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ABSTRACT
This dissertation describes strategies for synthesizing prostaglandin PGF,,. Our synthetic

design creates the stereochemistry needed for the core and side chains of the target prostaglandin
PGF.. and PGF.. synthase selective analogues while incorporating iodocyclization
desymmetrization of acyclic dienes. A model system for 4-(iodomethyl)-6-methyl-1,3-dioxan-2-
one was developed and synthesized for our target compound 4-(2-(benzyloxy)ethyl)-6-
(iodomethyl)-5-vinyl-1,3-dioxan-2-one. Both compounds were successfully synthesized
providing useful stereocenters for completing the synthesis of prostaglandin PGFo. Efforts
toward total stereochemical control of PGF., include the partial syntheses of bis-
diethylanimedimethylsilane and of (4S,5S)-2-((1E,3E)-penta-1,3-dien-1-yl)-4,5-diphenyl-1,3-

ditosyl-1,3,2-diazaborolidine.

XVi



CHAPTER 1: PROGRESS TOWARDS THE SYNTHESIS OF PROSTAGLANDIN PGF2q

1.1 Introduction to Prostaglandins
Essential fatty acids omega-3, omega-6, including eicosapentaenoic and docosahexaenoic

acid (DHA), precursors to prostanoids, are critical for circulation, production of hemoglobin,
immune function, and anti-inflammatory response. A study reported in 2006 by R. Bayer suggests
that omega-3 fatty acids are a possible treatment for inflammatory pain.? Studies by Wall et al.
concluded that increasing consumption of omega-3 fatty acids increases production of
inflammation mediators and regulators. ® Linoleic acid, a C18:2 omega-6 fatty acids (Image 1) is
the precursor to arachidonic acid which is oxidized by cyclooxygenase 1 or 2 forming
prostaglandin PGGg, an inflammatory stimulator. In the C18:2 type nomenclature, C18 represents
the number of carbons in the chain; the 2 represents the number of alkenes in the chain.

PGG; is reduced by PGH: synthase forming prostaglandin PGH2, which undergoes
enzymatic reactions to produce five different prostaglandins: PGl,, PGFi4, PGF24, PGE2, PGD3,
and a thromboxane, TXA>. The primary prostaglandins undergo additional enzymatic reactions to

form additional prostanoids, which are responsible for homeostasis, (Scheme 1).

1.2 Methods of Prostaglandin Synthesis
There are three major prostaglandin synthetic designs. The first is synthesis of the core

cyclopentane with appropriate side groups which can be used in subsequent reactions for

attachment of o and o chains.



HOJ\/\/\/\/:\/:\/\/\

Image 1. Linoleic Acid C18:2, omega-6
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Scheme 1. Enzymatic Cascade Producing Prostaglandins and Thromboxanes



The second is a two molecule coupling, where one molecule contains the cyclopentane
core and an attached side chain. This molecule is coupled to a second chain, (Scheme 2). The third
method of prostaglandin synthesis is the three component coupling (Scheme 3).% Following is an
example of each approach.

A derivative of Corey’s lactone was synthesized by Augustyns et al. in 2005 (Scheme 4).
® Lactone synthesis began with a Diels-Alder reaction of 1.12 and 1.13, followed by a radical
induced skeletal translocation affording lactone product 1.15, which was isomerized to produce
1.16. Decarboxylmethylation with lithium chloride gave lactone 1.17 which was functionalized
via bromohydrin formation followed by acetylation. Radical debromination of the core structure
was accompanied by the potential for side chain attachment 1.19.

Two molecule coupling completed by Togashi et al. ® commenced with the 1,1-dibromo
alkene (1.20) coupling to an aldehyde chain affording alkyne 1.21. Swern oxidation transformed
the hydroxyl group to a ketone giving product 1.22. K-selectride was used to stereoselectively
reduce the ketone carbonyl, producing alcohol 1.23. Reduction of the alkyne, followed by hydroxyl
group acylation vyielded 1.24, the precursor to a Pd-catalyzed cyclization, to produce a
functionalized core with one side chain attached in an 87:13 R:S ratio at the newly formed
stereocenter, (Scheme 5). Scheme 6 shows a one pot, three component coupling method used in
prostaglandin synthesis. Cyclopentenone coordinates to aluminum, which stabilizes the position
of the enone to allow sequential Michael-aldol reaction of dibenzyl methylmalonate and methyl 7-
oxoheptanoate, respectively. Racemic cyclopentenone reacts with an aldehyde in the presence of

a chiral aluminum catalyst to yield 75% product yield with 97 % ee.’
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1.3 Synthetic Design for Prostaglandin Synthesis
Scheme 7 shows our retrosynthetic design of PGF,. In a forward sense aldehyde 1.36 is

transformed to an acetal which is opened via hydroboration, giving alcohol 1.35. Compound 1.35
would be oxidized, followed by a regioselective pentadienylation to give diene 1.34.
Desymmetrization of 1.34 followed by derivatization gives 1.33. The hydroxyl group in 1.33 is
deprotected, (R2), and oxidized to an aldehyde. Hetero-Pauson Khand reaction would produce
lactone 1.32. The hydroxyl group in lactone 1.32 is deprotected to give a free hydroxyl group,
which is oxidized to an aldehyde and subjected to a Wittig reaction giving lactone 1.31. 1.31 would
then be deprotected and the free hydroxyl groups converted to acetate ester. A [3,3] sigmatropic
rearrangement is anticipated to produce 1.30. Lactone 1.30 is reduced followed by a Wittig
reaction to introduce a second side chain, forming (1.29) PGF... The synthesis developed for
prostaglandin PGF.a allows us to create all of the stereocenters needed to develop syntheses for
PGE, PGD, and analogues. The goal of my project was use iodocyclization in a stereocontrolled

synthesis of 1.40 (Scheme 8) with the (S,R,S) stereochemistry at carbons (4, 5, and 6).

1.4 Discussion of lodocyclization
lodocyclization is a versatile method for the conversion of an alcohol and an alkene, in a

1,3 relationship, to diols with high stereochemical control of newly formed hydroxyl group relative
to the initial hydroxyl group. This transformation was been used in several synthesis of natural
products including: Herbarium 111, Polyrhacitide B, and Kumar.® ° 1° The hydroxyl group is first

transformed to either a carbonate or carbamate then cyclized.
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The mechanism for the diastereoselective electrophilic iodocyclization of a carbonate follows on
scheme 9. Selectivity of the reaction is temperature dependent as decreasing temperature increases
the selectivity. As the tert-butyl group is lost during the cyclization of the molecule, it is trapped
by the solvent. By Le Chatelier’s principal the reaction is driven forward. In acetonitrile, N-tert-
butylacetamide (Image 2) is formed during workup. !

Friesen et al. speculated on the rationale for the stereochemistry in iodocyclizations. Their
theory included possible steric interactions the R group and terminal protons on the alkene.
However, these interaction are small. An alternative theory involving the Sn2’ mechanism was
considered and disregarded due to regioselective nature of the reaction on internal alkenes. Barlett
reported that chlorinated solvents gave low yields due to inability to trap the tert-butyl cation.
However, Galeazzi et al. reported using dichloromethane at room temperature in the
iodocyclization of 3-acylamin esters. The reaction yield range, dependent on substituent, was 75%
- 92%. Total diastereoselectivity was confirmed by NMR and GC. 2 Unlike previous syntheses,
we will use the iodocyclization to desymmetrize an acyclic dienes and study the stereochemistry
of the two newly developed stereocenters. Our study begins with the synthesis of 1-(benzyloxy)-
4-vinylhex-5-en-3-ol.

1.5 Synthesis of 1-(benzyloxy)-4-vinylhex-5-en-3-0l and 1-((4-methoxybenzyl)oxy)-4-
vinylhex-5-en-3-ol

Dioxanes 1.46 and 1.47 were synthesized in a p-toluenesulfonic acid monohydrate (p-TSA)
catalyzed reaction of benzaldehyde (1.44) or p-methoxybenzaldehyde (1.45), with propane-1,3-
diol. A stoichiometric amount of water was collected to monitor completion of the reaction using

a Dean Stark trap.!® The dioxanes crystallize in ether at -39°C.
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Several rounds of recrystallization removed benzaldehyde impurities, noted by a light yellow
color. A borane-mediated reductive opening of the dioxanes forms alcohols 1.48 and 1.49
respectively.’* The reaction was quenched with methanol at 0°C under close supervision. A
nucleophilic substitution with potassium hydroxide (KOH) was used to displace the bromine on
3-bromopropoxy (tert-butyl) dimethylsilane 1.50 with a hydroxyl group, 1.51. A competing side
reaction was cleavage of the tert-butyldimethylsilyl group producing 1,3 propanediol, (Scheme
11).%® The reduction of dioxane 1.46 using ZrCls and NaBH4 was attempted as an expeditious
alternative to the borane-THF reaction.'® This reaction was unsuccessful, (Scheme 12).

Alcohols 1.48 and 1.49 were oxidized with pyridinium chlorochromate (PCC) to form
aldehydes 1.52 and 1.53 respectively. Chromium by-products aggregated in the flask. A mortar
and pestle were used to grind the aggregate and release product. An aluminum oxide addition
prevented aggregation without affecting the reaction, which gave the reaction mixture the
consistency of coarse sand and a mahogany color. A silica filled medium fritted filter was used.
Filtrate had a greenish hue. An alternative oxidation using TEMPO and I, was a replacement.’
The yield was lower than the original method and was therefore not used as a, (Scheme 13).

To pentadienylate aldehydes 1.52 and 1.53, 5-bromopenta-1,3-diene (1.59) was
synthesized according to Scheme 14. A Grignard reaction between vinyl magnesium bromide
(1.56) and acrolein (1.57) produced alcohol 1.58. Purification of 1.58 via distillation was difficult
due to polymerization. Flash chromatography provided adequate purification, although product
may be lost during solvent removal due to low boiling point, 55 °C. Bromination of the alcohol

gives (E)-5-bromopenta-1,3-diene (1.59).
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Aldehydes 1.52 and 1.53 were reacted with allylic bromide 1.59 in an indium-mediated
coupling to produce 1.54 and 1.55. Bromine was displaced with indium, and a six membered chair-
like transition state was formed. The C-In bond was broken, and electrons are shifted to form a
carbon-carbon bond. The indium was replaced with hydrogen during the aqueous workup (Scheme
15). Once the chemistry for the total synthesis of PGF.., is elucidated, we will revisit controlling
the stereochemistry of the hydroxyl group. For stereochemical control the chiral auxiliary (4R,
5R)-2-((1E, 3E)-penta-1, 3-dien-1-yl)-4, 5-diphenyl-1, 3-bis (phenylsulfonyl)-1, 3, 2-
diazaborolidine (Image 3) will be used.*® Before gaining total stereocontrol of the hydroxyl group,
we will use iodocyclization to provide partial stereocontrol via enantiomers which will be used in
the continuation of the PGF2. synthesis.

1.6 Syntheses of 4-(iodomethyl)-6-methyl-1,3-dioxan-2-one model system for 4-(2-
(benzyloxy)ethyl)-6-(iodomethyl)-5-vinyl-1,3-dioxan-2-one

Before the iodocyclization of 1.54, a model synthesis of for 4-(iodomethyl)-6-methyl-1,3-
dioxan-2-one was developed. The first step in synthesizing 4-(iodomethyl)-6-methyl-1,3-dioxan-
2-one was the formation of pent-4-en-2-yl carbamate. Trichloroacetyl isocyanate and potassium
carbonate were reacted with 4-penten-2-ol giving carbamate 1.60 for a 98% yield (Scheme 16).
The product crystallized easily in ethyl acetate.®

Carbamate 1.61 was reacted with iodine in a biphasic solution of ether and saturated
aqueous NaHCO:s. Initially a basic workup was used following the procedure from Holmes and

Bartlett 1989.2° Cyclization attempts using these conditions were unsuccessful (Scheme 17).
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Guindon et al.?! successfully performed the iodocyclization using NaHCOs, silver triflate,
and iodine in an acidic workup of silica gel and water. Scheme 18 shows where the basic workup
in our synthesis was substituted for an acidic workup using 0.1 M HCI. The change in workup
gave a successful reaction with a yield of 30% after flash chromatography.?2

Initially, isolation of product was difficult. The reaction produced a UV active compound
which gave a spot with an R¢ value consistent with that expected for the cyclization product during
TLC analysis. After isolation, it was discovered that the iodocyclization product, 4-(iodomethyl)-
6-methyl-1,3-dioxan-2-one (1.62), was extremely sensitive and decomposed in the presence of
light and heat. The sensitivity resulted in difficulties during product concentration. Decomposition
occurred at temperatures greater than 35 °C. To avoid extended concentration times, product
solution temperature was reduced to 0 °C before being placed on rotovap while shielded from light.
Presence of product is confirmed using GC/MS, (Figure 1).

To avoid further decomposition, the NMR sample was prepped immediately before
analysis on the NMR. Samples were very difficult to analyze due to quick degradation. Figure 1
shows a GC chromatograph taken before and after NMR analysis. lons 256, 230, and 103 were
extracted to confirm presence of product and fragmentation products, (Scheme 19). Fragments 230
and 103 are produced after loss of CO2 and CO> plus I Deuterated benzene gave better NMR
results; however, benzene is not a preferred solvent due to high boiling point and potential loss of

sample.
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A literature search of the proposed transformation produced limited results. The yields
Hirama and Uei?® reported for the iodocyclization product ranged from 54-96% on
monosubstituted internal and terminal alkenes; however, reported yields reflected a mixture of
cyclized and uncyclized product from reactions conducted on monosubstituted alkenes. The yields
of only cyclized product ranged from 54% to 79% (Table 1).

Hecker and Heathcock?* attempted the transformation on a bicyclic compound with both
terminal unsubstituted and internal alkenes. Reaction with the terminal alkene would give a seven-
membered ring product and reaction with the internal alkene would give the six-membered ring
product (Scheme 20). None of the six-membered ring product was isolated. A 48% vyield of the
seven membered ring product was isolated along with 20% vyield of the tetrahydrofuran product.
Due to difficulties with carbamate iodocyclization product stability, attempts to cyclize carbamate
were discontinued. An alternative to the carbamate iodocyclization is the iodocyclization of
carbonate 1.68 (Scheme 21). All initial attempts to synthesize tert-butyl pent-4-en-2-yl carbonate
(1.68) produced a by-product, 1.69, which accounted for approximately 50% of the crude yield.
Yield is based on GC integration comparison (Figure 2) and (Table 2).

The (Boc).0 reagent used to make tert-butyl pent-4-en-2-yl carbonate contained
contaminant, 1.70. The similar polarities caused difficulties during purification. The by-products
produced using Boc anhydride were possibly due to small size of the alcohol used in the model
reaction (Scheme 22). Reference search showed that Boc anhydride was used to form carbonates
using larger alcohols as starting material. After flash chromatography, the presence of all
compounds was verified by GCMS. Purification of reaction crude was conducted on AgNO3 10%

wt on silica gel. The volatility of 1.68 causes product loss during solvent removal.

23



1.66

0
HQNJL_ =
- 1.67
O;j/ 20% ~
\ 1.65
48%
1.68

Scheme 20. Hecker and Heathcock lodocyclization results

24



Table 1. Results from Hirama and Uei lodocyclization Reactions

Substrate Rxn, T (hr) AB A+B (%) | A (%) Stereoselectivity
o) 3 100:0 68 68
HZNJ\(:)
HJ/\/-\H
o 39 4.4:1 76 62 14:1
SWNY
©/\0WV\/O
0 41 41:1 71 56 14:1
H:N" "0
©/\0/\/\/\/\/
o 42 4.6:1 96 79 10:1
H NJJ\O
2 -z
©/\o/\/w
Q 26 ~100:0 |54 54
HZNJ\C_)
“H
H -~
H
(0] NH 0 (0]
J J
R3 QJJ\NHz |2 R3 9 9 K2003 R3 9 9 . R3 QH (:) NH2
HWRz RWRZ rt1h RWRZ R1\2\/\R2
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Scheme 21. Synthesis of 4-(iodomethyl)-6-methyl-1,3-dioxan-2-one via Carbonate Cyclization

Table 2. Integration of tert-butyl pent-4-en-2-yl Carbonate Reaction Mixture

Compound Integration % Yield
1.68 1.52e+8 49%
1.69 1.42e+8 46%
1.70 1.42e+7 5%
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To avoid by-products produced in the previous reaction, pent-4-en-2-ol was reacted with
Boc-ON (2-(tert-butoxycarbonyloxyimino)-2-phenylacetonitrile) and n-BuLi at 0°C for 4 h?’ for
an 89% crude yield (Scheme 23).

The reaction gave nearly exclusive product as shown in GC/MS and NMR spectra (Figure
3). Reacting pent-en-2-ol with Boc-ON was a successful alternative in producing tert-butyl pent-
4-en-2-yl carbonate without by-products. Boc anhydride was used in the target reaction system.
By-products produced in the model reaction were not expected with the target alcohol due to larger
size. Tert-butyl pent-4-en-2-yl carbonate was reacted with NIS (N-iodosuccinimide) in CH3CN at
4°C for nine hours.?® Previous synthesis of 4-(iodomethyl)-6-methyl-1,3-dioxan-2-one by Duan
gave product in major to minor isomer ratios of 10:1; 14:1; 21.1:1 using the following conditions
respectively: 1o/CH3sCN -20°C; IBr/CH:Cl, -80°C; IBr/PhMe -80°C.%” The chemical shift,
integrations and GC integrations confirming the results are shown on Table 2, Table 3, and Figure
2.

Major and minor isomers were confirmed when comparing peak chemical shifts and
splitting patterns to NMR data reported by Duan (Table 4). Problems with compound
decomposition observed earlier in carbamate iodocyclization appeared to be avoided with the
carbonate cyclization method; however, a large portion of the crude product crystalizes during
transfer onto the chromatography column. Upon solvent removal the product is a clear yellow oil

and did not readily change color when prepped for NMR analysis.
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Scheme 22. Tert-butyl pent-4-en-2-yl carbonate and By-Products from pen-4-en-2-ol Reaction with Boc Anhydride.

Table 3 Reaction Conditions for Synthesis of tert-butyl pent-4-en-2-yl carbonate

Reaction # OH (Boc).0 DMAP (molar Base (reagent, molar | Solvent Reaction
(molar eq) (molar eq) eq) eq) Time

1 1 1.5 5 Imidazole, 4 CHsCN 5h

2 1 2 5 EtaN, 2 CHCl; 12 h

3 1 15 .02 Eti:N, .4 CH:ClI 10 h

4 1 1 5 0 CHsCN 7h
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Scheme 23. Synthesis of Carbonate 1.68 using Boc-ON and n-BulLi.
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Table 4. Integration and Chemical Shifts of Major and Minor lodocyclization Product from 4-(iodomethyl)-6-methyl-1,3-dioxan-2-
one Crude, Spectra of Major and Minor Isomers Product

Major Split Pattern d, 3 td, 1 td, 1 dd, 1 dd, 1 m, 1 m, 1
Chemical Shift (ppm) 1.45 1.7 2.4 3.26 3.31 4.47 4.63
Integration 3 1.59 1.25 1.15 1.08 1.2 1.37

Minor Split Pattern

d,3 m, 1 m, 1 dd, 1 dd, 1 m, 1 m, 1
Chemical Shift (ppm) 1.49 2.14 2.25 3.31 3.48 4.63 4.72
Integration 1.83 1.04 0.23 0.33 1.37 0.54
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Bhimreddy, E. Procedure?®. (*H-NMR 400MHz)
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Table 5. Reference Splitting Patterns and Chemical Shifts of Reaction Product (H! 500MHz)’

d, 3 td,m, 1 td,m, 1 dd, 1 dd, 1 m, 1 m, 1
Major 1.45 1.69 2.41 3.27 3.41 4.43-4.48 4.57-4.64
Minor 1.48 2.09-2.14 2.22-2.28 3.3 3.46 4.60-4.65 4.68-4.74
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1.7 Synthesis of 4-(2-(benzyloxy)ethyl)-6-(iodomethyl)-5-vinyl-1,3-dioxan-2-one
Carbonate 1.69 was formed at a 50% yield by coupling alcohol 1.54 with Boc anhydride

via Steglich esterification (Scheme 25).26 During solvent removal a red insoluble solid formed.
Low product yield is possibly due to product entrapment in solid. Initial review of crude *H NMR
shows chemicals integrations similar to the expected product (1.69) (Figure 5). However, after
purification, 'H NMR data revealed only starting materials (Figure 6).

A diastereoselective 1, induced electrophilic cyclization was performed when carbonate
1.69 was reacted with NIS at -50°C, giving 1.71 for a 65% yield. Mohaptra et al. performed the
iodocyclization in their synthesis of polyrhacitide A. They discovered that the iodo-carbonate was
unstable during extended storage and purification must be performed quickly using flash
chromatography.?® Table 7 shows the results of previously reported iodocyclization reaction
results

The procedures from Mohaptra and Rajesh used NIS in acetonitrile at -20°C gave a single
product. However, the conditions reported by Duan result in mixtures of stereoisomers, (Scheme

28 and Table 6).%’
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Scheme 25. Synthesis of Carbonate 1.69 Using Steglich Esterification

Y
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Scheme 26. Attempted Synthesis of Carbonate 1.69 Using BOC-ON.
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Table 6. Chemical shifts of 1-(benzyloxy)-4-vinylhex-5-en-3-yl tert-butyl carbonate Protons
Proton H2-4 H5 H6 H7 H7' H8 | H9 H10,12 H11, 13 H16
Chemical Shift, ppm 7.21 449 | 353 | 1.85 194 | 49 3 5.79 5.14 1.46

&o% 3\\0

0 NIS, CH5CN o)

- -
_ o
~0 — 1d, ~-50 °C, 65% ~0 y
1.69 1.71

Scheme 27. lodocyclization of 1-(benzyloxy)-4-vinylhex-5-en-3-yl tert-butyl carbonate
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Table 7. Results and Conditions

I, reagent Solvent Temp. Time Yield Ratio a:b

1 I2 CHsCN -20°C 6.5 hr 79 57:1
2 IBr CH3CN -20°C 15 min 67 311
3 IBr CH:Cl2 -20°C 15 min 75 331
4 IBr CHCl -85°C 15 min 74 7.7:1
5 IBr CH:Cl2 -94°C 15 min 83 8.7:1
6 IBr Et.O -110°C 15 min 75 7.3:1
7 IBr PhMe -80 to -85°C 11hr 85 13.9:1

OJOJ\OJ< iodocarbonate _ OJOJ\O OJOLO

cyclization

Bno/\/\r\

1.72

[
Bno/\/\‘)\/

1

40

.73a

Scheme 28. 1Br Induced Cyclization by Duan and Smith




Table 8. Comparison of Previously Reported lodocyclization Reaction Results

Group/Year Starting Material Conditions Products Stereochemical | Yield
Ratios
Mohapatra/ | OBoc & OPMB NIS, CHsCN, 0 i 100% 92%
2010 "o °C 1hr 0”0 & OPMB
! "0
Rajesh/ 2009 OBoc NIS, CHsCN, -20 j\ 100% 85%
OPMB/\/\/\ °C 12hr (O XNO)
Kumar/ 2011 OBoc NIS, CHsCN, - 0 100% 89%
N 40-0 °C 1.5hr o)J\o
|
Duan/ 1993 Boc I,, CH3CN, -80 o o 7.7:1 73%
NN '\)\/\/\
Duan/ 1993 Boc IBr, THF, -80 o o 10.0:1 89
/\/\/\ to -85 °C 30min Q)J\Q O)J\Q
I\/\/\/\ I\/'\/:\/\
Duan/ 1993 Boc IBr, toluene, -20 0 o 8.4:1 90
NN °C 30min (_))J\(_) QJ\Q
'\/\/\/\ '\/‘\/:\/\
Duan/ 1993 Boc ICI, CH.CI; -80 o o 5.8:1 85
30min N N '\)\/\/\
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1.8 Discussion of Stereochemical Assignments
Figure 7 shows the *H NMR of both major and minor diastereomers of 1.71. The chemical

shifts, splitting patterns, and coupling constants (J) of the spectra are presented in Table 9. The
first step in confirming the stereochemistry was verifying the backbone protons. The connectivity
of carbons 6, 7, 8, 9, 10, 11, and 12 was confirmed by COSY NMR (Figure 8). Starting at cross
peak (1.85, 3.68) corresponding to the proton pair 6 and 7, backbone connectivity can be traced to
cross peak (1.85, 4.80) corresponding to the proton pair 7 and 8; to cross peak (2.97, 4.80)
corresponding to the proton pair 9 and 8; to cross peaks (2.97, 4.69) and (2.96, 5.57) corresponding
to the proton pairs 9 and 10, and 9 and 12 respectively.

Tracing from cross peak (2.97, 4.69) to cross peak (3.02, 4.71) corresponding to the proton
pair 11 and 10, completes the backbone chain. The carbons and their corresponding protons are
confirmed by HSQCDEPT (Figure 9).28 CHzs are denoted by the blue cross peaks. Table 11 lists
each carbon chemical shift and the carbons and protons. In additional to the COSY, the ROESY
confirms through space interactions of protons 8, 9, and 10; however, the exact stereochemistry
was not confirmed by ROESY (Figure 10).

Expansions of the signals for protons 8, 9, 10 and 12 are shown in figures 11-16. The
signals for H-10 (Figure 12) and H-8 (Figure 11) exhibit splitting patterns and coupling constants
(J) that are consistent with the expected structure. In both cases a ddd is observed with three
different coupling constants corresponding to the distinctly different conformational relationships

of the three vicinal protons responsible for the splitting.
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Table 9. Chemical Shift (3), Splitting, and Coupling Constant (J, Hz) values for H-NMR of 1.71.

Proton | H2-4 H5-HS’ H6 H6' H7 H7’
) 7.34 4.51 3.68 3.58 1.95 1.84
splitting m ABq, ddd dt dddd dddd
J (Hz) DJSIZ ilz'Sl_';ﬁz 9.8,9.3,42 | 98,50 | 12.3,80,5.0,42 | 12.3,9.3,5.0, 4.3
Proton H9 H8 H10 H11 H11” H12, 13 H13'
d 2.96 4.79 4.69 3.33 3.03 | 5.60-5.50 | 5.47-5.36
splitting ddd ddd ddd dd t m m
J (Hz) | 9.8,28,26 | 8.0,4.7,26 | 10.0,4.9,2.8 | 10.0,4.9 | 10.0
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Figure 7. NMR of 4-(2-(benzyloxy)ethyl)-6-(iodomethyl)-5-vinyl-1,3-dioxan-2-one
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Table 10. Cosy Cross Peaks 4-(2-(benzyloxy)ethyl)-6-(iodomethyl)-5-vinyl-1,3-dioxan-2-one

Proton 6,7 7,8 9,8 9,10 9,12 11, 10
Cross peak | 3.68,1.85 | 1.85,4.80 | 2.97,4.80 | 2.97,4.69 | 2.96,5.57 | 3.02,4.71
(@)

7 11 _|
3©Ao 010
4 2 =

13 12

Table 11. HSQCDEPT Cross Peaks 4-(2-(benzyloxy)ethyl)-6-(iodomethyl)-5-vinyl-1,3-dioxan-2-one

1-4 5 6 6’ 7 7 10 9 8 12 13 13’ 11 ‘11
C,ppm | 127.7 | 73.2 | 65.0 | 65.0 | 334 | 33.0 | 805 | 4228 | 788 | 1256 | 1246 | 1244 | 14 1.7
H, ppm 733 | 449 | 360 | 3.60 | 1.86 | 1.86 | 469 | 297 | 480 | 559 5.45 554 | 3.02 | 3.02

45




MM

Amy_sample_23Apr16.5.ser
4/23/16

Amy's Sampl
cosy
0
{3.06,3.35} {3.02,3.35}
FA
' 10, 9
10, 9' ’
i {1.96,3.71)Q 0 0 (L {1:853.68}
it W
)
20 17 12,17 -
{3:34,4.69} (3.02,4.71} {2:97,4.69} 10' 11 10, 11
<)\
{2.97,4.80} {1.95,4.80} {1.85,4.80}
12, 11 <
12,18
{2.96,5.57%
L L L L L L L D L L L DL LA I LA E R L I B DL B | L
36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 1.0 0.9

f2 (ppm)

Figure 8. Cosy of 4-(2-(benzyloxy)ethyl)-6-(iodomethyl)-5-vinyl-1,3-dioxan-2-one
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Figure 10. Roesy of 4-(2-(benzyloxy)ethyl)-6-(iodomethyl)-5-vinyl-1,3-dioxan-2-one
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Figure 13 shows that the signal for the internal vinyl proton, H-12, is obscured by overlap
with one on the signals for a terminal alkene proton (H-13)—a very unusual situation that: (a) may
be explained by a magnetic anisotropic shielding interaction with the carbonate i system; or (b)
may have some bearing on the assignment of stereochemistry at carbon 9.

H-12 is positioned directly above the pi electron density of carbonate. The deshielding
effects of the delocalized pi system shifts the proton’s peak upfield. The peak split pattern is
undefined due to overlap with H-13 (Figure 13). This shielding effect strongly indicates that the
vinyl group attached to C-9 occupies a pseudoaxial position on the carbonate ring. This, in turn,
suggests that the pseudoaxial vinyl group is flanked by pseudoequatorial substituents on the
adjacent C-8 and C-10 positions on the ring.

H-9 is split by both H-12 giving a doublet which is then split by the protons of H-8 and H-
9 giving a doublet of triplet (Figure 15). Homonuclear decoupling of H-12 causes H-9 to collapse
to a triplet with a coupling constant of 2.7 Hz. The small coupling constant indicates gauche
relationships between H-9 and the neighboring protons on the carbonate ring, H-8 and H-10.
Indeed, the small coupling constant establishes the stereochemistry of the molecule where the
substituents on C-8, C-9, and C-10 are mutually cis.

Iodine’s gauche position to oxygen may be due to stabilization achieved through alignment
of electron-rich C-H and C—C bonds anti to the polar C-O and C-I bonds (accounting for the
gauche effect by hyperconjugation). The position of the I is confirmed by the split patterns of H-
1la and H-11b. The observed triplet for H-11b is due to splitting by similar geminal (J11a, 110) and
vicinal (Ji0,11b) coupling constants. The large vicinal coupling constant results from the anti

relationship of H-11b and H-10.
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Figure 12.'H NMR (500 MHz, Chloroform-d) § 4.69 (ddd, J = 10.0, 4.9, 2.8 Hz, 1H)
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Figure 13.H NMR (500 MHz, Chloroform-d) § 7.36: 5.48 —5.43 (m, 1H).
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Figure 14.'H NMR (500 MHz, Chloroform-d) & 2.96 (dt, J = 9.8, 2.7 Hz, 1H)
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Figure 15.'H NMR Homonuclear Decoupling (500 MHz, Chloroform-d) § 2.96 (t, J = 2.7 Hz, 1H),
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Figure 16. *H-NMR Split Pattern for H-20a and H-20b
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1.9 Discussion of Gaussian Calculations
Computational studies, using the Gaussian software package, were conducted in order to

provide some insight into the possible origin of stereoselectivity of the iodocyclization reaction
(converting 1.69 to 1.71, see Scheme 27). Optimized geometries for the R, S, R and R, R, R
stereoisomers of 1.71 were obtained, and energies compared, progressing from the semi-empirical
AM1 method to increasingly higher levels of theory.

Three sets of optimized molecular geometry energy minimizing calculations- AM1,
HF 3-21g, and HF 6-31g- were conducted on both R, S, R and R, R, R isomers of (4R,5R,6R)-4-
(2-(benzyloxy)ethyl)-6-(iodomethyl)-5-vinyl-1,3-dioxan-2-one. The final result for the R, S, R
isomer was -2187664.379 kcal/mol. and for the R, R, R isomer was -2187662.486 kcal/mol., an
energy difference of 1.89 kcal/mol.

Higher level DFT B3LYP (6-31g (d, p) for C, H, O; LANL2DZ for I) calculations were
conducted on smaller carbonates (methyl replacing BnOCH2CH2) with corresponding
stereochemistry revealing slightly higher stability of the minor product. The most stable conformer
of the major product, possessing an axial vinyl group, was found to be 0.18 kcal/mol less stable
than the most stable conformer of the alternative diastereomer placing the vinyl group in an
equatorial position (Figure 18). The isomers’ energetic similarities suggest that there is no obvious
energetically preferred isomer. The major product, which is the energetically less stable isomer,
must be formed at a higher rate (kinetic control). The pathways for the two isomers provide insight
on their production rates. The more stable, minor isomer is formed through sterically unfavorable
pathway where strong steric interactions are present. Steric interactions are not present in the

pathway leading to the less stable, major isomer.
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Table 12. Summary of (4R,5R,6R)-4-(2-(benzyloxy)ethyl)-6-(iodomethyl)-5-vinyl-1,3-dioxan-2-one Gaussian Calculation Results

Calculation Energy (kcal/mol) Dipole Moment (Debye)
AM1 -130.148 3.7932
HF 3-21G -2178279.746 3.4626
HF 6-31G(d,p) -2187664.379 3.5878
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©/\0 (RNGTR)
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Table 13. Summary of (4R,5R,6R)-4-(2-(benzyloxy)ethyl)-6-(iodomethyl)-5-vinyl-1,3-dioxan-2-one Gaussian Calculation Results

Calculation Energy (kcal/mol) Dipole Moment (Debye)
AM1 -131.0412 4.2641
HF 3-21G -2178277.275 44471
HF 6-31G(d,p) -2187662.486 4.3168
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Figure 17. Smaller Carbonate Used in DFT B3LYP calculations (basis set: 6-31g (d, p) for C, H, O; LANL2DZ for I).
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Figure 18. Relative Conformational Energies (kcal/mol) of the Smaller Carbonate.
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1.10 Conclusion
Prostaglandin PGF2a is a pro-inflammatory prostaglandin and synthesis of a competing

PGF synthase substrate could be used to control inflammation. As part of our PGF.a. synthesis, 1-
(benzyloxy)-4-vinylhex-5-en-3-ol was synthesized. Our goal was to use the alcohol stereocenter
to control the diastereoselective functionalization (desymmetrization) of the 1,4-pentadienyl unit

to generate two stereocenters adjacent to the original hydroxyl stereocenter (Scheme 31).

controlling newly created
stereocenterNHo X-Y HO @ stereocenters
[ M Y
> h/\o * *

diastereoselective addition
N

1,4-pentadienyl unit

Scheme 31. Diastereoselective Functionalization (Desymmetrization) of the 1,4-Pentadienyl Unit

lodocyclization was used to desymmetrize the 1,4-pentadienyl unit via addition of an
iodine electrophile and oxygen nucleophile across one of the vinyl groups of the unit. Before
synthesizing 4-(2-(benzyloxy)ethyl)-6-(iodomethyl)-5-vinyl-1,3-dioxan-2-one, 4-(iodomethyl)-6-
methyl-1,3-dioxan-2-one, a model system was developed and synthesized. Initially a carbamate
iodocyclization was attempted; however, due to difficulties with carbamate iodocyclization
product stability, the synthetic pathway was abandoned. An alternative using carbonate

iodocyclization was explored and found to be successful.

Our target compound 4-(2-(benzyloxy) ethyl)-6-(iodomethyl)-5-vinyl-1,3-dioxan-2-one
(65% yield) was synthesized with R, S, R (and S, R, S) relative stereochemistry at carbons 8, 9,
and 10. The reaction proceeded with very high stereoselectivity. Structure and stereochemistry
were confirmed via COSY and HSQCDEPT. Gaussian calculations (DFT B3LYP (6-31g (d, p)

for C, H, O; LANL2DZ for 1)) were conducted to provide relative conformation energies used to
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determine a possible mechanism. The lowest energy conformation of our major product was found
to be less stable than lowest energy conformer of the alternative diastereomer epimeric at the
carbon bearing the vinyl group. This suggest that the reaction proceeds through a kinetically

controlled mechanism, with the less stable isomer being formed at a higher reaction rate.
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1.11 Experimental and Spectroscopic Data
General Experimental: All solvents used were distilled, obtained from a solvent still, or HPLC

grade unless otherwise noted. All purifications were carried out using flash chromatography with
spherical silica gel standard or premium Rf 100 A 75-200 um, unless otherwise noted. All
glassware was flame dried under nitrogen except for ozonolysis experiments. All melting points
were reported at the temperature the crystal begins to melting.

Nuclear magnetic resonance (NMR) experiments were conducted using one of the

following nuclear magnetic resonance spectrometers: Bruker AV-4, 400 MHz with BBI with z-
gradient, QNP (1H, 19F, 13C, 31P) probes were used for samples run at 400 MHz and 100 MHz;
Bruker DPX-250, 250 MHz with QNP (1H, 19F, 13C, 31P) probes were used for samples labeled
250 MHz or 62.5 MHz. MestreNova, Version: 7.1.0-9185-10.0.2-15465, © 2011-2015 Mestrelab
Research S.L. and Bruker TopSpinTM were used to process all NMR spectra.
All Fourier transform infrared spectroscopy (FT-IR) experiments were conducted using a Bruker
Tensor 27 FTIR with DTGS detector, mid IR source (4000 to 400 cm™), KBr beam splitter, and
OPUS data collection Program. FT-IR data were processed using Essential FTIE v3.00.031 and
Microsoft Office Excel 2015.

All gas chromatography mass spectrometry experiments were conducted using a CP 3800
Varian gas chromatograph with electron multiplier voltage at 1900 volts and ion trap detector.
Samples were auto injected onto a splitless injector onto a DB5-MS Agilent J & W column, 5%
phenol methyl siloxane. The injector temperature was 250 °C. The temperature ramp was 15 °C
per minute. The mass range was 40 m/z to 650 m/z. All GCMS data were processed using System
Control Varian Saturn 2200 software. All ESI experiments were conducted on a TOF/Q-TOF Mass

Spectrometer. The ion source was dual ESI TOF. The mass range was 110-3000. The gas
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temperature was 325°C. The gas flow was 8 L/min. The nebulizer was 20 psi. The solvent ratio

was 10%, 0.1% formic acid in water and 90%, 0.1% formic acid in acetonitrile.
O

=0

2-Phenyl-1, 3-dioxane, Benzaldehyde (20.8 g, 0.196 mol), 1,3-propanediol (14.9 g, 0.196 mol),
and p-toluenesulfonic acid monohydrate (37 mg, 1.94 mmol) and toluene (200 mL) were added to
a 500 mL round bottom flask. The mixture was refluxed for 15 h and a Dean-Stark trap was used
to collect water. The mixture was washed with water and extracted with diethyl ether (3 x 200
mL). The organic portions were dried with MgSOyg, filtered, and the solvent removed. The product
was a white, crystalline solid. Note: Small amounts of unreacted benzaldehyde are present in NMR
spectra. Product, 28.1 g, was isolated giving 87% yield. *H NMR (400 MHz, CDCls) § 7.52 (d, J
= 7.1 Hz, 2H), 7.37 (m, 7.43-7.34 3H), 5.52 (s, 1H), 4.30 (dd, J = 11.4, 5 Hz, 2H), 4.00 (t, J = 11.2

Hz, 2H), 2.26 (J = 12.7, 6.3 Hz, 1H), 1.47 (d, J = 13.4 Hz, 1H). 3C NMR (101 MHz, CDCls) 5

138.7, 128.8, 128.2, 126.0, 101.6, 67.4, 25.8. GC/MS [M-1] m/z163.

O~

2-(4-Methoxyphenyl)-1,3-dioxane, 4-Methoxybenzaldehyde (5 g, 36 mmol), 1,3-propanediol
(2.65 mL, 36 mmol), p-toluenesulfonic acid monohydrate (69 mg, 0.363 mmol) and toluene (50
mL) were placed in 250 mL round bottom flask equipped with a Dean-Stark trap. The reaction was
refluxed for 15 h. The mixture was extracted with diethyl ether and washed with water. The organic
portions were dried with MgSOsa, filtered, and solvent removed to afford white crystals (6.0 g,
84%), m.p. 40.0 °C. Note: Small amounts of ethyl acetate, hexanes, and unreacted 4-
methoxybenzaldehyde are present in the NMR spectra. *H NMR (400 MHz, CDCl3) § 7.43(d, J =
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9.1 Hz, 2H), 6.90 (d, J = 9.1 Hz, 2H), 5.46 (s, 1H), 4.25 (dd, J=10.5, 5.0 Hz, 2H), 3.98 (td, J =

12.4, 2.5 Hz, 2H), 3.80, (s, 3H), 2.26-2.17 (m, 1H), 1.45-1.38 (m, 1H). GC/MS [M-1] m/z193

©/\O/\/\OH

(3-Benzyloxy)propan-1-ol, 2-Phenyl-1,3-dioxane (10 g, 60 mmol) was added to a 500 mL dry 3-
neck flask. BHs-THF (1 M) (350 mL) was added dropwise from an addition funnel and the mixture
was allowed to stir at room temperature overnight. The mixture was cooled to 0 °C and quenched
with distilled ice water. Organics were extracted with ethyl acetate dried over MgSQOg, filtered and
solvent removed. Crude product was a clear oil. (7.7 g, 77%) Purification was effected by flash
chromatography eluting with 95% hexanes/ 5% ethyl acetate. Note: Small amounts of unreacted
2-Phenyl-1, 3-dioxane are present in NMR spectra. *H NMR (400 MHz, CDCls3) § 7.34 (m, 5H),
4.53 (s, 2H), 3.78 (t, J = 5.7 Hz, 4H), 3.67 (t, J = 5.8 Hz, 2H), 2.35 (5, 1H), 1.89 (m, 2H). 3C NMR
(101 MHz, CDCl3) & 138.1, 128.4, 127.6, 73.1, 69.1, 61.8, 32.1 MS (ESI*) 175.0 V. [M] 166.1

m/z.

/©/\O/\/\OH
o

3-(4-Methoxybenzyloxy)propanol, Borane in THF (1M, 80 mL, 80 mmol) was added to a 250mL

~

three neck round bottom flask. 2-(4-methoxyphenyl)-1,3-dioxane (3 g, 0.155 mmol) was added at
0 °C. The reaction was warmed to room temperature and stirred overnight. The mixture was cooled
to 0 °C, quenched with water, extracted with diethyl ether (3 x 80 mL) and then washed with water.
The organic portions were dried with MgSOa, filtered, and solvent was removed. Purification was
effected by flash chromatography, 90% hexanes 10% ethyl acetate, increasing polarity to 75%
ethyl acetate 25% hexanes. Product was isolated as a clear light yellow oil (2.9 g, 95%). *H NMR
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(400 MHz, CDCls) & 7.25 (t, 2H), 6.88 (d, J = 9.0 Hz, 2H), 4.56 (s, 1H), 4.43 (s, 1H), 3.78 (s, 3H),
3.73(t, J = 5.7, Hz, 2H), 3.60 (t, J = 5.8 Hz, 2H), 2.70 (d, 1H), 1.83 (t, 2H). GC/MS [M] 196m/z,

[CeHsO'] 121m/z

HO\/\/O\S:JJ<

3-((tert-Butyldimethylsilyl)oxy)propan-1-ol, (3-bromopropoxy)(tert-butyl)dimethylsilane (1 g,
3.95 mmol) and KOH (0.222 g, 3.95 mmol) were added to DMF (20 mL) and water (2 mL) in a
50 mL round bottom flask. The reaction was allowed to stir for 6 h. Mixture was diluted with water
and extracted with diethyl ether, dried with MgSQsa, filtered, and solvent removed. Purification
was effected by flash chromatography, eluting with 90% dichloromethane/ 10% methanol. Solvent
was removed by vacuum. Product was a clear oil; 0.47 g, was isolated for a 63% yield. *H NMR
(400 MHz, CDCls) 6 3.73 (t, J = 5.7 Hz, 2H), 3.51 (t, J = 6.5 Hz, 2H), 2.09-1.98 (m, 2H), 0.90 (s,

9H), 0.07 (s, 6H). *C NMR 60.4, 34.6, 31.6, 25.9, 18.7, -5.1.

O/\/U\H
g8

Method A

(3-Benzyloxy) propanal, PCC (12.9 g, 60 mmol) was added to 500mL of CH2Clz2in a 1 L round
bottom flask. Al.Os (12.9 g, weight eq. of PCC) was added to solution, and the mixture was
allowed to stir for 30 min. (3-Benzyloxy) propan-1-ol (5 g, 30 mmol) was then added. The reaction
was allowed to run for one day. The color changed to a dark, almost black. Solids were filtered

through a fritted filter topped with silica gel. Purification was effected by flash chromatography,
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eluting with 90% hexanes 10% ethyl acetate. Solvent was removed by vacuum. Product, (2.6 g,

52%) was isolated as a light yellow oil.
Method B

(3-Benzyloxy)propan-1-ol, (1 g, 6.02 mmol) was placed in a 100 mL round bottom flask. Toluene
(14 mL) and NaHCOs (1.678 g, 20 mmol) were added and allowed to stir for 45 min. lodine (3.38
g, 27 mmol) was added followed by TEMPO (0.104 g, 0.607 mmol). The mixture was allowed to
stir for 16 h then cooled to 5 °C. Ethyl acetate (3.46 mL) was added to dilute the mixture. NaxSO3
(692 mg, 4.87 mmol) was added to quench reaction. The mixture was washed with sat. K.CO3
followed by brine. The organic portions were dried with Na;SQOa, filtered, and solvent removed.
Purification was effected by flash chromatography, eluting with 75% hexanes/ 25% ethyl acetate.
The product, (0.53 g, 53%) was isolated as a light yellow or clear oil. Note: Small amount of ethyl
acetate and hexanes are present in NMR spectra. 'H NMR (400 MHz, CDCls) § 9.81 (s, 1H), 7.34
(m, 5H), 4.54 (s, 2H), 3.82 (t, J = 6.2 Hz, 2H), 2.71 (d, J = 6.3 Hz, 2H). 1*C NMR (101 MHz,

CDClI3) 6 176.7, 128.4, 127.7, 73.2, 65.2, 34.

OVLH
I

3-(4-Methoxybenzyloxy)propanal, PCC (5.5 g, 0.255 mmol) and Al>Oz (11 g double mass. of
PCC) were added to CH2Cl> (300 mL) ina 1 L round bottom flask. The solution stirred for 30 min.
3-(4-methoxybenzyloxy)propan-1-ol (2.50 g, 0.127 mmol) was added. After 4 h, the suspension
was filtered through silica. Purification was effected by flash chromatography 90% hexanes 10%

ethyl acetate then increased to 75% hexanes/ 25% hexanes. Product was isolated as a yellow oil at
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1.31 g for a 65% yield. *H NMR (400 MHz, CDCls) § 9.89 (s, 1H), 7.86 (d, J = 8.7 Hz, 2H), 7.02

(d, J=8.7 H, 2H), 3.89 (s, 3H), 3.80 (s, 3H) 3.73 (t, J = 6.3 Hz 2H), 2.66 (t, J = 6.3 Hz 2H).

OH

N

Penta-1,4-dien-3-ol, THF and ether (4:1 ratio) was added to a dry round bottom flask at 15 °C.
Vinyl magnesium bromide (12.96 g, 0.857 mmol) and acrolein (4 g, 0.714 mmol) were added to
reaction. The mixture was stirred for 3.5 h, and then quenched with saturated ammonium chloride
(¥a reaction solvent volume) at 0 °C. The precipitate was removed by filtration. The solution was
extracted ethyl acetate, dried with MgSOs, and filtered. Purification was effected by flash
chromatography 75% ethyl acetate/ 25% hexanes. Solvent was removed by vacuum to afford to
afford product (3.79 g, 63%) as a yellow oil. *H NMR (250 MHz, CDCl3) § 5.93-568 (m, 2H),
5.24-.08 (M, 4H), 4.51 (t, J = 5.8 Hz 1H), 3.00 (s, 1H). 3C NMR (63 MHz, CDCl3) 5 139.1, 115.0,

73.7.
NN

(E)-5-Bromopenta-1, 3-diene, Penta-1,4-dien-3-ol (1.99 g, 24. mmol) was added to a 25 mL
round bottom flask followed by hexanes (5 mL). Temperature was lowered to -50°C. HBr (48%
aqueous solution, 5.3 mL) was added dropwise. The mixture was stirred for 22 h. Saturated sodium
bicarbonate (until mixture stopped bubbling) was added to neutralize the reaction. The organics
were extracted ethyl acetate (3 x 50 mL), dried with MgSQg, and filtered. Solvent was removed
by vacuum and the residue was purified was effected by flash chromatography eluting with 10%
ethyl acetate/ 90% hexanes. Product, (2.8 g, 81) was isolated as a light yellow oil. Note: A small

amount of unreacted penta-1,4-dien-3-ol is present in NMR spectra. *H NMR (400 MHz, CDCls)
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5 6.48-6.22 (M, 2H), 6.05-5.79 (m, 1H), 5.47-5.10 (m, 2H), 4.04 (s, 2H). GC/MS [CsH4*] 67m/z,

[CaHoBI*] 132

o O
N o}
OH

1-(Benzyloxy)-4-vinylhex-5-en-3-ol, (3-benzyloxy)propanal (0.1 mg, .661 mmol) and (E)-5-
bromopenta-1,3-diene (97 mg, 0.166 mmol) were added to a dry round bottom flask. The flask
was then cooled to -30 °C. DMF (10 mL) was added followed by In powder (76 mg, 0.666 mmol).
The reaction was allowed to run overnight, then quenched with water, diluted with brine, extracted
with ethyl acetate (3 x 50 mL), dried with MgSOsa, filtered and solvent removed. Purification was
effected by flash chromatography 95% hexanes 5% ethyl acetate. Product (48 mg, 32%) was
isolated as a very light yellow oil. Note: Small amounts of ethyl acetate, hexanes and benzaldehyde
are present in NMR spectra. *H NMR (400 MHz, CDClz) § 7.41-7.29 (m, 5H), 5.97-5.78 (m, 2H),
5.21- 5.08 (m, 4H), 4.53 (s, 2H), 3.88-3.79 (m, 2H), 3.78-3.63 (m, 2H), 2.88-2.77 (m, 1H), 1.90-
1.69 (m, 2H). 3C NMR (101 MHz, CDCl3) § 138.0, 137.6, 137.1 128.4 127.7, 117.0, 116.7, 73.3,

72.6, 68.9, 54.7, 33.9. GCMS C15H2002 [M] 232.7
X O\
QWOMQ/
OH

1-(4-Methoxybenzyloxy)-4-vinylhex-5-en-3-0l 1.55, In powder (0.649 mg, 5.65 mmol) was
added to a 100 mL round bottom flask. The flask was then cooled to 0°C and DMF (50 mL), 3-(4-
methoxybenzyloxy)propanal (0.1 mg, 5.15 mmol), and (E)-5-bromopenta-1,3-diene (0.162 mg,

1.1 mmol) were added. The reaction was allowed to run for 4 h at 0 °Cthen quenched with water.
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The solution was extracted with diethyl ether, dried with MgSOs, and solvent removed.
Purification was effected by flash chromatography 85% hexanes 15% ethyl acetate then increase
to 75% hexanes/ 25% ethyl acetate. Product, 0.42 mg, was isolated as a light yellow oil for a 31%
yield. 'H NMR (400 MHz, CDCl3) § 7.24 (d, J = 8.2 Hz 2H), 6.88 (d, J = 8.2 Hz 2H), 5.86 (m,
2H), 5.13 (m, 4H), 4.45 (s, 2H), 3.80 (s, 3H) 3.68 (m, 2H), 2.88 (m, 1H), 2.81 (m,1H), 1.78 (m,
2H). *C NMR (101 MHz, CDCls) § 137.7, 137.2, 130.1, 129.3, 116.9, 116.7, 113.8, 72.9, 68.7,

55.3,54.8, 33.9.

Pent-4-en-2-yl carbamate. To a solution of 4-penten-2-ol (0.5 g, 5.8 mmol) in 8.3 mL of
chloroform was added dropwise over 30 min to a solution of trichloroacetyl isocyanate (1.1 g, 5.8
mmol) in 2.5 mL of chloroform in a 25 mL round bottom flask cooled to 0 °C. After 10 min K2COs
(0.8 g, 5.78 mmol) in a mixture of 4.5 mL of methanol and 3 mL water, was added to the reaction
mixture. The mixture was allowed to stir for 4 h at 0 °C, then warmed to rt for 2 h. The mixture
was acidified to pH 6 with 0.5 M H>SO4. Organics were extracted three times with chloroform,
dried with MgSQOyg, filtered, and solvent removed in vacuo. The product (0.73 g, 98%) was a white,
crystalline solid. *H NMR (400 MHz, CDCl3) § 5.78 (m, 1H), 5.08 (m, 2H), 4.85 (m, 1H), 4.65 (s,
2H), 2.29 (m, 2H), 1.23 (d, 3H). 3C NMR (101 MHz, CDCls) § 156.6, 133.7, 117.6, 70.8, 40.4,

19.6.

O)?\OJ<
)\/\
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Tert-butyl pent-4-en-2-yl carbonate,’ 4-Penten-2-ol (0.1 g, 1.16 mmol) was added to 15 mL of
CH2Cl> cooled to 0°C. Di-tert-butyl dicarbonate (0.38 g, 1.74 mmol), EtsN (0.047 g, 0.464 mmol),
and 4-(dimethylamino)pyridine (0.02 g, 0.023 mmol) were added at room temperature. The
reaction was allowed to stir for 10 hr. The mixture was diluted with CH>Cl, and water. Organics
were dried over MgSOs, filtered, and solvent removed in vacuo. Purification AgQNOs 10 wt% on
silica 100% hexanes increased to 97% hexanes/ 3% ethyl acetate. The product is a clear oil (32 mg
15%) 'H NMR (400 MHz, CDCl3) & 5.77 (ddt, J = 15.0, 10.1, 7.2 Hz, 1H), 5.16 — 5.03 (m, 2H),
4.86 — 4.69 (m, 1H), 2.40 (dt, J = 13.3, 6.5 Hz, 1H), 2.36 — 2.22 (m, 1H), 1.48 (s, 4H), 1.47 (s, 1H),
1.27 (dd, J = 6.4, 4.6 Hz, 3H), 0.07 (s, 1H).

Pen-4-en-2-ol (0.5 g, 5.8 mmol) was added to dry diethyl ether. In a separate flask, Boc-
ON (1.43 g 5.8 mmol) was added to dry THF. n-BuLi 1M in hexanes (5.8mL, 5.8 mmol) was
added dropwise to pen-4-en-2-ol solution at -78 °C and allowed to stir for 30 min. The mixture
was quickly transferred to the Boc-ON solution at 0 °C and allowed to stir for four hours. The
mixture was then washed with 2 N NaOH twice and brine once. The organics were extracted with

ether and dried of MgSOa. The crude product is light yellow oil (0.96 g, 89%)

4-(iodomethyl)-6-methyl-1,3-dioxan-2-one,?® Tert-butyl pent-4-en-2-yl carbonate (.054 g, 2.9
mmol) was added to 15 mL of CH3CN in a 25 mL round bottom flask at 0 °C. NIS (1.3 g, 5.8 mol).
The reaction was allowed to stir for 9 h at 4 °C. The reaction was quenched with saturated NaSz0-

and saturated NaHCO3. Organics were extracted with CH2Cl» twice and dried over MgSOsa. Initial
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purification: flash chromatography 90:10 ethyl acetate: hexanes with 10% ethyl acetate increases

every two column volumes. The product (.05 g, 8%) is a clear yellow oil.

Major Product: *H NMR (400 MHz, CDCls) & 4.63(m, 1H), 4.47(m, 1H), 3.48(dd, 1H), 3.43(dd,
dd, J = 10.53 4.26 Hz, 1H), 3.26(dd, J = 10.5, 7.6 Hz, 1H), 2.40(dt, = 14.2, 3.0 Hz, 1H), 1.70((dl,

J=14.2,11.6 Hz, 1H), 1.45(d, 3H).

Minor Product: *H NMR (400 MHz, CDCls) § 4.72(m, 1H), 4.63(m, 1H), 3.43(dd, 1H), 3.31(dd,

1H), 2.25(m, 1H), 2.14(m, 1H), 1.49(d, 3H).
o) ><
S0

o 5

1-(benzyloxy)-4-vinylhex-5-en-3-yl tert-butyl carbonate, 1-(Benzyloxy)-4-vinylhex-5-en-3-ol
(0.573 g, 2.47 mmol) was added to a 50 mL round bottom flask. Acetonitrile (25 mL) was added
and temperature was lowered to 0 °C. DMAP (0.30 g, 2.47 mmol), triethylamine (1.75 g, 0.173
mmol), and (Boc)20 (4.84 g, 0.222 mmol) were added and the temperature was gradually increased
to room temperature. After 26 h the reaction was diluted with ethyl acetate, washed with brine,
dried over MgSOs, and solvent removed. Flash chromatography was conducted using 85:15 ethyl
acetate: hexanes. The product, 0.4 g, was isolated as a clear oil for a 50% yield. *H NMR (400
MHz, CDCl3) 6 7.36 — 7.25 (m, 4H), 5.88 — 5.74 (m, 2H), 5.21 — 5.06 (m, 4H), 4.96 — 4.86 (m,
1H), 4.49 (s, 2H), 3.52 (9, J= 7.5, 6.7 Hz, 2H), 3.01 (q, J = 7.3 Hz, 1H), 1.89 (dddt, J = 43.8, 14.7,
10.3, 4.5 Hz, 2H), 1.84 (ddt, J = 14.7, 10.3, 5.6 Hz, 1H), 1.46 (s, 9H), 3C NMR (126 MHz, CDCls)

0 171.3, 148.0, 138.1, 128.7, 128.0, 125.6, 124.8, 80.8, 79.0, 73.5, 65.2, 60.6, 42.6, 33.4, 21.2,

14.4, 2.1.
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4-(2-(benzyloxy)ethyl)-6-(iodomethyl)-5-vinyl-1,3-dioxan-2-one, CH3CN (5 mL) was added to
a 25 mL round bottom flask. The temperature was lowered to -50 °C. 1-(benzyloxy)-4-vinylhex-
5-en-3-yl tert-butyl carbonate (0.042 g, 0.126 mmol) and NIS (0.085 g, 0.379 mmol) were added.
The reaction was allowed to stir for 1 d. The reaction was then quenched with sat. Na>S>04,
extracted with ethyl acetate, dried with MgSOs4, and solvent removed. Flash chromatography was
conducted using 90:10 ethyl acetate: hexanes. Product, 0.033 g, was isolated as a light yellow oil
for a 65% yield. *H NMR (500 MHz, CDCls) § 7.34 (ddt, J = 15.1, 13.2, 7.3 Hz, 5H), 5.60 — 5.50
(m, 2H), 5.47 — 5.36 (m, 1H), 4.79 (ddd, J = 8.0, 4.7, 2.6 Hz, 1H), 4.69 (ddd, J = 10.2, 4.9, 2.8 Hz,
1H), 4.57 — 4.45 (m, 2H), 3.68 (td, J = 9.3, 4.2 Hz, 1H), 3.58 (dt, J = 9.8, 5.1 Hz, 1H), 3.33 (dd, J
=10.0, 4.9 Hz, 1H), 3.03 (t, J = 10.0 Hz, 1H), 2.96 (dt, J = 9.8, 2.7 Hz, 1H), 1.95 (ddd, J = 18.6,
9.0, 4.5 Hz, 1H), 1.84 (ddt, J = 14.2, 9.4, 4.9 Hz, 1H). *C NMR (126 MHz, CDCl3) § 171.3, 147.9,

138.0, 128.7, 128.0, 128.0, 125.5, 124.7, 80.7, 79.0, 73.5, 65.1, 42.5, 33.3, 2.1.
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Figure 19. 2-Phenyl-1,3-dioxane *H-NMR (400MHz, CDCls)
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Figure 46. Pent-4-en-2-yl carbamate, * C-NMR (101 MHz, CDCls)
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Figure 49. Tert-butyl pent-4-en-2-yl carbonate product from Kumar, D.N., 2011 procedure purified using AgNO3 10 wt% on silica,
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Figure 51. Tert-butyl pent-4-en-2-yl carbonate product from Kumar, D.N., 2011 procedure purified using AgNO; 10 wt% on silica, *C-NMR (101
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Figure 52. GC/MS chromatograph and spectra of tert-butyl pent-4-en-2-yl carbonate product from Kumar, D.N., 2011 procedure
purified using AgNOs 10 wt% on silica, EI (filament voltage 70 eV)
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Figure 53. GC/MS chromatograph and spectra of tert-butyl pent-4-en-2-yl carbonate reaction crude Duan, J. J. W.; Smith, A. B.
procedure, EI (filament voltage 70 eV)

107



Oj)J\OJ<
M

m/z: 186

Prme T 2 Ot X5 16045

WACoun s LAmTpent Dmes S lSETEmTT 00 CET TFEDIT IR
== —
3 1
=] -
E=2 ) —
E |
=+ | -
= l |
5 '\_I — ad S— - - |
da A= ho 1k= “Eo -
=
) = 185 rin Scon: TEO Chenes: Ssrpes o 31 s SIC LSS T (1E00
=] o —
._Eev- o |
S| —
== —
\) T
= E =]

Figure 54. GC/MS chromatograph and spectra of tert-butyl pent-4-en-2-yl carbonate reaction mixture, El (filament voltage 70 eV)

108



/\)\ i /k/\
= OJ\O X
m/z: 198

Pm S J1 06 2045 1500 93

A s Nemger TS50 mSersr wews STIICHCHEF T # e ClE pldls
dfé 14 E
2] } —
E: ‘ | 3

3 | 5

== | ‘ —

| I _allh =" = - ]

= = oo k= 7 ol

o 1A

|-=='5-'=.'l.-'_'-_lh:-0-ﬁ—1m-:--IE_E,_Er'—_._'n= A0S Frir. meeary SUE Cinarreel B oy B s s i Dl et g

SOENa] Enn =

=] -

Edre] —

e 1Ges —

3 4% 0 S30E e
ShT mndm T e
o JT g bes i 1205 tir; pr=T
5 1 |J Lug LA o ] &l
T o= LA L T - T TR T = T == == T =

Figure 55. GC/MS chromatograph and spectra of tert-butyl pent-4-en-2-yl carbonate contaminant, EI (filament voltage 70 eV)

109



Ak

m/z: 174

i el 2 O XIS em e

MS Data RBeview Active Chromatogram and Spectrum Plots - 10/22/15 0945

2 PiED MWl ZSE3D oI o 2000 Ca STl fAvy
23] —
1 1
3 |
-1 -
= | =
A _ - -
g5 Ti= he 3 D Frica i
ERDETELITT
S (| i 0N | BEE T S wre T 354 Fran. s S Crnnas feberpe s S g WS S8 e (S
T B =
7=] -
=] —
Ze] —
] 41,4 ]
szl= 1
il e s ]
> T |J,|,|IH||||| ErE i re AT T 1
------- T T T BT =5t & T T T T
e

Figure 56. GC/MS chromatograph and spectra of tert-butyl pent-4-en-2-yl carbonate contaminant, EI (filament voltage 70 eV)
110



11022015 016 25-29 3.1.fid g ¢ ¢ ] 239 NI
< < (o] ™ NN N ~- - —
I (I 2NN \ lo

11022015 016 25-29

N A

L

S Y- R 07 5 (A S 7y 1T T
] © Noo— ™M « el 1 L <
(==} o o o0ooo - — - OO o~ ™ —
T T T T T T T T T T T T T T T T T T T T T T T T v
7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0
f1 (ppm)
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111



—3.65
—3.40

PO

)
-

—2.60
—2.42
1.27

_-0.69
~0.63

2

T T T T T T T T T T T T T T T T T T T T T
3.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0
f1 (ppm)

in
-
T T T T T T
2

.5 2.0 1.5 1.0
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Figure 60. 1-(benzyloxy)-4-vinylhex-5-en-3-yl tert-butyl carbonate, *H (400 MHz, CDCls)
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Figure 61. 1-(benzyloxy)-4-vinylhex-5-en-3-yl tert-butyl carbonate, **C-NMR (101 MHz, CDCls)
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Figure 65. 4-(2-(benzyloxy)ethyl)-6-(iodomethyl)-5-vinyl-1,3-dioxan-2-one, *C-NMR (126 MHz, CDCls)
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Figure 66. 4-(2-(benzyloxy)ethyl)-6-(iodomethyl)-5-vinyl-1,3-dioxan-2-one, COSY (500 MHz, CDCls)
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Figure 67. 4-(2-(benzyloxy)ethyl)-6-(iodomethyl)-5-vinyl-1,3-dioxan-2-one, HSQCDEPT (500 MHz, CDCls)
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Figure 68. 4-(2-(benzyloxy)ethyl)-6-(iodomethyl)-5-vinyl-1,3-dioxan-2-one, HETCOR (500 MHz, CDCls)
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