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Abstract 

 A water soluble, non-ionic, rodlike polymer, PEGL, was synthesized and characterized in 

efforts to synthesize a novel model polymer to study stiff polymers in solution. The rodlike 

system is likely stiff due to a high relative percent helicity in water up to 50 °C, measured by 

circular dichroism, the observation of liquid crystalline domains in water, and from the slope 

measured from conformation plots supplied by GPC/MALS; however, it also apparent the 

system is aggregating in both a 2 mM azide solution and a buffer (200 mM NaNO3 + 20 mM 

NaH2PO4 + 2 mM NaN3), in corroboration of negative second virial coefficient values. Bulk light 

scattering experiments, both dynamic and static, support aggregates with a high polydispersity. 

Therefore, although PEGL was synthesized, it appears not to be a model system but exists in an 

aggregated state, even in a range of solvents tested. 
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Chapter 1 - α-amino acids 

1.1 Amino Acids 

Polypeptides are interesting for scientific study because they are vital for every biological 

system, with more than 10,000 different peptides providing different functions: lowering 

activation energy, structural support, storage, transport, cellular communication, movement, and 

defense.
9
 Proteins constitute 50% of the dry weight of a cell

9
 and have a complicated folded 

structure, which dictates function. The Protein Data Bank has over 90,000 protein structures in 

atomic detail.
10

 

The body synthesizes peptides by sections of DNA called genes. These genes contain the 

genetic information needed for protein synthesis. When ready, RNA copies the DNA, creating 

messenger RNA. This messenger RNA is brought outside of the cell nucleus into the cytoplasm 

and peptide assembly occurs in the ribosome (Figure 2).
9
 While the previous few sentences are 

the working hypothesis of natural peptide synthesis, this “archaic” idea is being challenged.
11

 

Chemists, while not able to shrink down to the size of a cell like in the Magic School Bus 

children’s books to create peptides, can create peptide analogs using synthetic techniques. 

Peptides are degraded when boiled, leaving dry crystalline substances.
8
 Figure 1 outlines 

the discovery of the twenty peptide forming amino acids, including when and who discovered 

them and the method of which they were discovered.
8
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Figure 1. The discovery of the amino acids. The top shows, in order, the 

discovery of the amino acids by synthesis of naturally found peptides. The bottom 

shows, in order, the amino acids discovered by hydrolysis of peptides. Reprinted 

with permission from Vickery, H. B.; Schmidt, C. L. A. Chem. Rev. 1931, 9, (2), 

169-318. Copyright 1931 American Cheimcal Society. From reference 8. 
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While the discovery of some amino acids was intentional, the discovery of leucine, 

glycine, alanine, tyrosine, phenylalanine, glutamic acid, happened by fractional crystallization 

(some peptides would crystallize while the others would stay in solution). Cysteine, the first 

 

Figure 2. The process of natural peptide synthesis: the DNA is copied by messenger 

RNA inside the nucleus, it travels to the ribosome and the free amino acids in the 

cytoplasm are added in the correct sequence for the specific peptide. From reference 4. 
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amino acid discovered, found in a urinary calculus (kidney stone) proved the early chemists did 

not have a problem getting their hands dirty. 

 Amino acids have a general structure found in Figure 3. The twenty amino acids are 

characterized into four different groups dependent upon the functionality of the pendant R group: 

charged, uncharged, hydrophobic, and other (Figure 4).
9
 The backbone carboxylic acid has a pKa 

ranging from 1.7 -2.4 and the backbone amine has a pKa of 8.8-10.5. An unusual amino acid, 

cysteine, has a sulfur group capable of making disulfide crosslinks. 

  

Because of the chirality of the amino acid unit and the complex intermolecular forces, 

sequences of amino acids can have very complex three-dimensional structures that determine 

peptide behavior. Proteins recognize and bind to target molecules, and the availability of these 

binding sites heavily depends on shape.
9
 The first structure discussed is the least complex:  the 

random coil, or globular shape.
12-14

  

Prototypically, synthetic polymers do not have any defined long-range structure in 

solution and their properties are determined by these highly disordered states.
15

 Peptides in the 

random coil conformation behave like other synthetic polymers. Conversely, in the right 

conditions (pH, temperature, salt, etc.) peptides can form different conformations, as found in 

Figure 5. 

 

Figure 3. The general structure of an α-amino acid.  



 

5 

 

Along with the random coil, peptides can fold into a beta sheets. These are prevalent in 

globular proteins, creating a synergy between the random coil and beta sheet.
9
 Beta sheets form 

when two adjacent peptide chains align by intermolecular hydrogen-bonding and strength, and in 

the case of spider silk, provides a structure stronger than steel.
9
 

A well-known structure for polypeptides is the α-helix. The helix occurs when extensive 

hydrogen bonding between amino acids along the peptide chain stabilizes the three dimensional 

structure, but this is different from the intermolecular hydrogen bonding of beta sheets.  

 

Figure 4. The structure and pKa of the twenty amino acids 

(selenocystine is considered rare and thus not normally included in 

the list of the amino acids). From reference 2. 
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The inherent twist in the helix is due to both the intramolecular hydrogen bonding and the 

chirality of the amino acid. Pauling et al. was the first to discuss the dimensions and 

configuration of the helix.
16-18

 In a video, Linus Pauling described how he discovered peptides 

contort into an α-helix. He said, “…and I thought, why don’t I discover the α-helix?”
19

 Pauling 

took a piece of paper, drew the correct bond angles and bond lengths and folded the paper along 

the alpha carbons. After several folds, he found a helix provided each N-H bond could be in 

place for hydrogen-bonding with the carbonyl group.
19

 Thus, the discovery of the α-helix was 

through scientific study sprinkled with a little imagination. The stability of the helix partially 

comes from this hydrogen bonding but also comes from the optimization of packing.
15

 

 

Figure 5. The possible conformations 

for peptides. From reference 1. 
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In a quantitative way, Pauling found two possible spirals. The first spiral, or helix, has 

about 3.7 residues per turn, with each residue hydrogen-bonded to the third residue in each 

direction on the chain.
16

 Each residue would traverse 1.47 Å in one-directional space. The 

second spiral has about 5.1 residues per turn, hydrogen-bonded to the fifth residue in both 

directions, and traverse 0.96 Å per residue; however, Pauling pointed out the α-helix was very 

sensitive to the bond angle at the α-carbon and hydrogen-bond length. Consequently, the helix 

can have a wide range of dimensions.
15

 Potential energy surfaces have shown the alpha helix is 

the most stable structure for poly(α-amino acids)
20, 21

 but the helix can be disrupted.
22

 The same 

investigators of the early potential energy surfaces are still working to illuminate the α-helix and 

other peptide conformations decades later.
23

 

The α-helix owes its stability to hydrogen bonding and the optimization of packing but 

the latter only becomes possible because of the steroregularity of the amino acids.
15

 External 

stimuli such as salt, pH, solvent, heat, hydrogen-bond disrupters, and reductive agents can 

change the conformation of a peptide, resulting in denaturation.
9
 Solvents can also change the 

conformation of the polymer by changing the polarity of the solvated media. 

1.2 Synthesis of N-carboxyanhydride 

N-carboxyanhydrides (NCA) are an efficient method for polypeptide synthesis. 

Kricheldorf
24

 and Hadjichristidis
25

  have written extensive reviews about NCAs and their 

subsequent polymerization. N-carboxyanhydrides were first synthesized by Lecuhs in the early 

1900s and were discovered while trying to purify N-ethoxycarbonyl or N-methoxycarbonyl 

amino acid chlorides by distillation (Scheme 1).
24, 26, 27

 It is unfortunate Lecuhs did not pursue 

this reaction further, but it was in disrepute to believe in large molecules prior to Staudinger. 
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Once Staudinger established the idea of large, covalently bonded molecules, Curtius
28-30

 

and Wessely
31-33

 found the reaction of a NCA provided high-molar-mass polypeptides via 

initiation with water, primary amines, and alcohols. NCAs lend themselves to ring-opening 

polymerization because of the activated fifth carbon.
24

 While advantageous when making 

polymers, it does limit the shelf life of the NCA, even while refrigerated. Some water can adhere 

to the NCA crystals and slowly initiate polymerization.
24

 

A few highlighted ways to synthesize NCAs follow. Phosgene gas is a very effective 

cyclizing agent (Scheme 2)
34

 and a typical method of producing NCAs until the early 1990’s. 

Phosgene’s advantage is its speed and low NCA racemization;
6
 however, phosgene has some 

problems, such as difficulty keeping the correct stoichiometry throughout the reaction and side 

reaction from excess phosgene.
6
 In a NCA-forming reaction, the α-amino acid precursor is 

suspended in a dry solvent, such as dioxane, at 50 °C until the amino acid is completely 

dissolved.
35

 A continuous stream of phosgene gas flows through the solution until the reaction 

completes. The excess phosgene needs removal by nitrogen stream and neutralization before 

crystallization of the NCA product.  

 

Scheme 1. Original Leuchs reaction. 
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To combat the large excess of phosgene, a benzene solution of phosgene gas was used to 

better control the amount of phosgene added.
35

 Ideally, no more than three times excess 

phosgene is used. Bubbling phosgene gas into benzene creates a saturated benzene solution, 

stable for months.
35

 This made synthesis easier by not needing to use the gaseous phosgene but 

cyclization required catalysis with carbon black.
36

 

 

Solid triphosgene is the easiest method of supplying phosgene.
6, 37

 Using triphosgene, the 

solid can be accurately weighed, safely delivered and stored, and does not require a catalyst.
6
 

Triphosgene decomposes into three equivalents of phosgene gas in situ to cyclize the amino acid. 

 

Scheme 2. Reaction of α-amino acid with phosgene. 

 

Figure 6. Reaction results from cyclizing several different amino acids with 

triphosgene. From reference 6. 
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The phosgene molecule liberated following nucleophilic attack of the carbonyl carbon on 

triphosgene reacts immediately, eliminating any excess phosgene.
37

 

While phosgene and its derivatives are highly successful at cyclizing amino acids into 

NCAs, side products may affect polymerization. Some less influential side products are 

isocyanates,
38

 acid chlorides, N-chloroformyl amino acids,
38

 alkyl halides, excess cyclization 

agent, and recyclization of the NCA monomer.
39, 40

 The main culprits affecting polymerization 

are HCl and HCl salts of the amino acids.
39,41

 During the early stages of polymerization the 

amino acid reacts very quickly with phosgene. After about 1/3 of the amino acid has reacted, the 

reaction slows due to the HCl salt of the amino acid forming from the HCl byproduct of 

cyclization.
15

 Removing the HCl byproduct, either with N2 stream or some other means, is 

necessary for pure NCA. If the HCl is not removed the ring may open (Scheme 3).
15, 42

 

 

Purification of the NCA is very important, especially if the goal is high-molecular-weight 

polymer. To purify the NCA, a typical procedure includes precipitation in an alkane, followed by 

recrystallization.
15

 To produce high molecular weight polymers the HCl w/w% needs to be less 

than 0.02%. Quantifying HCl content happens by boiling with nitric acid and titrating 

potentiometrically with silver nitrate. Block states adding silver nitrate and testing the turbidity is 

satisfactory for quick testing.
15

 Several crystallizations decrease the HCl present, but if the 

 

Scheme 3. Side reaction of NCA with excess HCl. 
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reaction is scaled up, the purity of the NCA dramatically decreases, the reaction time is much 

longer,
43

 and recrystallizations are more difficult.
44

 Figure 6 shows possible contaminants for a 

leucine NCA synthesis.  

 

Other methods are capable of removing contaminants from the NCA. One option is 

sublimation, but some thermal initiation occurred.
45, 46

 α-Pinene and limonene can consume HCl 

but can also create alkyl chlorides that can be laborious to remove.
47

 Another NCA purification 

method is washing an ethyl acetate NCA solution with 0 °C aqueous bicarbonate to neutralize 

HCl and HCl salts.
48

 This works well for some NCAs but can introduce water to initiate 

 

Figure 7. Leucine NCA synthesis with side products and their synthetic pathways. Reprinted 

with permission from Smeets, N. M. B.; van der Weide, P. L. J.; Meuldijk, J.; Vekemans, J.; 

Hulshof, L. A. Organic Process Research & Development 2005, 9, (6), 757-763. Copyright 

2005 the American Chemical Society. 
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polymerization. Rephosgenation, adding a second amount of phosgene, can be used to eliminate 

HCl but this can lead to isocyanates.
41

  

Packing columns with multiple different materials such as activated charcoal, zeolites, or 

urea, with or without Ag2O as a chloride scavenger decreased yield.
49

 More recently, silica 

column chromatography separated pure NCA and side products for many different 

polypeptides.
49

 This is most useful for NCAs that are not easily crystallized. With sufficient 

drying, the silica columns provided high yields of NCA and controllable polymer molecular 

weights. 

1.3 NCA Polymerization 

Purity of the NCA dictates polymerization characteristics: any impurities such as HCl and 

HCl salts can interfere with polymerization. NCAs lend themselves to two different possible 

ring-opening mechanisms, depending on the initiator and solvent conditions. The first discussed 

is the normal amine mechanism (NAM). 

1.3.1 Normal Amine Mechanism 

 

 

Scheme 4. Normal amine mechanism (NAM) for ring-opening polymerization of a NCA. 
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Nonionic initiators with more than one mobile hydrogen (basic hydrogen) initiate the 

normal amine mechanism of ring-opening polymerization of NCAs.
25

 These initiators include 

primary amines, secondary amines, alcohols, and water. The initiator performs a nucleophilic  

attack on the #5 carbon in the NCA, opening the ring. The intermediate, carbamic acid, performs 

a decarboxylation, leaving a free amino group to propagate the polymerization (Scheme 4). 

Primary amines provide controllable molecular weights, with a low polydispersity index because 

they are more nucleophilic than the ω-amino group of the propagating species.
25

 This makes 

initiation much faster than propagation, allowing control of the number average molecular 

weight (Mn) with the mole ratio of initiator to monomer.
50

 

The NAM mechanism does not always provide controllable molecular weights. The 

equilibrium of the intermediate carbamic acid can affect the living nature of the polymerization. 

The carbamic acid can form a salt with the amino groups of the propagating chain, catalyzing the 

propagation step and inflating the kinetics,
46

 but in dimethylformamide (DMF) the effect 

disappeared.
51

 Following Le Chatelier’s principle, performing the polymerization and removing 

the evolved CO2 pushes the equilibrium away from the carbamic intermediate.
46

 If CO2 is not 

removed, the kinetics change.
52, 53

 The kinetics can also change with the purity of the NCA. If 

highly pure NCA is used, the reaction has the typical two-stage kinetics, but are first order 

throughout the reaction if less pure NCA is used (Figure 8).
54

 Data within the literature had 

conflicting reports; the best assumption is purity of the NCA has an effect on the polymerization.  

Water can also initiate polymerization or hydrolyze the NCA into an amino acid.
55, 56

 The 

rate of initiation or hydrolysis depends on temperature. Keeping the NCA in the freezer and 

using it quickly lowers the possibility of residual water initiating polymerization of the NCA, 

unless a large amount of water is present.
25

 Initiation can even happen in the solid state.
57

 A far 
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less studied issue with the NAM mechanism is the reaction of the initiator with the #2 carbon, 

forming an ureido acid.
25

 

 

1.3.2 Activated Monomer Mechanism 

The other prevalent mechanism for NCA polymerization is the activated monomer 

mechanism (AMM). In contrast to the NAM mechanism, initiation for the AMM mechanism is 

by a secondary amine, tertiary amine, or an alkali halide. NAM has an additional step in the 

mechanism: pre-initiation. In pre-initiation, the initiator abstracts hydrogen from the #3N 

position in the NCA ring, creating an anion (Scheme 5). This is not a true initiation step, but 

rather the initiator acting as a catalyst.
25

 This mechanism is limited to N-unsubstituted NCAs 

 

Figure 8. Impure NCA follows first-order kinetics but 

if purified it shows a change in the kinetics after 

reaching a certain molecular weight. A0 is the original 

anhydride concentration and A is the measured 

anhydride concentration.  Reprinted with permission 

from Doty, P.; Lundberg, R. D. Journal of the 

American Chemical Society 1957, 79, (9), 2338-2339. 

Copyright 1957 the American Chemical Society. 
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because it requires hydrogen abstraction from the nitrogen. Once the anion forms and the dimer 

decarboxylates, the propagation proceeds with a stepwise addition of a NCA anion.  

A few studies have confirmed the presence of the AMM mechanism. Radioactive 

labeling of the initiator allows identification of the different mechanisms for NCA 

polymerization.
50, 58

 To confirm the AMM mechanism, diisopropylamine was used to initiate a 

sarcosine-NCA. Sarcosine-NCA, methylated at the #3N position, should not polymerize via 

AMM. Initiation did not happen, partly due to steric hindrance for the NAM mechanism and 

because the lack of a hydrogen to abstract.
59, 60

 In the same study, γ-ethyl-L-glutamate NCA 

polymerized faster with diisopropylamine.  

 

Studies have also shown the AMM can happen even when the NCA is N-substituted; 

however, it is believed acidic impurities cause polymerization, either from the solution or from 

the NCA itself. In addition, #4C position is acidic and can protonate other NCAs, allowing the 

normal amine mechanism for polymerization of the sample.  

 

Scheme 5. Preinitiation, initiation, and propagation for activated monomer mechanism 

(AMM) ring-opening polymerization of a NCA. 
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A highly reactive NCA, proline was used to test the effect of impurities on the 

polymerization of NCAs. When highly purified proline-NCA was polymerized with a tertiary 

base, the reaction was slow; however, when not completely dry solvent was used, the reaction 

proceeded much faster.
61

 This showed the pure proline-NCA was slowly proceeding via AMM in 

a dry solvent but via NAM in the presence of small amounts of water. If one desires the 

polymerization to proceed via AMM, the solvent and NCA must be free from impurities, even 

more so than for NAM. Water is not the only impurity; salts can affect the polymerization, LiCl 

was found to alter the AMM pathway.
59

 

Overall, the AMM propagation is faster than NAM, thereby producing higher molecular 

weight polymers. This is due to the nature of AMM; the anionic NCA species is highly reactive. 

Conversely, the initiation step in AMM is slower than in NAM, increasing the PDI;
62

 however, 

the polymerization still needs to “age” in order to have very high molecular weights.
51

 

1.3.3 Metal-mediated Polymerization 

Although ring-opening polymerization reactions of NCAs were the prototypical 

mechanism for peptide synthesis from the late 1940’s to late 1990’s, newer techniques have 

sometimes replaced them. Ring-opening polymerizations of NCAs provided high molecular 

weight polypeptides, but the polydispersity, PDI, was not well controlled or sometimes even 

known.
63-65

 For self-assembly structures, the polypeptides need a well-defined molecular weight 

and PDI.
66

 This can lead to efficient and controllable structure in solution, which, for example, is 

highly advantageous for controllable drug delivery.
66
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The reason NCAs do not have well-controlled polymerizations is the nature of the 

polymerization. Following initiation, the polymerization proceeds via the primary amine, 

carbamate, or NCA anion produced. This can lead to side reactions, such as chain termination or 

chain transfer.
67

 Metal-mediated polymerizations have been used to better control molecular 

weight and PDI. 

In a metal-mediated NCA polymerization, a metal end group replaces the primary amine, 

carbamate, or NCA anion (Scheme 6).
66

 The early metal initiators synthesized were zerovalent 

nickel and cobalt, bpyNi(COD)
68, 69

 and (PMe3)4Co.
70

 During the multistep initiation, the 

zerovalent metal complexes perform an oxidative-addition reaction on the #5C position of the 

 

Scheme 6. Multistep initiation and propagation for metal-mediated NCA 

polymerization. 
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NCA. Once this five-membered metallic ring forms, addition of another NCA gives a six-

membered amido-alkyl metallacycle.
66

  

Further reaction with NCA monomer contracts the five-membered amido-alkyl 

metallacycle by proton migration of the amide proton to the metal-bound carbon, completing the 

multistep initiation.
66

 Once the amido-amidate complex forms, propagation follows by attack of 

the nucleophilic amido group on the #5C position of the NCA. This forms a new ring that 

undergoes proton transfer from the free amide to the amidate group, thus consolidating the ring 

to the amido-amidate propagating species. The polymerization proceeds in this fashion, keeping 

the reactive species “under control” to afford polymers with well-defined molecular weight and 

PDI. 

Without fractionation, NAM or AMM exhibit less control than their metal-mediated 

polymerizations counterparts. After fractionation, NAM and AMM can produce polymers with 

very low PDI, and can best the PDI of metal-mediated polymerizations. Although fractionation is 

an added step to low PDI polymers, it may be easier than trying to remove a metal catalyst; 

however, with better control, metal-mediated polymerizations allow for more complicated 

architectures. This happens because the chain end is “living”, or capable of adding more 

monomers to the polymer chain. Because of this, block copolymers,
71

 stars, cycles, and other 

architectures have been synthesized.
25

 

Metal-mediated NCA polymerization is not without drawbacks. First, adding a metal into 

the polymer solution requires its removal; dialysis against a chelating agent removes the metal.
72

 

Another issue is the C-terminus capping by the NCA that reacted with the metal (see initiation 

step 1 in Scheme 6). This limits polymerization and functionalization of other NCAs or 
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functional groups to the N-terminus. This problem was circumvented by having the first NCA 

that reacts with the metal have a latent functional group (Scheme 7).
73

 Metal-mediated NCA 

polymerization opens the door to many functionalized peptides because it tolerates many 

different types of functionalities on the NCA.
74, 75

 

 

1.3.4 Other NCA Polymerization Techniques 

Thus far, the discussion has included NCA polymerizations by primary amine, basic 

initiators, and metal-mediated NCA polymerization. While the metal-mediated polymerization 

does have some very distinct advantages over its predecessors, it is not perfect. This led others to 

investigate other methods for controllable polymerization of NCAs.  

High-vacuum techniques (HVT) have been used to polymerize NCAs in a controllable 

manner (Figure 9).
76

 The hypothesis was that impurities were making NCA polymerization 

difficult, whether in the solvent, NCA, initiator, or CO2 released during the polymerization. 

Using HVT should minimize the possibility of trace impurities but not everyone agrees how 

HVT show controllable polymer characteristics. In addition, HVT can easily afford complex 

polymers from the C-terminus by choosing functionalized initiators, somewhat similar but easier 

to the metal-mediated polymerization.
76

 

 

Scheme 7. Reaction of zerovalent metal with functionalized NCA precursor. This allows 

synthesis of block copolymers from the C-terminus of a polypeptide. 
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In Hadjichristidis’s apparatus, introduction of the sample happens through a septum. The 

solvent is vacuum distilled until the NCA is once again a solid. Freshly distilled DMF enters the 

flask following three recrystallizations of the NCA. Although the work-up of the completed 

polymer is easier for HVT, the difficulties lie in the glassware setup. HVTs were also used to 

study the details of primary amine-initiated NCA polymerization.
77

 Performing end-group 

analysis of the oligopeptides elucidated the influence of impurities in the NCA polymerization. 

Impurities can come from solvent, the initiator, or the NCA itself. Normal glovebox practice led 

to many different types of chain ends. The observed products and possible termination products 

with DMF as a solvent are shown in Figure 9.
77

 The end groups show the polymerization 

mechanism. Using a primary amine, NAM occurs for all three conditions in Figure 9; however, 

 

Figure 9. An illustration of the apparatus for the high-vacuum technique of 

NCA polymerization. See text for explanation. Reprinted with permission from 

Aliferis, T.; Iatrou, H.; Hadjichristidis, N. Biomacromolecules 2004, 5, (5), 

1653-1656. Copyright 2004 the American Chemical Society.  
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AMM also occurs when glovebox techniques are used, showing unintended side reactions are 

occurring. Also, glovebox conditions lead to more types of “dead” chain ends — meaning the 

ends of the polymer are no longer reactive. This decreases molecular weight and increase PDI. 

Mass spectrometry cannot quantify the amount of dead chain ends, eliminating the possibility of 

understanding the exact influence on the molecular weight and PDI. This study shows the many 

possible side reactions possible for primary amines and why one might choose other NCA 

polymerization techniques, such as HVT.  

If one does not have the technique of Blout and coworkers,
63, 64

 does not want to remove 

metal initiators,
69

 or does not have the specialized glassware required for high-vacuum 

techniques,
76

 there are still more options for NCA polymerization. The problem with primary-

initiated NCA polymerization are the possible products (see Figure 10); however, lowering the 

temperature of the reaction mixture these reactions can suppress side reactions.
78, 79

 Unlike the 

previous study using mass spectrometry to detect dead chain ends, using non-aqueous capillary 

electrophoresis (NACE)
80

 allows for a quantitative measurement of dead chain ends (formyl or 

carboxylate). Keeping the monomer/initiator ratio constant, decreasing the temperature from 50 

°C to room temperature to 0 °C decreased the amount of dead chain ends from 80% to 78% to 

1% respectively.
79

 

Lowering the temperature allows primary amines to give controllable molecular weights 

and PDI, thus decreasing the amount of side reactions end capping the polymer chain. Also, 

block copolymers can be synthesized due to the living ends of the polymers.
78

 Another simple 

option is to use urea as an initiator at 0 °C.
40

 If one does not have a glove box or bag, a stream of 

nitrogen during the reaction allows well-controlled polymerizations.
81
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A nitrogen stream allowed for higher conversions, closer to expected molecular weights 

and lowered the PDI. The rate of nitrogen flow could influence the kinetics of the reaction: a fast 

nitrogen flow increased the rate or reaction by 5 , still providing low PDI polymers. 

Not discussed are several other pathways to polypeptides such as NCA polymerization 

via PCl5, PCl3, SOCl2, sodium hydride, solid phase, etc.
6, 82, 83

 

Sample NAM AMM AMM2 AMM3 F1 F2 U1 U2 FU 

HV X     X    

GB1 X X X X X X    

GB2 X X X X X X  X  

 

 

Figure 10. Possible byproducts in an NCA polymerization: HV = high-vacuum technique;      

GB = glovebox method; 1 = DMF was purified; 2 = DMF used as received; NAM = normal 

amine mechanism; AMM = activated monomer mechanism; F = formyl end-group; U = 

ureido acid end-group. Reprinted with permission from Pickel, D. L.; Politakos, N.; 

Avgeropoulos, A.; Messman, J. M. Macromolecules 2009, 42, (20), 7781-7788. Copyright 

2009 the American Chemical Society.  

 



 

23 

1.3.5 Choice Of NCA polymerization 

The choice of NCA polymerization is dictated by the application needed for the polymer. 

If one wants to synthesize a less-controlled polymer, initiation by primary amine is adequate. 

Primary amine initiation is very useful because many initiators are commercially available. Also, 

some NCAs produce controllable molecular weights with low PDI, at least at low molecular 

weight. Using primary amine decreases the prep time needed to synthesize the polymer. Primary 

amine initiation provides polymers in high yields of low to mid molecular weights with a 

reasonable PDI (~1.2) after precipitation of the crude polymer. For some applications, a broad 

PDI is advantageous; a tertiary amine offers higher PDI and would work best. If the PDI is too 

broad for the desired application, separation techniques such as preparatory column separation 

can fractionate the polymer, providing many low PDI samples. If this decreases the yield of the 

desired molecular weight too drastically then other techniques are advantageous. If the reaction 

mixture can be cooled, the living nature of the polypeptide can be preserved and more 

complicated architectures can be synthesized (e.g. block copolymers). 

If one’s synthetic skills are more advanced, using metal mediated polymerization may 

provide polymers with lower PDI and higher molecular weights. If ease and time are more 

valuable, decreasing the temperature, using a nitrogen stream, or adding urea can help with 

polymerization. Ultimately, the method of polymerization distills to the type of polymer desired. 

High molecular-weight polymers require more care but lower molecular weight polymers are 

easier to synthesize. Scale-up can also be a factor when choosing a polymerization method. All 

of these methods have their place, but always search the current literature for other viable 

options. 
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1.4 Overview of Poly-γ-benzyl-L-glutamate 

 Poly-γ-benzyl-L-glutamate, is a very common polymer in the physical sciences. The 

layperson is more familiar with as its monomer, monosodium glutamate, or MSG. It was 

originally discovered by a Japanese biochemist who enjoyed his wife’s soup.
84

 Although this is 

not a commentary on the health effects of MSG, the food industry has made the monomer 

available in a grand scale.  

 Scientifically, PBLG is interesting because it is a helical polymer than behaves as a semi-

rigid rod. The polymer was first synthesized by Doty et al and characterized in a series of 

papers.
54, 63, 64, 85-93

 The chemical structure for PBLG is found in Figure 11 and PBLG has been 

studied in many different solvents (DCA
94

, DMF
95-97

, THF
98

, m-cresol
86

, pyridine
99

).  

 

Being a stiff polymer, it is not highly soluble and depending on the solvent, PBLG can 

aggregate. When aggregated, PBLG can either aggregate in a head-to-tail or side-by-side 

fashion.
86, 100-102

 A table of aggregation number, n, is found in Table 1. Aggregation is a problem 

for rod type polymers and limits the solvents studied. 

 

Figure 11. Structure of poly-γ-benzyl-L-

glutamate, PBLG. 
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Table 1. Aggregation number (n) of PBLG in various solvents 

Mw/10
-3

 
n values 

DMF DCE Dioxane Chloroform 

10 1 - - - 

33 1 3 25 4 

154 1 - 7 3 

222 1 - 5 2 

 

PBLG is helical only in a few solvents (DMF, cresols, pyridine) 
99, 103, 104

 and it is 

commonly used because the polymer is an un-aggregated helix. Parameters for the helix in DMF 

are well known
105

 and phase diagrams have also been produced (Figure 13).
106, 107

  

 

 

Figure 12. A binary phase diagram calculated for rigid, hard rods of 

axial ratio of 150 by Flory lattice model. (I) is isotropic phase and (LC) 

is a liquid crystalline phase. Reprinted with permission from Russo, P. 

S.; Miller, W. G. Macromolecules 1983, 16, (11), 1690-1693. Copyright 

1983 American Chemical Society. 
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The Flory lattice model predicts three regions for the phase diagram for rodlike 

polymers.
108

 The first region is a biphasic region with isotropic and liquid crystalline regions, the 

second is a transition region, and the third has fully liquid crystalline regions with excluded 

solvent (see Figure 12).
109

 There is some discrepancy between the Flory lattice model and the 

observed phase diagram for PBLG; this has been attributed to flexure of the polymer and flexible 

side chain-solvent mixing.
107

 Liquid crystalline studies of PBLG have been performed in other 

solvents.
107, 109-112

 

 

PBLG has been shown to act as a stiff polymer in many experiments. The persistence 

length for PBLG is anywhere from 70 to ~300 nm.
 97, 100, 101 

A conformation plot (not in log 

scale) is found in Figure 14. Large molecluar weight PBLG shows a curvature, allowing the 

persistence length to be calcualted from Equation 1  

 

Figure 13. Temperature-composition phase diagram for PBLG in DMF. 

Reprinted with permission from Russo, P. S.; Miller, W. G. Macromolecules 

1983, 16, (11), 1690-1693. Copyright 1983 American Chemical Society. 
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(       ⁄ )] Equation 1 

where L is the length of polymer and ap is the persistence length. A single sample did not provide 

the entire gamut of molecluar weights but several samples were combined. 

 

Other experimental values show PBLG to be a rodlike polymer. The slope for a 

conformation plot in DMF was 0.78
96, 97

 and for a Mark-Houwink plot the slope was 1.75 in 

DMF,
104

 both consistent with a rodlike polymer. It was also shown stiff with viscosity,
85

 

analytical ultracentrifugation
104

 flow birefringence,
15

 and light scattering
95

 and depolarized light 

scattering
113

 Although many experiments have shown PBLG to behave as a rodlike polymer, it is 

not infinitely stiff; the best model for PBLG is of a flexible rodlike polymer.
15

 

 Although DMF is a helicogenic solvent for PBLG, it can be troublesome. It was found 

that an opaque gel could uncontrollably form;
114

 water, even in low quantities, can cause 

aggregation.
115

 At high concentrations, PBLG can form a gel in several solvents
114, 116, 117
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Figure 14. A plot of radius of gyration as a function of molar mass 

for PBLG in DMF. Reprinted with permission from Rafael Cueto.  
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Although PBLG has been studied many times, it is not a perfect model polymer. PBLG 

shows some flexibility; it is only helical in a few solvents, and it is only soluble in a few 

solvents. DMF has been the usual solvent chosen but it is hydroscopic and PBLG has been 

shown to aggregate with low water content. This means the DMF used has to be dry and sample 

preparation need be more careful. Because of the difficulties associated with PBLG (and 

difficulty with other rods, for that matter), there lies an opportunity to synthesize a novel 

polymer that can combat these difficulties. 
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Chapter 2 - Synthesis and Characterization of PEGL in Dilute Solution 

2.1 Introduction 

As a quick review (see Chapter 1 for a more thorough explanation), NCA polymerization 

can be conducted in many ways. When NCA polymerization was first utilized, the two methods 

were normal amine mechanism (NAM) and activated monomer mechanism (AMM). 

Polymerization of NCAs with primary amines proceed via NAM because they are more 

nucleophilic than basic. Tertiary amines and strong bases proceed via AMM because they 

perform a base abstraction of the nitrogen in the NCA ring. These methods became highly 

developed over the years (over 60 years) and are still used today. Being the simplest NCA 

polymerizations to perform, they yield poly(amino acids) with fairly well controlled synthesis 

and acceptable PDI’s for some applications. Both NAM and AMM can be used to synthesize a 

PEGylated (more properly, oligo-PEGylated) lysine, PEGL, which is the focus of this 

dissertation. 

In addition to the two enduring NCA polymerization techniques, other methods to have 

been used such as metal-mediated NCA polymerization. This method of polymerization is more 

labor-intensive than either NAM or AMM, but it can afford polymers with better molecular 

weight control and lower PDI’s.
27, 68, 72, 118, 119

 The disadvantage is the metal initiator needs to be 

synthesized and removed. Despite these drawbacks, metal-mediated polymerization was used to 

synthesize high molecular weight PEGL with low PDI. 

2.1.1 Justification of Project -- A New Stiff Model Polymer 

PBLG is the semiflexible poly(α-amino acid) for rodlike polymer studies. It has been 

studied for over 50 years and in that time, many different experiments have determined its 
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properties. This does not eliminate novel experimentation with PBLG,
120

 but PBLG does leave 

room for polymers that do not suffer the same drawbacks such as semiflexibility and difficult 

solvents. For example, DMF, a helicogenic, non-aggregating solvent for PBLG is hydroscopic. 

PBLG aggregates with low water content, making the use of the PBLG/DMF system difficult.  

Designing a new stiff model polymer is a complicated problem. Conventional chemist 

thinking would lead to using a conjugated backbone but a conjugated backbone does not a stiff 

polymer make! Table 2 shows the persistence length (a measure of stiffness discussed shortly) of 

several different types of polymers. Poly(p-phenylene-benzobisthiazole) has a conjugated 

backbone but is not the stiffest polymer in the table. Another possible rodlike polymer is carbon 

nanotubes; while very stiff, they are not “polymer-like” enough. The same problem lies with 

other, less polymer-like stiff rods such as boehmite.
121

 

Table 2. Persistence lengths for select polymers 

Rod Persistence length, 𝒂 
 
(Å) 

Polystyrene (not a rod!)
122

 26 

Bisphenol A polycarbonate
122

 20 

Poly(p-phenylene-benzobisthiazole)
123

 640 

DNA*
122

 1,100 

Poly-γ-benzyl-L-glutamate†
122

 3,130 

Single walled carbon nanotube
124

 
>10,000 

 

fd-virus
125

 22,000 

* double helix in 0.2 M NaCl,  † the persistence length varies with experiment type and 

investigator 
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The stiffest synthetic “polymer-like” polymer in the table is a poly(α-amino acid). The 

reason an α-helix is stiffer than a conjugated backbone polymer is demonstrated with an 

illustration: is a spring or a ribbon stiffer? It is clear the spring has a lower ability to bend axially. 

The ribbon, while stiff in a two-dimensional plane, can bend orthogonal to the plane of the 

ribbon. Try decorating a Christmas present with bow made of a spring! In the same fashion, the 

new model rodlike polymer should be a helix. It is unlikely that this new polymer is stiffer than 

PBLG but as long as it is nearly as stiff, it is still beneficial. 

Using other stiff poly(α-amino acids) is not novel (i.e. DNA or PBLG analogs); peptide 

derivatives have been used for ages.
90, 126, 127

 The difficulty with stiff polymers is the low 

solubility; single walled carbon nanotubes can take up to 40 hours of sonication to disperse.
128

 A 

common practice has been to modify the stiff polymer to increase solubility. Frequently, poly(L-

glutamic acid) is prepared by removing the benzoxy side chain, forming a water-soluble PBLG 

derivative. Typically, water solubility requires charge; while a charged polymer is not inherently 

unwanted, it adds unsolicited complication for some studies. In the late 1970’s it was found the 

diffusion of charged polymers, polyelectrolytes, changed with salt concentration. If excess salt is 

present, the charges along the polymer are screened and the polymer diffuses in a well-defined 

manner; if the salt concentration is low, the apparent diffusion coefficient dramatically decreases 

to almost zero (Figure 15).
7
  

The diffusion coefficients were measured by DLS. In that experiment, the two salt 

regimes are known as the fast-mode (high salt) and slow-mode (low salt). Literature is 

disharmonious concerning the cause of slow-mode diffusion. Due to confusion and adding 

complexity to our model system, charge should be excluded in these experiments designed to 

measure the fundamental solution properties of rodlike polymers.  
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Following the arguments above, several criteria are required in designing a new model 

polymer and a water soluble, non-ionic, poly(α-amino acid) would fulfill all four requirements. 

1) well-controlled synthesis 

2) stiff polymer 

3) no charge 

4) solubility in “easy-to-use” solvents 

2.1.2 Persistence Length 

Persistence length, ap, is a measure of stiffness for any flexing object (lightning has a 

persistence length). Stiff polymers have a large persistence length and random coil polymers 

 

Figure 15. Apparent diffusion coefficient Dapp vs log(NaBr) for poly(L-

lysine)•HBr (Dp = 955) at 22-23 °C, and pH 7.8. Circles denote 1.0 mg/mL and 

squares denote 3.0 mg/mL. (Lys)n. From reference 7.  
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have a short persistence length (Table 2). Figure 16 shows a cartoon describing the persistence 

length. To calculate the persistence length, a vector is drawn along the first two backbone bonds 

of a hypothetically infinite length rod (Red arrow in Figure 1, along the x-axis). Repeat this 

procedure on the next set of two backbone bonds until reaching the last two repeat units (green 

lines on Figure 16). If the polymer is stiff, a large vector results in the direction of the x-axis 

because of the x-component of the vector projection for the many repeats units. If the polymer is 

a random coil, a large portion of the polymer does not add to the vector projection in the x 

direction, reducing the resultant vector length. The dotted orange lines show the representative 

persistence length for the stiff and random coil polymers. 

 

Many different experiments can measure persistence length: light scattering, flow 

dichroism, cyro-electron microscopy, scanning force microscopy, force-measuring laser 

tweezers, transient electric birefringence, transient electric dichroism and gel permeation 

 

Figure 16. A cartoon of persistence length. The blue stiff polymer has a longer persistence 

length than the red random coil. The persistence length is denoted by the dotted orange line.  
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chromatography.
129

 To measure the persistence length the polymer needs to be large enough to 

have appreciable flexure and investigation needs to include a large range of molecular weights. 

Although persistence length is an inherent quality of the polymer, shorter chains do not 

show enough flexure to measure the persistence length. An analogy is a steel beam: if the beam 

is 1 inch long, beam flex cannot be perceived. Obvious flexure occurs if the beam is 1 mile long. 

Following this argument, low molecular weight polymers do not flex enough to measure the 

persistence length. To measure the persistence length, large molecular weight polymers need to 

be synthesized. 

 A requirement for accurate measurement of the persistence length by gel permeation 

chromatography is a wide breadth of molecular weights need to be measured that exhibit 

adequate flexure. Normally, a well-controlled polymerization provides low PDI. For a 

persistence length calculation, a broader molecular weight distribution provides the larger 

breadth of polymer molecular weights, eliminating the need for a low PDI, well-controlled 

polymerization. If only low PDI samples are available, a cocktail of several molecular weights 

can span the necessary molecular weight range. In this dissertation, gel permeation 

chromatography replaces a polymer cocktail. Column chromatography fractionates the polymer, 

giving many “slices” of highly monodisperse polymer molecular weights. This provides many 

different molecular weights with low PDI, allowing for an accurate determination of the radius 

of gyration and molecular weight. As long as the polymer is large enough, GPC eliminates the 

need to create a cocktail of several different molecular weights with low PDI. 
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2.2 Synthesis of PEGL 

2.2.1 Materials 

2-[2-(2-methoxyethoxy)ethoxy]acetic acid (> 90% technical grade), N-

hydroxysuccinimde (98%), methylene chloride (> 99.8%), dicyclohexylcarbodiimide (98%), 

Bis(1,5-cyclooctadiene)nickel(0), and 2-2’-bipyridine (> 99%) were purchased from Sigma-

Aldrich. THF (non-anhydrous, chromatography grade) was purchased from Macron chemicals. 

Nα-Z-L-Lysine (CAS number: 2212-75-1) was purchased from BACHEM. All dry solvents were 

dried by passing through an activated alumina column under argon and all purchased chemicals 

were used with no further purification. 

2.2.2 General 

Gel Permeation Chromatography 

The molecular weight and polydispersity index were measured using a Wyatt  DAWN 

DSP-F GPC/MALS detector equipped with a Helium-Neon laser, 632.8 nm. Two ISCO 500 mL 

pumps were used to prevent pulsing during pumping, the sample was injected manually, and the 

columns were PL Aquagel-OH Mixed 8 μm (2x) protected by a PL Aquagel 8 μm guard column. 

A Waters 410 differential refractive index detector was used and the samples were analyzed with 

ASTRA 6. The specific refractive index increment, dn/dc, was found to be 0.126 ± 0.001 mL/mg 

at 632.8 nm. Samples were dissolved in the mobile phase (denoted as buffer in the text), 200 mM 

NaNO3 + 10 mM NaH2PO4 + 2 mM NaN3 adjusted to pH 7.5 or 2 mM aqueous azide solution 

(denoted as water in the text). The injected volume was 100 μL and the flow rate was 0.5 

mL/min. The weight average molecular weight and its standard deviation were calculated from 

three or more repeat measurements unless otherwise stated. 
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1
H NMR Spectra.  

1
H NMR spectra were acquired on either a Bruker APX 250 MHz or Bruker DPX-400 

400 MHz spectrometer at 25 °C. The product was dissolved in CDCl3 for all reactants except for 

the formed polymer was dissolved in D2O. 

FT-IR 

FT-IR spectra were collected on two different systems. The first was a Bruker Tensor 27 

instrument with a Pike diamond/ZnSe ATR cell. The other was a Bruker Alpha FT-IR system 

with a diamond ATR accessory. The spectra were collected with OPUS 7.2 with an ATR cell. 

The background measurement was subtracted from the sample measurement.  

Circular Dichroism 

Circular dichroism spectra were taken on a Jasco J-815 spectrophotometer with a 0.1 cm 

path length cell and scanned from 180 to 250 nm. Sample concentrations were 0.5 mg/mL in 

water. CD spectra were not collected in the buffer solution because of absorbance in the scanned 

wavelengths. The background water absorption was subtracted using SpectraManager software 

and the data were saved as a text file. After importing the text file into Excel, the percent helicity 

was calculated based on a theoretical value of the mean molar ellipticity at 222 nm.
130

 

Partial Specific Volume 

Measurements were performed on a DMA 58 density meter with a DURAN 50 glass 

oscillator. The calibration was performed with boiled (30 min) Nanopure water. Following 

calibration, the polymer samples were injected from lowest to highest concentration. Between 

each sample, the density meter was cleaned profusely with water and then rinsed with ethanol to 

prevent dilution or contamination. Bubbles were prevented by slowly injecting the sample 



 

37 

because bubbles can cause erroneous measured values. The sample concentration region was 

0.25 to 1 weight percent polymer.  

Viscosity 

Experiments were performed on an Anton Paar AMVn automated microviscometer. The 

steel ball used had a capillary diameter of 1.60 mm. Boiled Nanopure water was used as the 

calibrant. The polymer sample was pulled into the capillary by a pipet bulb, slowly to prevent 

bubble formation. Polymer samples were measured from least to most concentrated with copious 

amounts of water and then finally rinsed with ethanol. During each experiment the viscosity was 

calculated from 10 repeat runs and then averaged. This was repeated at least three times. 

Mass Spectrometery 

Mass spectrum experiments were performed on a MALDI-TOF system in linear mode. A 

Nd-YAG laser was used at 1 kHz, 500 shots, and an ion voltage of 25 kV. The matrix was α-

cyano-4-hydroxycinnamic acid (CHCA), dithranol, or sinapinic acid. The mass range measured 

varied from 400 – 50,000 Da.  

Optical Microscopy 

Microscopy was performed on an Olympus BH2 polarizing optical microscope with a 

digital AmScope Camera (Model MD 1900-CK). Images were captured with software provided 

by AmScope. Samples were placed in Vitrocom flat capillary cells (of varying width and height). 

Cell Viability 

To test cell viability, PEGL was dissolved in Dulbecco’s modified eagle medium 

(DMEM) with 10% fetal bovine serum (FBS) and placed in a plate well that housed 30,000 3T3 
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mouse fibroblast cells. Polymer and dead control were performed to ensure the measured 

fluorescence was not due to polymer. 

Electron Microscopy 

Cryo-transmission electron microscopy (cryo-TEM) was performed at Tulane University 

with a FEI G2F30 TECNAI TEM with a GATAN Cryo-System (-170 °C, 200 kV). The samples 

were dissolved in DI water and a single drop of the solution was placed on a Lacey carbon grid. 

The grid was placed in a FEI Vitrobot Mark III with 100% humidity at room temperature. The 

grid was blotted with filter paper and then plunged into liquid ethane.  

Dynamic Light Scattering 

DLS measurements were made on a custom-built apparatus
113

 that is now equipped with 

an ALV5000 autocorrelator. The experimental setup is a two-pinhole-plus-lens with homodyne 

detection.
131

 An Argon ion laser was (488 nm) focused in the sample using a lens with an 8 cm 

focal length and measurements were made at multiple angles by moving a detector arm. The 

correlation function was converted to electric field autocorrelations by the Siegert relation and 

the decay rates were found by taking the third-order cumulant fit (unless otherwise denoted in 

the text). Decay rates less than 0.5 μs were ignored due to detector afterpulsing and dead time. 

Polymer samples were allowed to dissolve overnight with solvent that had been filtered with a 

0.1 μm PVDF filter. The polymer samples were placed in the DLS cells via a syringe fitted with 

a 0.22 μm PVDF filter. All polymer samples in water had a final concentration of 2 mM sodium 

azide to inhibit microbe growth. 

2.2.3 Synthesis of N-Hydroxysuccinimidyl 2-[2-(2-methoxyethoxy)ethoxy]acetate (Figure 

17, 4) 

A mixture of 2-[2-(2-methoxyethoxy)ethoxy]acetic acid (30.01 g, 168 mmol) and N-

hydroxysuccinimide (21.4 g, 185.0 mmol) was dissolved in dry THF (1000 mL) in a round-
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bottom flask while in an ice bath. Dicyclohexylcarbodiimide (36.4 g, 176.7 mmol) was added 

while stirring. A white precipitate formed quickly and the reaction was stirred for 2 h before 

being placed in the freezer for 24 h. The white solid was filtered and the filtrate was concentrated 

with a rotoevaporator without heating until it was an oil. The oil was dissolved in a small amount 

of THF (~20 mL) and allowed to stir for another 2 h and then chilled in the freezer. This 

concentration and redissolution procedure was repeated until a clear oil was obtained with no 

precipitate. 
1
H NMR (CDCl3): δ 4.52 (s, -OC(O)CH2O-, 2H), 3.7 (m, -CH2O(CH2CH2O)2-, 

8.9H), 3.38 (s, -CH2OCH3, 2.84H), 2.85 (s, -C(O)CH2CH2C(O)-, 4.8H). 

2.2.4 Synthesis of Nε-2-[2-(2-methoxyethoxy)ethoxy]acetyl-Nα-Z-L-Lysine (Figure 17, 6) 

To a mixture of Nα-Z-L-Lysine (40.1 g, 143.0 mmol) and NaHCO3 (18.0 g, 220 mmol) in 

THF:H20 (1,000 mL:1,000 mL) was added N-hydroxsuccinimidyl 2-[2-(2-

methoxyethoxy)ethoxy]acetate (32.6 g, 118 mmol) predissolved in THF (60 mL). The reaction 

stirred overnight at room temperature and was brought to pH 2 by concentrated HCl. The THF 

was evaporated and a white precipitate formed after being in the freezer overnight. The solid was 

filtered and recrystallized in 80 mL hot isopropanol twice to yield white crystals. The yield was 

60% (31.6 g) and had a melting point of 106.5-107.3 ºC, significantly less than previously 

reported (115-117 °C).
72

 
1
H NMR (CDCl3): δ 7.34 (m, -CH2C6H5, 5.33H), 5.18 (s, -CH2C6H5, 

0.8H), 4.41 (-NHCH(R)C(O)OH, 0.33H), 3.97 (m, -NHCH((CH2)3CH2NHC(O)R)C(O)-, 1.65H), 

3.65 + 3.32 (m, -CH2O(CH2CH2O)2CH3, 12.6H), 1.85 (m, NHCH((CH2)3CH2NHC(O)R)C(O)-, 

6H). 

2.2.5 Synthesis of Nε-2-[2-(2-methoxyethoxy)ethoxy]acetyl-Nα-Z-L-Lysine-N-

Carboxyanhydride, EGL NCA (Figure 17, 8) 

  

To a solution of Nε-2-[2-(2-methoxyethoxy)ethoxy]acetyl-Nα-Z-L-Lysine (6) (3.0 g, 6.8 

mmol) in anhydrous CH2Cl2 (150 mL) under argon was added 1,1,-dichlorodimethylether (2.40 
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mL, 27.5 mmol) via syringe. A room temperature condenser was attached and then purged with 

N2 for 20 min. The solution was heated to 50 ºC for 15 h and the solvent was removed. A slight 

yellow oil resulted. The oil was recrystallized by bringing into a glove box, dissolving in THF as 

vigorously as possible, layering hexane on top of the THF. The flask sat for 24 h with a few 

slight “swishes” to stir the THF and hexane, but still keeping two layers. White crystals formed 

at the interface of the THF and hexane. The hexane was decanted by pipet and the THF was 

evaporated, giving white crystals and a yellow solid on the bottom of the flask. The white 

crystals were collected (1.89 g, 84%). 
1
H NMR(CDCl3): δ 4.31 (m, NHCH(R)C(O)O-, 0.42H), 

4.0 (m, -NHCH((CH2)3CH2NHC(O)R)C(O)-, 5.42H), 3.65 + 3.32 (m, -CH2O(CH2CH2O)2CH3, 

8.7H), 1.85 (m, NHCH((CH2)3CH2NHC(O)R)C(O)-, 6H). 

2.2.6 Synthesis of Poly(Nε-2-[2-(2-methoxyethoxy)ethoxy]acetyl-Nα-Z-L-Lysine), PEGL 

(Figure 17, 9)    

In a glove box, EG2-Lys NCA (750 mg, 2.25 mmol) was dissolved in THF (5 mL) and 78 

μL aliquot of 63.7 mmol Ni(bpy)COD in THF was added. The reaction stirred for 48 h at RT. 

The conversion was monitored by FT-IR. Following full conversion, the THF was evaporated 

and the resultant clear polymer was dissolved in H2O (10 mL). Dialysis was performed (10,000-

12,000 molecular weight cutoff) for 2 days against 10 molar EDTA and 2 days against water. 

After removal of the H2O, the polymer varied from a soft wax-like texture to very sticky (619.5 

mg, yield 82.6%). 
1
H NMR(CDCl3): δ 7.20 (br, -NH, 0.763) δ 5.25 (br, NHCH(R)C(O)O-, 

0.7559H), 3.95 (m, -NHCH((CH2)3CH2NHC(O)R)C(O)-, 2.77H), 3.65 + 3.35 (m, -

CH2O(CH2CH2O)2CH3, 14.6H), 1.55 + 1.917 (br, m, NHCH((CH2)3CH2NHC(O)R)C(O)-, 6H). 

2.2.7 Synthesis of Ni(bpy)COD   

Bis(1,5-cyclooctadiene)nickel(0) (2.76 g, 10.0 mmol) and 2-2’-bipyridine (1.67 g, 10.7 

mmol) were dissolved in 150 mL dry THF. The reaction stirred for 3 hours to give a deep blue 
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color. The solution was filtered and the filtrate was evaporated. The solid Ni(bpy)COD was 

washed with 80 mL diethyl ether and hexanes and filtered. The solid product was stored as a 

solid in the freezer under nitrogen atmosphere. Yield: 79%. 

Another technique used involved making fresh Ni(bpy)COD prior to every reaction. 

Bis(1,5-cyclooctadiene)nickel(0) and 2-2’-bipyridine in 1:1 molar ratio were stirred overnight 

and used without purification. 

2.2.8 Reaction Scheme for the Synthesis of PEGL 

 

2.2.9 Crystal Structure of PEG-Lys NCA 

The crystal structure for Nε-2-[2-(2-methoxyethoxy)ethoxy]acetyl-Nα-Z-L-Lysine (6) is 

found in Figure 18. Not only does the crystal structure confirm the reaction was complete, it 

shows the PEG side chain bends backwards, towards the aliphatic chain of lysine. It is stabilized 

by hydrogen bonding to the nitrogen of the amide bond connecting the PEG to the lysine. 

 

Figure 17. Reaction scheme for PEGL synthesis. 
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Logically, in an aqueous system the PEG chain should try to “cover up” the hydrophobic side 

chain. This same phenomenon is observed in the crystal structure for EGL NCA. The two 

conformations seen were in a 1:1 ratio and may indicate why recrystallization of the NCA can be 

difficult. It is likely this back-bending of the PEG chain would occur in the polymer as well but 

not certain due to steric hindrance. 

 

 

Figure 18. Experimental crystal structure for Nε-2-[2-(2-

methoxyethoxy)ethoxy]acetyl-Nα-Z-L-Lysine (6). Gray 

atoms are carbon, white are hydrogen, red are oxygen, and 

purple are nitrogen. The blue line is a hydrogen bond 

between the side chain nitrogen and an oxygen group of the 

short PEG chain.  
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2.3 Tips For Synthesis 

Although the synthesis is described above, a few tips may ensure success. To begin, 

confirm all the solvents are dry by Karl-Fisher titration or other highly sensitive measurement. 

Also, the glass needs to be flame-dried. Some water was noticed if the flask was only left in the 

oven, even overnight. During synthesis of N-Hydroxysuccinimidyl 2-[2-(2-

methoxyethoxy)ethoxy]acetate (4), allowing the reaction to stir longer before filtration in the 

first step did not increase the yield of the reaction. Typically, stirring too long causes the product 

to become yellowed (slight yellow hue to very yellow). More as an anecdote, the yellow product 

never afforded Nε-2-[2-(2-methoxyethoxy)ethoxy]acetyl-Nα-Z-L-Lysine (6). Other chemistries 

are available to produce N-Hydroxysuccinimidyl 2-[2-(2-methoxyethoxy)ethoxy]acetate (4), 

such as synthesis of an acid chloride. The acid chloride has been completed successfully with 

high yields and greatly decreases the time required for this first step (30 min vs. several days). 

The acid chloride was not attempted on a typical scale of the acetate; therefore the acetate was 

still the reaction of choice. It was recently found in our lab that the acid chloride can be 

successfully used in a 50 g scale. Further, the acetate oil should be used quickly (a few days if 

 

Figure 19. Experimental crystal structure for PEGL NCA. 

There are two different crystals in a 1:1 ratio. The unit cell 

if Orthorhombic, P212121.  
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stored in the refrigerator). If the oil was allowed to sit at room temperature and room light, the oil 

had a tendency to turn yellow. Once again, the yellowish oil barely reacts in the next step. 

Carbon-black successfully removes the color but the next step in the synthesis still does not work 

well.  

The synthesis of Nε-2-[2-(2-methoxyethoxy)ethoxy]acetyl-Nα-Z-L-Lysine (6) was more 

straightforward. The white solid product was easily crystallized if the procedure was followed. 

Sometimes, the reaction does not proceed when the N-Hydroxysuccinimidyl 2-[2-(2-

methoxyethoxy)ethoxy]acetate (4) oil was yellow. Occasionally, when the solid product was 

crystallized, a yellow oil was observed. It was difficult to separate the crystal and oil, lowering 

the yield of product. Allowing the reaction to stir longer did not eliminate the yellow oil. Also, 

the white solid can have a slight pink hue. This can be rectified by stirring with carbon-black but 

the pink product did not provide easily crystallized NCA. During the recrystallization, several 

solvent-nonsolvent combinations were used, such as methanol and ether, but hot isopropanol was 

most successful at separating the products from unreacted lysine. The melting point was lower 

than published (expected 115-117 °C). 

The ring-closure and purification of the lysine NCA was the most difficult step of the 

polymer synthesis. Alteration of the published synthesis provided the best results and  others 

have noticed this as well.
132

 Dichlorodimethyl ether was used because it is a gentle cyclization 

agent. Other cyclization agents, such as phosgene, create more side reactions. Initially, the 

amount of cyclization agent to lysine was 1:1 and the reaction was heated at 50 °C for 48 h; this 

provided the recurrent yellow oil. Reflux overnight with 3:1 ratio of cyclization agent to lysine 

provided the best results. Recrystallization of the NCA product was poor if the oil turned yellow 

during reflux. The NCA was recrystallized in THF and hexane; because they are miscible, 
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hexane was added very slowly to a semi-dilute NCA solution in THF. Crystals formed at the 

interface after sitting for ~24 hours at room temperature (this can be done in the freezer, but be 

careful to use a refrigerator rated for volatile solvent storage). Gentle stirring, causing visible 

crystallization of the NCA (the solution would become cloudy), increased the yield to a 

maximum of 84%. The hexane was decanted and the THF evaporated. White crystals formed on 

top of a yellow solid and were separated. Typically, the NCA crystals needed to be recrystallized 

multiple times in 3:1 hexane:THF to provide a highly pure NCA. If the NCA was not pure, the 

polymerization was hindered. An alternate procedure for NCA purification is column 

chromatography.
49

 A primary crystallization by adding 3:1 hexane:THF and putting in the 

freezer overnight produced crude, yellowish crystals. These crystals are purified through column 

chromatography. The two-layer crystallization (providing white crystals on top of yellow solid) 

was not able to be scaled up but the column chromatography can be scaled as large as needed. 

This means that large quantities of NCA can be purified in a single sitting. The polymerization 

proceeds as long as the NCA was pure (white, needle like crystals). 

2.4 
1
H NMR of PEGL 

Although the 
1
H NMR performed was consistent with the structures expected, the 

integration of the backbone proton, NHCH(R)C(O)O-, was frequently low. Varying delay times, 

up to 15 seconds, still produced a low integration value.  

The reaction for N-Hydroxysuccinimidyl 2-[2-(2-methoxyethoxy)ethoxy]acetate (4) can 

be easily tracked by following the disappearance of the peak centered at 2.8 for N-

hydroxysuccinimde (Figure 111). See Appendix 1 for all spectra and the synthesis section for 

NMR peak assignments. 
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2.5 FT-IR of PEGL 

The NCA and polymerization conversions were followed by FT-IR. This is advantageous 

compared to NMR because the reaction solvent can be subtracted, no overlap of absorption 

wavelengths for anhydride absorption and other functional groups, and 
1
H NMR of polymers 

have band broadening (depending on the average chain length). The NCA aliquots were 

immediately tested to prevent reaction with ambient moisture and characteristic peaks associated 

with the NCA are ~1850 cm
-1

 and ~1775 cm
-1 

due to anhydride stretching were compared. The 

anhydride peaks decreased as conversion to polymer increased, providing a reliable test for 

polymer conversion.  

Figure 20 shows a FT-IR spectrum of EGL NCA with peaks centered from the anhydride 

stretching at 1847 cm
-1

 and 1778 cm
-1

. The average frequencies measured for a right-hand α-

helix amine I and II stretching are 1653 cm
-1

 and 1544 cm
-1

.
133

 Figure 21 shows almost 100% 

conversion from NCA to polymer. The characteristic peaks for the anhydride have all but 

disappeared and peaks at 1651 cm
-1

 and 1541 cm
-1

 are the amide I and II bands for a helical 

peptide, respectively. The FTIR spectra are known for poly(lysine) for a random coil, α-helix, 

and antiparallel chains.
134
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2.6 Circular Dichroism of PEGL 

Circular dichroism,
135

 a measure of the interaction of a sample and circularly polarized 

light, can elucidate the secondary structure of the sample in coordination with FT-IR. The 
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Figure 20. FT-IR spectrum of PEG-Lysine NCA. 
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Figure 21. FT-IR of PEGL.  
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asymmetry of the samples, due to the α-helix, provides a sensitive measure of secondary 

structure.
135

 Light can be polarized vertically by using a vertical polarizer or by having an equal 

amount of left and right circularly polarized light. If the sample interacts with a right or left 

circularly light greater than the other, the transmitted light rotates.  

The word interaction has thus far been intentional because two interactions are possible: 

absorption and refraction. Because circular dichroism and optical rotary dispersion are similar in 

nature, their difference is highlighted. An optical rotary dispersion (ORD) experiment measures 

the angle at which the observed plane-polarized light rotates as a function of wavelength. The 

left and right circularly polarized light are equal in magnitude, creating vertically polarized light. 

The angle of rotation of the vertically polarized light depends on the difference of the refractive 

index in the sample of left and right circularly polarized light. Depending on the retardation of 

the light, the observed plane-polarized light is rotated left or right. Optical rotary dispersion is a 

measure of the difference in refractive index between left and right circularly polarized light. 

Circular dichroism is different from optical rotary dispersion in that it measures the absorbance 

difference between left and right circularly polarized light. In a circular dichroism experiment, 

the sample again interacts with left and right circularly polarized light, but the difference in 

absorption is measured. 

Absorption and refractive index are not independent, both occur concurrently. Rather 

than having a vertically polarized plane of light after the sample, the polarization of the emergent 

light traces an ellipse. This happens because the sample absorbs left and right circularly light 

differently but also retards one preferentially due to difference in refractive index. A circular 

dichroism experiment measures this ellipticity. The mean molar ellipticity, [θ], is found in 

Equation 2 
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 [ ]          Equation 2 

where          ,    is the extinction coefficient for left circularly polarized light and   is the 

extinction coefficient for right. The mean molar ellipticity is normalized by concentration of 

monomer in solution to eliminate differences in absorbance minima due to different polymer 

concentrations.  

Circular dichroism spectra can be found for poly(L-lysine) in Figure 22. The usefulness 

of circular dichroism becomes immediately apparent because the possible conformations of 

poly(L-lysine) have dramatically different absorbance traces. The α-helix shows two peaks 

centered at 208 nm and 222 nm. These peaks are due to a n → π
*
, when non-bonding electrons of 

the carbonyl oxygen go to an antibonding π orbital.
135

 

 

 

Figure 22. Circular dichroism of 1) α-helix, 2) β-sheet, and 3) random coil 

conformations of poly(L-lysine). Reprinted with permission from 

Greenfield, N. J.; Fasman, G. D. Biochemistry 1969, 8, (10), 4108-4116.  
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Figure 23 shows a circular dichroism spectrum of PEGL at room temperature and 50 °C. 

The sample is highly helical, as evidenced by the two peaks at 208 and 222 nm. The relative 

percent helicity can be calculated based on theoretical mean molar ellipticity value at 222 nm of 

poly(L-lysine).
130, 136

  

The percentage helicity was based on a theoretical 100% lysine and found by using 

Equation 3 

            (
[ ]      

       
)      Equation 3 

 

The percent helicity for PEGL was 98% at room temperature and 50 °C. Both of these 

experiments were performed after the polymer had aged in the refrigerator for 2 years. This 

shows the polymer is highly helical in water but no polymer is 100% helical. PEGL does not 

change the percent helicity up to 50 °C (it retains 75% helicity at 85 °C)
72

, it does not change 
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Figure 23. Mean molar ellipticity of sample #2 (Mw = 211 ± 1, PDI = 1.21 ± 0.01) 

in water, after 2 years in the refrigerator. Black line is room temperature and red 

line is 50 °C. The polymer concentration was 0.5 mg/mL.  
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helicity over time (the percent helicity being 95% at RT after 1 month), and it does not change 

helicity over the concentration regime studied (  1 mg/mL). Higher polymer concentrations 

were attempted but the CD detector was overloaded with any PEGL concentration above 1 

mg/mL. Other solvent conditions, pH of 2-12, 3 M NaCl, 1 M urea, 1 M guanidium-HCl, THF, 

methanol, and chloroform, showed the helix to be stable.
72

  

Because of the circular dichroism studies, it was believed some polymer samples were 

highly helical and consequently should behave as a rodlike polymer. This shows PEGL may 

satisfy the criteria for forming a novel, water-soluble, non-ionic, rodlike polymer; it will become 

apparent although PEGL met the set-forth criteria, a model polymer requires more. Table 3 

shows relative percent helicity for multiple PEGL samples. 

Table 3. Circular dichroism and molecluar weight data from GPC/MALS for multiple PEGL 

samples (0.5 mg/mL in water for CD and 10.0 mg/mL for GPC/MALS) 

 

Sample # Mw % helicity 

1 53 ± 6 75 

2 211 ± 1 95 

3 225 ± 1 98 

6, 19 210 ± 4, 9.2 ± 0.5 33 

12 18.0 ± 0.1 50 

13 18.0 ± 0.2 25 

18 190 ± 1 51 
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It is well known that helix formation happens once the polymer reaches a critical 

length.
15

 Based on the measured molecular weights these polymers should vastly outreach that 

short length requirement. This may indicate some branching, other unintended reactions, or 

aggregation that is giving an inflated molecular weight from the GPC. Based on other 

experiments (see GPC section) aggregation is a real problem for PEGL in water or buffer. Also, 

branching is a possibility, especially if free amino groups are present from incomplete reaction of 

lysine and PEG. Figure 24 shows a plot of the percent helicity calculated from Equation 3 as a 

function of PEGL molecular weight. 
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There appears to be a linear dependence, indicating high helicity only happens with large 

molecular weight. It is strange that the measured molecular weights, coming from aggregates, 
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Figure 24. Percent helicity calculated from Equation 3 as a 

function of the measured molecular weight of different 

PEGL samples. The abscissa is in log scale in plot A and a 

linear scale in plot B. The red line is a linear fit.  
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show such a linear dependence but this may explain the change in helicity from sample to 

sample. It well known that short peptide chains have difficulty in forming complete helices
135, 136

 

because the transition from coil to helix is enthalpically driven. Therefore, helix formation 

depends on chain length.
137

  

The difference in percent helicity between PEGL samples can be explained by the purity 

of the NCA. The presence of trace impurities in high monomer:initiator ratios deactivate the 

metal catalyst, stopping polymerization. For samples 1-3 in Table 10, a small-scale NCA 

reaction (< 1 g) was performed and purified. For the rest of the samples in Table 10 the NCA 

reaction was performed on a much larger scale (~10 g). Scale up of the NCA reaction is may 

produce a larger amount of impurities and make purification more difficult.
15

 Several 

recrystallizations and column chromatography were performed to further purify the NCA 

crystals in attempt to combat the impurities but from the lower-than-expected molecular weights, 

it appears the NCA was not pure enough to make long-chain polymers. PEGL polymers with a 

lower percent helicity are likely short chains that are not long enough to form a stable helix due 

to the inactivation of the metal catalyst. All the measured molecular weights by GPC are of an 

aggregated state (see section 2.11 below); thus, the measured molecular weights are higher than 

the actual molecular weight (see Figure 57 for one plot showing PEGL aggregation) For 

example, sample #13 in Table 3 shows a percent helicity  of 25% but only has a measured 

molecular weight of 18.2 kg/mol. Because it is aggregated, the actual polymer chains are shorter 

than this and they should not exhibit a high percent helicity. For sample #2, although it is also 

aggregated, the measured molecular weight is much larger, indicating the polymer chains are 

longer than sample #13 and are long enough to form a helix. 
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2.7 Partial Specific Volume of PEGL 

Partial specific volume,  ̅, is a measure of the correlation of volume to sample 

concentration. It is necessary to find true concentrations for polymer solutions if calculating 

concentration by weight only (Equation 4) 

               
          

(            ̅      )  (             ̅       )
 Equation 4 

where  ̅ is partial specific volume. 

Partial specific volume is measured using a density meter. In this case, a U-shaped glass 

piece filled with sample is excited to oscillation and the density is measured by timing the period 

of the undamped oscillation of the glass tube.
138

 The sample weight percent was limited to less 

than one percent, meaning a large extrapolation is needed to find the partial specific volume of 

the polymer at one-hundred weight percent (right intercept in Figure 25). This was done to allow 

for a linear approximation to the inverse density as a function of polymer concentration because 

over a too large polymer concentration range the plot may show curvature. A plot of inverse 

density as a function of weight percent PEGL is found in Figure 25. The partial specific volume 

for PEGL was 0.75 ± 0.06 mL/g, found from the right intercept at one-hundred weight percent 

PEGL. The red line is the fit line for the data and the green lines are the 95% confidence interval 

lines (how the uncertainty was calculated). This partial specific volume value is consistent with a 

common value of 0.75 mL/g for proteins.
139
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2.8 dn/dc of PEGL 

2.8.1 dn/dc of PEGL by Brice-Phoenix Differential Refractometer 

In a differential refractometer, a split cell holds the pure solvent in one side and solution 

in the other.
140

 This setup increases sensitivity because the absolute refractive index is not 

measured, but the deflection caused by the solute in solution. In addition, each cell is going to be 

at an equivalent temperature (assuming ample equilibration time),
141

 which lessens the need for 

tight temperature control compared to direct refractive index measurement tools. The differential 

refractometer is accurate to the sixth decimal place.
121
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Figure 25. Inverse density as a function of PEGL weight percent in water at 20 °C. 

The partial specific volume of PEGL was 0.75 ± 0.01 mL/g. The red line is the fit to 

the data and the green lines are the 95% confidence interval lines.  
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The split cell is illuminated and the light passing through a slit before it enters the cell. 

The light bends at an angle proportionate to the difference in refractive index of the solution and 

the solvent, and a minimum deflection of ~0.01 can be measured. An image of the slit is focused 

on a microscope with a filar micrometer eyepiece with a drum that has a 10 mm fixed scale.  

Lining up a crosshair in the microscope eyepiece with the deflection of the image of the 

slit allows highly accurate measurement of the differential refractive index. This is repeated for 

several concentrations and a plot of the scale read on the microscope as a function of solute 

concentration affords the differential index of refraction. The calibration plot should be close to 

the most linear plot made in graduate school! If there is an offset on the y-axis, it is 

inconsequential and due to misalignment of the instrument. 

Using a sample with a known dn/dc, KCl in this instance, a calibration plot for 632.8 nm 

wavelength was done as shown in Figure 26 where the S and    are defined in Equation 5 and 

Equation 6. From the calibration plot, dS/dn = 587.1 ± 2.4 with r
2 

= 0.99995. 

      
  

  
  Equation 5 

     
  

  
     Equation 6 

S is the signal read from the differential refractometer (the measurement was made at half 

deflection) and O is the offset (the y-intercept).  
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From the slope, dS/dn, the dn/dc can be measured for an unknown sample by using Equation 7 

 
  

  
  

    ⁄

    ⁄
 

              

                 
 Equation 7 

Figure 27 shows a plot of the measured signal as a function of PEGL concentration. 

Inserting the measured values for dS/dn and dS/dc into Equation 7, the dn/dc of PEGL was 

72.81/587.1 = 0.124 ± 0.001 mL/g.  
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Figure 26. Differential refractometer calibration plot of KCl at 

room temperature. S is the measured signal. dS/dn = 587 ± 2. dn/dc 

of KCl used was 0.13182 mL/g at 632.8 nm. r
2 

= 0.999. 
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2.8.2 dn/dc of PEGL by Wyatt Light Scattering Detector 

The experiment for finding the dn/dc of a sample using a Wyatt Dawn DSP Light 

Scattering Detector is very similar to finding the dn/dc with the differential refractometer. A 

calibration plot is built for signal as a function of sample concentration, and the slope is 

multiplied by the calibration constant (see Equation 7: the calibration constant is dn/dS). Figure 

28 shows the signal of PEGL as a function of polymer concentration and the calibration constant 

for the Wyatt (dn/dS) was 0.000184. The dn/dc calculated from the Wyatt Light Scattering 

Detector is 687.4   1.84   10
-3

 = 0.1265 ± 0.001 mL/g. 

Table 4 shows the final calculated values for the dn/dc of PEGL for different conditions, 

wavelengths, and molecular weights. Poly(ethylene glycol) is known to have a dn/dc that 

changes with molecular weight for low molecular weight polymers.
142

 With different molecular 
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Figure 27. Plot of S as a function of PEGL concentration at 

room temperature and 632.8 nm. Red line is the fit. dS/dc = 

72.8 ± 7.2. dn/dc of PEGL is 0.124 ± 0.001 mL/g. Sample #8 

(Mw = 7.60 ± 0.26, PDI = 1.04 ± 0.05). r
2 

= 0.971. 
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weights of PEGL, it can be thought of as changing the amount of oligo(ethylene glycol) in 

solution.  

 

Table 4. dn/dc of PEGL measured and from literature 

Method 
Wavelength 

(nm) 

Mw 

(kDa) 
Solvent 

Temp 

(°C) 
dn/dc Reference Sample # 

- - 43-95
* 

DMF 60 0.123 ± 0.001 72,49 - 

DR 632.8 7.6 Water RT 0.124 ± 0.001 - 8 

DR 488.0 7.6 Water RT 0.123 ± 0.001 - 8 

W 632.8 211 Buffer RT 0.126 ± 0.001 - 2 

A dash means no data. * means the paper did not state which polymer was tested. DR means the 

dn/dc was found with the Brice-Phoenix differential refractometer. W means the dn/dc was 

found via Wyatt DSP Light Scattering Detector. Buffer consists of 200 mM NaNO3 + 10 mM 

NaH2PO4 + 2 mM NaN3 adjusted to pH 7.5. The dn/dc used to calculate all molecular weights 

was 0.126. Error is discussed in the text.  

It may be possible to change the dn/dc based upon the molecular weight of PEGL, based 

solely on the oligo(ethylene glycol) affecting it. The dn/dc shows little change with different 

solvent, wavelength, and PEGL molecular weight. The uncertainty for the dn/dc is taken as the 
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Figure 28. Signal of PEGL measured by the Wyatt Dawn DSP 

Light Scattering Detector at room temperature and 632 nm in 

buffer (200 mM NaNO3 + 20 mM NaH2PO4 + 2 mM NaN3). 

Sample #2 (Mw = 211 ± 1, PDI = 1.21 ± 0.01). r
2 

= 0.998. 
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average of the measurements of the dn/dc and the difference of the maximal value (0.1265) and 

the average (0.125). The dn/dc used to calculate all molecular weights was 0.126 ± 0.001 mL/g 

2.9 Viscosity of PEGL 

In a falling ball viscosity measurement, a ball of known density and diameter is placed 

into a glass cell, and inverted to initiate ball movement. Assuming the ball reaches its terminal 

velocity and is following laminar flow, Stokes’ law can be applied (Equation 8) to obtain the 

friction, F.
143

 

            Equation 8 

where   is the dynamic viscosity,   is the radius of the ball, and   is the terminal velocity. When 

the ball falls as a constant rate the gravitational force equals the buoyant and friction force. When 

this happens, the viscosity can be described by Equation 9 

     (     )    Equation 9 

where   
 

 
    

 

 
 (g is the acceleration due to gravity, s is the distance traveled by the ball),    

is the density of the sphere, and    is the density of the fluid, and   is the time needed to travel 

the distance s. Figure 29 shows a cartoon of the falling ball viscometer. The red lines denote 

inductive sensors measuring the time needed to travel a distance, s. This microviscometer was 

used because it requires very small sample (< 0.5 mL). 
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  Polymeric systems have multiple viscosities. The first discussed is relative viscosity 

(Equation 10). The variable   denotes the time needed to traverse the two sensors in Figure 29. 

The subscripts explain either the polymer solution or the pure solvent.
144

  

      
         

        
 Equation 10 

 

Figure 29. Cartoon of falling ball 

viscometer. Red lines are sensors 

that read when the ball passes to 

calculate the relative viscosity. 

Orange line shows the distance 

the ball travels.  
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Another common viscosity used for polymer solutions is specific viscosity (Equation 11). 

Instead of measuring the time needed to travel a standard distance, the specific viscosity is a 

solvent normalized increase in viscosity when adding polymer to a pure solvent. 

     
                  

        
 Equation 11 

To find intrinsic properties of the polymer, it is necessary to extrapolate to zero polymer 

concentration. In the limit of zero concentration, the specific viscosity affords the intrinsic 

viscosity of the polymer, [η]. 

 [ ]     
   

   

 
    

   

  (    )

 
 Equation 12 

A plot of the specific viscosity normalized with concentration is found in Figure 30. It should 

show a linear dependence with concentration but it shows significant curvature for sample #6 at 

higher concentrations. 

At lower concentrations (less than 3 mg/mL) the polymers appeared to follow a linear 

dependence, and at higher concentrations the viscosity dependence no longer is linear for sample 

#6. Sample #2 is highly helical and tested only at the lower polymer concentrations. The intrinsic 

viscosity for sample #2 from a linear fit to the data for ηsp/c is 20.7 ± 0.8 mL/g, which is much 

larger than sample #6. This is expected because by GPC sample #2 has a much larger average 

molecular weight. Also, being highly helical reduces the possibility for branching. Sample #6 is 

only 33% helical, meaning branching is much more plausible and may be the cause of the lower 

intrinsic viscosity. Branching can be tested by comparing Mark-Houwink and conformation plots 

of a linear and branched polymer. A good solvent system is needed prior to quantification of 

branching.  
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Sample #6 is more complicated than sample #2: two different slopes that can be fit to the 

data (one at low and one at higher polymer concentration). GPC data for sample #6 showed large 

aggregates and circular dichroism of sample #6 showed a 33% relative helicity, increasing the 

complexity. It is hypothesized the higher polymer concentration viscosities are due to large 

aggregates. Data in this dissertation show an increased size dependence on concentration for 

PEGL samples with low percent helicity (Figure 73). The intrinsic viscosity for sample #6 from 

fitting a second order polynomial to the data for ηsp/c is 5.52 ± 0.10 mL/g. If only the lower 

concentration range is fit, the intrinsic viscosity is 4.91 ± 0.10 mL/g. The calculated intrinsic 

viscosities are averages from repeat runs and the uncertainty is the difference between the largest 

value from the fit and the average.  
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Figure 30. Specific viscosity as a function of PEGL concentration in 

water. Open triangles are sample #6 and the open circles are sample 

#2 (Mw = 211 ± 1, PDI = 1.21 ± 0.01).The red line is a polynomial fit 

to the data and the intercept for is 5.42 ± 0.69 mL/g. The blue line is 

a linear fit and the intercept is 21.48 ± 2.37. Uncertainty from fit is 

found by 95% confidence interval.  
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Figure 31 shows a plot comparing       
   

 
  and       

  (    )

 
 with the expected 

result
145

 that they have the same intercept, as mathematically required when the solutions are 

sufficiently dilute and the data sufficiently quiet. Figure 32 shows the result for PEGL. Figure 31 

shows both plots in Figure 32 should have identical y-intercepts, this is not the case. Aggregation 

is likely causing the two intercepts to not match. If the aggregates are not tightly bound, the ball 

dropped in the cell may be shearing the aggregates.  

 

The inverse of intrinsic viscosity approximates the overlap concentration needed for the 

polymer to interpenetrate.
146

 From the intrinsic viscosities measured (sample #6: ηsp/c is 5.53 ± 

0.10 mL/g and ln(ηrel)/c is 6.77 ± 0.10 mL/g; sample #2: ηsp/c is 20.7 ± 0.8 mL/g and ln(ηrel)/c is 

28.3 ± 0.3 mL/g) the approximate overlap concentrations are much higher (the lowest overlap 

concentration was sample #2 at 35 mg/mL) than the concentrations regimes studied. The 

 

Figure 31. Double plot of viscosity data to obtain intrinsic viscosity, [η]: 

squares, c
-1

ln(ηrel); triangles, ηsp/c; solid lines, unweighted least-squares fits. 

PBT-7.3 in 97% H2SO4 at 100 °C. Reprinted with permission from Russo, P. 

S.; Siripanyo, S.; Saunders, M. J.; Karasz, F. E. Macromolecules 1986, 19, 

(11), 2856-2859. Copyright 1986 American Chemical Society. 
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polymers should behave independently in these concentrations and follow linear trends. It 

appears for both sample #2 and sample #6 they do follow a linear trend at lower polymer 

concentrations. Sample #6 exhibits considerable curvature at higher concentrations (discussed in 

the previous paragraph).  

 

Another issue is the slope for ηsp/c (Figure 32) is positive when it should be negative. 

This may be due to the type of viscometer used. An Ubbelohde type viscometer was used for the 

experiment in Figure 31.
145

 With large polymer concentrations, the ηrel is very large, increasing 

the accuracy of the measurement. For this experiment, a falling ball viscometer was used. The 

relative viscosity for the lowest concentrations were very close to the pure solvent (ηrel = 1.005) 

and for the highest concentration ηrel = 1.15. Ideally, the relative viscosity would be much larger 

but the concentrations regimes tested had viscosities similar to the solvent. The advantage to the 
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Figure 32. Double plot of viscosity data to obtain intrinsic viscosity, 

ηsp/c: circles, c
-1

ln(ηrel): squares; red lines are polynomial fits. ηsp/c is 

20.7 ± 0.8 mL/g and ln(ηrel)/c is 28.3 ± 0.3 mL/g. Sample #2 (Mw = 

211 ± 1, PDI = 1.21 ± 0.01) in water. 
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microviscometer used was the low sample concentrations needed. Higher concentrations of 

PEGL were not tested because other techniques used (DLS, GPC, etc.) used lower polymer 

concentrations (less than 10 mg/mL) and a comparison was desired between them.  

2.10 Mass Spectrometry of PEGL 

Figure 33 shows a MALDI spectrum of sample #8 in water with a CHCA (α-cyano-4-

hydroxycinnamic acid) matrix. Although the National Institute of Standards and Technology 

have published MADLI recipes for quantitatively characterizing polymers, it can be a 

challenging endeavor. However, true molecular weight determination is impossible if intensity is 

not correctly calibrated for quantifying the intensity peak.
147

 For PEGL, the goals were to 

observe the molecular weight distribution and to find different chain lengths based on the 

measured mass-to-charge ratio (2-mer, 3-mer, etc.). Figure 33 shows, and it is more clearly seen 

in the inset, at least two major distributions. The masses and calculated chain length are found in 

Table 5. There appears to be more than two distributions present but only the main two 

distributions were characterized. The average mass/charge between each peak in the main 

distribution was 288.46 and was 288.49 for the secondary distribution. Each was consistent with 

the mass of the PEGL repeat unit, 288.34 g/mol. 

Figure 34 shows a MALDI spectrum of sample #2 in water. Again, there appears to be 

multiple distributions. Only the main distribution (the set of peaks with the highest intensity) was 

characterized and is found in Table 6. The average difference between peaks was 282.72 m/z for 

sample #2, only nominally close to the expected m/z of 288.34 g/mol for PEGL. There was no 

cation (K
+
 or Na

+
), solvent (H2O, methanol), or combination of both that would afford integer 

values for the number of repeat units. There are small peaks above m/z of 6,000, maybe 

indicating longer polymer chains or branching.  
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Table 5. Peak data from the MADLI spectrum for sample #8 in water from Figure 33 

Main distribution Second distribution 

m/z ( end group and Na 

subtracted) 

#of repeat 

units 

m/z (end group and K
+
 

subtracted) 

#of repeat 

units 

3767.199 13.08 4042.948 14.02 

4038.491 14.02 4330.89 15.02 

4326.135 15.02 4619.76 16.02 

4612.972 16.02 4909.029 17.03 

4902.807 17.02 5196.595 18.02 

5191.364 18.03 5485.275 19.02 

5480.133 19.03 5772.785 20.02 

5767.784 20.03 6063.038 21.03 

6056.458 21.03 6351.002 22.03 

6344.614 22.03 6638.618 23.02 
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Figure 33. MALDI spectrum of sample #8 (Mw = 7.60 ± 0.26 kDa, PDI = 1.04 ± 

0.05) in water. The matrix was CHCA and the measurement was in linear mode. 
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Table 5 continued   

Main Distribution 

 

Second Distribution 

m/z ( end group and Na 

subtracted) 
#of repeat units 

m/z (end group and K
+
 

subtracted) 
#of repeat units 

6633.573 23.03 6926.933 24.02 

6922.944 24.04 7216.748 25.03 

7210.421 25.04 7505.028 26.03 

7499.045 26.04 7792.141 27.02 

7788.14 27.04 8083.413 28.03 

8076.192 28.04 8369.647 29.03 

8365.747 29.05 8660.429 30.04 

8654.08 30.05 8947.159 31.03 

8943.013 31.05   

9231.9 32.06   

9518.303 33.05   

  

 Table 6. Peak data from the MALDI spectrum for sample #2 in water for Figure 34 

Main distribution 

m/z ( end group and Na subtracted) #of repeat units 

1288.355 4.47 

1564.767 5.43 

1885.675 6.54 

2167.299 7.52 

2447.865 8.49 

2731.939 9.47 

3013.43 10.45 

3322.458 11.52 

3577.148 12.41 

3860.646 13.39 

4146.057 14.38 

4428.537 15.36 

4714.313 16.35 

4996.104 17.33 

5287.985 18.34 

5560.649 19.29 

 

MALDI was used to investigate aggregation of sample #6 in buffer solution. Figure 35 

shows the chromatogram of sample #6 in buffer. Clearly, the sample is bimodal. The peaks in the 
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light scattering data to the left (fraction 1) and right (fraction 2) of the blue line in Figure 35 were 

collected and characterized by MALDI (Figure 36).  

  

From the MALDI spectrum, the average difference in m/z value between the main 

distribution peaks for fraction 1 was 290.3 and for fraction 2 was 287.7. In a gel permeation 

experiment, larger molecular weight polymers elute prior to smaller polymers. Fraction 1 should 

have larger molecular weight and m/z values than fraction 2. In the contrary, fraction 2 has a 

larger m/z and this may be due to several reasons.  

First, larger polymers do not charge as well smaller ones. This may eliminate any signal 

for larger polymers, giving decreased m/z values compared to the polymers actual m/z ratio. 

Also, the polymer may become charged in multiple places along the same chain, decreasing the 

m/z ratio measured. 
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Figure 34. MALDI spectrum of sample #2 (Mw = 211 ± 1 kDa, PDI = 1.21 

± 0.01) in water. The matrix was dithranol and the measurement was 

performed in linear mode. 
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Table 7. Peak data from the MALDI data for sample #6 in water from Figure 36 

Fraction 1 Fraction 2 

m/z ( end group and Na 

subtracted) 

#of repeat 

units 

m/z (end group and K
+
 

subtracted) 

#of repeat 

units 

953.256 3.31 1451.868 5.04 

975.134 3.38 1741.392 6.04 

997.575 3.46 2030.199 7.04 

1019.629 3.54 2319.102 8.04 

1087.847 3.77 2607.22 9.04 

1110.475 3.85 2896.379 10.05 

1133.129 3.93 3183.937 11.04 

1155.139 4.01 3472.799 12.04 

1177.984 4.09 3759.856 13.04 

1199.924 4.16 4048.459 14.04 

1222.269 4.24 4336.228 15.04 

1244.545 4.32 4625.264 16.04 

1267.189 4.39 2911.991 10.10 

1289.16 4.47 5199.726 18.03 
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Figure 35. Gel permeation chromatogram of sample #6 in buffer 

(200 mM NaNO3 + 20 mM NaH2PO4 + 2 mM NaN3). The black 

line is the light scattering signal and the red line is the DRI signal. 

Left peak Mw = 189 ± 1 kDa, PDI = 2.60 ± 0.03; right peak Mw = 

9.2 ± 3.2 kDa, PDI = 1.10 ± 0.09. The blue denotes the separation 

in collection for fraction 1 and fraction 2. 
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Table 7 continued 

Fraction 1 Fraction 2 

m/z ( end group and Na 

subtracted) 

#of repeat 

units 

m/z (end group and K
+
 

subtracted) 

#of repeat 

units 

1379.237 4.78 5487.506 19.03 

1401.9 4.86 5775.556 20.03 

1425.174 4.94 6062.795 21.03 

1447.803 5.02 6350.085 22.02 

1470.118 5.10 6638.251 23.02 

1491.578 5.17 6924.85 24.02 

1601.815 5.56 7211.694 25.01 

1626.996 5.64 7500.005 26.01 

1648.132 5.72 7787.14 27.01 

1670.43 5.79 8074.551 28.00 

1693.721 5.87 8359.694 28.99 

1715.224 5.95 8647.649 29.99 

1738.098 6.03 8932.972 30.98 

 

The sensitivity of the detector also decreases with increased molecular weight. These 

reasons seem unlikely because of the dramatic difference in the peak shapes for fraction 1 and 2. 

In addition, the average m/z ratio between peaks is much different. MALDI was chosen to 

elucidate the difference between fraction 1 and 2 because if aggregation were occurring of a 

monodisperse system, the MALDI spectra should be similar. In this case, they are very different, 

possibly meaning the large aggregates are composed of much smaller and polydisperse 

polymers. The shorter chain polymers have less percent helicity, indicating they are random 

coils. They may aggregate more being random coils as opposed to helical polymers. Another 

option consistent with the data is the larger polymers were heavily fragmented and caused the 

multiple distributions ( > 4 are visible). Therefore, each distribution is the same polymer but with 

more or less charge. This may also be seen in fraction 2 because of the several overlapping 

distributions.  
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Additionally, the polymers may be interacting with the column and reversing the elution 

order. If true, this would cause problems with persistence length calculations and conformation 
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Figure 36. MALDI spectra of sample #6 (Mw = 210 ± 4 kDa, PDI = 2.23 

± 0.07) in buffer (200 mM NaNO3 + 20 mM NaH2PO4 + 2 mM NaN3). 

A is fraction 1 and B is fraction 2. The matrix was sinapinic acid and the 

experiment was performed in linear mode.  



 

74 

plots; because the conformation plots are molecular weight measured as function of elution 

volume linear (Figure 60), it appears this reversal in elution did not occur.  

2.10 Microscopy of PEGL 

2.10.1.1 Optical Microscopy 

Optical microscopy is highly valuable for characterizing stiff polymers because they have 

unmistakable visual cues. The main one is in the form of liquid crystals because random coil 

polymers do not form liquid crystals. Liquid crystals may form in several ways: increasing 

polymer concentration, known as lyotropic liquid crystals, or with temperature change, known as 

thermotropic liquid crystals. Liquid crystals form a mesogenic state, somewhere between a solid 

and liquid, and form when rigid rodlike structures align in a liquid phase. The alignment of liquid 

crystals is quantified by the order parameter, S, found in Equation 13. 

   
 

 
           Equation 13 

 

Liquid crystals can order several ways (Figure 38) and can be identified by the structures 

observed in a polarizing optical microscope.
148

 Nematic liquid crystals have orientational order 

in one direction while smectic and cholesteric have orientation in multiple directions. Another 

 

Figure 37. Cartoon of 

the alignment of a 

rodlike mesogen.  
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name for cholesteric liquid crystals is twisted nematic because each plane is oriented like a 

nematic liquid crystal.  

 

 For a cholesteric liquid crystal, the director twists as we travel from one plane to another. 

The pitch is defined as the distance required for the director to rotate by a full 360 degrees. 

Theory can predict the liquid crystal concentration onset based upon the axial ratio of the rodlike 

polymer. Onsager and Flory predict the onset of nematic liquid crystals forms at the number 

density, v
*
 

    
 

  
 

  

    
 Equation 14 

        Equation 15 

    (  ⁄ ) (    ⁄ )⁄  Equation 16 

 

Figure 38. A sampling of common liquid crystals orientations. From reference 3. 
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where d is the diameter of the rod, and L is the length of the rod, x is the axial ratio (L/d),    is 

the Onsager volume fraction and    is the Flory volume fraction.
149

 

Amazingly, liquid crystals form an ordered phase “even in the absence of any specific 

energetic interaction between the rods or between rods and solvent”.
149

 The formation of a liquid 

crystal forms spontaneously and is highly stable for rods because of little entropic penalty 

compared to random coils due to their decreased flexibility.  

Rodlike polymers possess this unique feature due to a parameter the Flory interaction 

parameter, χ, a measure of the solvent-polymer interaction. Random coil polymers possess a χ 

also, but it depends on the axial ratio (x), a small value for random coils. For rodlike polymers, 

phase separation occurs at much lower values than for random coils due to the increased axial 

ratio; this means phase separation is easily attainable in experimental conditions.  

2.10.1.2 PEGL Liquid Crystals in Water 

Several different samples of PEGL were tested for liquid crystal formation in water. 

Figure 39 shows images taken on an Olympus BH2 polarizing optical microscope with a digital 

AmScope Camera. 

Cholesteric liquid crystals show fingerprint patterns due to the rotating order parameter 

with each plane (from dark stipe to dark stipe is half the pitch). Figure 39 shows PEGL forms a 

cholesteric liquid crystal, evidenced by the fingerprint pattern, consistent with previous 

observations.
119

 Experimentally measured, the pitch was 8 ± 2 microns, larger than previously 

reported data reported at a lower concentration.
119
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There were no error bars in the previously measured
119

 sample pitch so a direct comparison 

cannot be made, but at 55 weight percent the pitch was approximately 8 microns (very close to 

the 60 weight percent PEGL from Figure 25). Figure 40 shows many different orientations for 

the fingerprint banding, indicative of multiple domains. The dark regions (i.e. in the middle of 

the image) in Figure 39 are expected to be due to impurities or the orientation of the liquid 

crystal. The impurities may be low molecular weight PEGL that are present in the GPC trace or 

aggregates that do not form liquid crystals. 

An interesting observation was the viewing of aggregates both with and without cross 

polarization (Figure 40). Table 8 follows the growth of the aggregates under cross polarization 

after loading into the Vitrocom cell. As time progressed, aggregation increased in the solution. A 

curious observation can be seen in images C-E: the aggregates resemble an empty tube, like a 

 

Figure 39. Optical image of sample #1 (Mw = 53.4 ± 5.9 kDa, 

PDI = 1.32 ± 0.23) at room temperature and 60 weight percent 

in water. Pitch is 7.5 ± 1.7 microns. Cross polarization was 90°.  
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drinking straw. This may indicate a rod like morphology for aggregates observed in solution, a 

not uncommon occurrence.
150

  

 

The aggregates are also birefringent, suggesting they are either crystals or liquid crystals. 

The cholesteric banding was lost upon heating but returned when cooled. The aggregates did not 

reform possibly due to several reasons: the impurities were excluded from the liquid crystal 

domains (the dark line separating cholesteric liquid crystal domains) or they became soluble 

upon heating. Also, the cholesteric banding and pitch was more uniform following heating (22.3 

± 2.8 μm). 

 

 

 

Figure 40. Optical image of sample #1 (Mw = 53.4 ± 5.9 kDa, 

PDI = 1.32 ± 0.23) at room temperature and 60 weight percent 

in water. Pitch is 6.5 ± 2.0 microns. Cross polarization was 90°.  
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Table 8. Sample #3 (Mw = 225 ± 2 kDa, PDI = 1.16 ± 0.01, 66 wt% in water). The scale bar on 

each image is 100 μm. 

A 

 
1 day 

B 

 
1day 

C 

 
4 days 

D 

 
4 days 

 

E 

  
Heated until no cholesteric banding 

 

F 

  
After heating, sat several days 
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Sample #12 was also tested to see if it would form liquid crystals. Following the Onsager 

and Flory predictions, (Mn = 15.5 kDa, PDI = 1.2, diameter = 2.2 nm)         and    

   . Theoretically, this polymer should not form a liquid crystal at this low of a concentration 

because its axial ratio is too small. This shows that even at the low measured molecular weight, 

PEGL can form liquid crystals. Figure 41 shows liquid crystals forming at 50 weight percent. 

Cholesteric banding is present (Figure 41 B) but also is an apparent crystal. Either the molecular 

weight found from GPC is too low or the polymer is behaving like a larger polymer, possibly 

from aggregation that forms a semi-rigid rod. Also, if it is aggregating in a segmental fashion 

(see conclusions for chapter 3) the diameter may be larger, further increasing the concentration 

needed, further suggesting the polymer is aggregating into an extended structure. This suggests 

the polymer is aggregating and it must be in an extended conformation in order to form a liquid 

crystal. This would explain why the polymer appears to be rodlike, even if the polymer is 

aggregating. 
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A) 

 

B) 

 

Figure 41. 50 weight percent sample #12 (Mw = 18 ± 1 kDa, 

PDI = 1.16 ± 0.01) in water. Cross polarization at 90°. The 

pitch is 3.3 ± 0.3 μm. 
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2.10.1.3 PEGL Liquid Crystals in Buffer 

This same polymer (sample #12) behaves differently in the buffer solution than water. At 

50 weight percent the polymer did not form a liquid crystalline phase. It appears at this high 

concentration, the polymer precipitates and forms many crystals (Figure 42). These crystals are 

visible with and without cross polarization (Figure 43) and were also visible as small white 

crystals by eye. This shows the polymer is less soluble in the buffer than pure water. This is fully 

plausible because from the Hofmeister salt series, sodium is a cation known to salt-out polymers 

and explains why in further data PEGL behaves differently in water and buffer.  

 

 

Figure 42. 50 weight percent sample #12 (Mw = 18 ± 1 kDa, 

PDI = 1.16 ± 0.01) in buffer (200 mM NaNO3 + 20 mM 

NaH2PO4 + 2 mM NaN3). Cross polarization at 90° with 

colored filter to exaggerate colors.  



 

83 

 

2.10.1.4 PEGL Liquid Crystals in Dimethylformamide 

PEGL shows possible liquid crystalline phases in dimethylformamide, DMF (Figure 44). 

 

The exact concentration of the polymer is not known because the sample was an aliquot 

from the polymerization solvent. Although a possible liquid crystal formed, it was not a 

cholesteric liquid crystal like in water. According to circular dichroism, sample #17 is 51% 

helical and the conformation plot from GPC in DMF + 0.1 M LiCl shows the polymer to be a 

 

Figure 43. 50 weight percent sample #12 (Mw = 18 ± 1 kDa, 

PDI = 1.16 ± 0.01) in buffer (200 mM NaNO3 + 20 mM 

NaH2PO4 + 2 mM NaN3). 

 

Figure 44. Sample #17 (Mw = 190 ± 1 kDa, PDI = 1.37 ± 0.01) in 

DMF, room temperature, concentration not known. Cross 

polarization at 90°. 
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random coil (slope = 0.57). Despite the low helicity and the conformation plot data showing the 

polymer to be a random coil, the polymer may have formed a liquid crystal. This shows PEGL 

behaving differently than expected again. The polymer has to be in some type of extended 

structure, contrary to the GPC data. Once again, this may be happening due to an aggregate in an 

extended structure. Table 9 shows optical micrographs of sample #12 in DMF when heated. It 

appears the type of liquid crystal structure may be stable when heated. Another possibility is the 

polymer has made a gel, not a liquid crystal, and the images above are due to multiple scattering. 

Table 9. Sample #12 (Mw = 18 ± 1 kDa, PDI = 1.16 ± 0.01) in DMF when heated. The scale bar 

on each image is 100 μm. 

A 

 
30 °C 

B 

 
60 °C 

C 

 
95 °C 

D 

 
120 °C 
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2.10.2 Cryo-TEM of PEGL 

Cyro-TEM was performed to try to directly image the shape of the polymer. If the 

measured molecular weights are to be believed, sample #2 and sample #18 should have lengths 

of 110 nm and 274 nm respectively, assuming a rigid rod (sample #18 only is 51% helical by CD 

so a more accurate length is much less). The contrast and brightness of the image have been 

changed to accentuate the dark lines seen in Figure 45, presumed to be rodlike polymer.  

 

Measuring the length of six dark lines on the image give an average length and molecular 

weight of the presumed PEGL rods in the image to be 23 ± 7 nm for length and 44.6 ± 13.3 

kg/mol for the molecular weight (from Equation 24). The sampling from measuring dark lines in 

the Cryo-TEM image is much smaller than from GPC. Comparing the molecular weights 

measured by GPC, this is half of the molecular weight measured in water and almost five times 

smaller than the molecular weight measured in GPC solvent. Also, tracing some of the dark lines 

that are expected to be rodlike polymer, it appears there may be branching. This may be a 

consequence of multiple focal planes in focus or actual branches.  

 

Figure 45. Cryo-TEM micrograph of sample #2 in 

water (Mw = 211 ± 1 kDa, PDI = 1.21 ± 0.01).  
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A) 

 

B) 

 

C)  

 

Figure 46. Cryo-TEM images of sample 

#11 in A (buffer, 200 mM NaNO3 + 20 

mM NaH2PO4 + 2 mM NaN3) B (buffer), 

and C (ethanol). 
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 Cryo-TEM was also performed on a larger polymer, sample #18 (Figure 47). Although 

the measured molecular weight is larger for sample #18 than sample #2, the micrograph possess 

no notable features. If the GPC measured molecular weight is accurate, the cryo-TEM would 

easily show the polymer, suggesting the measured molecular weight from GPC is much higher 

than the true molecular weight. It might also be possible that PEGL samples with lower percent 

helicity aggregate in a more aggressive fashion.  

 

2.11 Gel Permeation Chromatography of PEGL 

2.11.1 GPC Theory 

Gel permeation chromatography, GPC, is one of the most important polymer 

characterization techniques. GPC is an analog to HPLC, a column separation technique, flowing 

an analyte solution through a solid phase separation media. HPLC requires interaction between 

the analyte and the separation medium but GPC works differently. The separation occurs due to 

the difference in size of the molecules: small molecules stick in the pores of column while the 

 

Figure 47. Cryo-TEM micrograph of sample #18 

(Mw = 530 ± 4 kDa, PDI = 1.27 ± 0.02) in water.  
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larger polymers are not as hindered. Because the separation is based on size and not molecular 

weight, different columns are needed to separate different sized polymers (unless the column is 

meant for large range in molecular weight). 

If a GPC is set-up for a general polymer query, multiple mixed columns are required for a 

thorough separation. This allows polymers of different molecular weights to elute from the 

column at different volumes, creating many narrowly dispersed molecular weight fractions. This 

eliminates the need to perform experiments with samples that have a narrow PDI, unlike other 

characterization techniques.  

 

These fractions of molecular weights are flowed into different types of detectors: light 

scattering, differential refractive index (DRI), viscosity, UV, etc. If the GPC is calibrated or if 

multiple detectors are used, quantitative information can be found about many aspects of the 

polymer: PDI, molecular weight, conformation, branching, etc.
151

 The different molecular 

 

Figure 48. GPC-MALS separation of two mixed dextrans, red line, (M = 80.9K 

and 23.8K from Polymer Standard Services, Mainz, Germany). Individual runs 

for each polymer (blue line 80.9K and green line 23.8K) are also present.  
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weights are too close to successfully separate due to an inherent separation limitation in a GPC 

experiment. The resultant peaks (typically measured by light scattering and differential refractive 

index) are broad and not the typical narrow peaks associated with chromatographic separations. 

 Many different types of columns are available, and if the molecular weight of the analyte 

is previously known, a corresponding column can be used to increase the separation. It has been 

shown GPC struggles to separate polymers with a molecular weight that differs by three (Figure 

48).
152

 Multiple distributions can be seen but not quantitatively separated. If the polymer has a 

unimodal distribution and a reasonably small PDI, GPC works well. If the polymer has several 

distributions or if the PDI is too large, it should be separated on a preparative column prior to the 

GPC experiment.  

Along with molecular weight and PDI, GPC can give other parameters. A conformation 

plot, log(molecular weight) along the abscissa axis and log(radius of gyration) along the ordinate 

axis, shows the morphology of the polymer. If the slope = 1, the polymer is an infinitely long 

stiff rod, if the slope = 0.5 the polymer is a random coil, and if the slope is below 0.5 the 

molecule is globular in shape.
5
 A typical value for PBLG, a semiflexible rod, is 0.83-0.78.

96
  

2.11.2 GPC Molecular Weight Calculation of PEGL 

A GPC chromatogram of a PEGL sample with 100:1 [M]:[I] in buffer solution (200 mM 

NaNO3 + 20 mM NaH2PO4 + 2 mM NaN3) can be found in Figure 49. The signal shows the 

polymer was not of unimodal distribution, a shoulder appears. The peak of the DRI signal shows 

the shoulder at lower elution volume was the less abundant species. This means the sample was 

not highly dispersed but had high molecular weight impurities. This is expected because dialysis 

was performed, eliminating small molecular weights. The DRI signal shows two other peaks at 
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high elution volumes. The DRI is more sensitive to small molecules than the light scattering 

detector; the small peaks in the DRI were due to very low molecular weight impurities (possibly 

salt that was separated by the column).  

 

Table 10 is a comprehensive list of the different PEGL polymers synthesized. The 

molecular weights were all calculated with aqueous GPC (except sample #18) with a dn/dc = 

0.126 mL/g. The uncertainty is estimated by either of two ways: the preferable method is 

averaging three repeat runs but if three repeat runs were not performed, the uncertainty is 

estimated from different fits of the same data. Repeat runs give more insight for the results, i.e. if 

the polymer is aggregated, each run should provide quite different results because the aggregate 

may be broken in a non-repeatable fashion; this cannot be checked if only one injection is used.  
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Figure 49. GPC of PEGL in buffer (200 mM NaNO3 + 20 mM 

NaH2PO4 + 2 mM NaN3, sample #2, Mw = 211 ± 1 kDa, PDI = 1.21 

± 0.01). The black line is the light scattering signal and the red line is 

the DRI signal. 
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Three different initiators were used, Nibpy(COD) (the nickel initiator discussed in section 

3.2.3), sodium methoxide (NaOCH3), and triethylamine (TEA). The nickel catalyst was 

predominately used because it has been proven capable to produce controllable molecular 

weights and low PDI.
72

 Sodium methoxide was used because Blout synthesized poly(lysine) in 

dioxane with a molecular weight in the millions using it. Triethylamine was used because it is an 

AMM initiator, theoretically providing higher molecular weight polymers (at the cost of higher 

polydispersity).  

Although the secondary goal of the synthesis was to have many different molecular 

weight polymers, the primary goal was a high molecular weight polymer. Table 9 shows that 

sample 18 has the highest molecular weight, but much shorter than the goal of one million. Table 

9 also shows a large discrepancy between each sample with equal monomer:initiator loading. 

The polymerization did not proceed in a well-controlled fashion for several possible reasons. 

First, the purity of the NCA is of utmost importance for a well-controlled polymerization. The 

method used for purifying the NCA was crude at best (see synthesis of Nε-2-[2-(2-

methoxyethoxy)ethoxy]acetyl-Nα-Z-L-Lysine-N-Carboxyanhydride (8)). Although the NCA 

appeared to be fluffy, needle-like crystals, some impurities such as HCl may still be present 

because the pH was not tested on every sample. Also, NCA reactions were run on a ten gram 

scale. This means that multiple polymerization attempts can be ruined if the crop of NCA is 

impure. A larger NCA reaction may have more impurities, making purification more difficult.
15

 

This would pose a large problem, especially if the NCA is not used immediately after 

purification. The method used to purify the latest NCA reaction products was column 

chromatography.
49

 This method, although tedious and ruinous to the NCA crop if the column is 

not dry, provided acceptable yields (> 50%) of highly pure NCA. A second problem with the 
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polymerization may be the nickel catalyst -- in a prototypical procedure, the Nibpy(COD) was 

synthesized, dried, and re-suspended in THF. 

Table 10. PEGL molecular weights calculated from GPC/MALS for multiple samples in buffer 

solution 

# [M]:[I] 
Theoretical 

Mn (kDa) 
Book 

# 
Mn (kDa) Mw (kDa) PDI 

% 
helicity 

Initiator 

1 100 28.83 2.160 40.5 ± 5.3 53.4 ± 5.9 1.32 ± 0.23 75 Nibpy(COD) 

2 100 28.83 2.166 174 ± 1 211 ± 1 1.21 ± 0.01 95 Nibpy(COD) 

3 150 43.25 2.167 194 ± 1 225 ± 1 1.16 ± 0.01 98 Nibpy(COD) 

4 200 57.67 3.28 52.8 ± 0.7 157 ± 1 2.94 ± 0.39 - TEA 

5 250 72.09 3.29 43.9 ± 0.6 50.3 ± 0.9 1.15 ± 0.03 - TEA 

6 300 86.50 3.44 94.4 ± 2.4 210 ± 4 2.23 ± 0.07 33 TEA 

7 250 72.09 3.45 6.5 ± 0.5 6.8 ± 0.4 1.04 ± 0.11 - TEA 

8 350 100.90 3.59 7.3 ± 0.3 7.6 ± 0.3 1.04 ± 0.05 - TEA 

9 300 86.50 3.60 6.9 ± 0.4 7.1 ± 0.4 1.02 ± 0.07 - TEA 

10 250 72.09 3.61 8.1 ± 0.1 8.3 ± 0.1 1.03 ± 0.01 - TEA 

11 500 144.20 3.75 12.2 ± 0.1 14.9 ± 0.1 1.22 ± 0.01 - Nibpy(COD) 

12 200 57.67 3.76 15.5 ± 0.1 18.1 ± 0.1 1.16 ± 0.01 50 Nibpy(COD) 

13 300 86.50 3.77 15.6 ± 0.2 18.2 ± 0.2 1.17 ± 0.02 25 Nibpy(COD) 

14 400 115.30 3.78 17.4 ± 0.2 20.9 ± 0.2 1.20 ± 0.02 - Nibpy(COD) 

15 400 115.30 3.111 18.4 ± 0.6 22.8 ± 0.5 1.24 ± 0.05 - NaOCH3
 

16 400 115.30 3.117 394 ± 3 423 ± 1 1.07 ± 0.01 - Nibpy(COD) 

17* 500 144.20 3.128 138 ± 1 190 ± 1 1.37 ± 0.01 - Nibpy(COD) 

18 500 144.20 3.128 414 ± 4 526 ± 4 1.27 ± 0.02 51 Nibpy(COD) 

19 300 86.50 3.44 8.7 ± 0.6 9.2 ± 0.5 1.06 ± 0.09 33 TEA 

20 200 57.67 3.28 46.3 ± 4.6 84 ± 8 1.80 ± 0.18 - TEA 

21 200 57.67 3.28 230 ± 2 700 ± 70 3.05 ± 0.31 - TEA 

22† 100 28.83 2.166 85 ± 6 90 ± 7 1.07 ± 0.11 - Nibpy(COD) 

 * Molecular weight data was found in DMF, † molecular weight data was found in water 

As long as the THF solution was a dark purple, the catalyst was considered active. This 

was bad practice as the catalyst may decompose over time although enough time had passed 
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between polymerization attempts that new catalyst was almost always synthesized; a different 

method was adopted for the last few polymers (#16-18), using freshly synthesized catalyst for 

each polymerization that was not dried and stored. The catalyst was easily synthesized by stirring 

the requisite reactants overnight, provided polymers with lower PDI and more controllable 

molecular weight.  

In accordance with the NCA and catalyst purity, if large molecular weight polymers are 

desired, it requires a very small loading of catalyst. This means the NCA and catalyst needs to be 

ultra-pure because any trace impurity can deactivate the catalyst. This was likely the cause for 

polymer samples #7-15 having small loadings of catalyst but only low molecular weights. 

Another problem may be the purity of the solvent used. It was discussed in the first 

chapter that side reactions with the growing poly(α-amino acid) chains can terminate the chain 

ends. THF was almost exclusively used to lower likelihood the chains were end-capped by 

reaction with solvent. DMF was used only once as the polymerization solvent and the resultant 

polymer had the highest molecular weight to date. It is plausible DMF made a difference but a 

greater likelihood was the NCA was very pure because it was purified by column 

chromatography. 

2.11.3 GPC/MALS Conformation Plots of PEGL 

GPC/MALS can measure the molecular weight distribution to find average molecular 

weight and PDI of polymeric samples. It is not limited to molecular weight, but can illuminate 

the morphology of the polymer by building a conformation plot of size as a function of 

molecular weight. This gives information on the shape or conformation of the scattering object. 

In a prototypical GPC, a light scattering detector is used. The light scattering detector has many 
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different detectors (18 if are all working) at different angles to measure the scattered intensity. 

This can be plotted in a non-Zimm fashion (what it is called in our lab, meaning a Zimm plot 

without the concentration scaling term on the x-axis) to find the radius of gyration, Rg, and 

molecular weight. This is performed for each “slice” separated by the column, providing the 

molecular weight distribution. Then log(Rg) and log(M) can be plotted. A line is fit to the data 

and the slope changes depending upon the morphology of the polymer. If the polymer is a 

globule the slope = 0.3, a random-coil the slope = 0.5, and an infinitely long stiff rod the slope = 

1. Because PEGL is supposed to be a helical poly(α-amino acid), it should be a semiflexible rod 

with a slope ~0.8. 
96, 97

 

A conformation plot for sample #2 is shown in Figure 50. The polymer was synthesized 

and dried (residual water content ~2%). The polymer was a soft, sticky, clear candle wax type 

substance. The molecular weight was analyzed one year and two years after synthesis and a 

conformation plot was calculated. Figure 50 shows the polymer to be stiff one year after storage 

in the refrigerator. It was noted that the polymer may oxidize so the polymer was kept under 

nitrogen atmosphere by filling the vial and capping quickly prior to storage.
153

 After one year the 

slope was 0.84 ± 0.01, indicating the polymer was equally as stiff as the commonly used PBLG 

(slope = ~0.8). After two years, the slope was 0.65 ± 0.01 indicating the polymer has changed 

conformation from a rodlike morphology to a more random coil like morphology. This is 

contrary to the circular dichroism studies that show the polymer to persist as an α-helix after two 

years (Figure 23). 

Unexpectedly, a specific molecular weight provided different radii for the same polymer 

at different times. This should not occur because they are both sample #2, showing after two 

years the polymer is likely aggregated worse over time. Although sample #2 is old, newly 
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synthesized polymers show the same problems. Other polymers, such as PBLG, do not show this 

phenomena (see Figure 14). 

  

Although the slope in Figure 50 was 0.84 ± 0.01 after one year, the fit was not very 

trustworthy. The goal of the project is to make a stiff rigid rod that behaves as a model system. 

To characterize the polymer reliably, we need to have several decades of molecular weight. 

Figure 50 does not meet the prerequisite. The molecular weight was not large, Mw = 211 kDa and 

the PDI was not broad, PDI = 1.21. Because of the size of the polymer, only a fraction of the 

peak that can be analyzed. Due to the limitations of the sensitivity of the light scattering detector, 

it cannot reliably calculate Rg that are below 10 nm. This shows as noise below 1 on the ordinate 
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Figure 50. Conformation plots of PEGL (sample #2, Mw = 211 ± 1 

kDa, PDI = 1.21 ± 0.01) in buffer (200 mM NaNO3 + 20 mM 

NaH2PO4 + 2 mM NaN3) after one or two years aging in the 

refrigerator as a solid. The slope of the fitted line after one year was 

0.84 ± 0.01 and after two years was 0.65 ± 0.01. The blue line is the 

calculated radius of gyration for a perfectly stiff rigid rod based on the 

measured molecular weights. 
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axis in Figure 50. The maximum measured Rg was only ~20 nm. It is now apparent why high 

molecular weights are desired; they provide larger Rg, leading to more reliable data.  

Figure 51 shows several conformation plots of sample #2 in azide and buffer. It shows 

that the conformation does not dramatically change between azide and buffer but also shows 

inconsistency between runs in the buffer. Regardless, the slopes show the polymer is more 

random coil than rodlike polymer after 2 years in the refrigerator. Once again, the change may 

have been due to the polymer degrading over time. This may not be happening because the 

circular dichroism still shows the same helicity at 2 years as the fresh polymer (Figure 23). 

Figure 52 shows a conformation plot sample #18 (Mw = 526 kDa and a much younger 

polymer) in buffer solution. The slope was 0.41 ± 0.01. This shows a larger molecular weight 

polymer, in this instance, was no longer a stiff polymer, but something between a random coil 

and a globule. This may be more telling than the other conformation plots because the sizes are 

larger. If the sample is too small, the polymer does not appreciably bend and the persistence 

length cannot be measured. 

For larger molecular weights, ample bending allows a true persistence length to be 

calculated. An analogy is trying to measure the persistence length of a steel rod one inch long or 

one mile long. The short steel rod does not bend as significantly as the long rod. This 

conformation plot has the same untrustworthiness as previous figures because the fit data does 

not span a large enough breadth of molecular weight. For this larger molecular weight polymer, 

the narrow molecular weight range was not due to its small size but rather to the narrow window 

of linearity in the log-log scale. Another issue with this polymer is its limited helicity (51%). 
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Attempting to synthesize a rodlike polymer, the highest helicity is desired. Lowering the helicity 

can cause problems, branching.  

 

Figure 53 shows a conformation plot of sample #18 in DMF + 0.1 M LiBr. The slope is 

larger than when the polymer was in buffer solution (Figure 52) and is consistent with a random 

coil polymer. This is the only conformation plot available in DMF because the polymer was not 

able to be redissolved in DMF if previously dried after dialysis, even with time at elevated 

temperature (several weeks at 50 °C).  
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Figure 51. Conformation plot of sample #2 (Mw = 211 ± 1 kDa, PDI = 1.21 

± 0.01) in water and buffer (200 mM NaNO3 + 20 mM NaH2PO4 + 2 mM 

NaN3) after 2 years. The slope for water is 0.54 ± 0.01 (squares) and for 

buffer 0.49 ± 0.01 (circles) and 0.65 ± 0.01 (triangles). The two buffer 

lines are two different experiments after 2 years aging. The blue line is the 

calculated radius of gyration for a perfectly stiff rigid rod based on the 

measured molecular weights.  
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When the polymerization was conducted in THF and dried, the polymer aggregates when 

attempting to redissovle in DMF. As an example, sample #2 was dried and analyzed in the buffer 

solution and DMF and the molecular weights were Mw = 211,000 and Mw = > 1,000,000 g/mol, 

respectively, showing an inability to redissovle in DMF following drying of the polymer. 

Because of this, DMF was not used as a GPC solvent, although it has been used at elevated 

temperatures by others.
72, 132

 For polymer #18, the polymerization was performed in DMF and 

the crude product was directly injected into the GPC using DMF + 0.1 M LiBr as eluent. In this 

instance, the polymer did not aggregate as if it were previously removed from the reaction 

solvent.  

The molecular weight changed dramatically between the buffer and DMF; this is not 

likely due to a calculation error because the dn/dc found for DMF + 0.1 M LiBr at 50 °C and 
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Figure 52. Conformation plot of sample #18 (Mw = 526 kDa ± 4 and 

PDI = 1.27 ± 0.02) in buffer solution (200 mM NaNO3 + 20 mM 

NaH2PO4 + 2 mM NaN3,). Black squares are data and the red line is a 

linear fit with slope = 0.41 ± 0.01.  
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buffer at room temperature are very close in value (0.123 vs. 0.126). While it is true that small 

changes in dn/dc can change the apparent molecular weight, it should not increase the molecular 

weight > 2.75 fold. Also, in DMF the polymer had a larger PDI than when in the buffer. This 

agrees with previous statements made in this dissertation that the polymer tends to aggregate in 

DMF. This might also suggest the aggregates in water are less stable than in DMF, explaining 

why the PDI is larger in DMF than in water.  

 

Figure 54 shows a GPC chromatogram of sample #2 in 2 mM aqueous azide. Both light 

scattering and DRI signals show significant tailing, but not multiple peaks. Because the light 

scattering trace shows the same tailing as the DRI, this indicates possible column adhesion. This 

was also unexpected because the PEG side chains should impart water solubility.  
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Figure 53. Conformation plot of sample #17 (Mw = 190 kDa ± 1 

and PDI = 1.37 ± 0.01) in DMF + 0.1 M LiBr. The slope = 0.54 ± 

0.01. The blue line is the calculated radius of gyration for a 

perfectly stiff rigid rod based on the measured molecular weights.  
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The PDI was smaller in the aqueous azide solution (1.07 ± 0.10) compared to the buffer 

solution (1.21 ± 0.01) and the molecular weight was much lower in the aqueous azide solution 

(Mn = 84.7 ± 6.3 and Mw = 90.4 ± 7.0). This is less than half of the molecular weight calculated 

in the buffer solution. This may suggest worse aggregation in the buffer solution and these 

aggregates are more stable than those formed in the azide solution (see chapter 4 about 

controlling aggregation with salt). Once again, this would be consistent with sodium, the 

Hofmeister salt, making the polymer salt-out while in the buffer solution.  

Figure 55 shows the worst example of aggregation seen for the PEGL samples and 

corresponding molecular weights. The order-of-magnitude difference between the two peaks 

molecular weights shows extreme aggregation. Aggregation does occur in DMF + 0.1 M LiBr, 

even though it has provided the lowest measured molecular weight of sample #18 (Figure 56).  
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Figure 54. GPC chromatogram of sample #2 (Mw = 211 ± 1 kDa, PDI = 

1.21 ± 0.01) in 2 mM aqueous NaN3. The black line is the light scattering 

signal and the red line is the DRI signal.  
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Figure 55. GPC chromatogram of sample #6 (Mw = 210 ± 4 

kDa and PDI = 2.23 ± 0.07) in buffer solution (200 mM 

NaNO3 + 20 mM NaH2PO4 + 2 mM NaN3). The black line is 

the light scattering signal and the red line is the DRI signal. 

Left peak Mw = 190 ± 1 kDa, PDI = 2.60 ± 0.03; right peak 

Mw = 9.2 ± 3.2 kDa, PDI = 1.06 ± 0.09. 
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Figure 56. GPC chromatogram of sample #18 (Mw = 526 ± 4 

kDa, PDI = 1.27 ± 0.02) in DMF + 0.1 M LiBr.  
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Figure 57 shows an overlay of a conformation plot for several samples (sample #2, 

sample #3, and sample #6). For PBLG, overlaying a conformation plot for several different 

molecular weights provides a single curve (Figure 14). PEGL showed for a particular molecular 

weight, each sample had a different measured radius, consistent with aggregation.  

 

2.11.4 GPC Shearing tests 

Because aggregation has been established, it is useful to perform GPC experiments with 

different number of columns. This will change the shearing forces and should change the 

molecular weight of the polymer. The shearing tests results for sample #2 in buffer are found in 

Table 11 .When adding columns the molecular weight decreases and does so in a reproducible 

way (Figure 58). The decrease in molecular weight with increased shearing forces is consistent 

with aggregation but the reproducibility of the experiment is contrary to this idea. This may 
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Figure 57. Conformation plots for sample #6 (blue squares, 

Mw = 210 ± 4 kDa, PDI = 2.23 ± 0.07), sample #3 (black 

triangles, Mw = 225 ± 2 kDa, PDI = 1.16 ± 0.01) and sample 

#2 (green circles, Mw = 211 ± 1 kDa, PDI = 1.21 ± 0.01) in 

buffer (200 mM NaNO3 + 20 mM NaH2PO4 + 2 mM NaN3). 
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suggest the polymers do not aggregate very quickly -- the time needed to travel from the column 

to the light scattering detector is about 0.5 seconds (Equation 17). If the polymer can aggregate 

semi-quickly, it is difficult to perform a study of the size over time (see Figure 77). Also, the PDI 

is much lower for the two-column runs compared to the single-column runs; again, with 

increased shearing forces, the PDI should decrease when adding columns.  

Table 11. Molecluar weights from GPC for sample #2 (Mw = 211 ± 1 kDa, PDI = 1.21 ± 0.01) in 

buffer (200 mM NaNO3 + 20 mM NaH2PO4 + 2 mM NaN3). Uncertainty is calculated from 

repeat runs. All runs were performed ~2 years after the polymer was first synthesized, during 

which time it was dispersed in water and held at 0 
o
C.  

Solvent Condition M
w 

(kDa) PDI 

Buffer 1 column 212 ± 20 1.54 ± 0.20 

Buffer 1 column 154 ± 20 1.65 ± 0.20 

Buffer 2 columns 103 ± 13 1.07 ± 0.11 

Buffer 2 columns 107 ± 17 1.07 ± 0.11 

 

It is not likely that the two-column experiment is breaking apart polymer chains and not 

aggregates because in bulk light scattering, the apparent radius measured at low angles is much 

larger than at high angles, suggesting aggregation. If the polymer chains were broken during 

translation through the columns, bulk light scattering measurements would show only large radii. 

Further, if the two columns were breaking the individual polymer chains, there should be a 

decrease in the molecular weight with no larger sizes measured by GPC/MALS. 

 

                                 
      

         

  
          

            
 

Equation 17 

where 0.001 is the conversion from mm
3
 to mL and the radius of the tubing was 0.0875 mm. 

Another observation is the decreased molecular weight measured with two columns for sample 
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#2 (Table 10). This may be due to the experiment being performed ~2 years following the 

synthesis of the polymer, although care was taken to prevent degradation by storing under 

nitrogen in a refrigerator. 

  

2.11.5 Mark-Houwink Plots of PEGL 

Intrinsic viscosity, [η], is a unique polymer attribute. This feature cemented the belief in 

macromolecules! Intrinsic viscosity is the lower limit of viscosity increment for a polymer 

solution above to the solvent viscosity, relative to concentration. Typically, with small 

molecules, diluting the solution decreases the viscosity until the solvent viscosity is reached. For 

polymers, intrinsic viscosity is some lower limit of viscosity, exceeding the pure solvent 

viscosity and is defined as 
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Figure 58. GPC chromatogram for sample #2 (Mw = 211 ± 1 

kDa, PDI = 1.21 ± 0.01) in buffer (200 mM NaNO3 + 20 mM 

NaH2PO4 + 2 mM NaN3) with two columns attached. The 

red and black are repeat runs and the light scattering signal at 

90 degrees. 
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 [ ]     
   

(
    

    
) Equation 18 

where η is the measured viscosity, ηs is the viscosity of the solvent, and c is the concentration. 

Intrinsic viscosity is directly related to the size and mass of the polymer in solution; because of 

this, prior to size exclusion chromatography, intrinsic viscosity was used to find polymer 

molecular weights in solution. The units for intrinsic viscosity are mL/g making it a coefficient 

describing the rate of increase in viscosity of added solute.
151

 

Scaling relations are found throughout polymer chemistry and one of the oldest—the Rg 

~M 

v 
relation between radius and mass–was already discussed in the background for 

conformation plots (v is well known for different shapes: v = 1/3 for a solid sphere, ½ for a 

random coil in a theta solvent or melt, 3/5 for a random coil in a good solvent, and 1 for a rigid 

rod).
151, 154

 From the units of intrinsic viscosity, we can find how intrinsic viscosity relates to 

shape. 

 [ ] 
              

          
 

  
 

 
 

   

 
       Equation 19 

Depending upon shape, different scaling relations exist: [η] is independent of M for a 

rigid sphere, increases as M
1/2

 for random coil in a theta solvent or melt, M
4/5 

for random coil in 

good solvent, and M
2
 for a stiff rod.

151
 This gives us the Mark-Houwink equation 

 [ ]      Equation 20 

where k and a are the Mark-Houwink parameters.  
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These parameters are tabulated for many polymers in different conditions.
155

 A log-log 

scale plot of intrinsic viscosity and molecular weight provides k and a from a linear fit. A Mark-

Houwink plot can be found in Figure 59 for sample #2 in water (squares). The a parameter from 

the slope was 0.66 ± 0.01, the k value from the y-intercept was (6.28 ± 0.01)   10
-3 

mL/g, and 

the average intrinsic viscosity was 15.2 ± 0.6 mL/g. The intrinsic viscosity for sample #2 in the 

buffer (circles in Figure 59) had a similar value to the value from water. The Mark-Houwink 

parameters for sample #2 in the buffer were a = 0.65 ± 0.01, k = (7.45 ± 0.05)   10
-3

 mL/g and 

the average intrinsic viscosity of was 14.81 ± 0.04 mL/g.  

 

The Mark-Houwink a parameter for sample #2 is close to the value for a random coil 

polymer in a good solvent, 0.6, for both water and buffer solution, indicating sample #2 is not 

rigid, but rather some other shape, e.g. a random coil. This suggested the polymer had changed 
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Figure 59. Mark-Houwink plot of sample #2 (Mw = 211 ± 

1 kDa, PDI = 1.21 ± 0.01) in water (squares) and buffer 

(circles). For water the slope = 0.66 ± 0.01 (a value) and 

the y-intercept = (6.28 ± 0.01)   10
-3 

mL/g (k value). For 

the buffer solution, a = 0.65 ± 0.01 and k = (7.45 ± 0.05) 

  10
-3 

mL/g. The red lines are linear fits to the data. 
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morphology over time and the conformation plot should be tested again (Figure 51). The 

conformation plot showed the polymer is no longer helical but circular dichroism (Figure 23) 

showed the polymer to be helical, contradicting the GPC data. This effect can be explained by 

interaction of the polymer and the column.  

If the polymer bound to the column, the chromatography would suffer with each 

experiment; typical chromatograms did not show severe tailing or loops in the molecular weight 

trace (Figure 60), consistent with column adhesion. These data suggest the polymer is behaving 

differently in the bulk then when separated and may have changed over time. It is believable the 

polymer had aggregated worse over time, but it likely has always been aggregated. A caveat to 

the Mark-Houwink data is the same as for the conformation plot data, a narrow molecular weight 

range was tested. Therefore, more experiments need be done on a larger molecular weight range.  
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Figure 60. Plot of the molar mass as a function of the elution volume for 

sample #2 (Mw = 211 ± 1 kDa, PDI = 1.21 ± 0.01) in buffer (200 mM 

NaNO3 + 20 mM NaH2PO4 + 2 mM NaN3).  
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2.12 Bulk Light Scattering of PEGL 

2.12.1 Why Use Bulk Light Scattering? 

 Light scattering used during a GPC experiment has some limitations: weak laser, only 

one wavelength of light can be used, but the most important difference is that the polymer 

solution had to go through a column prior to measurement. While not necessarily a hindrance, 

this may cause complications as discussed in this dissertation. Bulk light scattering on the other 

hand can show long-term stability, the quality of solvent, many different solvents at different 

temperatures (do-able with a column but harder), and it does not rely on column separation. For 

an analyte that may interact with a column, bulk scattering is necessary and may be more 

illuminating.  

2.12.2 Dynamic Light Scattering Background 

Dynamic light scattering (DLS) is one of several ways to determine diffusion 

coefficients. Depending upon the characteristics of your system, DLS may or may not be a wise 

decision. Other techniques to find diffusion coefficients, such as fluorescence photobleaching 

recovery (FPR), fluorescence correlation spectroscopy (FCS), analytical ultracentrifugation 

(AUC), NMR, and particle tracking all offer advantages and disadvantages. The best polymer 

characterization compares the results from multiple techniques.  

Dynamic light scattering measures the diffusion coefficient by building a correlation 

function (Equation 21). 

  ( )( )     
   

 

  
∫  (  )

 

  

 (    )    Equation 21 
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where  ( )( ) is the normalized second order correlation function, T is the time of the 

experiment, I is the intensity of the scattered light, and   is the lag time. A representative 

correlation function is found in Figure 61. At short lag times the polymers exhibit high 

correlation and it decays until at large enough lag times, the particles are no longer correlated. 

The inflection point of the sigmoidal curve in Figure 61 is known as the decay time, τ. Smaller 

particles have a short decay time because they are moving quickly and can become uncorrelated 

faster while large particles have a long decay time because they are moving slowly.  

 

The diffusion coefficient of a simple, monodisperse system can be found by fitting the 

correlation function with an exponential equation (Equation 22). 

  ( )( )      
        

               Equation 22 

 ΓVv= τ
-1

 = q
2
Dt  Equation 23 
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Figure 61. Ideal correlation function. The inset is the same correlation 

function in semi-log form.  
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   (

 

 
) Equation 24 

 ΓHv= q
2
Dt + 6Dr Equation 25 

    

   

      
 Equation 26 

where An is the amplitude, ΓVv is the decay rate of vertically polarized incident and measured 

light, ΓHv is the decay rate of vertically polarized incident and horizontally polarized measured 

light,   is time, τ is decay time, q is the scattering vector, Dt is the translational diffusion 

coefficient, Dr is the rotational diffusion coefficient, n is the refractive index of the solvent,    is 

the wavelength of the laser light in vacuum, and   is the angle when measuring in radians, T is 

temperature,    is Boltzmann’s constant,    is the viscosity of the solvent, and    is the 

hydrodynamic radius. Equation 22 shows a correlation function can be fit with multiple 

exponentials in an attempt to separate multiple sized scatters in the same solution. Equation 23 

shows the decay rate (ΓVv) is directly proportional to the diffusion coefficient and inversely 

related to the decay time in a typical DLS experiment. 

Many different diffusion coefficients are measureable: apparent diffusion coefficient, 

mutual diffusion coefficient, and self-diffusion coefficient. The apparent and mutual diffusion 

coefficients are directly measured by DLS but the self-diffusion coefficient is found from DLS 

only by extrapolating to zero polymer concentration.
151

 Other methods can measure self-

diffusion at finite concentrations. 

The prototypical path to the diffusion coefficient is measuring the decay rate, Γ, at 

multiple q and building a plot of Γ as a function of q
2
 (Figure 62). The apparent diffusion 

coefficient is found from the slope. The intercept is also telling: a non-zero intercept shows 
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measurement of non-translational diffusive motions (or multiple scattering, which is not a factor 

in any of the DLS work reported in this dissertation).  

A Γ vs. q
2
 plot for a rod is found in Figure 63.

156
 It has two concentrations but the upturn 

is only observed in the lower one; for this discussion, the higher concentration is ignored. 

Rodlike polymers have a characteristic feature of an increase in the decay rate at higher angles 

when the decay rate is plotted against q
2
. At low concentrations and low q, the characteristic 

distance measured by DLS is large; this means DLS can only measure translational diffusion of 

the rodlike polymer. 

  

At higher q, a smaller characteristic distance, rotation of the rod becomes prevalent as an 

increase in the decay rate. PEGL, showing characteristics of a rodlike polymer should exhibit 
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Figure 62. How the decay rate scales with the magnitude of 

the squared scattering vector (schematic). 
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this feature. The high-q, high-concentration behavior is beyond the scope of this discussion; it 

suffices to say that it cannot be interpreted as motion from single, isolated rods.  

Another possible reason for the increase in the decay rate against q
2
 is polydispersity. At 

low q values, large particles contribute more to the scattered signal but this preference decreases 

with angle. For very large particles, the intensity decreases dramatically at high angles. If the 

sample is highly polydisperse, the average decay rate is slow at low q (large particles) but faster 

at higher q (smaller particles). This resembles the appearance of a monodisperse rigid-rod type 

polymer; in either case, the measured average decay rate increases at higher angles.  

 

Depolarized light scattering can determine if the increase in the decay rate as a function 

of q
2
 is due to polydispersity or rotation of the rod. In a typical DLS experiment, the initial laser 

light is vertically polarized and the measured scattered light can be vertically polarized or 

 

Figure 63. 3
rd

 cumulant decay rates plotted 

against q
2
 for PBLG-277000. Reprinted with 

permission from DeLong, L. M.; Russo, P. S. 

Macromolecules 1991, 24, (23), 6139-6155. 

Copyright 1991 American Chemical Society. 
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unpolarized (indicated by Vv or Uv). Vv indicates having two vertical polarizers in place, one 

between the laser and sample and the other between the sample and detector. Uv is when only 

one polarizer is used and placed between the sample and laser to help eliminate any stray non-

vertical light.   

In an Hv experiment, a vertical polarizer is placed between the laser and the sample and a 

horizontal polarizer is placed between the sample and detector. The reason the Hv signal can be 

measured for a rodlike polymer is due the anisotropy along the two axes of the rod. Rods can 

have two different polarizabilities depending on which axis is measured, either the long or short 

axis, and light scattering directly relies upon the polarizability of the sample. Most random coils 

on the other hand, provide a much weaker Hv signal than polymers with large anisotropy. 

Equation 25 shows why rodlike polymers have an increase in the decay rate during a Hv 

experiment: rotation of the rod. The added term, 6Dr, is only measurable in an Hv experiment 

when the polymer has sufficient anisotropy of the polarizability. Consequently, measuring the 

decay rate as a function of q
2
 from the Hv signal of a polymer provides a positive y-intercept 

directly due to rotation. If the measured sample has an increase in the decay rate for Vv, has no 

rotational diffusion coefficient measured from the depolarized signal, and no value of qL 

provides a measure of the rotation in a Vv experiment,  the increase is due to polydispersity. This 

provides an easy way to check if the increase in the decay rate from a Vv experiment is from 

polydispersity or the morphology of the polymer. 

Not all rods show the increase in the decay rate as a function of q
2

 in a Vv experiment. A 

value qL > 4 has to be reached in order to see the rod rotating, meaning short rods do not show 

the increase in the decay rate, unless measured in an Hv experiment. This is another reason why 
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higher molecular weights were desired for this project. This poses a problem for sample #2: 

calculating the expected length for a Mw = 211,000 g/mol and the length is 110 nm. With a blue 

laser, the largest qL value at  = 120 degrees is 2.5, and this value is even lower if the length of 

the rod is found from the the translational diffusion coefficient using the Kirkwood-Riseman 

Equation. This suggests the increase in the decay rate should be due to polydispersity for sample 

#2 because end-over-end rotation should not be measureable in a Vv experiment. While the qL is 

too small based on the meaured molecular weight from GPC and the zero PEGL concentration 

diffusion coefficient, many PEGL samples show the increase in the decay rate, even sample #6 

where the majority of the polymer is < 10 kDa. This further agrees with the postulation of 

polydispersity. 

2.12.3 Static Light Scattering Background 

Static light scattering needs very little introduction after introducing dynamic light 

scattering. Scattering from large molecules shows an angular intensity dependence, and can be 

quantified by the form factor,  ( ). The form factors for many shapes are well known and can 

be fit to the measured data, elucidating the shape of the polymer in solution. If the shape of the 

polymer is not known beforehand, measuring the scattering of a sample in the Guinier regime, 

qRg < 1, allows for calculation of the radius of gyration independent of shape. The radius of 

gyration, Rg, is the mass-weighted radius from the object’s center of mass. In a Guinier plot, the 

radius of gyration is found from the slope of the natural log of intensity as a function of 

scattering vector magnitude (Figure 64). 
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2.12.4 Dynamic Light Scattering of PEGL 

A waterfall and semi-log plot of the correlation functions for multiple angles of sample 

#2 in buffer are found in Figure 65. As the angle is increased, the decay time shifted to shorter 

times. The semi-log plot had significant curvature, showing significant polydispersity is 

measureable, even at higher angles. Monitoring each run prevented this polydispersity being due 

to dusting events.  

As stated in the previous section, rodlike polymers show in increase in the decay rate at 

high q due to rotation of the rod. The decay rate as a function of q
2
 for sample #2 is found in 

Figure 66, showing the expected increase in the decay rate at high q for a rod; alternatively, the 

increase in the decay rate may be due to polydispersity. Figure 67 shows the measured diffusion 

coefficient and polydispersity as a function of q
2
. These plots show the diffusion coefficient 

(increased by 38%) and the PDI (decreased by 27%) vary when changing the scattering vector 

magnitude, suggesting the sample exists as a mixture of smaller and larger polymers; this would 

be consistent with aggregation or polydispersity. If rod tumbling was observed, the PDI (which 

represents non- exponentiality of any kind) should increase at high q, not decrease, making the  

 

Figure 64. Guinier plot. Slope = -Rg
2
/3. 
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hypothesis of PEGL behaving as a rod less valid.  PEGL has a measureable Hv signal, possibly 

providing a rotational diffusion coefficient in the future. Cumulant fits were applied to the 
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Figure 65. A) Waterfall plot of the correlation function B) Semi-log plot of the 

correlation function. Sample #2 (Mw = 211 ± 1 kDa, PDI = 1.21 ± 0.01) in buffer 

solution (200 mM NaNO3 + 20 mM NaH2PO4 + 2 mM NaN3), 4.6 mg/mL PEGL at 

room temperature. 
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correlation functions to find the decay rates. Because PEGL showed an increase in the decay rate 

as a function of q only the first three linear points were used to find the diffusion coefficient. The 

sizes from the diffusion coefficient extrapolated to zero concentration are going to be skewed to 

lower values because the sample is polydisperse and only low angles were fit (Figure 70). Figure 

70 shows no appreciable change in the measured diffusion coefficient of sample #2 in buffer 

when changing the polymer concentration. If aggregation was a problem, the diffusion 

coefficient normally decreases with polymer concentrations to reflect the increased size. It may 

be masked by the limited q values used for the 3CUMU fits.  

 

 The effect of aggregation may be minimized in this case because of the fitting used, but 

the diffusion coefficient should still change with concentration The diffusion coefficient was 
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Figure 66. A plot of the decay rates as a function of squared scattering vector 

magnitude for sample #2 (Mw = 211 ± 1 kDa, PDI = 1.21 ± 0.01) in buffer 

(200 mM NaNO3 + 20 mM NaH2PO4 + 2 mM NaN3), 4.6 mg/mL PEGL at 

room temperature. Blue points are measured with a blue argon ion laser (488 

nm) and the green points are measured with a green argon laser (514.5 nm). 

The black points are linear fit to the first 6 points.  
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calculated by taking the average of the diffusion coefficient found from the slope of the decay 

rate as a function of q
2
 (at low angles) and the measured diffusion coefficient as a function of q

2
 

(Figure 67 A). The uncertainty is the greatest difference between the average diffusion 

coefficient found and either diffusion coefficient measured.  

Fitting the zero PEGL concentration diffusion coefficient to the Kirkwood-Riseman 

equation (Equation 27) 
157

 gives the length of the polymer, assuming it is a rigid rod 

    
     (  ⁄ )

(     )
 Equation 27 

where    is Boltzmann constant, T is temperature in Kelvin, L is the length of the polymer, d is 

the diameter of the polymer (taken as 2.2 nm), and    is the solvent viscosity. Equation 27 is not 

a solvable equation, but it can be numerically approximated to a high accuracy with Excel 

Solver. From the fit    = (1.85 ± 0.04)   10
-7 

cm
2 s-1

,    = 13 ± 1 nm, and L = 101 nm. 

Assuming each repeat unit of the polymer traverses 0.15 nm along the chain axis, Equation 28 

allows for the molecular weight of the polymer to be calculated. 

   (
  

   
)          Equation 28 

where L is the polymer length calculated from the Kirkwood-Riseman equation (Equation 27), 

MW is the molecular weight of the polymer (either Mw or Mn, but Mw was used in this case ), 

    is the repeat unit molecular weight (taken as 288 g/mol), and 0.15 nm is the length of each 

repeat unit projected along the helix axis.  
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Figure 67. Sample #2 (Mw = 211 ± 1 kDa, PDI = 1.21 ± 0.01) A). 

Measured diffusion coefficient as a function of scattering vector 

magnitude. B) μ2/Γ
2
 (PDI) as a function of scattering vector magnitude 

from third cumulant fits. Both A and B are in buffer (200 mM NaNO3 + 

20 mM NaH2PO4 + 2 mM NaN3) and at room temperature. 
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The molecular weight calculated in Equation 28 is somewhat ambiguous in this case; the 

Kirkwood-Riseman equation is only valid for samples with a PDI equal to unity. The calculated 

MW was 215 kDa, L = 101 nm. Comparing this to GPC (Mn = 174 kDa, Mw = 211 kDa; sample 

#2 in Table 10) sample #2 shows agreement between bulk and GPC light scattering data for 

weight average molecular weights but fair agreement between number average molecular 

weights.  

When the PDI exceeds about 0.3, other fits, such as CONTIN, are profitable. Figure 68 

and Figure 69 show 3CUMU, 2-EXP, and CONITN fits for sample #2 in buffer at 30 and 90 

degrees. For 30 degrees, the 2-EXP fit bracketed the 3CUMU fit; they do not fully agree but both 

show a fast and slow decay rate. The 3CUMU fit landing between the 2-EXP fit is typical 

(Reference 156, Figure 12), showing the 3CUMU fits at low angles to find the apparent diffusion 

coefficient was an appropriate technique.  
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Figure 68. CONTIN, 2-EXP, and 3
rd

 cumulant fits for sample #2 (Mw = 211 

± 1 kDa, PDI = 1.21 ± 0.01), 4.6 mg/mL in buffer (200 mM NaNO3 + 20 

mM NaH2PO4 + 2 mM NaN3),  = 30 degrees at room temperature.  
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Figure 69. CONTIN, 2-EXP, and 3
rd

 cumulant fits for sample #2 

(Mw = 211 ± 1 kDa, PDI = 1.21 ± 0.01), 4.6 mg/mL in buffer (200 

mM NaNO3 + 20 mM NaH2PO4 + 2 mM NaN3),  = 90 degrees 

and room temperature.  
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Figure 70. Plot of the measured diffusion coefficient found from 3
rd

 cumulant fits for 

multiple PEGL concentrations (sample #2 in buffer, Mw = 211 ± 1 kDa, PDI = 1.21 ± 

0.01, 200 mM NaNO3 + 20 mM NaH2PO4 + 2 mM NaN3) at room temperature. See 

text for the diffusion coefficient and uncertainty calculations.    = (1.85 ± 0.04)   

10
-7 

cm
2 s-1

,  the length from Kirkwood-Riseman equation was 101 nm. 
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Although the 3CUMU approach is able to fit the data, CONTIN and 2-EXP fits were 

used. In a typical preparation, the amplitude of the 2-EXP fits are tracked with angle because 

translational diffusion should dominate at low angles (large amplitude of A1 in Equation 22) but 

as the angle is increased, rotational diffusion should become more prevalent (increasing 

amplitude of A2 in Equation 22).  

Figure 71 shows the CONTIN fits for eight angles of sample #2 in buffer at 4.6 mg/mL. 

The fit decay rate heavily depends upon angle, once again, this would be consistent with 

aggregation. The main peak at every angle provides a calculated Rh = 9.8 ± 0.9 nm, MW = 141 ± 

14 kDa, L = 66 ± 7 nm. If these fits are believable, the polymer is severely aggregating. The GPC 

data show the polymer aggregates but it did not show to what extent. This DLS data does give an 

indication of the severity of the aggregation. 

Figure 72 A shows the decay rate measured with 2-EXP fits as a function of q
2
 and B 

shows the amplitude of the fits. The amplitude of the slower decay (A1) decreases and the 

amplitude of the faster decay (A2) increases at higher angles, as expected for rodlike polymers. 

Although the amplitude change follows expectation, the amplitude (A2) from rod tumbling 

should be small, not equal to the amplitude of the translation (A1). This is not consistent with the 

expected rodlike behavior. As stated before, the qL value for the measured molecular weight for 

sample #2 is too small to observe rod-tumbling. This means the polymer must be aggregating if 

rod tumbling is observed or the polymer system is highly bimodal; Figure 71 suggests the latter 

argument. Figure 74 and Figure 75 show decay rates and amplitudes as a function of squared 

scattering vector magnitude for multiple samples to show PEGL in general, exhibits the increase 

in the decay rate at higher q values.  
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Figure 71. CONTIN fits for multiple angles. Sample #2 (Mw = 211 

± 1 kDa, PDI = 1.21 ± 0.01), buffer solution (200 mM NaNO3 + 20 

mM NaH2PO4 + 2 mM NaN3), 4.6 mg/mL, room temperature.  
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Figure 72. A) Decay rates found form 2-EXP fits. B) 

Normalized amplitude for 2-EXP fits. Sample #2 (Mw = 

211 ± 1 kDa, PDI = 1.21 ± 0.01) in buffer (200 mM 

NaNO3 + 20 mM NaH2PO4 + 2 mM NaN3), 4.6 mg/mL, 

room temperature. 
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In Figure 74, sample #6 shows the increase in the decay rate but this may be due to the 

high polydispersity. Figure 75 shows an in increase in the decay rate as a function of q. Figure 73 

shows a plot of the measured diffusion coefficient found from third cumulant fits for multiple 

PEGL concentrations of sample #18 in water. This behaves differently than sample #2 in buffer 

(Figure 70). The decrease in the measured diffusion coefficient when the concentration was 

increased is indicative of aggregation. This aggregation mechanism may differ from the 

aggregation hypothesized for samples with ~100% helicity.  
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Figure 73. A plot of the apparent diffusion coefficient found from 3
rd

 

cumulant fits extrapolated to zero angle as a function of PEGL 

concentration in water for sample #18 (Mw = 526 ± 4 kDa, PDI = 1.27 ± 

0.02) at room temperature. Error bars are set at 5%.  
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Figure 74. A) Plot of the decay rates found from 3
rd

 cumulant fits as a 

function of squared scattering vector magnitude for sample #6 (Mw = 

210 ± 4 kDa, PDI = 2.23 ± 0.07) in buffer (200 mM NaNO3 + 20 mM 

NaH2PO4 + 2 mM NaN3), Blue points are measured with a blue argon 

laser (488 nm) and the green points are measured with a green argon 

laser (514.5 nm). The red line is linear fit to the first two blue points. B) 

Plot of the apparent diffusion coefficient and a measure of 

polydispersity as a function of scattering vector magnitude. All 

experiments were measured at PEGL concentration of 11.07 mg/mL at 

room temperature. 
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Figure 75. A) A plot of the decay rates found from 3
rd

 cumulant 

fits as a function of squared scattering vector magnitude for 

sample #18 (Mw = 526 ± 4 kDa, PDI = 1.27 ± 0.02) B) Plot of the 

apparent diffusion coefficient and a measure of polydispersity as 

a function of scattering vector magnitude. All experiments were 

10 mg/mL PEGL in buffer (200 mM NaNO3 + 20 mM NaH2PO4 

+ 2 mM NaN3) at room temperature. The red line is linear fit to 

the first two blue points. 
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 To quantify the time scale needed for aggregate formation, a PEGL sample was freshly 

filtered and the size was monitored as a function of time by double exponential fits. Figure 77 

shows the apparent sizes from double exponential fits as a function of the scattering vector 

magnitude after sitting 6 days.  

The size is the average from multiple runs and the uncertainty is taken as the difference 

between the average and the maximal value. At low angles, the size is large and the uncertainty 

is small but at higher angles the reverse is true. This would be consistent for a polydisperse 

system. At low angles there are large, semi-uniform polymers but as the angle increases the 

contribution to the scattering decreases, allowing for measurement of the smaller aggregates. The 

two sizes at zero q are 134 ± 5 nm and 16 ± 1 nm and may suggest an aggregation number of 9 ± 

1. The uncertainty for the size at zero q was calculated from a 95% confidence interval and the 
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Figure 76. A plot of the radius of gyration found from 3
rd

 cumulant fits 

extrapolated to zero angle as a function of PEGL concentration in water 

for sample #18 (Mw = 526 ± 4 kDa, PDI = 1.27 ± 0.02) at room 

temperature. Error bars are set at 5%.  
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error for the aggregation number was calculated from the maximal deviation of the average 

aggregation number and the most extreme value.  

 

 Comparing the sizes at each angle at different times is illuminating: the aggregates form 

quickly. The sample was measured immediately after freshly filtering the sample and the 

apparent diffusion coefficient barely changed after 6 days (Figure 78). This suggests the 

aggregates form very quickly (less than 30 seconds, See Figure 85) and are persistent. This poses 

a problem for GPC experiments because the columns should break any weakly associated 

aggregates (see Table 11); this would prevent GPC from showing a more representative PDI 

because light scattering is dominated by larger aggregates.  
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Figure 77. A plot of the apparent radius found from 2-EXP fits as a 

function of the scattering vector magnitude after aging for 6 days. 

Sample #18 (Mw = 526 ± 4 kDa, PDI = 1.27 ± 0.02), 3.96 mg/mL in 

water at room temperature. The two radii at zero q are 134 ± 5 nm 

and 16 ± 1 nm.  
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 The type of aggregation can be deduced by a simple plot as long as the polymer is in a 

theta solvent based on Equation 29.  

 (  
̅̅ ̅̅̅)      (  

̅̅̅̅ )    (  
̅̅̅̅ )  Equation 29 

where (  
̅̅ ̅̅̅)      is the measured molecular weight at some angle, (  

̅̅̅̅ )  is the weight average 

of the unaggregated polymer, K is the aggregation equilibrium constant, and c is the weight 

percent of polymer. 
102

  

 

Even though the theory is only valid under theta conditions, it proves illustrative.  Two 

types of aggregation can exist: end-to-end or segmental. In end-to-end aggregation, the 

aggregation occurs at the chain ends, eliminating chain length dependence. For segmental 
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Figure 78. A plot of the apparent diffusion coefficient measured 

after aging for up to 6 days. Sample #18 (Mw = 526 ± 4 kDa, PDI = 

1.27 ± 0.02), 3.96 mg/mL in water at room temperature. 

 

Figure 79. Possible segmental aggregation of rodlike polymers. 
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aggregation, or side-by-side aggregation, the chain length alters the ability of the polymer to 

aggregate. Plotting the apparent molecular weight in a theta solvent as a function of 

concentration indicates the type of aggregation. If the plot is linear, segmental aggregation 

occurs but if it is non-linear, end-to-end aggregation is occurring. Figure 80 shows the plot of 

(Mw)app,θ as a function of polymer concentration is linear, suggesting segmental aggregation for 

PEGL in buffer.  

 

Some invalid assumptions were made. First, the buffer is a bad solvent for PEGL, not a 

theta solvent. Second, the Kirkwood-Riseman equation is only valid when extrapolated to zero 

concentration of polymer. To find each molecular weight, the Kirkwood-Riseman equation was 

applied at each concentration. Third, 3CUMU fits are not best applied to these data because the 
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Figure 80. Plot of the apparent molecular weight found via 

DLS from the Kirkwood-Riseman equation for sample #2 

(Mw = 211 ± 1 kDa, PDI = 1.21 ± 0.01) in buffer (200 mM 

NaNO3 + 20 mM NaH2PO4 + 2 mM NaN3) at room 

temperature. The diffusion coefficient was calculated using 

3
rd

 cumulant fits. The uncertainty is set at 5%. 
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PDI is too large, 2EXP or CONTIN fits are required (see above). An analogous plot of Dapp as a 

function of concentration can also be performed (Figure 70 and Figure 73). This doesn’t require 

using the Kirkwood-Riseman equation to find molecular weight, but it was also linear, 

suggesting segmental aggregation for PEGL in water and GPC and with ~100% or ~50% 

helicity. This suggests the solvent and percent helicity do not change the type of aggregation.  

2.12.5 Depolarized Dynamic Light Scattering of PEGL in Water 

 Depolarized light scattering experiments (denoted by Hv) can elucidate whether the 

increase in the decay rate as a function of the scattering vector magnitude is due to polydispersity 

or due to the rotation of the polymer. Equation 25 shows for rodlike polymers that depolarize 

(not all do) the decay rate is due to both translation and rotation of the polymer in a depolarized 

experiment. This is true, no matter the size of the rod. In contrast, a rotational term appears in Vv 

scattering only for long rods. Plotting the depolarized decay rate as a function of the scattering 

vector magnitude squared (Figure 66 ) provides the translational diffusion coefficient from the 

slope and the y-intercept gives the rotational diffusion coefficient. Although depolarized light 

scattering can provide the rotational diffusion coefficient, the experiment can be difficult due to 

low signal. As an example, PTFE, a strong scatterer in the horizontal plane, only shows a 

depolarization ratio (IHv/IVv) of 5%.
158

 Because of the low signal, acquisition times are long and 

baseline choice can largely influence the analysis. One might think that the long-time signal 

(e.g., lag times > ~0.1 s) could serve as baseline. While this is sometimes done, the results are 

suspect because signals that are steady compared to the decaying part mix in heterodyne fashion. 

The resulting mixed homodyne-heterodyne signal is not easily analyzed; even a single decay 

term splits into two weighted exponentials.  
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 Two different samples were tested because they had different relative percent helicity 

(sample #2: ~100% and 18: 51%). Based on the GPC data, sample #18 was expected to behave 

as a random coil, not providing a measureable rotational diffusion coefficient.  On the other 

hand, sample #2 may have a measurable rotational diffusion coefficient due to the rodlike shape 

of the polymer if the depolarized signal is sufficiently larger than the solvent. Figure 81 shows 

the correlation function for sample #2 in water. A plot of the decay rate as a function of the 

scattering vector is required to find the rotational diffusion coefficient, but at lower angles there 

were enormous structures that could not be adequately characterized.  

 

Although a risky business and done as a consolation, data from a single angle, 90 

degrees, were used. In Figure 81, the slower decay found was 4.19 seconds, corresponding to a 
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Figure 81. Depolarized light scattering correlation function of 

sample #2 (Mw = 211 ± 1 kDa, PDI = 1.21 ± 0.01) in water, 

3.75 mg/mL and 90 degrees and room temperature. The two 

decay times are 102 ms and 4.19 s.  
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hydrodynamic radius of 490 nm. The faster decay should be from the rotation of the rod  was 

1.02 ms. Using Equation 30, the hydrodynamic radius was 5.7 nm.  

 
    (

   

      
)
   

 

 

Equation 30 

As previously stated, depolarized light scattering has very little signal and may be the cause for 

the slow decay seen at 4.19 s. 

2.12.6 Static Light Scattering of PEGL 

A Guinier plot for sample #2 in buffer is found in Figure 82 and a summary of the data is 

found in Table 12. The length of the polymer was calculated from Equation 31 to find the 

corresponding molecular weight, assuming a rodlike morphology where Rg is the radius of 

gyration and L is the length of the polymer. 
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Figure 82.Guinier plot of sample #2 (Mw = 211 ± 1 kDa, PDI = 1.21 ± 0.01) in 

buffer (200 mM NaNO3 + 20 mM NaH2PO4 + 2 mM NaN3), 9.7 mg/mL 

PEGL at room temperature (Rg = 39 ± 1 nm) and 50 °C (Rg = 61 ± 1 nm).  
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Once L is obtained in this way, M follows from Equation 28. Uncertainty was calculated from 

95% confidence interval fits. Table 12 shows the radius of gyration, length, and molecular 

weights change as the temperature is increased. The circular dichroism (Figure 23) shows the 

polymer does not change helicity up to 50 °C indicating the change in size is not due to the helix 

unwinding.  

Because PEG is most stable around 35 °C,
159

 it appears the polymer has aggregated at 

both room temperature and 50 °C, consistent with the previously discussed DLS data having a 

large PDI. The DLS experiment was performed for sample #2 in buffer at 9.7 mg/mL. Table 12 

shows at a higher concentration the polymer had a larger Rh than expected based on Figure 70 

(Rh = 13.2 nm), consistent with aggregation. 

 Table 12. Light scattering data for sample #2 (Mw = 211 ± 1 kDa, PDI = 1.21 ± 0.01) in buffer 

(200 mM NaNO3 + 20 mM NaH2PO4 + 2 mM NaN3) at room temperature and 50 °C 

 Room Temperature 50 °C 

Rg/nm (Equation 31) 27 ± 1 61 ± 1 

Rh/nm (Equation 26) 13 ± 1 11 ± 1 

Length/nm (Equation 31) 94 ± 5 211 ± 5 

Mn/kDa (Equation 28) 199 ± 10 160 ± 10 

Rg/Rh 2.2 ± 0.1 5.5 ± 0.4 

 

The value of Rg/(Rh)app is also telling of the structure of the polymer. A sphere has a 

Rg/(Rh)app of       √  ⁄ , a polydisperse random coil in a good solvent equals 2.05, a 

polydisperse random coil in a theta solvent equals 1.73, and a rod is > 2.
160

 The Rg/(Rh)app value 

shows the polymer to behave as a rod at room temperature, but it becomes more aggregated and 
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in an extended structure at elevated temperatures. PEG is known to aggregate at elevated 

temperatures and this aggregation (and LCST) are molecular weight dependent.
161, 162

 

Figure 83 shows a 2-D Guinier plot of sample #2 in buffer at 9.7 mg/mL. At room 

temperature PEGL shows significant curvature but is linear for 50 °C; because rodlike polymers 

show a linear dependence the polymer is aggregating into rodlike structures in the buffer solution 

and this is consistent with the Rg/Rh values in Table 12. 

 

It appears then the polymer is aggregated at room temperature, helical from the circular 

dichroism, but still behaves like a random coil during bulk light scattering experiments at room 

temperature. This phenomenon may happen if the polymer, although highly helical, does not 

have continuous helical sections, but rather helical sections broken up by random coil segments. 

Other lysine derivatives have shown these broken helical structures.
163
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Figure 83. 2-D Guinier plot of sample #2 (Mw = 211 ± 1 

kDa, PDI = 1.21 ± 0.01) in buffer (200 mM NaNO3 + 20 

mM H2PO4 + 2 mM NaN3) at 9.7 mg/mL. The empty black 

squares are measured at room temperature and the circles are 

measured at 50 °C.  
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At elevated temperatures, the circular dichroism shows no change (up to 50 °C). This 

indicated as the polymer solution is heated larger radii are measured (Table 12), suggesting the 

polymer is less soluble and forms larger extended aggregates. Decreased solubility is consistent 

with the behavior of PEG; PEG, exhibiting a LCST, becomes less soluble upon heating and 

ultimately phase separates. In this instance, the LCST is not reached but heating the sample 

decreases its solubility (see Figure 97 for A2 values) and makes the polymer aggregate further. 

 Figure 84 shows a plot of the apparent Rg/(Rh)app as a function of PEGL concentration for 

sample #2 and sample #18 at room temperature. The polymer behaves differently with varying 

concentration and varying percent helicity. A highly helical polymer, sample #2 (squares), 

behaves as a rodlike polymer at the lower concentrations but at the highest concentration studied 

started to behave as a random coil.  
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Figure 84. Plot of Rg/(Rh)app as a function of PEGL concentration in 

buffer (200 mM NaNO3 + 20 mM H2PO4 + 2 mM NaN3) for sample 

#2 (Mw = 211 ± 1 kDa, PDI = 1.21 ± 0.01, squares, 97% helical) and 

#18 (Mw = 526 ± 4 kDa, PDI = 1.27 ± 0.02, circles, 51% helical) at 

room temperature. 
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This seems to be counterintuitive because at higher concentrations the polymer forms 

liquid crystals. The circular dichroism was not performed above 1 mg/mL in water because it 

overloaded the detector, even when using 0.1 mL volume cells. Other investigations have 

observed that liquid crystal forming polymers can behave strangely when comparing GPC and 

light scattering.
164

 

They found in a light scattering experiment a liquid crystal former can behave as a 

random coil polymer in a certain concentration regime. For sample #18, it is only 51% helical 

and behaves much differently. At low concentrations, it behaves as a homogenous sphere and 

then at higher concentrations gives a perplexing value. This may be due to different aggregates 

forming for sample #18. Figure 70 shows the diffusion coefficient for sample #2 is independent 

of PEGL concentration in the measured concentration regime in buffer. Sample #18 shows a 

large deviation in the diffusion coefficient with PEGL concentration (Figure 73) in water, a 

telltale sign of aggregation. Although water and buffer are two different solvents, quantitatively, 

they should behave similar because the A2 is very close between the two although the buffer 

solution has a substantial concentration of a Hofmeister salt. In practice, although the A2 values 

are close, they behave differently. 

2.12.7 Temperature Jump Light Scattering Experiments 

 Because water and buffer were bad solvents, a temperature jump study was performed to 

monitor the scattered light intensity over time when rapidly changing the temperature. Light 

scattering depends on the concentration and radius of the analyte. When heated both in water and 

buffer, A2 became more negative; this should increase the measured intensity. To perform the 

experiment, sample #2 in water was equilibrated in an ice bath for 10 min. It was then quickly 

placed in the Wyatt Light Scattering detector set to 70 °C. The intensity of the scattered light was 
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measured as a function of time (Figure 85). There is an initial delay in measured scattered light 

because the experiment was started prior to placing the sample in the Wyatt detector. Once the 

cold sample was placed in the hot Wyatt detector, it equilibrated very quickly (less than 30 

seconds, see Figure 85). 

  

Following the first 30 seconds of equilibration, the intensity did not change for the entire 

length of the experiment (30 minutes). Because water is a bad solvent, as the sample increased in 

temperature, the scattered light intensity was expected to increase. The data show the scattered 

intensity decreases upon heating.  
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Figure 85. Static light scattering intensity of sample #2 

(Mw = 211 ± 1 kDa, PDI = 1.21 ± 0.01) in water as a 

function of time. The sample was cooled in an ice bath 

and then plunged into the Wyatt detector set to 70 °C.  
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2.12.8 PEGL Zimm Plots 

The Zimm plot is a valuable tool for polymer chemists. In one plot, the radius of 

gyration, second virial coefficient, and absolute molecular weight are found. The Zimm equation 

is found in Equation 32 and Figure 87 shows a Zimm plot for polystyrene in THF. The inverse of 

the y-intercept of both dark extrapolated lines give Mw, the slope from the zero angle line gives 

the Rg, and the slope of the zero concentration line gives A2. Although a Zimm plot is presented 

in this dissertation, making two plots of concentration and angle dependence is more 

instructional for the PEGL samples. The typical Zimm equation is found below  

 Kc/ Rθ = M
1
(1 + q

2
Rg

2
/3) + 2A2c Equation 32 

where K = 4
2
n

2
(dn/dc)

2
/o

4
Na, n is the refractive index, o

 
is the wavelength of the laser light in 

vacuum, Na is Avogadro’s number, Rθ is the Rayleigh factor, q is the scattering vector, Rg is the 

radius of gyration, c is the concentration, and A2 is the second virial coefficient. Other 
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Figure 86. Rayleigh factor of sample #2 (Mw = 211 ± 1 kDa, PDI = 1.21 

± 0.01) in water as a function of time. The sample was cooled in an ice 

bath and then plunged into the Wyatt detector set to 70 °C. 
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formalisms to find these parameters such as a Debye or Berry give slightly different values. The 

Zimm format was used because the data can be well linearly for large particles.
5
  

 

The batch experiment was preferred because the GPC showed strange behavior. The 

examination of PEGL with Zimm formulation was performed in a Wyatt multi-angle light 

scattering detector in water and buffer with an adapter (Figure 88). A DLS cell was placed in the 

adapter for the Wyatt and the holder was filled with toluene to match the refractive index of 

glass. Because of this adapter, a batch mode Zimm plot can be performed. The Wyatt typically is 

set up to run flow experiments to build Zimm plots. Also, the exact same sample can be 

measured on the Wyatt to find the radius of gyration, second virial coefficient, hydrodynamic 

radius and molecular weight. A plot of Kc/Rθ as a function of the squared scattering vector 

magnitude is found in Figure 90. The difference between PEGL and the polystyrene sample 

above are apparent: PEGL shows significant curvature to the intensity of the scattered light at 

 

Figure 87. Zimm plot for NIST SRM 706 polystyrene in THF. Each of the 

five lines consist of 17 data points showing the angular variation of the 

scattered light. The dark lines are extrapolated data to zero angle and zero 

concentration. From reference 5.  
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different q; because of this, a polynomial fit was used, 

even though it can lead to dangerous extrapolations. An 

attempt to linearize the data was used prior to using the 

polynomial fit. The y-intercept was plotted for each 

concentration, giving the inverse of the molecular 

weight. 

Figure 89 shows a test of the normalization for 

the adapter using the isoscatter bovine serum albumin. 

The normalization is flat and linear, showing good 

normalization of the adapter. Figure 90 shows a plot of 

Kc/Rθ as a function of the squared scattering vector for 

sample #2 (Mw = 211 ± 1 kDa, PDI = 1.21 ± 0.01) in 

water at 27 °C. The inverse of the y-intercept provides a measure of the molecular weight. Each 

concentration was fit using a polynomial. The results are found in Figure 91 with the calculated 

Mw = 40 ± 6 kDa. The uncertainty was calculated by fitting different number of concentrations, 

taking the average, and the uncertainty is the difference between the average and the largest 

deviation. The calculated molecular weight from the Zimm plot is much lower than the 

molecular weights calculated form GPC at the same temperature. If the molecular weight 

calculated from each y-intercept is plotted with the highest  

 

Figure 88. Adapter to use DLS 

cells in the Wyatt GPC detector.  
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concentration of PEGL not included in the fit, a polynomial fit gives a very low molecular 

weight of 9.2 ± 0.9 kDa (Figure 92). The uncertainty was taken at 10%. This value is much lower 
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Figure 89. Normalization test of the adapter in Figure 88 with bovine 

serum albumin in water. 
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Figure 90. Plot of Kc/Rθ as a function of the squared scattering vector. 

Sample #2 (Mw = 211 ± 1 kDa, PDI = 1.21 ± 0.01) in water at 27 °C. 

The legend shows PEGL concentration in mg/mL. 
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than when fitting all the concentrations and may suggest that above 1.08 mg/mL aggregation is 

occurring, artificially inflating the molecular weight.  

 

There was also curvature when plotting log10(Rθ) as a function of q
2
 (Figure 93) at 27 °C. 

Therefore, a second-order polynomial fit was again applied to all the angles and radii of gyration 

found from the slopes are plotted in Figure 94. When fitting all four concentrations a negative 

radius was calculated (Figure 94). Therefore, the highest concentration was not included in the fit 

to find the radius of gyration at zero PEGL concentration (just like in Figure 92).  

The uncertainty was found by fitting the three concentrations with a second-order 

polynomial fit and a linear fit, taking the average, and the uncertainty was the difference between 

the average and the maximal value. The calculated radius of gyration was 26 ± 14 nm. All 

calculated values from the Zimm plots for each solvent are found in Table 13. Other types of fits, 
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Figure 91. Plot of the y-intercept of Kc/Rθ as a function of PEGL concentration, 

fit with a 3
rd

 order polynomial. Sample #2 (Mw = 211 ± 1 kDa, PDI = 1.21 ± 

0.01) in water at 27 °C. The calculated of Mw = 40 ± 6 kDa was found by taking 

the inverse of the extrapolation to zero polymer concentration.  
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such as log(Mw) as a function of PEGL concentration did not greatly alter the fitted molecular 

weights (~2-3k difference).  

Table 13 shows the molecular weight decreased at elevated temperatures in water. This is 

anomalous because PEGL exhibits a LCST, the A2 becomes more negative when increasing the 

temperature, and DLS showed the size to increase with temperature. It is hypothesized the 

molecular weight is not consistent because of the aggregation observed. Many of the molecular 

weights could not be calculated because the curvature of the fit gave negative intercepts. Ideally, 

more concentrations would have been measured to determine if the highest concentration was an 

outlier or the system really shows curvature at the higher concentrations.  

Table 13. Sample #2 in various solvents and temperatures 

Temp/°C M
w 

/kDa R
g 

/nm A
2 

/           Solvent 

14 - 19 ± 8 -3.73E-2 ± 3.7E-3 Water 

27 - 26 ± 14 -4.53E-2 ± 4.5E-3 Water 

35 - 32 ± 7 -2.77E-2 ± 2.8E-3 Water 

40 - 56 ± 3 -3.26E-2 ± 3.3E-3 Water 

50 - 21 ± 1 -7.07E-2 ± 7.1E-3 Water 

27 - 15 ± 2 -6.84E-3 ± 0.7E-4 Buffer 

50 - 18 ± 2 -7.20E-2 ± 2.3E-3 Buffer 

- means the y-intercept gave a negative molecular weight from the polynomial fit 

The second virial coefficient should be more reliable than the molecular weight calculation 

because it depends on the slope and not on the intercept. As the temperature increased the second 

virial coefficient decreased. It did not do so in a linear fashion but decreased the most around 50 

°C ( Figure 97). The decrease in the second virial coefficient was expected due to the observed 
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LCST. The unexpected observation was that water and buffer were bad solvents, even at lower 

temperatures, evidenced by the negative A2.  
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Figure 92. Plot of the Mw (calculated from the inverse of the y-intercept 

from the plot of Kc/Rθ as a function of the squared scattering vector) as a 

function of PEGL concentration, fit with a 3
rd

 order polynomial. Sample 

#2 (Mw = 211 ± 1 kDa, PDI = 1.21 ± 0.01) in water at 27 °C. The fit Mw 

= 33 ± 3 kDa. 
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Figure 93. Plot of log(Rθ) as a function of the squared scattering vector 

magnitude. Sample #2 (Mw = 211 ± 1 kDa, PDI = 1.21 ± 0.01) in water at 

27 °C. The legend shows PEGL concentration in mg/mL.  
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Figure 94. Plot of the apparent radius of gyration (found from the 

slope found from the log(Rθ) as a function of squared scattering 

vector magnitude) at different PELG concentrations. Sample #2 

(Mw = 211 ± 1 kDa, PDI = 1.21 ± 0.01) in water at 27 °C. The 

radius of gyration was 26 ± 14 nm. 
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Figure 95. Plot of the Mw (calculated from the y-intercept from the 

plot of Kc/Rθ as a function of the squared scattering vector) as a 

function of PEGL concentration, fit with a 3
rd

 order polynomial. 

Sample #2 (Mw = 211 ± 1 kDa, PDI = 1.21 ± 0.01) in water at 14 °C. 

The fit Mw = 42 ± 3 kDa.  
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Figure 96. Plot of the apparent radius of gyration (calculated 

from the slope of log(Rθ) as a function of scattering vector 

magnitude) at different PELG concentrations. Sample #2 

(Mw = 211 ± 1 kDa, PDI = 1.21 ± 0.01) in water at 14 °C. 

The radius of gyration was 18.5 ± 7.5 nm. 
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 Figure 97. Plot of A2 as a function of temperature for PEGL 

sample #2 (Mw = 211 ± 1 kDa, PDI = 1.21 ± 0.01) in water. 
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The Zimm plots for both water and buffer show either one is a bad solvent. This explains 

the previous experiments sometimes showing inconsistent data, indicative of aggregation. 

Although the polymer has a short PEG chain on each repeat unit, it is not enough to make it fully 

water-soluble. The crystal structure of EGL-NCA (Figure 101) shows the PEG chain bending 

backward toward the aliphatic chain. If the PEG chain were longer, it could bend backward into 

the solvent, too. Because PEGL isn’t readily water soluble, a new solvent must be found; see the 

next section. 

2.12.9 Dialysis DLS of PEGL 

2.12.9.1 Dialysis Cell Explanation 

Dialysis DLS was performed to test different solvents for the same exact PEGL sample. 

If the polymer is aggregating, different samples of the same batch of PEGL can behave 

differently. Using the dialysis cell eliminates variability due to sample dissolution or other 

aspects of preparation. A picture of the dialysis cell is found in Figure 98. For the dialysis cell, a 

Spectra/Por dialysis membrane with a molecular weight cut-off of 12-14,000 g/mol was glued to 

a cylindrical quartz cell. Superglue® was used because it is acetone soluble, permitting later 

removal of the membrane. A dialysis vat of ~500 mL of exchange solvent was circulated into the 

dialysis cell by two FMI lab pumps (one for input, one for output). The vat was cleaned with 

Nanopure water and then coated with SigmaCote® purchased from Sigma Aldrich to minimize 

dust in the dialysis cell. Before measurements, the solvent in the dialysis cell was circulated 

through a 0.1 μm PVDF filter until the vat was free from dust. 
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2.12.9.2 Dialysis DLS of PEGL 

Figure 99 contains a plot of the intensity of scattered light  at θ = 90 degrees, for a NaPSS 

solution (exact concentration unknown) as a function of time and solvent. Two dialysis solutions 

were used, pure water and 1 M NaCl, because NaPSS is known to form temporary aggregates at 

low salt concentration. 

  

 

Figure 98. A picture of the dialysis 

DLS cell.  
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Figure 99. Intensity of NaPSS (exact concentration unknown) 

as a function of time and solvent condition. The valleys are 

after dialysis against pure water and the peak intensities are 

after dialysis against 1 M NaCl. The line is to aid the eye.  
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These two solutions were cycled twice to quantify dialysis equilibrium time. Upon visual 

observation with pure water as the exchange medium, the NaPSS solution would go cloudy in a 

few hours, why in Figure 100 the experimental time is short. The downturn in intensity after a 

few hours is due to the increasing turbidity of the solution decreasing the amount of light 

measured. 

 After the solution was cloudy, a 1 M NaCl solution was cycled through the cell. The 

solution would become clear with 1 M NaCl dialysis solution ~48 hours later and exhibited little 

difference in scattering from 48 to 96 hours. It was determined this clearing time, 48 hours, is 

sufficient for dialysis equilibrium. This was repeated to reaffirm 48 hours for the dialysis 

equilibrium. 
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Figure 100. A plot of decay rate found by 3
rd

 cumulant 

fits as a function of the squared scattering vector for 

sample #18 (Mw = 526 ± 4 and PDI = 1.27 ± 0.02) in the 

dialysis DLS cell in water. Original PEGL 

concentration was 2.71 mg/mL.  



 

152 

Figure 100 shows a plot of the decay rate as a function of q
2
 for sample #18 in the 

dialysis cell with water. This shows the upturn seen prior in the PEGL DLS studies (Figure 66). 

The measured sizes from 3CUMU fits are found in Table 14 and the uncertainty is taken as 10%. 

Table 14. Size of sample #18 (Mw = 526 ± 4 and PDI = 1.27 ± 0.02) in various solvents 

Solvent Rh/nm 

Water 40 ± 4 

23% Ethanol 44 ± 4 

 

The experiment was repeated with 23% ethanol, showing minimal change in the size of 

the polymer. 50% ethanol was also attempted but it made the Superglue tacky, releasing the 

polymer into the dialysis cell. The entire solution became cloudy, suggesting higher 

concentrations of ethanol precipitate the polymer.  

The real power of the dialysis cell lies in the variety of solvents that can be tried on the 

same exact sample. We have observed PEGL samples behaving differently, even from the same 

batch. If we can negate this with the dialysis DLS, a better solvent than water may be found. The 

size of PEGL will be compared for many solvents and the smallest size is considered the “best” 

solvent. Zimm plots can be performed to see if the solvent truly is a good solvent. 

2.13 Data For Sample #18 in Different Solvents 

 In attempt to discover a good solvent for PEGL, DLS was performed in various solvent 

conditions. Sample #18 was studied and the results are found in Table 15. The Dapp value is 

calculated as the average of the slope of the decay rate as a function of scattering magnitude and 

of the extrapolated to zero angle diffusion coefficient. The uncertainty is the difference between 

the largest value and the average value. 
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Table 15. DLS and GPC data for sample #18 (Mw = 526 ± 4 and PDI = 1.27 ± 0.02) in various 

solvents 

Solvent 
Experiment 

type 

Dapp/       
    

Rh/nm 
Mw/kDa GPC 

data 

Viscosity/

cP 

Water DLS 5.94 ± 0.11 41 ± 1 - 0.8904 

Buffer DLS 6.48 ± 0.67 38 ± 4 
526 ± 4* 0.8983

165
 

10% w/w 

urea 

DLS 9.18 ± 0.09 27 ± 3 - 0.9612
166

 

ethylene 

glycol 

DLS 0.36 ± 0.13 37 ± 10 - 16.45 

23% w/w 

ethanol 

Dialysis 

DLS 

2.95 ± 0.07 44 ± 10 - 2.161
167

 

50% w/w 

ethanol 

Dialysis 

DLS 

- 

Cloudy 

solution 

- - 

DMF  DLS 31 ± 1 8.0 ± 0.2 190 ± 1* 0.8640
168

 

* From GPC experiments performed in DMF + 0.1 M LiBr 

 



 

154 

2.14 Gaussian Calculations on EGL-NCA 

 

In an attempt to understand what type of aggregation could be happening, calculations 

were performed using the software Gaussian 09. The .cif file from the crystal structure of EGL 

NCA (Figure 18) was used as the basis for each repeat unit. This is because calculations on the 

free-drawn NCA do not match the experimental results of the crystal structure. Figure 101 A 

shows the experimental conformation for two EGL NCA molecules found in the crystal 

structure, shown in the program Mercury. From the packing, the PEG chains are on the exterior, 

shielding the aliphatic lysine side chain. This can be seen better in Figure 101 B where a flower-

like morphology is observed with the aliphatic chains in the interior and the PEG chains on the 

exterior. The blue lines are showing hydrogen bonding, but it seems some of the bonds are much 

too long to be real. Although this result is for a crystal, it is believable the polymer behaves in a 

 

A) B) 

  
Figure 101. A) Packing of two PEGL NCA molecules from the experimental crystal 

structure. B) Packing of many PEGL NCA molecules from the experimental crystal 

structure. The blue lines denote hydrogen bonding.  
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similar fashion when in a polar solvent due to the hydrogen bonding keeping a similar structure 

when solvated.  

Gaussian calculations were performed by joining multiple EGL NCA units from the .cif 

file from the experimental crystal structure data. Then, increasingly complex calculations were 

performed (Mechanics  Semi-empirical AM1  Hartree-Fock 3-21G  Hartree-Fock 3-

21G*) and the results can be seen in Figure 102. Figure 102 A shows a view along the backbone 

of four PEGL repeat units. They appear to begin forming a helical type structure with the PEG 

groups on the exterior. Figure 102 B corroborates this idea. The helix is not perfect; hydrogen 

bonding along the backbone is not apparent because the carbonyl and nitrogen groups align with 

themselves, not in the expected hydrogen bonding formation. This may happen due to the limited 

ability of the program. It does appear to suggest a helix is starting to form, even with such a short 

chain. With longer chains, the hydrogen bonding begins to form appropriate bond distances (~3 

Å) but the helix is less pronounced. This is likely to do many more local minima available. 

 

A) B) 

  
Figure 102. Results from Hartree-Fock 3-21G calculation in Gaussian on 4-

repeat unit of PEGL. A and B are the same structure. 
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Based on observation in the NCA crystal structure, the PEG chains are too short to fully 

cover the aliphatic lysine side chain. This may leave hydrophobic patches, allowing aggregation 

of the polymer in an aqueous environment, although, diaminobutane is water soluble. Also, 

having a helical backbone would allow this aggregation to become some sort of extended 

aggregate. Due to the extended structure, individual chains do not need to aggregate exactly side-

by-side, but can aggregate in a staggered segmental fashion. 

2.15 Cell Viability 

 To test cell viability, 90 μL of 13 mg/mL of sample #9 was dissolved in Dulbecco’s 

modified eagle medium (DMEM) with 10% fetal bovine serum (FBS) and placed in a plate well 

that housed 30,000 3T3 mouse fibroblast cells. Polymer and dead control were performed to 

ensure the measured fluorescence was not due to polymer. Figure 103 shows the results of the 

test. PEGL shows little to no cell death at 13.14 mg/mL in DMEM with 10% FBS. 
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Figure 103. Cell viability of sample #9 (Mw = 7.1 ± 0.4 

kDa and PDI = 1.02 ± 0.01) at 13.14 mg/mL in DMEM 

with 10% FBS.  
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2.16 Conclusions 

A list of conclusions follows: 

1. PEGL showed no change in amount of helicity as a function of temperature up to 1 

mg/mL of polymer in water. 

2. Different PEGL samples had different relative percent helicity, with only a few samples 

nearly reaching 100%. 

3. Mass spectrometery showed peaks with a m/z difference consistent with the m/z of the 

repeat unit. 

4. PEGL formed liquid crystals in water and DMF that were not completely stable when 

heated. 

5. Cryo-TEM showed a mixture of apparent rodlike structures and large aggregates in water 

and buffer. 

6. GPC showed variability in both repeat runs of a sample over time and between different 

samples. 

7. The measured molecular weight range in GPC is not large enough for a reliable. 

measurement of the scaling factor found from the conformation plot. 

8. Multi-angle dynamic light scattering showed an increase in the decay rate with an 

increase of the scattering vector magnitude, likely consistent with a polydisperse sample. 

9. PEGL showed a measureable amount of depolarized light. 

10. The Zimm plots show a negative second virial coefficient in both water and buffer but 

require polynomial fitting that may increase error. 

11. With assumptions, it is possible the polymer is aggregating in a segmental fashion. 
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12. Based on the cumulative data, the system likely has a mixture of both free rods and 

globular aggregates.  
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Chapter 3 - Specific Ion Effects 

3.1 Introduction to Specific Ion Effects 

Specific ion effects, more commonly known as Hofmeister effects, occur in many 

different types of media, not just in aqueous environments where they affect viscosity, density, 

refractive index, heat capacity, and colligative properties in a way that is currently unexplained 

by polyelectrolyte theory.
169

 The variation associated with different salts in different applications 

complicates the ability to synthesize a unified theory. An example is sodium chloride and lithium 

thiocyanate; although both are monovalent ion pairs, they behave very differently. 

Hofmeister originally discovered the salt series by precipitation of proteins. The original 

list of Hofmeister salts is found below with increasing ability to precipitate proteins as one 

moves from right to left in the list.
169

 The list was later updated to include cations as well.
170

 

Anions: 

(most able to precipitate)                                                                      (least able to precipitate) 

OH
-
 > CO3

-2
, SO4

-2 
> ClO4

- 
> BrO3

-
 > S2O3

-2
 > Cl

-
 > CH3COO

-
 > IO3

-
 > Br

-
, I

- 
> NO3

-
  

Cations: 

( most able to precipitate)                                                                      (least able to precipitate) 

Na
+
 > K

+
 > Li

+
 > Ba

+2
 > Rb

+
 > Ca

+2
 > Ni

+2
 > Co

+2
 > Mg

+2 
> Fe

+2
 > Zn

+2
 > Cs

+
 > Mn

+2
 > Al

+3
 > 

Fe
+3

 > Cr
+3

 > NH4
+
 > H

+
 

Quantification of a salt’s ability to “salt-in” or “salt-out” a polymer is found in Equation 

33 where    is the solubility of a nonelectrolyte in pure water,   is the solubility of a 
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nonelectrolyte in solution,    is the salt concentration, and k is the salting constant.
171

 If the k 

value is positive, the salt decreases the solubility of the solute (salting-out) and if negative, the 

salt increases the solubility (salting-in). 

    (
  

 
)      Equation 33 

These specific ion effects act by disrupting the hydrogen bonding of proteins in solution. 

They also help to salt-out hydrophobic groups but salt-in the peptide bonds in proteins.
172

 For 

lysine, this can cause an issue because an increase in the number of carbon atoms in the side 

chain decreases solubility with added salt (reference 172, Figure 3).  

Not all of the Hofmeister salts decrease solubility; sodium thiocyanate shows a slight 

increase in protein solubility.
173

 Thiocyanate increases the solubility of the peptide bonds on the 

protein but denatures it in the process.
172

 Other salts can salt-in proteins.
173

 A cloud point 

temperature, Tcp, experiment can show how different salts affect polymer aggregation and 

salting-out. The cloud point temperature can be calculated several ways: 50% transmittance or 

fitting lines to the baseline and the point at which the slope is the greatest. Figure 104 shows the 

latter approach where the red lines are the fit data and the Tcp is taken as their intersection.  

Experimentally, the cloud point graphs are be generated from one of two ways. First, a 

sample is placed in a UV/VIS spectrophotometer and the absorbance is measured at a 

wavelength the native solution does not absorb. Second, a cloud point graph is made by 

measuring the hydrodynamic radius from dynamic light scattering and plotting radius on the 

ordinate in Figure 104. 
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The cloud point transition is related to the lower critical solution temperature. A polymer 

that becomes insoluble when cooled shows an upper critical solution temperature (UCST) but 

when it becomes insoluble at elevated temperatures, it shows a lower critical solution 

temperature (LCST). The solution can phase separate to a point of gelation.
174

  

 

0 20 40 60 80 100 120

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 

 

A
b

s
o

rb
a

n
c
e

/a
.u

.

Temperature/C
 

Figure 104. Hypothetical trace of absorbance as a function of 

temperature. Black squares are data and the red lines are the fits 

used to find the cloud point temperature, Tcp. 

 

Figure 105. A plot of the phase behavior of a typical 

system as a function of mole percent of polymer.  
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3.2 LCST Studies of PEGL 

The LCST of PEGL has already been observed in pure water at 103 °C (probably an 

extrapolated value).
136

 Because PEGL was aggregating (see Chapter 2), the hypothesis was to 

control the aggregation by using salts from the Hofmeister salt series. Figure 106 A shows a plot 

of the absorbance  as a function of temperature for sample #18 in water with varying NaCl 

concentrations. The plot was made by placing the dissolved sample into a quartz cuvette located 

in a UV/VIS spectrophotometer. An initial scan for absorbance was performed and a non-

absorbing wavelength was chosen for the study (450 nm in this instance). 1.173 M NaCl is the 

lowest salt concentration measured because at lower salt concentrations the LCST was 

unattainable with our set-up. The maximum temperature of the UV/VIS was ~75 °C; below 

1.173 M NaCl the LCST transition was higher than 75 °C and could not be recorded. Solid NaCl 

was added to the polymer solution and allowed to dissolve for ~1 h prior to measurement; this 

allowed measurement of the same sample for each salt concentration. A salty solution could have 

been added but this would have diluted the sample, changing two parameters at one time. Adding 

solid salt may “shock” the polymer and have local concentration variations, but it was deemed a 

better alternative than dilution. The salt solution was added to a room temperature cell and 

heated.  Figure 106 shows as the NaCl concentration increased the cloud point temperature shifts 

to a lower value. This was expected because both Na
+
 and Cl

-
 are salts that make the polymer 

salt out. A summary of all the LCST data for PEGL is found in Table 16. 

Another way to measure the cloud point temperature is by light scattering. Typically, 

intensity of scattered light is monitored; in this case, dynamic light scattering was used because 

more information can be gleaned. Separate plots of the decay rate as a function of scattering 

vector magnitude were performed to take full advantage of our multi-angle DLS setup to find 
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hydrodynamic radii. A 6 M NaCl solution was made and filtered into the DLS vial because 

addition of solid NaCl also added dust. This complicated the light scattering studies because the 

polymer was being diluted while adding salt. Sample #2 shows no change for the 3CUMU fit as 

a function of polymer concentration, so the dilution effect, though undesirable, is not significant. 

For the hydrodynamic radius data, an analogous plot to Figure 106 A, was built but had 

hydrodynamic radius on the ordinate instead of absorbance.  

Table 16. LCST of PEGL samples by different methods 

Sample # Method Tcp/°C 

4 UV/VIS 76 ± 4 

18 UV/VIS 67 ± 2 

18 DLS  95 ± 5 

 

Figure 106 also shows the UV/VIS and DLS cloud point temperatures disagree, likely 

due to several reasons. First, the DLS instrument chosen cannot be heated at hot as the UV/VIS, 

severely limiting the amount of data points available. Second, although they are the same PEGL 

bath, dissolution and aggregation may cause variability. The UV/VIS do not match the cloud 

point temperature extrapolated to zero salt previously reported (103 °C, but this changes with 

molecular weight) but the DLS data appear to be much closer (Figure 106, B). 

This set of experiments show the polymer aggregates can be altered with salt but the 

control does not last. The highest salt concentration in   for the UV/VIS experiment was 2.685 M 

NaCl. If the salt solution was allowed to sit for 1 hour the Tcp
 
was 34 °C but if allowed to sit 

overnight, the Tcp was 48 °C. This shows that although salt does affect the cloud point  
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Figure 106. A) Plot of absorbance (at 450 nm) as a 

function of temperature for sample #18 (Mw = 526 ± 4 

and PDI = 1.27 ± 0.02) in water with varying NaCl 

molarity. B) Plot of Tcp as a function of NaCl 

concentration for UV/VIS (squares, Tcp = 61 ± 2) and 

DLS (circles, Tcp = 95 ± 5). The red lines are fits to the 

data. Uncertainty is set at 10 percent. 
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temperature, equilibrium is not immediately reached, even with agitation following salt addition, 

and it may end up being a reversible process.  

The effect of molecular weight was also tested and Table 16 shows the result. It appears 

the measured molecular weights may have influence on the cloud point temperature but 

uncertainty arises because all the measured molecular weights are due to an aggregating system. 

The two cloud point temperatures are close within uncertainty, suggesting measured molecular 

weight plays little role in the cloud point transition for PEGL in water.  

Upon reaching a Tcp close to room temperature, a Hofmeister salt that salts-in proteins, 

thiocyanate, was added. In this instance, the NaCl concentration was increased until the sample 

was cloudy at room temperature. The sample was allowed to sit for several days and the solution 

became clear. More salt was added until the solution once again became cloudy (4.72 M NaCl) 

and immediately sodium thiocyanate was added until the solution became clear again (2.08 M 

thiocyanate). The cloud point experiment in the UV/VIS spectrophotometer was again performed 

but no cloud point was observed. 
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Chapter 4 - Future Work 

4.1 Characterization in a Good Solvent 

PBLG has a long career of experiments showing everything from phase diagrams, 

gelation, aggregation, comparison to theory, etc. in many solvents. The primary next step for 

PEGL is finding its solubility in many different solvents. It was hypothesized that PEGL would 

be water-soluble and well-behaved, meaning that the good-solvent, excluded volume limit could 

be attained. The Zimm plots suggest otherwise. Dialysis DLS allows for testing the solubility of 

one specific PEGL sample in different solvents. Although the sample is not charged, the pH will 

also be tested. Proteins have a narrow solvent window in which they behave, and PEGL should 

too. That window can be found with dialysis DLS. A good solvent to begin with is 

trifluroethanol because it is known to induce a helical conformation, even when the polymer 

nominally is a random coil.
175

  

Once in a perceived “good” solvent, the helicity should be tested by circular dichroism. A 

way to direct the solvents chosen for dialysis DLS is to test the helicity of PELG in these 

solvents first. If the polymer is not helical, that solvent is not a top priority for dialysis DLS. 

Dialysis DLS is not the only experiment needed to find a better solvent. Once the lowest 

measured apparent radius is found, suggesting the polymer is fully dissolved and in “good” 

solvent, the dn/dc will be measured in order to perform static light scattering experiments (Zimm 

plots). SLS will measure radius of gyration, molecular weight, and second virial coefficient by 

building Zimm plots. Because this can be performed on the Wyatt GPC detector, Zimm plots can 

be easily made for many different temperatures and solvents. If the dn/dc is too low to provide 

ample scattering signal, the Zimm plots can be performed on our multi-angle light scattering 

setup. 
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Once the solvent is confirmed as thermodynamically good, as indicated by a positive 

second virial coefficient that reaches a constant value as a function of temperature, salt or pH, 

then Vv and Hv DLS experiments should be performed. PEGL has shown in increase in the 

decay rate as a function of the squared scattering vector magnitude in Vv experiments but it may 

partially be due to polydispersity. In a good solvent, the individual polymer chains should act 

independently at sufficiently low concentrations. This allows for a reliable measure of their 

rotational diffusion, a needed experiment for a rodlike polymer. 

If PEGL is helical and shows rotational diffusion in this new solvent, other experiments 

can be performed to characterize it. The apparent diffusion coefficient can be measured for 

multiple polymer concentrations and the length can be found from the Kirkwood-Riseman 

equation. Also, GPC can be performed with the good solvent with intrinsic viscosity, 

concentration, and DLS detectors. A conformation plot can be performed as a measure of the 

polymers morphology and the resultant radius and molecular weight data can be used to calculate 

the persistence length. 

4.2 Phase Diagrams 

The phase diagrams for PBLG are well known. This has allowed for complicated study of 

its phase transitions. The first step is to build the phase diagram for PEGL. This can be done 

using the polarized optical microscope and visually observing the phases. Once the transitions 

are known, many light scattering experiments can be performed, i.e. measuring the diffusion 

coefficient of isotropic-LC phase transition.
176

 The polymer can also be in a liquid crystalline 

phase and tested for change by external stimuli, such as magnetic fields.
119

 The phase diagrams 

can also be made for many solvent systems, even using the Hofmeister salt series to control the 

phase boundaries. 
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4.3 Probe Diffusion 

Model rodlike polymers have been used in probe diffusion experiments and PEGL should 

be no exception. Using a polymerization technique that retains the living chain ends allows for 

facile end labeling with a fluorescent dye. This would allow for probe diffusion experiments with 

a fluorescent-PEGL using FPR. This eliminates the need for index matching of the matrix 

polymer. 

4.4 Gelation 

Once the phase diagram is known for PEGL, possible gelation studies can be performed, 

assuming it gels. These studies would not be limited only to the good solvents, they might 

actually be aided by using solvents in which the polymer is not fully soluble. If the polymer gels 

at a reasonable temperature and concentration, the polymer could be used for drug delivery, etc. 

Thus far, water seems like a perfect solvent for gelation studies due to the aggregation present. A 

10% w/w solution of a PEGL with low measured molecular weight was made and was visually 

cloudy at room temperature. Upon heating, the system did not gel but salts and non-solvent were 

not added to aid in aggregation and possible gelation. 

4.5 Fluorescent Labeling 

As being one of the few labs with a versatile, fringe-pattern FPR, florescent labeling will 

provide another way to test the diffusion of the polymer (probe diffusion, self-diffusion, etc). In 

addition, a fluorescent polymer can be directly visualized (assuming it is large enough, likely 

only after aggregating) by microscopy. If the polymer is aggregating, these aggregates can be 

visualized, maybe to the point of gelation. It is possible the fluorescent tag will change the 

morphology of the polymer and this will be tested. 
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4.6 Synthesis of a New Polymer 

PEGL was chosen because experiments elsewhere suggested it was water-soluble but 

also because it had already been partially characterized and the synthesis understood. If PEGL 

proves not to be as fully soluble as expected, an analogous polymer with a shorter hydrocarbon 

portion of the side chain can be synthesized. The crystal structure and calculations from 

Gaussian suggest the aliphatic side chains may aggregate or cause some sort of instability. If this 

is the case, a lysine analogue can be used to shorten the side chain. The entire gamut of tests 

would need to be performed, but this is true of PEGL in a new solvent, too. 

Another option is to make the PEG side chains longer, to help “cover up” the 

hydrophobic side chain of lysine. Adding PEG side chains has been performed with PBLG and 

the length of the side chain has been tested.
177, 178

 This is probably the easiest analog to try 

because it should have a similar synthesis as the current PEGL. PEG has been used as an agent to 

prevent aggregation by using a large random coil type polymer. The random coil flexibility 

prevents aggregation due to the loss in entropy of an aggregated system. The PEG side chains in 

this work are too short to provide this function. 
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Appendix 1 - NMR spectra 

 

 

Figure 107. 
1
H NMR of dicyclohexylcarbodiimide (DCC). 
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Figure 108. 
1
H NMR of N-hydroxysuccinimde (NHS). 
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Figure 109. 
1
H NMR of N-2-[2-(2-methoxyethoxy)ethoxy]acetic 

acid. 
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Figure 110. 
1
H NMR of N-Hydroxysuccinimidyl 2-[2-(2-

methoxyethoxy)ethoxy]acetate. 
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Figure 111. 
1
H NMR of N-Hydroxysuccinimidyl 2-[2-(2-

methoxyethoxy)ethoxy]acetate  without complete reaction. The right 

shoulder on the peak centered at 2.8502 is due to unreacted N-

hydroxysuccinimde. 
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Figure 112. 
1
H NMR of Nα -Z-L-Lysine.  
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Figure 113. 
1
H NMR of Nε-2-[2-(2-methoxyethoxy)ethoxy]acetyl-

Nα-Z-L-Lysine. 
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Figure 114. 
1
H NMR of PEG-Lysine NCA. 
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Figure 115. 
1
H NMR of PEGL polymer. 
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Appendix 2 - Crystal Structure Data for EG-NCA 

 

  



 

190 

 

  



 

191 

 

  



 

192 

 

  



 

193 

 

  



 

194 

 

  



 

195 

 Appendix 3 - Permissions 
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Appendix 4 - List of symbols and abbreviations 

CHCA    α-cyano-4-hydroxycinnamic acid 

2 EXP    2 exponential fit 

      Avogadro’s number 

      Boltzmann’s constant 

°C    Celsius 

cm    Centimeters 

DNA    Deoxyribonucleic acid 

DLS    Dynamic light scattering 

GPC    Gel permeation chromatography 

GPC/MALS   Gel permeation chromatography with  

multi-angle laser light scattering 

      Hydrodynamic radius 

Rg    Radius of gyration 

m/z    Mass to charge ratio 

MALDI   Matrix assisted laser desorption ionization 

kHz    Kilohertz 

μL    Microliter 

mL    Milliliter 

min    Minutes 

M    Molar 

mM    millimolar 

mol    Mole 

M    Molecular weight  
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Mw    Weight-average molecular weight 

Mn    Number-average molecular weight 

N2    Nitrogen 

PDI    Polydispersity index 

1
H NMR   Proton nuclear magnetic resonance spectroscopy 

      Radius of gyration 

 θ    Rayleigh factor 

q    Scattering vector 

s    Seconds 

      Solvent viscosity 

SLS    Static light scattering 

T    Temperature 

Tcp    Cloud point temperature 

NAM    Normal amine mechanism 

AMM    Activated monomer mechanism 

NCA    N-carboxyanhydride 

HVT     High vacuum technique 

PBLG    Poly-γ-L-glutamate 

PEGL    Poly(diethylene glycol lysine) 

PEG    Poly(ethylene glycol) 

ap    Persistence length 

ηsp    Specific viscosity 

ηrel    Relative Viscosity 
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[η]    Intrinsic viscosity 

Γ    Decay rate 

q    Scattering vector 

CUMU   Cumulant fits 

3CUMU   Third cumulant fit 

2-EXP    Two exponential fits 

D    Diffusion coefficient 

LCST     Lower critical solution 
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