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ABSTRACT 

The objective of this work is to develop a new synthetic strategy for synthesizing 

advanced functional polypeptides or polypeptides in general. Polypeptides are amino acids based 

polymers with appealing properties for different applications. One of the key challenges in 

polypeptide research is the synthesis of functional polypeptides under mild conditions. We 

developed a system based on ring-opening polymerization (ROP) of N-

thiocarboxyanhydrosulfides (NTAs) to synthesize polypeptides with wide range of molecular 

weights under mild conditions. Owing to NTAs’ good stability, our system serves as an excellent 

alternative to the traditional ROP of N-carboxyanhydrides (NCA). In Chapter 1, the fundamental 

knowledge and the cutting-edge research of polypeptides will be reviewed. 

The focus of the work in Chapter 2 is to develop a new class of functional polypeptide in 

traditional method via ROP of NCAs. This class of polypeptides combines several desired 

attributes for biomedical applications, which include: clickable pendant side chains for further 

functionalization, good water solubility, non-ionic nature to avoid unspecific interactions in 

biological systems, and unique secondary conformations (e.g. α-helix, β-sheet). 

In Chapter 3, I developed the first system to prepare polypeptides with controlled 

molecular weight via primary amine initiated solid-phase ring-opening polymerization (sROP) of 

NTAs under mild conditions in open air. Model NTA (e.g. BLG NTA, LYS NTA) monomers 

were synthesized for the first time, and were found to possess better thermal and moisture 

stability as compared to NCA analogs. The sROP proceeds by a normal amine mechanism as 

evidenced by matrix assisted light desorption ionization time of flight mass spectroscopy 

(MALDI-TOF MS). The controlled polymerization behavior of sROP is the direct result of high 

local monomer concentration in the solid phase, thus allowing for faster polymerization under 

relatively mild conditions.  
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The work in Chapter 4 focuses on the development of solution phase polymerization of 

NTAs with TMG/benzoic acid as co-initiation system. PBLG with high molecular weights (33.6 

kg/mol - 66.7 kg/mol) and narrow molecular weight distribution (PDI < 1.12) can be readily 

prepared with this system. The mechanism of the TMG/benzoic acid mediated ROP of NTAs is 

proposed to be activated monomer mechanism (AMM). 
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CHAPTER 1. INTRODUCTION OF POLYPEPTIDES 

1.1 Background and Significance 

Proteins derived from twenty amino acids fold into highly ordered three-dimensional 

structures, which give rise to their complex functions in biological systems. Polypeptides are 

synthetic mimics of proteins, which also can self-assemble into secondary structures (e.g. α-helix, 

β-sheet) stabilized by inter or intra-molecular hydrogen-bonding from the amide bond and 

carbonyl in each repeat unit.
1
  Such secondary structure self-assembly character is rarely seen in 

other traditional polymers (e.g. vinyl polymers) and accounts for the unique properties in certain 

applications. For example, Cheng et al investigated the application of positively charged 

polypeptides in gene delivery.
2
 The results indicated that the positively charged polypeptides 

were able to mediate enhanced gene transfer efficiency as compared to standard polymer such as 

polyethylenimine (PEI). On the other hand, the random coil analog was not able to mediate 

effective transfection. This example showcased the significance of secondary structures in the 

polymer’s performance for targeted applications. Polypeptides can be synthesized from abundant 

naturally existing or synthetic amino acids, contributing to the structure and functionality 

diversities of polypeptides. Other advantages of polypeptides over conventional synthetic 

polymers for in vivo applications include enzymatic degradability and low cytotoxicity, which 

are critical factors to consider in the design of functional materials for in vivo applications.
3,4

 

Owing to these appealing features, they have been extensively investigated to be used in the 

fields of biomedical applications (e.g. drug delivery, tissue engineering, antimicrobial and 

etc.).
4,5

 

Functions of proteins associate closely to their structures. Sequence defined peptides are 

usually synthesized through solid phase peptide synthesis (SPPS).
6
 This strategy involves step-

wise reactions to link amino acids onto solid support resins through repeated cycles of 
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deprotection-coupling for each amino acid to be attached. This method produces mono-disperse 

sequence defined peptides.  Scheme 1.1 shows the synthesis of   peptide (GRGDS) via SPPS, 

which will be studied in Chapter 2. The major limitation of this strategy is the synthesis of long 

peptides (>50 repeat units) in high purity and large scale, due to incomplete deprotection or 

coupling during the cycles.
7
 Other drawbacks include excess reagents consumption and time 

consuming tedious operation. 

Scheme 1.1.  Synthesis of peptide GRGDS via SPPS. 
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1.2 Preparation of polypeptides through ROP of NCAs 

Polypeptides with controlled molecular weights are desired for certain applications, as 

molecular weights affect polypeptides’ properties. For instance, the secondary structure of 

poly(L-lysine(Z)) will transit from coil to helix when the degree of polymerization (DP) is 

increased over 15.
8
 Controlled ROP of NCAs enables access to well-defined polypeptides with 

tailorable composition, architecture, functionality, and size. 

NCAs, initially named Leuchs’ anhydrides, were discovered more than 100 years ago by 

Hermann Leuchs et al. when they tried to purify N-ethoxycarbonyl and N-methoxycarbonyl 

amino acid chlorides by distillation
9-11

 and their applications in polypeptide synthesis has been 

found decades later. Nowadays, there are generally two methods in synthesizing NCAs: Leuchs 

method
9-11

 and Fuchs-Farthing method
12,13

 (Scheme 1.2). The Fuchs-Farthing method treats 

amino acids directly with phosgene or phosgene derived reagents (e.g. diphosgene and 

triphosgene). The Leuchs method treats N-alkyloxycarbonyl amino acids with halogenating 

agents (e.g. PBr3, PCl3, PCl5, SOCl2, α,α-dichloromethylmethyl ether).  

Scheme 1.2. Synthesis of NCAs. 

 

Despite the appealing high reactivity of NCAs in the polymerization, they share certain 

drawbacks that need to be addressed. The primary issue associated with NCAs is their stability. 
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NCAs are moisture and heat susceptible, which complicate handling conditions and shortens 

their shelf lives. We have chosen γ-benzyl-L-glutamate N-carboxyanhydride (BLG NCA) as a 

model to test NCAs’ general stability. The results indicate BLG NCA will start to degrade in less 

than 11 days in air. The thermogravimetric analysis (TGA) test indicates it will start to degrade 

at 122 °C under nitrogen. Such moisture and thermal instability issue makes inert atmosphere 

and low temperature standard conditions for the preparation and storage of NCAs. Secondly, 

high NCA monomer purity is required for the controlled ROP. To achieve high purity, multiple 

recrystallizations or flash chromatography purification under anhydrous condition is required. 

The reason for this is to avoid potential side reactions that arise from contaminations due to 

impurities from cyclization step. For instance, HCl is a common impurity for both methods, 

which can quench and inhibit chain growth.
14

 Chloride ion contamination from both methods is 

shown to be able to initiate polymerization in DMF.
15

   Another issue associated with NCA 

preparation is the use of highly toxic phosgene derived reagents in the Fuchs-Farthing method. 

Due to these issues associated with polypeptides synthesis via NCAs, researchers have been 

trying to find alternative in polypeptide preparation without much success. It will be the focus of 

my third chapter to address aforementioned problems associated with polypeptides synthesis via 

ROP of NCAs. We have found an alternative of NCA, NTAs that can be synthesized without the 

need to rigorously exclude moisture. The NTAs can be polymerized efficiently in open air to 

prepare well-defined polypeptides. 

1.2.1 Different ROP systems  

ROP of NCAs can be initiated with different initiation systems. Traditionally, 

nucleophiles (e.g. primary amine) and base (e.g. triethylamine) have been employed to prepare 

polypeptides of a wide range of molecular weights.
16

 However they each share certain limitations. 
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For instance, primary amines can mediate controlled ROP of NCA to prepare low to medium 

molecular weight polypeptides. However, multiple side reactions can occur during the course of 

polymerization. Base catalyzed ROP of NCA can be used to prepare high molecular weight 

polypeptides. On the other hand, the Mn control by this method is not sufficient, and the strategy 

is rarely used nowadays. Well defined polypeptides with controlled molecular weights, narrow 

molecular weight distribution, tailored composition, and architectures can readily prepared by 

new initiation systems (transition metal catalyst, organosilicon amine and etc.).
17-28

 There are 

also reports where well-controlled polymerization can be achieved under optimized 

polymerization conditions for the primary amine initiated ROP of NCAs (high vacuum,
29-31

 low 

temperature,
30,32,33

 nitrogen flow
34

). The respective polymerization systems will be discussed 

separately below in detail. 

1.2.1.1 Nucleophiles initiated ROP of NCA 

Primary amine is the most commonly used simple nucleophile to initiate the ROP of 

NCAs, which undergoes NAM. The initiation step of the NAM is a nucleophilic attack of 

primary amine at the C5 position carbonyl to open the reactive five-membered ring containing 

anhydride group. The following proton transfer generates a terminal carbamic acid. Due the 

thermal instability of the carbamic acid, it subsequently undergoes a decarboxylation step to 

form a new terminal primary amine to complete the initiation step. The newly formed primary 

amine attacks another monomer in a similar manner until all monomers are consumed or chain 

termination occurs, which constitutes the propagation event (Scheme 1.3).
16

 

 Despite the simplicity and wide application of the primary amine initiation system in the 

ROP of NCA, the method has inherent drawbacks.  Primary amine can work either as a good 

nucleophile or base. When primary amine works as base, it deprotonates the NCA to generate 
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negatively charged NCA as a nucleophile. Then new initiation and propagation events can 

happen with the negatively charged NCA as initiator. The base facilitated ROP of NCA is 

generally known as AMM, which will be discussed in following section. The NAM or AMM 

pathways are determined by the nucleophilicity or basicity nature of the amines used. Strong 

neucleophilic primary amine generally initiates the ROP of NCAs via NAM pathway. However 

less nucleophilic primary amine and bulky secondary amines may mediate the ROP of NCAs via 

the AMM pathway.
16

 In addition, AMM and NAM can switch back and forth in the primary 

amine initiated ROP, which will affect the polymerization control.
31

 

Scheme 1.3. Primary amine initiated ROP of NCA mechanism (NAM). 

 

In the course of ROP through NAM, there are other side reactions, which will affect the 

control of polymerization. Usually the active primary amine chain end accounts for these side 

reactions. The nucleophilic primary amine can undergo reactions with any electrophile in the 

system other than the C5 carbonyl. For instance, NCAs without rigorous purification usually 

contain electrophiles like acid, acid chlorides or isocyanates.
14

 These electrophiles can quench 
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the propagating chain when they react with the terminal amine. These side reactions will affect 

the control of ROP by decreasing the number of available propagating chains.  

There are two electrophilic carbonyl centers in the NCA five membered-ring: the C2 and 

C5 position carbonyls. In an ideal scenario, the primary amine initiator should attack the NCA at 

the C5 position during the initiation and propagation events for a living polymerization. However, 

studies show attack at the C2 carbonyl of NCA can occur to form stable hydantoic acid (Scheme 

1.4).
16,35,36

 Both carboxylate and urea are inert towards the polymerization, which makes the 

chain terminated. 

Scheme 1.4. Primary amine attack C2 carbonyl to terminate polymerization. 

 

Another common termination reaction observed in the primary amine initiated ROP of 

selected NCAs is well-known as intramolecular transamidation by a back-biting mechanisam in 

the case of the glutamic acid derived NCAs (e.g. BLG NCA).
30,32,37

 The back-biting happens 

when the active terminal amine undergoes an intramolecular aminolysis at the ester position on 

the side chain resulting in a cyclic pyroglutamate (Scheme 1.5). This pyroglutamate formation is 

Scheme 1.5. General scheme of terminal primary amine back-biting to from pyroglutamate in 

glutamic acid derived NCAs ROP. 
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responsible for the chain termination. Decreasing the polymerization temperature to 0 °C was 

shown to minimize the side reaction, which contributes to obtaining amine terminated 

polypeptides.
32

  

Polypeptides usually possess poor solubility in most organic solvents due inter or intra-

molecular association via hydrogen bonding. DMF is generally a good solvent for polypeptides 

and often used for the polymerization of NCAs. However, there are issues associated with DMF 

in the polymerization of NCAs where it can interfere with the propagating polymer chains.
31,38

 

DMF affects the polymerization in two ways (Scheme 1.6). First, the propagating chain end 

amino group can affect the polymerization in two ways. First, the propagating chain end amino 

group can react with DMF resulting in a formyl end group, which will terminate the propagating 

chain. This will occur even if DMF is freshly distilled.
31

 In addition, during the reaction of the 

terminal amine with DMF, a secondary amine, dimethyl amine, is released to the polymerization 

medium. The dimethyl amine can work as a new initiator to mediate new chain propagating 

event, which will affect the Mn control. In addition, the primary amine or secondary amine in the 

polymerization solution may also deprotonate the NCA for polymerization via the AMM 

pathway (AMM will be discussed in section 1.2.1.2). The polypeptides formed via the AMM 

pathway also possess terminal amines that can potentially undergo coupling with DMF again. 

Hence, the end-groups can be complicated when DMF is used as solvent in the primary amine 

initiated ROP of NCAs, which was demonstrated by Pickel et al (Scheme 1.7).
31

 According to 

Vayaboury and coworkers,
33

 78% of all polymer chains are terminated either by DMF or NCA 

itself when nucleophilic attack happens at C2 position, which leaves only about 22% living 

chains with amine as termination group under standard ROP condition in DMF at room 

temperature.  



9 
 

Scheme 1.6. A)Terminal reaction in primary amine initiated ROP of NCA via reaction with 

DMF; B) re-initiation by dimethylamine released form A).  

 

Scheme 1.7. Possible termination products in the polymerization of O-benzyl-L-tyrosine NCA 

with 1,6-diaminohexane as initiator (reprinted with permission from reference,
31

 copyright (2009) 

American Chemical Society). 

 

1.2.1.2 Base catalyzed ROP of NCAs 

AMM is a method traditionally employed to generate polypeptides with high molecular 

weights. It requires base (e.g. triethylamine, sodium methoxide) as a catalyst.
16,39-41

 There are 
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multiple mechanisms proposed for the base catalyzed ROP of NCAs.
42

 The popular mentioned 

one is introduced as follows. The base works as co-initiator/catalyst to deprotonate the NCA first 

forming NCA anion. The NCA anion subsequently undergoes nucleophilic attack at another 

neutral NCA, which constitutes the initiation step. During the propagation steps, newly formed 

NCA anion will attack the terminal cyclic N-substituted NCA at the C5 position to add onto the 

propagating chain until all monomers are consumed (Scheme 1.8).
16

 The existence of the 

terminal cyclic N-substituted NCA was verified by Scoffone and coworkers.
43

 One character of 

AMM is the fact that the propagation rate is higher than the initiation rate, contributing to high 

molecular weight polypeptide.
16

 The higher propagation rate originates from C5 carbonyl’s 

better electrophilicity due to N-acylated terminated cyclic NCA. The poor Mn control of AMM 

makes the technique less popular in polypeptide preparation, especially with the development of 

transition metal based catalysts which enable access to high molecular weight polypeptide with 

good control. Yin and coworkers have investigated the effect of [BLG NCA]0/[TEA]0 on the Mn 

of the afforded PBLG in TEA mediated ROP of BLG NCA.
44

 It can be seen that only high 

molecular weight PBLG can be prepared regardless of the [BLG NCA]0/[TEA]0 (Figure 1.1). 

While the above discussed base catalyzed mechanism ROP of NCA is generally accepted, there 

still exists much criticism against it.
42

  

The main counter-argument against AMM is the continuous formation of activated 

monomer during polymerization via deprotonation of NCA by carbamate ion. This is unlikely to 

happen considering the acidity difference of NCA and carbamic acid (ΔpKa ~ 6). The second 

issue lies in the cause of high molecular weight afforded via the AMM. Based on Harwood’s 

paper, the C5 carbonyl electrophilicity difference between N-acylated terminated cyclic NCA 

and NCA is not significant enough to account for a huge kp/ki (~ 10
5
) that is required for 
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affording high molecular weight polypeptide (DP > 300). On the other hand, Kricheldorf added 

better electrophiles as compared to NCAs to the triethylamine mediated ROP of NCAs.
45

 The 

polymerization was accelerated in the presence of the good electrophile, and the DP of the 

resulting polypeptide was also low, similar to the ratio of NCA to electrophile. In addition, the 

electrophile additives were also detectable in the NMR of the polypeptide. If worse electrophiles 

were used, then no acceleration was observed. These results are consistent with the proposed 

AMM as the neutral NCA is replaced with a better electrophile in the initiation step, which will 

contribute to a faster initiation step. Consequently, the molecular weight will decrease, and the 

polymerization rate will increase. Nevertheless, more work is necessary to elucidate the 

complicate mechanism of AMM. 

Scheme 1.8. Base catalyzed ROP of NCA via AMM. 
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Figure 1.1. The relationship between Mn of PBLG and M/I ([BLG NCA]0/[TEA]0) in TEA 

mediated ROP of BLG NCA (reprinted with permission from reference
44

, copyright (2013) 

Science China Press and Springer-Verlag Berlin Heidelberg). 

1.2.1.3 Transition metal catalysts initiated ROP of NCAs 

Traditional initiation systems (e.g. primary amine) for ROP of NCA suffer from many 

possibilities of side reactions as discussed above. The living polymerization of NCAs with 

transition metal catalysts (e.g. Ni(bipy)(COD), (PMe3)4Co) was first established by Deming et al 

to enable access to high molecular weight polypeptide in a controlled manner.
18,46

 Transition 

metal nickel based initiator (Ni(bipy)(COD)) was first introduced twenty years ago.
18

  

Polymerization of BLG NCA with Ni(bipy)(COD) in DMF indicates molecular weights of 

PBLG agree well with target monomer to initiator ratios up to 500 with narrow PDI (<1.2).
18

 

Diblock and triblock polypeptides can also be prepared with the Ni(bipy)(COD) initiation system 

with narrow PDI (<1.2), indicating characteristics of living polymerizations.
18

 The transition 
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metal catalyst initiation systems mediate the ROP of NCAs in a different mechanism (Scheme 

1.9), thus avoids some of the common side reactions seen in AMM or NAM. This is the firs t 

Scheme 1.9. General mechanism of transition metal catalysts initiated ROP of NCAs. 

 

example of living polymerization of NCA in the preparation of polypeptides. Later on, Deming 

introduced another system based on cobalt ((PMe3)4Co), which also enables living 
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polymerization of NCA.
46

 However, there is an increase in the reactivity of (PMe3)4Co during 

the initiation step, which makes the preparation of short peptide sequence possible with 

(PMe3)4Co. In contrast, Ni(bipy)(COD) is only able to produce high molecular weight 

polypeptides.
46

 The authors studied the mechanism of transition metal catalysts initiated ROP of 

NCAs. The catalysts ML4 first selectively and oxidatively insert into O-C5 bond as evidenced by 

isotropic labeling. The newly formed five membered metallacycle will subsequently react with 

additional NCAs to form the propagating active five-membered amino-amidate group. The five-

membered amino-amidate reacts with another NCA at the C5 position via nucleophilic attack to 

form a new five-membered amino-amidate upon release of CO2, proton migration, and ring 

contraction, which constitute the propagation step. Despite the advantages of the transition metal 

catalysts, one potential problem is the trace metal residue left in the polypeptides, which can be 

troublesome if the materials are designed for biological applications. 

1.2.1.4 Organosilicon amine 

In 2007, Lu and Cheng found that silicon amines (e.g. hexamethyldisilazane (HMDS)) 

can efficiently polymerize NCAs (e.g. BLG NCA, LYS NCA) with good molecular weight and 

narrow molecular weight distribution (~1.2).
19

 Block copolymers can also be readily prepared by 

sequential addition of NCA monomers (e.g. PBLG-b-PZLL).
19

 Considering their inexpensive 

and commercially availability nature, the HMDS initiated living polymerization of NCA 

represents a good alternative to transition metal catalysts. Additionally, the HMDS initiator 

provides a new mechanism to control the polymerization of NCAs.  Cheng et al. initially 

proposed that a trimethylsilane (TMS) of HMDS transferred to carbonyl of NCA first, followed 

by the anhydride ring break by the in situ formed TMS-amine. The newly formed terminal TMS-

carbamate interacts with another incoming NCA via a six-membered ring transition state, 
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followed by release of CO2 and TMS migration to chain end for next propagation event (Scheme 

1.10a). However, further investigation indicates HMDS can polymerize N-methyl glycine NCA 

via the same TMS-carbamate end group. This is in contradiction with the originally proposed 

mechanism which required hydrogen on the nitrogen to go through tautomerization (Scheme 

1.10b). In addition, HMDS can react with succinic anhydride at 1:1 to afford the product 3 in 

Scheme 1.10c, which indicates HMDS can open the anhydride rings without assistance from 

nitrogen on the NCA ring. Hence, they proposed a new route where TMS transfer and amide 

bond formation happen simultaneously as the initiation step (Scheme 1.10d). The propagation 

still proceeds the same way as proposed previously. 

Scheme 1.10. Proposed mechanism for the HMDS mediated NCA polymerization (Reproduced 

from reference
47

 with permission from The Royal Society of Chemistry). 
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The scope of the organosilicon amine initiation system was expanded upon with N-

trimethylsilyl amine (N-TMS), which shares TMS group for the living polymerization of NCA.
48-

50
 Meanwhile it also possesses another functional group on the other side of the nitrogen (e.g. 

alkyne, alkene, norbornene, etc.), which enables post-polymerization modification through 

effective chemistries for different applications. For example, ring-opening metathesis 

polymerization (ROMP) was combined with N-NMS mediated ROP of NCA to prepare brush-

like copolymer and linear hybrid block copolymers.
49,50

 Norbornenes containing N-TMS was 

first polymerized through ROMP to afford poly(norbornene)s bearing pendant N-TMS groups. 

The macroinitiators were then used directly to polymerize NCAs via the terminal N-TMS on the 

side chains to afford brush-like copolymers with polypeptide chains as “bristles”. With ROMP 

and NCA monomers are widely available; such combination of polymerization techniques allows 

easy access to abundant hybrid materials with controlled size, functionalities, grafting densities, 

etc.
49

 

Despite the simplicity, these organosilicon amines initiation systems share one major 

drawback which is their low reactivity as compared to transition metal catalysts. For instance, 

HMDS alone cannot polymerize γ-(4-vinylbenzyl)-L-glutamate N-carboxyanhydride (VB Glu 

NCA) to afford high molecular weight polypeptide (< 30 kg/mol).
51

 To address the above issue, 

a co-initiation system with added trace amount of 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) was 

developed. With the HMDS/TBD initiation system, VB Glu NCA can be effectively polymerized 

with good molecular weight control (up to 47 kg/mol) and narrow PDI. They propose that the 

TBD might accelerate the polymerization by opening the NCA ring to form certain active 

intermediates for faster chain propagation. 
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Recently, Lu et al developed a similar new initiation system based on trimethylsilyl 

sulfide (S-TMS) species, which also provides controlled ROP of NCAs with narrow PDI.
17

 As 

compared to N-TMS based initiation systems, S-TMS enables faster initiation step, which favors 

the control of polymerization. The enhanced initiation rate is proposed to originate from the 

increased nucleophilicity of sulfur and increased reactivity of the S-Si bond. The mechanism of 

S-TMS initiated ROP is similar to that of N-TMS initiated ROP. Various monomers screened can 

be successfully polymerized with the system. However, one major drawback of the system is the 

highest molecular weight limitation. Only medium molecular weight (DP<150) polypeptide can 

be prepared by the above system, which leaves the field to be investigated more in the future. 

1.2.1.5 Tertiary or secondary amine assisted primary amine initiated ROP of NCA 

Hadjichristidis et al. developed a new initiation system combining primary amine and 

secondary or tertiary amine to afford fast yet well-controlled polymerization of NCA.
21,28

 The 

motivation of the work was to combine features of AMM and NAM to afford fast living 

polymerization of NCA. The NAM is well known to mediate controlled ROP of NCA to prepare 

low to medium molecular weight polypeptides (DP<150), yet the polymerization is slow as 

compared to AMM mediated fast ROP of NCA for high molecular weight polypeptides 

preparation. They initially screened several initiators containing both primary amines and tertiary 

amines. Triethylaminetriamine (TREN) was found to bring a fast and remarkably controlled 

polymerization of NCAs. For example, TREN initiated polymerization of BLG NCA with a 

target DP of 200 reached 100% conversion in 2 hours with good molecular weight control and 

narrow molecular weight distribution (PDI=1.17). The mechanism was proposed to be monomer 

activation through hydrogen bonding, where the NCA’s amido proton acts as a hydrogen 

bonding donor and TREN’s tertiary amine acts as hydrogen bonding acceptor. The primary 
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amine of TREN then initiates the polymerization of activated monomer to yield fast and living 

polymerization of NCA. However, the effect of accelerated amine mechanism through monomer 

activation (AAMMA) is only limited to certain initiators. For instance, N,N-

dimethylethylenediamine (DMEDA) is unable to mediate similar well controlled polymerization 

of NCA, which also contains one primary amine and one tertiary amine. The authors attribute the 

reason to different electron densities on the tertiary nitrogen. Regular tertiary amines (e.g. 

tetramethylethylenediamine) have higher electron densities (higher basicity) than TREN 

(verified via 
15

N NMR), which enables NCA deprotonation for AMM polymerization route. 

They later expanded the scope of AAMMA to initiators combining primary and 

secondary amines.
21

 Triethylenetetramine (TETA) is one example of those initiators that is able 

to mediate controlled polymerization of NCA with fast kinetics. The proposed mechanism is 

similar to the one discussed above, where secondary amine nitrogen act as hydrogen bonding 

acceptor to activate NCA monomer by forming hydrogen bonding with NCA amido proton 

(Scheme 1.11). Additionally, the primary amine and secondary amine system is not limited to 

only one initiator. Several amines containing both primary and secondary amines can efficiently 

mediate controlled ROP of NCA with almost identical results (Figure 1.2). More importantly, 

individual primary and secondary amines can be combined to achieve similar controlled ROP of 

NCA if the ratio of secondary amine to primary amine is 1. When secondary amine is used in 

excess (e.g. 2° amine/1° amine = 2), then polymerization with poor control is observed due to the 

dominance of AMM. 

In summary, the simple and effective alliance of primary amine with secondary or tertiary 

amines can function as good initiators for living polymerization of NCAs with fast kinetics. 
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Linear block copolymer and star copolymer can be readily prepared with this strategy. A new 

mechanism AAMMA was proposed for the metal-free ROP of NCA. 

Scheme 1.11. Proposed accelerated amine mechanism through monomer activation (AAMMA) 

(reprinted with permission from reference
21

, copyright (2015) American Chemical Society). 

 

 

Figure 1.2. Structures of amines that can mediate ROP of NCAs via AAMMA. 

1.3 Polypeptide preparation via NTAs 

Polypeptides of high molecular weight are primarily prepared from ROP of NCAs via 

various initiation systems as discussed previously. However, there is one major drawback 

associated with this route. NCAs monomers are moisture sensitive and thermally unstable. Low 

temperature and anhydrous conditions are required during the synthesis, purification, and storage 

of NCA monomers. Certain NCA monomers with high melting point (e.g. BLG NCA) can be 



20 
 

purified by multiple recrystallizations from anhydrous THF/hexanes under nitrogen 

atmosphere.
52

 However, some newly developed NCAs bearing functional side chains could not 

be recrystallized.
53-55

 Hence, flash chromatography with anhydrous silica and anhydrous solvents 

in glovebox was developed to provide a general purification strategy for NCAs.
14

  Based on our 

experience, the operation of anhydrous flash chromatography is tedious as it was proposed to be 

done in glovebox. The drying process of silica gel could be potentially dangerous due to the fact 

that silica particles will “fly” everywhere in the sealed system when being heated under vacuum 

at over 100 °C. Finding an alternative to NCA is of great interest to the polypeptide community, 

and the searching has been ongoing for decades. 

Endo et al have reported the synthesis of polypeptides using activated amino acids 

urethane derivatives which was proposed to form NCAs in situ which polymerize in a chain 

growth fashion.
56

 However, the polypeptides are mostly limited to low to moderate molecular 

weight (DP<100). NCA’s analogs NTAs also have been investigated for their polymerization 

activities to prepare polypeptides. NTAs were well-known for more than fifty years; they were 

studied mostly for the step-wise peptide synthesis, arising from the fact that their less likely to 

polymerize and hydrolyze in aqueous solution as compared to NCAs.
57-62

 The glycine NTA also 

has been investigated for wool surface modification for shrink proofing purpose.
63,64

 These early 

reports indicate NTAs have better stability as compared to NCAs.
58,60

  Kricheldorf et al first 

systematically investigated the ROP of amino-acid derived NTA (e.g. Gly NTA, DL-Phe NTA, 

DL-Leu NTA) in solution using primary amine initiator.
65-67

 All polymerizations resulted in low 

conversion, yielding oligopeptide products. Even with the unsuccessful trial of NTAs 

polymerization, they still represent promising alternatives for NCAs for following reasons. First, 

NTAs are generally more stable as compared to their NCA analogs. Secondly, primary amines 
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are still capable of opening the NTA five membered ring at the beginning of polymerization in 

Kricheldorf’s initial study, which also follows the traditional NAM based MALDI-TOF MS 

analysis, though the termination mechanism remains unclear at this point. Thirdly, the NTAs 

were found to undergo alcoholysis and aminolysis exclusively at the C5 position
16

, which is 

favorable in potential nucleophile initiated ROP of NTAs. The reason is that the termination via 

reaction between propagating terminal amine and NTA at C2 carbonyl can be avoided. Recently, 

Ling and coworkers demonstrate the polymerization of N-substituted NTA with primary amine 

and rare earth borohydride initiators.
68,69

 Polysarcosine of controlled molecular weight can be 

obtained via above systems. However, there is no other reports on the polymerization of amino 

acids derived NTAs.  

Systematic polymerization study of NTA was not available prior to Kricheldorf’s 

pioneering work. With the unsatisfied polymerization results from Kricheldorf, the field of NTA 

polymerization has been left unexplored ever since.  Nevertheless, it is still of great importance 

and interest to develop initiation system that can effectively polymerize NTAs to afford 

polypeptides, based on the fact that they can potentially replace NCAs owing to their merits like 

good stability. For NTAs to be utilized in the preparation of polypeptides, either new initiator or 

optimized condition based on primary amine initiation system should be developed to afford 

controlled polymerization. This will be the focus of Chapter 3 and Chapter 4. 

1.4 Functional Polypeptides 

Functional polypeptides can be treated as side chain modified poly(amino acids), which 

originate from naturally existing amino acids. The purpose of such side chain modification is to 

expand the structural and properties diversity of polypeptides for different applications.
55,70

 

There are two strategies available to synthesize functional polypeptides: the post-polymerization 

modification method and functional NCA monomer route. With the post-polymerization 
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modification method, different functional groups are chemically linked to the polypeptide 

backbone.
2,71

 For the functional NCA monomer route, NCA bearing functional side chain is 

polymerized via ROP to afford functional polypeptide.
55,72

 The post-polymerization method is 

more popular due to several factors based on my experience. First, functional NCA monomer 

synthesis is no trivial task. It involves design of a new synthetic route, optimization of 

purification, and polymerization conditions, and also the handling of NCAs with poor stability. 

Secondly, the post-polymerization method is well established with various highly efficient 

platforms. For instance, copper catalyzed alkyne-azide cycloaddition (CuAAC) type “click” 

chemistry makes the post-polymerization method really robust, where various selected 

functionalities can be “clicked” onto well studied polypeptide platform.
53,73

 Hence, I will focus 

on the post-polymerization method, where different polypeptide platforms for further 

functionalization will be introduced separately. The functional NCA monomer method will be 

briefly summarized, and corresponding NCA structures will be included in Table 1.1. 

1.4.1 Functional polypeptides prepared via direct ROP of functional NCA monomers 

Functional NCA monomer based on modified amino acids has been known for a long 

time. There are many examples of NCAs that bear non-natural amino acids side chains. Hence, I 

will only summarize functional NCAs that can afford polypeptides with certain properties 

(thermal responsive, bioactive, photo reactive, etc.).  These NCAs will be summarized in Table 

1.1 with their structures and description of corresponding polypeptides properties. 

Table 1.1. List of functional NCAs that can afford polypeptides with certain properties. 

NCA Structure Properties 

EGn LYS NCA
74

 

 

n = 1, 2 

Thermal responsive 
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(Table 1.1 continued) 

NCA Structure Properties 

PEGn LYS NCA
75

 

 

n = 3, 8 

Non-fouling polypeptide 

EGn Glu NCA
55

 

 

n = 1,2,3 

Thermal responsive 

EGn(M)A-C 

NCA
76

 

 

n = 1~9, R = H, CH3 

Thermal responsive 

EGn-SS-Cys 

NCA
77

 

 

n = 2~4 

Thermal responsive, redox 

responsive 

EGn-C
H
 NCA

78
 

 

n = 2, 4 

Thermal responsive, reversible 

oxidation and alkylation, 

reversible helix-coil 

conformation switch 

Glyco-C NCA
79

 

 

Oxidation responsive, 

irreversible helix-coil 

transition 

α-gal-C
H
 NCA

78,79
 

 

Reversible oxidation and 

alkylation upon deprotection, 

reversible helix-coil 

conformation switch 
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(Table 1.1 continued) 

NCA Structure Properties 

Glyco NCA
80

 

 

R = Ac4Glc 

Synthetic  glycosylated 

polypeptides 

Glyco NCA
81

 

 

X = O, S   R’ = H, CH3   R = Ac4Glc, 

Ac4Gal, Ac7Lac 

Synthetic  glycosylated 

polypeptides 

Glyco-Lys NCA
72,82-84

 

 

R = carbohydrates,  various linker 

Synthetic  glycosylated 

polypeptides 

CLG NCA
85

 

 

Photo responsive 

NBC NCA
86

 

 

Photo responsive 

DMNB Glu NCA
87

 

 

Photo responsive 

Hexithiophene Lys 

NCA
88

 

 

Organic photovoltaic 

and organic field effect 

transistor devices 
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(Table 1.1 continued) 

NCA Structure Properties 

L-Cys NCA
89

 

 

Redox responsive 

DOPA NCA
90,91

 

 

Bio-adhesive upon 

deprotection 

1.4.2 Functional polypeptides prepared via post-polymerization method 

Post-polymerization modification is attracting much attention in preparation of functional 

polypeptides due to the development of highly efficient “click” chemistry. Prior to the 

development of click type modification reaction, inefficient reactions (e.g. transesterification) 

were utilized to modify polypeptides with certain functionalities for different purposes. For 

instance, ester exchange was applied to introduce various functionalities (e.g. halide, azido, 

alkene, alkyne) to PBLG.
92

 Excess alcohol (5 molar equivalents relative to that of the repeat unit 

of PBLG) containing the desired functionality is required for high degree of functionalization, 

which is still below 56%. The development of the “clickable” type polypeptide addressed such 

problems by enhancing the grafting efficiency to almost quantitative under mild conditions.
54

  

“Click” type reaction refers to those reactions that share following characters: high yield, 

easy purified byproducts, stereospecific, high chemoselectivity, etc.
93

 For instance, CuAAC and 

thiol-ene reaction are two examples of “click” chemistry. In the following section, clickable type 

polypeptides will be the focus of my discussion. All the discussed NCAs will be summarized in 

Figure 1.3. 
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1.4.2.1 Alkyne containing polypeptides 

Hammond et al developed the first “clickable” polypeptide poly(γ-propargyl-L-glutamate) 

(PPLG) containing pendant alkyne side chains.
54

 The alkyne groups can be modified with 

various azido containing compounds (e.g. PEG-azide, amine-azide) in nearly 100% grafting 

 

Figure 1.3. Structures of NCAs bearing clickable side chains. 

efficiency via CuAAC.
54,71,94

  PPLG functionalized with azido containing amines (primary, 

secondary, tertiary and quaternary) via CuAAC exhibited good antimicrobial properties (Scheme 

1.12).
71

 Later on, they also developed the amphiphilic block copolymer PEG-b-PPLG, where the 
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PPLG block is modified with different side chains. Such amphiphilic block copolymer can self-

assemble to form stable micelle structures, and the side chains can be tuned systematically to 

control the size and CMC of the micelles.
95

 

Scheme 1.12. Functionalization of PPLG with various amines via CuAAC (reprinted with 

permission from reference
71

, copyright (2011) American Chemical Society). 

 

Chen et al also established several of their systems based on the same platform later on. 

In their first publication, three azide modified saccharides were conjugated onto PPLG with high 

efficiency via CuAAC to afford synthetic glycopolypeptides.
53

 The afforded glycopolypeptides 
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were found to be water-soluble while maintaining α-helical conformation. Subsequently, short 

azido-PEGs were grafted onto PPLG via the same method to afford thermal responsive 

polypeptides.
96

 The PEG grafted PPLGs exhibited no detectable cytotoxicity and can be 

enzymatically degraded via proteinase K. Later on, various functionalities (e.g. DOX, tertiary 

amines, PEG) have been clicked onto PPLG for different applications via CuAAC.
97-99

 

Another alkyne containing NCA was later developed by Cheng and coworkers.
100

 The 

NCA γ-(4-propargyloxybenzyl)-L-glutamic acid N-carboxyanhydride (POB-L-Glu NCA) with 

longer side chain is also based on glutamic acid.  The POB-L-Glu NCA was polymerized via 

HMDS, and followed by efficient derivatization with azido containing amines and guanidine 

compounds for gene delivery study. 

In addition to the advantages (e.g. high grafting efficiency) of PPLG based platform for 

further modification, it also shares an inherent limitation. The stability of the ester linkage on the 

PPLG side chain can be an issue. Usually, dialysis purification of PPLG based conjugates is 

conducted under pH controlled condition to avoid hydrolysis of the ester linkage.
71,73,97

 Hence, 

an alternative polypeptide was reported to eliminate the labile ester link. Heise et al investigated 

a “clickable” polypeptide platform based on a non-natural amino acid D,L-propargylglycine.
101

 

The DLPG NCA monomer was first developed and polymerized back in 1960.
102

 And this is 

actually the first example of NCA monomer that bears alkyne side chain.  Heise et al. first 

investigated the post-polymerization modification via CuAAC. Benzylamine initiated ROP of 

the DLPG NCA yielded low molecular weight poly(D,L-propargylglycine) (Mn = 2250 g/mol), 

which resulted from poor solubility of the polymer due to strong intermolecular interaction. 

Copolymerization with BLG NCA helped increase the molecular weight Mn to 5800 g/mol. 

Azido containing saccharides can be efficiently conjugated onto the polypeptide via CuAAC to 



29 
 

prepare bioactive glycopolypeptides. However, as mentioned previously, the solubility and low 

molecular weight are two major limitations for this system. Another alternative to the above 

mentioned limitations is to switch the role of alkyne and azido, which will be elaborated in the 

following section.  

1.4.2.2 Azido containing polypeptides 

Deming and coworkers recently synthesized two azido containing NCAs: L-

azidonorvaline-N-carboxyanhydride (Anv NCA) and L-azidonorleucine (Anl NCA).
103

 They 

both can be polymerized via (PMe3)4Co to prepare well-defined polymers. Following 

derivatization studies indicate the azido pendant side chain can be converted quantitatively via 

CuAAC, and different functionalities (e.g. carboxylic acid, amino acid and monosaccharide) can 

be incorporated with high yields. Though this is the first example of azido containing 

polypeptides prepared directly from azido functionalized NCAs, previous work done in our lab 

already demonstrated examples of azido containing polypeptides prepared via nucleophilic 

substitution of poly (γ-3-chloropropyl-L-glutamate) (Scheme 1.13).
104-106

 Poly (γ-3-

chloropropyl-L-glutamate) of controlled molecular weight (MW = 5 ~ 28 kg/mol) was prepared 

with HMDS used as initiator. Alkyne containing mannose was quantitatively grafted onto the 

polymer via CuAAC.  Bottle-brush copolymer was also prepared in a similar manner via grafting 

alkyne terminated polylactide-b-poly(ethylene glycol) copolymer onto side chains of polypeptide 

containing azido functionalities. 

1.4.2.3 Alkene containing polypeptides 

Alkene containing NCA will be the last class of functionalized monomer covered in this 

section. The preparation of alkyne containing NCA has a long history, which originates back to 

1954.
107

 Many NCAs bearing alkenes have been developed recently, presumably due to the  
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Scheme 1.13. Synthesis of azido containing polypeptide via post-polymerization modification. 

(Reprinted with permission from reference
104

, copyright (2010) American Chemical Society). 

 

versatile radical thiol-ene click chemistry that can be employed for polypeptide derivatization. 

Schlaad et al first demonstrate the thiol-ene click reaction to be used in the post-polymerization 

modification of derivatizing alkene.
108

 DL-allylglycine NCA (DLAG NCA) was first 

polymerized with hexylamine or PEG-NH2 as initiator to prepare well-defined poly(DL-

allylglycine), though with low molecular weight (< 2000 g/mol) due to polymer solubility issues 

(Scheme 1.14). Monosaccharide and 3-mercaptopropionate containing thiol were screened first 

to demonstrate the efficiency of the post-polymerization modification. The thiol-ene radical 

addition was done under different conditions (e.g. heated, UV light) with 2,2-azobis(2-

methylpropionitrile) (AIBN) as the radial initiator. The grafting efficiency ranges from 10% to 

100% depending on the reaction condition. The authors attributed the low efficiency to bad 

solubility of homopolymer, as the efficiency reached 100% when PEG-b-poly(DL-allylglycine) 

was used in the glucosylation  reaction. Later on, they increased the solubility of poly(DL-

allylglycine) by copolymerizing DLAG NCA with BLG NCA followed by debenzylation to 

introduce carboxylic acid on the side chains in the copolymer. The subsequent glucosylation can 

be achieved in 100% grafting efficiency under mild condition.
109
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Scheme 1.14. Synthetic pathway of synthesis (A) and polymerization (B) of allylglycine NCA 

and subsequent radical thiol addition (C). (Reprinted with permission from reference
108

, 

copyright (2011) American Chemical Society). 

 

Zhang et al. later studied the thiol-ene derivatization on copolypeptide containing alkene 

with 3-mercaptopropionic acid under UV light with high efficiency. The alkene functionality 

was introduced via a NCA monomer γ-allyl-L-glutamate-N-carboxyanhydride (ALG NCA), 

which was synthesized previously.
110

  

Cheng et al. also reported several works related to alkene containing polypeptides 

modification via thiol-ene chemistry. γ-(4-Allyloxylbenzyl)-L-glutamate N-carboxyanhydride 

(AOB-L-Glu NCA) with a long hydrophobic side chain based on L-glutamic acid was prepared 

for the first time.
111

 The AOB-L-Glu NCA can be readily polymerized with HMDS as initiator to 

prepare to afford well-defined polypeptide PAOBLG. Charged compounds 2-aminoethanethiol 
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chloride and 3-mercaptopropionic acid can be grafted onto the PAOBLG polypeptide with nearly 

quantitative grafting efficiency. The resulting conjugates maintain helical conformation in 

aqueous solution regardless of the charge on the side chains, owing to the sufficiently long side 

chains. Similarly, poly(L-serine) bearing terminal alkene on the side chain was synthesized from 

O-pentenyl-L-serine based N-carboxyanhydride (PE-L-Ser NCA) with PEG-NH2 as initiator.
70

 

Expectedly, the resulting polypeptide can be efficiently modified through thiol-ene reaction.

 Even though the thiol-ene click reaction is the most commonly used chemistry to 

derivatize alkene containing polypeptides; there are also other chemistries available in literature 

for the modification. One excellent example is reported by Cheng et al (Scheme 1.15).
51,112

 The 

example is based on γ-(4-vinylbenzyl)-L-glutamate N-carboxyanhydride (VB-Glu NCA), which 

was first synthesized by Schouten and coworkers in 2007 for surface functionalization study.
113

 

The intensive polymerization and post-polymerization functionalization were conducted by 

Chen’s group later on. Poly(γ-(4-vinylbenzyl)-L-glutamate) (PVBLG) was prepared via HMDS 

mediated ROP of VB-Glu NCA to prepare well-defined polymer with molecular weight up to 

47000 g/mol. The afforded PVBLG can subsequently undergo various reactions with at least 90% 

grafting efficiency and isolation yield in the range of 60% - 90%. Various functionalities can be 

introduced via the reaction with the terminal alkene, which are summarized in Scheme 1.15. For 

instance, alcohol, aldehyde, carboxylic acid can be introduced via ozonolysis or osmium 

tetroxide oxidation. New carbon-carbon bond formation can be achieved through Suzuki 

coupling, photo crosslinking and metathesis. Numerous different kinds of functionalities (e.g. 

alcohol, amine, crown ether, cyclic alkene, cyclic alkane and etc.) have been successfully 

incorporated into the PVBLG platform for different applications (e.g. gene delivery
2
, stable 

cationic helix
112

). 
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Scheme 1.15. Synthesis and modification of PVBLG (Reprinted with permission from 

reference
51

, copyright (2011) American Chemical Society). 

 

Reagents and conditions: (a) i. O3, –78 °C, 1–5 min; ii. NaBH4, rt, 16 h; (b) i. O3, −78 °C, 1–5 

min; ii. PPh3, rt, 2–3 h; (c) OsO4, oxone, rt, 48 h; (d) OsO4, NMO, rt, 20 h; (e) second-generation 

Grubbs catalysts, cis-RCH=CHR, rt, 24 h; (f) i. 9-BBN, rt, 16 h; ii. Ar–Br, Pd(PPh3)4, 

NaHCO3(aq), N2, 70 °C, 20 h; (g) UV. 

1.4.2.4 Methionine alkylation 

The last class of post-polymerization modification discussed here is alkylation based on 

poly(L-methionine). The efficient alkylation derivatization of poly(L-methionine) was first 

investigated more than 50 years ago.
114

 Only methyl and carboxymethyl sulfonium derivatives 

were demonstrated back then. Deming et al recently expanded the poly(L-methionine) alkylation 
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to introduce wide range of functional groups (e.g. alkyne, amine, carboxylic acid and etc.) 

(Scheme 1.16).
115,116

 The poly(L-methionine) with up to 400 repeat units was synthesized via  

Scheme 1.16. Post-polymerization modification of poly(L-methionine) via alkylation (reprinted 

with permission from reference
117

, copyright (2016) American Chemical Society). 

 

ROP of L-methionine NCA with Co(PMe3)4 as initiator. PEG was attached to the poly(L-

methionine) after polymerization for the purpose of molecular weight characterization due to the 

poor solubility of poly(L-methionine). As shown in Scheme 1.16, a wide range of functionalities 

can be grafted onto poly(L-methionine) under different conditions. And all the alkylation can be 

done in almost quantitatively conversion (94% ~ 99%).  Importantly, the alkylation is also 

reversible in the presence of sulfur nucleophile (e.g. 2-mercaptoethanol). Alternatively, 
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irreversible alkylation was also introduced later via reaction with epoxides containing different 

functionalities (alkyne, alkene, azido, etc.).
118

 The derivatization is also efficient as 100% 

grafting efficiency can be achieved in most cases. The efficient alkylation and dealkylation 

makes the thioether containing polypeptides interesting platforms for stimuli responsive 

biomaterials.
78

 One inherent limitation of poly(L-methionine) is the solubility in common 

solvents, which makes the characterization of homo poly(L-methionine) to be troublesome. 

 The fundamental knowledge and the cutting-edge research of polypeptides have been 

reviewed in this chapter. In the following Chapter 2, the development of a new class of 

functional polypeptide will be introduced. In Chapter 3, the preparation of polypeptides via ROP 

of NTAs in solid phase will be discussed. The solution phase polymerization of NTAs mediated 

by TMG/benzoic acid will be elaborated in Chapter 4. The Chapter 5 concludes the dissertation, 

and the future direction of further investigation will be discussed. 
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*This chapter previously appeared as [Jinbao Cao, Ping Hu, Lu Lu, Brandon A. Chan, Bing-Hao 

Luo and Donghui Zhang, Non-ionic water-soluble “clickable” α-helical polypeptides: synthesis, 

characterization and side chain modification. Polym. Chem. 2015, 6, 1226-1229.] It is reprinted 

by permission of The Royal Society of Chemistry. 

 

CHAPTER 2. NON-IONIC WATER-SOLUBLE “CLICKABLE” POLYPEPTIDES 

2.1 Introduction 

Polypeptides are α-amino acid based polymers capable of adopting basic secondary 

structures such as α-helix or β-sheets reminiscent of those observed for proteins.
70,74

 Recent 

development in the controlled ROP has enabled access to well-defined polypeptides with 

tailorable composition, architecture, functionality and size.
1
 In addition, polypeptides are 

proteolytically degradable and exhibit low cytotoxicity.
96

 As a result, synthetic polypeptides 

have been increasingly investigated as a platform for biomedical applications such as gene 

therapy
2,70,87

, drug delivery
22,119-121

 and tissue engineering scaffolds.
122,123

  

The solubility and conformation of polypeptides are strongly dependent on the side chain 

structures. Water-soluble polypeptides often bear charges on the side chains (e.g., poly(L-

glutamic acid), polysulfonium based on poly(L-homocystine)
78

). The electrostatic repulsive 

interactions between the charges on the side chains cause the polymer backbones to adopt 

random coil conformations. Moving the charges further away from the backbone has 

successfully yielded water-soluble ionic polypeptides adopting helical conformations.
112

 In spite 

of their high water solubility, ionic water-soluble polypeptides (e.g., poly(L-lysine)) tend to bind 

to oppositely charged biomolecules in vivo, resulting in cytotoxicity.
124

  As a result, non-ionic 

water-soluble polypeptides are highly sought after to complement the charged polymers for 

certain biomedical applications (e.g., delivery carrier for hydrophobic therapeutics). 

Several non-ionic water-soluble polypeptides that adopt stable secondary structures have 

been reported. They are synthesized either through post-polymerization modification of 
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polypeptides bearing reactive side chains with appropriate hydrophilic moieties such as 

monosaccharides and PEG
53,54,96,99,104-106,108,125,126

 or by direct ROP of discrete NCA monomers 

bearing hydrophilic side groups (e.g., glycosylated-L-lysine NCA).
55,72,74,78,79,127

 Most of the 

above mentioned polypeptides having hydrophilic side chains lack functional sites for further 

modifications, limiting their potential uses for bio-conjugation.  

Synthetic polymers have been actively investigated as multivalent ligand scaffolds. 

Conjugation of bioactive ligands onto the polymers enables control of the size, shape and density 

of the ligand ensembles.
128

 While a majority of the polymers that have been investigated have 

random coil conformation, we reason that the polypeptides with helical conformations offer 

several advantages over the random coil counterparts as multivalent ligand scaffolds. First of all, 

they provide more efficient display of the ligands attached on the side chains relative to the 

random coil counterparts where some of the side chain moieties are buried in the polymer 

interior. Secondly, multivalent binding to the random coil scaffold causes uncoiling of the 

scaffold, resulting in free energy penalty. By contrast, the free energy penalty is expected to be 

minimal in the multivalent binding to the helical scaffold, as the polymers adopt more extended 

conformation than the random coil counterparts. Before the helical polypeptides can be fully 

investigated for multivalent scaffold applications, efficient synthetic methods toward non-ionic 

water-soluble helical polypeptides, which also bear functional side chains to enable conjugation 

of bioactive moieties, should be developed. 

Herein, we report the design and synthesis of non-ionic water-soluble polypeptides that 

can be modified with hydrophobic or hydrophilic moieties on the side chains by CuAAC. In 

addition, the polypeptides may self-assembly into different secondary conformations based on 

the nature of corresponding amino acids. Two strategies were designed to achieve the goal. 
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The first method involves random copolymerization of γ-propargyl L-glutamic acid N-

carboxyanhydride (PLG NCA) (M1)
54

 and N-ε-2-[2-(2-methoxyethoxy)ethoxy]acetyl-L-lysine 

N-carboxyanhydride (EG2-LYS NCA) (M2) (Scheme 2.1 and  Scheme 2.2).
74

 The propargyl 

groups on the side chains are expected to enable facile and efficient conjugation of various 

ligands using click chemistry. The oligomeric ethylene glycol units are expected to confer water 

solubility and reduce non-specific interactions in cellular environment. The copolymerization 

method allows for control over the relative solubility in water and the density of “clickable” sites 

by tuning the feed ratio of the two monomers. 

Scheme 2.1. A schematic depicting the synthesis of non-ionic water-soluble helical polypeptides 

bearing “clickable” side chains. 

 

The second strategy involves designing of a new NCA (5 in Scheme 2.3) based on L-

serine, which contains oligomeric ethylene glycol unit as well as azido on the side chain. Upon 

polymerization, the polypeptide is expected to possess designed features such as water solubility, 

clickable pendant side chains and ability to self-assemble into unique secondary conformation. 

The pendant azido is expected to provide “clickable” site to introduce functionalities via CuAAC, 

and the oligomeric ethylene glycol units are included to increase water solubility. 

It was found that the copolypeptides [denoted as P(PLGm-r-PLLn)] with less than 50 mol% 

hydrophobic PPLG segment are readily dissolved in water. Post-polymerization grafting with 

hydrophobic or hydrophilic moieties can be achieved quantitatively by CuAAC chemistry, 
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Scheme 2.2. The synthesis of polypeptide copolymers and post-polymerization conjugation. 

 

Scheme 2.3. Synthetic route towards AEG2 Ser NCA. 
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yielding non-ionic polypeptide conjugates that retain good water solubility and high percentage 

of α-helical content. To the best of our knowledge, this is the first study on the synthesis of non-

ionic water-soluble helical polypeptides that bear “clickable” side chains through direct ROP of 

discrete NCA monomers. Preliminary cell culture study reveals that the polypeptide conjugates 

bearing a integrin binding peptide GRGDS (Gly-Arg-Gly-Asp-Ser) display positive effects in 

inducing integrin-mediated cell adhesion. 

The synthesis of AEG2 Ser NCA has been explored. Condition optimization is still 

needed to synthesis AEG2 Ser NCA in high purity and yield.  Preliminary polymerization study 

was conducted with benzylamine as initiator. Polymerization with poor Mn control was obtained. 

Hence, further investigation into the polymerization activity is required before well-defined 

polypeptide to be prepared with desired features. 

2.2 Materials and Methods 

2.2.1 General 

All the chemicals and Dowex
®
 Marathon

®
 C resin were all purchased from Sigma-

Aldrich and used as received unless specified. Benzylamine was first stirred with calcium 

hydride overnight, and then distilled under vacuum.  Anhydrous solvents were purified by 

passing through alumina columns under argon. NCA monomers precursors γ-propargyl L-

glutamate hydrochloride and N-ε-2-[2-(2-Methoxyethoxy)ethoxy]acetyl-N-α-Z-L-Lysine were 

synthesized according to reported procedures.
54,74

 Azido terminated GRGDS, benzyl azide and 

octyl azide were synthesized according to a reported procedure.
129,130

 Compound 2 and 3 were 

synthesized according to a reported procedure.
131

 

1
H NMR spectra were recorded on a Bruker AV-400 or AV-500 spectrometer. Chemical 

shifts in parts per million (ppm) were referenced relative to proton impurities or 
13

C isotope of 

deuterated solvents (e.g., CDCl3). SEC-DRI analyses were performed with an Agilent 1200 
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system equipped with three Phenomenex 5 μm, 300 × 7.8 mm columns [100 Å, 1000 Å and 

Linear(2)], Wyatt DAWN EOS multi-angle light scattering (MALS) detector (GaAs 30 mW 

laser at λ=690 nm) and Wyatt Optilab rEX differential refractive index (DRI) detector with a 690 

nm light source. DMF containing 0.1 M LiBr was used as the eluent at a flow rate of 0.5 

mL·min
-1

. The temperature of the column and detector was 25 °C. Polymer molecular weight 

(Mn) and molecular weight distribution (PDI) were obtained by conventional SEC analysis with a 

calibration curve built using polystyrene standards. Circular dichroism (CD) data were collected 

on a Jasco J810 CD spectrometer (Japan Spectroscopic Corporation) with a path length of 0.1 cm 

and a band width of 1 nm at 20 °C. Three scans were collected and averaged between 190 nm 

and 250 nm at a scanning rate of 50 nm·min
-1

 with a resolution of 1 nm. The content of various 

secondary structures were calculated by DICHROWEB using Contin-LL. Fourier transform 

infrared radiation (FTIR) spectra were collected with a Bruker Alpha FTIR spectrometer. 

Dynamic light scattering (DLS) analysis was conducted on a Malvern Zetasizer Nano-ZS 

instrument using zetasizer software 6.12. 

Cell adhesion on immobilized human fibrinogen and GRGDS conjugated polymers was 

assessed by the measurement of cellular lactate dehydrogenase (LDH) activity. Briefly, Chinese 

hamster ovary cells (CHO cells) stably expressing integrin αIIbβ3 were maintained in MEM-α 

medium (Life Technologies, Grand Island, NY) supplemented with 10% FBS, 1% None-

Essential Amino Acids, 1% L-Glutamine, 1% Sodium Pyruvate and 1% Penicillin-Streptomycin 

(All from Life Technologies, Grand Island, NY). Before the assay, cells were first detached by 

trypsin-EDTA and suspended in HBS supplemented with 5.5 mM glucose and 1% bovine serum 

albumin and 1 mM Ca
2+

 were seeded on flat bottom 96-well plates (~5000 cells/well) pre-coated 

with GRGDS conjugated polymers or fibrinogen at the concentrations ranged from 1.5 µg/mL to 
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50 µg/mL and blocked with 1% bovine serum albumin. After incubation at 37 °C for 30 min, 

wells were washed three times with ice-cold PBS. Remaining adherent cells were lysed with 1% 

Triton X-100, and LDH activity was assayed using the Cytotoxicity LDH Detection Kit 

(CloneTech Laboratories Inc., CA) according to the manufacturer’s instructions. The 492 nm 

absorbance of formazan was measured by a BIO-RAD microplate reader (Model 680, Life 

Science Research, CA). Cell adhesion was expressed as a percentage of bound cells relative to 

total input cells. 

2.2.2 NCA monomers synthesis 

2.2.2.1 Synthesis of PLG NCA (M1) 

PLG NCA was synthesized by adapting a published procedure.
54

 Briefly, γ-propargyl L-

glutamatic acid hydrochloride (3.00 g, 13.5 mmol) was suspended in anhydrous THF (100 mL) 

at 50 °C under nitrogen, triphosgene (1.64 g, 5.52 mmol) was added to the above suspension 

under nitrogen flow. After the heterogeneous solution turned clear within 3 h, THF was removed 

under vacuum to afford a clear oil product. The oily product was purified by flash 

chromatography first with anhydrous hexanes and then gradient anhydrous THF/hexanes (9:1 ~ 

1:1 v/v) mixtures (Rf = 0.23 in 1 : 1 THF/hexane). Fractions containing the desired product were 

combined and concentrated to afford a clear oil which solidified upon storage at - 20 °C inside 

glovebox (1.40 g, 49% yield). 
1
H NMR (400 MHz, CDCl3) δ (ppm): 6.69 (s, 1H), 4.73 (d, 2H), 

4.46 (t, 1H), 2.63 (t, 2H), 2.54 (t, 1H), 2.31-2.18 (m, 2H). 

2.2.2.2 Synthesis of EG2-LYS NCA (M2).  

EG2-LYS NCA was synthesized by adapting a published procedure.
74

 Briefly, N-ε-2-[2-

(2-Methoxyethoxy)ethoxy]acetyl-N-α-Z-L-Lysine (6.02 g, 13.7 mmol) was dissolved in 

anhydrous CH2Cl2 (200 mL) in an oven dried round bottom flask equipped with a stir bar under 

nitrogen flow. 1,1-Dichloromethylmethyl ether (6.80 g, 59.2 mmol) was added to the above 
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solution. The reaction mixture was heated to at 45 °C and allowed to reflux under nitrogen for 12 

h during which time a 90% conversion was reached.  The reaction mixture was then concentrated 

under vacuum using a Schlenk line to afford a clear oil. The crude product was first purified by 

recrystallization in anhydrous THF/hexanes in glovebox at - 20 °C to afford a white solid. The 

white solid was further purified by dry flash chromatography under nitrogen. Column was eluted 

with anhydrous THF/hexanes (2:1 ~ 1:0 v/v). Fractions containing the product were combined 

and the volatiles were removed to yield a white solid as the final product (1.60 g, 35% yield) (Rf 

= 0.34 in THF). 
1
H NMR (400 MHz, CDCl3) δ (ppm):  7.68 (s, 1H), 7.33 (s, 1H), 4.30 (m, 1H), 

4.00 (m, 2H), 3.70-3.59 (m, 8H), 3.39-3.31 (m, 5H), 2.02-1.81 (m, 2H), 1.64-1.49 (m, 4H). 

2.2.2.3 Synthesis of O-(2-(2-(2-azidoethoxy)ethoxy)ethyl)-N-(tert-butoxycarbonyl)-L-serine (4) 

Boc-Ser-OH (31.5 g, 0.154 mol) and NaH (7.38 g, 0.308 mol) were first suspended in 

anhydrous DMF (800 mL) in an ice bath under nitrogen atmosphere. After stirring for 2h, then 3 

(51.53 g, 28.1 mmol) was added to the above mixture. 3d later, solvent DMF was removed by 

vacuum distillation at 45 C. The left over off-white solid was then dissolved in 400 ml DI water, 

followed by diethyl ether wash (2 × 150 mL). The aqueous solution was then acidified with 1 M 

HCl to pH ~ 3. The above acidic aqueous cloudy solution was then extracted with ethyl acetate 

for 3 times (600 mL in total). The combined organic layer was then dried over MgSO4, followed 

by filtration and concentration to afford 40.97 g light yellow oil as crude product, which was 

used directly for next step. Caution! The handling of large scale NaH can be dangerous in air. 

Smaller scale is thus recommended for this reaction. 

2.2.2.4 Synthesis of O-(2-(2-(2-azidoethoxy)ethoxy)ethyl)-L-serine  N-carboxyanhydride (AEG2 

Ser NCA 5) 

4 (3.67 g, 10.1 mmol) was first dissolved in anhydrous DCM (100 mL) in nitrogen 

atmosphere. Then dichloromethyl methyl ether (4.0 mL, 44 mmol) was added to the above clear 
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solution while stirring. 20 h later, solvent DCM was removed under vacuum to afford clear oil. 

The residue clear oil was subject to anhydrous column chromatography purification. The elution 

solvent consists of 1:1 anhydrous THF/hexanes (v:v). The Rf of AEG2 Ser NCA is 0.2. 0.70 g 

clear oil was collected after the column chromatography purification with 24% yield. 

2.2.3 General procedure for polymerization of AEG2 Ser NCA 

AEG2 Ser NCA (73.0 mg, 0.253 mmol) was dissolved in anhydrous DMF (0.41 mL) 

inside a glovebox. A measured volume of DMF stock solution of benzylamine (94.1 µL, 50.6 

µmol, 53.8 mM) was added to the above solution. The reaction was stirred at room temperature 

inside a glovebox for 2.5 day. Aliquot was taken to track conversion by 
1
H NMR. 

Polymerization solution was also taken for SEC characterization. 

2.2.4 General procedure for synthesis of polypeptide P(PLGm-r-PLLn) 

PLG NCA (150.7 mg, 0.714mmol) and EG2-LYS NCA (0.9548 g, 2.88 mmol) were 

dissolved in anhydrous DMF (8.3 mL) inside a glovebox. A measured volume of DMF stock 

solution of benzylamine (668 µL, 0.0359 mmol, 53.8 mM) was added to the above solution. The 

reaction was stirred at 50 °C inside a glovebox for 12 h. Diethyl ether was added to the above 

solution to yield an oily precipitate. The crude oily product was then re-dissolved in DI water 

(~10 mL) and transferred into a centrifugal dialysis tube (10 kDa MWCO). The centrifugal tube 

was spun at 3000 rpm till all of the water went through the filter membrane. The residue polymer 

sample was then re-dissolved in DI water for repeated dialysis (3 times). Aqueous solution 

obtained after dialysis was lyophilized to give a clear sticky solid (0.68 g, 72% yield).  

2.2.5 General procedure for the grafting of P(PLGm-r-PLLn) with hydrophobic moieties 

through CuAAC 

P(PLG17-r-PLL69) (91.2 mg, 0.00402 mmol) and octyl azide (13.5 mg, 0.0871 mmol) 

were dissolved in anhydrous DMF (1.34 mL). PMDETA (14.2 mg, 0.0821 mmol) were added to 
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the above solution together with a half inch length of freshly filed copper wire. The reaction was 

stirred at 50 °C under nitrogen for 24 h. The copper wire was removed by filtration. The 

remaining clear light blue solution was diluted with THF (~ 10 mL), added with Dowex
®
 

Marathon
®
 C resin (0.7 g) and stirred for 24 h to remove residual Cu (II) ion. Removal of the 

resin by filtration yielded a clear solution which was further concentrated under a flow of 

nitrogen. Addition of diethyl ether to the concentrate produced a white precipitate, which was 

collected by centrifugation and dried under vacuum (35.8 mg, 35% yield). 

2.2.6 Representative procedure for the grafting of P(PLGm-r-PLLn) with N3-GRGDS by 

CuAAC 

P(PLG14-r-PLL72) (65.1 mg, 0.00282 mmol) and N3-GRGDS (25.7 mg, 0.0409 mmol) 

were dissolved in anhydrous DMF (1 mL). PMDETA (3.3 mg, 0.019 mmol) were added to the 

above solution together with a half inch length of freshly filed copper wire. The reaction was 

stirred at 50 °C under nitrogen for 24 h. The copper wire was removed by filtration. DMF was 

removed by vacuum distillation. The residue solid was then re-dissolved in an edetate disodium 

(EDTA) (0.4g, 1mmol)/DI water (30 mL in total) solution, transferred into a centrifugal dialysis 

tube (10 kDa MWCO). The centrifugal tube was spun at 3000 rpm till all of the aqueous solution 

went through the filter membrane. The residue polymer sample was then re-dissolved in 3 mL DI 

water to repeat the centrifugal dialysis 3 times. The aqueous solution obtained after dialysis was 

lyophilized to give a white solid (28.2 mg, 31% yield). 

2.3 Results and Discussion 

2.3.1 NCA synthesis 

The monomers (PLG NCA and EG2-LYS NCA) were synthesized by adapting published 

procedures
54,74

 and purified by column chromatography under anhydrous conditions
14

 prior to 

polymerization. It is worth mentioning the condition for anhydrous flash chromatography. In 
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Deming’s report, the flash chromatography was conducted inside a glovebox.
14

 As an easier 

alternative, it was found that the anhydrous flash chromatography can also be conducted in fume 

hood with house nitrogen as pressure source. Anhydrous elution solvent, oven baked silica gel 

and glassware are still required. NCAs with good purity level can be prepared by this simplified 

operation as evidenced by 
1
H NMR (Figure S2.1 and Figure S2.2). 

The preparation of AEG2 Ser NCA was first developed by the author as shown in Scheme 

2.3. Both NMR and FTIR indicate success synthesis of the NCA (Figure 2.1, 2.2 and 2.3). 

However, the yield is still low around 24%. And the preparation condition should be further 

optimized to purify the NCA, as tiny impurities signals are present in the 
1
H NMR. For instance, 

the precursor 4 should be purified prior to cyclization. The interrupted continuous investigation 

of Ser NCA is a result of the work in Chapter 3 and 4, the success of which will have significant 

scientific impact. 

 

Figure 2.1. 
1
H NMR spectrum of AEG2 Ser NCA in DCM-d2. 
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Figure 2.2. 
13

C{H} NMR spectrum of AEG2 Ser NCA in CDCl3. 

 

Figure 2.3. FTIR spectrum of AEG2 Ser NCA 



48 
 

2.3.2 Synthesis of polypeptide P(PLGm-r-PLLn) 

Polypeptide copolymers P(PLGm-r-PLLn) with a targeted DP of 100 and varying PPLG 

and PPLL content were prepared by ROP of PLG NCA (M1) and EG2-LYS NCA (M2) in 

different feed ratios using benzylamine initiators (Scheme 2.2). All reactions ([M1] + [M2] = 0.4 

M, ([M1]+[M2]) : [BnNH2] = 100 : 1)  were allowed to proceed at 50 °C in DMF under nitrogen 

and reached nearly quantitative conversion in 12 h. The resulting polymers were isolated by 

precipitation with diethyl ether and further purified by dissolution in distilled water and 

centrifugal dialysis. The polypeptide copolymer compositions were analysed by 
1
H NMR and 

13
C{H} NMR (Figure S2.3) spectroscopy (Table 2.1). Specifically, the methylene protons (e and 

j, Figure 2.4) due to the respective PPLG and PPLL segments were integrated relative to the 

aromatic protons of the benzyl end-groups (a, Figure 2.4) to give the polymer composition. The 

experimentally determined polymer compositions are in agreement with the theoretical values 

calculated from the monomer feed ratio and conversion. The copolymer molecular weight (Mn)  

 

Figure 2.4. 
1
H NMR spectrum of the P(PLG17-r-PLL69) copolymer in DMSO-d6.  
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Table 2.1. Benzylamine-initiated ROP of PLG NCA (M1) and EG2-LYS NCA (M2) in different 

feed ratios to yield the P(PLGm-r-PLLn) polypeptides.
 

a. 
determined by 

1
H NMR spectroscopy; 

b. 
theoretical molecular weight based on single-site 

initiation; 
c. 

determined by SEC-DRI in 0.1M LiBr/DMF using polystyrene standards; 
d.

 

conversion for [M1] determined by 
1
H NMR spectroscopy;  

e.
 conversion for [M2] determined by 

1
H NMR spectroscopy. 

and molecular weight distribution (PDI) were determined by size exclusion chromatography 

(SEC-DRI) technique. All samples regardless of the polymer composition exhibited mono-modal 

SEC chromatograms and eluted out at approximately the same elution time, indicating similar 

hydrodynamic sizes of the polypeptide copolymers. The molecular weight distributions (PDI) are 

modest in the 1.2 - 1.4 range. There is a small peak at the long elution time, suggesting the 

presence of low molecular weight species (Figure 2.5) whose origin is presently unclear. The low 

molecular weight species can be removed after purification, as evidenced in SEC-DRI (Figure 

2.6). In addition, a shoulder peak appearing at high molecular weight region in the SEC 

chromatogram of the purified polymer was not observed in the SEC trace of the polymerization 

reaction mixture. It is attributed to partial solubilisation of polymers after they are completed 

dried during the workup. 

The water solubility of the polypeptides is controlled by the copolymer composition; 

higher molar fraction of PPLL enhances water solubility, while higher PPLG content lowers the 

copolymer solubility in water. The P(PLGm-r-PLLn) copolymers with up to 50 mol% PPLG are 

found to readily dissolve in water (up to around 5.0 mg/mL at 25 C). A further increase of PPLG 

 Polymer 

composition 
a
 

[M1]0/[M2]0

/[I]0 

Mn (theo.) 
b
 

(kg∙mol
-1

) 

Mn (NMR) 
a
 

( kg∙mol
-1

) 

Mn (SEC) 
c 

(kg∙mol
-1

) 

PDI 
c
 conv. 

(%) 

1 P(PLG14-r-

PLL72) 

19/81/1 26.5 23.1 30.7 1.23 100
d
, 

100
e
 

2 P(PLG17-r-

PLL69) 

20/80/1 26.4 22.7 35.4 1.39 100
d
, 

100
e
 

3 P(PLG45-r-

PLL47) 

49/51/1 22.9 21.1 34.4 1.32 100
d
, 

100
e
 

4 P(PLG70-r-

PLL18) 

79/21/1 18.0 16.9 28.4 1.24 98
d
, 

84
e
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Figure 2.5. SEC-DRI chromatograms of P(PLGm-r-PLLn) polymers (Entries 1-4, Table 2.1) in 

0.1 M LiBr/DMF. (Note: the polymerization reaction mixtures were analyzed directly by SEC-

DRI after high conversions were reached). 

 

Figure 2.6. SEC-DRI chromatograms of the P(PLG17-r-PLL69) copolymers (Entry 2, Table 2.1) 

in 0.1 M LiBr/DMF. 

content to 80 mol% results in polypeptides with negligible water solubility (Entry 4, Table 2.1). 

The polymers were also characterized by CD and FTIR spectroscopy to verify the secondary 

structures in aqueous solution and solid state, respectively. CD spectra of all polypeptide samples 
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at varying concentrations (0.2-1.0 mg/mL) in water revealed two negative minima at 209 and 

222 nm as well as a positive maximum at 190 nm, indicative of primarily α-helical 

conformations for the polypeptide backbones (Figure 2.7, 2.8 and 2.9). Further spectral analysis 

 

Figure 2.7. CD spectra of P(PLG14-r-PPL72) copolymer at different concentrations in H2O. 

 

Figure 2.8. CD spectra of the P(PLG17-r-PPL69) copolymer at different concentrations in H2O. 
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Figure 2.9. CD spectra of the P(PLG45-r-PPL47) copolymer at different concentrations in H2O. 

by DICHROWEB using Contin-LL revealed that the all polypeptides have significant level of 

helical conformations in the 84-95% range (Table 2.2).
132,133

 In the solid state, the polymers also 

retain α-helical conformations, evidenced by the strong characteristic amide I (1650 cm
-1

) and 

amide II (1536 cm
-1

) peaks in the FTIR spectrum (Figure 2.10).
134

 

 

Figure 2.10. FTIR spectrum of P(PLG17-r-PPL69) 
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Table 2.2. Secondary conformation analysis of polypeptides using Dichroweb.
133,135

 

Polymer composition α-helix β-strand turn 

P(PLG14-r-PPL72) 89.0% 3.7% 7.3% 

P(PLG17-r-PPL69) 84.5% 4.1% 11.4% 

P(PLG45-r-PPL47) 94.2% 1% 4.7% 

P((PLG17-g-Oct)-r-

PPL69) 

92.6% 1.8% 5.6% 

P((PLG17-g-Bn)-r-

PPL69) 

83.7% 3.1% 13.1% 

P((PLG14-g-

GRGDS8)-r-PPL72) 

99.1% 0.8% 0% 

2.3.3 P(PLGm-r-PLLn) derivatization through CuAAC 

To demonstrate that the water-soluble P(PLGm-r-PLLn) polypeptides can be further 

modified with hydrophobic moieties by CuAAC chemistry to afford water-soluble conjugates, 

P(PLGm-r-PLLn) was treated with 1.3 equivalents of octyl azide or benzyl azide in the presence 

of copper wire
135

 and 1.3 eqv. of PMDETA ligand at 50 °C in DMF for 24 h. 
1
H NMR spectra of 

the resulting polymers [denoted as P((PLGm-g-Oct)-r-PPLn) and P((PLGm-g-Bn)-r-PPLn)] 

revealed a new peak at 8.1 ppm (d’, Figure 2.11), which is characteristic of the triazole proton 

formed from the CuAAC reaction. The grafting of the hydrophobic moieties is quantitative 

(Figure 2.11), as evidenced by the complete disapperance of the methylene protons due to non-

modified PPLG segment (c, Figure 2.11) at 4.8 ppm and the appearance of the same protons at 

5.1 ppm (c’, Figure 2.11) resulted from the successful formation of the triazole group. The 
13

C{H} 

NMR of the conjugate is shown in Figure S2.4. These reactions suggests that P(PLGm-r-PLLn) 

copolymers can be grafted with different hydrophobic molecules for targeted applications. 

For hydrophobically modified polypeptides, it is important to assess the water solubility 

of the resulting conjugates. It was found that both P((PLG17-g-Oct)-r-PPL69) and P((PLG17-g-

Bn)-r-PPL69) can be dissolved in water at concentrations up to 2.0 mg∙mL
-1

. This indicates that 
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Figure 2.11. 
1
H NMR spectra of P(PLG17-r-PPL69) and P((PLG17-g-Oct)-r-PPL69) in DMSO-d6. 

conjugation to P(PLGm-r-PLLn) polymer is effective in enhancing the water solubility of small 

hydrophobic molecules to a significant concentration. Dynamic light scattering analysis of a 

P((PLG17-g-Oct)-r-PPL69) solution in water revealed a mono-modal particle size distribution 

with a hydrodynamic diameter of 18.8 nm (PDI = 0.205) for the freshly prepared sample (Figure 

2.12). It is consistent with the calculated end-to-end for P((PLG17-g-Oct)-r-PPL69) polymer (12.9 

nm), assuming the polymer adopting a helical rod conformation. After the sample was left to 

stand for 1 d, the hydrodynamic diameter is 19.60 nm (PDI = 0.173). This indicates the particle 

size is fairly stable. CD analysis of the resulting conjugates revealed that both P((PLG17-g-Oct)-

r-PPL69) CD analysis of the resulting conjugates revealed that both P((PLG17-g-Oct)-r-PPL69) 

and P((PLG17-g-Bn)-r-PPL69) retain α-helical conformations with residual molar ellipticities   
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Figure 2.12. Size distribution of P((PLG17-g-Oct)-r-PPL69) in Milli-Q water (0.5 mg/mL) 

measured by DLS. 

comparable to that of the parent polypeptide in water in the 0.2–1.0 mg∙mL
-1

 concentration range 

(Figures 2.13 and 2.14). The noisy signal below 200 nm for 1.0 mg/mL samples are due to the 

detection limit of the instrument. Grafting of octyl and benzyl side groups do not appear to 

disrupt the backbone conformations, as the helical content of the hydrophobically modified 

polypeptides remains high (93% and 84% respectively) as compared to that of the parent 

polypeptide (85%) (Table 2.2). The non-disturbed helical conformations are desirable for many 

biomedical applications such as multivalent ligand platform, where the grafted hydrophobic 

moieties on the helical surface can be more readily accessed than the random-coil counterpart. 

To further demonstrate that the sidechain grafted polypeptides are effective carriers for 

biologically active moities, an azido-terminated GRGDS pentapeptide which is known to induce 

integrin-mediated cell adhesion
136

 was conjugated to the polypeptide P(PLG14-r-PLL72) by  
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Figure 2.13. CD spectra of the P((PLG17-g-Oct)-r-PPL69) copolymer at different concentrations 

in H2O. 

 

Figure 2.14. CD spectra of the P((PLG17-g-Bn)-r-PPL69) copolymer at different concentrations in 

H2O. 
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CuAAC chemistry. The conjugation yielded a GRGDS-polypeptide conjugate P((PLG14-

GRGDS8)-r-PLL72) with 9 mol% GRGDS sites along the helical backbone (Figure 2.15). CD 

analysis indicates the conjugate retains high level of helical conformation (99%) in aqueous 

solution (Figure 2.16 and Table 2.2). Preliminary cell adhsion studies (Figure 2.17) revealed that 

GRGDS-polypeptide conjugate can promote the adhesion of Chinese hamster ovary (CHO) cells, 

 

Figure 2.15. 
1
H NMR spectrum of P((PLG14-g-GRGDS8)-r-PPL72) in D2O. (Note: the GRGDS 

composition in the conjugate is calculated based on the ratio of the triazole proton f’ relative 

methylene protons of PPLL segment j) 

though less effective than the natural ligand fibrinogen. By contrast, the parent polypeptide 

without GRGDS was unable to promote any cell adhesion. This result suggests that GRGDS 

moieties on the helical polypeptide side chains are not cloaked by the oligo(ethylene glycol) side 

chains and can be accessed by the cell membrane-bound receptors, resulting in cell adhesion. 
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Figure 2.16. CD spectrum of the P((PLG14-g-GRGDS8)-r-PPL72) copolymer in H2O. 

 

Figure 2.17. Number percentage of adhered cells versus the concentration of P((PLG14-g-

GRGDS8)-r-PPL72), fibrinogen and P(PLG14-r-PPL72) used in the coating of the plates. 
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2.3.4 Preliminary polymerization study of AEG2 Ser NCA 

The AEG2 Ser NCA was initially polymerized in DMF with benzylamine as initiator 

(Table 2.3). Different initial monomer to initiator ratios were set up (e.g. 50, 100, 150). 100% 

NCA monomer conversions were reached for all polymerizations within 2.5 days. The 

polymerization solutions were subjected to SEC characterization. SEC indicates formation of 

polypeptides (Figure S2.5). However, the polypeptides prepared from different initial monomer 

to initiator ratios have similar molecular weights as evidenced by similar elution times. Even 

though the Mn control of benzylamine initiated ROP of AEG2 Ser NCA remains poor at this 

point, the polypeptide preparation from AEG2 Ser NCA has been successfully demonstrated. The 

control may be improved once the NCA preparation condition is optimized, which is the future 

direction of this topic. 

Table 2.3. Polymerization results of Benzylamine initiated ROP of AEG2 Ser NCA in DMF at 

room temperature. 

[M]0/[I]0 [M]0 Relative Mn PDI Conversion 

50 0.5 M 4.2 kg/mol 1.41 100% 

100 0.5 M 3.9 kg/mol 1.40 100% 

150 0.5 M 4.2 kg/mol 1.29 100% 

  
a.

determined by SEC-DRI in 0.1M LiBr/DMF using polystyrene standards; 
b.

determined by 
1
H    

NMR.  

2.4 Conclusions 

In conclusion, we have demonstrated a successful synthetic route towards a new class of 

non-ionic water-soluble “clickable” helical polypeptides by organo-mediated copolymerization 

of discrete NCA monomers. The polypeptides maintain stable α-helical conformations in 

aqueous solution and in solid state. The copolymerization strategy produces polypeptides having 

tunable densities of “clickable” sites which allow for further conjugation of hydrophobic or 

hydrophilic moieties. It was shown that the hydrophobically and hydrophilically-modified 

polypeptide conjugates retain high level of α-helical conformations. The water solubility of the 
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conjugates is strongly dependent on the relative hydrophobic and hydrophilic content in the 

conjugates. We envision the potential use of the helical polypeptides as multivalent ligand 

scaffolds. The helical polypeptides are expected to offer more efficient ligand display and 

reduced entropy penalty upon multivalent binding relative to the random coil counterparts. 

In addition, the synthesis of a new NCA monomer AEG2 Ser NCA was also explored. 

The AEG2 Ser NCA combines oligomeric ethylene glycol unit as well as azido on the side chain, 

which can afford clickable water-soluble polypeptide upon polymerization. Further investigation 

is required to optimize the monomer preparation and subsequent polymerization study. 
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2.5 Supplemental data 

 

Figure S2.1. 
1
H NMR spectrum of PLG NCA in CDCl3. 

 

Figure S2.2. 
1
H NMR spectrum of EG2 LYS NCA in CDCl3. 
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Figure S2.3. 
13

C{H} NMR spectrum of the P(PLG17-r-PLL69) copolymer in DMSO-d6.  

 

Figure S2.4. 
13

C{H} NMR spectrum of the P((PLGm-g-Oct)-r-PPLn) copolymer in CDCl3.  
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Figure S2.5. SEC-DRI chromatograms of the poly(AEG2 Ser) in 0.1 M LiBr/DMF. 
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CHAPTER 3. SYNTHESIS OF POLYPEPTIDES THROUGH SOLID-PHASE RING-

OPENING POLYMERIZATION OF N-THIOCARBOXYANHYDROSULFIDES 

 3.1 Introduction 

Polypeptides have been increasingly investigated for various biomedical and 

biotechnological applications (e.g., gene delivery, drug delivery, tissue engineering, etc.) due to a 

combination of favorable attributes such as structural tunability, backbone degradability, and low 

cytotoxicity.
4,5,134

 Due to the availability of a large variety of natural and synthetic amino acids, 

the molecular characteristics and backbone conformations of polypeptides can be readily 

adjusted by controlling the sidechains to meet the needs of various technical applications.  

Polypeptides are typically prepared by the ROP of amino-acid derived NCAs in solution 

phase
17-21,29,30,33,34,73

 and occasionally in the solid phase.
137-144

 A variety of initiating systems 

have been shown to mediate the controlled polymerization of various NCAs to produce well-

defined polypeptides having diverse structures.
17-21,29,30,33,34

  However, NCA monomers are 

moisture sensitive
143

 and thermally unstable
145

 resulting in poor shelf-life. Anhydrous conditions 

or low temperature is required during the synthesis, purification, and storage of NCA monomers. 

For example, dry flash chromatography in the glovebox using anhydrous silica gel and solvents 

was developed to purify NCA monomers due to their moisture instability.
14

 In addition, highly 

toxic phosgene or phosgene-derived reagents are required in the synthesis of NCA monomers. 

Endo et al have reported the synthesis of polypeptides using activated amino acids urethane 

derivatives which was proposed to form NCAs in situ and polymerize in a chain growth 

fashion.
56

 However, the polypeptides are mostly limited to low to moderate molecular weight 

(DP<100). Furthermore, all polymerizations of pre-formed or in situ generated NCA monomers 

require anhydrous conditions, limiting the broad use of polypeptides by researchers who are not 
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equipped with advanced synthetic facilities. There is a clear need to further develop alternative 

and robust synthetic approach to access well-defined polypeptides with diverse structures.  

Amino-acid derived NTAs, thio-analogues of the corresponding NCAs, were reported to 

be more stable and less reactive towards polymerization than the corresponding NCAs.
16,67

 

Kricheldorf et al first investigated the polymerization of Gly NTA, D,L-Phe NTA, D,L-Leu NTA, 

in solution using primary amine initiators.
66,67

 All reactions resulted in low conversions even 

after 2 days at 20 °C and 60 °C, yielding oligopeptide products. The origin of the low 

conversions remains puzzling particularly in view of the predominant primary amine chain ends 

revealed by end-group analysis. We speculate that the low conversions may result from the 

restricted access of chain ends due to the polymer aggregation in solution, thus hindering further 

chain growth. Ling et al recently reported that ROPs of sarcosine-derived NTAs (i.e., N-methyl 

NTA) using rare earth borohydride or primary amine initiators in solution can produce 

polysarcosine in a controlled manner.
68,69

 But no other amino acid-derived NTAs bearing N-

proton were investigated.  

In this work, we report a study on the solid- -benzyl-L-

-Cbz-lysine (LYS) and D,L-Methionine derived NTAs (BLG NTA, LYS 

NTA and MET NTA) (Scheme 3.1). Solid-phase polymerization of these NTAs using primary 

amine initiator produce well-defined polypeptides with controlled molecular weight (Mn) and 

low-to-moderate molecular weight distribution (PDI), whereas the solution phase polymerization 

is slow and resulted in poor conversions. The enhanced polymerization activity in the solid phase 

is attributed to the high local monomer concentration. The sROP was shown to operate by the 

NAM as evidenced by end-group analysis. In addition, sROP of NTAs can be conducted in open 
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air without significant change of the Mn and PDI control from those conducted under air-free 

conditions.  

Scheme 3.1. Synthetic route towards polypeptides in sROP and representative picture of sROP. 

 

3.2 Materials and Methods 

3.2.1 General 

All chemicals were purchased from Sigma-Aldrich and used as received unless specified. 

L-glutamic acid γ-benzyl ester (H-Glu(OBz)-OH) and ε-N-carbobenzyloxy-L-lysine (H-Lys(Z)-

OH) were purchased from AAPPTec, LLC and used as received. BLG NCA was synthesized by 

using a published procedure.
52

 D,L-Methionine NTA was prepared similarly to LYS NTA’s PCl3 

route by collaborator Brandon A. Chan. All solvents are regular ACS grade solvents and used 

directly in the reactions without any special drying or purification step unless specified. All 

reactions are conducted in open air unless otherwise noted.  

1
H and 

13
C{H} NMR spectra were recorded on a Bruker AV-400 or AV-500 

spectrometer. Chemical shifts in ppm were referenced relative to proton impurities or 
13

C isotope 

of deuterated solvents (e.g., CDCl3). SEC-DRI analyses were performed with an Agilent 1200 

system equipped with three Phenomenex 5 μm, 300 × 7.8 mm columns [100 Å, 1000 Å and 

Linear(2)], Wyatt DAWN EOS MALS detector (GaAs 30 mW laser at λ=690 nm) and Wyatt 

Optilab rEX DRI detector with a 690 nm light source. DMF containing 0.1 M LiBr was used as 
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the eluent at a flow rate of 0.5 mL·min
-1

. The temperature of the column and detector was 25 °C. 

FTIR spectra were collected on a Bruker Alpha FTIR spectrometer. Electrospray ionization mass 

spectroscopy (ESI MS) was conducted on an ESI TOF 6210 (Electrospray Time-of-Flight) mass 

spectrometer (Agilent Technologies). Samples were prepared by dissolving 5 mg sample in 0.5 

mL chloroform. The experiments were carried out in positive mode ionization. MLADI-TOF MS 

experiments was conducted on a Bruker UltrafleXtreme tandem time-of-flight (TOF) mass 

spectrometer. The instrument was calibrated with Peptide Calibration Standard II consisting of 

standard peptides Angiotensin I, Angiotensin II, Substance P, Bombesin, ACTH clip 1-17, 

ACTH clip 18-39, and Somatoratin 28 (Bruker Daltonics, Billerica, MA) prior to experiment. A 

saturated methanol solution of α-cyano-4-hydroxycinnamic acid was used as matrix. Samples 

were prepared by mixing 5 mg/ml THF solution of polymers with matrix at 1:1 volume ratio, 

which were then deposited onto a 384-well ground-steel sample plate using the dry droplet 

method. Experiments were done in positive reflector mode. The data analysis was performed 

with flexAnalysis software. Structures of BLG NTA were determined from data collected at T= 

90 K with MoKα radiation on a Bruker Kappa Apex-II diffractometer equipped with a Triumph 

focusing monochromator. The racemic form of BLG NTA, space group P21/c, exhibited a 

disorder with the two enantiomeric molecules overlapped with 0.9509:0.0491(14) populations. 

CIFs have been deposited at the Cambridge Crystallographic Data Centre, CCDC 1479403. The 

structure of the S form of LSY NTA, space group P21, was determined from data collected at T= 

200 K with MoKα radiation on a Nonius KappaCCD diffractometer. A phase change with 

twinning occurs below about 180K, so data were collected from a single crystal at a higher 

temperature. The asymmetric unit has two independent molecules, and no indication of the 

presence of the R enantiomer was evident. The absolute configuration was confirmed, with Flack 



68 
 

parameter x=0.12(9). CIFs have been deposited at the Cambridge Crystallographic Data Centre, 

CCDC 1479404. The structure of the S form of Leu NTA, space group P21212, was determined 

from data collected at T= 90 K with MoKα radiation on a Bruker Kappa Apex-II 

diffractometer.  The asymmetric unit has two independent molecules, which form a hydrogen-

bonded dimer. The absolute configuration was confirmed, with Flack parameter x=0.13(7) and 

no indication of the presence of the R enantiomer was evident.  The CIF has been deposited at 

the Cambridge Crystallographic Data Centre, CCDC 1487624. Single crystals of the NTA 

monomers for the X-ray structure determination was prepared by slow solvent evaporation of 

solvent from a chloroform solution of the monomers. TGA experiments were carried on TA 

2950 TGA under nitrogen atmosphere with a heating rate of 10 °C/min. The scanned temperature 

range was rt.~600 °C. Data was analyzed with Thermal Advantage Software. The X-ray powder 

diffraction (XRD) measurements were performed on in-house PANanalytical Empyrean 

instrument, using the characteristic X-ray of Cu target. The range of scattering angle covers from 

4 degree up to 90 degree. The correction to a fixed slit was done before the analysis of spectrum. 

The samples were ground to powder and uniformly distributed on a zero-background silicon 

wafer for the measurements. The background of the silicon wafer was also measured and 

subtracted from the spectra before further analysis to obtain the crystallinity. After subtracting 

the background, in a spectrum, the scattering contribution of amorphous structure is determined 

by fitting the selected data points connecting the bottom of peaks to describe the overall shape of 

the amorphous region, using spline interpolation. The crystallinity value is calculated as the ratio 

of peak area above the baseline, which corresponds to the crystalline contribution, to the total 

area, which is the sum of the peak area and the area below the baseline for amorphous region.
146

 

The corresponding spacing for 2θ is calculated based on Bragg’s law with n = 1. The wavelength 
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of the X-ray is 1.54 Å. HPLC analyses were conducted on Dionex Ultimate 3000 system 

equipped with Chiralcel column (OD-H 0.46 cm × 25 cm). The elution solvent consists of 85% 

hexanes+15% isopropanol. The NTA samples for HPLC were prepared by dissolving NTA in 

1:1 isopropanol/hexanes to make 2 mg/mL concentration. Prior to eject into HPLC, the samples 

were filtered with 0.22 µm PTFE filters. The ee was determined by subtract the two peaks’ area 

in HPLC. 

3.2.2 NTA monomers synthesis 

3.2.2.1 Synthesis of S-Ethoxythiocarbonyl Mercaptoacetic Acid (XAA) 

The synthesis route is modified from a published procedure.
67

 NaOH (9.31 g, 23.3 mmol) 

was first dissolved in chilled DI water (233 mL), followed by addition of chloroacetic acid 

(22.02 g, 23.30 mmol) to afford a clear solution. Potassium ethyl xanthogenate (37.36 g, 23.31 

mmol) was then added to the above solution. The mixture was allowed to stir at room 

temperature for one day, followed by acidification with 4 M HCl to pH ~ 1. The resulting cloudy 

mixture was then extracted with chloroform (3 × 150 mL). The combined organic extract was 

dried over MgSO4 and concentrated under vacuum. Hexanes (500 mL) was then added to the 

oily residue with vigorous stirring to afford an off-white solid, which was collected by filtration 

and washed with hexanes and dried under vacuum to give the final product (38.06 g, 91% yield). 

1
H NMR (400 MHz, CDCl3) δ (ppm): 1.43 (t, 3H, CH3), 3.97 (s, 2H, CH2), 4.65 (q, 2H, CH2). 

3.2.2.2 Synthesis of γ-benzyl-L-glutamic acid N-thiocarboxyanhydrosulfide (BLG NTA) via the 

PCl3 method 

H-Glu(OBz)-OH (4.95 g, 20.9 mmol) and XAA (3.76 g, 20.9 mmol) were suspended in a 

saturated NaHCO3 aqueous solution (70 mL). The suspension was stirred vigorously for 2 days 

at room temperature to afford a clear solution. The clear solution was then acidified with 

concentrated HCl to pH ~ 3, followed by extraction with ethyl acetate (3 × 60 mL). The 
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combined organic extract was dried with MgSO4 and concentrated under vacuum. The oily 

residue was then re-dissolved in ethyl acetate (70 mL) under nitrogen, followed by the addition 

of PCl3 (2.2 mL, 25 mmol) at room temperature. The reaction mixture was stirred at room 

temperature for 20 h and then sequentially washed with a saturated NaHCO3 (aq) solution (100 

mL), DI water (100 mL) and brine solution (100 mL). The organic phase was separated and dried 

over anhydrous MgSO4 and concentrated under vacuum to afford light yellow oil. The oil was 

dissolved in a minimum amount of THF and precipitated into excess hexanes with vigorous 

stirring to afford an off-white solid (3.24 g). The crude solid product was further purified by 

flash chromatography with ethyl acetate/hexanes (2:3, v/v) (Rf = 0.33) off a silica gel column. A 

white solid (2.84 g, 49% yield) was collected after the chromatography purification. HRMS-ESI 

(m/z): [M + H]
+
 calculated for C13H14NO4S 280.0638, found 280.0640. Melting point: 71.6 °C – 

72.5 °C. 
1
H NMR (400 MHz, CDCl3) δ (ppm): 7.42 (s, 1H, NH), 7.34 (m, 5H, C6H5), 5.12 (s, 2H, 

CH2), 4.37 (t, 1H, CH), 2.55 (t, 2H, CH2), 2.10 – 2.27 (m, 2H, CH2) 
13

C{H} NMR (400 MHz, 

CDCl3) δ (ppm): 198.33, 172.43, 167.10, 135.42, 128.74, 128.57, 128.37, 67.02, 66.09, 29.46, 

27.82. 

3.2.2.3 Synthesis of ε-N-Carbobenzyloxy-L-lysine N-thiocarboxyanhydrosulfide (LYS NTA) via 

the PCl3 method 

NaOH (2.87 g, 71.8 mmol) was dissolved in chilled DI H2O (120 mL). H-Lys(Z)-OH 

(10.04 g, 35.8 mmol) and XAA (6.47 g, 35.9 mmol) were sequentially added to the above clear 

solution to afford a cloudy mixture. The reaction mixture was stirred vigorously for 3 days at 

room temperature followed by acidification with 4 M HCl to pH ~ 3 and extraction with ethyl 

acetate (3 × 200 mL). The combined organic extract was dried over anhydrous MgSO4 and then 

concentrated under vacuum to ~120 mL, to which PCl3 (3.7 mL, 42 mmol) was added under 

nitrogen. The reaction was allowed to stir at room temperature for 20 h and then sequentially 



71 
 

washed with a saturated NaHCO3(aq) solution (200 mL), DI water (100 mL) and brine solution 

(100 mL). The organic phase was separated, dried over anhydrous MgSO4 and concentrated 

under vacuum to afford a light yellow oil. The oil was re-dissolved in minimum THF and 

precipitated into excess hexanes under vigorous stirring to afford a white solid (8.26 g, 25.7 

mmol, 72% crude yield). A fraction of the crude solid (2.50 g, 7.76 mmol) was further purified 

by flash chromatography using gradient elution solvent diethyl ether/hexanes (from 4:1 to 10:1, 

v/v) (Rf = 0.22 in 10:1 diethyl ether/hexanes) off a silica gel column. The final purified product 

was collected as a white solid (2.08 g, 83% yield) after the chromatography purification. HRMS-

ESI (m/z): [M + H]
+
 calculated for C15H19N2O4S 323.1060, found 323.1063. Melting point: 

104.0 C – 105.1 C. 
1
H NMR (400 MHz, DMSO-d6) δ (ppm): 9.32 (s, 1H, NH), 7.33 (m, 5H, 

C6H5), 7.24 (t, 1H, NH), 5.01 (s, 2H, CH2), 4.55 (t, 1H, CH), 3.00 (m, 2H, CH2), 1.72 (m, 2H, 

CH2), 1.40 (m, 4H, CH2CH2). 
13

C{H} NMR (500 MHz, CDCl3) δ (ppm): 198.88, 167.38, 156.96, 

136.55, 128.69, 128.34, 128.26, 67.03, 66.87, 40.23, 31.94, 29.39, 21.23. 

3.2.2.4 Synthesis of BLG NTA via the PBr3 method 

The H-Glu(OBz)-OH (9.89 g, 36.2 mmol) and XAA (6.52 g, 36.2 mmol) were used for 

the coupling reaction following the procedure described in 3.3.3.2. 9.55 g crude product BLG-

XAA (compound 1 in Scheme 3.2) was afforded. For the cyclization step, BLG-XAA (4.96g, 

15.2 mmol) and imidazole (1.04 g, 15.3 mmol) were first dissolved in THF (31 mL) in ice bath. 

Nitrogen was purged through the solution for 10 mins before PBr3 (1.71 mL, 18.2 mmol) was 

dropwise added to the above solution. Ice cold mixture of 50 mL ethyl acetate and 50 mL 

saturated NaHCO3 (aq) was poured into the reaction after 10 mins stirring. The organic layer was  

separated from the basic aqueous solution, which was then successively washed with 50 mL cold 

1M HCl (aq), 50 mL saturated NaHCO3 (aq) and 50 mL brine. The organic layer was 
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concentrated down to afford clear oil after being dried over MgSO4 and filtration. The crude oil 

was then precipitated into excess 400 mL hexanes while stirring to afford white solid after 

filtration. The white solid was further purified by column chromatography with ethyl 

acetate/hexanes (2:3, v/v) off a silica gel column. White solid (1.81 g, 6.49 mmol) was collected 

after the chromatography purification. 

Scheme 3.2. Synthetic route towards NTAs. 

 

3.2.2.5 Synthesis of LYS NTA via the PBr3 method  

H-Lys(Z)-OH (14.44 g, 51.5 mmol), XAA (9.28 g, 51.5 mmol) and NaOH (4.13 g, 103 

mmol) were used for the coupling reaction following the procedure described in 3.3.3.3. 16.01 g 

crude oil product LYS-XAA (compound 1 in Scheme 3.2) was afforded. For the cyclization step, 

LYS-XAA (6.33 g, 17.2 mmol) and imidazole (1.17 g, 17.2 mmol) were first dissolved in THF 

(35 mL) in ice bath. Nitrogen was purged through the solution for 10 mins before PBr3 (1.94 mL, 

20.6 mmol) was dropwise added to the above solution. Ice cold mixture of 100 mL ethyl acetate 

and 100 mL saturated sodium bicarbonate aqueous solution was poured into the reaction after 10 

mins stirring. The organic layer was separated from the basic aqueous solution, which was then 

successively washed with 50 mL cold 1M HCl (aq), 50 mL saturated NaHCO3 (aq) and 50 mL 

brine. The organic layer was concentrated down to afford clear oil after being dried over MgSO4 

and filtration. The crude oil was then precipitated into excess 400 mL hexanes while stirring to 
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afford white solid after filtration. The white solid was further purified by column 

chromatography with ethyl ether/hexanes (10:1, v/v) off a silica gel column. White solid (2.96 g, 

9.19 mmol) was collected after the chromatography purification. 

3.2.2.6 Synthesis of L-leucine N-thiocarboxyanhydrosulfide (LEU NTA) via PBr3 method 

NaOH (1.72 g, 43.0 mmol) was first dissolved in 72 mL DI water in ice bath. L-Leucine 

(2.82 g, 21.5 mmol) and XAA (3.87 g, 21.5 mmol) were then added to the clear aqueous solution. 

Two days later, the clear solution was worked up by acidification with 4 M HCl (aq) to pH ~ 3. 

Then ethyl acetate (3×200 mL) was used to extract the aqueous solution. The combined organic 

solution was then washed with brine, dried over MgSO4. Clear oil was afforded after the organic 

solution was filtered and concentrated under vacuum. The clear oil was used directly for the 

cyclization step by dissolving in 43 mL THF together with imidazole (1.46 g, 21.5 mmol) in ice 

bath. Nitrogen was purged through the solution for 10 mins before PBr3 (2.42 mL, 25.8 mmol) 

was dropwise added to the above solution. Ice cold mixture of 100 mL ethyl acetate and 100 mL 

saturated sodium bicarbonate aqueous solution was poured into the reaction after 10 mins stirring. 

The organic layer was separated from the basic aqueous solution, which was then successively 

washed with 50 mL cold 1M HCl (aq), 50 mL saturated NaHCO3 (aq) and 50 mL brine. The 

organic layer was concentrated down to afford clear oil after being dried over MgSO4 and 

filtration. The crude oil was then recrystallized form ethyl acetate/hexanes to afford needle-like 

solid (2.41 g, 65%). 

3.2.3 sROP of NTAs 

A representative polymerization was conducted as followed. BLG NTA (52.8 mg, 0.189 

mmol) was suspended in hexanes (0.87 mL) in open air. A measured volume of a stock solution 

of hexylamine in hexanes (74.7 µL, 1.58 µmol, 133 mM) was added to the above mixture. The 

polymerization was stirred at 50 °C for 2 days to allow a near quantitative monomer conversion. 
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The solvent was then removed under vacuum to afford the reaction mixture which was re-

dissolved in DMF (TFA in the case of D,L-MET NTA sROP). The final polymer product was 

precipitated by adding excess diethyl ether into the polymer solution, separated by filtration and 

dried under vacuum to afford a white solid (36.2 mg, 91% yield).  

3.2.4 Solution-Phase ROP of NTAs 

A representative polymerization was conducted as followed. BLG NTA (59.9 mg, 0.215 

mmol) was dissolved in anhydrous dioxane (0.40 mL) under nitrogen atmosphere in glovebox. A 

measured volume of a stock solution of hexylamine in hexanes (31.1 µL, 1.79 µmol, 57.5 mM) 

was added to the above solution. The polymerization was stirred at 50 °C for 2 days before 

sampling a reaction aliquot for conversion analysis. The polymer was isolated by precipitation 

into diethyl ether, followed by filtration, diethyl ether wash and vacuum dry. 

3.3 Results and Discussion 

3.3.1 NTA monomers synthesis 

The NTA synthesis precursor XAA was prepared in one step from commercially 

available potassium ethyl xanthogenate with chloroacetic acid in NaOH aqueous solution 

(Scheme 3.3). Compared to Kricheldorf’s two step method, the new method avoids use of toxic 

carbon disulfide. And XAA in large scale (100 g) can be made in two days with high purity and 

yield under mild condition with easy work up. The 
1
H NMR of XAA is shown in Figure S3.1. 

Scheme 3.3. Synthetic route towards XAA. 

 

The amino acid-derived NTA monomers were synthesized in two steps from the 

corresponding amino acids by adapting a previously reported procedure.
67

 NTAs with simple 
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aliphatic side chains have been previously synthesized by coupling amino acids and XAA in 

aqueous solution containing 2 equivalences of NaOH, followed with cyclization. However, when 

the same condition was applied to H-Glu(OBz)-OH and XAA coupling, H-Glu(OBz)-OH ester 

hydrolysis was observed in the first coupling step due to too basic pH. Hence, the NaOH aqueous 

solution was switched to saturated NaHCO3 aqueous solution to ensure mild condition for ester 

during coupling. The second step cyclization with PCl3 is the only operation done under nitrogen 

atmosphere during NTA synthesis for the purpose of avoiding side reaction between PCl3 and 

moisture. The resulting NTAs with good yield (50-60%) were readily obtained by flash column 

chromatography in open air. The NTA structures have been unambiguously verified by X-ray 

crystallography (Figure 3.1 and S3.2), MS and NMR (Figure S3.3, S3.4, S3.5, S3.6). The overall 

synthetic route for the first time made BLG NTA and LYS NTA is shown in Scheme 3.2. 

NTAs are generally more likely to undergo racemization during synthesis.
16,59

 It was 

found that NTA monomers prepared via our method undergoes large extent of racemization, as 

evidenced by crystal structure (Figure 3.1), chiral HPLC (Figure S3.7 and S3.8), small specific 

optical rotation (e.g., α25

D
 = - 0.51 for BLG NTA in CHCl3 c = 0.924; α25

D
 = - 10.35 for LYS NTA 

 

Figure 3.1. Crystal structure of BLG NTA (crystal structure parameters summarized in Table 

S3.1) 
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in CHCl3 c = 0.994). The enantiomeric excess (ee) values of BLG NTA and LYS NTA based on 

chiral HPLC are both 2%. Based on Hirschmann’s study,
59

 the racemization happens to the 

intermediate (2) during the cyclization step under acidic condition (Scheme 3.4). And N-

ethoxythiocarbonyl amino acids are recommended to be cyclized with phosphorus tribromide for 

5-10 mins at 0 °C. However, when the same recommended cyclization condition was applied to 

series of N-ethoxythiocarbonyl amino acids (BLG, LYS, LEU), significant racemization was still 

for BLG NTA and LYS NTA as evidenced by chiral HPLC (Figure S3.9 and S3.10). The ee 

Scheme 3.4. Cyclization of N-ethoxythiocarbonyl amino acids 

 

values of BLG NTA and LYS NTA based on chiral HPLC are 10%, 40% respectively. On the 

other hand, crystal structure (Figure 3.2), chiral HPLC (Figure S3.11) and specific optical 

rotation analysis (e.g., α25

D
 = - 57.55 for LEU NTA in CHCl3 c = 1.07) indicate no racemization 

occurred during LEU NTA synthesis under identical condition. Hence, the racemization during 

the cyclization depends strongly on the nature of amino acids. Nevertheless, the positive effect of 

the PBr3 cyclization agent has been demonstrated, which improved the ee of LYS NTA from 2% 

to 40% as compared to the PCl3 method. 

 

Figure 3.2. Crystal structure of LEU NTA (crystal structure parameters summarized in Table 

S3.1) 
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The effect of PBr3 over PCl3 shed light on the future direction to further improve the 

optical purity of NTA. Hirschmann proposed that the racemization for NTA synthesis occurred 

at intermediate 2 in Scheme 3.4 and 3.5.
59

 The intermediate 2 can directly undergo normal 

dealkylation to form NTA. It also can go through enolization to afford racemized NTA after 

dealkylation (Scheme 3.5). The above two pathways are competitive during the cyclization. 

Their relative rate can be affected by temperature, pH, nucleophilicity of anions (e.g. Cl or Br 

anion) and etc. Apparently, Br anion will facilitate the normal dealkylation pathway, as 

evidenced by higher ee. This makes sense as Br anion has better nucleophilicity as compared to  

Scheme 3.5. Cyclization of N-ethoxythiocarbonyl amino acids. 
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Cl anion. The better nucleophilicity facilitates the dealkylation, which results in better optical 

purity of NTA. Alternatively, it was also reported that replacing the ethoxy side chain with 

methoxy would may slightly improve the optical impurity, as the steric hindrance is reduced in 

the methoxy case.
58

 The strategy was reproduced in our lab for BLG-NTA synthesis to improve 

the ee from 10% to 20%, which is still not satisfactory. Nevertheless, the above proposed 

racemization pathway can guide the direction for future investigation to improve the optical 

purity of NTA. For instance, the effect of neucleophilic additives to the cyclization step should 

be investigated. Alternatively, electron withdrawing group (EWG) can be attached to the 

terminal of the ethoxy group of the intermediate (3) to speed up the nucleophilic attack (Scheme 

3.5). This can be conveniently done by modifying the route of XAA synthesis with different 

alcohol.
67

 The temperature effect is worth investigation as well. In summary, it remains a 

challenge to develop a synthetic route to prepare optically pure NTAs for all amino acids, and it 

will be the focus of future work for this topic. The motivation behind is that optically pure NTA 

is critical for secondary structure of polypeptide. 

The NTAs are found to be significantly more stable against moisture and heat than the 

NCA analogs (Table 3.1). For example, when stored as solids in open air or in a desiccator (with 

Drierite) at room temperature, BLG NTA has a shelf-life of 2 months or a minimum of 5 months 

respectively, whereas BLG NCA started to become hydrolyzed in less than 11 days or 1 month 

period (Figure 3.3). The high stability of NTAs against moisture is presumably due to the less 

electrophilic nature of the carbonyl [O=C(5)] of NTAs relative to that of NCAs.
16

 This is 

consistent with the observed lower carbonyl stretch frequency of BLG NTA (1717 cm
-1

) (Figure 

S3.12) relative to that of BLG NCA (1842 cm
-1

). In addition, TGA revealed that BLG NTA is 

thermally much more stable than the NCA analog, evidenced by a significant higher onset of 
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thermal degradation temperature at 225 °C than that of the NCA (122 °C) under nitrogen (Figure 

S3.13). The phosgene free synthesis, the enhanced thermal stability and long shelf-life of NTAs 

relative to the NCA analogs significantly enhance the appeal of the former as substrate for 

polypeptide synthesis. 

Table 3.1. BLG NTA and BLG NCA stability comparison based on FTIR monitoring. 

 Stored in air Stored in desiccator Degradation T (°C) 

BLG NCA <11d ~ 1 m 122 

BLG NTA ~ 2 m >5 m 225 

 

Figure 3.3. (A) FTIR spectra of BLG NCA and (B) BLG NTA solids that have been stored in 

open air for varying period of time to determine their relative shelf-life. (Both monomers show 

new peak around 1545 cm
-1

 upon storage, which correspond to amide II bands indicating 

formation of polymers). 
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3.3.2 Polypeptide synthesis from NTAs 

We initially investigated the solution phase polymerization of BLG NTA using several 

initiators (e.g., hexylamine, triethylamine, HMDS, NiBiPyCOD) that are well-known to mediate 

ROP of the corresponding BLG NCA with high activities (Entry 11-14, Table 3.2).
16,18,19

 

Hexylamine is the only initiator to afford any polymerization activity (5% conversion, DP=120) 

after 2 d at room temperature under nitrogen or in open air. The polymerization product was 

analyzed by MALDI-TOF MS. The MS indicates the formation of oligomeric PBLG. Based on 

end group analysis from MS, the PBLG is exclusively initiated by hexylamine. And the terminal 

groups are either active amine (major) or back-biting terminated PBLG (Figure S3.15). The 

cause for the polymerization to stop remains unclear.  Increasing temperature to 50 °C still 

resulted in low conversions (5-12%) for all initiators (Entry 11-14, Table 3.2). High temperature 

is known to promote undesired side reactions (e.g., transamidation to form pyroglutamate) that 

can terminate polymerization prematurely. This is also verified in our study based on the end 

group analysis from MALDI-TOF MS. The hexylamine initiated BLG NTA solution 

polymerization at 50 °C afforded PBLG with mainly back-biting terminated end group (Figure 

S3.16). 

The low reactivity of BLG NTA limits its polymerization activity with all common 

initiation systems. To further enhance the polymerization under mild conditions, we set to 

investigate the sROP of BLG NTA. Kanazawa et al have previously demonstrated that primary 

amines can initiate the ROPs of several amino-acid derived NCA crystals in the solid state under 

mild conditions (20 - 50 °C) with faster polymerization rate as compared to solution state 

polymerization.
139-144

 The specific layer crystal packing of these NCAs in the solid state was 

suggested to be responsible for the accelerated chain growth.  
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Table 3.2. Solid or solution phase polymerization of amino-acid derived NTAs using various 

initiators
a
.
 

Entry Polym. State Initiator NTA [M]0:[

I]0 

Mn 

(Theo.) 

(g/mol) 

Mn (Exp.) 
c
 

(g/mol) 

PDI
 c
 conv 

d 

(%) 

1 solid (in air) HA 
b
 BLG 40:1 8700 9500 1.25 98 

2 solid (in air) HA 
b
 BLG 80:1 17400 19000 1.21 99 

3 solid (in N2) HA 
b
 BLG 80:1 17100 18700 1.24 97 

4 solid (in air) HA 
b
 BLG 120:1 25300 26800 1.21 96 

5 solid (in air) HA 
b
 BLG 150:1 31600 29700 1.26 96 

6 solid (in air) HA 
b
 LYS 80:1 20600 19300 1.31 97 

7 solid (in air) HA 
b
 LYS 150:1 38700 37600 1.29 97 

8 solid (in air) HA 
b
 LYS 200:1 51600 50300 1.28 97 

9 solid (in air) HA 
b
 MET 40:1 5300 5500

e
 NA 100 

10 solid (in air) HA 
b
 MET 80:1 10600 10300

e
 NA 100 

11 solution (in 

N2) 

HA 
b
 BLG 120:1 NA NA NA 12 

12 solution (in 

N2) 

TEA 
b
 BLG 50:1 NA NA NA <5 

13 solution (in 

N2) 

HMDS 
b
 BLG 120:1 NA NA NA 6 

14 solution (in 

N2) 

Ni(BiPy) 

(COD)
 b

 

BLG 120:1 NA NA NA 5 

a.
All reactions were allowed to proceed for 2 days. Solid-phase ROP conditions:  BLG NTA, 

MET NTA [M]0 = 0.2 M, 50 °C, in hexanes; LYS NTA, [M]0 = 0.2 M, 80 °C, in heptane. 

Solution-phase ROP conditions: BLG NTA, [M]0 = 0.5 M, 50 °C, dioxane. 
b.

 HA = hexylamine, 

TEA = triethylamine, HMDS = hexamethyldisilazane, Ni(BiPy)(COD) = Ni(2,2’-bipyridyl)(1, 5-

cyclooctadiene); 
c.
 determined by SEC-DRI-MALS analysis (dn/dc = 0.1292 mL/g for PBLG, 

0.123 mL/g for PZLL in 0.1M LiBr/DMF at 25 °C).
 d.

 Determined by 
1
H NMR analysis of 

reaction aliquots; 
e.
 Determined by end-group analysis from 

1
H NMR in TFA-d1(Figure S3.14). 

We found that solid-state polymerization of BLG NTA in a hexanes suspension of the 

monomer in the presence of soluble primary amine initiators produced the corresponding PBLG 

with high conversion at 50 °C after 2 d, in stark contrast to the low activity of the solution phase 

polymerization. The polymer molecular weight (Mn) can be readily controlled by adjusting the 

initial monomer to initiator ratio and agrees well with the theoretical value for controlled 

polymerization (Entry 1-5, Table 3.2). The molecular weight distribution is modest in the 1.2-1.3 

range. The Mn was also shown to track linearly with the conversion with low PDIs (<1.2) 
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throughout the reaction course (Figure 3.4), indicating controlled polymerization characteristic. 

The monomer conversion versus time plot indicates the polymerization rate remains fast during  

 
Figure 3.4. Plot of Mn (■) and PDI (▲) versus conversion for the sROP of BLG NTA in hexanes 

suspension at 50 °C ([M]0:[I]0=80:1, [M]0=0.2 M) together with the linear fit (—) of the Mn 

versus conversion plot. 

the polymerization period due to a nearly constant local monomer concentration in the solid 

phase (Figure S3.17). MS analysis of a low molecular polymer sample revealed that sROP of 

BLG NTA occurs by a normal amine mechanism where the primary amine initiates the solid-

phase polymerization of BLG NTA by regio-selective addition to the C5-carbonyl position. A 

small fraction of polymer chain was also found to be terminated with the pyroglutamate chain 

end, consistent with the undesired transamidation of the growing chain ends resulting in 

termination of chain growth (Figure S3.18).  

To further demonstrate that the sROP can be applied to other NTAs for polypeptides 

preparation, several other NTA monomers (e.g., LYS NTA and MET NTA) were screened 

(Entry 6-10, Table 3.2). LYS NTA was also initially polymerized under standard condition. 

However, PZLL only low Mn can be afforded (<13,000 g/mol) under standard condition. This is 
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presumably due to the low reactivity of LYS NYA. Hence, the polymerization temperature was 

increased to 80 °C. Under the modified condition, LYS NTA can be efficiently polymerized in 

the solid state to afford PZLL with Mn over 50,000 g/mol. MET NTA was found to polymerize 

well under the same standard condition. The end group analysis through 
1
H NMR (Figure S3.14) 

indicates formation of poly(methionine) with good molecular weight control.  

To further investigate whether crystal packing of NTAs is important for the controlled 

polymerization behavior, we prepared several batches of the BLG NTA monomers by 

recrystallization under various conditions. While X-ray crystallographic analysis of BLG NTA 

single-crystals revealed the formation of lamellar packing of BLG NTA (Figure S3.19 and 

Figure S3.20), which is similar to the NCAs crystal packing with enhanced solid state 

polymerization reactivity in Kanazawa’s study. The in plane distance between the –NH to C5 

carbonyl is in the range of 4.074 Å ~ 4.454 Å for two adjacent BLG NTA monomers. The 

distance range is close to the one in L-Leu NCA (e.g. 4.407 Å ~ 6.76 Å)
142

, which can be 

efficiently polymerized in the solid state with primary butylamine as initiator. The out of plane 

distance between the –NH to C5 carbonyl of two BLG NTA monomers is larger than 13.622 Å.  

It seems that the layer-by-layer crystal packing is responsible for the enhanced polymerization 

activity of NTAs in the solid state. However, XRD analysis of the polycrystalline BLG NTA 

revealed only about 40-50 % degree of crystallinity (Figure S3.21 and Figure S3.22).The 

experimental XRD pattern of the racemic BLG NTA resembles the predicted one based on 

racemic BLG NTA single crystal structure (Figure S3.23). The major peaks in the XRD spectra 

are listed in Figure S3.24, and their corresponding spacing are summarized in Table S3.2.  XRD 

patterns also suggest the presence of different polymorphism among various batches of the BLG 

NTA monomers. BLG NTA prepared from recrystallization in THF/Hexanes has different XRD 
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pattern as compared to the ones purified by other methods, which indicates different molecule 

packing. However, polymerization of the monomer prepared from THF/Hexanes produced 

PBLG polymers with nearly identical Mn and PDI as compared to polymerization results from 

other batches of BLG NTAs. These results together suggest that observed controlled 

polymerization characteristics is mainly the result of enhanced local monomer concentration in 

the solid state which accelerates the polymerization under mild conditions without promoting 

undesired side reactions. 

For characterization purpose, representative SEC chromatograms and 
1
H NMR of 

polypeptides are shown in the supplemental data section (Figure S3.25, S3.26, S3.27, S3.28). 

3.4 Conclusion 

In this study, we demonstrated for the first time that polypeptides with controlled Mn and 

PDI can be obtained from the solid state ROPs of NTA monomers using soluble primary amine 

initiators under mild conditions in open air. The sROP reactions proceed by a normal amine 

mechanism. The controlled polymerization behavior of sROP is the direct result of high local 

monomer concentration in the solid phase, thus allowing for faster polymerization under 

relatively mild conditions. In view of the facile synthesis of various amino-acid derived NTA 

monomers, their significantly enhanced moisture and thermal stability and long shelf-life relative 

to the analogous NCAs, sROP of NTAs represent an attractive alternative synthetic method to 

access well-defined polypeptides with controlled molecular characteristics and greatly reduced 

operational complexity. The future direction for this work is to develop optimized NTA 

preparation condition for optically pure NTA monomers. 
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3.5 Supplemental data 

 

Figure S3.1. 
1
H NMR spectrum of XAA in CDCl3. 

 

 

Figure S3.2. Crystal structure of LYS NTA. 
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Figure S3.3. 
1
H NMR spectrum of BLG NTA in CDCl3. 

 

 

 

Figure S3.4. 
13

C  NMR spectrum of BLG NTA in CDCl3. 
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Figure S3.5. 
1
H NMR spectrum of LYS NTA in DMSO-d6. 

 

 

Figure S3.6. 
13

C{H} NMR spectrum of LYS NTA in DMSO-d6. 
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Figure S3.7. HPLC trace of BLG NTA prepared with PCl3 as cyclization agent at rt. (peak area 

percentage 51% (left), 49% (right)). 

 

 
 

Figure S3.8. HPLC trace of LYS NTA prepared with PCl3 as cyclization agent at rt. (peak area 

percentage 51% (left), 49% (right)). 

 

 
 

Figure S3.9. HPLC trace of BLG NTA prepared with PBr3 as cyclization agent at 0 °C (peak 

area percentage 55% (left), 45% (right)). 

 

 
 

Figure S3.10. HPLC trace of LYS NTA prepared with PBr3 as cyclization agent at 0 °C (peak 

area percentage 70% (left), 30% (right)). 
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Figure S3.11. HPLC trace of Leu NTA prepared with PBr3 as cyclization agent at 0 °C. 

 

Table S3.1. Crystal structure parameters of BLG NTA, LYS NTA and LEU NTA. 

  

(General structure of NCA or NTA with side chains removed) 

  BLG NTA 

(X=S) 

LYS NTA 

(X=S) 

Leu NTA 

(X=S) 

BLG 

NCA147 

(X=O) 

Distance 

(A) 

X-C3 1.779 1.765 1.776 1.368 

X-C1 1.797 1.804 1.781 1.404 

C3-O2 1.207 1.183 1.193 1.186 

C1-O1 1.230 1.226 1.229 1.193 

C2-C3 1.520 1.519 1.532 1.512 

C1-N1 1.339 1.324 1.327 1.333 

C2-N1 1.448 1.438 1.456 1.447 

C2-C4 1.535 1.520 1.514 1.522 

Angle 

(degree) 

C1-X-C3 91.19 91.81 91.89 109.0 

X-C3-C2 111.24 110.78 110.27 108.9 

C3-C2-

N1 

106.54 107.08 105.83 100.5 

C2-N1-

C1 

119.03 119.94 119.34 112.8 

N1-C1-X 111.26 110.37 111.27 108.7 
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Figure S3.12. FTIR spectrum of BLG NTA in solid state (1717 cm
-1

 peak corresponds to stretch 

of O=C(5), 1680 cm
-1

 peak corresponds to stretch of O=C(2), the ester carbonyl stretch (1729 

cm
-1

) is merged into the big carbonyl stretch region, which will show up in the polymer). 

 

 

Figure S3.13. TGA (black curve) and the first derivative (blue curve) of TGA plot for BLG NTA 

(A) and BLG NCA (B). 
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Figure S3.14. 
1
H NMR spectrum of poly(methionine)41 polymer obtained from solid-phase 

polymerization of  MET NTA (TFA-d1). The DP was determined by the end-group analysis 

through the equation e/(a/3). 

 

 

 

Figure S3.15. (A) Full and (B) expanded MALDI-TOF MS spectra of a low molecular weight 

PBLG polymer obtained by solution-phase polymerization of BLG-NTA in dioxane at rt. 

together with (C) the PBLG chemical structures where the end-groups are determined by the MS 

analysis. 
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Figure S3.16. (A) Full and (B) expanded MALDI-TOF MS spectra of a low molecular weight 

PBLG polymer obtained by solution-phase polymerization of BLG-NTA in dioxane at 50 °C 

together with (C) the PBLG chemical structures where the end-groups are determined by the MS 

analysis. 

 

Figure. S3.17. Plot of conversion versus time for the solid-phase polymerization of BLG NTA 

(Conditions: [M]0:[I]0 = 80 :1, 50 °C, hexanes suspension). 
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Figure S3.18. (A) Full and (B) expanded MALDI-TOF MS spectra of a low molecular weight 

PBLG polymer obtained by solid-phase polymerization of BLG-NTA in hexanes suspension at 

50 °C together with (C) the PBLG chemical structures where the end-groups are determined by 

the MS analysis. 

 

Figure S3.19. Lamellar packing of BLG NTA monomers as revealed by the X-ray 

crystallographic analysis of the single crystal of the monomer. (Note: BLG NTA side chains and 

the S enantiomer were not shown for an unobstructed view of the packing structure, 13.622 Å is 

the distance between layers as well as the cell length along a axe). 
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Figure S3.20. In plane (bc plane) packing of BLG NTA monomers as revealed by the X-ray 

crystallographic analysis of the single crystal of the monomer. (Note: BLG NTA side chains and 

the S enantiomer were not shown for an unobstructed view of the packing structure. The green 

dash lines represent connection between –NH and C5 carbonyl. Unit for distance is Å). 

 

Figure S3.21. Stacked powder XRD spectra of BLG NTA crystals obtained by different 

recrystallization procedures. 
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Figure S3.22. Representative XRD spectrum showing the determination of the baseline and the 

percentage crystallinity of the monomer. 

 

Figure S3.23. Stacked predicted and experimental XRD spectra of racemic BLG NTA. 
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Figure S3.24. Representative XRD spectrum of BLG NTA with 2θ values. 

Table S3.2. Summary of 2θ values of major peaks in Figure S3.24 and their corresponding 

spacing (d). 

2θ 

(degree) 

6.613 13.113 14.517 18.443 20.081 20.731 21.797 27.049 

d (Å) 13.4 6.74 6.09 4.80 4.42 4.28 4.07 3.29 

 
Figure S3.25. Representative SEC chromatograms of PBLG polymers obtained by sROP at 

50 °C in hexanes suspension. 
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Figure S3.26. Representative SEC chromatograms of PZLL polymers obtained by sROP at 80 °C 

in heptanes suspension. 

 
 

Figure S3.27. Representative SEC chromatograms of PBLG polymers obtained at different 

conversions of the solid-phase polymerization of BLG NTA (Conditions: [M]0:[I]0 = 80 :1, 50 °C, 

hexanes suspension). 
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Figure S3.28. Representative 
1
H NMR spectrum of PBLG polymer obtained from solid-phase 

polymerization of BLG NTA (CDCl3:TFA-d1=95:5, v/v). 
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CHAPTER 4. SOLUTION-PHASE RING-OPENING POLYMERIZATION OF N-

THIOCARBOXYANHYDROSULFIDES 

4.1 Background and introduction 

Polypeptides have been intensively investigated to be used in different applications due to 

their combined merits such as unique secondary structures (e.g. α-helix, β-sheet), structure 

diversity, backbone degradability, etc.
3,96,148

 Polypeptides can self-assemble into different 

secondary conformations based on the nature of the corresponding amino acids. For instance, L-

glutamic acid based polypeptides tend to form α-helical conformations,
112

 while L-serine based 

polypeptides tend to form β-sheet conformations
70

. These unique secondary structures are of 

vital importance for their applications.
2
 For example, they have been studied for their potential 

applications in gene delivery
2
 and antimicrobial,

71
 antifouling

75
. Well-defined high molecular 

weight polypeptides are generally prepared through ROP of NCA with different initiation 

systems.
17-28

 However, one major limitation of polypeptide synthesis that the community faces is 

the stability of the NCA monomers. Their moisture and thermal instability issue limits facile 

preparation and large scale industrial production.  

Previous researchers have proposed alternative methods to prepare polypeptides in order 

to avoid the afore mentioned problems. Endo et al have reported the synthesis of polypeptides 

using activated amino acid urethane derivatives which was proposed to form NCAs in situ and 

polymerize in a chain growth fashion in presence of primary amine initiator.
56

 However, the 

polypeptides are mostly limited to low to moderate molecular weight (DP<100). Kricheldorf 

investigated the polymerization activity of some NTAs (Gly NTA, L-Phe NTA, L-Leu NTA, Sar 

NTA) through ROP. However only low conversion can be achieved even for targeted M/I = 60, 

and the resulting product is only oligomer. In Chapter 3, I demonstrated the preparation of 

polypeptides via solid-phase ROP of NTAs initiated by hexylamine. This is the first example of 
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polypeptides preparation under mild conditions via controlled ROP of NTAs. Merits of the solid-

phase ROP of NTAs include: facile NTA monomer preparation, long shelf life of NTAs, air-

friendly ROP conditions and the accessibility of well-defined polypeptides. However, there are 

also some drawbacks associated with our systems. For instance, sophisticated architectures (e.g. 

block copolypeptides) can be challenging to prepare, which are important for the applications of 

polypeptides materials. Block copolypeptides can self-assemble to form various micro structures 

(e.g. micelles,
149

 vesicles
150

), which contribute to their biomedical applications such as drug 

delivery.
4
 In addition, the solid-phase ROP of NTAs can only be applied to certain NTAs, where 

a proper poor solvent is available. For instance, Leu NTA cannot be polymerized due to the fact 

that it is soluble in all common organic solvents. We are motivated by these challenges to 

explore alternative initiating systems for solution phase polymerization of NTAs in a controlled 

manner. 

As demonstrated in the Chapter 2, all traditional initiators (e.g. primary amine, 

triethylamine, HMDS, NiBiPyCOD) are not able to mediate efficient polymerization of NTA. 

Another class of molecule we screened is strong organo-bases, which have been intensively 

investigated as efficient catalysts for ROP of cyclic monomers (e.g. cyclic esters).
151

 Our group 

has investigated the effect of several organo-bases (N-heterocyclic carbene (NHC), 1,8-

diazabicycloundec-7-ene (DBU), 1,1,3,3-tetramethylguanidine (TMG)) for the ROP of N-

substituted NCAs.
152-155

 They can either initiate the zwitterionic ROP of N-substituted NCA in a 

controlled manner (Scheme 4.1),
152,154,155

 or they can activate the alcohol based initiators via 

hydrogen bonding to mediate the ROP (Scheme 4.2)
153

. We are motivated by theses previous 

findings to investigate the effect of organo-bases for the ROP of NTAs. Hence, it will be the 

focus of this chapter to discuss organo-base mediated ROP of NTAs. 
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Scheme 4.1. NHC mediated ROP of N-substituted NCA (reprinted with permission from 

reference
152

, copyright (2009) American Chemical Society). 

 

Scheme 4.2. TMG promoted  ROP of Bu NCA using alcohol initiators (reprinted with 

permission from reference
153

, copyright (2016) American Chemical Society). 

 



102 
 

4.2 Materials and Methods 

4.2.1 General 

All chemicals were purchased from Sigma-Aldrich and used as received unless specified. 

H-Glu(OBz)-OH and H-Lys(Z)-OH were purchased from AAPPTec, LLC and used as received. 

All solvents are regular ACS grade solvents and used directly in the reactions without any 

special drying or purification step unless specified. The BLG NTA and LYS NTA were 

synthesized according to the procedures described in Chapter 3. 

1
H and 

13
C{H} NMR spectra were recorded on a Bruker AV-400 or AV-500 

spectrometer. Chemical shifts in ppm were referenced relative to proton impurities or 
13

C isotope 

of deuterated solvents (e.g., CDCl3). SEC-DRI analyses were performed with an Agilent 1200 

system equipped with three Phenomenex 5 μm, 300 × 7.8 mm columns [100 Å, 1000 Å and 

Linear(2)], Wyatt DAWN EOS MALS detector (GaAs 30 mW laser at λ=690 nm) and Wyatt 

Optilab rEX DRI detector with a 690 nm light source. DMF containing 0.1 M LiBr was used as 

the eluent at a flow rate of 0.5 mL·min
-1

. The temperature of the column and detector was 25 °C. 

ESI MS was conducted on an ESI TOF 6210 (Electrospray Time-of-Flight) mass spectrometer 

(Agilent Technologies). Samples were prepared by dissolving 5 mg sample in 0.5 mL 

chloroform. The experiments were carried out in positive mode ionization. MLADI-TOF MS 

experiments was conducted on a Bruker UltrafleXtreme tandem time-of-flight (TOF) mass 

spectrometer. The instrument was calibrated with Peptide Calibration Standard II consisting of 

standard peptides Angiotensin I, Angiotensin II, Substance P, Bombesin, ACTH clip 1-17, 

ACTH clip 18-39, and Somatoratin 28 (Bruker Daltonics, Billerica, MA) prior to experiment. A 

saturated methanol solution of α-cyano-4-hydroxycinnamic acid was used as matrix. Samples 

were prepared by mixing 5 mg/ml THF solution of polymers with matrix at 1:1 volume ratio, 

which were then deposited onto a 384-well ground-steel sample plate using the dry droplet 
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method. Experiments were done in positive reflector mode. The data analysis was performed 

with flexAnalysis software.  

4.2.2 Representative procedure for polymerization of NTA in solution 

A representative polymerization was conducted as followed. BLG NTA (53.6 mg, 0.192 

mmol) was dissolved in anhydrous dioxane (0.21 mL) under nitrogen atmosphere in glovebox. A 

measured volume of a stock solution of benzoic acid in dioxane (95.4 µL, 19.2 µmol, 201.3 mM) 

was added to the above solution. The mixture remained as a clear solution. Then a measured 

volume of a stock solution of TMG in dioxane (75.2 µL, 3.84 µmol, 51.1 mM) was added to the 

above clear solution. The polymerization was stirred at room temperature until 100% conversion 

has reached. The conversion was tracked via 
1
H NMR via sampling a reaction aliquot. The white 

solid polymer was isolated by precipitation into diethyl ether, followed by filtration, diethyl ether 

wash and vacuum dry (30.6 mg, yield: 73%). 

4.2.3 Representative procedure for the polymerization chain extension experiment 

A representative chain extension experiment was conducted as followed. BLG NTA 

(59.5 mg, 0.213 mmol) was dissolved in anhydrous dioxane (0.24 mL) under nitrogen 

atmosphere in glovebox. A measured volume of a stock solution of benzoic acid in dioxane (106 

µL, 21.3 µmol, 201.3 mM) was added to the above solution. The mixture remains as clear 

solution. Then measured volume of a stock solution of TMG in dioxane (83.5 µL, 4.27 µmol, 

51.1 mM) was added to the above clear solution. The polymerization was stirred at room 

temperature for 2.5 hours. 10 µL reaction mixture was sampled for conversion check via 
1
H 

NMR, which indicates 100% conversion of BLG NTA. Then 50 µL reaction mixture was taken 

for GPC analysis directly by dissolving into 0.95 mL DMF containing 0.1 LiBr. Additional BLG 

NTA (105.5 mg, 0.378mmol) was then added to the above reaction mixture, followed by 

addition of 0.39 mL anhydrous dioxane. The ratio of the second batch of BLG NTA over TMG 
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is 103, and the starting concentration of the second batch of BLG NTA is 0.5 M. 20 hours later, 

1
H NMR indicated nearly quantitative conversion was reached. The white solid polymer was 

isolated by precipitation into diethyl ether, followed by filtration, diethyl ether wash and vacuum 

dry (87.9 mg, yield, 68%). 

4.3 Results and Discussion 

4.3.1 Early study on organo-bases catalyzed ROP of BLG NTA 

The initial study of organo base mediated polymerization of BLG NTA was conducted in 

presence of primary amine. The base used in the co-initiator is TBD. TBD can activate NTA 

either by hydrogen bonding or by ring opening addition to form an activated monomer 

intermediate. The polymerization results were promising as full conversion can be reached 

unlike primary amine initiator alone resulting in partial conversion. However, the Mn control was 

poor. The obtained MW of PBLG was much higher than the theoretical MW calculated from the 

ratio of BLG NTA over primary amine. In a control study, high molecular weight PBLG (45.4 

kg/mol) was obtained when TBD alone was used as the initiator when [BLG NTA]0:[TBD]0 = 50. 

It encouraged me to screen the effect of similar organo-bases such as NHC and TMG. Similarly, 

both NHC and TMG are able to mediate the ROP of BLG NTA to afford high molecular weight 

PBLG. Interestingly, by varying the loading of organo-bases, the molecular weight of the final 

PBLG can be manipulated in the range of 13.9 kg/mol - 52.6 kg/mol with a narrow PDI (<1.2). 

There is one thing worth pointing out for the early study. The BLG NTA monomer used for the 

early polymerization study was purified by recrystallization from THF/hexanes.  With rigorous 

purification of the BLG NTA via column chromatography later on, the above results cannot be 

reproduced. TMG mediated polymerization of the rigorously purified BLG NTA resulted in 

broad MW distribution of PBLG, and a low rate of polymerization. I speculated there might be 

some impurities in the previous prepared BLG NTA samples that enable the enhanced 
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polymerization activity of BLG NTA. Hence, I introduced several additives (e.g. benzoic acid, 

benzyl alcohol, sodium bicarbonate, etc.) into TMG mediated ROP of BLG. Surprisingly, the 

addition of benzoic acid greatly increased the polymerization rate (Table 4.1). When 1 mol % of 

benzoic acid was added to the TMG mediated polymerization of BLG NTA ([M]0:[I]0 = 50) in 

dioxane at room temperature under nitrogen atmosphere, over 95% conversion was observed in 

12h. In comparison, only 27% conversion was reached without benzoic acid in 12h. Benzoic acid 

alone does not initiate polymerization of BLG NTA. This finding inspired me to further 

investigate the TMG/BnCOOH co-initiation system mediated ROP of NTAs. 

Table 4.1. Effect of benzoic acid in TMG mediated ROP of BLG NTA. 

[BLG NTA]0 Loading Conversion
a.
 Time 

0.5 M [BLG NTA]0 : [TMG]0 = 50 : 1 27% 12h 

0.5 M [BLG NTA]0 : [BnCOOH]0 = 50 : 1 0% 12h 

0.5 M [BLG NTA]0 : [BnCOOH]0 : [TMG]0 = 50 : 0.5 : 1 95% 12h 
  a.

 determined through 
1
H NMR 

4.3.2 TMG/BnCOOH mediated ROP of NTAs 

The TMG/BnCOOH co-initiation system was demonstrated to mediate ROP of NTAs. 

The effect benzoic acid loading on polymerization was then investigated.  It was found that the 

loading of benzoic acid affects the MW as well as the distribution of MW. In the study, ratio of 

BLG NTA over TMG was kept constant at 50, the ratio of benzoic acid over TMG ranged from 0 

to 5. The GPC traces of the PBLGs are shown in Figure 4.1. From the GPC traces, it can be seen 

that there is small molecular weight species at low loading of benzoic acid. The low molecular 

weight species disappears when the ratio of BnCOOH/TMG is kept at 5. Hence, a BnCOOH 

/TMG ratio is kept at 5 in the following investigations as standard condition with an initial 0.5 M 

monomer concentration in dioxane at room temperature. 
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Figure 4.1. SEC chromatograms of PBLG polymers obtained by TMG/BnCOOH mediated ROP 

of BLG NTA with different loadings of BnCOOH (BLG NTA/TMG = 50) 

Under the standard condition, a series of polymerizations with different BLG NTA to 

TMG ratios were set up. The polymerization results (i.e. Mn, PDI) are shown in Table 4.2 and 

Figure 4.2. It can be seen that molecular weight of PBLG increases with the increase of BLG 

NTA to TMG loading. However, it is not a simple linearly relationship (Figure 4.3); the 

polymerization is clearly not controlled ROP. The molecular weight distribution is narrow 

indicated by the small PDI (<1.12). The polymerization rate is also fast, as PBLG of high 

molecular weight (67 kg/mol) can be prepared in less than one day under mild condition. Though 

the polymerization proceeds in an uncontrolled manner, narrowly distributed polypeptides of 

various MW can still be obtained by this method. 

Table 4.2. TMG mediated ROP of BLG NTA with benzoic acid catalyst in dioxane at room 

temperature. 

Entry [M]0 [M]0:[I]0 Mn
a.
 

kg/mol 

PDI
a.

 Conversion
b.
 Time 

1 0.5 M 20 33.6 1.12 100% 2.5 h 

2 0.5 M 50 35.6 1.05 100% 2.5 h 

3 0.5 M 100 42.7 1.08 100% 15 h 

4 0.5 M 150 66.7 1.11 100% 15 h 
a.

 Obtained through SEC with dn/dc = 0.1292 mL/g; 
b.

obtained via 
1
H NMR 
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Figure 4.2. Representative SEC chromatograms of PBLG (corresponds to Table 4.1) polymers 

obtained by TMG/BnCOOH mediated ROP of BLG NTA. 

 

Figure 4.3. Plot of Mn versus [M]0:[I]0 for the TMG/BnCOOH mediated ROP of BLG NTA in 

dioxane at room temperature. 
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Further chain extension studies reveal that block copolymers also can be made via this 

system.  In the chain extension study, another batch of BLG NTA was added to the 

polymerization solution of BLG NTA when conversion reached 100%. The GPC traces clearly 

show an increase in the hydrodynamic volume of PBLG, which indicates the second batch of 

BLG NTA monomers were added to the existing polymer chains instead of forming new chains 

(Figure 4.4). The molecular weights characterized via GPC are shown in Table 4.3.  Similarly, 

PBLG-b-PZLL also can be readily prepared via the chain extension (Figure 4.5). Thus, this 

method overcomes the limitation of solid phase ROP of NTAs, where block copolymers can not 

be readily accessed. 

Table 4.3. TMG mediated chain extension study of BLG NTA with benzoic acid catalyst in 

dioxane at room temperature. 

Entry [M]0 [M]0:[C]0
a
:[I]0 Mn

b
 (kg/mol) PDI

b
 Conv.

c
 

1
st
 batch BLG NTA 0.5 50:5:1 36.5 1.06 100% in 2.5 h 

2
nd

  batch BLG NTA 0.5 103:5:1 70.4 1.24 >99% in 20 h 
a.
 [M]0 represetnts initial concentration of BLG NTA, [C]0 represents initial concentration of 

benzoic acid, [I]0 represents initial concentration of TMG. 
b.

 Obtained through SEC with dn/dc = 

0.1292 mL/g; 
c.
 obtained via 

1
H NMR 

 

Figure 4.4. Representative SEC chromatograms of PBLG (corresponds to Table 4.3) polymers 

obtained by TMG/BnCOOH mediated ROP of BLG NTA in dioxane at room temperature for 

chain extension study. 
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Figure 4.5. Representative SEC chromatograms of PBLG and PBLG-b-PZLL polymers obtained 

by TMG/BnCOOH mediated ROP of BLG NTA and subsequent LYS NTA in dioxane at room 

temperature for chain extension study. 

4.3.3 Mechanism investigation of TMG/BnCOOH mediated ROP of NTAs 

To further investigate the mechanism of the TMG/benzoic acid mediated polymerization 

of NTAs. MALDI-TOF MS, ESI MS and 
1
H NMR were employed to characterize the PBLG end 

group structures prepared by the method. Both MALDI-TOF MS and 
1
H NMR verify the 

formation of PBLG from TMG/benzoic acid mediated polymerization of BLG NTA. The 

mechanism of the polymerization was proposed to be AMM initially, as the polymerization 

shares characteristics of base catalyzed ROP of NCAs. Specifically, only high molecular weight 

PBLG can be obtained via the TMG/benzoic acid mediated polymerization. In addition, the 

polymerization propagation is fast as high molecular weight PBLG can be prepared in relatively 

short period of time.  
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The MALDI-TOF MS spectrum indicates the polymer has a repeat unit of 219.11 g/mol, 

which confirms the formation of PBLG (repeat unit MW = 219.09 g/mol) (Figure 4.6). The 

molecular weights of potential end groups plus dopants are 179.14 g/mol, 68.02 g/mol, 195.11 

g/mol based on MALDI-TOF MS analysis. The corresponding structures of the above MW are 

listed in Figure 4.6C. Surprisingly, dimethylamine is attached to the PBLG after losing one 

proton. This structure is further verified via 
1
H NMR (Figure 4.7) with a singlet signal at 3.02 

ppm, which corresponds to dimethylamine. The source of the dimethylamine can be elucidated 

by equimolar BLG NTA and TMG reaction (Scheme 4.1). The reaction mixture was 

characterized by ESI MS (Figure 4.8). Compounds with M/Z of 116.1186 and 290.1506 are two 

major species in the ESI MS, which correspond to protonated TMG and protonated compound 1. 

Similar result was also observed in equimolar mixtures of TMG and N-substituted NCA.
153

  

 

Figure 4.6. MALDI-TOF MS spectra of PBLG prepared via TMG/BnCOOH mediated ROP of 

BLG NTA in dioxane at room temperature  
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Figure 4.7. Representative 
1
H NMR spectrum of PBLG polymer obtained from TMG/BnCOOH 

mediated ROP of BLG NTA in dioxane at room temperature (CDCl3:TFA-d1~70:30, v/v). 

Scheme 4.1. Equimolar reaction between BLG NTA and TMG. 

 

 

Figure 4.8. ESI MS spectrum of TMG and BLG NTA (1:1) reaction mixture. 
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With the source of the dimethylamine elucidated, the next important question to ask is 

how the dimethylamine attaches to the polymer chain end. There are two possible pathways: 

NAM and AMM. In the NAM pathway, the dimethylamine acts as nucleophile to initiate chain 

propagation via NAM. In the AMM pathway, dimethylamine reacts with the terminal N-acylated 

cyclic NTA when the polymerization is finished. The NAM is less likely to account for the 

polymerization results for following reasons. First, the other end-group of PBLG is mainly 

pyroglutamate formed via back-biting aminolysis, which is unable to mediate propagation during 

polymerization to afford high MW PBLG. Secondly, high molecular weight polypeptide 

(DP>150) is hard to achieve in NAM pathway generally. In addition, benzylamine/BnCOOH co-

initiation system was also screened to mediate the ROP of BLG NTA, which was unable to 

mediate efficient polymerization to afford high MW PBLG.  

Considering the high MW polypeptide and relative short polymerization time, the AMM 

pathway is more likely to be responsible for TMG/BnCOOH mediated ROP. Importantly, all the 

structures detected from MALDI-TOF can be explained by the AMM pathway, which will be 

elaborated below. PBLG with structure (2) shown in Scheme 4.2 will form first during 

polymerization via the AMM pathway. Following the completion of the chain propagation, 

dimethylamine will react with the terminal N-acylated cyclic NTA via nucleophilic attack at C5 

carbonyl to form dimethylamine terminated PBLG (3). The PBLG with pyroglutamate (P2 in 

Figure 4.6) as the other terminal group is formed by transamidation, which has been discussed in 

Chapter 1. It is worth mentioning that hydroxyl terminal group was also detected in some PBLG 

samples. The formation pathway is also similar to the dimethylamine one. During the 

polymerization purification or MALDI-TOF sample preparation, moisture in air or solvent may 

react with the terminal N-acylated cyclic NTA to form hydroxyl terminal groups.  The existence 
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of both dimethylamine and hydroxyl groups as terminal groups can only be explained via the 

AMM pathway at this point. The terminal dimethylamine and hydroxyl groups serve as indirect 

evidence for the presence of N-acylated cyclic NTA during polymerization. 

Scheme 4.2. Formation of dimethylamine terminated PBLG in TMG/benzoic acid mediated ROP 

of BLG NTA. 

 

Another critical question to ask is the source of base used to deprotonate the NTA during 

polymerization, as acid benzoic acid is also present in addition to base TMG. To answer this 

question, it is important to know the pKa values. In organic solvent acetonitrile, benzoic acid has 

a pKa of 21.5
156

 while conjugate acid of TMG has a pKa of 23.3
157

.  The pKa difference is less 

than 2 orders of magnitude, which indicates free TMG is present at the beginning of the 

polymerization to deprotonate NTA to undergo polymerization via AMM. If benzoic acid is 

replaced by a stronger acid chloroacetic acid (pKa = 18.8
158

), then high MW polypeptide can not 

be accessed and the polymerization can only reach partial monomer conversion. Hence, the 

stronger acid may protonate the TMG completely, which will inhibit the polymerization via 

AMM pathway. 
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Lastly, the effect of benzoic acid in the system remains unclear at this point. However, 

one possible role of benzoic acid is hydrogen bonding donor which can activate the N-acylated 

cyclic NTA through hydrogen bonding. As discussed in Chapter 2, NTAs are generally more 

stable than NCA analogs. In other words, NTAs are less electrophilic. It is also possible for the 

N-acylated cyclic NTA to be not electrophilic enough for the negatively charged NTA to attack. 

Once, the hydrogen bonding is formed between benzoic acid and terminal N-acylated cyclic 

NTA, the activated N-acylated cyclic NTA will subsequently react with negatively charged NTA. 

The hydrogen bonding formation is modeled via benzoic acid and BLG NTA. The chemical shift 

of hydroxyl group in benzoic acid will shift from 12.5 ppm to 9.9 ppm when mixed with BLG 

NTA in 1:1 ratio in CDCl3. This upfield shift is clearly a result of hydrogen bonding. However, 

whether the hydrogen bonding formation is solely responsible for the enhanced polymerization 

rate with benzoic acid remains to be explored further. For instance, various hydrogen bonding 

donor compounds can be added to the TMG mediated ROP of NTA to screen their effects. 

4.4 Conclusion 

In summary, polypeptides of high molecular weight can be accessed in TMG/benzoic 

acid mediated polymerization of NTAs. The loading of benzoic acid in the polymerization will 

affect both the molecular weight and molecular weight distribution. Higher loading of benzoic 

acid affords high molecular polypeptides with narrow molecular weight distribution. The 

polypeptide molecular weight will also be affected by the ratio of NTA monomer over TMG. 

Higher ratio of BLG NTA over TMG will contribute to polypeptide with higher molecular 

weight. PBLG with different molecular weights (33.6 kg/mol - 66.7 kg/mol) and narrow 

molecular weight distribution (PDI < 1.12) can be readily prepared under mild condition. In 

addition, block copolypeptides also can be prepared via sequential addition of NTA monomers. 

The polymerization mechanism was proposed to be similar to AMM observed in base catalyzed 
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ROP of NCA, which was verified by MALDI-TOF MS and 
1
H NMR. Considering the facile 

preparation and long shelf life of NTA monomers, commercial availability of the initiators, this 

solution phase polymerization of NTAs mediated by TMG/benzoic co-initiation system 

represents a promising system to be widely employed both in large industrial scale preparation as 

well lab scale synthesis. 
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CHAPTER 5. CONCLUSIONS AND FUTURE WORK 

The main objective of this work is to develop new synthetic strategies toward advanced 

functional polypeptides or polypeptides in general. The main motivation originates from the 

appealing properties of polypeptides and their broad applications in different fields (e.g. gene 

delivery,
2,87

 drug delivery,
98

 antimicrobial
71

 and etc.). The individual research topic is directed by 

currently existing issues in the discipline. Chapter 1 highlighted the recent progress in the 

polypeptide based functional materials as well as fundamental aspects about polypeptides. In 

addition, it also shines light on the issues that should be addressed to further facilitate the 

development of polypeptides. 

In Chapter 2, the focus is to develop a new class of functional polypeptide which 

combines several desired attributes for biomedical applications into one synthetic platform. 

These features include: clickable pendant side chains for further functionalization, good water 

solubility, non-ionic nature to avoid unspecific interactions in biological systems, and unique 

secondary conformations (e.g. α-helix, β-sheet). Two strategies were designed to achieve the 

goal. The first method is straight forward, which involves copolymerizing two NCA monomers 

(PLG NCA and EG2-LYS NCA) via benzyl amine initiated ROP. The afforded polypeptides 

maintain stable α-helical conformations in aqueous solution (up to 50% hydrophobic segment 

PPLG) and in solid state. The copolymerization strategy produces polypeptides having tunable 

densities of “clickable” sites which allow for further conjugation of hydrophobic or hydrophilic 

moieties. It was shown that the hydrophobically and hydrophilically-modified polypeptide 

conjugates retain high level of α-helical conformations. The second method is to develop a new 

L-serine based NCA (Ser NCA) that contains a water-soluble ethylene glycol unit as well as a 

clickable azido pedant side chains. Upon polymerization, the corresponding polymer is expected 

to maintain aforementioned features. The secondary structure is expected to be β-sheet based on 
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previous study.
70

 The Ser NCA monomer synthesis route has been established. The purification 

and following polymerization activity of the Ser NCA should be the topic of future direction. 

The interrupted continuous investigation of Ser NCA is a result of the work in Chapter 3 and 4, 

the success of which will have significant scientific impact. 

The focus of the Chapter 3 is to develop the first controlled polymerization of amino acid 

derived NTAs under mild condition to prepare polypeptides. Several model NTA monomers (e.g. 

BLG NTA, LYS NTA) were synthesized for the first time. They were found to possess better 

thermal and moisture stability as compared to NCA analogs, which results in a long shelf-life for 

NTAs.   In the polymerization study, polypeptides with controlled Mn and PDI can be obtained 

from the solid phase ROPs of NTA monomers using soluble primary amine initiators under mild 

conditions. This stands as the first example of polypeptide preparation through ROP of NTAs 

with regular reagents in open air. The sROP reactions proceed by a normal amine mechanism. 

The controlled polymerization behavior of sROP is the direct result of high local monomer 

concentration in the solid phase, thus allowing for faster polymerization under relatively mild 

conditions. The future direction of this topic is optimization of NTA synthesis to obtain optically 

pure monomer. It was found that enantiomerically pure L-Leu NTA can be synthesized, while 

racemization occurred to a large extent during BLG NTA and LYS NTA synthesis even though 

the conditions are identical. As optically pure NTAs are vital for the self-assembly of 

polypeptides into secondary structures, it would be of great interest to optimize the NTA 

synthesis conditions to prepare optically pure NTAs. 

The work in Chapter 4 expands the solid phase ROP of NTA to solution phase, which 

may have general applicability towards block copolypeptides synthesis. In summary, PBLG with 

different molecular weights (33.6 kg/mol - 66.7 kg/mol) and narrow molecular weight (PDI < 
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1.12) can be readily prepared with TMG/benzoic acid as co-initiation system under mild 

conditions. The polypeptide molecular weight can be adjusted by controlling the ratio of NTA 

monomer over TMG. Higher ratio of BLG NTA over TMG will contribute to polypeptide with 

higher molecular weight, however there is no linearly relationship found between the NTA/TMG 

ratio and final polypeptide molecular weight. In addition, block copolypeptides also can be 

prepared via sequential adding NTA monomers. The mechanism of the TMG/benzoic acid 

mediated ROP of NTAs is proposed to be AMM. However, further investigation is necessary to 

elucidate the mechanism. For instance, what is the role of benzoic acid? What are the effects of 

other bases (e.g. triethylamine, sodium methoxide) traditionally used in ROP of NCA? 

Nevertheless, considering the stability and facile preparation of NTA monomers, the 

TMG/benzoic acid mediated solution phase ROP of NTA is a promising alternative of NCAs for 

high molecular weight polypeptide preparations. 

Another attractive research direction based on NTAs is the preparation of functional 

NTAs that can afford polypeptides with various functionalities via ROP. The ROP of functional 

NCA is one of the two strategies toward functional polypeptides as discussed in the Chapter 1. 

The application of this method is limited by several factors with one of them being the poor 

stability of NCAs that requires rigorously anhydrous conditions for synthesis, purification and 

polymerization. The development of NTA polymerization in this work can potentially drive the 

further development of functional polypeptides preparation via direct ROP of functional NTAs. 

The good stability of NTAs allows direct derivatizations to introduce different functionalities, 

which can be subsequently polymerized via the two ROP systems developed in this work to 

prepare functional polypeptides. The biggest advantage of this strategy is that it allows one to 

prepare polypeptides with 100% functionalized side chains. In addition, it also enables facile 
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controlled incorporation of various functionalities into polypeptides via copolymerization 

strategies. Various copolypeptides systems (e.g. random copolypeptide, block copolypeptide) 

can be manipulated by copolymerization techniques such as one-pot copolymerization or 

sequential adding monomer copolymerization. 

In summary, one type of functional polypeptide has been successfully prepared via direct 

ROP of NCAs. Two polymerization systems have been developed to prepare polypeptides of 

different molecular weights and narrow molecular weight distribution via the ROP of NTAs. The 

commercial availability of initiators and mild polymerization conditions make the two 

polymerization systems promising for large scale polypeptide preparation if desired. 
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