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Abstract 

Computational studies are very important to gain an insight into reaction mechanisms and in 

interpreting and understanding complicated experimental observations.  This report contains a discussion 

on computational studies performed on bimetallic catalysis and on X-ray absorption spectroscopy of 

insulators.  The viability of a bimetallic rhodium and cobalt catalysts for industrially important 

hydroformylation and aldehyde-water shift catalysis (AWS) is discussed.  Density functional theory (DFT) 

studies were used for bimetallic catalysis and time-dependent DFT studies were used for excited state 

dynamics.  These studies were performed using Gaussian 09 package and NWChem. 

Hydroformylation is experimentally performed in acetone and 30% water/acetone systems and 

results in dicationic dirhodium complexes and monocationic dirhodium complexes respectively.  DFT 

studies were used to determine the active catalyst and possible intermediates.  Computational studies 

support the mechanism proposed by Prof. Stanley for hydrofomylation in acetone, but DFT studies 

demonstrate a different mechanism for hydroformylation in water/acetone which contains mono-bridging 

complexes.  A detailed discussion on this is given in chapter 2.  

DFT studies were used to study the AWS catalysis with the bimetallic 

[racRh2(μCO)2(CO)2(et,ph-P4)]
2+

 complex.  These studies were performed in both vacuum and using

explicit water molecules, and lower energies were obtained when explicit water molecules were used.  

The computations support an alternate mechanism with protonated acid intermediates different from the 

originally proposed mechanism.  This mechanism is discussed in great detail in chapter 3. 

DFT studies are also performed to study the suitability of dicobalt analogs for hydroformylation 

and AWS catalysis.  The most suitable active catalyst and possible mechanism for hydroformylation using 

Co2(H)(CO)(CO)3(H)(et,ph-P4)]
2+

(Co_2),  [rac- and [rac-Co2(H)2(CO)4(et,ph-P4)]
2+ 

(Co_2*)
 
and

[rac-Co2(CO)2(CO)2(H)2(et,ph-P4)]
2+ 

(Co_2**) are discussed in chapter 4.  The capability of [rac-

Co2(CO)4(et,ph-P4)]
2+ 

(Co_4*) catalyst for AWS catalysis is also discussed in chapter 4.

Chapter 5 discusses a method to generate X-ray absorption spectra of insulators using time-

dependent DFT.  Quartz was used as a model for insulators.  Bulk-mimicking embedded finite cluster 



xiv 

models, atom-centered basis sets, tuned range-separated functionals and molecular orbital-based 

absorbing boundary conditions were utilized to model near and above ionization spectral features without 

experimental parameterization.  The calculated spectra match well with the experimental results over the 

range of approximately 105 – 130 eV. 



1 

Chapter 1 - Introduction 

1.1 Background 

The discovery of Schrödinger’s wave equation in 1926 initiated the first step in the field of 

quantum chemistry.
1-2

  Schrödinger equation describes the behavior of time-evolution of the wave

function of a physical system.  The distribution of electrons within a molecule can be described by 

evaluating the Schrödinger equation:   

      

where    is the Hamiltonian operator that acts upon the wave function,   to give the energy,  .  The wave 

function describes the spatial position of an electron, and the Hamiltonian operator corresponds to the 

total energy of the system.  Finding the exact solutions to Schrödinger’s equation is very worthwhile, but it 

is virtually impossible for multi-electron systems because the complexity of the computational calculations 

shows an exponential growth with the number of electrons in the system.
2,3

  When there is more than one

electron it becomes a three-body problem where you need to include the nucleus in the calculation.  

Mathematically these many-body problems cannot be solved exactly and require approximations.  The 

time-independent Schrödinger equation for multi-electron systems can be solved by the use of Born-

Oppenheimer approximation.
4
  This assumes that since the nucleus is much heavier than electrons, the

nucleus is essentially stationary relative to the electrons; hence, the motion of nuclei and electrons can be 

separated.  This allows solving the electronic and the nuclear part of the Schrödinger equation separately.  

The Schrödinger equation can also be simplified by several other approximations; namely, ab initio 

methods
5
, semi-empirical

6-7
 and density functional theory (DFT).

8-10

The term “ab initio” is Latin for “from the beginning”.  The ab initio methods in quantum chemistry 

involve computations derived directly from theoretical concepts without the use of experimental data to 

parameterize variables.  These methods have been widely used in the last three decades to study 

molecules.  This discipline of computational quantum chemistry strives to determine electronic energies 

and wave functions of atoms, molecules and all other chemical species.  In order to solve the Schrödinger 

equation from first principles, the molecule is considered to be a collection of positive nuclei and negative 



2 

electrons subject to Coulombic potentials without making use of any experimental data about the 

molecule, although one typically needs to start with a reasonable starting structure of the molecule when 

doing a calculation.  In trying to apply ab initio methods to complex systems it is inevitable that 

approximations are used to simplify the calculations. 
3, 5

Several mathematical approximations employed in ab initio techniques provide solutions to many 

body systems.  The most commonly used ab initio method is the Hartree Fock method which utilizes the 

central field approximation which neglects the Coulombic electron-electron repulsion.  Another 

approximation in Hartree Fock calculations considers the wave function to be expressed in functional 

form.  The exact form of the wave function is only known for a few single electron systems.  The most 

commonly used functions are linear combinations of Slater- and Gaussian-type orbitals.
3

Despite the advantages of the ab initio methods, there are several disadvantages.  The ab initio 

methods are computationally expensive as well as time consuming, often limited to small and medium 

sized molecules since larger molecules can consume enormous amount of time.
2,3

  Computational

complexity for ab initio Hartree Fock calculations scales as N
4
, where N = number of electrons in the

molecule.   

The semi-empirical MO method uses experimentally adjusted parameters in contrast to ab initio 

methods.
6
  As a result, the calculated values via semi-empirical methods depend on the accuracy of the

experimental data; thus these types of calculations often give poor results for molecules that are not 

similar to the ones used to adjust the parameters.  The semi-empirical method also uses greater 

approximations of integrals and parameters, which can dramatically speed up the calculation for more 

complex molecules, but often with poorer results. The nature of the accuracy of the calculation depends 

on the optimization of the parameters and the quality of approximations.
7

A most promising advancement in computational chemistry was the field of density functional 

theory.  The DFT method does not solely depend on wave functions; instead the electron density of 

systems is also taken into consideration.  The history of DFT goes back to 1927, with the discovery of 

Thomas–Fermi theory, which determines a method to find the electronic structure of atoms using “one-

electron ground state density”.
11

  This model approximates the distribution of electrons in an atom.  The
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atomic energy was explained using the electron density for the kinetic energy of the atom, nuclear-

nuclear, and electron-electron interactions, but the exchange energy of the atom was not incorporated.  

An exchange energy term was later added by Dirac.  The Thomas-Fermi model is not applicable for most 

systems as it neglects the electron correlation effect and the expression for the kinetic energy is 

approximate, but this model was a theoretical predecessor of DFT.   

Later, the Hohenberg-Kohn (H-K) theorem proved a relationship between the electron density 

and the external potential.
2, 12

  The first H-K theorem states for a system with interacting particles in an

external potential the electron density is determined uniquely.  The second H-K theorem states that the 

ground state energy can be achieved by minimizing the total energy via the use of electron density.   

Further improvement was made on DFT by Kohn and Sham in 1965.  The Kohn-Sham density 

functional theory (KS-DFT) uses the contribution from exchange-correlation energy instead of the kinetic 

energy of the energy functional, making it more computationally friendly.
 2, 13,14  

In KS-DFT the system of

interacting particles is reduced into non-interacting particles in an effective potential.  The kinetic energy 

of a non-interacting system is calculated using the same density as the interacting system.  The 

exchange-correlation energy term was included into the universal functional which previously only 

contained the contributions of the kinetic energy, the classical Coulomb interaction and the non-classical 

portion.  

Several approximations are made to account for the exchange-correlation energy in these types 

of calculations.  In 1970s and 1980s the local density approximation (LDA) was used, which was derived 

via the application of a uniform electron gas functional to molecular systems.
13

  These local

approximations depend solely on electron density.  In the late 1980s generalized gradient approximations 

(GGAs) or hydbrid functional such as; Becke-88 (B88), exchange functional, Lee-Yang-Parr (LYP) and 

Perdew-86 (P86) were developed.
15-19

  The most commonly used modern approximation was discovered

by Becke in early 1990s.
2,14

  This was a hybrid functional named B3LYP because part of GGA exchange

functional was replaced with Hartree-Fock exchange.
2, 20,14

  This hybrid correlation functional is the most

popular density functional that is used in DFT calculations as it generally results in more reliable structural 

and electronic data.  This method has gained promising interest as it is computationally less expensive 
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relative to ab initio Hartree Fock calculations, and the use of electron density is simpler than utilizing wave 

functions.
14

 

DFT is mostly used to study ground state properties of molecules and solids.  Time-dependent 

density functional theory (TD-DFT) was developed to study excited state dynamics of complexes in the 

presence of time-dependent potentials.  The groundwork for TD-DFT is the Runge-Gross theorem which 

is analogous to time-dependent H-K theorem.  The Runge-Gross theorem states that for a given initial 

wave function the time-dependent potentials and their respective time-dependent densities will be 

different and it is used for interacting systems while the time-dependent Kohn-Sham formalism which was 

developed later is used for non-interacting systems.
21-22

   

Linear response time-dependent density functional theory (LR-TDDFT) can be used if the system 

is subject to a small perturbation, i.e, if the external time-dependent potential is small, and this is very 

useful in studying spectroscopic properties.  For systems with strong external potentials a full solution of 

the time-dependent Kohn-Sham equations is required.
22-23

   

The application of TD-DFT is based on a suitable approximation for the time-dependent 

exchange-correlation potential and the most widely used approximation is the adiabatic approximation, 

which is valid for slowly varying time-dependent fields.  Recent studies have shown that the 

approximation is valid even for systems exposed to high frequency fields as memory effects become 

negligible.
22-25

 

TD-DFT is very efficient in predicting relative excitation energies, but the major drawback is its 

dependence on the exchange-correlation functional; hence, shifting of spectra is generally needed to 

match the calculated energies with the experimental results.  LR-TDDFT is a very useful technique to 

model weak excitations (e.g., absorption spectra of molecules and materials), but this method requires 

computing a large number of irrelevant roots prior to obtaining core excitations, which, consequently, 

becomes computationally expensive and inefficient.  A possible remedy for this would be the use of 

restricted excited window approach (REW-TDDFT) or the use of real-time time-dependent density 

functional theory (RT-TDDFT).
26

  In REW-TDDFT the excitations will take place only from the relevant 

core orbital.  In RT-TDDFT the wave function or the density matrix is explicitly propagated in time under 
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the influence of time-dependent Fock matrix.
27-28

  Unlike LR-TDDFT, in RT-TDDFT the entire absorption

spectrum can be obtained by only three simulations (x, y, z polarizations), but LR-TDDFT will still be 

required to assign the peaks with the corresponding transition as RT-TDDFT is incapable of producing 

those results. 

Studying both experimental data and electronic structural calculations can help better understand 

the properties and behavior of molecules and their chemical reactivity.  To gain a better understanding of 

the correlation between the molecular and electronic properties computational chemistry has been widely 

employed.
29,30  

Computational work can be used to obtain thermochemical data, transition states of a

reaction mechanism, activation barriers and band gaps.
30

  Furthermore, these calculations can be

employed to obtain molecular and electronic low energy structures, vibrational frequencies, and 

dissociation energies and many other properties.
31,32

The determination of vibrational frequencies plays a great role in providing additional support for 

experimental data.  Usually the calculated frequencies are calculated too high relative to the 

corresponding experimental frequencies.  These errors result due to the use of harmonic potential 

energies, the lack of treatment of electron correlation effects, and inadequate basis sets.
33,34

  Due to

consistent disagreement of calculated frequencies with the experimental frequencies, scaling factors are 

usually employed.
33,34

  This improves the reliability of the calculated vibrational frequencies.

Much research has been performed to determine the scaling factors for vibrational frequencies for 

the Hartree-Fock method as well as for DFT methods with different functionals.  Scaling factors have 

been obtained for B3LYP functional including several diffuse and polarization functions for the 6-311G 

basis set.  Several inorganic and organic small molecules have been utilized for the analyses.
33-36  

It has

been determined that a scale factor of 0.9614 is reliable for organometallic carbonyl complexes at the 

B3LYP/6-31G(d) level.
34

  It has also been noted that the scaling factor shows a weak dependency upon

the basis set for the B3LYP functional.
35,37 

Several researchers have performed studies on mechanisms of various chemical processes 

utilizing computational calculations.  The most accepted mechanism for hydroformylation catalyzed by 

monometallic cobalt complexes was proposed by Heck and Breslow, but it was not thoroughly understood 
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until the theoretical studies performed by Folga and Ziegler.
29

  Later, a more selective rhodium catalyst for

hydroformylation was synthesized by Ruchremie.  A more prominent study on this rhodium complex was 

performed by Pidun and Frenkling.
29

  Several researchers carried out computational calculations on

different steps of the catalytic cycle such as olefin coordination, olefin insertion, carbonyl insertion, 

oxidative addition of H2 and aldehyde reductive elimination.  Apart from hydroformylation, quantum 

calculations have also been performed on the Dotz reaction, which is also known as benzannulation, 

water-gas shift reaction, hydrogenation of CO2, and hydrogenation of CO.
29

  Furthermore, theoretical

studies were performed on the mechanism of hydroformylation catalyzed by the heterobimetallic complex 

(CO)4Cr(PH2)2RhH(CO)(PH3) by Hu and coworkers.
29,38 

  These calculations were all carried out using

the DFT method, which is especially good for transition metal systems.   

This research report consists of four projects which discuss about computational studies 

performed by bimetallic molecular catalysis and X-ray absorption spectroscopy on a solid-state material.  

This work is mainly focused on industrially important hydroformylation and aldehyde-water shift processes 

catalyzed by bimetallic rhodium and bimetallic cobalt complexes.  DFT modeling studies were used to 

study the reaction mechanisms and to gain an insight into the reaction mechanistic.  In addition to these 

studies, a detailed study on the development of a method to study X-ray absorption spectrum of 

insulators using RT-TDDFT is explained using quartz as a model insulator. 

All bimetallic catalytic studies were performed using Gaussian 09 C.01 64-bit version.
39

  The

optimization and frequency analysis studies of the geometries were carried out using the hybrid B3LYP 

functional and various basis sets.  A detailed description on the methods used is provided in each 

chapter.  X-ray absorption studies on quartz was performed using the NWChem
40

 real-time TD-DFT

module and basis sets were selected from the EMSL Basis Set Exchange.
41
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Chapter 2 - Rhodium Catalyzed Hydroformylation 

2.1 Introduction 

The process of hydroformylation was discovered by the German industrial chemist Otto Roelen in 

1938 as a result of an investigation of the cobalt catalyzed Fischer-Tropsch reactions.  Hydroformylation 

is one of the most vital and largest industrial homogeneous catalytic processes
1
 and it involves the

conversion of alkenes to aldehydes using carbon monoxide and hydrogen gas (Figure 2.1).  

Consequently, several million tons of aldehydes are produced per year.
2  

These aldehydes can be further

converted into plasticizers, detergents, pharmaceuticals, agrochemicals and fragrances, making 

hydroformylation a very important industrial process.
2-3 

 The most widely used catalysts in

hydroformylation contain the transition metals rhodium and cobalt. Rh is 1000 times more reactive 

compared to Co and it can perform catalysis at much lower temperatures and pressures.
4

Figure 2.1.  Hydroformylation. 

Catalysts for hydroformylation were developed in late 1930s using cobalt(+1) carbonyl 

complexes, but later more efficient rhodium(+1) carbonyl complexes were synthesized. Hydroformylation 

was performed by BASF, ICI and Ruchremie using cobalt catalysts under high pressure (200-350 bar) 

and high temperature (150-180 °C).
5
  The generally accepted hydroformylation mechanism catalyzed by

cobalt carbonyl complexes was proposed by Heck and Breslow in 1960s (Figure 2.2) , but it was not 

thoroughly understood until the theoretical studies performed by Folga and Ziegler.
6,7
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Figure 2.2.  Cobalt catalyzed hydroformylation mechanism proposed by Heck and Breslow.
6

A monometallic as well as a bimetallic pathway was proposed, but the bimetallic mechanism was 

not favored by Heck and Breslow.  A bimetallic cobalt complex, Co2(CO)8 could be produced by the 

reaction of the acyl intermediate with HCo(CO)4 via an intermolecular hydride transfer followed by 

reductive elimination of aldehyde.  This has been proposed as a possibility for reactions with internal 

alkenes.
8
  However, the monometallic pathway involving the reaction of acyl intermediate with H2 has

been found to be the dominant pathway.
9

As the simple carbonyl complexes produced relatively low linear to branched (L:B) ratios of the 

aldehyde (e.g., 2:1 for HCo(CO)4), phosphine-modified catalysts were developed by Shell.  This was 

achieved by adding a trialkylphosphine ligand to HCo(CO)4 complex, which improved the stability of the 

catalyst towards decomposition to cobalt metal and give much better L:B regioselectivities for the 

aldehyde (e.g., 8:1).  Hydroformylation with phosphine substituted cobalt catalysts required only 50-150 

bars of pressure and 180°C without decomposition of catalyst to cobalt metal.
10
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 In 1965 more active and highly regioselective Rh(+1)-PPh3 catalyst complexes for 

hydroformylation were reported by Osborn, Young and Wilkinson.  Wilkinson’s RhCl3(PPh3)3 catalyst was 

initially used for hydroformylation, but later it was discovered that halides inhibited the process.  

Therefore, it was replaced by HRh(CO)(PPh3)3 or Rh(acac)(CO)2 (acac = acetoacetonate) as the starting 

species.  The hydroformylation mechanism catalyzed by Rh/PPh3 complex was then proposed by 

Wilkinson. This mechanism included two pathways termed the associative and the dissociative 

pathways..
11

 The associative pathway goes through a 6-coordinate Rh(+1) 20 e- complex, which has

been discounted as a viable intermediate.  The theoretical and experimental results support only the 

dissociative mechanism for hydroformylation which proceeds via a 16 e- complex (Figure 2.3).  

Figure 2.3.  Dissociative mechanism of Rh/PPh3 hydroformylation.
11 
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Wilkinson’s dissociative mechanism was analogous to the proposed mechanism by Heck and 

Breslow, and the dissociative mechanism shown in Figure 2.3 is the currently accepted route that most 

hydroformylation processes follow.  Mild conditions are generallly employed for rhodium catalyzed 

hydroformylation process (100°C, 10 atm 1:1 H2/CO).
12

  The homogeneous low pressure oxo processes

performed by Union Carbide and Celanese in mid-1970s resulted in replacement of the cobalt catalysts 

by rhodium catalysts due to their superior chemo- and regioselectivity.
5 

Despite the extensive use of monometallic complexes, bimetallic catalysts are very interesting 

due to the prospect of multi-center cooperativity, which can enhance the catalytic activity and/or 

selectivity.  Several heterobimetallic catalysts comprised of Co/Ru, Rh/W, Rh/Mo, and Co/Pd mixed metal 

systems with phosphine ligands have been tested for hydroformylation, but none are more effective than 

monometallic catalysts.
13,14,15,16,17

  Hydroformylation is now performed using mostly phosphine based

rhodium catalysts as they are more active, produce more linear aldehyde, and minimize side reactions 

such as hydrogenation and isomerization.  

A good number of quantum chemical studies on hydroformylation catalyzed by monometallic 

systems have been reported.  Schmid et al. has performed studies on the dissociation reactions of 

hydroformylation catalyzed by HRh(CO)n(PR3)4n and HRh(CO)n(PR3)3n, where n = 1-3 using ab initio and 

DFT methods.  PH3 was used as the model for the phosphine ligand.
18

  Ab initio molecular orbital theory

studies on the full catalytic cycle of hydroformylation catalyzed by RhH(CO)2(PH3)2 was performed by 

Morokuma et al. using ethene as the model olefin and PH3 as the model phosphine ligand.
19

  Static

(Gaussian) and dynamic (Car-Parrinello molecular dynamics (CPMD) simulations) studies on 

hydroformylation catalyzed by Rh(+1) hydrido-carbonyl complexes with modified phosphine ligands such 

as PF3, PH3, and PMe3 were studied by Gleich et al.
20

  In addition to these, several other quantum

mechanical studies have been performed on hydroformylation catalyzed by monometallic 

complexes.
21,22,23

  Very few theoretical studies have been performed on hydroformylation catalyzed by

bimetallic complexes.
24

Herein, we report computational studies on the hydroformylation cycle catalyzed by a dirhodium 

complex.  This chapter contains computational calculations performed on the mechanism of a bimetallic 
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hydroformylation catalyst system proposed by Prof. George Stanley.  The hydroformylation reaction is 

carried out in two different solvent systems, namely acetone and acetone/water, and this chapter includes 

a theoretical mechanistic investigation on the hydroformylation catalytic cycle in both solvent systems.  

The catalyst employed is a bimetallic rhodium complex.  The dirhodium homogeneous catalyst system 

was discovered by Stanley and coworkers and is proposed to work via bimetallic cooperativity.
25,26,27  

The

use of a tetraphosphine ligand with both bridging and chelating groups favors the incorporation of two 

metal centers.  The ligand, (Et2PCH2CH2)(Ph)PCH2P(Ph)(CH2CH2PEt2) or (et,ph-P4) exists in both 

racemic and meso forms (Figure 1.4).  

Figure 2.4.  Tetraphosphine ligand rac and meso-et,ph-P4. 

The hydroformylation mechanism proposed by Prof. Stanley illustrates the role of bimetallic 

cooperativity and is comprised of the following fundamental steps that are parallel with the monometallic 

hydroformylation catalysts: carbonyl group (CO) dissociation, alkene coordination, insertion of alkene into 

the metal-H bond, association of CO, insertion of CO, oxidative addition of H2 and finally reductive 

elimination of the aldehyde.  
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2.2 Computational Details 

All computations were performed using Gaussian 09 C.01 64-bit package.
28

 The catalyst

precursor employed for hydroformylation is [Rh2(nbd)2(racet,phP4)](BF4)2 (nbd = norbornadiene, 

racet,phP4 = Et2PCH2CH2P(Ph)CH2P(Ph)CH2CH2PEt2). In the calculations, the ethyl and phenyl 

groups on the ligand were replaced with simple methyl groups to minimize computational time. Ethene 

was used as the model alkene substrate for the calculations.  The calculations were all performed in 

vacuum at 298.15 K so interactions with the neighboring molecules were not considered.  

Geometry optimizations were carried out using density functional theory (DFT) using Becke, three-

parameter, Lee-Yang-Parr (B3LYP) functional.
29-30,30

  The suitable basis set for the complexes were

selected by comparing the crystal structure of [Rh2(CO)5(racet,phP4)] with the calculated complex,5. 

(Figure 2.6a and 2.6b).  The best basis sets that resulted in similar structural parameters were the all 

electron basis sets where the Rh centers were optimized with 3-21G and the other atoms (C, H, O and P) 

with 6-311G**.  Vibrational analyses were performed to determine the ground states and transition states. 

The optimized ground states contained zero imaginary vibrational frequencies, and transition states 

contained a single imaginary vibrational frequency. 

2.3 Results 

The catalyst precursor used for hydroformylation is [Rh2(nbd)2(racet,phP4)](BF4)2, 1 and this is 

produced by reacting rac-et,ph-P4 with two equivalents of [Rh(nbd)2BF4].  This complex forms the 

dicationic dirhodium complex in an acetone solvent.  The standard alkene used for the experimental 

studies is 1-hexene, but the results are typical for 1-alkenes.  The hydroformylation activity of racemic and 

meso Rh2 complexes was compared with the commercially available monometallic Rh/PPh3 catalyst 

(Table 2.1).  The activity of hydroformylation is considerably dependent on the concentration of PPh3.  At 

higher concentrations of PPh3 the rate of catalysis decreases, while the L:B aldehyde ratio increases.  A 

minimum PPh3 concentration of 0.4 M (1 mM rhodium catalyst) is typically used in industry, in which case 

the PPh3/Rh ratio becomes 400:1.  The PPh3 concentration used in the comparison is 0.82 M which is a 

middle-ground concentration used in industry.  
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Table 2.1.  Hydroformylation activity of racemic and meso complexes compared with monometallic   

Rh/PPh3 catalyst. 
a 
turnovers per min (# moles product / # moles catalyst); initial rate is the initial

linear part of the uptake curve representing the highest catalytic rate.  
b 
linear to branched aldehyde 

product ratio based on GC and NMR analysis. 

The results in table 2.1 demonstrate that the lowest hydroformylation activity and most side 

reactions are seen when the meso Rh catalyst is used.  In contrast, a significantly higher activity and 

overall selectivity is seen when the racemic Rh catalyst is employed.  The racemic catalyst is 22 times 

faster than the meso catalyst and results in much higher product selectivity.  Even though excess 

phosphine ligands are required for aryl phosphine or phosphite coordinated monometallic rhodium 

complexes, the bimetallic complex 1 does not require any excess phosphine ligand to maintain its 

selectivity or stability.  Indeed, excess rac-P4 ligand deactivates the bimetallic catalyst.  In bimetallic Rh 

complexes the chelating ligand and strong electron donating et,ph-P4 ligand coordinates to the metal 

centers strongly (or so we thought), and hence excess phosphine is not required or desired. 

Monometallic catalyst analogs of half our bimetallic system, [Rh(nbd)(P2)](BF4) (P2 = 

Et2PCH2CH2PEt2, Et2PCH2CH2PMePh, Et2PCH2CH2PPh2, or Ph2PCH2CH2PPh2) are terrible catalysts and 

only give 1-2 turnovers/hr, 3:1 linear to branched aldehyde regioselectivity and 50-70% alkene 

isomerization and hydrogenation side reactions.  It was remarkable that combining two of these poor 

hydroformylation catalysts with the rac-et,ph-P4 ligand generates a highly reactive and selective catalyst 

due to highly efficient bimetallic cooperativity.   

Catalyst Precursor
Initial 

TO/min a
Aldehyde 

l/b ratio b
Alkene 

isomerization 
Alkene 

hydrogenation 

[Rh2(nbd)2(rac-et,ph-P4)](BF4)2 20 28:1 2.5% 3.4% 

Rh(CO)2(acac) + 0.82 M PPh3 9 17:1 1% 0.5% 

[Rh2(nbd)2(meso-et,ph-P4)](BF4)2 0.9 14:1 24% 10% 
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During the hydroformylation process of 1-hexene, the norbornadiene groups in complex 1 are 

replaced by carbonyl groups, and as a result, tetracarbonyl, pentacarbonyl or hexacarbonyl complexes 

will be formed.  This process is illustrated in Figure 2.5. 

Figure 2.5.  Reaction of [Rh2(nbd)2(rac-et,ph-P4)](BF4)2 with C. 

The calculations were initiated with complex 5 as it has been cyrstallographically characterized; 

hence, the experimental X-ray data can be compared with the calculated data (Figure 2.6).  Complex 5 

was optimized using several basis sets in order to determine whether one is significantly better than the 

others in reproducing the crystal structure.  The basis sets include all electron basis sets as well as 

effective core potential sets for the Rh centers.  The following basis sets were employed for the 

optimization of complex 5. 

1) Rh  3-21G; C, H, O  6-31G*; P  3-21G*

2) Rh  3-21G; C, H, O, P  6-311G**

3) Rh  Lanl2DZ; C, H, O  6-311G**; P  6-31G**

4) Rh  Lanl2DZ; C, H, O, P  6-311G**
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2.3.1 Comparison of the experimental with calculated data of [Rh2(CO)5(racmeP4)]
2, 5

A detailed structural comparison of the experimental data with the calculated data of complex 5 is 

shown in Appendix 1.  These data show a significant bond lengthening of one of the RhP bonds (Table 

2.2). 

Table 2.2.  Comparison of RhP bond lengths of complex, 5. 

This implies that the bond lengthening of one equatorial RhP bond is independent from the basis 

set utilized.  Figure 2.6 shows the DFT optimized complex 5 with its crystal structure.  The two rhodium 

centers have different geometries; the 5-coordinate side shows distorted trigonal bipyramidal geometry 

with an 18 e- configuration, whereas the 4-coordinate side exhibits a square planar geometry and is 16e- 

with an empty orbital.  Usually in trigonal bipyramidal geometry the equatorial bonds are longer than the 

axial bonds; hence, the equatorial RhP bond is longer than the axial RhP bond.  In addition, the 

experimental as well as the calculated data show that RhCO bond distances on the square planar side 

are shorter than the RhCO bonds on the 5-coordinated side due to the presence of stronger  back-

bonding.  These similarities suggest that irrespective of the basis set employed, significant bond 

lengthening of the one RhP bond is visible in all the calculated structures.  Thus, the dependency of the 

geometry optimization upon the basis set employed is negligible.  

Rh2(CO)5(et,phP4)
2

X-ray 
Bond Length (Å) 

Rh 321G 

CHO 631G* 

P 321G* 
Bond Length 

(Å) 

Rh Lanl2DZ 
CHO 

6311G** 

P 631G** 
Bond Length 

(Å) 

Rh Lanl2DZ 
CHOP 

6311G** 
Bond Length 

(Å) 

Rh 321G 
CHOP 

6311G** 
Bond Length 

(Å) 

Rh1 P3 2.391 2.553 2.554 2.574 2.561 

Rh1 P2 2.342 2.389 2.404 2.406 2.396 

Rh47 P31 2.331 2.388 2.394 2.397 2.396 

Rh47 P42 2.318 2.386 2.400 2.402 2.399 
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Figure 2.6.  (a). ORTEP for [rac-Rh2(CO)5(et,ph-P4)]
2+

, 5   (b). DFT calculated complex 5.

We did, however, observe what Prof. Stanley considered better energies for the various 

mechanistic steps in the catalytic cycle using the 6311G** basis set on P, O, C and H atoms relative to 

using 321G* on P.  Therefore, the larger 6311G** basis set was used in all our calculations for P, O, C, 

and H atoms.  Due to the cationic charge on the complex, it was felt that diffuse functions were not 

needed. 

As the optimized structures were generally independent from the basis set employed, all electron 

basis sets were used to perform calculations on the rest of the structures of the mechanisms.  All electron 

basis sets were employed instead of the effective core potential basis set - LanL2DZ because the 

bridging carbonyl complex, [racRh2(CO)2(CO)2(me,meP4)]
2
4*opens up when the latter was used

to optimize the Rh center.  This is clearly demonstrated in Figure 2.7.   

Figure 2.7.  [racRh2(CO)2(CO)2(me,meP4)]2
+
(4*)optimized using (a). 321G all electron basis set

and   (b). LanL2DZ for the Rh centers. 
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The experimental FTIR data suggest the presence of bridging carbonyl complexes in the 

catalyst mixture, including the closed-mode version of 4*.  Therefore, Rh was optimized using 321G 

basis set and C, H, O and P atoms using 6-311G** basis set.   

The optimized hexacarbonyl (6) complex demonstrates a trigonal bipyramidal geometry at one Rh 

center and a square pyramidal geometry at the other.  This complex, which is shown below in Figure 2.8 

shows an unusually long RhCO bond with a distance of 2.305 Å and a bent orientation at the square 

pyramidal Rh center, strongly suggesting that the CO is only very weakly associated with that Rh center.  

The DFT calculation, therefore, supports the proposal that complex 6 does not exist. This may be due to 

the inductive effect between the two cationic Rh centers. This results in an electron deficiency in the 

metal centers disfavoring the association of a sixth CO ligand; hence, the square pyramidal geometry 

does not favor the coordination of a sixth CO. 

Figure 2.8.  DFT optimized hexacarbonyl complex (6) with RhCO bond lengths. 

The predicted instability of the hexacarbonyl (6) from the DFT calculation helps explain the FTIR 

data from the reaction of the [Rh2(nbd)2(racet,phP4)]
2+

 complex with CO in acetone.  The FTIR

spectrum collected by Dr. Catherine Thomas Alexander on this reaction is shown below in Figure 2.9.   
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Figure 2.9.  In situ FTIR spectra of [Rh2(nbd)2(racet,phP4)]
2 reacting with CO

at various pressures and temperatures. 

The single CO band at 2015 cm1
 forms immediately upon addition of CO to the

[Rh2(nbd)2(racet,phP4)]
2+

 complex.  This represents the simple 18e- CO adduct species,

[Rh2(CO)2(nbd)2(racet,phP4)]
2+

.  But this species quickly loses the norbornadiene ligands and adds

more CO ligands to form what Prof. Stanley now assigns as the pentacarbonyl species 5.  The reaction 

must go through the open-mode tetracarbonyl complex 4, but it must be very reactive towards CO to form 

the pentacarbonyl 5 as no sign of absorbance related to 4 are visible in the series of spectra in Figure 2.9. 

Due to the extremely fast timescale of IR spectroscopy, it is highly unlikely that a rapidly 

interconverting mixture of 5 and 6 would give such a simple spectrum with just two carbonyl bands at 

2095 cm1 
and 2043 cm1

.  The DFT calculation on 5 predicts two carbonyl bands with a separation of 48

cm1
 compared to the experimental separation of 52 cm1 

(Figure 2.11).  The DFT prediction that 5 does

not want to coordinate a CO to form 6 supports that 5 is the main species under low to moderate 

pressures of CO.   
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This is further supported by the work performed by Kalck and coworkers.
31

  The square pyramidal

[Rh(CO)3{(R,R)PhBPE}]((R,R)-Ph-BPE = 1,2bis[(R,R)2,5diphenylphospholano]ethane) complex

synthesized by Kalck and coworkers, has a very long RhCO bond distance (Rh1C5 = 2.219 Å) at the 

square pyramidal Rh center (Figure 2.10a).  This indicates that the apical CO is very weakly coordinated 

to the Rh center.  This is due to the cationic charge on the complex that contracts the metal d-orbitals and 

reduces the Rh-CO -backbonding.  This mainly affects the apical Rh-CO bond due to the presence of 

the filled dz2 orbital that has a repulsive interaction with the filled CO lone pair orbital.  Their DFT 

optimized structure of the monocationic Rh complex showed a distorted trigonal bipyramidal geometry at 

the Rh center.  The axial RhCO bond had a shorter length of 1.949 Å, which is consistent with weaker 

coordination of the axial ligand, but not as large an effect as shown in the crystal structure.
31

Figure 2.10.  (a). Experimentally synthesized and  (b). the calculated [Rh(CO)3(P2)]
 by Kalck and

coworkers with RhCO bond lengths.
19

We performed DFT calculations on our dicationic hexacarbonyl complex 6 starting with trigonal 

bipyramidal geometries at the Rh centers.  This resulted in a square pyramidal geometry at one of the Rh 

centers with very weak coordination of the sixth CO ligand:  RhCO = 2.305 Å.  This compares well with 

the long Rh-CO distance of 2.219 Å from the X-ray structure on Kalck’s cationic [Rh(CO)3(P2)]
+
 system.

(a) 
(b) 

RhC 1.912 Å

RhC 1.935 Å

RhC 1.949 Å

2.219 Å 
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Our dirhodium complex is dicationic, which results in an increased inductive effect and a higher electron 

deficiency in comparison to the monocationic complex by Kalck.
31

  This may be why our calculation on 6

had one long Rh-CO bond, while Kalck’s DFT calculation showed a much smaller bond increase.   

Vibrational frequencies were calculated for the structures to be compared with the experimental 

IR data. The calculated stretching frequencies were scaled by 0.93, which was determined using 

experimental and calculated vibrational frequencies of dirhodium complexes.  The vibrational frequencies 

of the pentacarbonyl (5) and tetracarbonyl (4) complexes and the experimental spectra obtained at low 

and high pressures are shown in Figure 2.11.  These spectra demonstrate that at the experimental low 

and high pressures a mixture of pentacarbonyl (5) and tetracarbonyl (4) complexes exists.  

Figure 2.11.  Calculated and experimental vibrational spectra of 4 and 5. 

As the CO groups are further apart in the open-mode conformer of 4 the calculated CO bands are 

closer to being degenerate and form two distinct bands.  As a fully alkylated model is used for the P4 
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ligand in DFT computations the CO bands will be somewhat lower in wavenumber relative to P4 ligand 

used in experimental work which is not quite as donating. 

2.3.2 Dicationic Hydroformylation Mechanism 

Prof. Stanley’s proposed mechanism for hydroformylation is shown below in Figure 2.12.
32

  The

catalysis cycle begins with the oxidative addition of hydrogen to one of the Rh(+1) centers in the 

pentacarbonyl complex (5) forming complex A.  Complex A will convert from an open mode geometry to a 

closed mode conformation via an intramolecular hydride transfer resulting in complex 2*, which contains a 

bridging hydride and a bridging carbonyl.  The first bimetallic cooperativity step is demonstrated in this 

complex to distribute the two hydrides, so that one hydride is on each Rh center, which is optimal for 

hydroformylation.  It is proposed that complex 2 undergoes rearrangement to form the symmetrical 

terminal dihydride complex 2**.  Then a dissociation of the carbonyl group will occur forming a vacant site 

for alkene coordination.  This is followed by migratory insertions and associations of carbonyl groups.  

The reductive elimination will produce the aldehyde ultimately regenerating the pentacarbonyl complex 5. 

Figure 2.12.  Previous proposed mechanism for hydroformylation in acetone.
32
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DFT computations show the oxidative addition of H2 to form the open-mode dihydride, A is uphill by 

10.7 kcal/mol.  The activation barrier for this step is 10.4 kca/mol (Figure 2.13).  Complex A then 

converts to a closed-mode complex (2, 2* or 2**) with bridging ligands to enhance bimetallic cooperativity. 

Figure 2.13.  Activation barrier for H2 oxidative addition. 

Both rhodium centers in 2** are in the +2 oxidation state, which corresponds to a d
7
 electronic

configuration.  Based on electron-counting one would predict a RhRh single covalent bond for 2** (as 

drawn in the mechanism), which is supported by the DFT calculations.  The terminal CO ligands are 

predicted to be extremely labile due to the dicationic charge on the complex that compensates for the 

strongly donating phosphine ligands.  This will minimize the back-bonding and weaken the Rh-CO 

bonding.   

The edge-sharing bioctahedral structure, however, is highly unusual for dirhodium(+2) complexes.  

Most Rh(+2)Rh(+2) structures have the “lantern” D4h type geometry with two axial ligands that are 

usually weakly coordinated (Figure 2.14).  Transforming the D4h type geometry to an edge-sharing 

bioctahedral structure should transfer the weak coordination of the axial ligands to all four of the 

outermost ligands.  This contributes to the CO lability, but also, unfortunately, should also weaken the 
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coordination of the terminal phosphine ligands, which appears to be a major source of catalyst 

fragmentation and deactivation.   

Figure 2.14.  Conversion of a lantern structure to edge-sharing bioctahedral.  Circled ligands have weaker 
bonding to the Rh centers.   

One of the major considerations in analyzing the mechanism computationally is the identification 

of the active catalyst that reacts with the alkene.  The experimental observations have confirmed that 

several bridging carbonyl complexes exist in the reaction mixture.  In situ FTIR results have shown 

bridging carbonyl bands with different intensities and shapes. It is been proposed that complex 2 and 

symmetrical complexes 2* and/or 2** exist in dynamic equilibrium.  Due to the presence of the bridging 

carbonyl bands in the FT-IR spectra (1834 cm
-1

 and 1819 cm
-1

) in acetone (Figure 2.15), Prof. Stanley for

many years strongly favored the terminal dihydride complex with two bridging carbonyls, 2**.  This was 

also tied into the common perception in the organometallic community that terminal hydrides are more 

reactive than bridging hydrides for doing a migratory insertion with an alkene substrate.   

Figure 2.15.  Experimental FT-IR spectrum of catalyst mixture in acetone. 
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The experimental 
1
H NMR of the hydride region of the dicationic dirhodium catalyst mixture is

given below in Figure 2.16.   

Figure 2.16. 
1
H NMR of the hydride region of the bimetallic catalyst in acetone with updated assignments 

from the DFT calculations. 

The peaks at ‒5.6 and ‒15.1 ppm are independent from temperature and are due to two 

fragmentation species:  the catalytically inactive monometallic dihydride complex, [RhH2(
4
-rac-et,ph-

P4)]
+
 (12r), and the double ligand coordinated complex [Rh2H2(rac-et,ph-P4)2]

2+
 (13rr), which we believe

is responsible for most of the alkene isomerization and hydrogenation side reactions.  According to the 

experimental 
1
H NMR, at low temperatures a pseudo-nonet pattern is observed at ‒8.8 ppm, which has

been assigned to a bridging hydride due to the extensive coupling pattern corresponding to coupling with 

two spin ½ Rh centers, up to four phosphines, and the terminal hydride.  The hydride resonance at ‒6.3 

ppm is assigned to a terminal hydride and is not fully resolved at this temperature.  Therefore; at ‒55°C, 
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the unsymmetrical 2 is the primary and lowest energy hydroformylation catalyst that exists in solution.  As 

the temperature is raised the peaks at ‒6.3 ppm and ‒8.8 ppm coalesce to produce a single broad 

hydride resonance appointing to an exchanging symmetrical complex consistent with the bridging 

dihydride complex 2*, or the terminal dihydride complex 2**. 

The DFT calculations were performed on these isomeric complexes in order to find the key 

catalyst species that reacts with the alkene.  The unsymmetrical complex 2 gives the lowest total energy 

resulting in a relative energy of 0.00 kcal/mol.  The symmetrical bridging dihydride complex 2* has a 

slightly higher energy of 0.6 kcal/mol, while the terminal dihydride complex 2** is 12.3 kcal/mol higher 

than 2 (Figure 2.17).  Complexes 2 and 2* have similar energies whereas the terminal dihydride 2** has a 

significantly higher energy.  The experimental 
1
H NMR spectra clearly shows the presence of

unsymmetrical 2* at low temperatures and the question remains as to the structure of the active 

symmetrical dihydride catalyst that forms at higher temperatures:  2* or 2**?  

Figure 2.17.  Dynamic equilibrium between 2, 2* and 2**. 

Hydroformylation activity is observed at higher temperatures and at such temperatures bridging 

carbonyl bands are observed in the FTIR spectrum at 1834 cm1 
and 1819 cm1

.  According to the

calculated stretching frequencies, complex 2** has a bridging carbonyl band at 1821 cm1
.  Even though

complex 2* does not have any bridging carbonyls, DFT data suggests some of the intermediates in the 

catalytic cycle of 2* should have a bridging carbonyl with a calculated band at 1834 cm
-1

.  In order to

determine the active catalyst and the correct pathway, the hydroformylation cycle was analyzed 

computationally utilizing both complexes 2* and 2** to study the activation energies for the various steps 

in the hydroformylation cycle. 
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The Rh centers are in the +2 oxidation state in 2, 2* and 2** and this enables the formation of a 

covalent bond between the two metal centers.  This is supported by DFT calculations as the Rh-Rh bond 

distances are 2.886 Å, 2.892 Å and, and 2.969 Å in 2, 2* and 2** respectively.  This results in a closer 

proximity between the metal centers favoring bimetallic cooperativity and intramolecular transfers 

between metal centers.  The Rh-Rh bonding and bridging ligands minimize the geometry reorganizations 

about the metal centers and this enhanced steric environment favors the insertion of an alkene into M-H 

bond to form a linear alkyl group which in turn goes on to form the linear aldehyde product. 

2.3.2.1 DFT studies on hydroformylation using complex 2** as the active catalyst 

Alkene Coordination and Insertion 

We started with the higher energy 2** catalyst as the starting point because this is what Prof. 

Stanley has proposed for many years.  Hydroformylation catalysis begins with the generation of 16-

electron unsaturated catalyst species.  This is achieved via a ligand dissociation from the active catalyst 

complex 2**, so a carbonyl group will dissociate generating a vacant site for the alkene coordination 

(complex 2**
#
, Figure 2.18).  Even though the phosphine groups are strong electron donors, the cationic

charge on the metal centers reduces the back-bonding to the carbonyl groups making dissociation 

much easier.  This is a key factor in the high activity of this catalyst system.  The calculations find that the 

CO dissociation is endothermic by 18.2 kcal/mol. 

Figure 2.18.  CO dissociation from complex 2**. 

The alkene then coordinates to the unsaturated complex 2**
#
 in the equatorial position with C=C

bond coordinated perpendicular to the plane, forming complex B.  This coordination is downhill by 14.1 
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kcal/mol.  The previous modeling studies on hydroformylation using monometallic Rh catalysts with 

phosphines and carbonyl ligands show that the olefin addition to the catalyst complex is exothermic, but 

these values are larger than the values obtained from our studies.
19, 33

  This may be due to the different

computational methods utilized or, most likely because of the dicationic charge that reduces the Rh-CO -

backbonding.  The ethylene coordination to 2**
#
 results in lengthening of the C=C bond from 1.327 Å to

1.366 Å, consistent with donation of some of the ethylene -bonding electron density to the Rh center. 

Once the alkene coordinates it can insert into the RhH bond forming an alkyl group (C1).  The 

transition state showing the insertion between the alkene and the hydride is shown below in Figure 2.19.  

The alkene rotates to the axial position while the hydride moves to the equatorial position and the 

methylene group of the alkene aligns with the hydride for the insertion.  The neutral alkene ligand inserts 

into anionic hydrideRh bond and generates an alkyl group, so an empty coordination site is created at 

the equatorial position where the alkene was originally coordinated.  The vibrational frequency studies 

confirmed the generation of the transition state by producing only a single imaginary frequency and the 

animation shows the correct normal mode vibration for the insertion step (see Appendix 2).  The 

calculations show that the olefin insertion is exothermic by 10.5 kcal/mol.  The calculated activation 

barrier for the insertion of a double bond into the RhH bond is 23.2 kcal/mol. 

Figure 2.19.  Hydride insertion. 

The RhH bond distance in transition state geometry (TS(B:C1)) is longer than B by 0.034 Å as 

shown below in Figure 2.20.  The CC bond distance is elongated by only 0.024 Å in TS(B:C1) with 

respect to the ethylene adduct (B) C=C bond distance, but the resulting CC single bond distance is, as 

expected 0.129 Å longer than the C=C double bond.  The RhC bond of alkyl group is 0.27 Å shorter than 
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the Rh-C bond of ethylene adduct (B), which is also expected.  These differences in geometries all agree 

well with the conversion of an alkene to alkyl group.  

Figure 2.20.  Comparison between B and TS(B:C1). 

CO Addition and Insertion 

The next step in the catalytic cycle is the coordination of a CO group to complex C1 to produce 

an 18-electron complex C2 (Figure 2.21).  The CO addition is exothermic by 10.6 kcal/mol, consistent 

with the weaker Rh-ligand bonding expected for this coordination site (see Figure 2.14 and related 

discussion).  The CO coordination increases the bond distance between Rh and the bridging CO’s by 

0.06 Å.  The addition of CO will decrease the -back bonding and results in lower CO stretching 

frequencies for C2.  The stretching frequency of the bridging CO’s was decreased by about 9 cm
-1

 in C2,

while the terminal CO’s decreased by 3 cm
 -1

.

Figure 2.21.  CO addition to C1. 
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The CO ligand in complex C2 then undergoes a migratory insertion between the alkyl group and 

the carbonyl group to form complex D1, which results in 16- and 18-electron Rh centers.  The calculations 

show that the CO insertion is exothermic by 3.7 kcal/mol.  The calculated activation barrier for the CO 

insertion step is extremely small, only 0.7 kcal/mol (Figure 2.22) and the vibrational frequency studies 

confirm that TS(C2:D1) is a transition state by having a single imaginary frequency which matches with 

the correct vibrational mode for CO insertion (see Appendix 2).  The RhCethyl bond in the TS(C2:D1) 

structure is 0.23 Å longer than in C2, while the RhCO bond is shortened by 0.097 Å.  The COCethyl bond 

distance decreases by 0.83 Å in TS(C2:D1) illustrating the formation of the OC-alkyl bond in the transition 

state. 

Figure 2.22.  CO insertion. 

A CO group will coordinate to D1 generating the 18-electron Rh complex, D2 (Figure. 2.23), 

which is exothermic by 13.2 kcal/mol. 

Figure 2.23.  CO addition to D1. 
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Aldehyde Reductive Elimination 

Finally, the reductive elimination of the aldehyde will take place forming complex G. The hydride 

and the acyl group in complex D are cisoidal to each other and they are separated by only 3.51 Å.  These 

factors make the reductive elimination favorable.  As shown below in Figure 2.24 the hydride ligand 

bends towards the acyl carbon to facilitate the elimination via a direct bimetallic reductive elimination.  

This step corresponds to downhill energy of ‒27.77 kcal/mol.  This demonstrates the feasibility of a direct 

bimetallic reductive elimination of the aldehyde across two metal centers.  The calculated activation 

barrier for this step is 20.9 kcal/mol.  The calculations indicate that TS(D2:G) is a transition state by 

having a single imaginary frequency with the correct vibrational mode that matches with the aldehyde 

reductive elimination (see Appendix 2).  The RhCaldehyde bond is 0.59 Å longer in TS(D2:G) than in D2 

and CaldehydeH distance, corresponding to bond formation, is decreased by 1.38 Å in the transition state.  

The formation of the transition state from D2 is shown below in Figure 2.24. 

Figure 2.24.  Reductive elimination of the aldehyde. 

As the activation barrier for reductive elimination of the aldehyde was quite large the possibility for 

the rearrangement of the terminal hydride in D2 to a bridging position was examined.  DFT studies show 

that the rearrangement is downhill by ‒6.88 kcal/mol (Figure 2.25).  Due to the rearrangement of the 

terminal hydride to the bridging position the separation between the acyl group and the hydride is lowered 

by 0.78 Å favoring the reductive elimination of the aldehyde. 
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Figure 2.25.  Conversion of terminal hydride in D2 to a bridging position. 

The corresponding transition states for the reductive elimination with the terminal hydride and the 

bridging hydride are shown below in Figure 2.26.  The activation barrier for the reductive elimination with 

the bridging hydride is 15.3 kcal/mol which is 5.6 kcal/mol lower than the terminal hydride reductive 

elimination and the corresponding free energy profiles for reductive elimination are shown below in Figure 

2.27.  In TS(D2:G) both the acyl group and the hydride move towards each other to facilitate the reductive 

elimination whereas in the bridging hydride transition state (TS(D2
#
:G

#
), the bridging hydride move

towards the acyl group.  The distance between the acyl group C and hydride is 0.07 Å lower in 

TS(D2
#
:G

#
) than in TS(D2:G).  These structural orientations suggest that the reductive elimination of the

aldehyde product is facilitated through the rearrangement of the terminal hydride to a bridging position. 

Figure 2.26  Transition states for  (a) Reductive elimination from terminal hydride (TS(D2:G))  (b) 
Reductive elimination after rearrangement of terminal  hydride to a bridging position (TS(D2#:G#)).  
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Figure 2.27.  Activation barriers for  (a) Reductive elimination from terminal hydride   
(b) Reductive elimination after rearrangement of terminal  hydride to a bridging position  (For clarity 

chelate phosphine ligand is removed). 

Complex G
#
 will convert to a closed mode symmetric structure without bridging carbonyls

(complex 4*
#
), and this step is downhill by -24.7 kcal/mol.  This will then react with carbon monoxide to

regenerate the open mode complex 5 (Figure 2.28) and this corresponds to an energy change of +8.8 

kcal/mol. 
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Figure 2.28.  Regeneration of complex 5. 

The free energy profile for hydroformylation using the dicationic terminal dihydride complex is 

shown in Figure 2.29.   

Figure 2.29.  Free energy profile for hydroformylation using the dicationic terminal dihydride catalyst 2** 
(For clarity chelate phosphine ligand is removed). 

The rate-determining step in this cycle is the migratory insertion of the alkene and hydride that 

take place in the beginning of the reaction sequence.  The rate-limiting step in hydroformylation depends 

on the catalyst, the reaction conditions used, and the computational methods utilized to study the catalytic 

cycle.  According to studies performed by other research groups, the rate limiting step when HCo(CO)3 is 
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used at BP86 level was found to be the CO insertion step
34

, whereas when HRh(CO)2(PH3)2 was used at

MP2/HF level the rate determining step was the H2 oxidative addition step
35

.

2.3.2.2 DFT studies on hydroformylation using complex 2* as the catalyst 

Alkene coordination and Insertion 

The DFT computational results for using the dicationic bridging dihydride species 2* is reported in 

this section.  The catalytic cycle begins with CO dissociation followed by alkene coordination to the 

vacant site on the Rh center.  CO dissociation from 2* is endothermic by 12.3 kcal/mol, which is lower by 

5.9 kcal/mol relative to the dissociation from 2** (18.2 kcal/mol).  Dissociation of a CO ligand results in 0.1 

Å decrease in RhunsaturatedP bond length of 2* but significant changes in RhP bond lengths are not 

observed in 2**.  This is likely due to the -trans effect of the bridging hydrides in 2* that favors the 

dissociation of a trans-carbonyl group, and consequently the stronger electron donation of phosphine to 

the metal center resulting in a somewhat shorter RhP bond distance.   

Alkene coordination to 2*, on the other hand, corresponds to an uphill energy change of 6.3 

kcal/mol, which is 7.9 kcal/mol higher than that for the coordination of alkene to 2**.  The strong trans 

effect of bridging hydride and phosphine ligands results in a higher electron density at the metal center of 

2*, which accounts for the higher energy requirement for the alkene coordination to 2*.  The -accepting 

bridging carbonyl groups in complex 2** favor coordination of an electron-donating alkene.  The alkene 

coordinates to 2* in the equatorial position with C=C bond perpendicular to Rh-Rh bond.   

Once the alkene is coordinated, the hydride inserts into C=C bond forming an alkyl group. This 

generates the mono bridged hydride complex, 2*C.  The alkene remains in the equatorial position and the 

C atom not bonded to Rh bends towards the bridging hydride cis to it for the transition state TS(2*B:2*C) 

(Figure 2.30).  As a single imaginary frequency was obtained corresponding to the correct vibrational 

mode, the presence of the transition state was confirmed (see Appendix 2).  The C=C bond length is 

increased by 0.08 Å in TS(2*B:2*C) with respect to the ethylene adduct, 2*B.  CC bond length is 

elongated by 0.16 Å in the alkyl group.  The hydride insertion appears to be more favorable in 2* than in 

2** as the activation barrier is only 8 kcal/mol, which is 15.2 kcal/mol less in energy than in 2**.   
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Figure 2.30.  Hydride insertion. 

Because the experimental IR data show two bridging carbonyl peaks the possibility of formation 

of a double -bridged complex was also studied.  The mono bridging hydride complex was converted into a 

complex with a bridging hydride and a bridging carbonyl (2*C1) (Figure 2.31).  This conversion appears to 

be thermodynamically feasible and corresponds to a downhill energy of ‒16.0 kcal.mol.  This -CO,H 

dirhodium complex had a bridging carbonyl peak at 1834 cm
-1 

in the computed IR spectrum.  This

correlates with the experimental IR data and is another indication that 2* is the active catalyst. 

Figure 2.31.  Conversion of mono bridging complex 2*C to double bridging complex 2*C1. 

CO Insertion 

The next step of the hydroformylation catalytic cycle is CO insertion to generate the acyl group.  

CO inserts into the double bridging complex (2*C1) forming an acyl group (2*D) with a small energy 

increase of 2.3 kcal/mol.  The activation barrier for the CO insertion step is 13.2 kcal/mol.  The presence 

of a single imaginary frequency confirmed the transition state (TS(2*C1:2*D)) (see Appendix 2).  The alkyl 

group moves towards the axial carbonyl group for the CO insertion (Figure 2.32).   
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Figure 2.32.  CO insertion. 

Carbonyl groups will coordinate to both Rh centers to generate the 18-electron saturated 

complex, 2*D1 and this corresponds to a downhill energy change of ‒6.6 kcal/mol. 

Aldehyde Reductive Elimination 

Finally, aldehyde will reductively eliminate from 2*D1.  As the carbonyl group and hydride are 

cisoidal to each other, essentially on the same Rh center, and separated by only 2.67 Å, this corresponds 

to a small energy increase of 4.2 kcal/mol.  The activation barrier for the reductive elimination of the 

aldehyde is 13.4 kcal/mol, which is 7.5 kcal/mol lower in energy than the reductive elimination step in 2**.  

The transition state (TS(2*D1:2*E)) was confirmed by checking for the presence of a single imaginary 

frequency (see Appendix 2).  The bond distance between carbonyl C and bridging hydride is decreased 

by 1.14 Å in the transition state and RhC of carbonyl group is increased by 0.15 Å (Figure 2.33).  These 

geometry differences are consistent with the transition state.  

Figure 2.33.  Reductive elimination of the aldehyde product. 

The free energy profile for hydroformylation using 2* as the active catalyst is shown below in 

Figure 2.34. The computed hydroformylation mechanism for 2** is shown in Figure 2.35 with the 
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corresponding energy values.  The activation barriers for the mechanism using 2* are lower than those 

seen for the mechanism using 2**.  The activation barrier for the hydride insertion step is 23.2 kca/mol in 

2**, whereas it is only 7.97 kcal/mol in 2*.  The DFT studies on 2* does have a higher activation barrier for 

the CO insertion step (13.2 kcal/mol), whereas in 2** it is essentially non-existent (0.7 kcal/mol).   

I also did some calculations on the hydroformylation mechanism using asymmetric 2 for 

comparison.  DFT calculates an activation barrier of 11.4 kcal/mol for terminal CO insertion in asymmetric 

2 and a 16.2 kcal/mol barrier for a bridging CO insertion.  The activation barrier for the reductive 

elimination for 2*, 2** and 2 are 13.4 kcal/mol, 15.3 kcal/mol and 17.8 kcal/mol respectively.  This shows 

that the aldehyde is more easily eliminated from 2* than from 2 or 2**.  The catalytic cycle for 2* indicates 

that reductive elimination of aldehyde is the rate-limiting step, whereas in 2** it is the hydride insertion 

step.  Considering these facts, the energies and activation barriers, the hydroformylation catalytic cycle 

using 2* as the active catalyst appears to be more feasible than using 2**. 

Figure 2.34.  Free energy profile for hydroformylation in acetone using 2* as the active catalyst (For clarity 
chelate phosphine ligand is removed). 
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Figure 2.35.  DFT computed hydroformylation catalytic cycle using 2* as the active catalyst. 
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2.3.3 Monocationic Bimetallic Hydroformylation 

Industrial catalytic processors mostly use heterogeneous catalysts even though they are less 

active and selective than homogeneous catalysts.  The inability to easily recover the catalyst from the 

reaction mixture makes homogeneous catalysts far less favorable industrially, even though they are still 

used for hydroformylation.
36,37

  Once the Stanley group recognized that the dirhodium catalyst was

dicationic they experimented with more polar solvent systems that might allow the less-polar aldehyde 

product to phase separate from the solvent.  This would make product-catalyst separation much easier, 

analogous to what is done in the Shell Higher Olefin Process.
38

  A 30% water/acetone mixture was found

to be the best composition that did result in phase separation of the heptaldehyde product from the water-

acetone solvent mixture.  Unfortunately, the catalyst was more soluble in the aldehyde product phase 

than the water-acetone solvent phase.   

A very unexpected result, however, was the large improvement in hydroformylation catalysis for 

our bimetallic catalyst in water-acetone from both a rate and selectivity viewpoint.
39

 The stability of the

dirhodium P4 catalyst system is dramatically improved in water-acetone.  A common test for the stability 

of a Rh hydroformylation catalyst (monometallic or bimetallic) is to put the catalyst under H2/CO at 

operating conditions without any alkene present.  All known effective Rh-phosphine catalysts will 

decompose via Rh-induced phosphine cleavage reactions under these conditions within 12 hours.
40

Under our standard hydroformylation conditions (90°C, 90 psig 1:1 H2/CO) with no alkene present 

[Rh2(nbd)2(rac-et,ph-P4)]
2+

 will completely deactivate within 80 mins in acetone, while in water-acetone

only 10% of catalyst activity is lost after 120 mins.  Somehow the addition of water to the acetone solvent 

dramatically stabilizes the catalyst.   

The main problem with the dicationic bimetallic catalyst is it readily fragments in acetone or other 

non-water based polar solvents into inactive monometallic (12r) and double ligand coordinated bimetallic 

(13rr) complexes.  This is clearly demonstrated by the in situ 
31

P NMR studies that show extensive

catalyst fragmentation after sitting at room temperature under 280 psig of H2/CO for 24 hrs or longer 

(Figure 2.36).  This same spectrum can be generated after just an hour at 60°C.  Prof. Stanley was quite 



43 

surprised to see the facile fragmentation under such mild conditions, especially since the P4 ligand was 

specifically designed to limit this type of Rh-loss fragmentation.   

Figure 2.36.  
31

P{
1
H} NMR of [Rh2(nbd)2(rac-P4)]

2+
 in Acetone, 280 psig H2/CO, 25°C.

The proposed fragmentation pathway is shown in Figure 2.37 and centers on what we now 

recognize as a facile phosphine chelate arm dissociation equilibrium.  Once an external phosphine is 

replaced by a CO ligand, the dirhodium complex is more electron-deficient, which promotes reductive 

elimination of H2 to generate the closed-mode pentacarbonyl complex F.  This doesn’t have any hydrides 

and can’t do any hydroformylation until H2 re-adds.  The one Rh center is becoming CO-saturated and is 

susceptible to Rh-loss to generate the monometallic 
2
-coordinated complex G.
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Figure 2.37.  Proposed
 
fragmentation

 
pathway using 2** as the starting species. 

The P4 ligand is flexible enough to wrap around the Rh center with oxidative addition of H2 to 

form the 18e- saturated complex 12r that is inactive for hydroformylation or other side reactions.  We 

have strong spectroscopic evidence for this monometallic dihydride complex, which is the only hydride 

species that remains upon depressurization of the catalyst solution followed by purging with N2.  We have 

crystallographically characterized the dichloride analog, [RhCl2(
4
-rac-et,ph-P4)]

+
, which has a very

similar 
31

P NMR.
41

 The double P4-ligated dirhodium complex, 13rr, is mainly formed under our higher

concentration NMR tube studies.  We do not believe that this dirhodium complex is active for 

hydroformylation.  

A variety of studies over the years performed by the Stanley group finally showed that the 

dicationic catalyst, now identified as [Rh2(-H)2(CO)2(rac-et,ph-P4)]
2+

,  behaves as a strong acid in the

presence of water. This leads to the dissociation of one of the hydrides as a proton forming monocationic 

monohydride dirhodium carbonyl complexes.  Figure 2.38 illustrates the mechanism initially proposed by 

Prof. Stanley for the hydroformylation in water/acetone system catalyzed by the monocationic dirhodium 

catalyst system.   
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Figure 2.38.  Proposed mechanism for hydroformylation in water/acetone. 

Prof. Stanley initially favored the double-bridged species shown for complexes b, c, d, and e in 

direct analogy to the dicationic hydroformylation cycle.  But the monocationic Rh2 complexes are in the 

Rh(I) oxidation state, unlike most of the complexes in the dicationic cycle that are Rh(II).  There are, for 

example, only four single atom double bridged bimetallic Rh(I) complexes with P-CH2-P type groups:  
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[Rh2(Cl)(CO)(CO)2(dppm)2]
+
,
20

  [Rh2(H)(CO)(CO)2(dppm)2]
+
,
21

  [Rh2(H)2(CO)2(diPrpm)2],
22

and [Rh2(Cl)2(NO)2(dppm)2]
2+

.
23

  The A-frame geometry with just one bridging ligand is far more

common.  Based on the rarity of single atom double-bridged Rh(I) structures, it was very important to 

perform DFT calculations to determine the most likely structures for these monocationic dirhodium 

complexes.   

The DFT calculations demonstrated that complex b was a mono bridged complex with a bridging 

hydride (B’) whereas complex c was a mono bridged complex with a bridging carbonyl (C’). Based on 

standard electron-counting formalisms these complexes with a single hydride or CO bridge should have 

Rh-Rh covalent bonds, which is supported by the DFT calculations.  C’ has a DFT calculated Rh-Rh = 

2.81394 Å, while B’ has Rh-Rh = 2.94311 Å.The conversion of A’ to B’ is an exothermic reaction 

corresponding to an energy difference of -15.13 kcal/mol. The DFT calculations find C’ to be 1.82 

kcal/mol more stable than B’, which is consistent with the NMR data (Figure 2.39) that shows a single 

broad hydride resonance consistent with dynamic exchange between C’ and B’.   

Figure 2.39. 
1
H (top) and 

31
P (bottom) NMR of catalyst solution after hydroformylation in 30%

water/acetone. 
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There is a small amount of the monometallic fragmentation product present as well, but far less 

than seen in acetone.  The 
31

P NMR, also shown in Figure 2.39, shows broad and partially resolved NMR

resonances indicating an on-average symmetrical species, once again consistent with a dynamic 

exchange equilibrium between C’ and B’.  The extremely low amount of fragmentation products in the 
1
H

and 
31

P NMR’s (compare Figures 2.36 and 2.39) is clearly indicative of the higher stability of the

monocationic dirhodium catalyst species.   

2.3.3.1 DFT Computed Hydroformylation Mechanism for Monocationic Dirhodium Catalyst 

The key step towards proposing a mechanism is the identification of the primary catalyst species.  

DFT studies suggest that either complex B’ or C’ acts as the active catalyst in the monocationic 

dirhodium catalyst system.  Detailed analysis of the mechanism will be helpful to determine the active 

catalyst more accurately.  Figure 2.40 shows the new proposed catalytic cycle for the monocationic 

dirhodium system based on DFT computations which is quite different from the originally proposed 

mechanism.  A detailed discussion on the computational investigation of this mechanism is given below. 

Figure 2.40.  The new proposed monocationic dirhodium mechanism. 
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Alkene coordination and hydride insertion 

The formation of the closed mode complex will be followed by the alkene coordination.  After 

dissociating a CO ligand, the alkene can interact with either complex B’ or C’.  According to the DFT data, 

even though the terminal CO ligand dissociation energy is lower in the bridged hydride complex (B’) than 

in the terminal hydride complex (C’), the alkene coordination seems to be more favorable in complex C’  

than in complex B’.  The CO ligand dissociation and alkene coordination energies are given in Figure 

2.41.  This figure shows that CO dissociation is highly favored in both B’ and C’. 

Figure 2.41.  Dissociation of terminal CO and coordination of the alkene. 
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Figure 2.41 clearly illustrates that the dissociation of CO ligand from complex C’ results in two 

complexes which are either Q or R.  The CO dissociation from the neutral Rh center results in Q whereas 

the CO dissociation from the cationic Rh center results in R.  According to the relative energies of Q (4.51 

kcal/mol) and R (0.00 kcal/mol), the DFT data shows that the dissociation of a terminal CO ligand trans to 

the bridged CO results in a higher energy species.  As CO dissociation is more favored from the cationic 

Rh center rather than from the neutral Rh center, formation of R is favored than Q.   

Once the CO is dissociated, the alkene coordination to the vacant orbitals will take place.  The DFT 

calculations illustrate that the alkene coordination does not occur to complex Q, as the distance between 

the alkene and the Rh center is 4.88 Å (N), whereas the coordination of alkene to R to form M does form 

a bond with a distance of 2.43 Å.  Therefore, for species C’, alkene coordination would proceed through R 

to form M. 

The alkene coordination is followed by a migratory insertion between the alkene and the hydride to 

form an alkyl group.  The migratory insertion is favored when the two groups are cisoidal to each other. In 

the bridging hydride complex O, shown in Figure 2.42, the alkene and the hydride are cis to each other 

whereas in the terminal hydride complex M it is not.  In both complexes the alkene is coordinated to the 

metal center in the equatorial position.   

Figure 2.42.  Hydride insertion step for bridged hydride complex and terminal hydride complex. 
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The DFT results demonstrate that hydride insertion is energetically feasible in both terminal hydride 

complex M (6.58 kcal/mol) and in the bridged hydride complex O (3.28 kcal/mol).  In order to better 

understand the reaction pathway for the hydride insertion, transition state calculations have been 

performed.  

Figure 2.43.  Activation barriers for (a). terminal hydride insertion   (b). bridging hydride insertion. 

The activation barriers for the hydride insertion step are shown above in Figure 2.43 and the DFT 

structures of the transition states are shown in Figure 2.44.  The activation barrier for terminal hydride 

insertion for M to P is a rather large 34.1 kcal/mol, whereas for bridging hydride insertion for O to N it is 

only 16.8 kcal/mol.  These activation energies clearly indicate that the alkene insertion with the bridging 

hydride complex O is the preferred pathway.  Both the transition states have one imaginary frequency 

and they correspond to the correct vibrational mode of hydride insertion (see Appendix 2).  In TS(M:P) 

the alkene has moved to the axial position, whereas in TS(O:N) the alkene remains at the equatorial 

position.  The Rh-C=C bond is longer by 0.033 Å in TS(M:P) which suggests that the alkyl group is 

weakly coordinated to the metal center.  The activation barriers and the structural differences clearly 
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indicate that the insertion of the bridging hydride is more favorable than the insertion of terminal hydride, 

similar to what we found for the dicationic catalyst 2* vs 2**. 

Figure 2.44.  (a). Transition state of terminal hydride insertion, TS(M:P)   (b). Transition state of bridging 
hydride insertion, TS(O:N). 

As N is 7.8 kcal/mol higher in energy than P, N converts into the more stable product P after 

hydride insertion.  The hydride insertion step is followed by migratory insertion between the alkyl group 

and a carbonyl group forming an acyl group.  This step is predicted to be exothermic by 11.2 kcal/mol.  

The CO group cis to the alkyl group migrates to form the acyl species via the transition states TS(P:SI). 

The DFT calculated transition state for CO insertion is shown below in Figure 2.45.   

Figure 2.45.  Transition state of CO insertion, TS(P:SI). 
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The energy barrier for the CO insertion step is 5.1 kcal/mol.  The transition state contained only a 

single imaginary frequency (see Appendix 2).  The corresponding energy value for the reaction is shown 

below in Figure 2.46.  This will be followed by the association of a CO group.  The association of CO will 

occur at the acyl Rh center as it is more electron rich than the cationic Rh center.  The CO addition 

corresponds to an energy drop of -2.4 kcal/mol. 

Figure 2.46.  Activation barrier for terminal CO insertion. 

This will then be followed by the oxidative addition of H2 to the cationic Rh center.  The oxidative 

addition is exothermic by only 2.2 kcal/mol and the corresponding free energy barrier is 8.7 kcal/mol.  The 

vibrational frequency studies confirmed the presence of the transition state TS(S:T) by producing a single 

imaginary frequency (see Appendix 2).  Finally, the aldehyde will reductively eliminate regenerating the 

catalyst complex.  The DFT calculations show that the reductive elimination occurs as the acyl group and 

the hydride groups are in close proximity (3.5 Å) and cisoidal to each other.  Interestingly, this step is 

predicted to be endothermic by 16.3 kcal/mol with an activation barrier of 21.6 kcal/mol.  The transition 

state, TS(T:W) contains only one imaginary frequency (see Appendix 2).  The dirhodium complex will 
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convert from closed mode to open mode regenerating A’ which contains an open site that favors the 

continuation of the catalytic cycle.  According to the activation barriers of different steps of the catalytic 

cycle (Figure 2.47), the reductive elimination is the rate-determining step for this catalytic pathway.  

Figure 2.47.  Activation barriers for hydroformylation in water/acetone (For clarity methyl groups attached 
to P atoms are not shown.). 

2.4 Conclusions 

Hydroformylation in acetone solvent system results in dicationic dihydride dirhodium complexes, 

whereas in 30% water/acetone solvent system monocationic monohydride dirhodium complexes are the 

major species.  A theoretical study on dirhodium catalyzed hydroformylation mechanism was performed 

to determine the active catalyst for both dicationic and monocationic bimetallic species.  Computational 

mechanistic investigations provided more reliable and energetically feasible alternatives to the initially 

proposed mechanisms and fit the experimental data better.  

DFT studies show that dicationic dirhodium complexes result in double bridged complexes, but 

the monocationic dirhodium complexes primarily generate complexes bridged by one CO or one hydride 
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ligand, which are quite different from what Prof. Stanley originally proposed.  According to DFT studies, 

complex 2* is the better choice for the active dicationic catalyst in acetone due to reduced activation 

barriers and better agreement with the available experimental results.  

The presence of two bridging IR bands in the spectra at higher temperatures and the activity 

dependence of these bridging bands suggested 2** as the active catalyst, which is what Prof. Stanley 

believed for many years.  We predict the presence of a facile phosphine-arm dissociation for all likely 

catalyst species 2, 2* and 2** due to the presence of broad resonances in 
31

P and 
1
H NMR at room

temperature and above.  The DFT calculation had one long RhPexternal distance of 2.51 Å for 2 which 

indicates weak Rh-P bonding, consistent with phosphine arm dissociation; hence, this shows up in the IR 

as two separate species (Figure 2.48).   

Figure 2.48.  Phosphine arm-on and arm-off for 2. 

DFT calculations for phosphine arm-on and arm-off for 2 give rise to bridging CO bands with 

different stretching frequencies (1801 cm
-1

 and 1859 cm
-1

) and this leads to two bridging IR bands which

are observed experimentally (1834 cm
-1 

and 1821 cm
-1

) (Figure 2.15) at a temperature of 90C and at a

pressure of 90 psig where higher hydroformylation activity is observed. 

The monocationic dirhodium catalyst acts as an efficient catalyst compared to the dicationic 

system due to improved catalyst stability that maintains more active bimetallic catalyst.  The rate-limiting 

step for the catalytic process in both solvent systems is the aldehyde elimination step. The energy barrier 

for this step can be somewhat reduced by decreasing the electron density at the metal centers, which 

helps explain the lower activation barrier for the reductive elimination step in the dicationic catalyst.  The 

low energy barriers calculated for the bimetallic catalyst suggest that they are more efficient than 
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monometallic catalysts.
19, 33

  The experimental hydroformylation studies using the new somewhat more

electron-deficient 1,2-phenylene-linked chelate ligand (rac-et,ph-P4-Ph) may increase the efficiency and 

stability of the catalyst through the stronger chelate effect and lower donor ability.  
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Chapter 3 - DFT Modeling of Dirhodium Catalyzed Aldehyde-Water Shift Reaction 

3.1 Introduction 

Carboxylic acids have a wide variety of industrial applications. They are used in the production of 

pharmaceuticals, surfactants, detergents, agrochemicals, plasticizers and fragrances.
1,2

  Therefore, the

synthesis of carboxylic acids has become a very important industrial process.  Carboxylic acids can be 

synthesized by a variety of transition metal catalyzed processes.  One such method is the conversion of 

alkenes, carbon monoxide (CO) and water into carboxylic acids which is referred to as hydrocarboxylation 

or carbonylation (Figure 3.1).  

Figure 3.1.  Hydrocarboxylation (or carbonylation) reaction. 

Since the discovery of hydrocarboxylation by Walter Reppe in 1938, this method has been 

extensively used to produce carboxylic acids.
3
  The first catalytic carbonylation was performed by Reppe

using acetylene, CO and water to produce acrylic acid using Ni(CO)4 as the catalyst.
4
  Until recently

acrylic acid was produced using acetylene by BASF in Ludwigshafen employing NiBr2/CuI as the catalyst.  

This process was performed under 100 bar and 220 – 230°C.
4

The proposed mechanism for Ni catalyzed production of acrylic acid is shown below in Figure 3.2.  

This involves the association of acetylene to the Ni catalyst complex followed by hydride insertion and 

carbonyl insertion.  Finally carboxylic acid is produced by the reaction with water, which is not well 

understood mechanistically.   
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Figure 3.2.  Proposed mechanism for Ni catalyzed production of acrylic acid. 

Figure 3.3.  Heck’s proposed mechanism for Ni catalyzed carbonylation of alkenes.
5

More studies on carbonylation of alkenes were performed by Heck and coworkers using Ni(CO)4 

as a catalyst precursor.  Heck’s proposed mechanism for carboxylation of alkenes catalyzed by nickel 

carbonyl complexes is shown above in Figure 3.3.
5
  The Ni(CO)4 complex acts as the catalyst precursor

whereas HNiX(CO)2 acts as the active catalyst in this proposed carboxylation reaction.  The catalyst 

precursor loses a carbonyl ligand and reacts with a halogen acid, HX to form the active catalyst, 
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halonickel dicarbonyl hydride.  The alkene then coordinates to the active catalyst and the migratory 

insertion between the alkene and the hydride forms the alkyl.  Further migratory insertion between the 

alkyl group and a carbonyl ligand results in the formation of an acyl group.  Then the reductive elimination 

between the acyl group and the halide ligand produces an acyl halide which reacts with water to generate 

the carboxylic acid product. 

In addition to carbonylation of alkenes, carboxylic acids can be synthesized from alkenes and 

aldehydes using an oxidant such as permanganate and hydrogen peroxide.
6
  As in the Cannizzaro

reaction disproportionation of an aldehyde also results in the production of carboxylic acids.
7
  Rhodium

catalyzed Monsanto acetic acid process
8
 and Iridium catalyzed Cativa process

9
 are used commercially to

produce acetic acid via alcohol carbonylation. Carboxylic acid synthesis based on alcohol carbonylation is 

limited to methanol, and higher carbon linear aliphatic acids are mostly synthesized via hydroformylation 

as this process has a high selectivity to the linear products and uses less expensive syngas.
10

Recently, the Stanley group discovered a new pathway of producing carboxylic acids using 

aldehydes and water.  The process of producing hydrogen gas and carboxylic acids utilizing aldehyde 

and water is referred to as the aldehyde-water shift (AWS) catalysis (Figure 3.4a) in analogy to water-gas 

shift reaction, which uses carbon monoxide and water to produce carbon dioxide and hydrogen gas 

(Figure. 3.4b).  This method can also be used to produce hydrogen gas industrially for potential use in 

hydrogen fuel cell.  The conversion of aldehydes and water into carboxylic acids and hydrogen gas was 

first reported by Murahashi et al. in 1987 when they used a ruthenium catalyst to study the conversion of 

butanal and water into butyric acid and hydrogen gas, and octanal and water into octanoic acid and 

hydrogen gas.
11

Figure 3.4.  (a). Aldehyde – water shift reaction.   (b).Water - gas shift reaction. 
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The remarkable discovery of AWS catalysis in Stanley group was quite accidental.  While 

exploring the catalytic activity of hydroformylation in water/acetone system a leak in the reaction 

apparatus resulted in H2 loss and aldehydes and carboxylic acids were observed in the GC trace of 1-

hexene run under these conditions (Figure 3.5).  Further studies confirmed the acid production was due 

to the reaction of aldehydes (produced from hydroformylation) with water. 

Figure 3.5.  GC trace of hydroformylated 1-hexene using bimetallic Rh catalyst under H2 depleted 
environment (leaky autoclave) using a water/acetone solvent mixture.  

Despite the potential applications of AWS catalysis, not much work has been performed in this 

area.  Recent studies by Heinekey and Goldberg have been performed on this process using 

monometallic catalyst systems based on Ir, Rh or Ru, but these reactions are slower and less selective 

that that seen with our bimetallic system.
12,13

  This chapter discusses density functional theory (DFT)

studies performed on the AWS process catalyzed by a bimetallic Rh complex, proposed to be [rac-Rh2(μ-

CO)2(CO)2(et,ph-P4)](BF4)2.  Experimental work has mainly been performed on two-stage tandem 

catalysis:  hydroformylation of alkene to produce aldehyde, followed by AWS process using our bimetallic 

Rh catalyst (Figure 3.6).   The hydrogen gas produced during this process could be theoretically re-used 

for hydroformylation, but this is difficult in our batch autoclave experimental setups.  



62 

Figure 3.6.  Hydrocarboxylation as a tandem reaction of hydroformylation and AWS catalysis.  

DFT studies were used to determine the active catalyst, intermediates, and activation barriers in 

order to provide more insight into the AWS mechanism initially proposed by Prof. Stanley (Figure 3.7).   

Figure 3.7.  Proposed AWS mechanism. 
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In the proposed mechanism aldehyde coordinates to an unsaturated 16-electron Rh center (4*).  

Then nucleophilic attack by water leads to a loss of a proton and activation of the aldehyde generating the 

monocationic complex K.  CO dissociation from K generates a vacant site which facilitates the hydride 

elimination and produces a coordinated carboxylic acid complex.  Reaction of a proton with the Rh-

hydride produces hydrogen gas and releases carboxylic acid regenerating the dicationic complex.  

Coordination of a carbonyl group returns the cycle to the starting complex 4*.  In addition to analyzing the 

proposed mechanism a more detailed mechanism from the DFT calculations is proposed. 

3.2 Computational Method 

All computational studies were performed using Gaussian 09 C.01 64-bit package.
14

 As

carboxylic acid is produced via a two-stage tandem catalysis (discussed above) the catalyst precursor 

used is Rh2(nbd)2(racet,phP4)](BF4)2 (nbd = norbornadiene, racet,phP4 = 

Et2PCH2CH2P(Ph)CH2P(Ph)CH2CH2PEt2).  The ethyl and phenyl groups were replaced by methyl groups 

during the calculations to minimize computational time.  All geometries were optimized using an all 

electron basis sets where Rh was optimized with 3-21G, C, H, O and P atoms using 6-311G**, and a 

hybrid B3LYP functional was utilized.
15

  The calculations were performed in vacuum, both in the presence

and absence of explicit water molecules.  A better explanation for AWS catalysis is achieved with the 

presence of explicit water molecules.  Ground state geometries and transition state geometries were 

determined using vibrational frequency analyses.  Transition state geometries contain a single imaginary 

frequency whereas the optimized ground state geometries did not produce any negative frequencies.  

As the AWS is not observed under normal hydroformylation conditions (1:1 H2/CO), therefore the 

active catalyst should not contain any hydride ligands.  The key catalyst species proposed for AWS 

catalysis is shown below in Figure 3.8.   

Figure 3.8.  The [Rh2(et,ph-P4)]
2+

 dinuclear core proposed for aldehyde-water shift catalysis.
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The tetracarbonyl complex with four carbonyl ligands and [Rh2(et,ph-P4)]
2+

 core structure

generated in the hydrofomylation during the reductive elimination of the aldehyde should be the starting 

complex in this catalytic process.  As the tetracarbonyl complex exits as open-mode and closed-mode 

structures, the most reliable structure should be determined.  DFT studies were performed on the AWS 

mechanism to identify the most reliable active catalyst and consequently a plausible mechanism.  DFT 

energies suggest that AWS catalysis is thermodynamically feasible:  for propanal ΔG (298.15 K) is ‒6.96 

kcal/mol.  This is in good agreement with what Prof. Stanley has calculated from thermodynamic data 

using ethylene as the alkene substrate:  Grxn = ‒6.8 kcals/mol.  We believe that DFT calculations 

provided great insight into understanding the catalyst species and mechanism for our bimetallic 

hydroformylation systems – dicationic and monocationic.  AWS catalysis should also be amenable to DFT 

computations.   

3.3 Results 

3.3.1 Determination of the Active Catalyst Species 

DFT studies were performed on the open-mode (4) and closed-mode (4*) tetracabonyl complexes 

to determine the active catalyst.  As shown below in Figure 3.9, complex 4 has a square planar geometry 

at the Rh centers with a Rh-Rh separation of 5.7 Å.   4* is the closed-mode isomer with the rhodium 

centers separated by 3.1 Å, which correlates with an edge-sharing bioctahedra with two d
8
 metal centers

and no covalent Rh-Rh bonding.  

Figure 3.9.  (a). Complex 4 (open-mode).   (b). Complex 4* (closed-mode). 
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The lack of Rh-Rh covalent bonding in 4* is a consequence of the filled bonding and anti-bonding 

Rh-Rh bonding orbitals.  The bridging ligands help keep the metal centers in close proximity.  The closer 

proximity of Rh centers in 4* should facilitate the bimetallic cooperativity in AWS catalysis suggesting that 

this might be the active catalyst.  DFT calculations further demonstrate that complex 4 is 4.1 kcal/mol 

higher in energy than 4*.  These results imply that closed-mode 4* is the more likely species compared to 

open-mode 4.  

In order to further probe the nature of the active catalyst, aldehyde coordination to Rh center was 

explored.  Both 4 and 4* contain low lying vacant orbitals to coordinate the aldehyde – the Rh 4pz orbital.  

The coordination of acetaldehyde, propanal, and hexanal to 4 and 4* were studied.  Binding of a ligand to 

metal occurs as a result of the interaction between a filled ligand orbital with an empty metal orbital.  

These can be examined by analyzing the energy and the composition of the lowest unoccupied molecular 

orbital (LUMO) of metal complexes.  DFT energy calculations demonstrate that the LUMO of 4 is 0.75 eV 

higher in energy than 4*, and this indicates that the LUMO in 4* is a lower energy and better acceptor 

orbital to interact with a filled ligand lone pair (Figure 3.10). 

Figure 3.10.  Molecular orbitals of LUMO of (a). 4* (b). 4. 

In addition to the energy difference, the molecular orbital analysis of 4 and 4* also supports that 

4* is a more suitable choice for the active catalyst than 4.  The LUMO of 4* is comprised of an empty Rh 

pz-orbital (xy-plane is defined by terminal CO and two outer phosphines) and is strongly bonded to 

terminal and bridging CO *-orbitals.  This results in a strong interaction between the two Rh centers and 

four CO groups as opposed to the LUMO of 4 as shown in Figure 3.10.  Due to the cationic charges and 
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CO * system the Rh centers in 4* become more electron deficient producing an excellent LUMO 

acceptor orbital which is more prone to bind activating substrates than LUMO of 4. 

These results suggest that close-mode 4* is a far better choice for the aldehyde-water shift 

catalysis than the open-mode 4.  This is supported by the experimental results.  When 4 is reacted with 

alkene, water and CO under 90 psig pressure and 90°C temperature hardly any hydroformylation or AWS 

catalysis was observed.  This suggests that a significant amount of water-gas shift (           

    is not occurring under these conditions; if H2 is produced this would facilitate hydroformylation and 

when H2 is deficient this should help AWS catalysis.  

The experimental results clearly show that H2 is required to generate close-mode bridged 

carbonyl complexes as bridging CO bands in the IR were only observed in the presence of H2.  When the 

open-mode tetracarbonyl complex 4 is placed under CO it will convert to an open-mode pentacarbonyl 

complex 5 that does not catalyze the AWS process.  The experimental results suggest that AWS catalysis 

initiates when the reaction mixture is initially treated with some CO and H2.  Then in the presence of a H2 

deficient environment AWS catalysis will take place, so a non-hydride complex acts as the active catalyst 

during this process, but not one of the open-mode carbonyl complexes.  The species that agrees best 

with these observations is the closed-mode bridged carbonyl complex 4*. 

The other key factor to consider in AWS catalysis is the concentration of alkene in the reaction 

mixture.  As alkenes are better ligands relative to aldehydes they can bind to the metal center inhibiting 

the catalytic process; hence, low concentrations of alkenes and H2 are required for aldehyde-water shift 

catalysis when attempting to do tandem hydroformylation and aldehyde-water shift catalysis.  

3.3.2 Catalysis in Vacuum:  DFT Calculations 

3.3.2.1 Aldehyde Coordination to the Catalyst 

The first step of the AWS catalytic process will be the binding of the aldehyde to the metal center.  This 

was studied using acetaldehyde, propanal, and hexanal with both 4 and 4*.  DFT calculations showed 

that the open-mode, 4 resulted in a relatively longer distances between Rh and carbonyl O atom than the 
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closed-mode, 4* (see Table 3.1).  This further suggests that the closed-mode complex is more likely to 

react with the aldehyde than the open-mode complex. 

Table 3.1.  Bond distances (Å) between Rh and aldehyde O. 

According to DFT studies, when larger aldehyde substrates are coordinated to the metal center 

the Rhaldehyde O distances decrease.  The larger aldehydes are more electron rich than the smaller 

aldehydes, and this will result in a better overlap between the metal center and the aldehyde resulting in a 

smaller distance.  The Stanley group has converted acetaldehyde to acetic acid via AWS catalysis, so 

that is a viable experimental substrate.  Considering the computational time propanal was selected as the 

model aldehyde substrate for the DFT studies.  Even though it was proposed initially by Prof. Stanley that 

aldehyde coordination occurs via the -system, DFT calculations showed that the binding occurs via the 

lone pair of oxygen.  Coordination of propanal to the metal center is shown below in Figure 3.11.   

Figure 3.11.  Aldehyde coordination mode to the metal center computed via DFT method. 

Complex Acetaldehyde Propanal Hexanal 

Open-mode - 4 4.16785 4.11754 3.24157 

Closed-mode – 4* 3.91386 3.20691 3.07565 
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3.3.2.2 Reaction with Water 

A key step in the proposed AWS catalysis is the reaction of the coordinated aldehyde with water.  

Water, acting as a nucleophile, activates the aldehyde by destabilizing the C=O bond of the aldehyde.  

The reaction of water with propanal coordinated to 4* can result in two intermediates; a protonated diol 

(G, see Figure 3.12 or a deprotonated diol (G’).  DFT calculations does not support the formation of G’ in 

the gas phase as it corresponds to a significantly high energy difference, whereas formation of G is only 

uphill by +6.81 kcal/mol.  The activation barrier for this step in absence of a solvent medium is difficult to 

calculate.  

Figure 3.12.  Protonated diol, G and deprotonated diol, G’. 

3.3.2.3 Subsequent Catalytic Steps 

A CO group dissociates from G forming H corresponding to a small energy increase of 2.4 

kcal/mol.  This results in the rotation of the equatorially coordinated protonated diol into an axial position, 

which in turn, lowers the stability of the protonated diol facilitating its conversion into a carboxylic acid.  

Then -hydride elimination followed by tandem abstraction of proton in the diol results in the production of 

H2 and deprotonated carboxylic acid: this step is favored by ‒0.7 kcal/mol.  Finally, the carboxylic acid 

eliminates from the cycle regenerating 4* and this is favored by ‒12.04 kcal/mol.  The computed catalytic 

cycle is shown below in Figure 3.13.   

The thermodynamic energy values obtained from DFT calculations indicate that except for the 

formation of the protonated diol (8.7 kcal/mol) and CO dissociation (2.4 kcal/mol) all the other steps in the 

catalytic cycle:  reaction with propanal (‒3.4 kcal/mol), reaction with water (‒1.9 kcal/mol), -hydride 
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elimination, production of H2, and deprotonated acid (‒0.7  kcal/mol), and aldehyde elimination and 

regeneration of 4* (‒12.04 kcal/mol) are exoergic.  This results in a total free energy value of -6.96 

kcal/mol. 

Figure 3.13.  DFT computed mechanism for AWS catalysis. 

3.3.3 Catalysis with Explicit Waters 

3.3.3.1 Aldehyde Coordination 

DFT studies were performed using four explicit water molecules to mimic the experimental 

conditions instead of using an implicit solvent model.  Three water molecules were placed closer to the 

aldehyde and one water molecule was placed closer to the opposite Rh center which is not coordinated to 

the aldehyde.  As water molecules are used explicitly they are treated as individual molecules instead of a 
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continuum model, so interactions between solvent and solute are modeled.  If an implicit solvent model is 

used the solvent will be treated as a polarizable continuum, and this serves as a reaction field that 

interacts with the solute.  The use of an implicit solvent model is computationally less time consuming, but 

some interactions such as hydrogen bonding with solute are difficult to model. 

In the presence of explicit water molecules the separation between the metal center of 4* and 

carbonyl O atom of acetaldehyde and propanal were decreased by 0.97 Å and 0.46 Å respectively.  

These DFT results suggest that the explicit solvent model stabilizes the reaction more so than in vacuum 

without waters.  Coordination of propanal to the metal center in presence of water molecules corresponds 

to an energy drop of ‒7.7 kcal/mol, indicating a more favorable coordination step to start the catalysis.  

3.3.3.2 Reaction with Water 

The reaction of water with propanal coordinated to 4* can result in two intermediates; a 

protonated diol (K) or a deprotonated diol (K’).  The OH group of a water molecule in the solvent binds 

with the carbonyl C atom and the proton binds with the carbonyl O atom of propanal to form the 

protonated diol.  Formation of K corresponds to a very small energy difference of -0.03 kcal/mol (Figure 

3.14), but the activation barrier for this step is quite large at 41.7 kcal/mol, and this may be due to the use 

of explicit solvent molecules (Figure 3.15).  DFT calculations suggest that the reaction with water is 

favorable in the presence of explicit solvent molecules as it corresponds to a downhill energy whereas in 

the absence of solvent molecules this step is uphill by +6.8 kcal/mol.  This may be due to the fact that 

hydrogen bonding of the solvent water to the protonated diol lowers the energy change.   

Figure 3.14.  Reaction with water to produce a protonated diol. 
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Figure 3.15.  Activation barrier for the formation of the protonated diol. 

The transition state in the presence of solvent molecules, TS(I:K) was determined via vibrational 

analysis and a single imaginary frequency (see Appendix 3) corresponding to the correct vibrational mode 

was obtained.  The C=O bond of propanal was elongated by 0.14 Å in the TS(I:K) relative to species I.  

The distance between the carbonyl C atom and O of water decreased by 1.78 Å in the TS(I:K) relative to 

I, resulting in an O-H bond length of 0.96 Å in the protonated diol complex, K.  These structural 

differences further determines the correct transition state.  

DFT calculations indicate deprotonation is not feasible as transfer of the proton to water molecule 

is not observed.  The distance between the proton and the closest water molecule is 1.86 Å which is 

significantly longer than a normal O-H bond, 0.98 Å (Figure 3.16).  This may be due to low basicity of the 

solvent medium and lack of enough explicit water molecules to stabilize the protonated water that forms.  
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As a deprotonated diol is not observed at this step, reactions proceeding from the protonated diol, K will 

be discussed. 

Figure 3.16.  Protonated diol complex, K. 

3.3.3.3 Subsequent Catalytic Steps 

The axial CO group on the saturated Rh center dissociates from K to form L corresponding to an 

energy change of +0.7 kcal/mol.  This moves the protonated diol from its equatorial position to an axial 

position (Figure 3.17) making the coordination less stable, which helps to initiate the -hydride elimination 

to generate the  protonated carboxylic acid (M) resulting in a +4.1 kcal/mol energy change.  Transition 

state calculations yield a 19.4 kcal/mol activation barrier for this step. 

Figure 3.17.  Rotation of protonated diol from equatorial position (K) to axial position (L). 
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In the transition state (TS(L:M)) the hydride moves to the vacant site at the Rh center 

generating a protonated acid, M.  The distance between the proton of the protonated acid and the closest 

solvent water molecule has decreased by 0.05 Å in the transition state favoring the deprotonation of the 

acid.  The transition state was confirmed by frequency analysis which resulted in a single imaginary 

frequency (see Appendix 3) .  Free energy profile for hydride elimination is shown below in Figure 3.18. 

Figure 3.18.  Free energy profile for hydride elimination. 

DFT studies demonstrate that once the protonated acid is moved to axial position it is easily 

deprotonated due to close proximity of explicit water molecules.  The proton is moved towards one of the 

water molecules decreasing the separation between the proton and O of water molecule by 0.81 Å, binds 

to the proton and releases the deprotonated carboxylic acid (Figure 3.19). 
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Figure 3.19.  Deprotonation of carboxylic acid. 

-hydride elimination and deprotonation of the carboxylic acid are semi-concerted.  This removes 

the unfavorable energy change for just the -hydride elimination and formation of protonated carboxylic 

acid, which is a very unlikely species in water.  Elimination of H2 gas from the catalytic cycle then takes 

place easily.  Reaction of hydride with a protonated water molecule facilitates the H2 gas formation 

corresponding to a downhill energy change of ‒1.8 kcal/mol.  DFT studies suggest elimination of H2 is a 

barrier-less reaction, but it proceeds via an intermediate.  The optimized intermediate for H2 elimination is 

shown in Figure 3.20.  The proton in the water molecule moves towards the hydride in the intermediate 

facilitating the elimination.  This step is followed by the addition of CO which regenerates the closed-

mode 4*.   

Figure 3.20.  Intermediate of H2 elimination (For clarity methyl groups attached to phosphorous atoms are 
removed). 
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The thermodynamics from the DFT calculations indicate that the AWS catalysis is favorable with 

the bimetallic Rh catalyst, [rac-Rh2(μ-CO)2(CO)2(et,ph-P4)](BF4)2, (4*).  The coordination of propanal 

(‒7.7 kcal/mol), reaction with water to produce protonated diol (‒0.03 kcal/mol), generation of hydrogen 

gas (‒1.8 kcal/mol), coordination of CO (‒9.5 kcal/mol) and elimination of the acid and hydrogen gas to 

regenerate the catalyst 4* (‒5.4 kcal/mol) are all exoergic.  The steps which were computed as endoergic 

were the CO dissociation (0.7 kcal/mol), -hydride elimination to generate the protonated acid (4.1 

kcal/mol) and deprotonation of the protonated acid (0.007 kcal/mol), but these steps correspond to small 

energy values.  The DFT computed catalytic cycle is shown below in Figure 3.21. 

Figure 3.21.  DFT computed mechanism for AWS in the presence of explicit water molecules. 
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The calculated total free energy values for the catalytic cycle is -19.6 kcal/mol which 

demonstrates that AWS catalysis in the solvent medium is very favorable in the presence of the bimetallic 

Rh catalyst as the energy barrier is reduced by 12.7 kcal/mol than in the gas phase. Overall, both the gas 

phase and solvent medium data behave similarly, but using four explicit water molecules in the 

calculation results in lower energy values for the reaction steps.  This is not unexpected due to the 

importance of hydrogen-bonding to the various intermediates and the ultimate deprotonation step that 

almost assuredly needs solvent water.  The transition state calculations suggest that the nucleophilic 

attack by water is the rate-determining step as the largest energy barrier was computed for this step.   

3.4 Conclusions 

DFT calculations were used to study the proposed bimetallic [rac-Rh2(μCO)2(CO)2(et,ph-P4)]
2+

catalyst for AWS process, and computations provide a more detailed mechanism with insights at several 

key steps.  The computations indicate that closed-mode 4* is a better choice for the active catalyst than 

the open-mode 4.  The originally proposed mechanism for AWS catalysis suggests the formation of a 

deprotonated diol during the reaction with water, but the DFT computed mechanisms point to the 

formation of a protonated diol at the key reaction of coordinated aldehyde with water, with deprotonation 

observed later in the cycle.  hydride elimination and deprotonation of acid are semi-concerted, and due 

to the presence of explicit solvent molecules the protonated carboxylic acid initially produced is easily 

deprotonated by the solvent water.  DFT studies demonstrate nucleophilic attack by water as the rate-

limiting step. 

According to DFT calculations AWS catalysis shows similar mechanisms in both gas phase and 

with explicit waters to simulate the solvent.  The use of explicit water molecules creates an environment 

more similar to the experimental reaction conditions, and the catalytic process appears to be more 

feasible with the explicit water molecules with lower energies calculated.  Further studies can be 

performed by increasing the number of water molecules and placing them at different positions, but this 

will become computationally time consuming unlike using an implicit solvent model. 
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Chapter 4 - DFT Studies on Bimetallic Cobalt Catalyzed Hydroformylation and Aldehyde-Water 
Shift Reactions 

4.1 Introduction 

The discovery of cobalt hydroformylation catalyst complexes by Otto Roelen in 1938 laid the 

ground work for the initiation of one of the most useful and important chemical industries based on 

homogeneous organometallic catalysts.
1
  Cobalt and rhodium complexes are the most widely used

commercialized catalysts for hydroformylation.  Despite the higher chemo- and regioselectivity of rhodium 

catalysts, the use of cobalt catalysts for hydroformylation and aldehyde-water shift (AWS) catalysis is of 

considerable interest as they are less expensive, less toxic, and often thermally more stable.
2-5

  Hence,

development of modified cobalt catalysts with higher activity, good chemo- and regioselectivity is of great 

importance and has gained much interest industrially.  

The unmodified cobalt catalyst, HCo(CO)4 was the first cobalt catalyst discovered by Otto Roelen 

about 75 years ago that performed hydroformylation and was a major breakthrough of homogeneous 

catalysis.  HCo(CO)4-catalyzed hydroformylation is performed at temperatures ranging from 200-250 °C 

and H2/CO pressures of 200-300 bar.
2,6

  These conditions produce 45-55% linear aldehydes and a

significant amount of aldol condensation of aldehydes.   

Later, Shell Chemical discovered that modifying HCo(CO)4 with phosphine ligands enhanced the 

catalytic activity and increased catalyst stability at lower CO pressures.
8
  The incorporation of phosphine

ligands increases the electron density at the metal center which consequently produces a stronger metal-

CO bond leading to less fragmentation, lower catalyst activity, and enhanced hydrogenation.  Phosphine-

modified cobalt catalyzed hydroformylation is performed at temperatures of 160-200 °C and lower syn 

gas pressures of 100 bar.  These conditions produce about 90% linear aldehydes or alcohols.
2,5-7

The mechanism for hydroformylation catalyzed by HCo(CO)4 was proposed by Heck and Breslow 

in 1960s (Figure 4.1).
9
  The 18 e- saturated HCo(CO)4 complex dissociates a carbonyl group to form a

vacant site where an alkene can coordinate.  Migratory insertion between the alkene and the hydride 

produces an alkyl group and further migratory insertion between the alkyl group and carbonyl group forms 

an acyl group.  Oxidative addition of H2 occurs, followed by reductive elimination of the aldehyde to 



80 

regenerate the catalyst.  The same steps occur in the phosphine-modified cobalt catalyst system.  By 

varying the reaction conditions and the properties of the phosphine ligand, better yields in 

hydroformylation can be obtained by minimizing side reactions and maximizing the desired product. 

Figure 4.1.  Mechanism of HCo(CO)4 hydroformylation proposed by Heck and Breslow.
9

Even though a bimetallic pathway was proposed by Heck and Breslow this was not favored 

(discussed in Chapter 2).  This proposed bimetallic mechanism involves an intermolecular hydride 

transfer between HCo(CO)4 and Co(acyl)(CO)4 to eliminate the  aldehyde product.  Many proposals on 

polymetallic cooperativity in hydroformylation were proposed based on inter- or intramolecular hydride 

transfers to enhance elimination of the aldehyde product.  Stoichiometric mechanistic studies performed 

by Bergman, Halpern, Norton and Marko have demonstrated that intermolecular hydride transfers can 

occur between metal-hydride and metal-acyl species to eliminate aldehyde products.
10-13

Few studies on hydroformylation utilizing polymetallic catalysts are reported in literature.  Pittman 

and coworkers have reported that 1-penetene could be used for hydroformylation by the intact cobalt 
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clusters 1 and 2 (Figure 4.2).
14

  These clusters resulted in linear to branched aldehyde ratios between 1

and 5:1 (~ 2.5 being typical) at temperatures of 90-150° C and pressures of 400-1100 psig.  It was 

observed that the addition of phosphine ligands avoided fragmentation of the cobalt clusters into 

HCo(CO)4.  An improved stability of the clusters was observed upon the addition of 2-4 equivalents of 

PPh3, but this did not result in an increase in hydrogenation activity to produce alcohol products unlike 

monometallic HCo(CO)3(PR3) catalysts.
15

  High pressure IR studies of phosphine substituted analogs of 2

have shown that there was no observable cluster fragmentation under catalytic conditions (150° C, 600 

psi), even over a two day period.
16

Figure 4.2.  Cobalt clusters used in hydroformylation. 

The use of bimetallic systems is of considerable interest due to their enhanced activity as they 

can form many metal-ligand bonds which may activate the substituents, metal-metal bonds that can 

stabilize the complex and/or the active site, and they can also be involved in multielectron transfer 

reactions that can be enhanced due to the presence of multiple metal centers.
17

Use of bimetallic cobalt complexes for hydroformylation and aldehyde-water shift catalysis (AWS) 

will be more economical and preferable from an industrial viewpoint if the activity and selectivity can be 

increased over existing monometallic cobalt catalysts.  Thus, exploring the chemistry behind these cobalt 

complexes is of great importance.  Studies on the suitability of bimetallic cobalt complexes for these 

catalytic processes are not found in literature, nor have they been carefully studied in the Stanley group.  

Prof. Stanley reports that the group did study a dicobalt hydroformylation catalysts based on the et,ph-P4 
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ligand, but details on this are not in any of the student dissertations.  Prof. Stanley’s recollection is that 

the dicobalt system was not anywhere as fast as the dirhodium catalyst, but did show activity under very 

mild reaction conditions.  The production of the new, and stronger coordinating et,ph-P4-Ph ligand system 

has rekindled interest in using the dicobalt system for hydroformylation.  Ciera Gasery in our group is 

currently working on preparing these dicobalt complexes for experimental studies.  This chapter 

discusses the DFT studies performed to analyze the suitability of a bimetallic cobalt complex, 

[Co2(CO)5(racmeP4)]
2

proposed by Prof. Stanley for hydroformylation and AWS catalysis.

4.2 Computational Method 

The DFT calculations were performed using Gaussian 09 C.01 64-bit package.
18

  All calculations

were performed in vacuum at 298.15 K.  A mixed basis set as well as a single basis set for all the atoms 

were used to optimize the cobalt complexes in order to find the most suitable basis set for the 

computational analysis.  The bimetallic tetracationic cobalt complex, [Co2(CO)2(CO)2(et,ph-P4]
4+

, was

used to determine the most suitable basis set. 

Co centers were optimized with a smaller 321G basis set, whereas C, H, O and P atoms were 

optimized with 6311G** basis set, similar to what we used for the dirhodium calculations. The CoCo 

distance in the tetracationic complex was 2.4 Å.  In contrast to the mixed basis set, when all the atoms 

were optimized with 6311G** basis set, Co-Co distance was elongated by 0.4 Å (Figure 4.3).   

Figure 4.3.  [Co2(CO)2(CO)2(et,ph-P4]
4+

 optimized using  (a). 6311G** basis set on all atoms.

(b). 321G on Co and 6311G** on C,H, O and P atoms. 
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The large positive charge on the cobalt tetracationic complex makes it difficult for the cobalt 

centers to be in close proximity and to overlap.  These results suggest that the 6311G** basis set is 

more suitable than the mixed basis set for the computational investigations. 

The cobalt complexes were optimized using 6-311G** basis set and B3LYP hybrid functional.
19

Frequency calculations were performed to determine the ground states and transition states.  The 

optimized ground states contained zero imaginary frequencies, whereas the transition states had a single 

imaginary frequency.  

4.3 Results 

4.3.1 Dicobalt Catalyzed Hydroformylation 

DFT and experimental studies show that unlike Rh hydroformylation catalysis, the formation of 

saturated complexes is favored in Co hydroformylation chemistry (Figure 4.4).  As cobalt metals favor 

higher coordination numbers unlike rhodium metals, carbonyl groups are easily bonded to the dicobalt 

complex to generate trigonal bipyramidal geometries at both cobalt centers.  Coordination of a sixth 

carbonyl group to dirhodium pentacarbonyl complex is uphill by 5.6 kcal/mol with a very weakly 

coordinated carbonyl with a Rh-CO distance of 2.305 Å.  The formation of a hexacarbonyl complex for the 

dicobalt complex (Co_6), on the other hand, is downhill by 6.4 kcal/mol with a Co-CO bond distance of 

1.782 Å (for a detailed discussion on the dirhodium hexacarbonyl complex (Rh_6) see section 2.3.1).  

Figure 4.4.  Bimetallic Co hexacarbonyl complex (Co_6) and bimetallic Rh hexacarbonyl (Rh_6) complex. 



84 

The hydroformylation catalytic cycle begins with the oxidative addition of hydrogen gas to 

generate a hydride complex.  As both cobalt centers in the Co_6 are saturated dissociation of a carbonyl 

group will take place prior to the oxidative addition.  The CO dissociation will generate a pentacarbonyl 

complex (Co_5) and this reaction is favored by 6.4 kcal/mol.  Co_5 complex further dissociates a 

carbonyl group to generate an open mode tetracarbonyl complex (Co_4) and this corresponds to an 

energy decrease of 6.5 kcal/mol.  This step will be followed by the oxidative addition of H2 generating a 

dihydride open mode complex and corresponds to an energy uphill of +16.4 kcal/mo.  The activation 

barrier for this step is 16.9 kcal/mol (Figure 4.5).   

Figure 4.5.  Activation barrier for oxidative addition of H2(g). 

This open-mode dihydride complex can convert into closed-mode complexes with either two 

terminal hydrides (Co_2**) or two bridging hydrides (Co_2*) or convert into an asymmetric complex with a 

bridging hydride and a terminal hydride (Co_2).  The formation of Co_2** corresponds to an energy 

decrease of 12.5 kcal/mol, whereas the formation of Co_2 and Co_2* correspond to energy decreases 

of 25.7 kcal/mol and 27.1 kcal/mol, respectively.  Figure 4.6 shows the relative energies calculated for 

these three dihydride isomers.  Co_2** has the highest relative energy, just as with the [Rh2H2(m-

CO)2(rac-P4)]
2+

 analog, whereas Co_2* and Co_2 have essentially the same energies within the error of

DFT calculations (about 2.0 kcal/mol).  These thermodynamic energy values suggest either Co_2* or 

Co_2 should act as the active catalyst in the hydroformylation cycle due to their low relative energies.  
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Figure 4.6.  DFT relative energies for the three closed-mode dihydride isomers. 

The CoCo bond distance for the closed-mode bimetallic complexes Co_2, Co_2* and Co_2** 

are 2.663 Å, 2.783 Å and 2.658 Å and respectively, which correspond to typical CoCo single bond 

lengths.  This suggests that CoCo bond formation coupled with the bridging ligands can facilitate the 

bimetallic cooperativity by keeping the metal centers in close proximity.  The CoCo bond distances 

support the assignment of a covalent single bond between the d
7
 Co(+2) centers.  The presence of two

anionic hydrides and the dicationic charge of the complex points to Co(+2) oxidation state formalism.   

The identification of the active catalyst is very important in understanding the mechanism.  

Hydroformylation is initiated by the generation of a 16-electron unsaturated complex from the active 

catalyst, and this is achieved via the dissociation of a carbonyl group which DFT calculates as an 

endothermic reaction.  This is consistent with the much higher tendency of cobalt to prefer higher 

coordination numbers relative to Rh(+1) or Rh(+2).  As shown below in Figure 4.7 the dissociation of a 

terminal CO group trans to bridging hydride in Co_2 corresponds to an energy uphill of +10.4 kcal/mol 

(Co_2A), whereas dissociation of a CO group cis to bridging hydride results in +19.4 kcal/mol (Co_2A’) 

energy change.  Dissociation of a terminal CO group from Co_2* corresponds to an energy change of 

+12.5 kcal/mol  (Co_2*A) and dissociation of a terminal CO group from Co_2** corresponds to an energy 

uphill of +11.7 kcal/mol (Co_2**A),.  Co_2A has a relative energy of 0.0 kcal/mol, and Co_2*A has a 

relative energy of +0.6 kcal/mol, whereas Co_2A’ and Co_2**A have higher relative energies of +9.0 

kcal/mol and +14.5 kcal/mol respectively.  These DFT energies suggest the terminal CO trans to bridging 

hydride of Co_2 and equatorial CO in Co_2* are more labile than the terminal CO cis to bridging hydride 
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in Co_2.  Because CO dissociation in Co_2** has the highest energy, I focused the calculations on 

catalysis using Co_2 and Co_2*. 

Figure 4.7.  CO dissociation from Co_2, Co_2* and Co_2** (For clarity the phosphine chelate ligands are 
removed). 

Alkene coordinates to the vacant site formed from CO dissociation to generate the 18-electron 

complexes, Co_2B and Co_2*B.  Alkene coordination to both complexes looks good as they both 

correspond to downhill energies of ‒10.8 and ‒10.7 kcal/mol respectively (Figure 4.8).  Alkene 

coordinates in the equatorial position with the C=C bond perpendicular to CoCo bond.  Hydride insertion 

then takes place to form the alkyl group (Figure 4.9). 

Figure 4.8.  Alkene coordination in Co_2A and Co_2*A. 
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Figure 4.9.  Hydride insertions in Co_2B and Co_2*B. 

The activation barrier for the bridging hydride insertion in Co_2B is 12.1 kcal/mol.  DFT, however, 

calculates the terminal hydride insertion in Co_2B and bridging hydride insertion in Co_2*B as barrier-

less steps, in marked contrast to the Rh calculations.  These energies indicate that terminal hydride 

insertion in Co_2 and bridging hydride insertion in Co_2* are energetically the same and extremely easy.  

The terminal hydride insertion in Co_2B occurs via an intermediate, Co_2B
#
 to form the alkyl,

Co_2C.  The terminal hydride moves towards the alkene and the bridging CO moves away from the 

alkene facilitating the hydride insertion.  The corresponding intermediate, Co_2B
#
 for the barrier-less

terminal hydride insertion step is shown below in Figure 4.10.   
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Figure 4.10.  Intermediate of terminal hydride insertion in Co_2B
# 
(For clarity –CH3 groups attached to P

atoms are not shown). 

The insertion of bridging hydride to Co_2B results in a double bridging complex with bridging 

carbonyls.  The transition state (TS(Co_2B):(Co_2C’)) has an energy of 12.1 kcals/mol and was 

confirmed via vibrational analysis which gave a single imaginary frequency corresponding to the correct 

vibrational mode (see Appendix 4).  The free energy profile for the bridging hydride alkene insertion in 

Co_2B is shown below in Figure 4.11.  

Figure 4.11.  Activation barrier for bridging hydride insertion in Co_2B (For clarity P chelate ligands are 
removed). 
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The insertion of bridging hydride in Co_2*B generates a complex with a bridging CO and a 

bridging hydride, Co_2*C.  This complex seems to be structurally similar to Co_2C which is formed from 

terminal hydride insertion, but the orientation of the alkyl groups in these two complexes appears to be 

different.  In Co_2C the alkyl group is perpendicular to the CoCo bond whereas in Co_2*C the alkyl 

group is in the plane of CoCo bond.  DFT calculates the bridging hydride insertion step in Co_2*B as a 

barrier-less step that occurs via an intermediate, Co_2*B
#
.  The bridging hydride closer to the alkene

moves towards the alkene and facilitates the insertion process.  The corresponding intermediate is shown 

below in Figure 4.12.  

Figure 4.12.  Intermediate of bridging hydride insertion of Co_2*B. 

DFT calculations suggest that the most feasible pathways are either the terminal hydride insertion 

in Co_2B or the bridging hydride insertion in Co_2*B.  A CO group then adds to the 16-electron cobalt 

center to generate a saturated metal center as the CO insertion from a saturated complex requires less 

energy compared to an unsaturated complex.  In both complex Co_2C and Co_2*C, CO adds in the 

equatorial position.  DFT energies imply that this step is quite favorable as the energy change 

corresponding to CO addition to Co_2C and Co_2*C is ‒16.7 kcal/mol (Co_2D), and a smaller decrease 

of ‒3.1 kcal/mol for Co_2*D.  

Once the saturated complex is formed the migratory insertion between the CO group and alkyl 

takes place to generate an acyl group.  DFT energies show that CO insertion is very favorable as it has a 

very low activation barrier (Figure 4.13).  The activation barrier of terminal CO insertion to Co_2D is 5.9 

kcal/mol, whereas for bridging CO insertion the activation barrier is only 3.9 kcal/mol.  The transition 

states were confirmed by frequency analysis (see Appendix 4).  The activation barriers depict that 
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bridging CO insertion is more favorable than the terminal CO insertion.  In the process of terminal CO 

insertion (Figure 4.13a) the alkyl group moves towards the axial CO in order for the insertion to take place 

whereas in bridging CO insertion the bridging CO group moves towards the equatorially coordinated alkyl 

group and this results in a mono-bridging hydride complex (Figure 4.13b). 

Figure 4.13.  Activation barrier for (a) - terminal CO insertion and (b) - bridging CO insertion in Co_2D 
(For clarity P chelate ligands are removed). 

DFT computations show that the activation barrier for terminal CO insertion in Co_2*D is 6.7 

kcal/mol (‒264.81 cm
-1

) (Figure 4.14) which is greater than the barriers in Co_2D.  The alkyl group moves

towards the terminal CO favoring the CO insertion.   

Figure 4.14.  Activation barrier for terminal CO insertion in Co_2*D (For clarity P chelate ligands are 
removed). 
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Despite the slight difference in activation barriers between the terminal CO insertion in Co_2D 

and Co_2*D they both produce similar compounds; hence, both Co_2E’ and Co_2*E show similar bond 

lengths, angles and atomic charges (Figure 4.15).  According to DFT calculated activation barriers steps 

proceeding from bridging CO insertion in Co_2D appear to be the most favorable pathway. 

Figure 4.15.  Products from terminal CO insertion in Co_2D and Co_2*D. 

DFT studies show that Co_2E which is produced via the insertion of bridging CO in Co_2D 

results in bonding between Co centers via the H (Figure 4.16).  The H is asymmetrically bonded to 

Co centers having 1.8 Å and 1.5 Å distances between the Cocentersand H.  The cobalt with the 

anionic acyl has the shorter bond to the bridging hydride.  This raises a question on oxidation state 

assignments; is there covalent bonding between the two metal centers resulting from a +2 oxidation state 

on each metal center, or  do +3 and +1 oxidation state assignments make more sense with a dative-type 

Co-Co bond?  The Co center that has the longer distance to the H has a square planar geometry 

whereas the other Co center that has a slightly distorted square pyramidal geometry (Figure 4.16).   

The Mulliken charge analysis suggests the Co center with the acyl group and shorter CoH 

bond in Co_2E is more positive than the Co center with two carbonyl ligands.  Molecular orbital analysis 

studies show that back bonding between the Co center with the longer CoH bond and the carbonyl 

groups attached to it is 1.1 eV higher in energy than the back bonding between the Co center with shorter 
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CoH bond and the CO group attached to it.  These DFT analysis studies suggest that Co_2E is a 

complex with Co centers in mixed oxidation states (+3/+1) and with a linear asymmetric CoHCo bond.  

According to DFT calculations the angle between CoHCo is 177.695°, which is very close to a linear 

angle.  

Figure 4.16.  Linear CoHCo in Co_2E. 

A very few late transition metal complexes with linear MH-M complexes are found in literature.  

X-ray crystallographic data studies by Dahl and coworkers have demonstrated [Cr2(H)(CO)10]
-  

complex

to have a linear CrHCr angle, but neutron diffraction studies have revealed a bent angle of 158.9° in 

CrHCr. 
20,21,22,23

  Later, DFT studies done by Dr. Wilson suggested that a bent angle is favored between

NiHNi in Ni2(H)(P2)2X2 (P2 = R2PCH2PR2, R = iPr, Cy; X = Cl, Br), but the steric effects and crystal 

packing point to a linear angle.
24

  This is the only transition metal complex found in literature with mixed

oxidation states which favored a linear MHM angle. 
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Due to +3/+1 oxidation states at the Co centers in Co_2E, CO addition takes place at the 

unsaturated Co center forming Co_2F, and this converts the linear CoHCo into a bent CoHCo with 

an angle of 151.8° (Figure 4.17). 

Figure 4.17.  Bent CoHCo in Co_2*F. 

The CO addition will be followed by reductive elimination between the acyl group and hydride to 

generate the aldehyde product.  This step appears to be favorable as the carbonyl C atom and bridging 

hydride are cisoidal and separated by only 2.44 Å, and this reaction step has a considerable energy drop 

of ‒25.5 kcal/mol.  Despite these generally favorable structures and energetics, the activation barrier of 

42.6 kcal/mol for the reductive elimination of aldehyde obtained from DFT computations is quite large 

(Figure 4.18).  The transition state was confirmed via frequency analysis (see Appendix 4).  The bridging 

hydride moves towards the carbonyl O atom to facilitate the reductive elimination.  The aldehyde product 

eliminates from the catalytic cycle regenerating the starting complex Co_4*.   
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Figure 4.18.  Activation barrier for reductive elimination of aldehyde. 

DFT thermodynamics suggest reductive elimination of aldehyde as the rate-limiting step.  

According to DFT studies Co_2 appear to be more suitable as an active catalyst than Co_2* and Co_2**, 

but our group has not yet started experimental studies on this catalyst system.  DFT computed 

hydroformylation mechanism catalyzed by [Co2(H)(CO)(H)(CO)3(rac-et,ph-P4)]
2+

, Co_2
 
 is shown

below in Figure 4.19. 
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Figure 4.19.  DFT computed hydroformylation mechanism catalyzed by [rac-

Co2(H)(CO)(H)(CO)3(et,ph-P4)]
2+

, Co_2 (For clarity P chelate ligands are removed).
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4.3.2 Dicobalt Catalyzed Aldehyde-Water Shift Catalysis 

In analogy to dirhodium AWS catalysis, closed-mode dicobalt tetracarbonyl complex (Co_4*) with 

two bridging carbonyl ligands was used as the active catalyst for the AWS catalysis, and this contains two 

semi-bridging carbonyls that are more closely bonded to one of the cobalt centers, which makes the two 

cobalt atoms somewhat different electronically.  This is supported by the different charges on the Co 

centers (+0.773 and +0.852), the Co-CO angles, and the MOs.  The angles between the Co with a low 

positive charge and CO are 123.2° and 120.5°, and the angles between the Co with a high positive 

charge and CO are 152.5° and 156.4°, which are in agreement with the unsymmetrical bridging CO 

ligands (Figure 4.20).   

Figure 4.20.  Structural comparison between closed mode Rh and Co tetracarbonyl complexes. 

The highest occupied molecular orbital (HOMO) shows that electrons are donated from metal 

(Co/Rh) d orbital to unoccupied * orbitals of the semi-bridging CO ligands (Figure 4.21).  These support 

the presence of a semi-bridging CO ligand.  In dirhodium closed mode tetracarbonyl complex (4*) the Rh 

centers have approximately similar charges (+0.1 and +0.109), and unsymmetrically bridging CO ligands.  

The bridging CO ligands are symmetrically distributed to make both Rh centers approximately equal.   
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Figure 4.21.  HOMO of Dicobalt closed-mode tetracarbonyl complex Co_4* and Dirhodium closed-mode 
tetracarbonyl complex Rh_4*. 

The first step towards analyzing the AWS mechanism is the aldehyde coordination to the metal 

center.  The HOMO of water molecule interacts with the metal LUMO.  According to DFT studies the 

LUMO of closed mode Co_4* is 0.85 eV lower in energy than the LUMO of open mode tetracarbonyl Co 

complex, Co_4.  This suggests that water coordinates more easily to Co_4* than to Co_4.  The LUMO of 

Co_4* is shown below in Figure 4.22.  Strong σ interactions are seen in Co_4* due to bridging CO 

ligands.  Due to these interactions the two positively charged Co centers are coupled to each other and 

this result in an electron deficiency at the Co centers making the LUMO orbital a better acceptor orbital 

than the LUMO of open-mode Co_4 complex. 

Figure 4.22.  LUMO of dicobalt closed-mode Co_4* and open-mode Co_4. 
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DFT studies on cobalt catalyzed AWS was performed using four water molecules explicitly.  

Three of them were place closer to the aldehyde and one water molecule was placed closer to the 

opposite Co center which did not have the aldehyde coordinated. 

DFT studies show that the aldehyde coordination occurs via the lone pair of the oxygen atom 

(Figure 4.23), just as with the rhodium calculation.  The separation between the carbonyl O atoms of 

acetaldehyde and propanal to Co are 2.12 Å and 2.14 Å, respectively.  These bond distances are shorter 

than those observed in the bimetallic Rh calculation (section 3.3.2.1).  This is partially due to the size 

difference between Co and Rh centers, where the smaller Co atoms result in shorter bond distances.  

Experimental studies on Co complexes show a bond distance of about 2.2 Å between the Co center and 

carbonyl O atoms.
25-29

  The smaller bond distances in Co complexes obtained from DFT studies show the

presence of a stronger interaction between Co and carbonyl O atom than the interaction present between 

Rh and carbonyl O complexes. 

Figure 4.23.  Coordination of propanal to dicobalt closed-mode 4*. 

Despite the approximately similar bond distances of the two different aldehyde coordinated Co 

complexes, the coordination of propanal to the Co center appears to be energetically better (14.7 

kcal/mol) than coordination of acetaldehyde (+39.3 kcal/mol).  Hence, we will use propanal as the model 

aldehyde along with a limited number of water molecules as an explicit solvent model for our AWS 

mechanistic computational study.  
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Destabilization of the carbonyl C=O bond of the aldehyde is an important aspect in AWS 

catalysis.  This is achieved via the use of a water molecule that acts as a nucleophile.  One of the water 

molecules that is in close proximity (2.96 Å) to the aldehyde carbonyl C atom attacks forming the 

protonated diol complex (Co_K), which corresponds to an uphill energy change of +6.8 kcal/mol.  The 

activation barrier for the nucleophilic water attack is 33.9 kcal/mol and the transition state 

(TS(Co_I:Co_K)) was confirmed via frequency analysis.  A single imaginary frequency corresponding to 

the correct vibrational mode was obtained (see Appendix 4).  The Free energy profile for the water 

coordination step is shown below in Figure 4.24. 

Figure 4.24.  Activation barrier for water coordination. (For clarity P chelate ligands are removed). 

The saturated Co center then dissociates a carbonyl group facilitating the hydride elimination 

(Figure 4.25) and this corresponds to an energy uphill of +1.6 kcal/mol.  The protonated diol group moves 

from the equatorial position to axial position prior to hydride elimination.   
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Figure 4.25.  Dissociation of CO to facilitate -hydride elimination. 

The hydride is eliminated to the vacant orbital on the Co center and produces a protonated 

carboxylic acid (Co_M) corresponding to an uphill energy change of +5.9 kcal/mol.  DFT studies calculate 

an activation barrier of 25.0 kcal/mol for hydride elimination (Figure 4.26). 

Figure 4.26.  Transition state for hydride elimination. 
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 The deprotonation of carboxylic acid and production of hydrogen gas is concerted and it is 

favorable corresponding to a downhill energy of 5.42 kcal/mol.  In dirhodium catalyzed AWS catalysis 

the deprotonation occurs prior to generation of hydrogen gas (section 3.3.3.3).  For the dicobalt AWS 

catalysis the deprotonation and production of hydrogen gas occur simultaneously.  Transition state 

calculations depict that this is a barrier-less reaction, similar to that seen in dirhodium AWS catalysis.  The 

H on the OH group for the protonated carboxylic acid shows a partial positive charge of +0.314; hence, 

the hydride coordinated to Co reacts with this proton neutralizing the positive charge on the carboxylic 

acid (Co_M*) to generate H2 (Figure 4.27). 

Figure 4.27.  Deprotonation and H2(g) production. 

The DFT computed AWS mechanism catalyzed by dicobalt complexes is shown below in Figure 

4.28, and is very similar to that calculated for the dirhodium complex.  DFT thermodynamic studies 

suggest that AWS catalyzed by bimetallic [rac-Co2(μ-CO)2(CO)2(et,ph-P4)]
2+

, (Co_4*) is favorable.  The

coordination of propanal to the catalytic complex (14.7 kcal/mol), deprotonation of protonated acid and 

elimination of H2 gas (5.4 kcal/mol) as well as CO addition to the acid and the H2 gas eliminated complex 

(12.1 kcal/mol) were all calculated to be exoergic.  Reaction with water to generate the protonated diol 

(6.8 kcal/mol), CO dissociation from protonated diol complex (1.6 kcal/mol) and formation of protonated 

acid after -hydride elimination (5.9 kcal/mol) are endoergic.  These results indicate that the aldehyde-

water shift catalysis is favorable with the bimetallic cobalt catalysts system as the calculated total free 

energy for the entire cycle is 17.9 kcal/mol.  
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Figure 4.28.  Dicobalt catalyzed AWS catalysis. 

4.4 Conclusions 

DFT studies suggest that either asymmetric Co_2 or symmetric Co_2* are the best starting points 

for bimetallic cobalt catalyzed hydroformylation.  The computational studies point more towards Co_2 as 

the better catalyst, but due to lack of experimental results at this time we don’t have any real data to 

compare our computational results to.  Lower activation barriers are calculated for Co_2 than for either 

Co_2* or Co_2**.  The transition state calculations for all three complexes; namely Co_2, Co_2* and 

Co_2** demonstrate the reductive elimination of the aldehyde product as the rate-determining step.  If the 
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Co centers are more electron deficient this will reduce the energy barrier for the reductive elimination step 

and will facilitate the production of aldehydes.  This can be achieved by incorporating electron 

withdrawing groups into the ligand system and DFT studies on such systems will be helpful in 

understanding the mechanistic. 

DFT studies on AWS catalysis depict that this is a feasible process and it favors the production of 

carboxylic acids.  The aldehyde coordinated complex is activated by the nucleophilic attack by water and 

this produces a protonated diol followed by hydride elimination which facilitates the acid production.  

Deprotonation of the protonated acid and production of H2 gas are semi-concerted reactions.  The 

elimination of H2(g) seems to be a barrier-less reaction that proceeds via an intermediate.  Transition 

state calculations suggest the reaction with water as the rate-determining step.  DFT studies depict that 

the bimetallic cobalt catalyzed AWS catalysis is downhill by 17.9 kcal/mol.  More studies on intrinsic 

reaction paths will be helpful to gain a better insight into reaction mechanistic.   
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Chapter 5 - X-ray Absorption in Insulators with Non-Hermitian Real-Time Time-dependent Density 
Functional Theory 

5.1 Introduction 

X-ray absorption spectroscopy (XAS) is an important tool for chemistry and solid-state materials 

as it provides information on charge, bonding, and oxidation states of a particular atom.  XAS involves the 

transition of a core-level electron to either bound or continuum states and is broadly characterized as pre-

edge, X-ray absorption near-edge structure (XANES), and extended X-ray absorption fine structure 

(EXAFS).
1
  Pre-edge is the region below the binding energy of the core level, whereas the near-edge

region (XANES) contains features up to 50 eV above the binding energy.  Photoelectrons in the XANES 

region have low kinetic energy and excited states in this region involve multiple scattering, which is useful 

for obtaining three-dimensional structural information.
1
  XANES spectra are often complex and modeling

these excitations is crucial for interpreting experimental results.  Moreover, an accurate description of 

these excited states is an important first step toward understanding X-ray triggered dynamics in materials. 

Several techniques have been used to model XAS.  The multiple scattering approach,
2,3

 which is

perhaps the most widely used method for XAS, treats the photoelectron as spherical waves scattering 

from muffin-tin potentials.  This has been widely used to study EXAFS in materials, but XANES can be 

challenging for these techniques as it requires experimental parametrization and can lack a rigorous 

treatment of the electronic structure of the material. XAS can also be calculated using first principles, 

such as Bethe−Salpeter equation (BSE) - based methods,
4,5

 where core−hole interactions are described

via a two-particle picture. BSE offers a much improved picture of the virtual states but can become 

extremely time consuming for large supercells, for example, in materials with defects or disorder. 

Alternatively, one can use core-hole pseudopotentials in conjunction with band structure-based 

first-principles methods such as single-particle approximations based on density functional theory (DFT).
6

This has been used to capture XANES of lithium and fluorine K-edges of LiF and carbon K-edge of 

diamond
7
 and the K-edges of silicon and oxygen in -quartz.

6

“This chapter 5 previously appeared as Fernando, R.G.; Balhoff, M.C.; Lopata, K. X-ray Absorption in 
Insulators with Non-Hermitian Real-Time Time-dependent Density Functional Theory, J. Chem. Theory 
Comput. 2015, 646-654. It is reprinted by permission of copyright [2015] American Chemical Society.” 
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Although this method generates the XAS up to the far edge region and is suitable for weakly 

coordinated systems, it shows limitations in moderate and strong correlation environments.  These 

deficiencies in the electron-electron interactions in the DFT functional can be somewhat remedied using 

the DFT + U method.
8
  In addition to this, modeling transition metals and rare earths require large kinetic

energy cutoffs that can result in excessive computational time.  Ultrasoft pseudopotentials based on DFT 

methods have also been used to compute the XAS of silicon and oxygen K-edges of α-quartz and copper 

K-edge spectra in Cu and in La2CuO4.
8

Finally, core excitations can be modeled using DFT using the Kohn-Sham approach, but this 

requires computing each core excited state one-by-one, which becomes computationally expensive and 

time consuming for materials.
9
  TDDFT on the other hand can be used to generate XANES spectra from a

single calculation, as discussed later.  A combination of TDDFT with BSE can also offer information on a 

wide spectral range above the edge.
10-13

In this paper, we develop an alternative approach to post-edge XANES using real-time time-

dependent DFT (RT-TDDFT) with atom-centered basis sets.  The goal is to accurately describe 

excitations near and above the edge of wide-gap materials without any parameterization against 

experiment.  In many ways, this is a complementary approach to the methods discussed above but has 

the added bonus of easily handling doping/disorder,
14

 allows for efficient use of hybrid DFT functionals,

and easily translates to dynamical simulations, for example, X-ray-induced dynamics and strong-field 

effects.
15

Time-dependent DFT
16

 is an excellent approach for modeling these processes as it offers a good

description of the electronic structure for transition metal systems and materials.  A suitable choice of DFT 

functional yields excitations over a wide range of energies, scales to large system sizes (suitable for 

defect sites, surfaces, or disordered systems), and is a natural tool for modeling dynamics.  For an 

overview of TDDFT and its myriad of applications, see the reviews by Marques and Gross,
17

 Burke,
18

Casida,
19

 and Ullrich.
20

  Despite its wide applicability, capturing above-ionization core-level excitations

can be challenging for TDDFT for two reasons: inadequacies in atom-centered basis sets and failures of 
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traditional exchange-correlation functionals for high energy states.
21-25

  Both these issues stem from the

highly diffuse Rydberg or continuum-like virtual states involved in these excitations.  

These states are poorly described by atom-centered basis sets, yet grids and planewaves, which 

are ideal for diffuse states, can be problematic for the wave function near the core.  This can be remedied 

somewhat through the use of excited-state core-hole pseudopotentials.
26,27

  Atom centered basis sets

such as Gaussian type orbitals (GTOs), however, are often preferred over planewaves due to their 

computational efficiency with hybrid functionals.  Specifically, the Hartree-Fock wave function component 

is nonlocal in space and scales as N
4
, which can become prohibitively expensive for planewaves that can

easily have hundreds of times more functions than GTO basis sets.  Local density functionals (e.g., LDAs, 

GGAs) are unsuitable for capturing above-ionization as they have the incorrect asymptotic form of the 

potential and qualitatively fail to describe the excitations.  To overcome this problem, range-separated 

functionals such as CAM-B3LYP,
28

 BNL,
29

 LC-PBE,
30

 LC-PBE0,
31

 etc. have been developed that

incorporate both long-range and short-range parts into the exchange term in the Kohn−Sham energy 

functional.  These functionals provide robust and more successful solutions to self-repulsion that occur at 

long ranges. 
30,32-35 

Thus, we would expect a versatile TDDFT approach to use GTOs with range-separated 

functionals yet also adequately describe the large spatial extent of the continuum-like states.   

One way forward is to use imaginary absorbing boundary conditions (ABCs) that mimic the continuum.  

Typically, this is done in real space, where the potentials take the form of a slowly increasing function at 

the simulation box edge that removes the wave function without artificial reflections from the edge of a 

numerical grid.
36-38

  This technique has been widely successful in modeling resonance energies and

lifetimes. 
39,40

  Absorbing potentials have also been used with multireference configuration interaction to

study resonances of metastable dianionic species,
41

 resonances with coupled cluster,
42,43 

and photo

absorption oscillator strength of clusters and molecules,
44,45

 along with computing ionization rates in

atoms using TDDFT.
46

These approaches can be inefficient for GTOs, as they require a very large number of diffuse 

functions to describe the ABC far from the molecule.  Instead, we recently developed a phenomenological 
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molecular orbital (MO)-based ABC, where we impose a condition to mimic the finite lifetime of above 

ionization states by applying an imaginary potential to the Fock matrix in the MO basis, which is similar in 

spirit to complex DFT,
47

 complex scaling,
48-50

 and linear response complex polarizability approaches.
51

This MO-based ABC was successfully applied to UV resonance states in small gas-phase molecules.
52

Finally, solving the time-dependent Kohn−Sham equations in time domain (i.e., real-time 

TDDFT
53-56

) is a natural tool for modeling XANES in materials, which requires computing spectra

spanning tens of eV above the ionization edge in systems with a high density of states.  Here, traditional 

root-based linear response TDDFT
57,58

 (LR-TDDFT) requires thousands of roots, which is both inefficient

and potentially creates algorithmic stability issues. RT-TDDFT, on the other hand, requires only three 

simulations (x, y, z polarized) to capture the entire absorption spectrum. RT-TDDFT has similar 

advantages when computing spectra in disordered solids, for example, (Fe1-xCrx)2O3 solid solutions.
14

One final note concerns the use of an adiabatic (local in time) approximation to the exchange-

correlation functional, which is strictly valid only for slowly varying time-dependent driving fields.
59

  For

fields with high frequencies or strengths, the functional at a particular time is also dependent on the 

density at earlier times, making “memory” effects significant.
59

  Recent studies, however, have shown that

for a finite electron system in its ground state gradually exposed to a high frequency field these memory 

effects become negligible, and thus, the adiabatic approximation remains valid.
60

  This picture is

consistent with the results of this paper, as well as previous TDDFT studies of X-ray absorption,
61

 where

the computed excited states agree well with the experiment despite the use of an adiabatic functional. 

TDDFT has been widely used to model XAS in a range of molecular systems such as the core 

excitations of Ti 1s, 2p and Cl 2p of TiCl4,
62

 the chlorine and sulfur K-edge and molybdenum L-edge of

oxomolybdenum complexes,
63

  L3-edge of ruthenium complexes,
61,64,65

 oxygen K-edge of water and

carbon monoxide (CO), carbon K-edge of CO, and the carbon and flourine K-edges of fluorobenzenes.
61

TDDFT has also been used to compute the carbon 1s XAS of acetylene, ethylene, and benzene in gas 

phase and adsorbed on a Si(100) surface.
66

  Sulfur K- and L-edges and the oxygen K-edge of SO2

adsorbed on the MgO(100) surface
67

 and sulfur K-edge of SO2 adsorbed on the Ti(110) surface have also

been studied using TDDFT.
68

  Studies have been performed on XAS at L2,3 edges of 3d elements (Sc, Ti,
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V, Cr, Ni) of atoms and complexes using TDDFT methods.
69,70

  For materials, linear response TDDFT has

been applied to metal 1s and 2p edges and oxygen 1s edges of alkaline earth metal oxides using cluster 

models of MgO, CaO, SrO, and BaO,
71

 titanium K- and L-edges and oxygen K-edge in rutile using finite

cluster models of TiO2,
72

 vanadium and oxygen K-edges, and vanadium L-edge of V2O5.
73

In this paper, we outline a real-time TDDFT approach to XAS for materials that use bulk-

mimicking finite clusters, tuned range-separated functionals, and molecular orbital ABCs to capture 

XANES.  As an illustrative example, we apply the approach to SiO2 and compare with experimental 

spectra.  Silicon dioxide (SiO2) is an abundant material in the Earth’s crust and mantle and has a wide 

range of technological applications including piezoelectrics, optical fibers, microelectronics, and, 

nanogenerators, to list only a few.
74-76

There are several polymorphs of SiO2, most of which are 4-fold coordinated (quartz, 

cristobalite, tridymite, and coesite), have a tetrahedral geometry around the Si atoms, and 2-fold 

coordination around oxygen atoms (4:2 structures).  Stishovite, on the other hand, has a 6:3 coordinated 

rutile-type structure with an octahedral geometry around the Si atoms.
77

  Among these, quartz is the

most stable polymorph under ambient conditions, is most important industrially, and is the most well 

studied experimentally and theoretically.
74

  Thus, we focus on α-quartz as a simple test case for near- and

post-edge XANES in insulators, and we validate our results against previous computational and 

experimental data. 

5.2 Results 

In this paper, we use real-time TDDFT to model the X-ray absorption of quartz with a goal of 

capturing both near- and above-ionization XANES features without input from experiment.  Atom-

centered basis sets were used along with tuned range-separated functionals for a better description of 

high energy excitations.  Absorbing boundary conditions were employed to emulate the continuum and 

reduce artifacts from the finite basis sets.  We focus on α-quartz, but the approach is generalizable to 

similar materials.  Schematically, the approach involves the following steps, which we discuss in the 

following subsections: 
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(1). Generate a small bulk-mimicking finite cluster of quartz that is capped with “siligens”   tuned to 

ensure charge consistency of the atoms (Section 5.2.1). 

(2). Tune LC-PBE0 range-separated functional to satisfy Koopmans’ and  SCF ionization potentials; 

test straight line behavior of functional (Section 5.2.2). 

(3).  Construct a molecular orbital-based absorbing potential (Section 5.2.3). 

(4). Use real-time TDDFT to compute absorption spectrum across pre-edge and XANES regions 

(Section 5.2.4). 

5.2.1 Bulk-Mimicking Finite Cluster 

The first step is to construct a finite cluster that is carved from the bulk crystal and capped to 

ensure charge consistency.  The trigonal unit cell of quartz (a = 4.91239 Å and c = 5.40385 Å) obtained 

from the experimental crystal structure
78

 was used to build a 17 Si bulkquartz model (Si17O16).  This

structure was truncated to make a smaller spherical cluster, Si5O16, centered around a silicon atom, which 

will eventually become the absorbing center for the XAS calculations.  The dangling bonds of the 

spherical structure were capped with “siligens” (  -pseudohydrogen atoms mimicking bulk Si atoms) to 

generate Si5O16  12.  As this is a 4:2 coordinated system, hydrogens passivate this cluster without needing 

embedding charges.  The central Si atom is are bonded to one boundary Si atom, which are in turn 

bonded to three boundary oxygen atoms, terminated by siligens.  The finite cluster mimicking the bulk is 

shown below in Figure 5.1(a).  The Si5O16  12 cluster geometry is shown in Appendix 5. 

Figure 5.1.  (a) Bulk-mimicking finite cluster of quartz with mixed basis set suitable for X-ray absorption 

studies. (b) Boundary O−   bond lengths were tuned to ensure charge consistency of the cluster. 
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The validity of this finite cluster depends strongly on the boundary siligen atoms, which act as a 

“boundary condition” for the electronic structure and dictate the charge of the cluster.  One simple self-

contained method for choosing the boundary atoms, which avoids tuning to the experiment, is to vary the 

O-   bond length to ensure charge consistency of the atoms in the cluster.
79

               

             

                              

Here, for a given basis set, the O−    bond length is tuned to minimize the error/charge 

inconsistencies.  Mulliken population analysis is unsuitable as it is highly basis set dependent and does 

not consider the differences in electronegativities of atoms in molecules.  Instead, the charge analysis 

was performed using Bader analysis, which is based on the Atoms in Molecules Theory.
80-83

  This method

assigns atomic “charges” (an ill-defined quality in molecules) by locating minima in the charge density and 

is less sensitive to basis sets than Mulliken analysis.
83,84

In anticipation of XAS calculations, which involve transitions from the core of a single Si atom to a 

delocalized state, a mixed basis with 363 functions was used where the Sapporo-QZP-

2012+diffuse(all)/without G functions was used for “core” Si atom and Sadlej pVTZ (Pol1) for “bridging” 

oxygen atoms bound to core Si, respectively, and Stuttgart RLC ECP was used for boundary Si and O 

atoms.  STO-3G was used for H in siligen caps.  This mixed basis description with absorbing center (Si) 

and neighbors with large polarized functions and outer atoms with a small basis set is economical but 

sufficient to capture the static and excited-state properties.  Convergence with the basis set was checked 

using Dunning-type aug-cc-pV{T,Q}Z for the optical gap.  Using this basis set and the PBE0
31

 functional,

Bader analysis
80

 was performed on the small cluster, (Si5O16  12) for a series of O−   bond lengths (0.8 to

1.2 Å) using the Bader utility from the Henkelman group.
80, 81, 83

  For each fixed O−   bond length, the

cluster geometry was optimized, and the mean absolute error (MAE) for “bridging” and “boundary” oxygen 

atoms was determined.  Figure 5.1(b) shows that the lowest MAE for oxygen atoms is achieved when 

O−   bond length is 1.0 Å.  Similar analysis for the Si atoms was not performed due to extreme basis set 

unbalance (quadruple-  vs ECP). 
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5.2.2 Tuned Range-Separated Functional 

Obtaining high energy excitations using TDDFT is problematic due to the incorrect asymptotic 

behavior of the exchange-correlation functional.
21-25

  These can be somewhat mitigated by using

asymptotic correlations (e.g., LB94
22

 and CS00
85,86

).  Another solution, which has been very successful

for high energy molecular excitations and charge transfer, is to use range-separated functionals.  Here, 

the exchange term in the Kohn−Sham energy functional is divided into short-range and long-range 

parts:
28,52,87

              
                 

                 
         

where EXC is the exchange-correlation energy, EX is the exchange energy, and EC is the correlation 

energy.  Here, the exchange decomposition takes the form 

 

   

  
              

   

  
                

   

The short-range interactions use DFT exchange, and the long-range parts use Hartree Fock 

exchange (HF) and potentially smoothly switches from DFT to the HF exchange.   and  are 

dimensionless parameters that determine the HF and DFT contributions in the long/short-range region. 

When      , the functional will retain an  fraction of HF and (1 − ) fraction of DFT exchange, and as 

     , there will be an ( + ) fraction of HF and (1 −  − ) fraction of DFT exchange.  The range-

separation attenuation parameter, , determines how rapidly the DFT exchange switches to HF. 

Going further, the accuracy of the functionals for excited states has been shown to be improvable 

by tuning  and  self-consistently to minimize the errors in ionization energies.
52,87

  In this work, which

focuses on diffuse- and above-ionization states, the range-separated functional LC-PBE0 was used to 

obtain the X-ray absorption spectrum of -quartz.  Similar to previous molecular studies, this functional 

was tuned to obtain the best parameters ( and ), which satisfy the Koopmans’ ionization potential 

condition (           .
52,87
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J( ) is the object function for a neutral molecule, SCF denotes the ground-state Kohn-Sham 

energies, and       is the eigenvalue of the HOMO orbital.  The resulting tuned functional is denoted as 

LC-PBE0*. 

As shown below in Figure 5.2, the lowest J( ) for -quartz for LC-PBE0* was achieved when  = 

0.515 and  = 0.101 au
−1

.  The calculated Koopmans’ IP and SCF for these values were11.2 and 11.1

eV, respectively, which results in 1.08% difference between the two energies. 

Figure 5.2.  Tuning the LC-PBE0 range-separated functional. 

Another important characteristic of an exchange-correlation functional is the so-called straight line 

behavior that measures the behavior of the energy as a function of the fractional electron number ( N).
87-

89
  For an exact functional, the energy of the atom or molecule changes linearly between adjacent 

integers but results in discontinuous slopes as  N reaches the number of electrons in the neutral 

molecule where the slope switches from −IP (ionization potential) to –EA (electron affinity).  Although 

functionals can be tuned to satisfy this, we only tuned the ionization potential and simply checked the 

straight line behavior. 

Figure 5.3 illustrates the changes in calculated energies as a function of the change in the 

fractional occupation number (FON) of the cluster  N, both for the tuned functional as well as the parent 

global hybrid PBE0.  
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Figure 5.3.  Straight line behavior for global hybrid (PBE0) and tuned range-separated functional (LC-
PBE0*). 

As shown in Figure 4.3, a clear derivative discontinuity is seen around the neutral molecule ( N = 

0) for both functionals.  A nearly optimal straight line is seen for the LC-PBE0* functional at the electron

deficient part ( N < 0) as well as in the electron-rich ( N > 0) region, and the slope changes from IP to 

EA. In contrast to the behavior of the LC-PBE0* functional, the PBE0 functional demonstrates an 

incorrect convex behavior at the electron-rich part due to the delocalization errors associated with the 

functional.  Localization errors due to non-straight line behavior result in erroneous band gaps of 

materials.  This is often minimized by using hybrid functionals, where errors due to convex and concave 

parts cancel, producing more reliable band gaps.
89,90

  Here, the functional, which avoids these issues,

yielded an optical band gap (lowest LR-TDDFT root) of 8.4 eV in quartz, which agrees well with the 

experimental value (8.9 eV).
91

 PBE0, on the other hand, significantly underestimates the band gap (6.7

eV). 

5.2.3 Molecular Orbital-Based Absorbing Potential 

The final ingredient for computing spectra is to construct an imaginary molecular orbital (MO) 

absorbing potential to remove spurious high energy peaks resulting from the finite atom-centered basis 

sets.
52

  Although most absorbing boundary conditions take the form of a smoothly increasing potential at

the simulation box edges, this approach can be problematic for 
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atom-centered basis sets.  A simple, albeit somewhat more phenomenological, approach is to use 

absorbing boundary conditions directly in the MO space by applying an imaginary potential to the Fock 

matrix in the MO basis (prime notation).
52

        
            

where the imaginary potential,    is obtained by projecting a diagonal damping matrix, D, on to the 

instantaneous MO eigenvectors of the Fock matrix,   
    . 

                   

      denotes the matrix in which the columns are the eigenvectors of   
    .  D is the diagonal damping 

matrix with exponentially increasing damping parameters () for the MOs.  The damping applied to the 

MOs in the continuum can take virtually any form, but we use an exponential in the eigenvalues. 

    
       

                     
 

Here,    is the damping on the i
th
 MO;    defines the energy scale;   dictates the “steepness” of ABC; and

           is the energy of the i
th
 MO above the vacuum cutoff energy,   .  This will result in    lifetime in

each MO 

    
 

   

This ABC is computationally inexpensive as it needs to be constructed only once due to the 

relatively time-independent behavior of       in the limit of weak field excitations.  Because this paper 

mainly focuses on spectroscopic data, this assumption is valid. 

The vacuum energy level,   , can be approximated by using electron affinities (EA) of the virtual 

orbitals.  The electron affinity of each virtual orbital (EAk) can be calculated by combining the first electron 

affinity EA1 with   , which is the k
th
 LR-TDDFT excitation of the anion.  Although approximate, this is a

more accurate approximation to the EA than the raw Kohn−Sham virtual eigenvalues. 
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Figure 5.4.  (a) Determination of vacuum energy cutoff (  ) via approximate electron affinities. (b) 
Absorbing boundary potential and corresponding molecular orbital lifetimes.   

The eigenvalue at EA = 0 corresponds to    and can be obtained by interpolation of the 

eigenvalues (Figure 5.4(a)) which gives    = 0.018 Ha as the cutoff energy for the finite SiO2 cluster. 

The imaginary potential increases exponentially with the MO eigenvalue, and the corresponding MO 

lifetimes decay exponentially (Figure 5.4(b)).  This results in finite lifetimes in the low-lying unbound virtual 

orbitals (before they autoionize), while excitations to high-lying virtuals will be completely removed.  For 

example, MO values 0.05 Ha above the cutoff energy have a lifetime of ∼5 fs.  As the choice of damping 

strength ( ) is phenomenological, several values were tested.  The results were qualitatively similar 

except for excess peak broadening for large values of  . X-ray absorption spectra with clear peaks were 

obtained when   = 0.4 Ha
1−

 for quartz, as this was strong enough to remove nonphysical features yet

did not overbroaden peaks. 

5.2.4 Absorption Spectra Quartz 

Finally, real-time TDDFT simulations were used with this finite cluster, tuned functional, and 

absorbing potential.  Here, three weak   - function electric field simulations were performed (x, y, z 

polarizations) to yield the absorption spectrum spanning valence to X-ray.  The computations were 

performed utilizing the NWChem
92

 real-time TDDFT module,
93

 and basis sets were selected from EMSL

Basis Set Exchange.
94

  All real-time simulations used a time step of t = 0.05 au = 0.0012 fs and were

run for a total of 500 au =12 fs.  This step is small enough to resolve core-level oscillations around ∼100 
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eV.  As core excitations occur at higher frequencies than the valence excitations, a smaller time step was 

used to obtain both valence and core oscillations in the spectrum.  Convergence with t was checked.  

Each simulation used 256 2.6 GHz Xeon processors for 48 h at Louisiana State University’s HPC Facility.  

The computed time-dependent dipole moments are shown in Figure 5.5, which clearly shows the 

damping effect of the    potential.  The resulting absorption spectra were computed from the Fourier 

Transforms of the time-dependent dipole moments      

      
   

  
                         

The time-dependent dipole moments were exponentially damped to accelerate the Fourier 

transform,     
   , (  = 75 au = 1.8 fs) and padded with 105 zeros prior to Fourier transform. 

Figure 5.5.  Time-dependent  -dipole moment with (orange) and without (green) absorbing potential. 

The computed valence absorption spectra of α-quartz with and without the imaginary potential 

(  ) are shown in Figure 5.6.  The experimental UV absorption spectrum was digitized from the work 

done by Chang et al.
95

  The computed valence absorption spectrum qualitatively agrees with the
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experimental spectrum
95

 as well as with the density of states (DOS) of  quartz calculated by Calabrese

et al. and Binggeli et al.
74,96

  Peak A at the onset (8.4 eV) of the computed spectra is the optical gap and

corresponds to the transition from O 2p to antibonding counterparts of O 2s, Si 3s, and 3p.  This peak is 

absent in the experimental data due to vanishing transition dipole for the bulk. Peak B (9.7 eV) 

corresponds to the transitions from O 2s and 2p orbitals to the conduction band composed of antibonding 

O 2s and 2p orbitals and antibonding Si 3s and 3p orbitals.  The remaining low-energy calculated valence 

excitation energies agree fairly well with the experimental spectrum, but the oscillator strengths are 

significantly different.  This is likely a finite cluster size effect, where transitions are artificially localized in 

space, have greatly overestimated MO overlaps and thus artificially large oscillator strengths.  This effect 

is far more pronounced in the valence, where both occupied and virtual states are somewhat delocalized, 

and less so for the core, where the occupied state I essentially localized on one atom (Figure 5.7). 

Figure 5.6.  Computed UV absorption spectrum of quartz with (orange) and without (green) absorbing 
potential. The experimental spectrum (black) was digitized from the work done by Chang et al.

95
 The

experimental band gap is from the work done by Binggeli et al.
74

 (digitized with permission from the
American Physical Society). 
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The core absorption spectra of α-quartz obtained by RT-TDDFT computed with and without   

are shown in Figure 5.7.  Here, for clarity we subtracted the exponential continuum background from the 

TDDFT +    spectrum, and all TDDFT spectra were shifted by +1.3 eV to match the experiment.  The 

parameters employed for ABC were    = 0.018 Ha and   = 0.4 Ha
1−

.  In order to determine the

corresponding transitions, LR-TDDFT was performed using the restricted excitation window approach.  

The LR-TDDFT spectrum obtained for 300 roots is also shown in Figure 5.7.  These spectra are 

compared with the experimental Si L-edge spectrum obtained by Li et al.
97

Figure 5.7.  Computed real-time TDDFT X-ray absorption spectrum of quartz with (orange) and without 
(green) an absorbing potential, along with corresponding linear response TDDFT (purple). The three 

experimental spectra were shifted by 1.3 eV to match with the experimental spectrum (black), which was 
digitized from the work done by Li et al.

97
 The experimental Si 2p ionization energy (103.4 eV) is shown

as a dotted line (digitized with permission from the Mineralogical Society of America). 
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There are clear differences in the spectra obtained from the three variants of TDDFT (LR, RT, RT 

+   ). The RT-TDDFT without an absorbing potential is highly polluted with many nonphysical excitation, 

which makes interpreting this spectrum all but impossible.  Adding the    results in a significantly better 

X-ray absorption spectrum, especially for the near-edge features, but the peaks corresponding to multiple 

scattering are shifted from experiment, likely due to finite basis effects or inadequacies in the absorbing 

potential.  Also note, the low energy RT-TDDFT+    peaks are essentially the same as the LR-TDDFT 

ones but differ for higher energies, mainly due to broadening from the ABC. 

Finally, we discuss the origins of the various excitations.  The first peak is at 105.4 eV, and as it is 

higher than the ionization potential of Si 2p (103.4 eV), all features in the Si L-edge up to 153.4 eV are 

near-edge features (XANES).
74

  Peak A results from the transitions to antibonding Si 3s orbitals from Si

2p orbitals.  The spin−orbit splitting feature (               ) seen in peak A in the experimental spectrum is 

not captured in our spectra as we do not include spin−orbit effects in our simulations.  Peak B 

corresponds to the excitations of Si 2p electrons to antibonding 3p states.  Even though       

transitions are atomically forbidden, this becomes dipole allowed due to the tetrahedral symmetry of 

quartz, that is, Laporte selection rule (      ) is violated in this system due to its non-

centrosymmetric nature.  In tetrahedral symmetry, p and d orbitals transform to t2 resulting in mixing of p 

and d orbitals.
98

  As this will result in some d-character in p-orbitals, the        transition becomes

possible.  Peaks C and E correspond to transitions due to multiple scattering effects where the states are 

not simple atomic or molecular states.
97

  Peaks D and F result from the transitions to Si 3d and 3p states

from Si 2p.  According to the crystal field theory, in tetrahedral molecules the 3d orbitals are divided into e 

and t2 states, where e states are more stable than t2.
97,99

  According to the experimental spectra obtained

by Li et al., peak D corresponds to the transition to e states and peak F to t2 states.
97

The A and B transitions are both very well described by TDDFT, as they are relatively localized 

near-edge excitations.  Peaks C, D, E, and F are increasingly more difficult to capture due to both finite 

cluster/basis effects and limitations in the exchange-correlation function for very diffuse continuum-like 

virtual states. 
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5.4 Conclusions 

In summary, we have computed the near- and post-edge X-ray absorption spectrum of insulators 

using real-time time-dependent density functional theory (RT-TDDFT).  An embedded finite cluster model 

of quartz was used as an example where the spectra were computed using atom-centered basis sets 

and range-separated functionals.  The LC-PBE0* functional was tuned to satisfy the Koopmans’ 

ionization potential condition to find the best tuned parameters ( and ), and the straight-line behavior of 

the functional was also verified. The post-edge excitations were captured using real-time TDDFT with an 

imaginary absorbing potential.  This results in a finite lifetime in low-lying unbound virtual orbitals and 

completely removes the nonphysical high-lying orbitals.  The resulting Si L-edge spectrum was purified of 

spurious excitations and matches well with experimental data over the range of ∼105−120 eV, i.e., 

approximately 15 eV above the ionization edge.  

This method of computing X-ray absorption using embedded cluster models, atom-centered basis 

sets, tuned functionals, and absorbing boundary conditions resulted in a significantly improved spectrum 

over traditional TDDFT and agrees well with the experiment.  Due to the difficulties in treating infinite 

solids with TDDFT, bulk-mimicking embedded finite cluster models are a useful tool for studying the 

excited-state electronic structure of materials.  Embedded finite clusters with all-electron basis sets are 

also natural for XAS calculations and facilitate use of (tuned) hybrid DFT functionals at a more modest 

computational cost than planewaves or grid-based methods. 

A major drawback to this approach is the choice of the molecular-orbital absorbing boundary 

condition, which must be picked carefully as to remove nonphysical states but not overdamp the XAS 

features.  A more rigorous way is to use spatially dependent ABCs, but this would potentially require very 

large basis sets.  Also, even for tuned functionals, the computed spectra are shifted from experiment by a 

few percent, likely due to incorrect core−hole response.  Moreover, core excitations occur at higher 

frequencies than valence excitations, so t for RT-TDDFT must be sufficiently small so that it ensures the 

capturing of both core and valence excitations, which requires long simulation times.  Finally, even though 

the full absorption spectrum can be obtained in just one simulation with RT-TDDFT, the transitions 

corresponding to the peaks cannot be easily analyzed because extracting the orbital contributions from 
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the time-dependent density matrix is not straightforward.  Hence, LR-TDDFT is often required to assign 

those transitions.  Despite these drawbacks, non-Hermitian real-time TDDFT offers a simple approach for 

near-edge XAS suitable for modeling spectroscopy and dynamics in systems ranging from organic 

molecules to inorganic complexes to potentially disordered solid-state materials, all without experimental 

parameterization. 
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Chapter 6 - Conclusion 

This work is mainly focused on DFT calculations on bimetallic homogeneous catalysis and X-ray 

absorption spectroscopy of insulators.  DFT modeling studies on industrially useful hydroformylation and 

AWS reactions are performed using bimetallic rhodium and bimetallic cobalt catalysts, and TD-DFT 

studies are used to model X-ray absorption spectroscopy of insulators.  A comparative study on bimetallic 

rhodium and bimetallic cobalt complexes for the hydroformylation and AWS are discussed in this chapter. 

6.1 Comparison of Rh2 and Co2 Hydroformylation Catalysts 

The bimetallic rhodium and cobalt catalyst precursors both react with carbon monoxide to form 

the pentacarbonyl complexes, but the dicobalt complex continues to react with excess CO to form the 

hexacarbonyl complex.  As cobalt complexes favor higher coordination numbers, unlike rhodium(+1) 

complexes, the formation of the saturated hexacarbonyl cobalt complexes makes sense.  The main steps 

in hydroformylation for both bimetallic cobalt and rhodium catalyst systems are:  the oxidative addition of 

hydrogen gas, alkene coordination, hydride insertion into the alkene to form the alkyl group, CO insertion 

to form the acyl group, and reductive elimination of the aldehdyde product.   

DFT modeling studies were performed on each of these steps to determine the most favorable 

pathway.  Prior to oxidative addition of hydrogen gas CO groups will be dissociated from rhodium 

pentacarbonyl complex and cobalt hexacarbonyl complex.  Both these complexes further dissociate the 

labile CO groups to form the tetracarbonyl complexes.  H2 oxidatively add to these tetracarbonyl 

complexes to form the open-mode dihydride complexes.  The open-mode complexes then converts into 

closed-mode complexes to give either symmetric or unsymmetrical complexes.   

The free energy change for the oxidative addition of H2 to open-mode tetracarbonyl rhodium 

complex and open-mode tetracarbonyl cobalt complex 10.7 kcal/mol and +16.4 kcal/mol respectively. 

These energies indicate oxidative addition is more favorable in rhodium catalyzed cycle than in cobalt 

catalyzed cycle, which is consistent with the monometallic catalysts.  The activation barrier for H2 

oxidative addition for rhodiumis 10.4 kcals/mol vs. 16.9 kcals/mol for the dicobalt catalyst, once again 

supporting the higher reactivity of Rh vs. Co. 
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DFT studies indicate that the bimetallic symmetric bridging hydride complex 

[Rh2(H)2(CO)4H(racet,phP4)]
2
(2*), and unsymmetrical

[Co2(CO)(H)(CO)3H(racet,phP4)]
2
(Co_2) complexes serve as the most active species to react

with alkene.  A CO group dissociates to generate unsaturated complexes for the alkene coordination, 

which is followed by hydride insertion to form alkyl groups.  The activation energy for the bridging hydride 

insertion is 8.0 kcal/mol for Rh. The dicobalt species with a bridging and terminal hydride has two different 

activation barriers:  12.1 kcal/mol for alkene and bridging hydride, while the alkene and terminal hydride is 

a barrier-less step.  So one major difference between the Co and Rh bimetallic catalysts is the much 

higher reactivity of the terminal Co-H for the migratory insertion reaction with alkene.   

The next major step in hydroformylation is the CO migratory insertion with the alkyl group to form 

the acyl group.  In rhodium catalyzed hydroformylation DFT calculates the activation barrier for this step 

as 13.2 kcal/mol, whereas for cobalt the activation energies for terminal CO insertion and bridging CO 

insertion are 5.9 kcal/mol and 3.9 kcal/mol, respectively.   

Finally the reductive elimination of the aldehdye takes place to regenerate the pentacarbonyl 

complexes.  The activation energy for the reductive elimination step for rhodium is 13.4 kcal/mol, whereas 

in cobalt catalyzed cycle it is a high 42.6 kcal/mol.   

The activation barriers show that for rhodium catalyzed hydroformylation rate-determining step is 

either CO insertion or reductive elimination of the aldehyde because both steps have essentially the same 

activation energy.  The rate determining step for dicobalt catalyzed hydroformylation is the aldehyde 

reductive elimination.  The intermediate species relative energies and activation barriers for dirhodium 

and dicobalt catalyzed hydroformylation are shown below in Figure 6.1.  According to these observations, 

increasing the electron deficiency at the metal centers via incorporation of electron withdrawing groups on 

the P4 ligand, these barriers can be lowered.   
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Figure 6.1.  Free energy profiles for dicationic dirhodium and dicobalt catalyzed hydroformylation 
(Energies are shown in kcal/mol). 

Even though the activation barriers for the hydride insertion step and CO insertion step are lower 

in cobalt catalyzed hydroformylation cycle relative to rhodium, DFT computes a larger energy barrier for 

the oxidative addition of H2(g) and a significant barrier for the reductive elimination of aldehyde for the 

cobalt catalyzed cycle.  These results suggest that the initial step and the final step of the catalytic cycle 

are more difficult for cobalt vs. rhodium, and indicate that the rhodium catalyzed hydroformylation is 

easier to do, consistent with monometallic hydroformylation.   
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6.2 Comparison of Rh2 and Co2 Aldehyde-Water Shift Catalysts 

This dissertation also discusses DFT modeling of the aldehyde-water shift (AWS) reaction.  The 

DFT studies point to an alternate mechanism that is somewhat different from Prof. Stanley’s originally 

proposed mechanism for dirhodium catalyzed AWS.  A new mechanism is proposed for dicobalt 

catalyzed AWS.  DFT studies show that both the rhodium catalyzed and cobalt catalyzed AWS reactions 

in the presence of explicit water molecules are downhill by 19.6 kcal/mol and 17.9 kcal/mol. 

respectively.   

The closed-mode tetracarbonyl complexes, Rh_4* and Co_4* formed in hydroformylation act as 

the active catalysts in the AWS reaction.  The catalytic cycle begins with coordination of the aldehyde to 

one of the metal centers, followed by nucleophilic attack on the activated aldehyde by water.  This results 

in the formation of a protonated diol.  Prof. Stanley proposed that deprotonation of the diol occurred at 

this point, but this does not look feasible based on the DFT computations in both rhodium and cobalt 

systems.  The energy barrier for the deprotonation of the diol reaction with an explicit water for rhodium is 

41.7 kcal/mol, which is 7.8 kcal/mol higher than that seen for the cobalt catalyzed AWS.  Both of these 

deprotonation steps do not appear to be very favorable, although the use of more than one explicit water 

molecule in the deprotonation step might be important and will be examined.   

This step is followed by a CO dissociation to generate a vacant site for hydride elimination.  

Once the CO is dissociated the protonated diol group moves from the equatorial position to a somewhat 

less stable axial position, which favors hydride elimination and to produce a protonated carboxylic acid 

that dissociates.  The activation barrier for this step for rhodium is 19.4 kcal/mol, while for cobalt it is 25.0 

kcal/mol.   

  The protonated carboxylic acid readily transfers a proton to an explicit water molecule forming 

H3O
+
, which then reacts with the metal-hydride to produce hydrogen gas.  The -hydride elimination,

formation of protonated carboxylic acid, proton-transfer to water, and H2 loss are all semi-concerted for 

rhodium.  However, in the dicobalt catalyzed AWS hydride elimination occurs prior to deprotonation of 
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protonated carboxylic acid.  Then the deprotonation and elimination of hydrogen gas occur 

simultaneously.   

DFT calculates the hydrogen gas production in both catalytic cycles as barrier-less steps that 

occur via intermediates.  In both catalytic cycles the initial nucleophilic attack on the coordinated aldehyde 

acts as the rate-determining step.  According to free energy calculations the reaction with water appears 

to be favorable by -0.03 kcal/mol in rhodium catalyzed AWS whereas it corresponds to an energy uphill of 

+6.8 kcal/mol for cobalt catalyzed AWS.  The total free energy change for AWS cycles suggest that 

rhodium catalyzed reaction (19.6 kcal/mol) is more favorable than the cobalt catalyzed reaction (17.9 

kcal/mol), but the lower activation energy for the rate determining aldehyde-water reaction step indicates 

that the dicobalt system should be faster than rhodium.  The corresponding free energy profile for DFT 

computed rhodium catalyzed AWS and cobalt catalyzed AWS are shown below in Figure 6.2 and Figure 

6.3 respectively. 

Figure 6.2.  Free energy profile for dicationic rhodium catalyzed AWS reaction (for clarity P chelate 
ligands are not shown.).  (Energies are shown in kcal/mol). 
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Figure 6.3.  Free energy profile for dicationic cobalt catalyzed AWS reaction (for clarity P chelate ligands 
are not shown.).  (Energies are shown in kcal/mol). 

These studies were performed using only four water molecules and further studies using more 

water molecules will be helpful to determine whether deprotonation will be favorable via the nucleophilic 

attack by water.  This will result in the formation of the deprotonated diol and it will undergo hydride 

elimination to generate the carboxylic acid and H2(g).   

In addition to these catalysis projects, a method was developed to calculate near and above 

ionization features of insulators using quartz as a model insulator.  A finite cluster model mimicking 

bulk properties was generated using embedding procedure.  The TD-DFT studies were performed using 

atom-centered basis sets and range-separated functional.  As capturing excitations from core-levels to 

above-ionization levels is difficult for pure DFT or hybrid functional, range-separated functional were 

utilized.  These functional fixes the incorrect behavior of exchange-correlation functional by having both 

short-range and long-range terms.  LC-PBE0 functional was used for TD-DFT modeling studies, and 

functional was tuned to obtain good results that agree well with the experimental.  Molecular-orbital based 

absorbing boundary conditions were used to remove unnecessary peaks in the spectra.  Real-time TD-

DFT was used to get the valence and core spectra of quartz and the results matched well with the 

experimental results. 
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Appendix 1 – Structural comparison of complex 5, [racRh2(CO)5(meP4)]
2+

 optimized using
different basis sets  

 

 

 

 

 

 

Comparison of bond lengths 

Rh2(CO)5(et,phP4)
2+

X-ray 

Bond Length 

(Å) 

Rh 321G 

C,H,O 631G*  

P 321G* 

Bond Length 
(Å) 

Rh Lanl2DZ 

C,H,O 6311G** 

P 631G** 

Bond Length (Å) 

Rh Lanl2DZ 
C,H,O,P 

6311G** 

Bond 
Length (Å) 

Rh 321G 
C,H,O,P 

6311G** 

Bond 
Length (Å) 

Rh1 Rh47 5.82902 6.20555 6.18364 5.87151 

Rh1 P3 2.391 2.55292 2.55422 2.57405 2.56098 

Rh1 P2 2.342 2.38985 2.4045 2.40633 2.39586 

Rh47 P31 2.331 2.38764 2.3945 2.39723 2.3957 

Rh47 P42 2.318 2.38641 2.40041 2.40233 2.39867 

P3 C28 1.86469 1.87931 1.87715 1.87457 

P31 C28 1.85466 1.8668 1.86385 1.86442 

P2 C4 1.84213 1.85352 1.85193 1.85311 

P3 C7 1.85787 1.87206 1.87086 1.86688 

P31 C36 1.85217 1.86518 1.86383 1.86004 

P42 C39 1.84951 1.85951 1.85846 1.85989 

C4 C7 1.53486 1.53186 1.53257 1.53186 

C36 C39 1.53518 1.53103 1.53138 1.53168 

Rh1 C10 1.975 2.01759 1.97845 1.97566 2.03185 

Rh1 C12 1.95 2.01299 1.97884 1.97556 2.02779 

Rh1 C14 1.937 1.97522 1.95509 1.95647 1.98165 

Rh47 C48 1.932 1.96517 1.93812 1.93812 1.97299 

Rh47 C50 1.915 1.96165 1.9435 1.94314 1.97215 

1 47 

3 
2 31 

42 

50 

48 14 10 

12 

28 
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Comparison of bond angles 

Rh2(CO)5(et,phP4)
2+

X-ray 

Bond Angle 

() 

Rh 321G 

C,H,O 

631G*  P 

321G* 

Bond  Angle 

() 

Rh Lanl2DZ 

C,H,O 

6311G** P 

631G** 

Bond  Angle 

() 

Rh Lanl2DZ 
C,H,O,P 

6311G** 

Bond  Angle 

() 

Rh 321G 
C,H,O,P 

6311G** 

Bond  Angle 

() 

C50 Rh47 C48 90.8 92.714 92.651 92.717 91.86 

C50 Rh47 P42 89 89.893 89.561 89.596 90.274 

C50 Rh47 P31 171.6 173.378 173.885 173.793 173.998 

C48 Rh 47 P42 166.6 166.04 173.575 173.336 170.288 

C48 Rh47 P31 96.5 93.906 93.401 93.431 94.112 

P31 Rh47 P42 82.9 83.649 84.329 84.2 83.936 

P3 C28 P31 120 120.786 124.183 123.571 121.142 

C14 Rh1 C12 86.8 89.735 90.518 90.224 89.385 

C14 Rh1 C10 92.6 90.764 90.405 90.424 90.511 

C14 Rh1 P3 94.9 98.279 97.484 98.417 97.458 

C14 Rh1 P2 174.3 177.993 178.436 177.765 178.476 

C10 Rh1 C12 125.5 132.44 133.644 135.788 130.115 

C12 Rh1 P3 126 116.7 116.184 115.508 116.613 

C12 Rh1 P2 90 88.907 89.349 89.223 89.378 

C10 Rh1 P3 108.4 110.255 109.612 108.095 112.838 

C10 Rh1 P2 93.1 89.063 88.559 88.463 89.605 

P2 Rh1 P3 83.2 83.653 83.971 83.774 83.894 
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Appendix 2 – Transition States of Rhodium Catalyzed Hydroformylation 

TS(A1:A) 

Frequency: 537.75 cm
-1 

Rh      -2.6989960000  0.5871590000      0.3727810000  
P      -4.1436610000     -0.8595980000     -0.8699140000  
P      -0.8760210000     -0.8680530000     -0.5859630000  
C       -3.0784270000     -1.7827060000     -2.0725670000  
H       -3.6498590000     -2.6221100000     -2.4792850000  
H       -2.8701980000     -1.1026670000     -2.9033870000  
C       -1.7812350000     -2.2709640000     -1.4210150000  
H       -1.1341500000     -2.7474690000     -2.1625270000  
H       -1.9997200000     -3.0193170000     -0.6538400000  
C       -3.2799740000      2.1368160000     -0.8072020000  
O       -3.5994770000   3.0406580000     -1.4083550000  
C       -3.5819240000     -0.0068210000      2.1210010000  
O       -4.0662840000     -0.2771030000      3.1069660000  
C       -1.4905830000      1.8028580000      1.3688490000  
O       -0.8401450000   2.5204410000      1.9533300000  
C       -5.4556610000     -0.0751970000     -1.8726990000  
H       -5.0234290000      0.6182710000     -2.5947760000  
H       -6.0227790000     -0.8416320000     -2.4062650000  
H       -6.1372020000      0.4758010000     -1.2222370000  
C       -5.0170510000     -2.1339050000      0.1136310000  
H       -5.7248170000     -1.6533100000      0.7912690000  
H       -5.5703690000     -2.8003240000     -0.5524830000  
H       -4.3161450000     -2.7213970000      0.7075020000  
C        0.1148430000     -0.1244130000     -1.9528370000  
H        0.8455820000      0.5625410000     -1.5066130000  
H        0.6374350000     -0.8932590000     -2.5276040000  
H       -0.5200890000      0.4565940000     -2.6219000000  
C        0.4450890000     -1.8360100000      0.3213040000  
H       -0.0489360000     -2.4857950000      1.0495960000  
H        0.9322990000     -2.4806050000     -0.4176280000  
P       1.7976100000     -0.9140840000      1.2065810000  
C        1.1569490000     -0.6048140000      2.8903490000  
H        0.2956140000      0.0603980000      2.8540470000  
H        0.8705930000     -1.5414420000      3.3738480000  
H        1.9352680000     -0.1225380000      3.4842590000  
C        3.1264400000     -2.1943540000      1.4443140000  
H        3.7324840000     -1.8366030000      2.2822520000  
H        2.6798370000     -3.1424890000      1.7570060000  
C        3.9909920000     -2.3707660000      0.1902970000  
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H        3.4261790000     -2.8648750000     -0.6062220000  
H        4.8510920000     -3.0097330000      0.4078670000  
P       4.5695110000     -0.7318430000     -0.4826240000  
C        5.1960660000     -1.1065290000     -2.1656500000  
H        5.6443490000     -0.2081160000     -2.5939340000  
H        5.9539460000     -1.8927790000     -2.1319420000  
H        4.3787150000     -1.4252450000     -2.8144490000  
Rh    2.7132200000   0.8705940000     -0.0279950000  
C        3.5043240000      2.4809580000     -0.8925160000  
O        3.9051750000      3.4440130000     -1.3206820000  
C        6.0699060000     -0.3136080000      0.4899700000  
H        6.8249310000     -1.0969190000      0.3882180000  
H        6.4872650000      0.6276690000      0.1282350000  
H        5.8206730000     -0.1889070000      1.5446510000  
H        2.6456830000      1.6839680000      1.2665480000  
H        1.4914070000      1.7897550000      0.4417730000  

TS(B:C1) 

Frequency: 462.78 cm
-1 

H       -1.2924690000      2.2745200000     -2.9887930000  
H        3.1165060000     -0.9988930000     -2.9874560000  
H       -1.2048440000     -2.3159430000     -2.8062110000  
O        0.7829390000     -0.3280870000     -2.6458380000  
H        4.8551960000     -0.7745770000     -2.6758050000  
H       -2.9622690000      2.2293920000     -2.4205970000  
C       -1.9574150000      2.5767420000     -2.1779900000  
H       -1.9636960000      3.6665870000     -2.1019080000  
H       -2.9734340000     -2.2889350000     -2.3341440000  
H       -2.0117150000     -0.5210620000     -1.9867770000  
C        3.9178140000     -1.1597390000     -2.2672470000  
H        3.0191780000      1.6758060000     -1.9164150000  
C       -1.9399470000     -2.3203550000     -2.0111920000  
H        4.0237990000     -2.2305560000     -2.0853110000  
H       -4.9519970000     -0.5770780000     -1.5750320000  
H        0.6858550000      2.7719600000     -1.2885750000  
C        0.5091190000     -0.4515250000     -1.5211290000  
H        4.6505400000      1.7683760000     -1.2700780000  
H       -4.9830410000     -2.0246950000     -0.5458960000  
C        3.6208890000      1.4958430000     -1.0206740000  
C       -5.0152080000     -0.9331730000     -0.5457660000  
P      -1.3936760000      1.8133390000     -0.6096380000  
P       3.5330650000     -0.3310600000     -0.6882850000  
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C       -1.6202590000     -2.8280300000     -0.7574800000  
C        0.2274290000      2.6685420000     -0.3009940000  
Rh      -1.3783850000     -0.5678630000     -0.4965700000  
H       -0.6308700000     -3.2248530000     -0.5736980000  
H        3.0822580000      3.3955590000     -0.0980950000  
H       -5.9726710000     -0.6208130000     -0.1218520000  
H        0.0506960000      3.6783750000      0.0806500000  
H        5.8894940000     -0.4399710000     -0.1052440000  
H        1.5838960000     -2.1720100000     -0.2020380000  
C        3.1158480000      2.3345200000      0.1628900000  
H       -2.4039550000     -3.1812030000     -0.0993980000  
H       -2.7990750000      3.4454570000      0.5726450000  
Rh       1.4001920000     -0.6767260000      0.3073500000  
C        4.9582030000     -0.7131260000      0.3969130000  
P      -3.6291280000     -0.2680700000      0.4544220000  
C       -2.6150650000      2.3714460000      0.6662200000  
P       1.4520580000    1.7542290000      0.7658930000  
H        4.9805630000     -1.7828860000      0.6125180000  
H        3.7939460000      2.2428220000      1.0166390000  
H       -4.4261390000      1.8528250000     -0.4227900000  
C       -3.9209800000      1.5764850000      0.5061360000  
H        4.8952200000     -0.1716690000      1.3418200000  
C       -0.6619840000     -0.8824370000      1.4324120000  
H       -2.1770840000      2.1952040000      1.6527520000  
H       -3.8735990000     -1.9429020000      2.2050560000  
C       -3.9959800000     -0.8595330000      2.1519620000  
C        2.1501290000     -1.4339570000      2.0653730000  
H        1.4210240000      3.5862020000      2.4016150000  
H       -4.6105810000      1.8089290000      1.3211320000  
C        1.2677070000      2.5049230000      2.4305630000  
H       -5.0270900000     -0.6110750000      2.4134560000  
O       -0.8649490000     -1.0686240000      2.5450630000  
H       -3.3232450000     -0.4063130000      2.8795770000  
H        0.2745790000      2.2956090000      2.8319650000  
H        1.9997580000      2.0623760000      3.1087650000  
O        2.6579280000     -1.9613370000      2.9240960000  

TS(C2:D1) 

Frequency: 302.13 cm
-1 

Rh    1.5069520000     -0.5323760000      0.5424320000  
P       3.5929990000     -0.7762040000     -0.5703060000  
P       1.7836900000    1.8878410000      0.0902280000  



141 

C        3.7937880000      0.7863070000     -1.5577040000  
H        4.8210490000      0.8477960000     -1.9285210000  
H        3.1454800000      0.6810810000     -2.4322030000  
C        3.4360120000      2.0457770000     -0.7539140000  
H        3.4570970000      2.9325520000     -1.3928930000  
H        4.1668190000      2.2154050000      0.0423870000  
C        3.8081400000     -2.1567620000     -1.7431210000  
H        2.9824770000     -2.1860330000     -2.4531730000  
H        4.7487160000     -2.0423250000     -2.2873910000  
H        3.8328740000     -3.0938900000     -1.1845880000  
C        5.0466260000     -0.8700720000      0.5389400000  
H        4.9990910000     -1.7854110000      1.1316200000  
H        5.9638910000     -0.8881110000     -0.0546530000  
H        5.0830300000     -0.0182110000      1.2192010000  
C        0.5482750000      2.4738030000     -1.1779550000  
H        0.4862640000      3.5661090000     -1.1874930000  
H        0.9291630000      2.1618940000     -2.1546160000  
P      -1.1554010000      1.7354890000     -1.0653350000  
C       -1.8322410000      1.9974240000     -2.7481590000  
H       -1.7756090000      3.0498690000     -3.0359540000  
H       -1.2700840000      1.3963820000     -3.4652580000  
H       -2.8731240000      1.6736020000     -2.7847490000  
C       -2.1755740000      2.7983570000      0.0561510000  
H       -1.6405100000      2.8919780000      1.0050980000  
H       -2.2822950000      3.8033170000     -0.3621380000  
C       -3.5534630000      2.1537920000      0.2746890000  
H       -4.1518870000      2.2200340000     -0.6375140000  
H       -4.1045580000      2.6910630000      1.0503610000  
P      -3.4712580000      0.3416110000      0.7410160000  
C       -4.9973930000     -0.3596730000      0.0031710000  
H       -4.9493630000     -0.3351900000     -1.0861240000  
H       -5.1277800000     -1.3941960000      0.3216370000  
H       -5.8651900000      0.2168000000      0.3329440000  
Rh      -1.3138130000     -0.4851890000     -0.1713510000  
C       -3.7921040000      0.2749650000      2.5457430000  
H       -4.7724660000      0.7066460000      2.7606420000  
H       -3.7855350000     -0.7637890000      2.8812900000  
H       -3.0311030000      0.8202990000      3.1025070000  
C       -0.4792840000     -0.0807190000      1.7164650000  
O       -0.6266760000   0.2341200000      2.8092820000  
C        0.5524180000     -0.8284700000     -1.2291740000  
O        0.7660780000     -1.0659320000     -2.3484590000  
C        1.7909140000      3.1932330000      1.3795990000  
H        2.5529350000      2.9565840000      2.1246920000  
H        2.0055260000      4.1761760000      0.9539240000  
H        0.8270910000      3.2278690000      1.8900940000  
H        1.5261270000     -2.1222180000      0.5801890000  
C        2.2994080000     -0.6957060000      2.4328360000  
O        2.8130060000     -0.9274320000      3.4102140000  
C       -1.7018640000     -2.8861860000     -0.0899410000  
C       -3.0200570000     -3.5443430000      0.2484390000  
H       -1.0679750000     -2.7445360000      0.7808470000  
H       -1.1227880000     -3.4046160000     -0.8507290000  
H       -3.5366320000     -3.0461130000      1.0703140000  
H       -3.6933660000     -3.6173100000     -0.6070080000  
H       -2.8105940000     -4.5680810000      0.5800330000  
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C       -2.1962500000     -1.5262270000     -1.5404090000  
O       -2.7989780000     -1.8556410000     -2.4572140000  

TS(D2:G) 

Frequency: 640.31 cm
-1 

Rh    1.3825510000   0.4928750000     -0.4006870000  
P       3.5332940000    0.5324750000      0.7350840000  
P       1.8051670000     -1.9015710000     -0.6476510000  
C        3.7911180000     -1.2344920000      1.2605130000  
H        4.8267340000     -1.3684770000      1.5854860000  
H        3.1588460000     -1.3902770000      2.1376010000  
C        3.4524890000     -2.2422790000      0.1513870000  
H        3.4843750000     -3.2667470000      0.5310710000  
H        4.1870130000     -2.1858950000     -0.6574310000  
C        3.7542990000      1.5335810000      2.2489220000  
H        2.9565990000      1.3230800000      2.9604400000  
H        4.7184670000      1.3116160000      2.7126320000  
H        3.7250090000      2.5920970000      1.9850730000  
C        4.9798090000      0.9507160000     -0.3132250000  
H        4.9173110000      1.9943230000     -0.6276590000  
H        5.9061970000      0.8131860000      0.2495440000  
H        5.0140420000      0.3258450000     -1.2069670000  
C        0.5388430000     -2.9668710000      0.2291460000  
H        0.4699530000     -3.9212940000     -0.2997770000  
H        0.9386450000     -3.1750980000      1.2249540000  
P      -1.1801270000     -2.2823280000      0.5394470000  
C       -1.7439050000     -3.2691250000      1.9832850000  
H       -1.6662830000     -4.3424400000      1.7955100000  
H       -1.1472420000     -3.0113580000      2.8602240000  
H       -2.7844780000     -3.0233850000      2.2023580000  
C       -2.2954160000     -2.7808360000     -0.8574510000  
H       -1.7892950000     -2.5480200000     -1.7966720000  
H       -2.4813180000     -3.8580410000     -0.8412020000  
C       -3.6303600000     -2.0150630000     -0.7613540000  
H       -4.1935500000     -2.3508270000      0.1137140000  
H       -4.2493780000     -2.2402520000     -1.6335500000  
P      -3.4787570000     -0.1479240000     -0.6035230000  
C       -4.9669550000      0.3145870000      0.3683680000  
H       -4.9107140000     -0.0920020000      1.3789770000  
H       -5.0415970000      1.4013380000      0.4365290000  
H       -5.8698010000     -0.0661620000     -0.1150360000  
Rh      -1.2823110000  0.1795270000      0.4664740000  
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C       -3.8525460000      0.5108750000     -2.2771350000                  
H       -4.8284660000      0.1505350000     -2.6107530000                  
H       -3.8794480000      1.6016010000     -2.2393360000                  
H       -3.0938970000      0.2034050000     -2.9954920000                  
C       -0.4975710000      0.0272690000     -1.3939750000                  
O       -0.7380660000     -0.2345620000     -2.5008940000                  
C        0.5289240000      0.0476430000      1.4648500000                  
O        0.8985490000     -0.1813800000      2.5436950000                  
C        1.9348880000     -2.6159480000     -2.3309910000                  
H        2.7013050000     -2.0778340000     -2.8918210000                  
H        2.2048840000     -3.6737190000     -2.2910210000                  
H        0.9881040000     -2.5058930000     -2.8616700000                  
H        1.0181350000      2.0684880000     -0.0269730000                  
C        2.1008550000      1.1778000000     -2.2036340000                  
O        2.5787620000      1.6243910000     -3.1233970000                  
C       -2.1486750000      0.8553300000      2.1972870000                  
O       -2.6751430000      1.1659760000      3.1473280000                  
C       -0.4403450000      2.8185690000      0.3436340000                  
O       -0.3420230000      3.2111480000      1.4351740000                  
C       -0.8830580000      3.4617150000     -0.9429430000                  
H       -0.0480660000      4.1172330000     -1.2240030000                  
H       -0.9886760000      2.7066930000     -1.7172860000                  
C       -2.1665990000      4.2754570000     -0.7316460000                  
H       -2.0239700000      5.0553010000      0.0161670000                  
H       -2.4410240000      4.7487380000     -1.6759190000                  
H       -2.9942830000      3.6382210000     -0.4139530000                  
 

TS(D2
#
:G

#
) 

Frequency: 870.56 cm
-1 

 

Rh      -1.4060050000      0.4462400000      0.4393290000                  
P       -3.6413480000      0.4491450000     -0.4516310000                  
P       -1.7084950000     -1.9274410000      0.3902080000                  
C       -3.9481010000     -1.2481110000     -1.1282700000                  
H       -5.0136870000     -1.3749810000     -1.3383830000                  
H       -3.4192360000     -1.3041180000     -2.0839540000                  
C       -3.4461940000     -2.3112140000     -0.1511960000                  
H       -3.4858420000     -3.3122680000     -0.5882950000                  
H       -4.0622270000     -2.3337200000      0.7521280000                  
C       -3.9924180000      1.5933570000     -1.8330790000                  
H       -3.2393750000      1.4781210000     -2.6131780000                  
H       -4.9803280000      1.3804250000     -2.2487850000                  
H       -3.9793550000      2.6248070000     -1.4773930000                  
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C       -4.9588400000      0.7522860000      0.7854930000  
H       -4.8521350000      1.7586820000      1.1944170000  
H       -5.9445750000      0.6665430000      0.3212450000  
H       -4.8861340000      0.0409690000      1.6093070000  
C       -0.6397030000     -2.8155310000     -0.8295420000  
H       -0.6960300000     -3.8978310000     -0.6770440000  
H       -1.0448720000     -2.5993290000     -1.8224090000  
P       1.1144430000     -2.2143090000     -0.8470580000  
C        1.7677920000     -2.9100980000     -2.4159210000  
H        1.5940360000     -3.9871490000     -2.4725780000  
H        1.2872240000     -2.4231930000     -3.2664680000  
H        2.8411420000     -2.7221820000     -2.4797970000  
C        2.0179570000     -3.1346430000      0.4871120000  
H        1.3860170000     -3.1563220000      1.3774470000  
H        2.1873560000     -4.1708580000      0.1812350000  
C        3.3392280000     -2.4204710000      0.7861150000  
H        4.0210140000     -2.4996250000     -0.0656800000  
H        3.8449280000     -2.8803760000      1.6394140000  
P       3.0975970000     -0.6002110000      1.1095530000  
C        4.8194930000      0.0373630000      1.0157210000  
H        5.1659440000      0.0371600000     -0.0192490000  
H        4.8735280000      1.0545650000      1.4026780000  
H        5.4859070000     -0.5919930000      1.6106590000  
Rh    1.3456970000   0.1618460000     -0.4617380000  
C        2.7006110000     -0.4994750000      2.9025670000  
H        3.4848730000     -0.9661040000      3.5032780000  
H        2.6094020000      0.5467090000      3.2002430000  
H        1.7500150000     -0.9922590000      3.1096700000  
C       -1.5748500000      2.4442200000      0.4150190000  
O       -1.8329410000   3.5403420000      0.4955970000  
C       -0.4456610000      0.4323930000     -1.4904540000  
O       -0.8607110000   0.4788870000     -2.5721670000  
C       -1.5242930000     -2.8319980000      1.9740080000  
H       -2.2612980000     -2.4567300000      2.6863390000  
H       -1.6910300000     -3.9019270000      1.8287290000  
H       -0.5343260000     -2.6768350000      2.4013640000  
H        0.8641670000      1.2700530000      0.6810580000  
C       -1.3867290000      0.4769590000      2.5844210000  
O       -1.4467840000   0.5997540000      3.7053020000  
C        2.5254920000      0.4860440000     -2.1900540000  
O        3.0912050000      0.7166990000     -3.1395540000  
C        1.5406900000      2.4257620000     -0.2124680000  
O        0.7377150000      3.0701330000     -0.8047680000  
C        2.8211310000      2.9610070000      0.3848420000  
H        2.8536640000      2.6272410000      1.4279020000  
H        3.6467260000      2.4469750000     -0.1178740000  
C        2.9609970000      4.4800810000      0.2702850000  
H        2.1492910000      4.9945330000      0.7865390000  
H        3.9045270000      4.7952620000      0.7189350000  
H        2.9541360000      4.8000290000     -0.7720480000  
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TS(2*B:2*C) 

Frequency: 904.23 cm
-1 

Rh    1.3972070000     -0.4807170000      0.4686270000  
P       3.4483760000     -0.1700180000     -0.7412680000  
P       1.4224530000    1.8816350000      0.5816090000  
C        3.5887080000      1.6381710000     -1.1609460000  
H        4.6282990000      1.8848960000     -1.3936950000  
H        3.0091510000      1.8015120000     -2.0742110000  
C        3.0662210000      2.5077820000     -0.0151390000  
H        2.9946990000      3.5598770000     -0.3039700000  
H        3.7396950000      2.4580650000      0.8455260000  
C        3.7596720000     -1.0320270000     -2.3303910000  
H        2.9653170000     -0.8071750000     -3.0432820000  
H        4.7184860000     -0.7229910000     -2.7540720000  
H        3.7864870000     -2.1109490000     -2.1671290000  
C        4.9418000000     -0.5369230000      0.2619340000  
H        4.9615670000     -1.5992190000      0.5124470000  
H        5.8519260000     -0.2885150000     -0.2894770000  
H        4.9198160000      0.0276210000      1.1952580000  
C        0.1950020000      2.6699330000     -0.5642680000  
H        0.0709750000      3.7351370000     -0.3432260000  
H        0.6178050000      2.5923190000     -1.5702640000  
P      -1.4505790000      1.8325160000     -0.6611620000  
C       -2.1831040000      2.5947700000     -2.1618530000  
H       -2.1526870000      3.6841680000     -2.0848020000  
H       -1.6284610000      2.2936340000     -3.0520910000  
H       -3.2210000000      2.2822240000     -2.2822510000  
C       -2.4972950000      2.4534590000      0.7338380000  
H       -1.9336370000      2.3264530000      1.6605690000  
H       -2.7009110000      3.5208430000      0.6112430000  
C       -3.7964360000      1.6397960000      0.7786360000  
H       -4.4256980000      1.8649610000     -0.0864910000  
H       -4.3806010000      1.8847630000      1.6692780000  
P      -3.4492410000     -0.1880480000      0.7479770000  
C       -4.9954790000     -0.9605450000      0.1468470000  
H       -5.1770840000     -0.6725100000     -0.8894190000  
H       -4.9102840000     -2.0476280000      0.1956000000  
H       -5.8434480000     -0.6500170000      0.7624660000  
Rh      -1.4486110000     -0.5293150000     -0.5099660000  
C       -3.3076410000     -0.6912260000      2.5036270000  
H       -4.2244110000     -0.4497120000      3.0465700000  
H       -3.1362460000     -1.7671730000      2.5677150000  
H       -2.4628070000     -0.1845990000      2.9712970000  
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C        1.1692510000      2.7098310000      2.1960930000  
H        1.9434950000      2.3782570000      2.8902970000  
H        1.2276030000      3.7959940000      2.0951450000  
H        0.2026370000      2.4379630000      2.6207570000  
C        1.7426490000     -0.7381910000      2.5525210000  
O        2.1197790000     -1.0871950000      3.5602730000  
H       -0.4076110000     -0.3708590000      0.8977260000  
C       -1.5921240000     -2.4700640000     -0.1259540000  
O       -1.7030140000     -3.5705030000      0.1053790000  
H        0.0487320000     -0.6321590000     -1.4119250000  
C        1.5430180000     -2.3955660000      0.1079960000  
O        1.6580420000     -3.5057900000     -0.0962010000  
C       -0.7059730000     -0.8607370000     -2.7282250000  
C       -2.1226980000     -0.8832580000     -2.6294450000  
H       -0.2413040000     -0.0071340000     -3.2117910000  
H       -2.6948220000     -0.0385470000     -2.9868550000  
H       -2.6373410000     -1.8337930000     -2.6797380000  
H       -0.1922050000     -1.7988590000     -2.9115330000  

TS(2*C1:2*D) 

Frequency: 336.65 cm
-1 

Rh      -1.4060660000     -0.3724390000     -0.6131210000  
P      -3.7128380000     -0.4070900000      0.0077460000  
P      -1.5779830000      1.9392300000     -0.1186490000  
C       -3.9363800000      1.0665790000      1.1169240000  
H       -5.0001900000      1.2320120000      1.3090170000  
H       -3.4728510000      0.8054640000      2.0726380000  
C       -3.2878030000      2.3197290000      0.5169970000  
H       -3.2522740000      3.1362700000      1.2420780000  
H       -3.8642500000      2.6812940000     -0.3389070000  
C       -4.2632400000     -1.8400210000      1.0001400000  
H       -3.5917360000     -1.9829030000      1.8476060000  
H       -5.2797340000     -1.6782930000      1.3670860000  
H       -4.2533380000     -2.7424650000      0.3863760000  
C       -4.9434720000     -0.2335330000     -1.3402750000  
H       -4.8990870000     -1.1107410000     -1.9885540000  
H       -5.9525250000     -0.1522990000     -0.9286630000  
H       -4.7318130000      0.6474540000     -1.9479690000  
C       -0.3950890000      2.5630150000      1.1642250000  
H       -0.3545150000      3.6559680000      1.1421380000  
H       -0.8012520000      2.2681400000      2.1365320000  
P       1.3068590000    1.8166640000      1.0707840000  
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C        2.0276000000      2.2084150000      2.7148030000  
H        1.9616700000      3.2747750000      2.9417240000  
H        1.5069450000      1.6436450000      3.4905390000  
H        3.0788090000      1.9130820000      2.7301600000  
C        2.2840320000      2.8423760000     -0.1352700000  
H        1.6470830000      3.0580070000     -0.9960060000  
H        2.5579960000      3.8013250000      0.3125970000  
C        3.5364860000      2.0725060000     -0.5788210000  
H        4.2307770000      1.9538760000      0.2582510000  
H        4.0722120000      2.6219300000     -1.3579400000  
P       3.1419630000    0.3588380000     -1.1947770000  
C        4.7483870000     -0.5192630000     -1.1786650000  
H        5.1233420000     -0.6139250000     -0.1586630000  
H        4.6301890000     -1.5172930000     -1.6048340000  
H        5.4825610000      0.0283950000     -1.7745530000  
Rh    1.3501870000     -0.4743820000      0.1851010000  
C        2.7358830000      0.5455200000     -2.9726830000  
H        3.5802090000      0.9765590000     -3.5158710000  
H        2.5043970000     -0.4330440000     -3.3966860000  
H        1.8606340000      1.1840930000     -3.0954460000  
C       -1.3673120000      3.0321880000     -1.5763080000  
H       -2.1038370000      2.7627770000     -2.3354020000  
H       -1.5132400000      4.0797350000     -1.3014800000  
H       -0.3767410000      2.9087960000     -2.0131740000  
C       -1.4181090000     -2.2697300000     -1.2550210000  
O       -1.4117210000     -3.3213300000     -1.6643120000  
H        0.3023670000     -0.0719740000     -1.1436800000  
C        1.8495800000     -2.3196930000     -0.0683030000  
O        1.9539370000     -3.3859400000     -0.4828150000  
H        1.2087240000     -2.5496440000      3.0186370000  
C       -0.4108880000     -0.8652380000      1.1980700000  
O       -0.9314950000     -1.1636750000      2.1863600000  
C        2.1745710000     -2.8545030000      2.6152120000  
C        2.7434560000     -1.8404710000      1.6413910000  
H        2.8666280000     -2.9465910000      3.4593500000  
H        2.8485740000     -0.8543060000      2.0910400000  
H        3.7049450000     -2.1230100000      1.2192540000  
H        2.0718870000     -3.8444580000      2.1687920000  

TS(2*D1:2*E) 

Frequency: 887.54 cm
-1 
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Rh      -1.4248680000  0.3919850000      0.3648040000  
P      -3.6487670000     -0.0004870000     -0.4855260000  
P      -1.3921970000     -2.0019520000      0.5323300000  
C       -3.7777570000     -1.8044770000     -0.8946260000  
H       -4.8299560000     -2.0790840000     -1.0095600000  
H       -3.2996010000     -1.9463590000     -1.8681250000  
C       -3.1011060000     -2.6468890000      0.1865770000  
H       -3.0506600000     -3.7015530000     -0.0965290000  
H       -3.6576460000     -2.5953150000      1.1267710000  
C       -4.1285410000      0.8809020000     -2.0132550000  
H       -3.3693850000      0.7334430000     -2.7819960000  
H       -5.0892240000      0.5061520000     -2.3749080000  
H       -4.2267550000      1.9491940000     -1.8129320000  
C       -4.9871800000      0.3392440000      0.7196840000  
H       -5.0014650000      1.4026370000      0.9655970000  
H       -5.9573260000      0.0661210000      0.2969760000  
H       -4.8269850000     -0.2214530000      1.6415610000  
C       -0.3303450000     -2.8827520000     -0.6997030000  
H       -0.2995090000     -3.9544340000     -0.4797110000  
H       -0.8035260000     -2.7590120000     -1.6780940000  
P       1.3656810000     -2.1481660000     -0.8412240000  
C        1.9923050000     -2.8156180000     -2.4317620000  
H        1.9053970000     -3.9039810000     -2.4665570000  
H        1.4345290000     -2.3818460000     -3.2636690000  
H        3.0426660000     -2.5414990000     -2.5485020000  
C        2.4076550000     -2.9619480000      0.4651790000  
H        1.7935600000     -3.0904060000      1.3583870000  
H        2.7075660000     -3.9595300000      0.1325900000  
C        3.6282240000     -2.0882720000      0.7781600000  
H        4.3192540000     -2.0760620000     -0.0698680000  
H        4.1826970000     -2.4873990000      1.6316020000  
P       3.1420110000     -0.3200940000      1.1018930000  
C        4.7216300000      0.5999030000      0.9797940000  
H        5.1088350000      0.5528000000     -0.0392660000  
H        4.5545600000      1.6431190000      1.2472430000  
H        5.4622970000      0.1739230000      1.6609190000  
Rh    1.3533620000   0.2326680000     -0.4859740000  
C        2.7063830000     -0.2316090000      2.8809190000  
H        3.5403810000     -0.5664480000      3.5022740000  
H        2.4743610000      0.8053910000      3.1269400000  
H        1.8306460000     -0.8450500000      3.0947370000  
C       -0.9709330000     -2.7110730000      2.1686930000  
H       -1.7122730000     -2.3807890000      2.8984610000  
H       -0.9802010000     -3.8029980000      2.1322140000  
H        0.0067460000     -2.3671550000      2.5029520000  
C       -1.8328280000      2.3271580000      0.1418470000  
O       -2.1799380000   3.4015630000      0.0743170000  
H        0.5290700000      1.2749840000      0.5924240000  
C        1.5175280000      2.4001520000      0.2746540000  
O        2.1605460000      2.6291120000      1.2512830000  
H        0.2173140000      4.9557820000      0.4743580000  
C       -0.3940230000      0.3419350000     -1.5769700000  
O       -0.8359750000   0.3215910000     -2.6494200000  
C        1.0406790000      4.8554460000     -0.2352380000  
C        1.1521040000      3.4269070000     -0.7778960000  
H        0.8615660000      5.5460660000     -1.0607740000  
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H        0.2613690000      3.1137130000     -1.3232530000                  
H        1.9717670000      3.3643200000     -1.5054460000                  
H        1.9595520000      5.1538530000      0.2688540000                  
C       -1.5172410000      0.6303650000      2.5281870000                  
O       -1.6589090000      0.9289210000      3.6064980000                  
C        2.6018290000      0.6989770000     -2.0937820000                  
O        3.2376470000      0.8712970000     -3.0124120000   

TS(M:P)  

Frequency: 685.85 cm
-1 

 

Rh       1.4473350000     -0.6391370000      0.4322940000                  
P        3.6186980000      0.1158450000     -0.3088560000                  
P        1.1431530000      1.6972820000      0.9646080000                  
C        3.6277630000      1.9794210000     -0.3061890000                  
H        4.6556960000      2.3514610000     -0.2726600000                  
H        3.2036070000      2.3025550000     -1.2619020000                  
C        2.8084130000      2.5275600000      0.8688140000                  
H        2.6987300000      3.6139260000      0.8076180000                  
H        3.3086050000      2.3075400000      1.8167570000                  
C        4.2897690000     -0.3292150000     -1.9600520000                  
H        3.5648470000     -0.0668580000     -2.7308880000                  
H        5.2373950000      0.1788860000     -2.1545410000                  
H        4.4532360000     -1.4078090000     -2.0027440000                  
C        4.9783010000     -0.3267060000      0.8502330000                  
H        5.0858050000     -1.4122600000      0.8836560000                  
H        5.9272270000      0.1161100000      0.5374420000                  
H        4.7336060000      0.0144740000      1.8572740000                  
C        0.1479400000      2.6628040000     -0.2765000000                  
H       -0.0440410000      3.6783810000      0.0831480000                  
H        0.7688550000      2.7408680000     -1.1736380000                  
P       -1.4230330000      1.8332370000     -0.8217790000                  
C       -1.8045220000      2.7099870000     -2.3974340000                  
H       -1.8011740000      3.7958430000     -2.2723020000                  
H       -1.0703050000      2.4306680000     -3.1550360000                  
H       -2.7858930000      2.3928860000     -2.7543850000                  
C       -2.7386100000      2.4437690000      0.3439080000                  
H       -2.3451080000      2.3617340000      1.3604020000                  
H       -2.9596560000      3.4990280000      0.1594230000                  
C       -3.9926130000      1.5728150000      0.1858250000                  
H       -4.4362530000      1.7228630000     -0.8027440000                  
H       -4.7531430000      1.8376920000      0.9248990000                  
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P      -3.5574880000     -0.2392000000      0.3165020000  
C       -4.9811460000     -1.0784810000     -0.4945310000  
H       -4.9953500000     -0.8409380000     -1.5594150000  
H       -4.8766860000     -2.1600330000     -0.3860530000  
H       -5.9290160000     -0.7727320000     -0.0451600000  
Rh      -1.3796630000     -0.4859010000     -0.7436060000  
C       -3.8245690000     -0.6131620000      2.1015670000  
H       -4.8259270000     -0.3078030000      2.4148680000  
H       -3.7146110000     -1.6853490000      2.2697650000  
H       -3.0721370000     -0.1101090000      2.7079000000  
C        0.5038360000      2.2283310000      2.6004370000  
H        1.1810530000      1.8563380000      3.3713960000  
H        0.4400000000      3.3166360000      2.6709660000  
H       -0.4680760000      1.7748010000      2.7855700000  
C        1.9505530000     -2.4776960000      0.1617350000  
O        2.2769970000     -3.5595410000      0.0135270000  
C       -1.4760390000     -2.8071300000     -0.7953730000  
C       -1.4040510000     -3.3429790000      0.4927670000  
H       -0.7308080000     -3.1339270000     -1.5099110000  
H       -0.6535900000     -4.0921980000      0.7329300000  
H       -2.2862040000     -3.3653020000      1.1258000000  
H       -2.4610010000     -2.6224360000     -1.2223790000  
C       -0.1641130000     -1.2358080000      1.6703550000  
O       -0.6195120000     -0.6960960000      2.6267070000  
C        0.2294430000     -0.5531210000     -1.7913780000  
O        0.9531520000     -0.5712070000     -2.6866890000  
H       -0.6021380000     -2.3433040000      1.3924240000  

TS(O:N) 

Frequency: 898.98 cm
-1 

Rh    1.4376160000     -0.5432370000      0.1669180000  
P       3.5251220000    0.3480910000     -0.4918340000  
P       0.9711340000    1.7020260000      0.8259690000  
C        3.4625310000      2.2044380000     -0.3327070000  
H        4.4763710000      2.6063270000     -0.2506190000  
H        3.0378020000      2.5880090000     -1.2650040000  
C        2.6008130000      2.6148400000      0.8637420000  
H        2.4385720000      3.6959350000      0.8893270000  
H        3.0913910000      2.3379530000      1.8017950000  
C        4.1531540000      0.0826560000     -2.1990190000  
H        3.4055330000      0.4187950000     -2.9187680000  
H        5.0873510000      0.6256020000     -2.3636050000  
H        4.3315950000     -0.9814690000     -2.3627940000  
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C        4.9532080000     -0.1401500000      0.5619600000                  
H        5.1024520000     -1.2193870000      0.4952630000                  
H        5.8690630000      0.3662820000      0.2470420000                  
H        4.7437910000      0.1030450000      1.6046750000                  
C       -0.0423490000      2.7398180000     -0.3325370000                  
H       -0.2246420000      3.7495810000      0.0516730000                  
H        0.5431700000      2.8305920000     -1.2523190000                  
P       -1.5861130000      1.8111540000     -0.7897270000                  
C       -2.0780790000      2.6102660000     -2.3796760000                  
H       -2.1183350000      3.6992290000     -2.2985800000                  
H       -1.3664190000      2.3381060000     -3.1615830000                  
H       -3.0615220000      2.2415950000     -2.6784480000                  
C       -2.8848730000      2.4180050000      0.4063350000                  
H       -2.4071170000      2.5302490000      1.3820850000                  
H       -3.2520590000      3.4050830000      0.1113440000                  
C       -4.0348480000      1.4046300000      0.4936730000                  
H       -4.6028850000      1.3944590000     -0.4415860000                  
H       -4.7345070000      1.6704150000      1.2911510000                  
P       -3.3978170000     -0.3316290000      0.7464410000                  
C       -4.8505900000     -1.3820310000      0.3367340000                  
H       -5.0891200000     -1.2852750000     -0.7230870000                  
H       -4.6072000000     -2.4269310000      0.5387230000                  
H       -5.7239940000     -1.1022960000      0.9310810000                  
Rh      -1.4083420000     -0.5603320000     -0.4992450000                  
C       -3.2801840000     -0.5136080000      2.5744430000                  
H       -4.2487690000     -0.3534960000      3.0541890000                  
H       -2.9267250000     -1.5185150000      2.8125970000                  
H       -2.5581890000      0.1973420000      2.9778780000                  
C        0.2935750000      2.0452970000      2.4979700000                  
H        0.9511740000      1.5807500000      3.2344780000                  
H        0.2336430000      3.1186930000      2.6937850000                  
H       -0.6919180000      1.5964700000      2.6072080000                  
C        1.8423600000     -1.2661180000      2.1569210000                  
O        2.5165170000     -1.9408420000      2.7807930000                  
C       -2.3800120000     -1.4819860000     -2.3569470000                  
C       -1.0419070000     -1.3198470000     -2.7472800000                  
H       -2.7356160000     -2.4584920000     -2.0563330000                  
H       -0.4085920000     -2.1979800000     -2.8044470000                  
H       -0.7983020000     -0.5428630000     -3.4644200000                  
C        1.8578210000     -2.1795750000     -0.7679140000                  
O        2.1641410000     -3.1225810000     -1.3339800000                  
H       -3.1309870000     -0.7940290000     -2.7237490000                  
C       -0.8223590000     -2.1050770000      0.5188680000                  
O       -0.8024860000     -3.0880310000      1.1147800000                  
H       -0.1421380000     -0.6755340000     -1.6270830000                  
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TS(P:SI) 

Frequency: 267.29 cm
-1 

Rh       1.3546080000     -0.5230090000      0.3754580000  
P       3.7224890000     -0.5507100000      0.0876770000  
P       1.6128290000    1.8007670000      0.0398090000  
C        3.9950300000      0.8453040000     -1.1201130000  
H        5.0642300000      1.0042600000     -1.2892110000  
H        3.5626710000      0.4985660000     -2.0628630000  
C        3.3134410000      2.1473080000     -0.6699500000  
H        3.2405510000      2.8561810000     -1.4977220000  
H        3.8971410000      2.6358720000      0.1145410000  
C        4.3967600000     -2.0021510000     -0.8134760000  
H        3.7934110000     -2.1832210000     -1.7042630000  
H        5.4364680000     -1.8364840000     -1.1067040000  
H        4.3449680000     -2.8871010000     -0.1768530000  
C        4.9593910000     -0.2628010000      1.4246930000  
H        4.9152470000     -1.0894620000      2.1363700000  
H        5.9741600000     -0.1947310000      1.0237320000  
H        4.7258270000      0.6562130000      1.9646830000  
C        0.3951470000      2.6407900000     -1.0815000000  
H        0.4103880000      3.7274130000     -0.9582590000  
H        0.7014380000      2.4110580000     -2.1065200000  
P      -1.3098500000      1.9159680000     -0.8826060000  
C       -2.2039700000      2.5940170000     -2.3460750000  
H       -2.1096490000      3.6796210000     -2.4213080000  
H       -1.8138380000      2.1361590000     -3.2572150000  
H       -3.2618710000      2.3352300000     -2.2650640000  
C       -2.0755760000      2.8241930000      0.5604960000  
H       -1.2867620000      3.0356740000      1.2843110000  
H       -2.4731510000      3.7880130000      0.2313040000  
C       -3.1722190000      1.9686930000      1.2116270000  
H       -4.0220960000      1.8616420000      0.5306410000  
H       -3.5457590000      2.4454110000      2.1227670000  
P      -2.5768240000      0.2361100000      1.5727080000  
C       -4.1215310000     -0.6398870000      2.0529710000  
H       -4.7974780000     -0.6962970000      1.1994780000  
H       -3.8775030000     -1.6595740000      2.3571710000  
H       -4.6245150000     -0.1346660000      2.8811810000  
Rh      -1.3373500000     -0.4417460000     -0.3809740000  
C       -1.7157190000      0.3928200000      3.1982660000  
H       -2.3707550000      0.8255230000      3.9594430000  
H       -1.4009850000     -0.6001010000      3.5249220000  
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H       -0.8208080000      1.0069800000      3.0953560000  
C        1.6079030000      2.8038200000      1.5850960000  
H        1.7980440000      3.8587740000      1.3728540000  
H        0.6579290000      2.7096660000      2.1095860000  
H        2.3912600000      2.4292780000      2.2462450000  
C        1.1129370000     -2.3946960000      0.8571120000  
O        0.9927490000     -3.4696180000      1.2095260000  
C       -2.8932270000     -1.3753710000     -1.9946160000  
C       -4.3700360000     -1.5729960000     -1.7135930000  
H       -2.4591770000     -2.1772470000     -2.5885640000  
H       -4.9185190000     -1.6829850000     -2.6569780000  
H       -4.8057390000     -0.7192820000     -1.1886110000  
H       -2.6958170000     -0.4400230000     -2.5125150000  
C       -1.9490290000     -2.2514950000     -0.3337430000  
O       -2.2355810000     -3.3435800000     -0.1008330000  
C        0.3306810000     -0.7782570000     -1.4880410000  
O        0.8390330000     -0.9845090000     -2.5121120000  
H       -4.5650540000     -2.4724840000     -1.1251490000  

TS(S:T) 

Frequency: 1011.81 cm
-1 

Rh    1.3288200000   0.2549740000     -0.7721210000  
P       3.5636460000    0.6646330000      0.1533090000  
P       1.8052150000     -1.9964380000     -0.2585080000  
C        3.9029540000     -0.8208330000      1.2203930000  
H        4.9557740000     -0.8492150000      1.5155280000  
H        3.3105730000     -0.6842750000      2.1290090000  
C        3.5080580000     -2.1138250000      0.4986910000  
H        3.5519580000     -2.9754400000      1.1701670000  
H        4.1967120000     -2.3178370000     -0.3258260000  
C        3.9146740000      2.0944110000      1.2506540000  
H        3.1837520000      2.1174920000      2.0585160000  
H        4.9212950000      2.0274290000      1.6701450000  
H        3.8341100000      3.0194850000      0.6764760000  
C        4.9531730000      0.6979290000     -1.0527760000  
H        4.8529870000      1.5791890000     -1.6891570000  
H        5.9202940000      0.7361610000     -0.5450500000  
H        4.9149470000     -0.1813490000     -1.6969750000  
C        0.6729760000     -2.8141020000      0.9597320000  
H        0.7350210000     -3.9027170000      0.8676740000  
H        1.0237980000     -2.5405230000      1.9592140000  
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P      -1.0751550000     -2.1886170000      0.8601710000  
C       -1.8727530000     -3.0701370000      2.2695100000  
H       -1.7240590000     -4.1512850000      2.2193300000  
H       -1.4665410000     -2.6938540000      3.2103420000  
H       -2.9436830000     -2.8587590000      2.2633310000  
C       -1.8178140000     -3.0090900000     -0.6396390000  
H       -1.1050660000     -2.8965330000     -1.4601440000  
H       -1.9542390000     -4.0806920000     -0.4653020000  
C       -3.1457460000     -2.3298050000     -1.0171700000  
H       -3.8818730000     -2.4626420000     -0.2182840000  
H       -3.5670930000     -2.7891840000     -1.9157260000  
P      -2.9177060000     -0.4890560000     -1.2542160000  
C       -4.6344030000      0.1671820000     -1.1924600000  
H       -5.0525620000      0.0187990000     -0.1952100000  
H       -4.5940820000      1.2387490000     -1.3930570000  
H       -5.2824780000     -0.3118030000     -1.9304500000  
Rh      -1.3088630000  0.2698580000      0.5329700000  
C       -2.4939700000     -0.3195110000     -3.0382170000  
H       -3.2857340000     -0.7134480000     -3.6804350000  
H       -2.3503180000      0.7409150000     -3.2519760000  
H       -1.5601430000     -0.8399150000     -3.2558060000  
C        1.9006920000     -3.1769650000     -1.6616100000  
H        2.2147340000     -4.1659000000     -1.3196750000  
H        0.9353240000     -3.2611040000     -2.1596100000  
H        2.6223280000     -2.8008700000     -2.3880730000  
C        1.0872370000      2.0919910000     -1.3778460000  
O        1.0132680000      3.1387890000     -1.8088920000  
C       -1.2870680000      3.3838830000      0.9760190000  
C       -1.5167780000      4.8008060000      0.4519010000  
H       -0.2452570000      3.2239650000      1.2687540000  
H       -1.2350490000      5.5312220000      1.2136170000  
H       -2.5649250000      4.9609280000      0.1951080000  
H       -1.8646540000      3.2007440000      1.8889170000  
C       -1.6747980000      2.2809450000     -0.0087780000  
O       -2.1915340000   2.5258790000     -1.0635630000  
C        0.4931780000      0.6375210000      1.3423150000  
O        1.0365100000      0.8437480000      2.3547480000  
H       -0.9243060000      4.9935500000     -0.4441840000  
C       -2.4781470000      0.5346470000      2.0970770000  
O       -3.1203230000   0.5947880000      3.0360960000  
H        0.3648620000     -0.2676420000     -1.9876430000  
H        1.5533730000     -0.1547970000     -2.3469460000  

TS(T:W) 

Frequency: 538.37 cm
-1 
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Rh       1.4809310000      0.4826450000     -0.4611870000                  
P        3.6645330000     -0.0984800000      0.3142820000                  
P        1.3126980000     -1.7950830000     -0.9747950000                  
C        3.8434890000     -1.9489860000      0.1888330000                  
H        4.9000120000     -2.2160650000      0.1001530000                  
H        3.4855730000     -2.3684820000      1.1336180000                  
C        3.0338620000     -2.4985620000     -0.9910680000                  
H        3.0025610000     -3.5915880000     -0.9808730000                  
H        3.4805230000     -2.1906830000     -1.9406700000                  
C        4.1836820000      0.3061610000      2.0247060000                  
H        3.3985140000      0.0158480000      2.7235270000                  
H        5.1199210000     -0.1937700000      2.2848320000                  
H        4.3259610000      1.3855220000      2.1069770000                  
C        5.0112920000      0.5656860000     -0.7424470000                  
H        4.9954700000      1.6563830000     -0.7066610000                  
H        5.9886270000      0.2130060000     -0.4042420000                  
H        4.8507470000      0.2620630000     -1.7778210000                  
C        0.4634230000     -2.8196920000      0.3240500000                  
H        0.3729670000     -3.8675130000      0.0212550000                  
H        1.0982860000     -2.7809770000      1.2132170000                  
P       -1.1677340000     -2.0782630000      0.8103480000                  
C       -1.4660450000     -2.7836590000      2.4831960000                  
H       -1.3540500000     -3.8704520000      2.4943330000                  
H       -0.7681020000     -2.3374080000      3.1939360000                  
H       -2.4781720000     -2.5252540000      2.8009280000                  
C       -2.4237140000     -2.9321500000     -0.2742410000                  
H       -1.9566760000     -3.1019330000     -1.2473290000                  
H       -2.6653740000     -3.9140690000      0.1427020000                  
C       -3.6802050000     -2.0657660000     -0.4351810000                  
H       -4.2200640000     -1.9964250000      0.5139560000                  
H       -4.3662390000     -2.5074130000     -1.1633260000                  
P       -3.2189710000     -0.3267620000     -0.9237920000                  
C       -4.7678080000      0.6244170000     -0.6527470000                  
H       -5.0095900000      0.6454200000      0.4110740000                  
H       -4.6109700000      1.6484760000     -0.9943410000                  
H       -5.6050300000      0.1893120000     -1.2040570000                  
Rh      -1.2694420000      0.2729530000      0.4806280000                  
C       -3.0971110000     -0.3758020000     -2.7598660000                  
H       -4.0604110000     -0.6224440000     -3.2135010000                  
H       -2.7754170000      0.6077270000     -3.1035690000                  
H       -2.3583610000     -1.1114920000     -3.0792890000                  
C        0.5975510000     -2.3455330000     -2.5673620000                  
H        0.5678840000     -3.4355080000     -2.6418030000                  
H       -0.4058000000     -1.9384330000     -2.6781890000                  
H        1.2097830000     -1.9387820000     -3.3731190000                  
C        1.9662680000      2.3703750000     -0.6391490000                  
O        2.3837730000      3.4137940000     -0.8187300000                  
C       -0.9237530000      3.4654400000      0.3861540000                  
C       -0.8194070000      4.8265200000     -0.3087300000                  
H       -0.0112790000      3.2024950000      0.9218800000                  
H       -0.6158460000      5.6066900000      0.4273750000                  
H       -1.7498760000      5.0698580000     -0.8220310000                  
H       -1.7149290000      3.4931800000      1.1450310000                  
C       -1.3305810000      2.3343350000     -0.5442480000                  
O       -2.0587080000      2.4985610000     -1.4888620000                  
C        0.5889440000      0.4019350000      1.4929570000                  
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O        0.9148050000      0.3604550000      2.6149020000  
H       -0.0147840000      4.8396750000     -1.0462340000  
C       -2.3137780000      0.8696640000      2.1450260000  
O       -2.8567380000   1.0169240000      3.1334600000  
H       -0.4354770000      1.3181500000     -0.7325450000  
H        1.7430350000      0.5475880000     -2.0961310000  
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Appendix 3 – Transition States of Rhodium Catalyzed Aldehyde-Water Shift Catalysis 

TS(I:K) 

Frequency: 1577.48 cm
-1 

Rh    1.7857750000   0.3854210000     -0.6526000000  
P       3.5962790000    1.5683550000      0.3661550000  
P       2.5801060000     -1.4473930000      0.6718890000  
C        4.0882810000      0.5911220000      1.8689220000  
H        5.0628320000      0.9309400000      2.2306860000  
H        3.3574300000      0.8240930000      2.6493390000  
C        4.1178390000     -0.9114290000      1.5658070000  
H        4.2618820000     -1.5020620000      2.4742110000  
H        4.9375210000     -1.1491150000      0.8829120000  
C        3.3653650000      3.2806620000      0.9753370000  
H        2.5255540000      3.3210050000      1.6683440000  
H        4.2701200000      3.6333550000      1.4760230000  
H        3.1551700000      3.9387460000      0.1300790000  
C        5.0959000000      1.6438360000     -0.6830370000  
H        4.8871670000      2.2528340000     -1.5650570000  
H        5.9231590000      2.0981690000     -0.1318180000  
H        5.3780240000      0.6414980000     -1.0114530000  
C        1.3699800000     -1.8827530000      2.0124310000  
H        1.6270990000     -2.8407650000      2.4741070000  
H        1.4674270000     -1.1091380000      2.7794420000  
P      -0.4219470000     -1.8750160000      1.5307140000  
C       -1.2786910000     -1.7961770000      3.1508250000  
H       -1.0178810000     -2.6565440000      3.7715800000  
H       -0.9887420000     -0.8807530000      3.6686790000  
H       -2.3575030000     -1.7734430000      2.9969850000  
C       -0.8429530000     -3.5404270000      0.8458730000  
H       -0.1844900000     -3.7273800000     -0.0055190000  
H       -0.6630110000     -4.3237750000      1.5874770000  
C       -2.3103060000     -3.5264050000      0.3954310000  
H       -2.9763430000     -3.5404870000      1.2614860000  
H       -2.5380030000     -4.4168040000     -0.1948030000  
P      -2.7484240000     -2.0048230000     -0.6092070000  
C       -4.4597150000     -1.5968230000     -0.1178350000  
H       -4.4586470000     -1.1437710000      0.8730120000  
H       -4.8530970000     -0.8761820000     -0.8365230000  
H       -5.0800640000     -2.4967070000     -0.1285620000  
Rh      -1.1333670000     -0.2993300000     -0.0972460000  
C       -2.8687140000     -2.5614500000     -2.3471500000  
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H       -3.5352680000     -3.4254860000     -2.4082630000  
H       -3.2931910000     -1.7459080000     -2.9364080000  
H       -1.8863390000     -2.8268420000     -2.7342920000  
C        0.4381850000     -0.9549700000     -1.4886990000  
O        0.2823170000     -1.8190870000     -2.2496910000  
C        0.2356700000      1.1455370000      0.6856270000  
O        0.3629950000      1.9670710000      1.4825860000  
C        3.0358690000     -3.0338600000     -0.1211870000  
H        3.8832970000     -2.8367840000     -0.7818340000  
H        3.3250710000     -3.7775290000      0.6255920000  
H        2.2086500000     -3.4179480000     -0.7186220000  
C       -1.9011030000      0.9357450000     -1.4824930000  
O       -2.3134340000   1.6257790000     -2.2768420000  
C        1.6045870000      1.7384920000     -2.1199130000  
O        1.5329580000      2.5148490000     -2.9415910000  
O       -2.8973370000   0.7985270000      1.5458170000  
C       -3.0938570000      2.1282620000      1.6887790000  
H       -2.3280580000      2.7773500000      1.2547140000  
C       -4.4971090000      2.6764120000      1.5636020000  
H       -4.5378000000      3.6640930000      2.0347780000  
H       -5.1854630000      2.0115280000      2.0954680000  
C       -4.9116510000      2.8023160000      0.0902670000  
H       -4.9207050000      1.8322190000     -0.4101930000  
H       -5.9145080000      3.2261410000      0.0201990000  
H       -4.2304950000      3.4642310000     -0.4509020000  
O        5.6214940000     -1.6155650000     -1.6277370000  
H        5.4648510000     -1.5533100000     -2.5771170000  
H        6.5142770000     -1.9733130000     -1.5543960000  
O       -2.6698040000   2.0870840000      3.2669710000  
H       -3.4039560000      2.3023030000      3.8651030000  
H       -2.6833170000      1.0096660000      2.8436920000  
O       -4.8468520000   0.1093690000     -2.9608470000  
H       -4.6552220000      0.9440340000     -3.4019530000  
H       -5.6733180000     -0.1886070000     -3.3576690000  
O       -0.9046760000   3.8479590000     -0.6727490000  
H       -1.1970560000      4.3240580000     -1.4582820000  
H       -0.6023900000      4.5390270000     -0.0732980000  

TS(L:M) 

Frequency: 419.09 cm
-1 
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Rh    1.5278170000     -0.6207690000      0.3989490000  
P       3.6292500000     -1.2305860000     -0.5584910000  
P       2.4374780000    1.6057090000      0.2859920000  
C        4.4117980000      0.3223840000     -1.2157540000  
H        5.4749590000      0.1487470000     -1.4040500000  
H        3.9443730000      0.5304890000     -2.1833220000  
C        4.2122860000      1.4888000000     -0.2421630000  
H        4.5512510000      2.4347650000     -0.6726070000  
H        4.7725110000      1.3210480000      0.6809130000  
C        3.6795390000     -2.4086350000     -1.9614960000  
H        3.0220920000     -2.0659220000     -2.7603130000  
H        4.6985690000     -2.5068190000     -2.3430770000  
H        3.3364360000     -3.3887800000     -1.6249180000  
C        4.8313290000     -1.8966180000      0.6542440000  
H        4.4599520000     -2.8450030000      1.0475400000  
H        5.7986710000     -2.0696040000      0.1758970000  
H        4.9499540000     -1.1972400000      1.4842060000  
C        1.6228080000      2.6509730000     -1.0150580000  
H        1.9109920000      3.7011890000     -0.9102460000  
H        1.9981250000      2.2994070000     -1.9806030000  
P      -0.2236880000      2.4795500000     -1.0983950000  
C       -0.6117570000      3.0859690000     -2.7903720000  
H       -0.2060830000      4.0868780000     -2.9566640000  
H       -0.1912350000      2.4010620000     -3.5286050000  
H       -1.6924480000      3.1133410000     -2.9368220000  
C       -0.9521380000      3.7530330000      0.0325280000  
H       -0.5301600000      3.5906710000      1.0274540000  
H       -0.6793770000      4.7637270000     -0.2841900000  
C       -2.4773700000      3.5739330000      0.0650150000  
H       -2.9216780000      3.9281000000     -0.8682930000  
H       -2.9164410000      4.1695210000      0.8683300000  
P      -2.9852030000      1.7778700000      0.2749410000  
C       -4.5145760000      1.6396850000     -0.7271400000  
H       -4.2852880000      1.7859340000     -1.7837380000  
H       -4.9386680000      0.6439590000     -0.6018620000  
H       -5.2451920000     2.3891410000     -0.4124120000  
Rh      -1.1715260000  0.4059480000     -0.4271870000  
C       -3.5659490000      1.6588060000      2.0102940000  
H       -4.3287290000      2.4183000000      2.1991370000  
H       -3.9983070000      0.6731920000      2.1894100000  
H       -2.7295000000      1.8021520000      2.6939580000  
C       -0.1194560000      0.1828930000      1.4106010000  
O       -0.5341270000   0.5171990000      2.4420880000  
C        0.2099810000     -0.7387480000     -1.4495170000  
O        0.5214780000     -1.3142810000     -2.4025300000  
C        2.4720620000      2.6397230000      1.7973870000  
H        3.1013590000      2.1307740000      2.5302890000  
H        2.8907630000      3.6268260000      1.5858920000  
H        1.4692520000      2.7494140000      2.2102730000  
C        1.1998270000     -2.4729850000      0.9867890000  
O        1.0745740000     -3.5458830000      1.3390320000  
O       -4.3291770000     -1.5606290000      0.2324570000  
C       -3.3113070000     -2.0762620000     -0.4151670000  
H       -2.0880520000     -0.9903620000     -0.0228620000  
C       -2.5940260000     -3.2983900000      0.1227540000  
H       -1.6649910000     -3.4150740000     -0.4349970000  
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H       -3.2385500000     -4.1388760000     -0.1704920000  
C       -2.3568260000     -3.3288760000      1.6305170000  
H       -3.2936300000     -3.4042560000      2.1843390000  
H       -1.7585970000     -4.2032160000      1.8880540000  
H       -1.8195200000     -2.4399380000      1.9687950000  
O        4.7207000000      0.5309890000      3.1061750000  
H        4.3146260000      0.0184800000      3.8146000000  
H        5.5503960000      0.8471080000      3.4831500000  
O       -3.4490980000     -1.9304060000     -1.7059540000  
H       -2.7579660000     -2.4282660000     -2.2254790000  
H       -4.3538390000     -1.7318960000      1.2051990000  
O       -4.9816870000     -1.5795100000      2.8062620000  
H       -4.5983790000     -1.7830660000      3.6663070000  
H       -5.9386810000     -1.6017900000      2.9245490000  
O       -1.6433260000     -3.2612680000     -3.0879330000  
H       -1.9292920000     -3.9031300000     -3.7481380000  
H       -0.8923960000     -2.7859930000     -3.4621340000  



161 

Appendix 4 – Transition States of Bimetallic Cobalt Catalyzed Hydroformylation and Aldehyde-
Water Shift Catalysis 

Bimetallic cobalt catalyzed hydroformylation 

TS(Co_A1:Co_A2) 

Frequency: 90.63 cm
-1 

P      -4.1616980000     -0.8559210000     -0.4211020000  
P      -1.0066320000     -0.7752870000     -0.5202260000  
C       -3.2798110000     -1.9822680000     -1.5946230000  
H       -3.8782390000     -2.8806910000     -1.7668780000  
H       -3.2011600000     -1.4537460000     -2.5488460000  
C       -1.8953860000     -2.3294660000     -1.0425370000  
H       -1.2973670000     -2.8670210000     -1.7826040000  
H       -1.9825880000     -2.9744440000     -0.1638030000  
C       -3.3151740000      1.8382830000     -0.9859610000  
O       -3.7868940000   2.5845390000     -1.7001540000  
C       -3.2562320000      0.6171240000      1.9186650000  
O       -3.6911440000   0.6098310000      2.9680470000  
C       -1.3976790000      1.9253520000      0.7001320000  
O       -0.6491390000   2.7207440000      1.0115510000  
C       -5.6540480000     -0.2712320000     -1.3014730000  
H       -5.3842000000      0.2592170000     -2.2149030000  
H       -6.2863700000     -1.1248120000     -1.5551700000  
H       -6.2204040000      0.4049880000     -0.6581340000  
C       -4.8162000000     -1.9309350000      0.9113830000  
H       -5.4402310000     -1.3434850000      1.5870380000  
H       -5.4262990000     -2.7262650000      0.4773530000  
H       -4.0074800000     -2.3751150000      1.4927600000  
C       -0.0936650000     -0.2758920000     -2.0390030000  
H        0.6339590000      0.5022540000     -1.7928330000  
H        0.4232180000     -1.1310180000     -2.4811300000  
H       -0.7890360000      0.1371340000     -2.7707770000  
C        0.3386780000     -1.5340860000      0.5373990000  
H       -0.1476930000     -1.9829940000      1.4085310000  
H        0.7614740000     -2.3524060000     -0.0547910000  
P       1.7884250000     -0.5468120000      1.1673360000  
C        1.2463710000      0.1941720000      2.7520770000  
H        0.4879160000      0.9563400000      2.5851180000  
H        0.8581680000     -0.5748130000      3.4236500000  
H        2.1030350000      0.6760620000      3.2273100000  
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C        3.0133360000     -1.8612880000      1.6576550000                  
H        3.6071640000     -1.4317940000      2.4701250000                  
H        2.5013960000     -2.7361490000      2.0658010000                  
C        3.9146050000     -2.2329380000      0.4717280000                  
H        3.3658070000     -2.8254910000     -0.2670440000                  
H        4.7601280000     -2.8427150000      0.8003030000                  
P        4.5286440000     -0.7072970000     -0.4019070000                  
C        5.2436420000     -1.3068220000     -1.9737050000                  
H        5.7188670000     -0.4761460000     -2.4985330000                  
H        5.9919810000     -2.0797660000     -1.7863180000                  
H        4.4585250000     -1.7146020000     -2.6123140000                  
C        3.3907040000      2.4253990000     -0.6294110000                  
O        3.7367080000      3.4980240000     -0.7776330000                  
C        5.9510190000     -0.1095580000      0.5910260000                  
H        6.7094530000     -0.8918390000      0.6710540000                  
H        6.3921820000      0.7624900000      0.1049160000                  
H        5.6326940000      0.1841640000      1.5924250000                  
Co      -2.6150050000      0.7067380000      0.2325750000                  
Co       2.8474050000      0.8209030000     -0.3879750000                  
H        1.6535240000      1.6874970000     -0.2169790000                  
H        3.2784780000      0.9484540000     -1.7556470000                  
 

TS(Co_2B:Co_2C’) 

Frequency: 837.01 cm
-1 

 

(For clarity P chelate ligands are removed.) 

P       -3.5744530000     -0.5818630000     -0.1980490000                  
P       -1.3331080000      1.4216270000     -0.8030520000                  
C       -4.0794140000      1.2089170000     -0.1807740000                  
H       -5.0773000000      1.3260800000     -0.6107830000                  
H       -4.1546580000      1.4787090000      0.8758310000                  
C       -3.0638740000      2.1269510000     -0.8927750000                  
H       -3.0867020000      3.1309860000     -0.4644250000                  
H       -3.3082020000      2.2303430000     -1.9516670000                  
C       -4.6999470000     -1.4295340000      0.9636990000                  
H       -4.5475450000     -1.0641750000      1.9800150000                  
H       -5.7399660000     -1.2629800000      0.6737800000                  
H       -4.4949500000     -2.5014090000      0.9457550000                  
C       -4.0056570000     -1.2516960000     -1.8462420000                  
H       -3.7408980000     -2.3097300000     -1.8928350000                  
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H       -5.0795750000     -1.1514980000     -2.0200430000  
H       -3.4705790000     -0.7300150000     -2.6403950000  
C       -0.1747870000      2.6291240000     -0.0253530000  
H       -0.0433260000      3.5401200000     -0.6164470000  
H       -0.5997580000      2.9118920000      0.9422600000  
P       1.4664780000    1.8129260000      0.3261710000  
C        2.1545740000      2.8912170000      1.6467670000  
H        2.0580900000      3.9393580000      1.3555690000  
H        1.6284470000      2.7420690000      2.5903950000  
H        3.2123650000      2.6751870000      1.8026590000  
C        2.5469540000      2.1683910000     -1.1418090000  
H        1.9466800000      2.0885770000     -2.0496640000  
H        2.9177760000      3.1950780000     -1.0917100000  
C        3.6989520000      1.1572610000     -1.1645410000  
H        4.4014670000      1.3483080000     -0.3485520000  
H        4.2664490000      1.2214040000     -2.0963440000  
P       3.0544820000     -0.5693460000     -0.9321820000  
C        4.5311470000     -1.5622770000     -0.4971710000  
H        4.9329020000     -1.2432430000      0.4648320000  
H        4.2705100000     -2.6204250000     -0.4349370000  
H        5.3005830000     -1.4407220000     -1.2629370000  
C        2.6136430000     -1.1587620000     -2.6141770000  
H        3.5026180000     -1.1647290000     -3.2488610000  
H        2.2132230000     -2.1722450000     -2.5611740000  
H        1.8579960000     -0.5211290000     -3.0729360000  
C       -1.7600780000      0.1113460000      1.9923430000  
O       -2.0326580000   0.4263390000      3.0518390000  
C       -0.8218400000      1.3564740000     -2.5641460000  
H       -1.5183820000      0.7332370000     -3.1266930000  
H       -0.8252960000      2.3571080000     -3.0029030000  
H        0.1700010000      0.9208150000     -2.6668270000  
H       -1.5524250000     -1.8057200000      1.0332140000  
C       -0.7214600000     -1.4872450000     -0.9569440000  
O       -0.4806280000     -2.1577740000     -1.8518130000  
H        0.2185620000     -0.3359280000      1.6044760000  
C        1.4091700000     -2.2639130000      0.6765270000  
O        1.4403200000     -3.3973360000      0.7048050000  
Co       1.4371550000     -0.4713620000      0.6618700000  
Co      -1.3991230000     -0.5095680000      0.3542010000  
C        2.6413850000     -0.4304180000      2.3305260000  
C        1.3051580000     -0.3497280000      2.7841710000  
H        3.1773640000     -1.3646520000      2.4486310000  
H        0.8616330000     -1.2203300000      3.2558660000  
H        0.9444720000      0.5885600000      3.1906270000  
H        3.2707400000      0.4495660000      2.3697310000  
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TS(Co_2D:Co_2E’) 

Frequency: 270.57 cm
-1 

(For clarity P chelate ligands are removed.) 

P      -3.3118190000      0.6865740000     -0.1995280000  
P      -1.5131190000     -1.8659250000     -0.2513890000  
C       -3.6146890000     -0.5492040000     -1.5433750000  
H       -4.6723760000     -0.5426070000     -1.8195080000  
H       -3.0461330000     -0.2097920000     -2.4119940000  
C       -3.1696680000     -1.9435270000     -1.0943780000  
H       -3.1243180000     -2.6426390000     -1.9328260000  
H       -3.8711940000     -2.3654050000     -0.3695110000  
C       -3.6335170000      2.3186660000     -0.9573370000  
H       -2.8832200000      2.5289990000     -1.7195620000  
H       -4.6232010000      2.3180130000     -1.4198090000  
H       -3.6058150000      3.1021640000     -0.1983330000  
C       -4.6472770000      0.4494560000      1.0328430000  
H       -4.5401600000      1.1804790000      1.8370060000  
H       -5.6240940000      0.5896570000      0.5642050000  
H       -4.6022430000     -0.5483610000      1.4717270000  
C       -0.2541640000     -2.3158590000     -1.5350060000  
H       -0.2036380000     -3.4032210000     -1.6355980000  
H       -0.5972420000     -1.9096580000     -2.4903960000  
P       1.4177100000     -1.5777870000     -1.2237800000  
C        2.3085650000     -1.8416660000     -2.8052140000  
H        2.2788020000     -2.8917700000     -3.1021850000  
H        1.8565060000     -1.2342190000     -3.5917850000  
H        3.3512230000     -1.5379620000     -2.6932370000  
C        2.2568060000     -2.6831750000      0.0076840000  
H        1.5329910000     -2.9254930000      0.7895000000  
H        2.5640730000     -3.6243220000     -0.4554780000  
C        3.4585360000     -1.9420380000      0.6111900000  
H        4.2578280000     -1.8379170000     -0.1282070000  
H        3.8790710000     -2.4963760000      1.4537000000  
P       2.9853170000     -0.2204860000      1.1527120000  
C        4.5710930000      0.6973470000      1.1938280000  
H        4.9998110000      0.7655060000      0.1931200000  
H        4.4084560000      1.7065450000      1.5766510000  
H        5.2830270000      0.1874170000      1.8465450000  
C        2.5151130000     -0.3699750000      2.9198970000  
H        3.3511300000     -0.7558540000      3.5071250000  



165 

H        2.2406010000      0.6135710000      3.3065290000  
H        1.6600900000     -1.0372430000      3.0357930000  
C       -0.2845660000      0.7819020000     -1.1522910000  
O       -0.7737610000   1.0644920000     -2.1775070000  
C       -1.5316330000     -3.2866270000      0.9091170000  
H       -2.3304180000     -3.1563620000      1.6410560000  
H       -1.7105490000     -4.2148360000      0.3616960000  
H       -0.5877800000     -3.3722650000      1.4480360000  
C       -1.1384330000      1.9540940000      1.1763450000  
O       -1.1278080000   3.0187270000      1.5578230000  
H        0.3632070000     -0.0347490000      0.9278260000  
C        1.7104310000      2.1733420000      0.0817570000  
O        1.8328670000      3.2120410000      0.5770620000  
Co       1.3076470000   0.5016570000     -0.2709280000  
Co      -1.2120450000  0.2399030000      0.6272190000  
C        1.9764600000      2.9867100000     -2.4688370000  
C        2.5301700000      1.8720250000     -1.5928580000  
H        0.9819300000      2.7577710000     -2.8527000000  
H        2.5897580000      0.9361250000     -2.1454360000  
H        3.5279500000      2.0926060000     -1.2170170000  
H        1.9414910000      3.9386340000     -1.9376620000  
H        2.6382450000      3.1148370000     -3.3305330000  
C       -1.4753510000     -0.3996700000      2.3479180000  
O       -1.6067560000     -0.7777390000      3.4068030000  

TS(Co_2D:Co_2E) 

Frequency: 274.71 cm
-1 

(For clarity P chelate ligands are removed.) 

P      -2.9766670000      1.1832960000     -0.0816410000  
P      -1.8821130000     -1.5946860000     -0.8771180000  
C       -3.2508960000      0.6241640000     -1.8285750000  
H       -4.1774770000     1.0530550000     -2.2180160000  
H       -2.4312550000      1.0243100000     -2.4316840000  
C       -3.2877410000     -0.9061640000     -1.8751810000  
H       -3.2538010000     -1.2881570000     -2.8985950000  
H       -4.2056370000     -1.2896160000     -1.4205620000  
C       -2.6104710000      2.9740590000     -0.1949170000  
H       -1.7074060000      3.1402560000     -0.7814720000  
H      -3.4418380000      3.4959600000     -0.6740700000  
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H       -2.4718010000      3.3913540000      0.8040190000                  
C       -4.6279570000      1.0949700000      0.7149820000                  
H       -4.5701570000      1.4936240000      1.7294800000                  
H       -5.3541710000      1.6799290000      0.1460650000                  
H       -4.9666560000      0.0601060000      0.7806880000                  
C       -0.4565030000     -1.6168390000     -2.0802520000                  
H       -0.4346050000     -2.5742270000     -2.6092430000                  
H       -0.6484080000     -0.8420850000     -2.8276080000                  
P        1.2197450000     -1.2454600000     -1.3994860000                  
C        2.3031540000     -1.4202080000     -2.8683860000                  
H        2.2180480000     -2.4278370000     -3.2812000000                  
H        2.0204300000     -0.7024040000     -3.6400200000                  
H        3.3433440000     -1.2387080000     -2.5956550000                  
C        1.7226770000     -2.6371120000     -0.2883630000                  
H        0.9232240000     -2.8072580000      0.4349550000                  
H        1.8486380000     -3.5551690000     -0.8683290000                  
C        3.0218390000     -2.2464070000      0.4295710000                  
H        3.8677970000     -2.2683910000     -0.2624040000                  
H        3.2517110000     -2.9503090000      1.2327550000                  
P        2.9047380000     -0.5172670000      1.1172040000                  
C        4.6374720000      0.0769080000      1.1883040000                  
H        5.0582270000      0.1583570000      0.1846430000                  
H        4.6793760000      1.0575720000      1.6662870000                  
H        5.2474050000     -0.6194720000      1.7682850000                  
C        2.4140640000     -0.7345030000      2.8699560000                  
H        3.1782880000     -1.3040600000      3.4032340000                  
H        2.3018050000      0.2354710000      3.3575480000                  
H        1.4680180000     -1.2714340000      2.9355500000                  
C        0.7671580000      1.5885610000     -1.5717670000                  
O        0.1358230000      2.1053090000     -2.3910250000                  
C       -2.2983120000     -3.3629650000     -0.6364650000                  
H       -3.1509380000     -3.4391650000      0.0409060000                  
H       -2.5596410000     -3.8302620000     -1.5880750000                  
H       -1.4625890000     -3.9045640000     -0.1913870000                  
C       -1.5872180000      0.7891100000      2.3498190000                  
O       -1.6167560000      1.4781730000      3.2536720000                  
H        0.0997670000      0.1077680000      0.4391000000                  
C        1.2864110000      1.9516590000      1.0173500000                  
O        1.1965660000      2.7468860000      1.8195250000                  
Co       1.3947290000      0.6570520000     -0.2261670000                  
Co      -1.5379100000     -0.2745670000      0.9274600000                  
C        2.8966060000      3.3423470000     -1.5412000000                  
C        2.7385660000      1.8340240000     -1.6558410000                  
H        2.1131510000      3.8827210000     -2.0748080000                  
H        2.7501240000      1.4865430000     -2.6871030000                  
H        3.5307460000      1.3114460000     -1.1241480000                  
H        2.9116110000      3.6865200000     -0.5053710000                  
H        3.8508900000      3.6330140000     -1.9916830000                  
C       -1.1544910000     -1.6890090000      1.9044870000                  
O       -0.9696340000     -2.6148430000      2.5462650000               
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TS(Co_2*D:Co_2*E’) 

Frequency: 264.81 cm
-1 

(For clarity P chelate ligands are removed.) 

P       3.3511100000     -0.7179680000     -0.3676370000  
P       1.5631920000    1.8301320000     -0.0279710000  
C        3.6644090000      0.7174710000     -1.4943480000  
H        4.7227130000      0.7476260000     -1.7667420000  
H        3.0982940000      0.5266510000     -2.4091020000  
C        3.2285770000      2.0262550000     -0.8291880000  
H        3.2020930000      2.8531720000     -1.5428950000  
H        3.9250870000      2.3137060000     -0.0366930000  
C        3.6355540000     -2.2101520000     -1.3844010000  
H        2.8758930000     -2.2804110000     -2.1626750000  
H        4.6221800000     -2.1520980000     -1.8497070000  
H        3.5981260000     -3.1054760000     -0.7615730000  
C        4.7033560000     -0.7120080000      0.8698450000  
H        4.5880360000     -1.5635460000      1.5437050000  
H        5.6715860000     -0.7940400000      0.3705790000  
H        4.6872310000      0.2004500000      1.4676850000  
C        0.3220490000      2.4624040000     -1.2515920000  
H        0.2860240000      3.5541040000     -1.2066760000  
H        0.6757060000      2.1842870000     -2.2482810000  
P      -1.3630700000      1.7069600000     -1.0689750000  
C       -2.1909390000      2.1081220000     -2.6561780000  
H       -2.1444460000      3.1782760000     -2.8668400000  
H       -1.7142090000      1.5624060000     -3.4730210000  
H       -3.2381990000      1.8041340000     -2.6056010000  
C       -2.2631550000      2.6957130000      0.2210030000  
H       -1.5619280000      2.9296660000      1.0257890000  
H       -2.6105600000      3.6462210000     -0.1915230000  
C       -3.4353810000      1.8620420000      0.7595810000  
H       -4.2103930000      1.7477090000     -0.0037750000  
H       -3.9040130000      2.3508740000      1.6174430000  
P      -2.8692210000      0.1503680000      1.2242920000  
C       -4.4068090000     -0.8181750000      1.4601640000  
H       -4.9713740000     -0.8859300000      0.5313550000  
H       -4.1566480000     -1.8286840000      1.7880090000  
H       -5.0298840000     -0.3452360000      2.2222730000  
C       -2.2248390000      0.3173850000      2.9365330000  
H       -3.0103840000      0.6811490000      3.6021710000  
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H       -1.8890040000     -0.6576970000      3.2947980000                  
H       -1.3818170000      1.0076420000      2.9718930000                  
C        1.5589620000      3.0668030000      1.3262430000                  
H        2.3410940000      2.8283140000      2.0488320000                  
H        1.7500920000      4.0642860000      0.9240590000                  
H        0.6028870000      3.0756680000      1.8503910000                  
C        1.1615530000     -2.1542070000      0.8359290000                  
O        1.1257160000     -3.2636330000      1.0517680000                  
Co       1.2651210000     -0.3785340000      0.5405250000                  
Co      -1.2663380000     -0.4575510000     -0.3397240000                  
H       -4.4525070000     -1.2315010000     -1.6018350000                  
C        0.3170160000     -0.6586430000     -1.2648050000                  
O        0.7632790000     -0.8309130000     -2.3336120000                  
C       -1.7416260000     -2.1429240000     -0.1929150000                  
O       -1.9674420000     -3.2011880000      0.2219110000                  
H       -0.2959090000     -0.0977790000      0.8982330000                  
C       -2.3413240000     -1.6971360000     -1.9036950000                  
C       -3.8190580000     -2.0521450000     -1.9425290000                  
H       -2.1452430000     -0.7701540000     -2.4376170000                  
H       -4.0986070000     -2.2664900000     -2.9784220000                  
H       -4.0461030000     -2.9421870000     -1.3541650000                  
H       -1.7120460000     -2.4553870000     -2.3693000000                  
C        1.5720080000     -0.0027180000      2.3314430000                  
O        1.7392980000      0.2086900000      3.4306120000                  

TS(Co_2G:Co_2H) 

Frequency: 90.68 cm
-1 

 

(For clarity P chelate ligands are removed.) 

P       -3.6452450000      1.4566490000     -0.0663070000                  
P       -2.3627670000     -1.2525340000     -0.8335220000                  
C       -3.8816530000      0.8754200000     -1.8122940000                  
H       -4.8337240000      1.2340140000     -2.2116720000                  
H       -3.0853100000      1.3322980000     -2.4067930000                  
C       -3.7960850000     -0.6520940000     -1.8610650000                  
H       -3.7151510000     -1.0247940000     -2.8851560000                  
H       -4.6924540000     -1.1036900000     -1.4273990000                  
C       -3.4110970000      3.2674720000     -0.2178800000                  
H       -2.4537990000      3.4585060000     -0.7040890000                  
H       -4.2182690000      3.7146580000     -0.8017370000                  
H       -3.3992140000      3.7255420000      0.7727360000                  
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C       -5.2759730000      1.2496030000      0.7459750000  
H       -5.2234930000      1.6320010000      1.7671110000  
H       -6.0531910000      1.7919580000      0.2029520000  
H       -5.5385270000      0.1922630000      0.7994300000  
C       -0.9753610000     -1.3990230000     -2.0602470000  
H       -1.2154480000     -2.1834060000     -2.7852160000  
H       -0.9503290000     -0.4474070000     -2.5988780000  
P       0.7605410000     -1.6434400000     -1.4341360000  
C        1.6937040000     -1.6448580000     -3.0222360000  
H        1.3199830000     -2.4183640000     -3.6968030000  
H        1.5972820000     -0.6698730000     -3.5024060000  
H        2.7525100000     -1.8193130000     -2.8279960000  
C        0.8883590000     -3.4047930000     -0.8526120000  
H        0.1264620000     -3.5647710000     -0.0865810000  
H        0.6928610000     -4.1062130000     -1.6678430000  
C        2.2859350000     -3.6124780000     -0.2492850000  
H        3.0409860000     -3.6652810000     -1.0380060000  
H        2.3380120000     -4.5531130000      0.3038610000  
P       2.7444360000     -2.1811200000      0.8635080000  
C        4.5795580000     -2.2230420000      0.8910640000  
H        4.9731650000     -1.9619160000     -0.0925790000  
H        4.9526940000     -1.4978540000      1.6164880000  
H        4.9420120000     -3.2151370000      1.1688050000  
C        2.2611040000     -2.7155550000      2.5543520000  
H        2.7635700000     -3.6496040000      2.8156350000  
H        2.5517410000     -1.9451580000      3.2710640000  
H        1.1823320000     -2.8527610000      2.6224740000  
C        3.3517960000      3.4549170000     -1.1437100000  
O        3.8036250000      2.7896740000     -1.9297500000  
C       -2.8500970000     -2.9720810000     -0.4223480000  
H       -3.7408270000     -2.9332270000      0.2076030000  
H       -3.0802630000     -3.5369550000     -1.3283290000  
H       -2.0722060000     -3.4903090000      0.1364210000  
C       -1.9557440000      1.3136680000      2.2166600000  
O       -1.9609700000   2.0261760000      3.1050460000  
H        1.3002270000      2.0933700000     -0.9611090000  
C        2.8639430000      0.7896690000      0.7454910000  
O        3.6320720000      1.6290940000      0.9747300000  
Co    1.7200220000     -0.2990270000      0.0892800000  
Co      -1.9547180000  0.2184990000      0.8282280000  
C        4.1847930000      5.5369770000     -0.1120270000  
C        3.0215150000      4.5064060000     -0.2159740000  
H        5.0908190000      5.0654020000      0.2659100000  
H        2.8121090000      4.0176010000      0.7412070000  
H        2.0911370000      4.9588680000     -0.5813950000  
H        4.3835340000      6.0111280000     -1.0722730000  
H        3.8614910000      6.2988820000      0.5980710000  
C       -1.3695060000     -1.1022700000      1.7981270000  
O       -1.1041510000     -2.0066470000      2.4539270000  
C        0.7427620000      1.1997470000     -0.4936080000  
O       -0.4663420000   1.4101380000     -0.3864080000  
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Bimetallic cobalt catalyzed aldehyde-water shift catalysis 

TS(Co_I:Co_K) 

Frequency: 1547.6 cm
-1 

(For clarity P chelate ligands are removed.) 

P      -2.5259210000     -2.3769710000      0.2251160000  
P      -0.6012640000     -0.5928390000      1.9003220000  
C       -2.1594940000     -2.8709000000      1.9758850000  
H       -3.0017090000     -3.4349650000      2.3845280000  
H       -1.3004460000     -3.5469730000      1.9510770000  
C       -1.8585190000     -1.6169770000      2.8032300000  
H       -1.5015950000     -1.8652340000      3.8055730000  
H       -2.7538400000     -0.9998570000      2.9198610000  
C       -2.4371090000     -3.9181470000     -0.7555070000  
H       -1.4000800000     -4.2388640000     -0.8475910000  
H       -3.0214940000     -4.7002400000     -0.2657690000  
H       -2.8460120000     -3.7494840000     -1.7534810000  
C       -4.3146190000     -1.9579620000      0.2458870000  
H       -4.6307420000     -1.5835690000     -0.7288470000  
H       -4.8957810000     -2.8520200000      0.4823600000  
H       -4.5236260000     -1.1995720000      1.0017980000  
C        1.0133840000     -1.3628370000      2.3808000000  
H        1.2730400000     -1.0943420000      3.4078500000  
H        0.9010430000     -2.4485000000      2.3396380000  
P       2.3516930000     -0.8880800000      1.1805400000  
C        3.4641590000     -2.3408310000      1.1151210000  
H        3.8119780000     -2.6180440000      2.1125530000  
H        2.9319550000     -3.1804640000      0.6651230000  
H        4.3158610000     -2.0899790000      0.4777320000  
C        3.3498930000      0.4565650000      1.9723490000  
H        2.6801190000      1.1253840000      2.5188680000  
H        4.0551680000      0.0284610000      2.6896000000  
C        4.0797790000      1.2058840000      0.8499290000  
H        4.8423010000      0.5731160000      0.3899510000  
H        4.5682700000      2.1107780000      1.2198830000  
P       2.8852040000    1.6437680000     -0.5018470000  
C        3.9379700000      2.0083690000     -1.9563280000  
H        4.5473550000      1.1322400000     -2.1809730000  
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H        3.3162600000      2.2543490000     -2.8190200000  
H        4.5921610000      2.8563890000     -1.7417310000  
C        2.2001290000      3.2736020000     -0.0104160000  
H        2.9968880000      4.0209800000     -0.0442380000  
H        1.4126990000      3.5753470000     -0.7006460000  
H        1.8049820000      3.2358040000      1.0065340000  
C        0.2774460000      0.9672900000     -1.4191380000  
O       -0.1904280000   1.8516840000     -2.0025730000  
C        0.4234140000     -1.7449000000     -0.6373630000  
O        0.5970850000     -2.9101990000     -0.6345420000  
C       -0.6208510000      1.0459780000      2.6971310000  
H       -1.5328750000      1.5582560000      2.3935400000  
H       -0.5935430000      0.9356040000      3.7838050000  
H        0.2411080000      1.6320230000      2.3823730000  
Co      -1.1035600000     -0.6648210000     -0.3360440000  
Co       1.4727180000     -0.1541070000     -0.7709030000  
C       -1.6817170000     -0.8539470000     -2.0411740000  
O       -2.0875120000     -0.9848390000     -3.0908700000  
C        2.3684690000     -0.8388240000     -2.1740300000  
O        2.9329600000     -1.2674870000     -3.0660480000  
O       -2.4992320000   0.9214040000      0.0893500000  
C       -2.9850220000      1.9378060000     -0.7481810000  
H       -2.5391100000      1.9528770000     -1.7416380000  
C       -3.1103350000      3.3086350000     -0.1182470000  
H       -3.7920050000      3.9065320000     -0.7309760000  
H       -3.5779820000      3.1876840000      0.8649010000  
O       -6.4562860000   2.8025200000     -0.6196630000  
H       -7.0074040000      2.9609960000     -1.3944160000  
H       -6.9807060000      3.0520750000      0.1486730000  
O       -4.3457130000   1.2809830000     -0.8859790000  
H       -5.1486840000      1.8553480000     -0.6974250000  
H       -3.7872930000      0.6589660000     -0.0754390000  
O        1.8360860000      3.1940700000      3.4146950000  
H        1.1677050000      3.7146030000      3.8740940000  
H        2.6709890000      3.5907220000      3.6882350000  
O        5.5256940000     -1.0563230000     -1.3196750000  
H        6.4861220000     -1.1078160000     -1.2527960000  
H        5.3085880000     -1.5692170000     -2.1068770000  
C       -1.7665030000      4.0301980000      0.0149510000  
H       -1.3138330000      4.2072700000     -0.9625120000  
H       -1.9084280000      4.9982030000      0.4982210000  
H       -1.0644160000      3.4495190000      0.6162880000  
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TS(Co_L:Co_M) 

Frequency: 336.54 cm
-1 

(For clarity P chelate ligands are removed.) 

P       3.0342030000    1.3906250000     -0.6602270000  
P       0.3236930000    2.4861830000      0.3670040000  
C        2.5418600000      3.1055200000     -1.1831400000  
H        3.4275650000      3.7242880000     -1.3483490000  
H        2.0363340000      2.9994510000     -2.1474580000  
C        1.6032910000      3.7323590000     -0.1447470000  
H        1.1306960000      4.6427370000     -0.5205110000  
H        2.1530050000      4.0079930000      0.7597250000  
C        3.8434120000      0.6825010000     -2.1386840000  
H        3.0986360000      0.5338220000     -2.9214120000  
H        4.6180540000      1.3633550000     -2.4992080000  
H        4.2912570000     -0.2791670000     -1.8936910000  
C        4.3804780000      1.6365390000      0.5662970000  
H        4.7864990000      0.6719170000      0.8768700000  
H        5.1847080000      2.2322970000      0.1279140000  
H        4.0033140000      2.1521230000      1.4511920000  
C       -1.1451320000      2.7881280000     -0.7234050000  
H       -1.7188010000      3.6527990000     -0.3808650000  
H       -0.7666000000      3.0132600000     -1.7236820000  
P      -2.2192670000      1.2713920000     -0.8752910000  
C       -2.9179570000      1.4010230000     -2.5639970000  
H       -3.4028970000      2.3689790000     -2.7102690000  
H       -2.1139320000      1.2826260000     -3.2926560000  
H       -3.6403840000      0.5946030000     -2.7121140000  
C       -3.6594330000      1.4952630000      0.2649830000  
H       -3.2877730000      1.8486190000      1.2301510000  
H       -4.3572360000      2.2384120000     -0.1297460000  
C       -4.3299000000      0.1231770000      0.4153430000  
H       -4.8006900000     -0.1836520000     -0.5215540000  
H       -5.0988150000      0.1356630000      1.1915400000  
P      -3.0691070000     -1.1866320000      0.8179570000  
C       -3.8542780000     -2.7516850000      0.2800640000  
H       -4.0590120000     -2.7018580000     -0.7906390000  
H       -3.1993300000     -3.5974880000      0.4954910000  
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H       -4.7945350000     -2.8934520000      0.8181550000  
C       -3.0594120000     -1.2870770000      2.6485480000  
H       -4.0276070000     -1.6589230000      2.9920170000  
H       -2.2784540000     -1.9681170000      2.9878430000  
H       -2.8871880000     -0.2975500000      3.0752900000  
C       -0.2136540000     -0.5373690000      1.3006520000  
O        0.0693030000     -0.7049200000      2.4165330000  
C        0.2308330000      0.0386660000     -1.4287730000  
O        0.4499300000      0.2047190000     -2.5698110000  
C       -0.1896170000      2.9997530000      2.0476550000  
H        0.6324790000      2.8220020000      2.7443210000  
H       -0.4275520000      4.0666950000      2.0554710000  
H       -1.0632130000      2.4442450000      2.3920930000  
Co    1.1741250000   0.4010440000      0.0919630000  
Co      -1.1340840000     -0.6286260000     -0.2384910000  
C       -1.0195050000     -2.1807420000     -1.0640210000  
O       -0.8074270000     -3.1938790000     -1.5677810000  
O        3.9452860000     -2.1066480000     -0.3667280000  
C        2.6862470000     -2.4423320000     -0.3711340000  
H        1.9529580000     -0.9900470000      0.0105430000  
C        2.0792940000     -3.2721390000      0.7386510000  
H        0.9944500000     -3.1721820000      0.6816010000  
H        2.3163890000     -4.3082190000      0.4589080000  
O        5.6245320000     -1.6393880000      1.5983860000  
H        6.5273540000     -1.7877390000      1.2910160000  
H        5.6542710000     -1.7064590000      2.5593700000  
O        2.2600090000     -2.6200800000     -1.6067780000  
H        1.3704260000     -3.0055090000     -1.6300130000  
H        4.3861110000     -2.0406670000      0.5209660000  
O       -2.8580990000   1.9457970000      3.7531010000  
H       -2.4091230000      1.7858780000      4.5910850000  
H       -3.6576680000      2.4258680000      3.9977790000  
O       -4.7128120000     -1.4786310000     -2.7487550000  
H       -5.6496710000     -1.5454430000     -2.9677090000  
H       -4.2640470000     -1.9031130000     -3.4888900000  
C        2.5825120000     -2.9852430000      2.1505530000  
H        2.4266580000     -1.9417030000      2.4289640000  
H        2.0309590000     -3.6014980000      2.8611710000  
H        3.6384660000     -3.2374900000      2.2594840000  



174 

Appendix 5 – Si5O16  12 Cluster geometry in Å 

Si  0.39221095 -0.03543176  0.05250489 
O  1.80641918 -0.77521497  0.03083506 
O  0.11442704  0.58372974 -1.40835065 
O  0.43329849  1.14856662  1.13436654 
O -0.78612236 -1.05242084  0.46010557 
Si  2.29588684 -2.33661876  0.24409997 
Si -0.59982064  1.80266507 -2.23308277 
Si  0.34312850  2.42943860  2.11196954 
Si -2.04085654 -1.87020620 -0.21097811 
O  2.30009761 -2.51114198  1.92497222 
O  1.33366440 -3.40293144 -0.59881184 
O  3.87900065 -2.53963593 -0.30965559 
H  2.70404213 -3.28465360  2.41334564 
H  0.34094817 -3.40039204 -0.71926113 
H  4.07567371 -2.94004598 -1.20463687 
O -0.55735642  3.24403271 -1.41826939 
O -2.17076839  1.17392378 -2.51521853 
O  0.03259483  2.03256523 -3.77389560 
H -0.51732211  3.44341018 -0.43916476 
H -2.76974293  1.54390341 -3.22539074 
H   0.69984036  2.74264443 -3.99877542 
O -0.68717913  2.28778142  3.42334432 
O  1.85026020  2.85468925   2.71719749 
O -0.36249213  3.63603523  1.12801832 
H -0.42455275  1.95121633  4.32764036 
H  2.73086988  2.75778665  2.25336941 
H -0.78386532  4.45758924  1.51206733 
O -3.08779838 -2.51061246   0.94111731 
O -2.91670902 -0.95523054 -1.27656949 
O -1.24797830 -3.22733021 -0.89119877 
H -3.95258790 -2.07564465  1.19199993 
H -2.66075458 -0.14754288 -1.80772669 
H -1.74183970 -4.01726835 -1.25465253 
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Appendix 6 – Letter of Permission 
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