al., 2005), we 
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hypothesized that replication is also correlated with the specificity of the host. Therefore, a 

quantitative real time PCR (qPCR) assay was performed to access the rickettsial burden inside 

the cell after SFGR challenge in atypical host cells. Recognized tick-transmitted spotted fever (R. 

parkeri) and SFGR of unrecognized pathogenicity (R. amblyommii and R. montanensis) were 

inoculated in mammalian (Vero) and tick (ISE6) cell lines at equal amounts to investigate the 

replication patterns of these rickettsiae within different intervals. R. parkeri and R. amblyommii 

are SFGR naturally associated with Amblyomma ticks (Parker et al., 1939; Silveira et al 2007; 

Venzal et al 2008a; 2008b; Burgdorfer et al., 1981b; Labruna et al., 2004a; 2004b; Parola et al., 

2007; Labruna et al., 2007b) while R. montanensis infection is reported only in naturally infected 

Dermacentor ticks (Bell et al., 1963). The contributing factors associated with replication 

changes in host cells not naturally associated with these SFGR could offer supporting evidence 

of an intrinsic relationship between some SFGR and ticks of a determinate genus. In the present 

study, differences in the replication of the SFGR examined were observed within each cell line. 

In general, the ratio of rickettsiae per cell was greater in ISE6-infected cells with the R. parkeri-

load being the most prominent. The additional information regarding the replication changes 

observed between different rickettsiae species, cell lines and time points are further presented 

and discussed. 

3.2. Materials and Methods 

3.2.1. Cells Lines and Rickettsia Species 

 Vero cells (passage 43) were originally provided from the Tissue and Organ Culture 

Laboratory of the School of Veterinary Medicine/ Louisiana State University (LSU-SVM). Cells 

were cultured in DMEM medium supplemented with 10% heat-inactivated fetal bovine serum 

(HyClone) and were maintained in a humidified 5% CO2 incubator at 34°C. ISE6 cells (passage 

117) were originally provided by T. Kurtti (University of Minnesota). Cells were cultured in 
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L15B supplemented with 10% heat-inactivated fetal bovine serum (HyClone) and 10% tryptose 

phosphate broth (Sigma) at pH 6.8 in a humidified 5% CO2 incubator at 32°C according to 

published protocol (Pornwiroon et al., 2006). Cell density of 1 X 106 cells/200µL was seeded per 

well of 24-well plates (6 plates in total) one day prior to the beginning of the experiment. R. 

parkeri (Portsmouth strain) was originally provided by C. Paddock (CDC, Atlanta); R. 

amblyommii (Wb-8-2) was a courtesy of T. Kurtti (University of Minnesota); and R. montanensis 

(m5-6) was originally obtained from Abdu Azad (University of Maryland). Rickettsia species 

were first inoculated in Vero cells, after two passages, a portion of the infected cells were treated 

in blocking buffer (5 % skim milk in PBS – 0.1 % Tween 20) at room temperature, and then 

incubated with rabbit-anti-spotted fever group-specific antibody (polyclonal NIH/RML-I7198; 

diluted 1:1000 in blocking buffer) for 1.5 hour at room temperature (Figure 10) as previously 

described (Sunyakumthorn et al., 2008). Infected cells were then partially purified from Vero 

cells before inoculation in ISE6 cells according to Kurtti et al. (2005). Briefly, cells (Vero and 

ISE6) infected with R. montanensis, ‘R. amblyommii’ and R. parkeri were harvested from 25-

cm3 tissue culture flasks (Griener), lysed by mechanical disruption using a 27-gauge needle 

attached to a 1mL syringe and suspended microorganisms were pelleted by high-speed 

centrifugation (Pornwiroon et al., 2006). Lysed cells were then washed twice with 0.85% sterile 

sodium chloride solution between two centrifugations steps at 13,000 x g for 10 min. Viability of 

partially purified rickettsiae was estimated using LIVE/DEAD® BacLightTM stainning 

(Invitrogen, Carlsbad, CA). Rickettsiae were counted using a Petroff-Hausser chamber under a 

Leica microscope.  

3.2.2. Cell-Rickettsiae Challenge 

 Partially purified rickettsiae were resuspended in growth medium (DMEM or L15B) to 

yield a final concentration of 7.8 X 105rickettsiae/well, the equivalent to a ratio of 0.78  
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Figure 10. Photomicrographs illustrating (A) R. parkeri; (B) R. amblyommii; and (C) R. 
montanensis coated with rabbit-anti-SFGR polyclonal antibody NIH/RML-I7198. –– arrow 
heads indicate microorganism; 1:1000 dilution, UV/100X. 
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rickettsiae/cell. Rickettsiae were inoculated in triplicate for each Rickettsia strain and time 

points. Rickettsial infection of both tick and mammalian cell lines was assisted by quick 

centrifugation at 1,000 x g for 5 min at 4°C, before infected plates were stored in a humidified 

5% CO2 incubator at 34°C (Vero) or 32°C (ISE6). Data collection was performed three hours 

post-inoculation (0 hours), followed by subsequent time points (24; 48; 72; 144 and 216 hours), 

as schematically illustrated in Figure 11. 

3.2.3. Infectivity Determination by Diff QuickTM and Transmission Electron Microscopy 

 For each time point, samples were collected for infectivity analysis. Cytospin centrifuge 

(Wescor) was performed using 200 µL of suspended cells. Cells were then stained according to 

the manufacture’s protocol Diff-QuikTM (Dade Behring). Infected cells collected in the last time 

point (216 hours) were used for transmission electron microscopy. Infected cells were fixed and 

prepared according published protocols (Pornwiroon et al., 2006; Ito and Rikihisa, 1981).  

3.2.4. High Through-Put DNA Extraction 

 Cells were harvested from each well by pipetting media up and down. Suspended cells 

were transferred into 1.5 mL tubes and immediately centrifuged at 1,000 X g for 2 min before 

storage in – 80 °C. DNA extraction was performed using BloodPrep® DNA Chemistry for 

Cultured Cells and Blood according manufacture protocol (Applied BiosystemsTM). Stock DNA 

was final eluted in 200 µL of elution buffer. 

3.2.5. Construction of Internal-Control Plasmids for Host-Microorganism Quantification 

 To quantify the copy numbers of rickettsial and host cells genes, serial dilutions of a 

plasmid harboring a single copy of both rickettsial and host genes Vero (Ohno et al., 2003) and 

ISE6 (Xu et al., 2005) were used to generate a standard curve. 
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Figure 11. Layout of in vitro study. R. amblyommii, R. montanensis and R. parkeri 
were inoculated in each individual 24-well plate containing Vero or ISE6 cells. For 
each time point (0; 24; 48; 72; 144 and 216 hours post-inoculation) three wells 
were harvested for gDNA isolation and qPCR analysis while only one well was 
harvested to assess infectivity in each culture. 
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The 128-base pair (bp) fragment of the 17-kDa antigen gene of R. amblyommii was PCR 

amplified with Ra17kDaF and Ra17kDaR primers and cloned into the pCR4-TOPO vector 

(Invitrogen, Carlsbad, CA). The insert fragment (Ra17kDa) was sequenced to confirm its 

identification as the rickettsial 17-kDa antigen gene. Likewise, the 122-bp portion of the gene 

encoding Ixodes scapularis calreticulin protein and the 198-bp portion of the gene ßactin (Ohno 

et al., 2003) were PCR amplified using the primers ISE6CrtF, ISE6CrtR, ßactinF and ßactinR, 

cloned, and sequenced. Both amplicons (Ra17kDa and ßactin/ISE6Crt) were amplified using a 

gene-specific primer (Table 3) and either M13forward or M13reverse primer (Invitrogen, 

Carlsbad, CA). The obtained PCR products, the templates for the primer pair Ra17kDaF and 

both ßactinF/ISE6CrtR, were digested with EcoRI and ligated together. The PCR product, 

containing both amplicons, was cloned and sequenced; the resulting plasmid, pCR4-TOPO-

Ra17kDa/ßactin or pCR4-TOPO-Ra17kDa/ISE6Crt, served as the standard template (Figures 12 

and 13). 

3.2.6. Quantitative Real-Time PCR 

 For each gene, a qPCR reaction mixture was created in a final volume of 35µl with 2X 

iTaq SYBR Green Supermix (Bio-Rad, Hercules, CA), 100nM of each primer, DNase/RNasefree 

water; and either gDNA template, water, or serial 10-fold dilutions (1 X 107 to 10 copies) of 

pCR4-TOPO-Ra17kDa/ßactin or pCR4-TOPO-Ra17kDa/ISE6Crt (Figure 14). We used 100 ng 

of gDNA in 5µl added to the qPCR master mix for each reaction. Copy numbers per 5µl were 

calculated, and the total copy numbers per sample was based on the 200µl elution volume. For 

each assay, reaction components and template were premixed in 96-well plates for both genes of 

interest; a qPCR of each gene was conducted in individual 384-well plates. For each sample, 

three wells were filled with 10µl of the reaction mixture. 
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qPCR was performed with an ABI 7900HT unit (Applied Biosystems, Foster City, CA) at the 

LSU-SVM under the following cycling condition; denaturation step at 95ºC for 10 min, 40 

cycles of denaturation at 95ºC for 15s, and annealing at 60ºC for 1 min. The dissociation stage 

(melting curve) was performed with one cycle at 95ºC for 15s, 60ºC for 15s, and 95ºC for 15s. 

Analysis of the amplification was carried out with ABI 7900HT sequence detection system (SDS 

version 2.3) software. To determine the specificity of the PCR assay, the dissociation curve was 

assessed for each sample; the expected single peak was verified present in both pCR4-TOPO-

Ra17kDa/ßactin and pCR4-TOPO-Ra17kDa/ISE6Crt and gDNA wells and absent in the water 

(negative control) samples. The baseline and threshold were optimized for each gene to 

maximize efficiency. The rickettsial burden inside the cell was expressed as 17-kDa DNA copies 

per 106 host cells (ßactin or ISE6Crt) as previously described (Xu et al., 2006). 

3.2.7. Statistical Analysis 

 The normalized average of the quantity of rickettsiae of the triplicates of each treatment 

were entered in the SAS statistical package (version 9.1.3) to be logarithmic transformed and 

finally used to determine the ratio of rickettisae per host cells. The influences of the ratio, 

treatments, and time points were accessed using GLM procedure in an analysis of variance 

(ANOVA). Enumeration data presented are from one of two qPCR assays with similar results. 

Tukey’s honestly significant difference (HSD) post hoc test was used to examine pairwise 

differences of means of main effects while differences within each main effect was assessed 

using least squares means (LSM). F-test was used to compare infectivity among cell lines. P < 

0.05 (one-tailed distribution) was considered significant different. 

3.3. Results 

3.3.1. Rickettsial Infectivity in Host Cells 

 Three hours post-inoculation (0 hours) medium in both infected cells lines (Vero and 
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Figure 14. Serial dilutions of both host genes used to quantify rickettsiae in 
mammalian and tick cell lines. 
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ISE6) was replaced by the respective fresh medium before the collection of the first time point. 

For each Diff-Quik® stained slide, infectivity was assessed by counting one hundred cells in two 

separate measurements and both procedures were performed by the same individual (A.S.Z.). 

The averages as well as the standard deviation (S.D.) of both percentages are depicted in Figure 

15.  

 Considerable variability in the number of infected cells was observed 3 hours post-

inoculation. In this time point, rickettsial infection was greater in Vero compared with ISE6 

cells. Infectivity in R. amblyommii- and R. parkeri-infected Vero cells was slightly comparable 

(50% and 55%, respectively, P > 0.05, f-test), but significantly greater than the observed in Vero 

cells infected with R. montanensis (42%, P < 0.05, f-test). Likewise, the number of infected ISE6 

cells was comparable in both R. amblyommii- and R. montanensis-infected cells (6% and 10%, 

respectively, P > 0.05, f-test), but statistically lower than the observed in cells infected with R. 

parkeri (22%, P < 0.05, f-test) (Figure 15). Twenty-four hours post-inoculation, variability in the 

number of infected cells changed in both cell lines. Infectivity increased 1.82-fold in ISE6-

infected cells compared with 1.67-fold in Vero cells, but the absolute percentage of rickettsiae 

infection remained greater in Vero cells (3.44-fold greater than the observed in ISE6 for the same 

time point). The number of R. amblyommii- and R. parkeri-infected ISE6 cells increased together 

1.89-fold (25% and 29%, respectively) when compared with the previous time point (0 hours). 

When rickettsiae were compared individually, a greater increase in the number of infected ISE6 

cells 24 hours post-inoculation was observed in R. amblyommii (3.84-fold), followed by R. 

montanensis (1.71-fold; 18%) and R. parkeri (1.28-fold), but the accounted increase remained 

statistically comparable within each Rickettsia species (P > 0.05, f-test). 
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Likewise, infectivity in R. amblyommii- and R. parkeri-infected Vero cells increased together 

1.73-fold (92% and 90%, respectively) after 24 hours of experiment, and, individually, a greater 

increase in the number of infected Vero cells was observed in R. amblyommii (1.81-fold), 

followed by R. parkeri (1.63-fold) and R. montanensis (1.57-fold; 66%). The percentage of 

infected ISE6 cells didn’t differ between R. amblyommi and R. parkeri, but they were 

statistically greater than the observed in ISE6 cells infected with R. montanensis (P < 0.05, f-

test) (Figure 15). After 48 hours of inoculation, infectivity reached almost the highest level in 

both cell lines, with the exception of R. montanensis-infected Vero cells. At this time point, the 

number of R. montanensis in Vero cells increased only 1-fold (67%), remaining relatively 

comparable for the next 96 hours of experiment, before significantly increase 1.28-fold (86%) 

216 hours post-inoculation (P < 0.05, f-test). Infectivity increased 4.11-fold in ISE6-infected 

cells compared with 1.05-fold in Vero cells during the next 24 hours, but no differences in the 

percentage of infected cells were observed among the others rickettsiae species throughout the 

rest of the experiment. Individual comparisons of infectivity in both cell lines 48 hours post-

inoculation revealed that in infected ISE6 cells a greater increase during these 24 hours of 

interval was observed in R. montanensis (5.38-fold; 97%), followed by R. amblyommii (3.96-

fold; 99%) and R. parkeri (3.44-fold; 100%). Similarly, when assessing the number of infected 

Vero cells 48 hours post-inoculation compared with the past 24 hours of experiment, a greater 

increase was observed in R. parkeri (1.08-fold; 98%), followed by R. amblyommii (1.05-fold; 

97%) and R. montanensis (1.01-fold; 67%). 

3.3.2. Rickettsial Growth in Atypical Host cells 

 Rickettsial quantity didn’t significantly differ within the variables assessed throughout 

the experiment. Averages of large samples sizes coupled with the fluctuation of the 17-kDa DNA 

quantity in each Rickettsia species or time points revealed not significantly different (P > 0.05, 
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HSD). Exception for this rule, was observed only in ISE6 cells 144 hours post-inoculation (P = 

0.0149, LSM). An overall average of 3.0 X 1010 ± 8.7 X 109 copies of rickettsiae was 

enumerated in this time point. Such greater quantity turned to be a reflex of the increased R. 

parkeri copy number (9.0 X 1010 ± 2.7 X 1011) after 144 hours of experiment (P = 0.0029, LSM). 

 A summary of the other quantities for each Rickettsia species per hours post-inoculation 

and cell lines is illustrated in Tables 5. In addition, we also performed the logarithmic 

transformation of the mean copy number of SFGR in normalized host cells and this data is 

depicted in Table 6. 

 In general, the average quantity of rickettsiae in ISE6-infected cells (5.1 X 109 ± 3.5 X 

109) was 3,791-fold greater than the overall quantity in Vero cells infected with SFGR (1.3 X 106 

± 3.5 X 109), however the variation within all 162 samples computed for each cell line revealed 

that the differences within these numbers were not statistically relevant (P > 0.05, HSD). 

Likewise, in general, R. parkeri copy number (7.5 X 109 ± 4.3 X 109) was 495.4-fold greater than 

R. montanensis (1.5 X 107 ± 4.3 X 109) and 91.8-fold greater than R. amblyommii (8.2 X 107 ± 

4.3 X 109) as well as R. amblyommii copy number was 5.39-fold greater than R. montanensis, but 

fluctuation in the quantity of the 17-kDa gene throughout the experiment in all 108 samples 

related with each Rickettsia species revealed that the differences within these copy numbers of 

rickettsial gene were not significant (P > 0.05, HSD). Finally, no statistical differences in the 

copy number of rickettsiae were either observed per time points throughout the in vitro 

experiment. The overall quantity mean was the greatest at 144 hours (1.5 X 1010 ± 6.1 X 109), 

followed by 72 (1.8 X 108 ± 6.1 X 109), 3 hours post-inoculation (1.5 X 107 ± 6.1 X 109, 0 hours), 

24 (7.7 X 106 ± 6.1 X 109), 48 (7.4 X 106 ± 6.1 X 109) and 216 hours post-inoculation (3.2 X 106 

± 6.1 X 109). 
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 Significant differences in the kinetics of rickettsiae in both Vero and ISE6 cells were 

observed only after the calculation of the ratio of rickettsiae per host cell in the normalized data. 

Generally, the ratio of rickettsiae per ISE6-infected cells (0.91 ± 0.021) was 1.4-fold 

significantly greater than in infected Vero cells (0.62 ± 0.021) (P < 0.05, HSD). Throughout the 

experiment, the ratio of R. parkeri per host cell (1.17 ± 0.026) was 2.34-fold greater than the 

ratio in R. montanensis (0.50 ± 0.026) and 1.95-fold greater than the ratio in R. amblyommii 

(0.61 ± 0.026) while the ratio of R. amblyommii per host cell was only 1.22-fold significantly 

greater than in R. montanensis (P < 0.05, HSD). Considering the ratio of rickettisae per host cell 

in individual cell lines (Figure 16), the ratio of R. amblyommii and R. montanensis per ISE6 cell 

was, respectively, 1.91- and 3.34-fold greater than in Vero cell (P < 0.0001, LSM) and no 

significant difference was observed in the ratio of R. parkeri per host cell (P = 0.199, LSM). 

Under multiple comparisons, the mean of the ratio of R. parkeri in both cell lines (1.17) was 

significantly greater than this ratio in all other rickettsiae (P < 0.0001, LSM). Interestingly, the 

ratio of R. amblyommii was 1.71-fold greater than the ratio of R. montanensis per Vero cell (P = 

0.001, LSM), but no statistical differences (P = 0.5604, LSM) were observed in the ratio of these 

two Rickettsia species per ISE6-infected cell (Figure 16). Differences in the ratio of SFGR per 

host cell, but not within individual cell lines, were also observed throughout the in vitro study 

(Figure 17). For each time point the mean of the ratio of rickettsiae per ISE6 cell (0.90 ± 0.03) 

was in average 1.4-fold greater (P < 0.0001, LSM) than the mean of the ratio of rickettsiae per 

Vero-infected cells (0.61 ± 0.01).  

 The ratio of R. parkeri per ISE6 and Vero cells didn’t differ within the 216 hours post-

inoculation, but was significantly greater than the ratio observed in both R. amblyommii and R. 

montanensis (P < 0.0001, LSM). Considering the ratio of those last two Rickettsia species per 

ISE6 and Vero cells their ratio fluctuated within comparable levels throughout the in vitro study  
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in ISE6 cells (P = 0.1, LSM), but slightly differ within the first 48 hours in Vero cells (P < 0.05, 

LSM) (Figures 18 and 19). Throughout each time point no differences in the ratio of R. parkeri 

per host cell were observed when replication in individual cell lines was compared (P ≥ 0.311, 

LSM). Variation in the replication when both cell lines were compared within each time point 

was observed only in cells infected with R. amblyommii and R. montanensis (P ≤ 0.0498, LSM). 

For each of those last two Rickettsia species the ratio of Rickettsia per host cell ranged from 0.67 

– 0.94, 0.36 – 0.48 in R. amblyommii- and 0.70 – 0.81, 0.21 – 0.27 in R. montanensis-infected 

ISE6 and Vero cells, respectively. The ratio of R. amblyommii in ISE6 cells was, on average, 2-

fold (0.39 ± 0.12) greater than in Vero cells. Likewise, in R. montanensis-infected ISE6 cells, on 

average, the ratio of Rickettsia per cell was 3.38-fold (0.54 ± 0.06) greater than in Vero cells. 

Additional, comparisons of the rickettsiae replication in logarithmic transformed samples 

revealed that in normalized cells the mean copy number of rickettsiae remained the same in most 

of the samples throughout the in vitro study (P > 0.05, LSM – Table 7). Compared to time point 

0 (3 hours post-inoculation) increases in the replication of rickettsiae was observed only after 72 

hours of experiment in ISE6 cells infected with R. montanensis (63.7 % of increase in rickettsiae 

replication; P < 0.05, LSM), while decreases in the replication of rickettsiae could be observed 

only in R. amblyommii-infected cells, particularly, in ISE6 cells 48 hours post-inoculation (5 % 

of decrease in rickettsiae replication) and then at time point 144 throughout the remaining hours 

of experiment (70.6 % of decrease in rickettsiae replication; P < 0.05, LSM). Regarding the 

replication of R. amblyommii in Vero cells, replication decreased after 48 hours (53.3 % of 

decrease in rickettsiae replication; P < 0.05, LSM) and the copy number of Rickettsia gene 

remained statistically lower than the copy number observed 3 hours post-inoculation (0 hours) 

throughout the rest of the time points (Table 7).  
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3.3.3. Ultrastructural Comparison of Infected Cell Lines 

 Analyses of the TEM 216 hours post-inoculation revealed differences in the 

ultrastructural morphology of the cells infected with R. amblyommii (Figure 20 A and B) and R. 

montanensis (Figure 20 E and F) only. For both cell lines, R. parkeri infection resulted in cell 

death because only cell debris can be seen in both host cells infected with this SFGR 216 hours 

post-inoculation (Figure 20 C and D). 

 The ultrastructural architecture of Vero cells infected with R. amblyommii and R. 

montanensis retained its integrity after 216 hours of experiment (Figure 20 A and E), but when 

both Rickettsia species were inoculated in ISE6 cells, vacuolization of the cytoplasm can be seen 

in cells infected with R. amblyommii (Figure 20 B) and only cell debris resultant from cell death 

can be appreciated in R. montanensis-infected cells (Figure 20 F). 

3. Discussion 

 Among SFGR, it is fascinating to note the wide range of possible tick and rickettsiae 

associations. Some SFGR can be detected in several different tick genera (Burgdorfer et al., 

1975; Philip and Casper, 1981; Philip et al., 1981; Magnarelli et al., 1982; Gordon et al., 1984; 

Labruna e t al., 2004b; Parola et al., 2005; Demma et al., 2005; Labruna et al., 2005; Horta et al., 

2006; Pinter et al., 2006; Labruna et al., 2007a; 2007b; Wikswo et al., 2008), while R. peacockii, 

has been only isolated from the ovaries of D. andersoni (Burgdorfer and Brinton, 1975; 

Niebylski et al., 1997). Within these extremities, other SFGR have also been observed to infect 

different tick species within the same tick genus (Brumpt, 1932; Parker et al., 1939; Bell et al., 

1963; Burgdorfer et al., 1973; Burgdorfer et al., 1981b; Kelly and Mason, 1991; Eremeeva et al., 

1994; Goddard et al 2003; Labruna et al., 2004a; 2004b; Parola et al., 2007; Labruna et al., 

2007b;Pac heco et al 2007; Silveira et al 2007; Venzal et al 2008a; 2008b). Because limited 

research has been conducted to understand the mechanism behind these specific types of  
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associations, in this preliminary study, we established an in vitro model to investigate if 

replication is also associated with specificity in the tick-SFGR interaction. Mammalian (Vero) 

and tick (ISE6) cell lines were challenged in a reciprocal fashion with SFGR naturally associated 

with Amblyomma (R. parkeri and R. amblyommii) and Dermacentor (R. montanesis) ticks and 

the replication patterns of these SFGR in those host cells were assessed by qPCR, Cytospin®-

stained slides of infected cells and transmission electron micrographs. 

 R. parkeri is the second most important tick-transmitted spotted fever in the Western 

Hemisphere (Bechah et al., 2008). It was first isolated in 1937 from A. maculatum ticks found on 

cattle in the Gulf Coast region of Texas (Parker et al., 1939). Once believed to be naturally 

maintained in a single tick species (Parker et al., 1939), A. dubitatum and A. cajennense (Pacheco 

et al., 2007) and A. triste (Silveira et al., 2007; Venzal et al., 2008a; 2008b), are now associated 

with R. parkeri infection in Latin America countries, such as Uruguay and Brazil. R. 

montanensis (formerly R. montana) is a SFGR of unrecognized pathogenicity and was first 

isolated from D. variabilis and D. andersoni ticks in eastern Montana (Bell et al., 1963). In the 

past 45 years, the presence of R. montanensis has been also reported in naturally infected 

Dermacentor ticks collected in several different United States states (Feng et al., 1980; Anderson 

et al., 1986; Breitschwerdt et al., 1988; Pretzman et al., 1990; Ammerman et al., 2004). The WB-

8-2 agent was first isolated, at high levels, in 1974 during an unsuccessful attempt to associate A. 

americanum ticks with R. rickettsii infections in field-collected ticks from Arkansas, South 

Carolina and Tennessee (Burgdorfer et al., 1981b). Subsequently, molecular analysis of a SFGR 

isolated from field-collected A. americanum ticks (MOAa) in Missouri (Weller et al., 1998) was 

found to be closely related with WB-8-2. In fact, both WB-8-2 and MOAa strains are believed to 

represent the same SFGR (Paddock and Yabsley, 2007). The most comprehensive survey 

examining infection of A. americanum with R. amblyommii was performed between 1998 and 
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2005 in nine states (Mixson et al., 2006). R. amblyommii has also been identified in other 

countries, particularly in Brazil, Argentina and French Guyana where A. cajennese (Labruna et 

al., 2004b); Amblyomma coelebs (Labruna et al., 2004a; Parola et al., 2007), and A. neumanni 

(Labruna et al., 2007b) are the major vectors. Considering the pathogenic nature of this 

microorganism, a lot of speculation based on serological evidences (Dasch et al., 1993; Sanchez 

et al.,1992; Labruna et al., 2007b; Apperson et al., 2008; Saito et al., 2008), epidemiological 

studies (Mixson et al., 2006) and molecular analyses (Billeter et al., 2007) suggest that this 

SFGR might be the cause of mild-illness in humans, however the lack of classical RMSF clinical 

signs (Sanchez et al.,1992), and the inability to replicate the infection in animal models 

(Burgdorfer et al., 1981b) coupled with the failure to isolate the bacterium from human patients 

previously exposed to infected A. americanum ticks (Billeter et al., 2007), make the inclusion of 

this Rickettsia in the group of tick-transmitted spotted fever difficult (Walker and Ismail, 2008). 

Therefore, to the best of our knowledge R. amblyommii is still considered as a SFGR of 

unrecognized pathogenicity.  

 In the literature, R. parkeri, R. montanensis and R. amblyommii have been maintained 

mainly in Vero cells (Macaluso et al., 2001; Labruna et al., 2004b; Sangioni et al., 2005) while 

ISE6 cells have been utilized to study infectivity of the human granulocytic ehrlichiosis agents 

and to characterize the growth of Rickettsia felis (Munderloh et al., 1999; Pornwiroon et al., 

2006; Sunyakumthorn et al., 2008). Even though R. amblyommii was brought to our laboratory in 

ISE6-infected cells, no previous reports have documented the use of this tick cell line to maintain 

R. parkeri and R. montanensis infections.  

 In this study, rickettsiae were inoculated at equal amounts in different host cells in a ratio 

of 0.78 Rickettsia/host cell in accordance with the overall finds of the mean of ratio of gltA/MIF 
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(0.71) and Ra17kDa/AaMIF (0.78) in adult A. americanum ticks reported in previous studies 

(Zhong et al., 2007; Zanetti et al., 2008).  

 The first data collection was performed 3 hours post-inoculation after we changed the 

medium (0 hours), suggesting that, in this study, the establishment of rickettsial infection in Vero 

cells occurs faster than in ISE6 cells, because the number of infected cells was significantly 

greater in Vero-infected cells during the first 24 hours of experiment, however when the ratio of 

Ra17kDa/ßactin is compared with the ratio of Ra17kDa/ISCrt during the first hours post-

inoculation considerable variability is observed in R. amblyommi and R. montanensis infected 

cells, because only an average of 0.31 Ra17kDa/ßactin were observed during the first 3 hours of 

experiment, which for instance, was lower than the average ratio observed for the same 

rickettsiae species at the same time point in ISE6-infected cells (0.80), indicating, therefore, that 

for those two Rickettisa species infection might occur first in Vero cells, but replication inside 

the cells is usually 2.58-fold greater in ISE6 cells infected with R. amblyommii and R. 

montanensis. 

 The qPCR assay generated in this study, demonstrated to be highly efficacious to 

quantiate single copy genes of both Rickettsia (Zanetti et al., 2008) and host cells (Ohno et al., 

2003; Xu et al., 2005). The quantity for ßactin gene ranged from 105 to 106 copies, while the 

quantity for ISCrt gene ranged from 106 to 109 copies. Considering the enumeration of the 

Ra17kDa gene, quantity ranged from 10 to 106 copies in Vero cells, and 103 to 1010 copies in 

ISE6 cells. According to previous reports, the number of copies of SFGR in Vero cells was an 

average of 106 copies of OmpA gene, slighltly compared with the quantity presented in our study 

(Eremeeva et al., 2003). Conversely, the number of Ra17kDa copies observed in ISE6 cells 

infected with SFGR was literally 106-fold greater than the average quantity observed in A. 

americanum eggs infected with R. amblyommii (Zanetti et al., 2008). 
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 In this study, our major goal was to investigate the replication patterns of different SFGR 

in atypical host cells; therefore, we normalized the number of cells used to calculate the ratio of 

Rickettsia/host cell throughout the in vitro experiment (Xu et al., 2006). Rickettsial regulation 

upon persistent host cell infection has been demonstrated in tick host cells. The growth of D. 

andersoni cells slows in R. peacockii-constitutively infected cells (Kurtti et al., 2005). Changes 

in the rickettsial conformation have been observed in ISE6 cells infected with R. felis, with 

minimal implications to the survival of infected cells (Sunyakumthorn et al., 2008).  

Throughout the in vitro experiment, the ratio of Rickettsia per host cell considerably differs 

within cell lines, especially in cells infected with R. amblyommii and R. montanensis. No 

differences were observed between R. parkeri-infected cells, but it is interesting to note that the 

ratio of R. amblyommii and R. montanensis per Vero cell was significantly lower than that 

observed in ISE cells. In normalized cells, fluctuation in the replication rates of these two SFGR 

when compared with the seeding quantity (3 hours post-inoculation) could be related with the 

interactions and the citophathic effects of those SFGR in different host cells but further 

investigations should be the performed to fully address this assumption. A. americanum eggs 

infected with R. amblyommii were observed to have a ratio of Ra17kDa/AaMIF 1.3-fold lower 

than the average observed in ISE6 cells infected with both R. amblyommii and R. montanensis 

(0.79), and 1.35-fold lower than the ratio of R. amblyommii per ISE6 cells alone (Zanetti et al., 

2008), indicating, therefore, that R. amblyommii can alter its replication patterns in different 

embryonic tick cells.  

 The in vitro model presented here is a useful method to investigate host specificity among 

SFGR. The possibility to assess rickettisal replication in different embryonic tick cell lines could 

offer important clues for the understanding of SFGR transmission to post-embryonic tick stages 

and the high rates of mortality observed in tick vectors related with some Rickettsia species 
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(Niebylski et al., 1999). The ultrastructural characteristics observed after 216 hours post-

inoculation have a valuable importance to understand the character pathogenic and SFGR-host 

specificity. As a recognized pathogenic SFGR, R. parkeri infection was highly critical to the 

survival of both cell lines, indicating, therefore, that cell death is a consequence of infection in 

mammalian cells, while the mortality of the ISE6 cells observed after 216 hours of experiment in 

all SFGR investigated remains to be elucidated because the expansion of this model to other tick 

embryonic cell lines must be performed to fully characterize the different patterns of infection in 

SFGR.  
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Chapter 4. Conclusions 
 

 In order to one understand the roles that pathogenic and nonpathogenic SFGR play within 

the tick host in relation to the epidemiology of tick-borne rickettsioses, the mechanisms of 

rickettsial infection within the tick must first be characterized. In this study, a qPCR assay was 

used as a tool to investigate the tick-SFGR interactions by accessing the ratio of Rickettsia per 

tick cell during tick feeding events and in atypical host cells. With these studies, we were 

basically interested to test if (1) the ratio of Rickettsia per tick cell during tick feeding and 

transovarial/transtadial transmissions in A. americanum ticks infected with unrecognized 

rickettsiae is directly correlated to the significance of the horizontal versus vertical route of 

transmission in SFGR; and if (2) the specificity of associations among rickettsiae and a particular 

tick species is correlated with replication under laboratory conditions. 

 The significance of these studies is that quantitative real-time PCR (qPCR) was 

successfully used to quantitate the replication of Rickettsia in naturally infected A. americanum 

ticks and in both mammalian and tick cell lines. Particularly, these qPCR assays were 

demonstrated to be efficient to assess the rickettsial burden inside the cell in A. americanum 

tissues during tick feeding and vertical transmission; and in Vero and ISE6 cells during 

rickettsial infection.  

 The internal-control plasmids generated to quantify the gene copy numbers of both 

rickettsiae (17-kDa antigen gene) and host cells (AaMIF, ISE6Crt, and ßactin genes) were 

validated in these studies, therefore, these assays yielded the enumeration of as low as 10 copies 

of each Rickettsia species and host cells genes.  

 R. amblyommii infection in naturally infected A. americanum ticks was observed to 

remain relatively constant and at lower levels during blood acquisition and in post-embryonic 

tick life stages. In general, the ratio of R. amblyommii 17-kDa copy number per A. americanum 
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gene (AaMIF) in adult female ticks was greater in salivary gland samples, followed by gut and 

ovary samples, but throughout the entire tick feeding experiment remained lower than one copy 

of Rickettsia per tick cell. Moreover, no significance differences were observed in the ratio of R. 

amblyommii 17-kDa copy number per A. americanum gene (AaMIF) in the immature stages, 

suggesting a physiological balance in the transovarial and transtadial transmissions of this SFGR 

in this tick host.  

 Considerably variability in the rickettsial replication rates were observed in the in vitro 

experiment developed to assess specificity of SFGR in different host cells. Replication patterns 

in Vero and ISE6 cells infected with non-pathogenic SFGR (R. amblyommii and R. montanensis) 

differed considerably after inoculation, when, reciprocally, compared with each other. However, 

comparable levels of replication in both cell lines infected with pathogenic Rickettsia (R. 

parkeri) were observed throughout the same experiment timeline. Therefore, this preliminary in 

vitro study offers additional information regarding specificity among SFGR.  

 In summary, qPCR was validated to understand the kinetics of SFGR in different hosts. 

The expansion of the use of qPCR to characterize the growth of recognized pathogenic SFGR in 

A. americanum ticks and to determinate the replication rates of these SFGR in different tick cell 

lines, under the same circumstances, could serve as a valuable approach to help elucidate the 

pathogenic nature of SFGR and to better understand the intimate relationship that some SFGR 

hold with tick species of different genera.  
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