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solid black curve, all systems with a negative ion of size
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Abstract

The process of nucleation is an essential part of understanding and controlling phase

changes in a wide array of systems. In the past theories such as Classical Nucleation Theory

have been used as a tool to aid experimentalist in the study of phase mechanisms. However,

recent studies have shown in detail that theories such as this are not reliable, given that it can

mispredict nucleation rates by several orders of magnitude. As a result newer methodologies

must be developed into order to improve upon these deficiencies. In this study we use

atomistic simulations to examine the non-ideal deviations from classical theory observed in

both simple and complex systems. In addition to this we present new algorithms that can

be used to improve the rate at which the nucleation properties of these simulations can be

sampled. Lastly we apply these new methods to study an atmospherically relevant system

that involves the nucleation of water in the presence of multiple charged ionic species.

From these studies it was found that the deviation of more realistic systems from the

classical theory can be attributed to both the creation of loosely bound clusters as well as the

formation of highly ordered stacking in surface induced systems. The algorithms presented

in this work have been shown to quickly and accurately replicate previously published data

with very little increase to the computational overhead. Finally the application to the

atmospherically relevant system showed an interesting trend where the nucleation rate was

more heavily correlated to the number of water molecules that could be successfully bound

to the ion pair instead of the quality of the bond.

xviii



Chapter 1

Introduction

1.1 An Introduction to Nucleation

The physical phenomenon of Nucleation is a key step in the transition of a material from

one phase to another and has been a topic of interest for well over one hundred years.2,3 The

nucleation process is found anywhere from crystallization4, to the formation of atmospheric

aerosols5, self-assembly6, etc. Nucleation occurs when the super saturated mother phase

begins its reorganization process to begin forming the seed that will eventually grow out and

become the new thermodynamically favourable phase. For instance in a gas-liquid system

the nucleation process occurs when gas molecules begin attaching to one-another, eventually

this aggregation grows and grows until a fully formed liquid droplet is made.

Even though nucleation occurs when the mother phase is no longer the most stable

of the two thermodynamic phases, the nucleation process is not spontaneous itself. This

is due to the fact that while there is a potential difference between the two bulk phases,

the intermediate aggregates are far from bulk-like and as such can have a higher free energy

when compared to either bulk phase.7 Thus for nucleation to fully occur the system must first

climb the free energy barrier that is in its way. The properties of this barrier can ultimately

determine properties such as the number of atmospheric aerosols formed8 or even properties

such as what kind of crystal structures are formed.9 As a result of this it is absolutely critical

that researchers understand the underlying mechanisms of the nucleation process in order

1



to be able to predict and control the outcome of phase transitions.

Thanks to modern simulation technology, researchers have had more power than ever to

explore theoretical models that would have been otherwise too tedious to perform by hand.

However despite these advancements in theoretical power, nucleation has traditionally been

very difficult to simulate. The nucleation process very often requires relatively large time

scales in order to completely observe. For instance, in gas to liquid nucleation the fastest

observable rates at which liquid droplets can be formed10,11 is on the order of 104 droplet

nm−3 s−1. Even for a Lennard-Jonesium which uses a very simple spherically symmetric

potential, a standard molecular dynamic simulation must go through a significant amount of

effort to observe the event.11 The rate at which a system will nucleate is tightly linked to the

supersaturation ratio and subsequently the ambient gas pressure. At a constant temperature

a small change in the supersaturation ratio can lead to several orders of magnitude change in

the rate of nucleation.12–14 A natural consequence of this is that if the event of interest occurs

at a temperature and pressure combination where the nucleation rate is incredibly slow, there

is a high chance that it will be impossible to observe this event without the use of specialized

methods or conditions. A few methods researchers have used to attempt to circumvent this

is by using an exceedingly large number of particles to increase the probability of observing

the event11 or modifying the supersaturation conditions such that the nucleation rate is

sufficiently fast.15,16 Each of these techniques have their own pros and cons. For instance,

performing a molecular dynamics simulation at high super saturation with a small number of

molecules requires one to take into account that as the system forms liquid clusters the total

monomer concentration of the box declines. This in turn can change the thermodynamic

conditions of the system which shifts the nucleation rate half way through the simulation.

Thus these finite size effects must be compensated for in order to ensure that the correct

information is measured. The huge simulation approach does not suffer from the finite size

effects quite as easily as the smaller simulation, but at the same time it pays for it in a huge
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computational cost.

An alternative way to obtain information related to the nucleation process is by use of

biased simulations. In these simulations, techniques such as Umbrella Sampling17 are used

to artificially flatten the free energy barriers found in the system. In this particular case,

the key free energy barrier is the nucleation free energy barrier. While biased simulations

do have their own share of problems, one of the primary advantages of using them is that

important information related to the mechanisms of nucleation can be obtained without

great computational cost, which makes them very attractive alternatives to classic “brute

force” style simulations. For the purposes of this dissertation we will begin this chapter

by outlining the core Monte Carlo methods used in this research, which will serve as the

foundation for later chapters in this dissertation.

1.2 Metropolis Sampling

Unlike many stochastic systems that are commonly sampled with Monte Carlo, molecular

systems only have a small number of accessible configurations relative to all the possible

configurations that could potentially be generated. For instance, in a condensed water

system around 300K the most probable states occur when all the water molecules are properly

hydrogen bonded with their neighobors. However for any one water molecule the bonded

orientation only makes up a small fraction of all possible rotational orientations. Thus the

odds of randomly generating a properly oriented system is increasingly small. This problem

ultimately increases with system size given that if the probability of orienting a single water

molecule is 4% then the probability of orienting N molecules is proportional to 0.04N . Thus

simple “shotgun sampling” techniques are not suitable for efficiently sampling molecular

phase spaces. A way to address this issue is to instead use what is known as Metropolis

sampling,18 which is a form of Markov Chain Monte Carlo. Markov Chains are a stochastic

model to measure the probability in a system where the probability of an event occurring

is dependent which event preceded it. For example in the atmosphere, the probability of
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having clear skies on a given day depends on if it was clear or rainy the previous day. The

core equation that results from solving a Markov Chain is given by the equation

Aπ = π (1.1)

In this equation A is a transition matrix of the form

A =



P1→1 P2→1 P3→1 . . . Pn→1

P1→2 P2→2 P3→2 . . . Pn→2

...
...

...
. . .

...

P1→n P2→n P3→n . . . Pn→n


(1.2)

This naturally assumes that the probabilities contained in these equations are non-zero

(i.e. there is a chance of observing these events) and therefore are non-trivial. Each entry of

the matrix corresponds to the probability of changing from a given state i to a new state j.

For instance P1→2 is the probability of leaving state 1 and entering state 2. In this formalism

π is the eigenvector of the matrix A that corresponds to an eigenvalue of λ = 1.18 The vector

is of the form

π =



p1

p2
...

pn


(1.3)

The π vector is known as the steady state probability or in other words this vector
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contains the probability of being in a given state once the system has reach equilibrium.

Each pi is the equilibrium probability of being in state i. In many Markov Chain problems,

the transition probabilities of the A matrix are known and it is desirable to solve for the

steady state probabilities by solving for the eigenvector. However, in the case of molecular

sampling the reverse problem is true. It is known ahead of time what the steady state

probabilities are since they are simply the Boltzmann probabilities for a given configuration

in the chosen ensemble.

pi =
exp−Ei/kBT∑
j exp

−Ej/kBT
(1.4)

So instead one must solve for the transition probabilities of the A matrix. In practice

there are multiple solutions to this problem given, but for all solutions it can be observed

that Eq. 1.1 must be satisfied. If one expands Eq. 1.1 by performing matrix multiplication

on the left side, for any given row i one receives the equation.

∑
j

pjPj→i = pi (1.5)

Thus to satisfy the Markov Chain requirement, this equation must hold for every row.

This equation is known as the Global Balance condition and it dictates that the population

entering and exiting state i must be equal to the probability of that state i. Or in other

words this is a global equilibrium condition saying that the total population of each state

must remain static by balancing the incoming and outgoing transitions. This is a critical

condition that any choice of transition probabilities must satisfy to guarantee that the correct

steady state probabilities are obtained from this Markov Chain. There is a potentially
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infinite number of transition probability choices that will satisfy the global balance equation,

but in practice many of these solutions will yield unruly equations that will be difficult or

outright impossible to use in application to molecular systems. Thus a common choice for

the transition probabilities is the simple yet powerful solution known as Detailed Balance.

pjPj→i = piPi→j (1.6)

Detailed Balance is a micro-equilibrium condition where one chooses the the transition

probability such that the flow back and forth between given states i and j is equal. It is

easy to show via substitution that this choice of transition probabilities satisfies the global

balance condition.

∑
j

pjPj→i =
∑
j

piPi→j = pi
∑
j

Pi→j = pi ∗ 1 = pi (1.7)

This proof takes advantage of the fact that
∑

j Pi→j = 1 which can be derived from the

normalization condition for the transition probabilities. Thus if we satisfy Detailed Balance

we also satisfy Global Balance. Our next step is to now find the exact functional form of

the transition probabilities that can be used to solve the Detailed Balance equation. Much

like with the global balance there are multiple solutions to this, but it has been found that

the Metropolis solution19 produces the optimal result.

Pij = min

(
1,

pj
pi

)
(1.8)

It is almost trivial to show that this will satisfy the Detailed Balance equation
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If



pi < pj
Pi→j

Pj→i
= 1

pi
pj

=
pj
pi

pi > pj
Pi→j

Pj→i
=

pj
pi

1
=

pj
pi

pi = pj
Pi→j

Pj→i
= 1

1
= 1 =

pj
pi

(1.9)

Thus for all possible cases Detailed Balance is satisfied. This in turn gives an excep-

tionally convenient equation to use. The Metropolis method only requires that one know

the functional form of the probability and for any given transition between states the only

knowledge that is required is the statistical weight of the old state and the new state. In

addition since one is taking the ratio of the two probabilities, the normalization constant

is not required to compute the transition probabilities. These properties along with several

others make this algorithm completely desirable for molecular sampling since often the nor-

malization constant is not known a priori. To apply Metropolis sampling the following steps

are used:

1. Start the system in a viable configuration.

2. From the current configuration randomly perterb the system using a trial move (i.e.

Move a molecule in a random direction).

3. Calculate the statistical weights of the new and old positions.

4. Calculate the transition probability according to the Metropolis formalism.

5. Generate a random number between 0 and 1. If it is less than the transition probability

accept the move and transition the system to the new state. Otherwise reject the move

and return to the previous state.

This allows the user to generate any arbitrary statistical distribution where the function

form of the weight is known by slowly perturbing the system using a set of trial moves.In the

case of molecular simulations, these trial moves are very commonly moves such as translating
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a molecule or rotating a molecule. Since each new state is generated by making a small change

from the previous state the likelihood of generating energetically favourable configurations

is significantly higher than “shotgun” methods.

One further caveat that is of importance to note is that the Metropolis scheme shown is

only valid for Monte Carlo moves that are symmetrical or that the probability of proposing

a move from state i to j is the same probability as proposing the move in reverse from j to

i. In other words the way the moves are proposed is unbiased toward any given state. If

one wishes to bias the system toward a given set of states without corrupting the correct

probability, one must extend the Metropolis formalism to correct for this bias. When one

performs the appropriate adjustments to the derivation of the Metropolis algorithm shown

above, the Metropolis-Hasting formalism is obtained.20

Pi→j = min

(
1,

Ti→j

Tj→i

pj
pi

)
(1.10)

Where Ti→j is the probability of proposing a trial move from state i to state j and Tj→i

is the probability of the reverse proposal. This equation is the backbone of many Molecular

Monte Carlo algorithms since it allows a researcher to use any trial move they desire to

sample the system. From this, one can generate a massive stable of trial moves that can

be applied to solve a problem. However it should be noted that while in theory any valid

Monte Carlo move will eventually give the correct probability distribution, they will not

converge at the same rate. If the trial moves consistently generate configurations that have

a low probability, the overwhelming majority of the proposed moves will be rejected and

as a result it will take an exceedingly long time to move through the configurational phase

space and thus require a longer simulation to sample the system correctly. The rate at which

a Monte Carlo move creates valid configurations is known as the acceptance rate which is
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simply given by

Rate =
nSuccesses

nAttempts

(1.11)

The acceptance rate is a measure of how good a given trial move is at generating a

valid configuration and very often the acceptance rate is correlated to the rate at which the

system converges to the correct probability. Thus one should be very careful in choosing

their Monte Carlo moves in order to obtain a feasible answer in a minimal amount of time.

In addition one must always know the exact form of the trial probability in order for a given

Monte Carlo move to work. Neglecting terms can lead to incorrect probability distribution

and by proxy incorrect physical properties for a given system.

1.3 Aggregation-Volume-Bias Monte Carlo

The Aggregation-Volume-Bias Monte Carlo (AVBMC) algorithm21,22 is a specialized

Monte Carlo move that directs the formation and destruction of bonded configurations in

molecular systems. The AVBMC move is in the general family of swap moves facilitate the

transfer of particles in ensembles such as the Gibbs Ensemble, Grand Canonical Ensemble,

etc.

AVBMC is divided into two corresponding moves, an insertion move and a removal

move. Alternatively these moves can be refereed to as the swap in and swap out moves

respectively. As their names suggest, the moves exchange molecules in and out of the system

being studied. The insertion is move is performed by the following

1. If the molecular reservoir is being represented explicitly, choose a molecule from the

reservoir to be swapped into the system.

2. Choose a molecule inside of the system to serve as the insertion target.

3. Choose a random position within a maximum distance rbond to insert the molecule.
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4. Regrow the molecule.

If all of these steps are performed by uniform random selection, the probability of inser-

tion can be written as

Pinsertion =
1

Nreservoir

1

Nsys

1

Vbond

(1.12)

Where Nsys is the number of particles in the system, Vbond the volume given by Vbond =

4
3
πr3bond, and Nreservoir is the number of molecules in the reservoir. For the removal move a

similar procedure is used.

1. Similar to the insertion move, randomly choose a molecule inside of the studied system

to serve as the pivot/target molecule.

2. Choose one of the neighbouring molecules of the target molecule. This will be the

molecule that is swapped out.

3. Create a new position and configuration in the molecular reservoir and regrow the

molecule.

When written out using uniform probabilities, one obtains

Premoval =
1

Nsys

1

Nnei

1

Vreservoir

(1.13)

Where Nnei is the number of neighbours surrounding the target molecule and Vreservoir

the volume of the reservoir box. For the purposes of this work the reservoir is represented

implicitly and as a result the reservoir terms can be replaced by the chemical potential term

found in the Grand Canonical Partition function. When the ideal gas assumption is invoked,

the chemical potential reduces to the gas phase density given by ρgas = Nreservoir/Vreservoir.

The gas phase density is thus given as an input parameter which controls the thermodynamic
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conditions. When all of the previously mentioned terms are collected and placed into Eq.

1.10 then the acceptance rule for the AVBMC move is given by

PAcc−In = min

(
1,

Nsys · Vbond · ρgas
(Nsys + 1) · (Nnei + 1)

· e−β∆E

)
(1.14)

PAcc−Out = min

(
1,

Nsys ·Nnei

(Nsys − 1) · Vbond · ρgas
· e−β∆E

)
(1.15)

It should be noted that the Nsys and Nnei terms that appear in both the insertion and

reverse move must be shifted by 1 in the reverse probability to reflect that after a particle

has been inserted or deleted the total number of molecules in the system has increased or

decreased by 1.

The primary advantage of using the AVBMC algorithm is that because it targets a small

region around a given molecule, the likelihood of generating bonded configurations is greatly

enhanced compared to standard swap moves. This both improves the rate of creating bonds

as well as the rate of destroying them. Further discussion about the strengths and weaknesses

of the AVBMC algorithm can be found in chapter 3

The primary advantage of using AVBMC for the study of nucleation is that the simulation

can be designed such that there is no need for a finite volume simulation box. Instead one

can construct a boundary condition by using a cluster criteria such as the Stillinger criteria

which defines two particles as being neighbors if their center of mass is within a arbitrary

distance.23. In Monte Carlo simulations enforcing this criteria is exceedingly easy, given that

all one needs to do is to ensure that all the members of a given cluster are properly connected

to each other. Any move which would result in the destruction of a cluster is simply rejected.

Once this criteria is enforced, the AVBMC move can be used to transfer particles into and
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out of the cluster giving a simple yet effective method of calculating the thermodynamics of

nucleation. The use of the AVBMC method has been shown in previous work to successfully

predict nucleation properties such as the onset activity,24, structural features,25, and a host

of other nucleation properties.14,26

While these methods have proven to be very successful, more recent expansions of the

method have uncovered problems with the algorithms. For instance in previous work a

complicated acid model was used to study the nucleation of water in the presence of an acid

defect.27,28 This model required a significantly greater number of computational cycles to

properly calculate all the data of interest. For a molecular cluster with an ionic species in

it, the acceptance rate drops sigificantly.

In the work presented in this dissertation, the AVBMCmethod as well as other commonly

used classical theories will be examined in order to understand their weaknesses and strengths

in an attempt to figure how to improve the efficiency and accuracy of the theoretical tools

that can be used to study the nucleation process.
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Chapter 2

Classical Nucleation Theory

2.1 Introduction

As an activated event, the nucleation process can be characterized by a nucleation free

energy (NFE) surface expressed as a function of order parameters, e.g., cluster size in the

vapor–liquid nucleation, that links the relative thermodynamic stabilities of the two bulk

phases via a critical barrier. Evaluating this NFE surface and the related nucleation bar-

rier height(s) that allow for the determination of the nucleation rate has been a major

task for a plethora of theoretical methods from the century-old classical nucleation theory

(CNT)29,2,3,30–34 to modern statistical-mechanics based simulation approaches.

In CNT, the thermodynamics of cluster formation is approximated by a bulk-droplet

model, in which the formation free energy of a cluster is expressed in terms of properties of

a bulk phase (e.g., using the equilibrium density ρ and chemical potential µ of a bulk phase

and the interfacial tension γ of an infinite flat surface). More specifically, the formation

free energy of a cluster with a radius r in a homogeneous bulk phase is broken into two

contributions, one from the surface free energy (simply surface area, A, times the interfacial

tension, γ), and the other from the chemical potential difference (∆µ) between the two

phases involved in a particular phase transition in an m-dimensional space as follows,

∆G(r) = Aγ + n∆µ = mCmr
m−1γ + Cmr

mρ∆µ with Cm =
π

m
2

Γ
(
n
2
+ 1
) (2.1)
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where Γ is the gamma function. When derived for a three dimensional system the equation

takes on the form

∆G(r) =
4

3
πr3ρl∆µ+ 4πr2σ (2.2)

This equation while simplistic gives an elementary insight to the underlying physics of

cluster formation. The 4
3
πr3ρl∆µ term corresponds to the gain in energy that is achieved

when a particle is taken from the mother phase and inserted into the newly formed cluster.

In the case of gas-liquid phase change the ∆µ term can be calculated from the equation

∆µ = −kBT ln
ρgas
ρeq

(2.3)

Where ρgas is the current gas phase density and ρeq is the gas phase density at equilibrium

conditions. Alternatively the ratio of these two quantities can be grouped together into a

single term known as the saturation ratio.

S =
ρgas
ρeq

(2.4)

For saturation ratios greater than 1 the chemical potential is negative which implies that

the new phase is thermodynamically favourable while rations less than 1 indicate that the

mother phase is still thermodynamically favourable. Thus the first term in the CNT equation

primarily corresponds to the relative thermodynamical stability of the two bulk phases. In

contrast the 4πr2σ term corresponds to the interfacial contribution to the free energy. Since

the growth of a cluster requires the formation of an interface between the cluster and the
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mother phase, there is a natural free energy penalty to be paid for this.

Thus the overall picture that CNT gives is that the formation of a cluster in the mother

phase is a direct competition between the surface and bulk energetics. While the new phase

may be thermodynamically favorable, the system must first gain enough momentum to

properly establish a stable interface. In a cluster where the surface term is larger than the

bulk term the cluster will likely evaporate before additional molecules can be added.

When comparing the theory to simulation work, the radius of the cluster is typically

an inconvenient choice of nucleation coordinate since the cluster radius may not be as well

defined in simulation as it is in experiment. Thus it is useful to transform the CNT equation

in terms of the number of molecules in the cluster instead of radius. Using the spherical

assumption of CNT, it is possible to write the liquid density as ρl =
n

4
3
πr3

where n is the

number of particles. By performing a simple substitution of r for n one obtains the CNT

equation written as a function of n.

∆G(n) = n∆µ+ σ

(
36π

ρ2l

) 1
3

n
2
3 (2.5)

This formalism provides a direct way to compare simulational work to the theory. In

addition this formalism allows one to determine the free energy of addition as a function of

the cluster size.

δ∆G(n) = ∆G(n)−∆G(n− 1) = ∆µ+ σ

(
36π

ρ2l

) 1
3

(n
2
3 − (n− 1)

2
3 ) (2.6)

This is known as the delta-delta-G formula which calculates the free energy of adding a

monomer to the cluster. According to CNT, if one were to calculate δ∆G(n) as a function

of n
2
3 − (n− 1)

2
3 for a three dimensional system the resulting plot would fall on a completely
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straight line. This of course would no longer by true if the system exhibited non-ideal

behavior. This gives rise to a useful tool in analysing deviations from CNT which can point

researchers toward interesting physical phenomena.

2.2 An Examination of Classical Nucleation Theory in Two Dimensional Nu-

cleation

Unfortunately since CNT is a based on bulk-like assumptions, it is naturally expected

that these approximations are clearly problematic for small clusters. Correspondingly de-

ficiencies of CNT are expected. For example, using one of the simplest model systems

Lennard-Jonesium, it has been demonstrated from the simulation that CNT provides fairly

accurate estimate of the work required to add a monomer to the cluster but deviations

between the simulation and CNT are noted toward the smallest clusters leading to the con-

clusion that the failure of CNT can be traced to its incorrect description of the smallest

clusters.7,35–38 While such analysis (assisted with the simulation results) has been exten-

sively done for three-dimensional (3D) vapor–liquid nucleation and has been shown to be

quite useful to extract the source of the errors for the theory, nucleation in other dimensional

space hasn’t been explored in quite the same detail. However, the change of dimensionality

can lead to very different behavior. For example, using density functional theory (DFT)

Zeng39,40 found that CNT can actually predict fairly reasonable free energy barriers (only a

small underestimation by the theory) for the 2D nucleation system compared to the large

positive errors shown for the 3D system. This better performance can be explained by the

much smaller curvature effects for clusters in 2D vs. 3D. On the other hand, using molecular

simulation, Santra et al.1 reported another surprisingly different behavior, that is, CNT un-

derestimates considerably the free energy barrier for 2D in contrast to the overestimation of

this property for 3D; both errors are substantial but opposite in sign. While there are clear

differences between the conclusions obtained from these two sets of studies, both do agree

that the theoretical errors are reversed from 3D to 2D. Questions arise, could these entirely
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opposite errors found for the 2D nucleation be accounted by the same origin (i.e., the incor-

rect description of the smallest clusters by the theory) that was previously concluded for the

3D nucleation? Also what could be the possible causes of this sign switch? Motivated by

these questions, we brought the same simulation protocol used for the 3D nucleation systems

that has been shown successful for extracting the source of the theoretical errors to 2D here.

An important finding from this study is that for both 2D and 3D systems, the theoretical

deviations from the simulation can be attributed to the smallest clusters but these deviations

show an interesting sign switch from being positive for 3D to being negative for 2D.

2.2.1 Simulation Details

This nucleation simulation was carried out using the aggregation-volume-bias Monte

Carlo (AVBMC) method21,22coupled with umbrella sampling (US).17 While the use of AVBMC

enables direct particle transfer between the cluster and the mother phase to greatly speed

up the sampling of the otherwise slow condensation/evaporation events that are important

to nucleation, US is implemented to solve the critical problem of sampling high free-energy

clusters by adding artificial biasing potentials to enhance tremendously the probabilities of

these clusters being visited by the simulation. The details of this simulation approach for

3D systems can be found in Ref. 14 and the extension of this approach to 2D systems is

straightforward. The only difference is that the bonded region used for AVBMC swap moves

is defined by an area term (centered on a randomly chosen particle from the cluster phase)

in 2D versus a volume term in 3D. Similar to 3D simulations, this area term can be chosen

to conform to the Stillinger23 cluster criterion used here (which is distance based, i.e., any

two particles within a certain distance rc are considered to belong to the same cluster) to

make attempts at cluster condensation/evaporation more likely. The grand-canonical en-

semble was chosen for the nucleation simulation for computational efficiency and also to be

consistent with previous simulation studies performed for 3D systems.35 In this ensemble, a

single cluster is physically isolated from the rest of the system but thermodynamically still
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connected with the rest of the gas-phase system. This remaining gas-phase system is repre-

sented by a particle reservoir with the chemical potential of this reservoir being specified as

one important input parameter for the simulation.

This simulation study was performed for Lennard-Jonesium (LJ). LJ is one of the most

basic and popular theoretical models for those species that interact through van der Waals

forces. Also as one of the simplest and mostly studied model systems, many of the thermo-

dynamic properties are available or can be obtained with superior accuracy for this model,

which makes it convenient to compare the simulation results to CNT. For example, for the

2D LJ system investigated here, extremely long simulations (on the order of 108 Monte Carlo

cycles here) can be afforded even for very large bulk-phase systems with sufficiently large

cut-off values (up to 15 σ here) to accurately calculate the input parameters required by

CNT. These include a vapor–liquid phase equilibrium calculation performed in the Gibbs

ensemble41–43, to obtain the needed chemical potential and liquid-phase density data, and

a canonical ensemble simulation of a liquid slab for surface tension. Specifically the surface

tension is calculated as follows:44

γ =
1

A
< Vyy − Vxx >=

1

2Lx

⟨∑
i<j

(
rij −

2y2ij
rij

)
U ′(rij)

⟩
(2.7)

where A = 2Lx is the total surface area for 2D systems, Vxx and Vyy are the virial tensors,

rij and yij are the distance and its y−axis component between particle i and j, respectively,

U ′(rij) is the first derivative of the potential energy between i and j over their distance (or

equivalently the force between them), and the angle brackets denote an ensemble average.

The tail corrections for the surface tension were approximated by

γtail =
1

2

∫ L
2

−L
2

∫ L
2

−L
2

∫ ∞

xmin

ρ(y1)ρ(y2)

(
r − 2y212

r

)
U ′(r)dxdy1dy2 (2.8)
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Table 2.1: Vapor–liquid coexistence properties and surface tension for 2D LJ. The sub-
scripts give the statistical accuracy of the last decimal(s).

T ∗ ρ∗liq ρ∗vap µ∗
liq µ∗

vap γ

0.427 0.75161 0.023215 −1.788610 −1.78903 0.2073

where L and ρ are the box dimension and the density profile along the direction normal

to the interface (y axis here), respectively, and xmin is defined in terms of rc, the potential

cutoff distance, as follows:

xmin =


√

r2c − y212 |y12| ≤ rc

0 |y12| > rc

 (2.9)

Eq. 2.8 was integrated numerically using the density profile obtained at rc = 7.5σ. It should

be noted that the surface tension value calculated using this approach has been found highly

sensitive to rc for the 3D system.45 For the 2D LJ system, this property was found to be

0.2060±0.00380, 0.2065±0.00549, 0.2074±0.00338, and 0.2073±0.00424, when rc was set at

4, 5, 7.5, and 15 σ, respectively.

2.2.2 Results and Discussion

Listed in Table 2.1 are the bulk-phase properties obtained for 2D LJ. Using these bulk-

phase properties, the free energy of cluster formation predicted by CNT can be determined

from Eq. 2.1 and compared to those evaluated directly from the nucleation simulation. These

results, which were obtained at a reduced temperature T ∗ = 0.427 (the same temperature

used in the previous simulation study by Santra et al.1) and a supersaturation ratio S = 1.036

(or ∆µ = −0.0352kBT ), were plotted in Fig. 2.1. Also shown in Fig 2.1 are those free energy

data that were obtained previously35 for a 3D LJ system at T ∗ = 0.45 and S = 84.6 (or

∆µ = −4.438kBT ). This supersaturation condition is chosen so that both 2D and 3D

NFE barrier heights yielded from the simulation match with each other. Thus, if the same
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Figure 2.1: NFEs as a function of the cluster size for a 2D LJ system at T ∗ = 0.427 and
S = 1.036 (in panel a) versus 3D LJ at T ∗ = 0.45 and S = 89.5 (in panel b). The simulation
results and those predicted by CNT are shown as solid and dashed lines, respectively. Also
shown in panel a are the CNT results obtained using the bulk-phase properties reported in
Ref. 1 (the dashed-dotted line).

supersaturation condition is used, the NFE barrier height would be significantly higher for

3D than 2D. This result can be directly inferred from the theory. According to Eq. 2.1, the

effect of dimensionality on the NFE values can be translated into the different dependencies

of the surface free energy (SFE) on the cluster size n. For an m-dimensional system, the

SFE term would be proportional to n(m−1)/m. Correspondingly, the magnitude of this SFE

term would increase with increasing dimensionality. Since the surface free energy is the term

contributing to the formation of a nucleation barrier at the beginning stage of the cluster

growth, it is expected that at similar supersaturation conditions, the barrier height would

increase with increasing dimensionality of the system.

Although CNT can capture such qualitative trends, quantitatively there are clear dif-

ferences between the NFEs predicted by CNT and those calculated from the simulation.

Interestingly, these differences can sometime become opposite between 2D and 3D. As shown

from Fig 2.1, for 3D CNT consistently predicts a higher NFE value for all cluster sizes with
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the difference between CNT and the simulation growing larger with the increase of the clus-

ter size and reaching a constant positive offset (26.5 kBT ) after a certain cluster size. In

contrast, for 2D such an overestimation only applies to the very first few clusters (starting

from monomer due to the non-zero NFE value predicted by the theory for monomer but

zero by our simulation). Then it becomes opposite with the magnitude of the difference also

becoming larger with the increase of the cluster size and eventually approaching a stable

value (2.1 kBT ) after clusters are sufficiently large. This offset, which is considerably smaller

than that found for 3D, is roughly equivalent to one order of magnitude difference in terms

of nucleation rate, which is greater than that found by Zeng40 but less than that obtained by

Santra et al.1 The difference between our simulation results and those by Santra et al.1 could

be partly explained by the slightly different thermodynamic properties obtained, particularly

surface tension, 0.207 ± 0.003 here vs. 0.178 in their work, which would affect significantly

the NFE data predicted by CNT. For example, using the thermodynamic properties obtained

from their simulation, much lower NFE values would be obtained for the theory (see Fig.

2.1), which widens the gap between the simulation results and the CNT predictions. This

emphasizes the importance of having highly accurate values for these input parameters for

CNT. Another source of this discrepancy could be due to a more strict criterion used in

their simulations where particles have to be first liquid-like (with the number of neighbors

surpassing a certain threshold), then they can be considered whether or not they belong to

a certain cluster, modified from the original Stillinger cluster criterion by ten Wolde and

Frenkel.46 This more strict criterion can lead to significantly higher NFE values obtained

from the simulation. For example, we noticed that for monomers, their NFE plots show a

large non-zero value compared to zero in our simulation since gas-phase monomers are used

here.

For 3D systems, the δ∆G curves with δ∆G(n) = ∆G(n)−∆G(n−1), which corresponds

to the work required to add a monomer to the cluster, have been conventionally used to
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Figure 2.2: δ∆G(n) results analyzed from the NFE profiles shown in Figure 1 for simulation
(solid) versus those predicted by CNT (dashed) plotted as a function of n(m−1)/m − (n −
1)(m−1)/m for 2D (panel a) and 3D (panel b).

extract the source of the errors for CNT.7,36,35,37,38 Here we applied this analysis to 2D. In

CNT, a plot of δ∆G as a function of n(m−1)/m−(n−1)(m−1)/m would fall onto a straight line.

While the slope of this linear line is governed by surface tension, density of the liquid phase,

and some other constants, the intercept is determined solely by ∆µ. As shown in Fig 2.2,

this linear behavior works remarkably well for clusters that are sufficiently large for both 2D

and 3D systems. In particular, the δ∆G curves obtained from the simulation pretty much

follow the CNT-prescribed linear lines for clusters containing more than 50 particles for 2D

and more than 30 particles for 3D. However, deviations from this linear line behavior occur

for clusters smaller than those sizes for both systems. While positive deviations are found

for 2D, negative deviations are found for 3D. These deviations in δ∆G found for the initially

formed clusters would contribute to a supersaturation independent offset on ∆G. This offset,

combined with the difference in the ∆G value of the monomer (i.e., zero in our simulation

versus A1γ + ∆µ in CNT), would account for the total deviation in the ∆G curves shown
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Figure 2.3: Log-log plot of cluster size vs radius of gyration for the 2D system at T ∗ = 0.427
(panel a) and 3D at T ∗ = 0.45 (panel b). While the 2D data can be fit by a linear line (solid)
with a slope of about 2, the 3D data exhibit an “S” shape. The two straight lines shown in
panel b are drawn as a guide to the eye with the slopes of 2 (lower) and 3 (upper).

in Fig. 2.1. Thus, the theoretical deviations found for those NFE results shown in Fig. 2.1

for both 2D and 3D, although opposite, can be actually explained by the same source, the

incorrect description of the theory for the smallest clusters through this δ∆G analysis.

One question remains, that is, why would these theoretical errors switch from being

positive for 3D to negative for 2D? In general, the deviations from the CNT behavior found

from the simulation for small clusters can be traced to the fact that these small clusters

do not behave as a bulk-droplet. From previous simulation studies on 3D systems,35,14,47 it

has been shown that the structure of the clusters can deviate significantly from the bulk-

like structure assumed by the theory (that is, clusters of all sizes are compact and perfectly

spherical). For example, the radius of gyration (rg) data obtained for the 3D system indicates

that clusters formed at the beginning are fractal and lower in dimensionality (more or less

2-dimensional like, see Fig. 2.3) and only after a certain size, the clusters start to approach

a three-dimensional structure, with the rg curve exhibiting a pronounced S shape. Thus,
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the growth of the cluster is accompanied by an increase of dimensionality. However, the

extent of this structural change would be limited by the dimensionality of the space in which

they grow. For example, for clusters placed in a lower-dimensional space such as 2D, one

would expect minimal dimensionality transition effect as clusters containing a few particles

are already two-dimensional-like. Indeed, the rg data obtained for the 2D system shows little

sign of this dimensionality transition with nearly all the data points aligning on a straight

line with a slope close to 2 (see Fig. 2.3).

This striking structural difference between 2D and 3D could be the cause for the sign

switch of the theoretical errors. In particular, the formation of loosely connected clusters is

most likely the source of the negative deviation of the simulation results from the theory.

These fractal aggregates are stabilized by the entropic factor or the volume term, which

has a power-law scaling with the dimensionality, thus making fractal aggregates more stable

at higher dimensional space. If one arbitrarily restricts the clusters to perfectly follow the

CNT-prescribed structure, i.e., with a dimensionality of a bulk-droplet for all sizes, for small

clusters formed in 3D or higher dimensional space, this constraint would lead to a significant

increase of the NFE values since they are less stable than the fractal aggregates, possibly

approaching or surpassing those predicted by the theory. On the other hand, an energetic

argument can be used to explain the positive deviations of the simulation results from the

theory. When clusters of all sizes adopt the same shape and dimensionality, small ones are

energetically less stable than larger ones since each particle in the cluster has fewer particles

to interact with whereas in CNT it is assumed that particles in small clusters can already

take the bulk-phase chemical potential (meaning that they are equally stable compared to

particles in bulk-phase). One can see this more clearly by working with a one-dimensional

system. In that system, the surface term is insignificant and the formation free energy of a

1-D cluster is dominated by the bulk term. Thus this energetic factor directly influences the

overall stability of this cluster at different sizes, leading to a more and more stable cluster
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as it grows.

It should be noted that other forms of CNT have been developed, particularly to take

into account the curvature effects that were found important for 3D clusters. These improved

forms often focus on the surface term by treating the surface tension to be dependent on the

cluster size.48,49 These corrections have been shown to capture fairly well the errors found

for the traditional form of CNT for 3D LJ clusters. For example, in Ref. 14, it was reported

that using the expression provided by McGraw and Laaksonen48 a positive theoretical error

of 19.8 kBT on the NFE barrier height was estimated, compared to 17.7 kBT obtained

from the simulation at T ∗ = 0.8 for LJ in 3D. In addition, it was shown from previous

simulation work35,14 that this theoretical error decreases with the increase of the temperature,

which is in good agreement with the predictions by McGraw and Laaksonen48 and another

theoretical study by Zeng and Oxtoby.39 In Ref. 39, it was also found that this positive

error can become negative when T ∗ is above 1.08. To examine the temperature effect on the

theoretical error for 2D LJ, additional simulations were performed at T ∗ = 0.35 and T ∗ = 0.5.

As evident from the δ∆G curves shown in Fig. 2.4, this error remains negative over this

entire temperature range. It should be pointed out that the theoretical errors on the NFE

barrier heights obtained from the simulation for the 3D LJ system have been shown to be in

good agreement with the discrepancies found between the experiment and the theory on the

nucleation rates obtained for a LJ-like argon system,50,51 except when the temperature is

far below the triple point. The involvement of crystalline clusters in the nucleation process

toward deep undercooling conditions was suggested to be one possible source for the different

magnitudes of the theoretical errors observed between the simulation and the experiment,

since in the simulation the nucleation rate was computed by assuming that the nucleation

process proceeds via liquid-like clusters.14 In a very recent experimental study on argon

nucleation by Sinha et al.10 that was carried out at much higher supersaturation (with

an onset nucleation rate range 10 orders of magnitude larger than previous experimental
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Figure 2.4: δ∆G(n) results obtained from the simulation at T ∗ = 0.35 (panel a) and
T ∗ = 0.5 (panel b) for the 2D LJ system.

work50,51), the theoretical errors found there are in much better agreement with what we

found from the simulation for the 3D LJ system. For 2D systems, it remains to be shown

whether the theoretical errors found herein can be verified experimentally.
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2.3 Surface Induced Theory

Surface nucleation is a form of heterogeneous nucleation where a supersaturated mobile

phase condenses onto a solid surface. The surface acts as catalyst in the nucleation process

allowing the droplet to form under conditions that would normally be unfavorable for homo-

geneous nucleation to occur. This area of nucleation is of major importance for applications

such as hindering the formation of ice on external airplane equipment53, atmospheric water

droplet formation on the surface of particulates54, metal cluster formation55,56, etc. and has
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been studied extensively by experiments57–59 and in part by theoretical methods.60–65

The biggest challenge in modeling surface nucleation is the representation of the surface

itself. Much like solvation, the surface can be done either implicitly or explicitly. An implicit

surface provides a computationally cheap and simple method to represent the surface as a

set of equations. This method can quickly provide a great deal of information about the

geometry of a surface droplet without greatly increasing the number of calculations per

Monte Carlo cycle. The drawback of this method is that for more complex geometries such

as hills, valleys, or other complex features that exist on real surfaces the equations used to

model such features are either difficult to derive or may be impossible to represent in this

form. An explicit surface is expected to be significantly more accurate, but this kind of

surface on top of being more computationally expensive provides many additional problems

such as defining specific surface geometry, obtaining physically correct interaction potentials,

etc.

This area of nucleation has been explored for specific systems such as water on silver

iodide which has been studied extensively by Ward, Holdman, and Hale.66 The silver iodide

system was of interest due to its ice inducing properties. It was observed by Ward that

the ionic surface allowed water to form a hexagonal pattern across the surface which was a

likely aid in ice nucleation. A molecular dynamics study of the surface-induced nucleation

of a Lennard-Jones (LJ) system was performed previously by Toxvaerd67. Toxvaerd largely

focused on the structure of the droplet upon formation; however, not as much attention was

given to the free energy of formation or the rate of formation.

Previously there had been several attempts to model surface nucleation through the-

oretical means. Based on the work by Becker and Döring performed in 1925,2the first

surface-induced classical nucleation theory was proposed by Volmer3 for nucleation on a flat

featureless surface in 1929. This was later expanded upon in 1950 by Turnbull68 who derived

the equations for vapor-liquid nucleation for a wide array of surface geometries. For a flat
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surface the free energy equation is given by

∆G(r) = f(θ)

(
4

3
πr3ρl∆µ+ 4πr2γlg

)
(2.10)

f(θ) =
1

2
− 3

4
cos(θ) +

1

4
[cos(θ)]3 (2.11)

Where ∆µ is the chemical potential difference between the supersaturated and saturated

phase, θ is the surface-droplet contact angle, ρl is the liquid density, and γlg is the surface

tension of the droplet along the gas-liquid phase boundary. This equation is much like the

homogeneous classical nucleation theory (CNT) equation, but differs by the pre-factor which

contains the surface contact angle. The value of θ is between 0 and 180 degrees. The pre-

factor at a θ value of 0 has a value of 0 while at a θ value of 180 the pre-factor is equal to 1

which returns the equation to the homogeneous CNT equation.

Because this theory is based on a bulk-droplet model it is predicted to have some of the

same problems associated with the homogeneous CNT equation. One such problem is that

small clusters do not behave like the bulk phase. Correspondingly there are errors in the

free energy prediction for small cluster sizes which was shown in previous works.35,7 While

the normal CNT problems would be expected with this theory, it is also possible that the

introduction of the contact angle term will provide additional problems. Since the contact

angle is a macroscopic quantity, it may also have the small cluster problem that the other

thermodynamic quantities in the homogeneous CNT equation have.

To examine the theory we must first determine the predictions made by the theory. In a

similar manner to the homogeneous CNT equation, this equation can also be rewritten as a

function of cluster size instead of radius by using the density relationship ρl =
n

4
3
πf(θ)r3

. This

yields the result
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∆G(n) = n∆µ− γlg

(
36πf(θ)

ρ2l

) 1
3

n
2
3 (2.12)

According to this theory the primary difference in nucleation free energy is created by the

truncated circle geometry the droplet takes upon the surface. We can also show this equation

can be used to create a δ∆G plot similar to those which has been used in a multitude of

studies.35,7,69,39 Where

δ∆G = ∆G(n)−∆G(n− 1) = ∆µ+ γlg

(
36πf(θ)

ρ2l

) 1
3

(n
2
3 − (n− 1)

2
3 ) (2.13)

The size of the critical cluster and barrier height predicted by the theory were also calculated

by Volmer3 and found to be

∆G∗ =
16πγ3

lg

3ρ2l∆µ2
f(θ) (2.14)

n∗ =
32πγ3

lg

3ρ2l∆µ3
f(θ) (2.15)

Therefore when comparing the same liquid-vapor nucleation on two different surfaces,

for the same conditions the barrier height ratio as well as the critical cluster size ratio of two

different surfaces is given by

∆G∗
2

∆G∗
1

=
f(θ2)

f(θ1)
=

n∗
2

n∗
1

(2.16)

In the case of a homogeneous system the f(θ) term is simply replaced with a value of

1. Thus the predicted ratio of a surface-induced system and the homogeneous 3D system is
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simply

∆G∗
Sur

∆G∗
Hgn

= f(θ) (2.17)

For a bulk droplet, the value of θ is specified by Young’s equation as follows.

cos(θ) =
γsg − γsl

γlg
(2.18)

Where γlg, γsg, and γsl are the surface tensions of the liquid-gas, solid-gas, and solid-

liquid interfaces respectively. Since the CNT theory is based on the bulk-droplet model, all

clusters are expected to adopt the same contact angle value irrespective of size. Thus the f(θ)

value is expected to be a constant and the barrier height ratios between the homogeneous

and heterogeneous systems are also expected to be constant; however, clusters are finite

objects, which questions the validity of such bulk-droplet approximations inherent in the

classical nucleation theory. For heterogeneous nucleation the theory brings an additional

macroscopic term, the contact angle, to the derivation. Much like quantities such as the

surface tension and chemical potential, the contact angle can be size dependent.70 Therefore

it is imperative to use more quantitative and direct methods such as molecular simulation

based on more detailed microscopic models to verify the validity of the theory built on a

macroscopic model in the same manner as previous studies.35,7,71

2.3.1 Simulation Details

The simulations were carried out using the aggregation-volume-bias Monte Carlo method

(AVBMC) coupled with umbrella sampling.14 Umbrella sampling17 is implemented to solve

the critical problem of sampling high free-energy clusters by adding artificial biasing po-

tentials to enhance tremendously the probabilities of these clusters being visited by the

simulation. AVBMC21,22 is used to enable the direct transfer of particles between the cluster

and the mother phase to greatly speed up the sampling of the otherwise slow condensa-

tion/evaporation events that are important to nucleation. This was achieved by dividing
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the space surrounding each particle into a bounded and unbounded region and using a swap

move to transfer particles between these two regions. The volume of the bounded space can

be chosen to conform to the Stillinger23 cluster criterion used in this study. The in-depth

explanation of this simulation approach can be found in Refs. 21 & 22.

The surface used is an implicit 9-3 LJ equation which can be derived by integrating the

12-6 LJ potential over an infinite plane and surface depth.

V (z) =
2

3
πρsεslσ

3
sl

(
2

15

σ9
sl

z9
− σ3

sl

z3

)
(2.19)

Where σsl and εsl are the LJ parameters for the interaction between a single cluster

particle and a single surface particle and ρs is the surface density. σsl and εsl are defined

using the standard Lorentz-Berthelot mixing rules72,73

εsl =
√
εllεss (2.20)

σsl =
σss + σll

2
(2.21)

Even though there are a total of three control parameters that can vary depending on

the type of surface, these parameters can be integrated into a single control parameter which

is denoted as ε∗ as follows.

ε∗ =
2

3
πρsεslσ

3
sl (2.22)

V (z) = ε∗
(

2

15

σ9
sl

z9
− σ3

sl

z3

)
(2.23)

For a one-component liquid phase the ε∗ parameter can be reduced in terms of the liquid

phase interaction parameter εll to create a relative parameter ε∗r
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ε∗r =
ε∗

εll
=

2

3
πρs

√
εss
εll

σ3
sl (2.24)

The simulation was carried out by varying ε∗r to values of 1, 2, 3, and 5. The cluster-

cluster interaction parameters were set to 1 for both εll and σll. All the pair interactions

were included in the computation of the total energy. The simulations were carried out

at a reduced temperature of 0.5. This temperature is sufficiently below the freezing point

of 3D LJ, which is around 0.69,14,74 but is above the freezing point of 2D LJ, which is

around 0.41,75,76 and has previously been studied for the homogeneous case.35 In addition

to the heterogeneous systems, a 3D homogeneous and a 2D homogeneous simulation under

similar conditions were carried out for comparison purposes. The saturation ratio for the 2D

homogeneous was set so that the free energy profile of the 2D homogeneous system would

be comparable to the systems with high surface interaction strengths.

2.3.2 Order Parameter

In this study we also employed the Q6 Steinhardt order parameter to examine the crys-

tallinity of the formed cluster.77 The Q6 order parameter is given by

Q6 =

(
4π

13

6∑
m=−6

| q6m |2
) 1

2

(2.25)

q6m =
1

Nb

Nb∑
n=1

Y6m(θij, ϕij) (2.26)

Where Y6m is the spherical harmonic angular function, Nb is the total number of neigh-

bors, θ and ϕ are the angles between neighboring particles i and j from an arbitrary reference

point. Any two particles which are within 1.5σ are defined as being a neighbor to each other.
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2.3.3 Contact Angle

The contact angle calculations were performed by generating a droplet on the various

surfaces containing 1500 LJ particles. Once the droplet reached equilibrium under transla-

tional moves the probability of finding a particle along the Z axis along with the probability

of finding a particle at a specific distance rX−Y from the center of mass along the X − Y

plane were calculated. From the probability data it was possible to collect the interfacial

radius and the droplet height by finding the Z and rX−Y value that yields 95% of the total

area when integrated from 0. 95% is used so that a majority of the particles are included in

this analysis except those which are loosely bounded and located at the interface. Once these

values have been determined it is possible to find the contact angle using the relationship

given by Fan and Caǧin.78

cos(θ) = 1− h

R
(2.27)

Where h is the droplet height and R is the untruncated radius of the droplet. For

droplets where the values of the contact angle are greater than 90 degrees the integrated

value over the X−Y plane will give an approximated value of R; however, for contact angle

values less than 90 degrees, the value given by the integration will be the radius of the circle

created by the intersection of the surface plane (Denoted as Rs) and the droplet(see Fig.

2.5). This value can still be used to calculate R using the expression

R =
R2

s + h2

2h
(2.28)

2.3.4 Results and Dicussion

Shown in Fig. 2.6 are the free energy curves as a function of the cluster size obtained

from the simulation. The free energy curves were drawn using the same scale in order to

demonstrate the gradual decline of the free energy barrier as surface interaction strength
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Figure 2.5: Diagram of a surface droplet. Depicted here are the parameters used to
calculate the contact angle. h is the height of the droplet, Rs is the radius of the circle
generated by the intersection of the surface plane and spherical droplet, and R is the radius
of the spherical droplet if it were untruncated by the surface plane.

increases. All free energy curves were obtained using the same gas-phase number density

(nv = 4.72 × 10−4) except for the 2D system which was obtained using a number density

of nv = 9.45 × 10−5. The number density yields a supersaturation ratio of 9.98 which

corresponds to a ∆µ value of −2.80 kBT . The barrier for the homogeneous 3D system is

estimated to be 240.2 kBT while the barrier heights for the surfaces with ε∗r of 1, 2, and 3

have values of 208.1, 129.6, and 36.6 kBT respectively. The remaining systems showed no

barrier. In addition to the decline of the barrier, the critical cluster size shifts to lower values

as the surface interaction strength increases. The estimated critical cluster size for the 3D

homogeneous system is 334 while the critical cluster size for the surface-induced nucleation

was estimated to be 291, 224, and 78 for ε∗r values of 1, 2, and 3, respectively.

The free energy curves for each system were used to create a δ∆G plot (see Fig. 2.7).

According to CNT a plot of the free energy difference between a cluster size of n and n− 1

will fall on a straight line if plotted against n
2
3 − (n − 1)

2
3 ∝ n− 1

3 . The slope of this line

will be governed by the liquid-vapor surface tension and liquid coexistence density while

the intercept will be ∆µ. The heterogeneous case’s slope differs by a factor of [f(θ)]
1
3 .

Thus the δ∆G analysis provides a convenient way to examine the theoretical errors. It

also provides a robust procedure for extrapolating bulk-phase information using the data
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Figure 2.6: ∆G plots for a 3D homogeneous LJ nucleation (panel a) and surface-induced
nucleation with ε∗r values of 1 (panel b), 2 (panel c), 3 (panel d), and 5(panel e). Also
included is the curve for the 2D homogeneous nucleation (panel f).

obtained on finite-size clusters. Indeed, previous simulations of many single component

nucleation systems have shown that the δ∆G results obey the theoretically prescribed linear

behavior for sufficiently large clusters; however, deviations between the simulation and CNT

are observed toward the smallest cluster sizes leading to the conclusion that the failure of

CNT can be traced to its incorrect description of the smallest cluster35,7,69. It is important

to note that in previous studies for small cluster sizes the 3D δ∆G plot showed a negative

deviation from the predicted CNT results. Conversely the 2D homogeneous LJ showed a

positive deviation for the smallest cluster sizes.52 These characteristic shapes provide a useful

guide for analyzing the geometry of the surface-induced systems. As can be seen, for the

ε∗r of 1, the deviation from the predicted line was negative, but as the value of ε∗r increases

the systems show a slow incline. As the interaction strength gradually increases, the δ∆Gs

begin changing from a negative error at small cluster sizes to a positive error. At an ε∗r of

5 the system finally shows a 2D-like deviation from the theory at small cluster sizes. This
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trend is well within reasonable expectations. As the surface-particle interaction increases the

droplet prefers to flatten out and form a 2d-like structure, while at low strengths it prefers

to be 3D-like in shape. Another interesting trend is the decline in the slope at larger cluster

sizes.
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Figure 2.7: δ∆G plots of the nucleation free energy profile for a 3D homogeneous LJ
nucleation (panel a) and surface-induced nucleation with ε∗r values of 1 (panel b), 2 (panel
c), 3 (panel d), and 5(panel e). Also included is the curve for the 2D homogeneous nucleation
(panel f).

At an ε∗r value of 1 the δ∆G line was almost identical to the homogeneous 3D nucleation.

As the value was increased to 2 and 3 the line showed a gradual decline in slope. At an ε∗r

of 5 the line had a slope value near 0. According to the theory (see Eq. 3) this corresponds

to a decrease in the contact angle which implies the droplet prefers to spread out across the

surface (also see later discussion in Section III.B). The decline in the contact angle can also

be seen directly with the snapshots supplied in Fig. 2.9. The snapshots clearly illustrate
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the spreading of the droplets as surface interaction strength increases, which is in agreement

with the observed trend from the free energy data. The shift from 3D to 2D is also confirmed

by the radius of gyration data (see Fig. 2.8). The radius of gyration plot provides a useful

way to analyze the dimensionality of the system. When the log of the cluster size is plotted

against the log of the radius of gyration the resulting curve will have a slope proportional to

the dimensionality of the system.

Figure 2.8: Log-Log plot of the radius of gyration of the surface-induced systems and
homogeneous systems plotted against cluster size for ε∗r = 1 (solid red line), 2 (solid blue
line), 3 (solid orange line), and 5 (solid green line). Also shown is the radius of gyration for
the 2D (dotted-dashed line) and 3D (dashed line) homogeneous systems.

It was noted in previous studies52 that the 3D homogeneous system initially had a slope

of 2 for small cluster sizes which indicates the clusters were 2D-like, but as the clusters grew

in size there was a transition from 2D to 3D as shown by the s-curve. In contrast, the 2D slope

remained fixed at 2 even at large cluster sizes. The radius of gyration data collected from

the ε∗r = 1 system shows that it follows the 3D homogeneous curve very closely indicating

that it follows the same transition pattern as the 3D system; however, for the ε∗r = 2 and 3

systems the observed transition from 2D to 3D does not occur until the clusters are larger
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in size and for the ε∗r = 5 system it closely follows the 2D homogeneous line indicating the

clusters maintain a 2D-like geometry. This supports the observations made in the δ∆G data.

Figure 2.9: Surface snapshots for ε∗r values of 1 (top-left), 2 (top-right), 3 (bottom-left),
and 5 (bottom-right). The red colored surface is added for visualization purposes.

Another interesting result from Fig. 2.7 was the sudden shift in the δ∆G value at high

cluster sizes observed for the ε∗r = 3 system. This sudden change is indicative of another

phase transition and in this case a disorder-to-order transition. To show the system was

indeed crystallizing, the Q6 order parameter was employed. The simulation was set to

collect the Q6 value for every cluster of 600 particles. This cluster size was selected since it is

beyond the transition point while still small enough to be computationally efficient. The Q6

parameter mathematically can take on any value between 0 and 1 depending on how ordered

the cluster is; however, it is nearly impossible to receive a value near 1 for realistic system.

Bulk liquids have a near zero order parameter while bulk solids will have a value between

0.3 and 0.6 depending on their crystal structure. In the case of clusters, values below 0.05

have been noted by Chen35 as being disordered and closer to a liquid droplet in structure.

Conversely if the value is found to be above 0.1, the cluster shows enough order that it can

be considered crystalline-like.

As shown in Fig. 2.10 for the ε∗r = 1 surface the Q6 distribution was centered around

0.05 and had a very small deviation. This indicates the clusters on the ε∗r = 1 surface

38



Figure 2.10: Probability distribution of the Q6 order parameter obtained for clusters
containing 600 LJ particles on the ε∗r = 1 (left), 2 (middle), and 3 (right) systems.

largely behave liquid-like. In contrast the ε∗r = 2 and ε∗r = 3 surfaces show a higher Q6

value. The ε∗r = 2 surface shows that a small number of the clusters reach values around

0.1 while the ε∗r = 3 system is completely distributed around 0.1 which indicates these

clusters are displaying a near crystalline level of ordering. The implication of this is that

crystallization only occurs for strong enough interaction strengths. For lower strengths the

droplet is still very close to the bulk liquid in structure. Cluster visualization provides direct

evidence on how the surface promotes this type of ordering. In particular, under suitable

surface interaction strength, particles close to the surface can adopt an ordered hexagonal

arrangement (see Fig. 2.11).

The density profile provides additional insights into the mechanism on how surfaces can

promote the formation of ordered structures (see Fig. 2.12). It has been observed before

by Toxvaerd67 that there is a distinct layering effect when particles are placed on top of

the implicit surface. This is also confirmed by the results obtained here. In addition, the

density profiles obtained for the different surfaces indicate that the magnitude of this effect

increases with the interaction strength. It was found for the ε∗r = 1 surface that the stacking

was present, but there was still a high degree of disorder as shown by the high overlap

between the peaks of the density profile. As the interaction strength increases from 1 to 2

the peaks become more defined and separated from each other, but there is still a moderate

39



Figure 2.11: Snapshot of the layer closest to the surface that was isolated from a cluster
with a Q6 value of 0.11.

degree of overlap at a surface strength of 2. At a surface interaction strength of 3 the peak

becomes distinct and isolated which indicates a much higher degree of ordering than the

lower interaction strengths can induce. Based on these results, it can be concluded that

this surface-induced layering effect is due to a combination of geometrical constraints and

the adhesive forces imposed by the surface which can seed the ordering required to begin

the crystallization of the liquid phase. If the interaction strength is not strong enough the

ordering effect is not sufficient to begin crystallization. In contrast if the interaction strength

is far too strong the particles will begin spreading out to form 2D-like structures which has

a significantly lower freezing point.76 This in turn limits crystallization.

2.3.5 Examination of the Contact Angle Term Introduced by the Heterogeneous

CNT

As mentioned in the Introduction, the classical nucleation theory introduces an addi-

tional contact-angle dependent term f(θ) into the description of the surface-induced nucle-

ation. As shown in Eqs. 5&6, under the same supersaturation condition, both the nucle-
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Figure 2.12: Density profiles for surface systems with ε∗r of 1 (panel a), 2 (panel b), and
3 (panel c) in addition to the 3D homogeneous system (panel d).

ation free energy (NFE) barrier and the critical cluster size for surface-induced nucleation

are proportional to the results predicted by CNT for the homogeneous nucleation with the

proportionality constant being related to θ (and more exactly 1
2
− 3

4
cos(θ) + 1

4
[cos(θ)]3). To

examine this, at first the NFE barrier heights obtained for the ε∗r = 1 and ε∗r = 2 systems

are compared to those obtained for the 3D homogeneous system at various supersaturation

conditions along with the CNT results for the 3D homogeneous nucleation (see Fig. 2.13).

The data obtained for the other systems are not included in this section due to the formation

of either crystalline clusters or clusters with 2D geometries.

These results were plotted as a function of (lnS)−2 as according to the CNT, the NFE

barrier height is proportional to (lnS)−2. This leads to a linear line for CNT, where the

surface tension and the bulk liquid density at coexistence determines the slope of this line.

The results for the surface-induced nucleation should also fall onto a straight line, but with
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Figure 2.13: NFE barrier heights plotted against (lnS)−2 for the 3D homogeneous system
(solid black line), the ε∗r = 1 system (solid red line), the ε∗r = 2 system (solid blue line), and
the predicted CNT line for the 3D homogeneous system (dotted orange line)

a reduced slope proportional to the f(θ) term. In agreement with the CNT, the simulation

results for the ε∗r = 1 and ε∗r = 2 systems along with the 3D system show this linear behavior

except at high supersaturation conditions. The deviations at high supersaturations are due

to the fact that the critical cluster sizes for these supersaturation values are small and fractal,

i.e., 2D-like rather than being a compact 3D droplet as assumed by CNT.7 The discrepancies

noted previously on the δ∆G results toward the small cluster size range can be also used to

explain why the barrier heights determined from the simulations are consistently lower than

the CNT predictions for all supersaturations for the homogeneous 3D nucleation system.

Nevertheless, this offset appears to be a constant after supersaturation is sufficiently low.

The CNT predictions for the surface-induced nucleation are not included in this figure as

the contact angle is also required and this parameter should be derived from a bulk phase

simulation or Young’s equation which would need the surface tension values of the other

two surfaces. Neither approach is practical for the system studied here; however, based on
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how the theory compares to the simulation for the homogeneous nucleation and also on how

the theoretical (simulation) results would evolve with the inclusion of surface interactions,

it is reasonable to expect similar discrepancies between the theory and the simulation for

the surface-induced nucleation compared to the homogeneous nucleation. In particular, for

both the ε∗r = 1 and ε∗r = 2 systems, it is likely that the theory overestimates the barrier

height for all supersaturations and that this difference becomes a constant toward the low

supersaturation region when the simulation results start to exhibit the linear behavior in

Fig. 2.13. Although such direct comparisons between the simulation and the theory can be

troublesome for surface-induced nucleation. Eqs. 7&8 provide a way to examine how the

theory performs with this additional contact-angle dependent term, f(θ). Plotted in Fig.

2.14 are the ratios of the NFE barrier heights obtained for the two surface-induced nucleation

systems to the homogeneous system as a function of the supersaturation. According to CNT,

this ratio should yield the f(θ) term which is a constant (i.e. independent of supersaturation)

and the value of this constant depends on the surface interaction strength.

In contrast, the ratio estimated from the simulation shows a clear dependence on both

supersaturation and the surface interaction strength; however, toward the low supersatu-

ration region for both the ε∗r = 1 and ε∗r = 2 systems, this ratio appears to approach a

constant value. Furthermore, for both systems as the supersaturation decreases, this ratio

draws closer to the f(θ) value estimated from the finite droplet containing 1500 particles

deposited on the corresponding surface. This implies that the contact-angle term included

by the theory for heterogeneous nucleation may work reasonably well for low supersaturation

conditions.

Using the method described in Section II.C, the contact angle was estimated to be 127◦

for the ε∗r = 1 system and 97◦ for the ε∗r = 2 system. To further check these angles, the

density contour profiles were analyzed along both the Z-axis and the radial direction on the

X − Y plane. These density data were normalized by the density of the interior region at
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Figure 2.14: Ratio of the barrier heights obtained for the ε∗r = 1 (solid black line) and
ε∗r = 2 (solid red line) systems with the homogeneous 3D system at the same saturation ratio
along with the value predicted by CNT using the finite droplet contact angle calculation for
the ε∗r = 1 (dotted orange line) and ε∗r = 2 (dotted blue line) systems.

each Z value to remove the density oscillation along the Z direction so that the cluster/vapor

interface can be located by a contour line at a constant density. As shown in Fig. 2.15,

linear lines with the contact angles obtained above are nearly tangential to this interfacial

curve at Z = 0. It should be noted that even after this normalization, significant oscillations

of the density are still noticed toward the interface, especially for the ε∗r = 2 system. Also

regions with a normalized density value above 1 appear at the interface. These regions are

centered around those Z values when the averaged density profile along the Z direction

(i.e., the density profiles plotted in Fig. 8) reaches a minimum. These results indicate that

particles at the cluster/vapor interface may not exhibit the same ordering that is observed
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for the interior particles. This is due to the fact that these interfacial particles are more

loosely connected with each other.

Figure 2.15: Contour density profiles for surface systems with ε∗r of 1 (left panel) and 2
(right panel) with contact angle lines added. These angles were obtained from the method
described in Section II.C

Similar comparison between the simulation and the theory was made on the critical clus-

ter size. However, the critical cluster size estimation from the simulation can be complicated

by a few factors. First, the free energy profile can be very flat near the maximum where the

critical cluster is located and a wide range of clusters in a size window between 5 and 40,

depending on the supersaturation ratio, can have a free energy value close to this maximum,

say, within 0.2 kBT . Even a small uncertainty on the NFE value can lead to a large shift

on the location of this maximum. Therefore, instead of using only the maximum position,

the critical cluster size was determined by the following: at any given supersaturation, find

all clusters with an NFE that differs from the maximum by less than 0.2 kBT and then

obtain an average size for these clusters and use this average size as the critical cluster size
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estimated for this condition. Secondly, due to the discrete nature of the cluster size, the

critical cluster size determined even by averaging the size over a range of clusters remains

as a step function. That is, it would take the same value within a range of supersaturation

conditions. In contrast, the theoretical values predicted from Eq. 6 would be continuous.

Therefore when comparing to the theory on this property, only the middle point over that

range of supersaturation (when the same critical cluster size was estimated) was selected

to plot the data shown in Fig. 2.16. Again, the supersaturation axis is represented in a

special way (i.e. in (lnS)−3) so that the theoretically predicted critical cluster size would fall

onto a straight line. The simulation results obtained for all systems appear to follow this

linear behavior especially at low supersaturation conditions. In fact, for the homogeneous

system, the simulation curve nearly coincides with the theoretical line. However deviations

are noticed toward the high supersaturation when critical clusters are small, consistent with

the other results (such as δ∆G and barrier heights).

Figure 2.16: Critical cluster size plotted against −(lnS)−3 for the 3D homogeneous system
(solid black line), the ε∗r = 1 systems (solid red line), the ε∗r = 2 systems (solid blue line),
and the predicted CNT line for the 3D homogeneous system (dotted orange line).

Plotted in Fig. 2.17 are the ratios of the critical cluster sizes obtained for the two
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surface-induced nucleation systems to the homogeneous system as function of supersatura-

tion. Again, according to CNT, these ratios are predicted to yield the f(θ) term (see Eq. 7)

which should be constant, i.e., independent of supersaturation. However, the critical cluster

size ratios predicted from the simulation show a clear dependence on supersaturation, similar

to the barrier height ratios, especially toward high supersaturation conditions. For both the

ε∗r = 1 and ε∗r = 2 systems, as the supersaturation decreases, these ratios start to oscillate

around a value comparable to the f(θ) value computed using the contact angle measurement

for a finite droplet. These oscillations which are not observed for the barrier height ratio can

be due to the larger uncertainties introduced in the estimation of the critical cluster sizes.

Also compared to the barrier height ratios, the critical cluster size ratios seem to converge

to a slightly higher value for both systems. The constant offset observed between the theory

and the simulation on the barrier height (but not on the critical cluster size) toward the low

supersaturation conditions can be used to explain this difference.

Figure 2.17: Ratio of the critical cluster sizes obtained for the ε∗r = 1 (solid black line)
and ε∗r = 2 (solid red line) systems with the homogeneous 3D system at the same super
saturation ratio along with the values predicted by CNT using the finite droplet contact
angle calculation for the ε∗r = 1 (dotted orange line) and ε∗r = 2 (dotted blue line) systems.
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Chapter 3

Improved Monte Carlo Sampling Methods

3.1 Energy Biased Aggregation-Volume-Bias-Monte-Carlo

As a critical bottleneck encountered by nucleation systems can be often characterized by

a large free energy barrier, a common strategy to help speed up the sampling of these systems

is to use an artificial bias to drive the system across the free energy barrier. In this regard,

techniques such as umbrella sampling17 or meta-dynamics80,81 provide very effective ways to

allow the system to transverse regions of the phase space with high free energy barriers. The

umbrella sampling method is almost trivially implemented into a Monte Carlo simulation

given that it only requires the modification of the acceptance rule. However, even with the

free energy barrier completely removed via the use of umbrella sampling, the rate at which

a simulation can converge the thermodynamic data is still tightly linked to the efficiency of

the Monte Carlo moves used to sample phase space. This is especially true when dealing

with particle transfer moves, which are another bottleneck for nucleation systems as these

moves that are required for cluster growth/destruction can be also time-consuming.

The particle transfer problem is a commonly experienced issue82,83 when simulating dense

or confined systems using the grand canonical or similar ensembles such as the Gibbs ensem-

bles.84 Among the several techniques introduced in the past,85–87 the Aggregation-Volume-

Bias Monte Carlo (AVBMC) method21,22 along with its sister algorithm the Unbonding-

Bonding (UB) algorithm88 have both proven very successful at transferring particles into
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and out of a wide variety of systems.89,52,79,90,91,26,92–95 While these moves greatly improve

the efficiency of particle transfer, a few key issues still remain. For weakly associating systems

such as Lennard-Jones, n-alkane, etc., the overall acceptance rate of the AVBMC algorithm

typically reaches upward of 7 to 25% depending on the size of the molecule being studied.5

This is more than sufficient to accurately sample these systems. However, for strongly as-

sociating systems such as water or ethanol the acceptance rate for the AVBMC and UB

methods typically drops well below 1%.5 It was presented in ref 5 that the introduction of

a basic energy biasing technique can raise the acceptance rate to around 4 to 6% overall;

however, it has since been found that as the number of particles increases the acceptance

rate plummets even for this basic energy biasing technique (e.g., to below 1% for a TIP4P

system). This problem has in part been linked to the choice of insertion sites by the original

algorithms. That is, they use a uniform insertion scheme which simply allows the insertion

to occur anywhere in the system despite the fact that the viable insertion sites are located

toward the cluster surface. This uniform selection scheme has a glaring flaw that as the

cluster grows in size the number of viable insertion sites declines. As a result the odds of

randomly picking a valid insertion site via a uniform distribution also decline at a rapid

rate (see Section 3.1.3 for more details). This explains why roughly 100 or more attempted

moves are required to generate one acceptable configuration for a moderately dense system

of strongly associating molecules. Currently the low acceptance rate of these moves is not

a limiting factor when using pairwise models since simulations of reasonable length can fea-

sibly be performed. However, recent efforts have been put forward to study much more

complicated water models such as reactive and polarizable models for which these inefficien-

cies can begin to cause problems.28,96,27 Given their increased computational cost, the low

acceptance rate may begin to hinder a researchers ability to study these systems without

consuming an unreasonably large amount of computer time. Because of this it is prudent to

begin exploring ways to improve the sampling efficiency of current methods.
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3.1.1 Background

The AVBMC algorithm21,22 was originally designed to efficiently aggregate molecules

using a set of moves that would transfer molecules in and out of another molecules bound

region. This approach had a very similar idea to the UB algorithm developed independently

by Wierzchowski and Kofke88 but differed in how the exchange of particles between the

bonding and nonbonding regions is handled. Both methods have very similar moves for the

insertion of molecules into a bonded region using the following scheme:

1. Select a molecule from the simulation box to be moved into another molecules bounding

region;

2. Select another molecule to act as the target for the previously selected molecule;

3. Choose a random location within the target molecules bound region and insert the

previously selected molecule.

These two algorithms differ in the unbinding step. Specifically, the following procedure is

used in AVBMC:

1. Pick a molecule that is currently within another molecules bound region;

2. Using this target molecule, select one of its neighbors;

3. Move this neighbor out of the selected molecules bound region to random location

within the simulation box.

In UB:

1. Select a molecule that is currently within another molecules bound region;

2. Move this selected molecule to random location within the simulation box.

The UB algorithm selects a molecule for removal from the bonding region by randomly

picking from the global pool of bound molecules, while the AVBMC instead first picks a

random molecule from the bound molecules and then chooses one of its neighbors for re-

moval.21,22 While there seems to be only a subtle difference between the two algorithms, this

minor difference can have a profound effect on the detailed balance condition. Since the UB
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method uses a global approach for the removal step, it must also calculate the global prob-

ability of inserting a molecule into the bound region in order to satisfy the detailed balance

condition. This includes enumerating all the degenerate insertion pathways that could be

used to arrive at the same configuration and their associated probabilities. In contrast the

AVBMC methods choice of deletion move allows it to instead rely on the principal of super

detailed balance. Since for every possible insertion event there is a corresponding removal

via the same path (or target), the degeneracies in the AVBMCs insertion move do not need

to be accounted for. For both methods, the random selection of molecules and also the

choice of an insertion position in the bound region were performed by using a simple uni-

form distribution. However, one downfall of a uniform selection scheme is that when these

moves are performed on a cluster that is moderate in size (40+ molecules) the acceptance

rate begins to decline proportional to the cluster size (see Section 3.1.3 for more details).

This is naturally explained by the fact that molecules located in the interior of the clus-

ter are saturated with the maximum or near the maximum number of neighbors possible.

Subsequently if these molecules are selected as targets for insertion, the move will likely be

rejected since there is no space to insert a molecule without some sort of heavy overlap with

one of the existing neighbors. For the deletion move if one of these molecules is selected the

move will likely be rejected on the grounds that this removal will result in a massive energy

penalty. Particles located closer to an interface serve as better sites for both insertion into

and removal from the cluster. However, as the cluster increases in size the number of interior

particles will increasingly outnumber the particles near the surface. As a result the odds

of selecting an interior molecule rapidly outgrow the odds of selecting a particle from the

surface. This in turn causes the simulation to waste valuable computational cycles on moves

that have close to no hope of ever being accepted. Therefore, it is desirable to avoid poor

choices of insertion/removal targets and instead focus on targets that will likely result in a

more energetically favorable configuration.
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3.1.2 Derivation of a General Biasing Formula

In order to implement a biasing (or non-uniform) selection scheme, it is important to

first derive the general detailed balance rule that will be used. Following the same logic

process that was used for the AVBMC algorithm,22 we can derive a generalized probability

for both particle insertion and deletion. For the insertion move, there are two key steps

that are generally performed. First, one must select a molecule that will act as the insertion

site. Herein we will refer to this as the target molecule. This is typically done by randomly

selecting any molecule in the system according to the probability denoted as PTarget In.

Second, once a target molecule has been selected, the coordinates of the new molecule must

be generated such that the new molecule lies within the target molecules bound region.

Typically this is done by first randomly inserting an atom of the new molecule within a

predefined distance (this distance is usually defined to conform to a cluster criteria22,97).

Once the first atom is inserted the remainder of the molecule is regrown using a method

such as Configurational-Bias Monte Carlo (CBMC).98 The probability of generating this

new position within the target molecules bonded region will be denoted as PBond. Since

AVBMC relies on the super detailed balance condition, one does not need to account for

degeneracies. Therefore, the general probability of proposing an insertion move is given by

PInsert = PTarget−In · PBond (3.1)

Next for the removal move first we randomly choose a molecule that has at least one

neighbor to act as our target, this probability denoted as PTarget Out. Second, once a target

molecule has been chosen we need to select a molecule from the target molecules bound

region to be removed, i.e., one of the Nnei neighbors of the target molecule according to an

arbitrary probability denoted as PSelect. Therefore, the probability of proposing a move to
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remove a particle from a given cluster is given by

PRemove = PTarget−Out · PSelect (3.2)

In contrast, generalizing the UB algorithm requires a little more work since one must

derive the global insertion probability in order to properly satisfy the detailed balance condi-

tion. To do this we first notice that since the base insertion move is identical to the AVBMC

insertion we can argue that the probability of generating this new configuration from a given

molecule i is identical, i.e.

Pi = Pi,Target−In · Pi,Bond (3.3)

However, we must account for degeneracies in the insertion step. If the newly inserted

molecule rests within the bound regions of more than one molecule, there is now a situation

where any one of these molecules could have been used as the target to generate the same

identical configuration. For instance if we move a molecule within the bound regions of

molecules i and j, we could have first selected molecule i as a target and oriented the new

molecule with respect to i or we could have selected molecule j and generated the same

configuration by orienting it with respect to j. Because of this there is a multifold degeneracy

in the insertion probability that is proportional to the number of neighbors Nnei of the newly

inserted molecule. Since the probability of using each pathway is independent of all other

pathways, we can find the cumulative probability by summing over the probabilities of all

possible pathways. For any given insertion move we have Nnei pathways, and the total

probability to propose this insertion move is given by
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PInsert =

NNei∑
i=1

Pi,Target−In · Pi,Bond (3.4)

So for every attempted swap move one must determine all potential insertion paths and

calculate the probability of each. For instance if the insertion of the first atom of the new

molecule is done by randomly generating a point uniformly within a distance rmax, then

one must search for all insertion sites within this distance. It can be shown if uniform

distributions are used, then the original UB insertion probability88 can be recovered

PInsert =

NNei∑
i=1

1

N
· 1

Vin

=
1

N
· Nnei

Vin

(3.5)

where N is the number of particles contained by the cluster, and Vin is the volume of the

bonded region used for insertion, more specifically a spherical volume centred on the chosen

target molecule with a radius of rmax. In comparison to the insertion move, the deletion

probability is exceedingly simple. All that needs to be done is to simply select a molecule

that is in the bound region of one other molecule according to the arbitrary distribution

PSelect. Therefore, the removal probability is given by

PRemove = PSelect (3.6)

For both methods depending on the ensemble used there of course are other probability

terms to consider such as the probability of selecting an unbound molecule from a given

simulation box. However, we will primarily focus on the grand canonical ensemble though

extending these ideas to other ensembles is fairly straightforward. With these generalized
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probabilities it is now possible to bias the insertion and removal moves with any arbitrary

functional form.

3.1.3 Choice of Functional Form

As mentioned in the Introduction, it was found after analyzing the original AVBMC

algorithm for mid to large sized TIP4P water clusters (with 40+ water molecules) that the

majority of molecules that were added to the cluster were added close to the interface (see

Fig. 3.1). Therefore, it is theorized that the overall efficiency of the simulation can be

greatly improved if the choice of the insertion site is biased toward the surface of the cluster

where there is sufficient empty space. This of course introduces the problem of accurately

identifying a molecule that is sufficiently close to the interface. One likely variable that is

able to successfully pick out these molecules and will be viable from system to system is the

interaction energy of a molecule.
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Figure 3.1: Normalized probability distribution of water oxygen atoms of all molecules
in a water cluster containing 45 molecules (black solid line) compared to that of accepted
oxygen atom positions for the particle insertion as a function of the distance from the center
of mass (dashed red line).
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A further analysis of the AVBMC algorithm for a TIP4P water system gives credence to

this idea as it was found that the molecules which successfully served as a target for insertion

tend to have higher energies (see Fig. 3.2). Likewise as shown in previous studies5 the

removal move should also benefit from an energy-based bias to preferentially select particles

with the highest energies to be removed from the cluster as these molecules will have the

lowest energy penalty for their removal and subsequently will have the highest value for the

Boltzmann factor in the acceptance probability. Therefore, we have chosen a scheme that

attempts to bias the insertion and removal step based on the molecular energy in order to

select candidates that are expected to result in successful insertion and removal moves.
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Figure 3.2: Normalized distribution of the molecular energy over all water molecules
at a cluster size of 45 (solid black line) compared to that obtained only for the molecules
that successfully acted as a target for the particle insertion (dashed red line) in the original
AVBMC algorithm.

For simplicity, the PTarget−in term in both algorithms was expressed using a similar

function form to the one mentioned in ref 37 5
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Pi,Target−In =
eαEi∑
j e

αEj
(3.7)

where Ei is the total interaction energy of molecule i with all other molecules. It is

important to note that the exponential constant in this case is not chosen to be the usual

β = (1/kBT ) constant that is common in the Boltzmann weight. Instead is given as an

input parameter that is chosen by the user. This is done because as shown by Fig. 3.2

while the system prefers molecules with higher energy for insertion, there are still some with

moderately low energy that can serve as viable insertion targets. Therefore, choosing the

exponential constant to be equal to would bias the system too strongly to the most loosely

bound molecules. So to avoid this overbiasing, α is chosen on a system to system basis. In

contrast for the removal step selecting a molecule i according to the exact Boltzmann factor

is desirable since this directly corresponds to the change in the energy of the system. Thus,

the PSelect term is chosen to have the functional form

UB : Pi,Select =
eβEi∑N
j eβEj

(3.8)

AV BMC : Pi,Select =
eβEi∑Ni,nei

j eβEj

(3.9)

For UB this includes all the molecules that can be removed from the cluster while for

AVBMC this only includes the neighboring molecules of the target molecule i. This ensures

that the highest energy molecules are chosen as removal targets and subsequently have the

highest probability of being successfully removed from a cluster. In the UB style algorithm
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this function selects from all the N bound molecules within the system, while for the AVBMC

style this is only done with respect to the neighbors of the target molecule. As mentioned

in the AVBMC style algorithm there is the additional PTarget−Out term to account for that

is not found in the UB formulation. The AVBMC style algorithm provides an additional

challenge in picking the highest energy molecules for removal since they must be selected

indirectly. This was not done in the basic energy biasing scheme mentioned in ref 37 5 which

was subject to the same flaw as the original AVBMC in that if a target molecule is chosen

from the center (or a highly dense portion) of the cluster, all of its neighbors will likely be

low in energy and the move will be rejected due to the energetic factor. To address this

difficulty a variable ϵi is introduced which corresponds to the energy value of the highest

energy neighbor of molecule i to bias the selection of the target molecule as follows

Pi,Target−Out =
eβϵi∑
j e

βϵ
(3.10)

This choice of function ensures that a target molecule with a high energy neighbor will

be chosen such that the subsequent molecule selected from its neighbor(s) according to the

probability PSelect prescribed by eq 3.9 will have a high chance of being removed from the

cluster.

The general acceptance rule for these methods can be constructed using the detail balance

condition given by

PAcc
A→B · PA→B · PA = PAcc

B→A · PB→A · PB (3.11)

where PAcc
A→B is the probability of accepting the transition from state A to state B, PA→B

is the probability of proposing the transition from A to B, PA is the probability of being in
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state A, and all other terms are the equivalent probabilities for the reverse transition. When

the appropriate terms are substituted into eq 3.11, the general acceptance rules in the grand

canonical ensemble are given by

PAcc
Remove =

PInsert

PRemove

e−βµ−β∆E (3.12)

PAcc
Insert =

PRemove

PInsert

eβµ−β∆E (3.13)

where µ is the chemical potential of the ideal gas phase reservoir, and ∆E is the energy

difference going from the old to the new state. By substituting all the terms previously listed

for each algorithm, the acceptance rules for the energy biased AVBMC and UB algorithms are

found.

AVBMC Style:

PAcc
Remove =

eαEi,new∑N−1
j eαEj,new

· 1
Vin

e
αϵi,old∑N

j e
αϵj,old

e
αEi′,old∑Ni,nei

j′ e
αEj′,old

· e−βµ−β∆E (3.14)

PAcc
Insert =

eαϵi,new∑N+1
j e−αϵj,new

e
αEi′,new∑Ni,nei+1

j′ e
αEj′,new

e
αEi,old∑N

j e
αEj,old

· 1
Vin

· eβµ−β∆E (3.15)

UB Style:
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PAcc
Remove =

∑Nnei
i eαEi,new∑N−1
j eαEj,new

· 1
Vin

e
βEi′,old∑N

j e
βEj′,old

· e−βµ−β∆E (3.16)

PAcc
Insert =

e
βEi′,new∑N+1

j e
βEj′,new∑Nnei

i e
αEi,old∑N

j e
αEj,old

· 1
Vin

· e−βµ−β∆E (3.17)

All the energy-related variables listed here can be easily tabulated from the normal

energy calculations that are carried out during the course of a simulation. The amount of

stored data required by each method is O(N), i.e., linear with respect to the system size and

with a proper neighbor list the tabulation of this data increases the computational overhead

by a trivial amount. All one needs to do is simply update these tables upon the acceptance

of any given Monte Carlo move. In addition both schemes can be coupled with CBMC in

conjunction with multiple insertion.98–104 In particular, one can generate multiple proposed

trial moves to enhance the chance of having one acceptable trial configuration and then use

the so-called Rosenbluth weight104 for trial selection. For this particular application the

Rosenbluth weight is given by

W =
M∑

m=1

wm (3.18)

wm =
e−βEm

Pm,gen

(3.19)
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Pm,Gen is the probability of generating configuration m, wm is the Rosenbluth weight of

trial m, and Em is the energy of trial m. For insertion Pm,Gen = Pm,Insert, and for removal

Pm,Gen = Pm,Remove. This follows the same general scheme as CBMC that has previously

been used in AVBMC.26,98 By selecting one of the trials according to the probability Pm =

(wm/W ) and computing the Rosebluth weight for the old configuration (Wold), one obtains

the following acceptance rules:

PAcc
Insert =

Wnew

Wold

· eβµ (3.20)

PAcc
Remove =

Wnew

Wold

· e−βµ (3.21)

It is important to note that for the AVBMC formulation the same target molecule for

all trial configurations in a given insertion/removal move was used. This can ensure that the

super detail balance condition is not broken by the introduction of the Rosenbluth scheme.

In contrast the UB formulation can easily use a different target molecule for each insertion

trial since it is not dependent on the super detail balance condition. For small molecules each

Rosenbluth trial can be performed by fully growing the molecule (i.e., attempting multiple

insertion configurations) although for large chain molecules multiple insertion of the first

atom combined with a CBMC regrowth of the rest molecule is more commonly used.

3.1.4 Simulation Details

All nucleation simulations were carried out using the grand canonical ensemble where

a cluster is physically separated from but thermodynamically coupled to an ideal gas-phase

reservoir whose chemical potential can be specified by a number density. To compare the

accuracy and efficiency of the new scheme to the original algorithms, a cluster simulation of
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a Lennard-Jones (LJ) and TIP4P Water system was performed for each of the base energy

biasing algorithms (denoted as EBias). For the TIP4P system the previously mentioned

Rosenbluth scheme was also tested. The LJ simulation was carried out at a reduced temper-

ature of 0.8 and a gas phase number density of 1.1 · 10−2σ−3, while the TIP4P simulations

were carried out at 300 K and a gas phase number density of 6 · 10−6 Å−3. For each system

the configurational space was sampled using traditional translational moves in addition to

particle swaps. Rotational moves were also used for the water system. These different types

of moves were performed with equal frequency (e.g., 1/3 for each of the three different move

types for the TIP4P system) except where noted explicitly. The maximum displacements for

both the translational and rotational (if applicable) moves were adjusted so that 50% of the

moves were accepted. For the LJ system clusters up to 200 particles in size were simulated,

while for the TIP4P system clusters containing up to 70 water molecules were simulated.

For all simulations the Umbrella Sampling method17 was used to sample the nucleation free

energy of each system. The biasing potential was converged using the method outlined in

previous papers via an iterative procedure until uniform sampling is achieved.14 For all sim-

ulations a Stilinger cluster criteria23 was used. For the LJ simulations a bonding distance of

1.5σ was used, while for the TIP4P simulations a criteria of 4.0 Å was used based on pre-

viously published data.97,105 Any move which would leave a member of the cluster unbound

is automatically rejected. To test the rate of convergence a large simulation (4.5 · 1010 MC

moves for the production run) using the original AVBMC algorithm was performed to cal-

culate the free energies of the TIP4P water clusters with high precision. These results were

used as the reference to estimate the rate of convergence of each biasing method. It should

be noted that the use of AVBMC or UB for particle transfers combined with the Stillinger

cluster criteria avoids the need to define an arbitrary system volume or a simulation cell for

the cluster.14
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3.1.5 Results

As shown in Fig. 3.3 all the methods mentioned here were able to correctly reproduce

the nucleation free energy profile for the Lennard-Jones system. For both AVBMC and UB,

the energy biasing moves showed a massive improvement in the acceptance rate over their

uniform counterparts (see Fig. 3.4).
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Figure 3.3: Nucleation free energy results obtained for the Lennard-Jones system as
a function of the cluster size using the original uniform selection scheme (black) and the
energy-biased scheme (red). The results obtained using the AVBMC-based algorithms are
shown on the left, while those obtained using the UB-based methods are shown on the right.

In particular, the EBias scheme was able to reach an acceptance rate well above 30% even

as the clusters reached larger sizes in comparison to the 10 to 20% range that was typical

of the uniform methods. It was also evident from Fig. 3.4) that the UB method produced

a slightly higher acceptance rate than the AVBMC method for this particular system no

matter whether the EBias scheme is used or not. When analyzing how the remaining 40

to 60% of the attempted EBias moves were rejected, it was found that on average roughly

30% were due to energetic reasons, i.e., largely overlaps with the target molecule or one

of its neighbors. It was also found that roughly 5 to 10% of the attempted swap moves
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Figure 3.4: Acceptance rate of the particle transfer move as a function of the cluster size
in a Lennard-Jones system obtained using the AVBMC-EBias (dashed-dotted black line),
UB-EBias (dashed red line), AVBMC (solid orange line), and UB (dashed blue line) methods.

were rejected due to the cluster criteria, namely, in the removal step after the deletion of a

particle the molecules remaining in the system no longer belong to the same cluster. These

numbers would typically fluctuate depending on the cluster size. For smaller clusters the

rejection rate due to the cluster criteria was typically higher, while the rejection rate due to

energetic factors would be higher for larger cluster sizes. Since the EBias schemes brought

the acceptance rate to nearly 50%, it was not deemed necessary to implement the Rosenbluth

sampling scheme for this system.

Similarly the method was able to correctly reproduce the free energy curve of the TIP4P

system (see Fig. 3.5). While not as dramatic as the Lennard-Jones system, for this water

system the EBias scheme showed a modest improvement over the uniform sampling scheme

(see Fig. 3.6). As the cluster grew beyond 30 water molecules in size the uniform scheme

showed a sharp decline in the acceptance rate, falling below 1%. In contrast the EBias
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Figure 3.5: Nucleation free energy results obtained for the TIP4P water system as a
function of the cluster size using the original uniform selection scheme (black) and the energy-
biased scheme (red). The results obtained using the AVBMC-based algorithms are shown
on the left, while those obtained using the UB-based methods are shown on the right.

scheme maintained an acceptance rate well above 5% even as the cluster grew larger in size.

The overall acceptance rates were around 6.5%. For comparison purposes an equivalent run

was performed using the EBias scheme implemented in ref 37 5, and it was found that the

overall acceptance rate was approximately 4.2% for the same conditions.

It became apparent that while the smarter selection of target molecules improved the

overall acceptance rate, there was still a very large number of moves that were rejected

compared to the LJ case because the newly inserted water molecule was not aligned so that

it could properly hydrogen bond with the surrounding cluster members. The Rosenbluth

scheme described in Section 3.1.3 can be used to deal with this issue. In order to provide a fair

one to one comparison with the combined Rosenbluth/EBias method (called EBias-Rosen),

the same Rosenbluth sampling method was also implemented with the uniform insertion

scheme (denoted as Uniform-Rosen).

As shown in Fig. 3.7, the EBias-Rosen method resulted in a remarkable improvement

in the acceptance rate far exceeding that achieved by Uniform-Rosen. It was also found
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Figure 3.6: Acceptance rate of the particle transfer move as a function of the cluster
size for the TIP4P water system obtained using the AVBMC-EBias (dashed-dotted black
line), UB-EBias (dashed red line), AVBMC (solid orange line), and UB (dashed blue line)
methods.

that EBias-Rosens overall acceptance rate scales very well with the number of trials (see

Fig. 3.8). For both the EBias-enhanced AVBMC and UB algorithms, the introduction of

the Rosenbluth sampling greatly improved the acceptance rate from 5 to 7% to anywhere

between 20 and 35% depending on the number of trials used. It was found that scaling beyond

32 Rosenbluth trials was not desirable given that the acceptance rate only increased by 2-5%

from 32 to 64 trials, while simultaneously the computational overhead nearly doubled.

In stark contrast to the EBias-Rosen scheme the Uniform-Rosen method displayed very

minor improvements on the absolute magnitude of the acceptance rate. Even for an exceed-

ingly large number of trials the Uniform-Rosen methods did not reach 10% in the acceptance

rate. The acceptance rate of the Uniform-Rosen methods much like the standard Uniform

methods showed a massive drop toward larger clusters. Thus, one can conclude that the

Rosenbluth scheme alone is not sufficient to improve the acceptance rate as the system size

grows.
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Figure 3.7: Acceptance rate of the particle transfer move as a function of the cluster size
for the TIP4P water system obtained using the Rosenbluth coupled version of each algorithm
with 32 trials, including AVBMC-EBias (dotted blue line), UB-EBias (dashed-dotted purple
line), AVBMC (solid black line), and UB (dashed red line).

An increase in the acceptance rate does not necessarily guarantee that the rate of con-

vergence of the systems thermodynamic properties is improved. To evaluate the convergence

rate, two sets of simulations were performed, and these two differ in terms of the input

biasing potentials used by umbrella sampling. One starts with unconverged values and the

other with well-converged ones. The number of Rosenbluth trials used for the Ebias-Rosen

methods were set to 32. For the case using initially unconverged biasing potentials, the

starting input biases (see Fig. 3.9) were chosen such that each cluster would have a chance

of being sampled so the free energies of all cluster sizes can be evaluated directly from their

sampling frequencies. This was done to ensure that the speed-up was due to the method

and not to outside factors such as the choice of the extrapolation method.106

As shown in Fig. 3.10, the original uniform methods were found to take 4 iterations to ac-

curately converge the free energy curve within a reasonable statistical error, and before that
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Figure 3.8: Acceptance rate of the particle transfer move as a function of the number
of Rosenbluth trials using AVBMC (black lines) and UB (red dashed lines). The results
obtained using the standard algorithms are shown on the left, while those obtained using
the Ebias enhanced methods are shown on the right.

the statistical error showed a fairly linear decrease with respect to the number of iterations.

The EBias scheme needs 3 iterations, and for each step the relative error was smaller than

the uniform algorithm. Lastly the EBias-Rosen schemes were able to reach the convergence

within 2 iterations. For the second set of simulations using the well-converged biasing poten-

tials, the free energies and also the errors were analyzed every 2 · 106 MC moves. As shown

in Fig. 3.11, the EBias and EBias-Rosen methods showed a significant increase in compu-

tational efficiency, up to an order of magnitude (measured by the number of moves needed

to obtain high-quality free energies) compared to the original uniform selection schemes. It

is evident that the increase in the acceptance rate due to these nonuniform algorithms does

indeed result in a faster sampling of the conformational space and correspondingly a faster

convergence of the thermodynamic properties of the system.

When comparing the overall differences between UB and AVBMC, it was found that on

average the various UB methods showed a higher acceptance rate by 1 to 4% compared to

their AVBMC counterparts. This difference can largely be attributed to the two-step pro-

posal scheme in the AVBMC algorithm. A two-step selection scheme is inherently more prone
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Figure 3.9: Two sets of input biasing potentials used in the convergence evaluation. The
solid black curve is the fully converged profile obtained from a very long simulation run, while
the dashed red curve is the unconverged one used as the starting point for the iterations.

to selecting a bad candidate for removal because either a poor choice of a target molecule

or a poor choice of the subsequent neighbor selection can give this result. Conceptually if

there is a 99% chance of generating a good target and a 99% chance of selecting a good

neighbor, the cumulative probability of choosing a proper candidate is around 98% or that

there is now a 2% instead of 1% chance of selecting a poor candidate. In addition in the

uniform case, the two-step algorithm was more likely be rejected due to the cluster criteria.

It was found that for the water system UB had a 1.0% rejection rate due to the cluster

criteria compared to 1.7% for AVBMC. The two-step selection scheme in the uniform case

is statistically more likely to select particles that have a higher number of neighbors (e.g., a

particle with two neighbors has two pathways that it can be selected by while a particle with

one neighbor only has one pathway to be selected by), whereas in UB all molecules have the

same probability of being selected for deletion. However, for the EBias enhanced versions

the cluster criteria was no longer an issue. Both algorithms had a similar criteria-induced

rejection rate of around 0.05% for the water system.

While UB consistently outperforms AVBMC, the implementation of biased UB algo-
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Figure 3.10: Sum of the absolute error of the nucleation free energy over all cluster sizes as
a function of the number of simulation iterations for each of the different methods, including
the standard method (solid black line), the Ebias method (dashed red line), and the Ebias-
Rosen method (dashed-dotted blue line). The results obtained using the AVBMC-based
algorithms are shown on the left, while those obtained using the UB-based methods are
shown on the right.

rithms is more complicated since it requires additional efforts to take into account the

degeneracy-related terms which arise when different pathways can lead to the same con-

figurational change during a particle swap move. In the schemes presented here the increase

in algorithmic complexity was reasonable; however, if any sort of orientational bias is intro-

duced (e.g., the insertion of the first bead is biased using an arbitrary orientation angle with

respect to the target molecule), the orientation probability must be calculated with respect

to all degenerate insertion sites for the UB formalism, whereas in AVBMC this needs to be

done only for the chosen insertion target. It should be also pointed out that the optimal

value of (a parameter used for the nonuniform selection of the target molecule for insertion)

varied significantly between these two formalisms. As shown in Fig. 3.12, for the TIP4P

water system the acceptance rate peaked at an value between 0.05β and 0.1β for AVBMC

vs a value between 0.1β and 0.15β for UB. Beyond 0.15β both algorithms begin to see a

decline in the acceptance rate. In this region, the system begins to suffer from overbiasing

or that the probability overwhelmingly favors the highest energy molecules. However, as
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Figure 3.11: Sum of the absolute error of the nucleation free energy over all cluster sizes
as a function of the number of Monte Carlo moves using the standard method (solid black
line), the Ebias method (dashed red line), and the Ebias-Rosen method (dashed-dotted blue
line). The results obtained using the AVBMC-based algorithms are shown on the left, while
those obtained using the UB-based methods are shown on the right.

previously shown in Fig. 3.2 this neglects a large population of molecules which can still

serve as viable insertion sites. While this affects both algorithms the UB variation of the

EBias-Rosen displayed a lower sensitivity to the choice of due to its globalized sampling

capabilities. Even though the probability of selecting a moderately high energy molecule was

low (often below 5% at an value of 0.3β) over the course of 32 Rosenbluth trials the odds

of generating at least one trial using these molecules were high enough that they could be

included in the Rosenbluth weight. In contrast the AVBMC due to its restriction to a single

target site for all Rosenbluth trials is significantly more sensitive to the choice of the target

molecule given that a poor target selection will doom the majority of the Rosenbluth trials.

The results reported above were obtained using an optimal value corresponding to each of

these two types of methods (i.e., 0.1β for AVBMC and 0.15β for UB). For the TIP4P system,

additional simulations were performed by changing the frequency of the swap moves from

1/3 to either 1/6 or 1/2 while splitting the rest of the moves evenly between translations and
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Figure 3.12: Acceptance rate of the particle transfer move as a function of the parameter
for the Ebias-Rosen AVBMC (black squares) and the Ebias-Rosen UB method (red s).

rotations to evaluate the influence of this parameter on the rate of convergence. It was found

that the use of a lower frequency of the swap moves (i.e., 1/6) led to a slower convergence,

while the use of a higher frequency of the swap moves (i.e., 1/2) produced mixed results.

As noted, the extension of these methods into other ensembles such as the Canonical or

Gibbs ensembles can be achieved by following the formulations in the original AVBMC and

UB papers.21,22,88 These methods are expected to work for bulk phase systems given that a

few additional optimizations are included for bulk systems. For instance since a bulk system

has many more interactions compared to a cluster system, using the full energy calculation to

compute the Rosenbluth weight could prove to be far too costly. However, this can be solved

by weighting according to a local subset of the interactions instead of all the interactions

in the system, as what has been done in the dual-cutoff CBMC.107 While the Rosenbluth

sampling assists in overcoming rejections due to the poor choice of an insertion orientation, a

more direct approach would be to bias the generation of the trial orientation to the expected

73



distribution, similar to the idea that was proposed recently for the conformational sampling

of chain molecules.108
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3.2 Self Adaptive Umbrella Sampling

3.2.1 Background and Method

In prior studies, methods such as the AVUS-HR25,96,90,14,26 method were used to calculate

the free energy of nucleation. This method incorporates the Umbrella Sampling method17

in order to flatten the nucleation free energy landscape so that the system can cross the

barrier. Unlike common Umbrella Sampling used in Molecular Dynamic where the Umbrella

Sampling bias is given by a function such as a harmonic potential, the Umbrella Sampling

potential is represented as a numerical potential where each bin is assigned a free energy

value that is used in the detailed balance condition.

Paccept = min

(
1,

αold

αnew

· e−
∆E
kBT

+Ωnew−Ωold

)
(3.22)

Where Ω is the umbrella sampling bias for a given bin. The free energy of the system

for any given biasing potential can be computed using the equation

∆Gi −∆Gj = Ωi − Ωj − ln

(
p∗i
p∗j

)
(3.23)

Where p∗ is the probability calculated from the biased distribution. The goal of this

method is to obtain the free energy of a given landscape by modifying the potential such that
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the entire system can be sampled. One can naturally see from Eq. 3.23 that if the numerical

bias values Ω for bins i and j are equal to the free energy of the bin, the probability of

sampling both bins is equal. Thus it is ideal to obtain a uniform biased distribution since

this directly relates the free energy to the Umbrella Sampling bias and in turn yields the free

energy. This can be done by iteratively by calculating the free energy via equation 3.23 and

then using the new estimate for the free energy as the input potential for the next biasing

run. This has been shown to correctly converge to the correct free energy.14,26

This scheme has produced excellent results when biasing along a small number of reac-

tion coordinates. However, when applying it to a system where it is desirable to bias along

multiple reaction coordinates several issues arise that are typically minor in the single reac-

tion coordinate case. Initially when the free energy landscape is not known, the the initial

simulations will tend to fall into the natural minima that exist in the landscapes. As more

and more iterations are performed the minima are gradually flatted. However in the process

of flattening these minima, new minima can be created in the biased distribution during

the next simulation run due to any number of statistical and energetic factors such as poor

sampling of bins neighboring the first minima, neighboring minima that were not accessible

during the first simulation, etc. As a result the simulation will tend to flow toward the

newly created minima and get stuck again. As a rule of thumb, the larger the phase space

the more times the potential will have to be iterated in order to finally flatten the whole

space. However in some cases this can be upwards of 30+ iterations which can prove to be

tedious if done manually. In addition it is desirable to not sample each biased distribution

longer than is needed to adjust the potential correctly since this will simply result in wasted

computational time. In order to solve these issues a self iterative variation of the this algo-

rithm was developed to reduce the need for user intervention and to increase computational

efficiency.

1. Start the simulation using an initial biasing potential.
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2. After a fixed number of cycles (From here on called segments) halt the simulation. If

multiple Markov Chains are used, wait until each chain has reached the break point.

3. Collect the histogram data from each of the Markov Chains and combine them.

4. Using the combined data adjust the potential.

5. Store the current numerical potential and histogram for later use.

6. Send the new potential out to each Markov Chain and resume the simulation.

7. Repeat this process for however many segments is required.

8. Using a method such as the Weighted-Histogram-Analysis Method110 or any equivalent

method, pool the data from each segment into a single free energy landscape.

With this algorithm, there remains one important detail that is undetermined and that

is the procedure of how to iterate the potential. This is done by modifying the previous

scheme to account for several cases that commonly occur during the iterative process. For

each segment, the bin that was sampled the most is first identified. This will serve as the

pivot bin. All variables related to this bin will be denoted with a subscripted m. For any

given bin i that was sampled during the course of the simulation the new biasing potential

is calculated by using a modified version of Eq. 3.23 given by

Ωi,new − Ωm,new = Ωi,old − Ωm,old + ln

(
n∗
i

n∗
m

)
(3.24)

Where n∗ is the number of times a given bin was sampled during the current simulation

segment. A problem naturally encountered by an algorithm like this is that in the event that

a given bin was not sampled during the course of a simulation Eq. 3.24 fails since taking the

natural log of 0 gives undefined behavior. Thus for the next simulation segment an arbitrary

value must be chosen for this bin’s input biasing potential. Failing to change this value can

result in the simulation’s inability to sample many of these bins. It was found that a simple
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yet effective choice is for unsampled bins is given by.

Ωi,new − Ωm,new = Ωm,old − Ωm,old + ln (n∗
m) (3.25)

This is the equivalent of giving any unsampled bin a n∗ value equal to 1/. This ensures

that the difference in biasing potential between unsampled and sampled bins remains con-

tinuous for each simulation segment. Once the new values of each bin have been calculated,

they are re-shifted so that the reference state for each simulation segment is the same. For

instance in a nucleation study it is often convenient to choose the gas phase monomer as

the reference state. Thus each segment’s biasing potential is scaled such that the reference

state is equal to 0kBT . This is done to ensure that each simulation segment can be pooled

together at the end.
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Figure 3.13: Presented here, the free energy of an ion pair in the gas phase is plotted as a
function of the ion pair distance. This is done to demonstrate the self-adaptive algorithms
ability to generate the free energy correctly for a simple test case.
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3.2.2 Results

To first test the algorithm, a simple test case using an ion pair in the gas phase was

used. In this test case a ion pair in the gas phase was simulated. In this simple system the

energy along the reaction coordinate is given by a simple Columbic potential that it is only

dependent on the ion pair distance. As such it is very easy to numerically calculate the free

energy of a given bin of r using simple integration. Shown in Fig. 3.13 are the results of the

simulation and numerical integration.

Figure 3.14: Presented here, the free energy of nucleation in a binary system consisting of
water and ethanol at 230K. The free energy is plotted as a function of the number of water
and the number of ethanol molecules in a given cluster. In the left panel the free energy
results from the Self-Adaptive algorithm while in the right panel is the previously calculated
results. This is shown to demonstrate that the Self-Adaptive algorithm can converge to the
correct free energy value for a complicated two dimensional free energy landscape.

Since the algorithm was successful for a simple test, it was next applied to a previously

studied water-ethanol system to ensure that it could properly replicate the free energy and

onset activities that were previously published.24 The results for this test can be found in Fig.
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3.14 and Fig. 3.15. The algorithm was successful in reproducing the previously published

properties. The total number of Monte Carlo cycles required to converge the free energy was

estimated to be 8 · 109. The simulations took roughly about a day and a half of real time on

LSU’s SuperMic cluster.
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Figure 3.15: Presented here, onset activity of a water/ethanol binary system. This result is
generated from the free energy landscape presented in Fig. 3.14. The curve shown represents
the various thermodynamic conditions required to observe a nucleation barrier height of 40
kBT . This in turn can be used to determine if the two components nucleate faster together
or apart.
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Chapter 4

A Practical Application of the Improved Monte Carlo Methods:

Water Nucleation in the Presence of an Ionic Pair

4.1 Background

Atmospheric aerosols have long been suspected to play import roles in several atmo-

spheric processes.111,112 Ranging from cloud formation,113, controling solar radiation,114,

and playing an role in atmospheric chemistry.115 Since these aerosols play roles in both

macroscale atmospheric behavior and can also influence things such as human health, un-

derstanding these aerosols is absolutely critical to understanding global phenomena.

As a consequence the nucleation of atmospheric aerosols has been a widely studied phe-

nomena, but while there has been significant headway made into the understanding of how

these aerosols are formed there still remain a great number of questions about the underlying

mechanics that lead to their formation. Measuring the nucleation process experimentally is a

very challenging undertaking given that by the time the particles are large enough to observe

the critical point in the nucleation process has largely been completed. As a consequence

it is very typical that only properties such as the nucleation rate116 can be obtained. Thus

many researchers have instead turned to using other methods such as computer simulations

to shine light on the underlying mechanisms. It has been found previously that the pres-

ence of ionic species can greatly enhance the nucleation rate of water by a very significant

rate.117,118,96,90,119–121 In realistic systems these ions can be anything from acidic species122–125
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to salts126–128. These species can catalyse the nucleation process of water by several orders

of magnitude which leads to a high prevalence of ionic aerosols.

Many of the studies, both computational and experimental,117,118,96,90,119,121 have uncov-

ered that water displays a preference toward negatively charged ions over that of equivalent

positively charged ions. It was argued that the origin of this sign preference was due to the

fact that a negative ion can pack far more water hydrogen atoms around it compared to the

number of water oxygen atoms that can pack around an equivalent positive ion. However

for the many of the computational studies only a single ion was considered at a time. While

this yields a large amount of information about how water interacts with given ion, it tends

to leave out one very important factor which is the ion-ion interaction. This interaction in

a host of systems can be non-negligible. If the ion-ion interaction is much stronger than the

ion-water interaction, this interaction could potentially inhibit the ability of a given ion to

nucleate water. At the same time the presence of two different ions could in theory nucleate

water at a faster rate than a single ion could. To answer this question we have set out to

study the nucleation process in the presence of various ion pairs via computer simulation in

order to provide insights into the mechanisms related to ion pair nucleation.

4.2 Simulation Method

To study the physics of the nucleation process in the presence of an ionic pair, a series of

different ion types were studied. The water was modelled using the TIP4P water model105

and the ions were defined as a hard sphere ion with fixed charges of +1 and −1. The hard

sphere criteria was enforced by rejecting any moves which would bring a ion closer than a

given rmin. This rmin was defined using the Berthelot73 mixing rules given by

rmin =
σion + σi

2
(4.1)
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This rule applies for both ion-ion and ion-water interactions. For the water-ion inter-

actions the Lennard-Jones σ parameter for each atom was used in the rmin definition with

the exception of the TIP4P charge site. The size of both ions, denoted as σ+ and σ−, were

scanned through sizes to values of 1Å, 3Å, and 5Å. Each combination of these values were

simulated giving a total of 9 simulations. From here on each of these simulations will be

referenced by their ion sizes via the notation (σ+, σ−). For example the system with a 1Å

negative ion and a 1Å positive ion will be called the (1,1) system.

All simulations were performed in the grand canonical ensemble using the Energy Bi-

ased129 version of the Aggregation-Volume-Bias Monte Carlo21,22 method to facilitate the

exchange of particles to and from the cluster. The cluster criteria used in this case was

an energy based criteria where two molecules are defined as neighbors if their interaction

energy is equal to below a -500kB ·K energy threshold similar to what has been used pre-

viously.26,24,96,90. Following what was done previously, the gas phase was represented using

an implicit ideal gas with a fixed gas phase density of 3.5 · 10−6 Å−3. For all free energy

calculations, the Self Adaptive Algorithm outlined in section 3.2 was used to converge the

free energy at this gas phase density. Once the free energy landscape was collected, it was

rescaled to a wide variety of different gas phase densities using the thermodynamic equation

∆Gnew(n, r) = ∆Gsim(n, r)− ln

(
ρnew
ρsim

)
· n (4.2)

Where ∆Gnew(n, r) is the free energy of a given bin at the new gas phase density,

∆Gsim(n, r) is the free energy calculated from the simulation, ρnew is the new gas phase

density, ρsim is the simulation gas phase density, and n is the number of water molecules in

the cluster. This was done to collect the barrier height isotherm to show how the barrier

scales with the gas phase density.

82



For the free energy plots that were collected using only the cluster size as thereaction

coordinate, clusters consisting of up to 100 water molecules were simulated. For the simula-

tions where the cluster size and ionic distance were used as the reaction coordinates water

clusters containing up to 60 water molecules were sampled and the largest sampled ion pair

distance was 2Å above the minimum allowed distance for each system. This was done in the

interest of saving computational costs given that the majority of the information of interest

could be captured within this smaller window.

The neighbor analysis was performed using a fixed cluster size of 60 water molecules.

For each system the Ion+-O and Ion−-H radial distribution functions were computed and

then integrated to determine the total number of neighbors. In addition a second analysis

where the total number of solvating waters were counted and averaged over a large number

of configurations. In this analysis if a water donated either a hydrogen atom to the negative

ion or an oxygen atom to the positive ion, it was counted as part of the ionic solvation shell.

If a water was bound to both ionic species it would only be counted once in this analysis. The

cutoff distance for the solvation shell was determined from the radial distribution function

for each ion.

4.3 Results

Presented in Fig. 4.1 are the results from the free energy calculations obtained by

biasing the system along the cluster size coordinate. It is observed that the free energy

drop from the monomer cluster decreases by increasing the negative ion size where as the

increase in the positive ion size has mixed result. This can be explained in part by previous

observations117,118,96,90,119 where the negative ion was preferred over the positive ion given

that, due to their size, more hydrogen atoms can favorably pack around a negative ion

compared to the number of oxygen atoms that can favorably pack around a positive ion

of equivalent size. This observation is consistent with previous literature on the subject.

Generally across each of the systems, the free energy curve displayed similar trends to the
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Figure 4.1: Presented here, the free energy of the different systems as a function of the
number of water molecules in the cluster. The panels are organized by the size of the positive
ion. In the left panel are the results for the (1,1), (1,3), and (1,5) systems, in the middle panel
are the results for the (3,1), (3,3), and (3,5) system, and in the right panel are the results for
the (5,1), (5,3), and (5,5) systems. The colors and shapes of the curves are designated by
the negative ion size. All curves with a negative ion of σ− = 1Å are given by a solid black
curve, all systems with a negative ion of size σ− = 3Å are given by a dashed red line, and
all systems with negative ion σ− = 5Å are given by a dot-dashed blue line. All plots are
plotted on the same x-y scale.

single ion cases.96,90,28 In the single ion case at a vapor phase density of the water is at mild

super saturation contains a large drop in the free energy that corresponds to the creation of

the ion’s solvation shell. This drop in free energy continues till a minima is reached which

corresponds to the saturation of the first solvation shell. However, once the shell has been

formed the effects of the ion is now screened by the solvation shell and as such the free energy

of addition from this point onward the begins to behave similar to the homogeneous water

nucleation curve. This effect can be readily seen in Fig. 4.3 by plotting the results for a

homogeneous water simulation at the same conditions on top of the curve of the ion system.

Because of the nature of this system, the nucleation barrier can not be simply measured by

finding the largest free energy value in the system since this will naturally be the monomer.

Instead the free energy barrier must be measured by taking the free energy difference of
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the local minima and local maxima present in these systems since this is the rate limiting

region. Thus to obtain information related to the nucleation barrier and consequentially the

nucleation rate, one must rescale the free energy such that the local minima is the reference

state. When this is done, Fig. 4.2 is obtained. From here a very different trend from Fig. 4.1

is observed. For the 1Å positive ions it was observed that the barrier decreases with respect

to increasing negative ion size. However for both the 3Å and 5Å positive ions this trend was

completely reversed from the 1Å case or that the barrier increased with increasing ion size.
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Figure 4.2: Presented here, the nucleation free energy of the different systems as a function
of the number of water molecuels in the cluster. All plots have been shifted such that the
local minima is equal to 0 kBT . The panels are organized by the size of the positive ion. In
the left panel are the results for the (1,1), (1,3), and (1,5) systems, in the middle pannel are
the results for the (3,1), (3,3), and (3,5) system, and in the right panel are the results for
the (5,1), (5,3), and (5,5) systems. The colors and shapes of the curves are designated by
the negative ion size. All curves with a negative ion of σ− = 1Å are given by a solid black
curve, all systems with a negative ion of size σ− = 3Å are given by a dashed red line, and
all systems with negative ion σ− = 5Å are given by a dot-dashed blue line. All plots are
plotted on the same x-y scale.

To further analyse this effect the barrier height over a range of gas phase densities were

computed to see if this trend was consistent. Shown in Fig.4.4 are the results when the nu-

cleation barrier is calculated across many different vapor phase densities. From these results
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a couple trends can be observed. The smallest ion pair, the (1,1) system, showed the largest

nucleation barrier . A barrier was observable up untill a gas phase density of approximately

6.0 · 10−6 Å−3, which around this density every other system had no observable barrier. The

(1,3) and (1,5) systems all displayed comparable barrier heights, which dissipated in a range

between 5.0 · 10−6 Å−3 to 5.5 · 10−6 Å−3, but for the most part the 5Å ion showed a slightly

smaller barrier consistently. In contrast to these systems the (3,3) system and the (5,3)

system showed a significantly lower barrier that dissipated around 4.5 · 10−6 Å−3. However

the systems which stood out from nearly all the others was the (5,1) and (3,1) systems.

The (5,1) and (3,1) systems showed a remarkably smaller barrier compared to every other

system. When these systems are compared directly to the (3,3) and (5,3) systems it was

found that there was between a 1.7-4.5 kBT difference in barrier height at corresponding gas

phase densities in addition to showing a barrier dissipation point for of around 4.0 ·10−6 Å−3

and 4.3 · 10−6 Å−3 for the (5,1) and (3,1) respectively.

It was hypothesized based on examining configurations from the system that two impor-

tant coordinates to examine are the ion-ion pair distance r and the location of the ion pair

in the cluster. To examine this, a second set of simulations that were biased along both the

cluster size coordinate and the ion pair distance coordinate was performed. This yields the

free energy as a two dimensional plot. The results of these simulations can be found in Fig.

4.5. From these plots it is very easy to see that systems such as the (1,1), (1,3), (3,3), (3,5),

and (5,5) systems have their minimal energy pathway located along the smallest allowed r

value.

This indicates that as these systems nucleate the ions remain firmly in direct contact

with each other. Each of these systems have sizeable free energy barriers in the center of

the free energy landscape that prevents solvent separation. Systems such as the (1,5) and

(5,3) showed a barrier in the center of the landscape, yet these barriers were only about a 2-

5kBT difference from the contact pair which seems to indicate that this barrier is potentially
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Figure 4.3: Presented here, the δ∆G plots for each system as a function of the number of
water molecules in the cluster. The panels are organized by the size of the positive ion. In
the left panel are the results for the (1,1), (1,3), and (1,5) systems, in the middle panel are
the results for the (3,1), (3,3), and (3,5) system, and in the right panel are the results for
the (5,1), (5,3), and (5,5) systems. The colors and shapes of the curves are designated by
the negative ion size. All curves with a negative ion of σ− = 1Å are given by a solid black
curve, all systems with a negative ion of size σ− = 3Å are given by a dashed red line, and all
systems with negative ion σ− = 5Å are given by a dot-dashed blue line. In addition, a curve
obtained from a homogeneous water simulation with no ions present is added to highlight
important trends in the ion system. All plots are plotted on the same x-y scale.

scalable especially at conditions where the nucleation barrier is above 5kBT . However,

systems such as the (3,1), (5,1) there is very little question that these systems can not only

solvent separate, but that their miminmal free energy pathway is located at larger r values.

In addition to the free energy plots, the average ion pair distance as a function of cluster

size was calculated. The results for these can be seen in Fig. 4.6. It was found that the

(1,5), (3,1), (5,3), and (5,1) systems showed appreciable ion pair separation while nearly

all other systems remained at the smallest ion pair distance possible. It was observed that

dissociation for the (1,5),(3,1), (5,1), and (3,5) occurred at cluster sizes of approximately

13, 9, 9, and 25 respectively. This trend co-insides with the barrier height trend in that the

systems which dissociate sooner also have the lowest barrier. The (3,5) system shows a small
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Figure 4.4: Presented here, the nucleation barrier heights of the different systems as a
function of the vapor phase density of water. The panels are organized by the size of the
positive ion. In the left panel are the results for the (1,1), (1,3), and (1,5) systems, in the
middle panel are the results for the (3,1), (3,3), and (3,5) system, and in the right panel are
the results for the (5,1), (5,3), and (5,5) systems. The colors and shapes of the curves are
designated by the negative ion size. All curves with a negative ion of σ− = 1Å are given by
a solid black curve, all systems with a negative ion of size σ− = 3Å are given by a dashed
red line, and all systems with negative ion σ− = 5Å are given by a dot-dashed blue line. All
plots are plotted on the same x-y scale.

yet noticeable dissociation.

It becomes clear that the ability to dissociate the ions pairs early on in the cluster

formation is linked to a significant drop in the nucleation free energy barrier. To further

understand this it is necessary to examine the water-ion interactions for each systems. To

do this the radial distribution function for a fixed cluster size of 60 water molecules was

calculated and then integrated to find the number of nearest neighbors in both ions’ solvation

shells. The results of these calculations can be found in Table 4.1. It is observable that the

total number of hydrogen atoms in the first solvation shell of the negative ion was between

5-7 for all systems except the (1,1) system, where the total number of hydrogen neighbors

was half that of most other systems. In contrast to this, the number of oxygen neighbors

varies significantly with the size of the positive ion. This number can range from 3.1 all
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the way up to 11 neighbors. In addition the number of neighbors for the positive ion is

highly dependent on both the the size of the positive and negative ion. For a positive ion

size of 3 Å, the average number of oxygen neighbors can range for 6.9 up to 9.5. While this

neighboring analysis provides some basic insight, the analysis can be taken a step further

by performing a number of unique neighbor analysis. This analysis looks to see how many

waters in total are bonded to one or both ions. This type of analysis can account for water

molecules that are bound to both ions (i.e. A water whose hydrogen atom is facing the

negative ion while at the same time the oxygen atom on the same water is connected to the

positive ion). Any water which has an oxygen or hydrogen within either ion’s first solvation

shell is counted in this analysis. The results from this can be seen in Column 2 of Table

4.2. From this trend one may observe that the systems that have shown lower free energy

barriers also have a high number of unique water molecules in their solvation shells. When

the barrier height is plotted as a function of the number of solvation neighbors a correlation

is observed. (See Fig. 4.7) While the relationship is not perfectly linear, it does imply there

is a correlation between the number of water molecules that can be successfully packed onto

both ion’s solvation shell. From instance the (1,5) system relative free energy is sigificantly

higher than the (1,1), (1,3), (3,3), and (3,5) systems yet the (1,5) system shows a lower or

comparable free energy barrier compared to these systems. It is likely that the ion-water

bonds in the (1,5) system are sigificantly weaker. However, this ion combiniation is capable

of separating reasonably early into the nucleation cycle which allows it to stablize a greater

number of water molecules compared to ion pairs such as the (1,1) pair.

These results seem to dictate that the quality of the ion-water bonds is not the most

important factor to the nucleation process. Instead the most important factor appears

to be the total number of water molecules that can be stably added to the ion pair. If

this true, then so long as the water-ion interaction is sufficiently strong to prevent the

water system from simply ejecting the ions, it becomes largely a problem of being able to
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Table 4.1: Presented here, the average number of nearest neighbors of the positive and
negative ions for each system at a fixed cluster size of 60 water molecules. These numbers
were obtained by integrating the radial distribution function up through the first solvation
shell. For the positive ion these numbers represent the number of water oxygen atoms present
in the first solvation shell while for the negative ion it represents the number of hydrogen
atoms in the first solvation shell.

System Pos/Oxygen Neg/Hydrogen
(1, 1) 3.1 3.1
(1, 3) 4.7 6.7
(1, 5) 4.9 5.7
(3, 1) 9.5 5.4
(3, 3) 7.3 6.1
(3, 5) 6.9 5.1
(5, 1) 10.6 6.0
(5, 3) 10.6 6.9
(5, 5) 7.9 5.2

Table 4.2: Presented here, the total number of water molecules found in either ion’s
solvation shell for each system is presented along side their corresponding barrier heights.

System Unique Water Neighbors Barrier [kBT ]
(1, 1) 6.0 15.5
(1, 3) 8.4 11.5
(1, 5) 10.7 11.3
(3, 1) 11.7 7.3
(3, 3) 10.9 9.0
(3, 5) 7.0 12.0
(5, 1) 15.5 2.8
(5, 3) 14.5 7.9
(5, 5) 7.9 13.0
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create a large enough surface area for water to aggregate around. This can explain why the

systems which underwent solvent separation had significantly smaller nucleation free energy

barriers compared to the majority of the contact pair systems given that separating the

two ions maximized the total ionic surface thus giving the (1,5), (3,1), (5,1), and (5,3) ion

pairs dramatically lower barriers. This can also explain why the (3,3) showed a reasonably

low nucleation barrier enough though it largely existed in the contact pair since the (3,3)

configuration could still accommodate a reasonably high number of water molecules. If these

trends hold true for polyatomic species, this can also potentially explain why acidic species

such as H2SO4 are very good nucleating agents in the atmosphere since it is known that

many strong acids can undergo dissociation for a small number of waters.130,131

At this time there is further work to be done on this system such as an energetic/entropic

analysis, temperature dependence, or other assorted tests that can provide additional infor-

mation. It is expected that this work will be finished by the end of the year and will be

published. In addition further studies into more complicated ion cases where the charge,

number of ions, and type of ion (e.g. molecular ion vs single atom ion) can be conducted to

examine if these trends remain true.
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Figure 4.5: Presented here, the 2D ∆G plot given as a function of the cluster size and ion
pair distance. The columns from left to right correspond to a negative ion sizes of 1Å, 3Å,
and 5Å while the rows from top to bottom correspond to positive ion sizes of 1Å, 3Å, and
5Å.
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Figure 4.6: Presented here, the average ion pair distance as a function of the number of
water molecuels in a given cluster. The panels are organized by the size of the positive ion.
In the left panel are the results for the (1,1), (1,3), and (1,5) systems, in the middle pannel
are the results for the (3,1), (3,3), and (3,5) system, and in the right panel are the results for
the (5,1), (5,3), and (5,5) systems. The colors and shapes of the curves are designated by
the negative ion size. All curves with a negative ion of σ− = 1Å are given by a solid black
curve, all systems with a negative ion of size σ− = 3Å are given by a dashed red line, and
all systems with negative ion σ− = 5Å are given by a dot-dashed blue line. All plots are
plotted on the same x-y scale.
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Figure 4.7: Presented here, the data from Table 4.2 shown as black circles is plotted along
side its best fit line which is given by the dashed blue line.
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Chapter 5

Conclusion

In this dissertation we have examined the Classical Nucleation Theory equations to

study the weaknesses of the theory as well as use the deviations from the theory to uncover

interesting catalytic phenomena. In addition we have developed new formulations to the

Aggregation-Volume-Bias method and the Umbrella Sampling Algorithm that has signifi-

cantly improved the computational efficiency of sampling complicated systems. Lastly we

have put these methods to use to sample an atmospherically relevant ionic system in order

to uncover the underlying trends in the nucleation behavior. It is hoped that this research

will pave the way so that others may use these techniques in order to advance knowledge on

the topic of nucleation.
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