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ABSTRACT 

Chemo- and biosensors based on fluorescent conjugated polymer benefit from greater 

detection sensitivity due to amplification of the electronic perturbations produced by analyte 

binding. This amplification stems from the exciton-transporting properties of conjugated 

polymers. A conventional design paradigm relies on the analyte binding events which generate 

sites of lower energy relative to the polymer energy: either fluorescence quenching sites (turn-off 

sensors) or bathochromically shifted fluorophores (turn-on sensors). In both type sensors, the 

excitons migrate to the lower-energy site created by analyte binding.  

This dissertation primarily focused the investigation of an alternative paradigm when 

analyte binding creates higher energy gap sites in the polymer backbone. Such higher-energy gap 

sites act as “roadblocks” for excitons to reduce their migration length. Decreasing exciton 

migration length is accompanied by increasing fluorescence intensity, thus generating an amplified 

turn-on fluorescent response. The new paradigm expands the generality and universality of the 

signal amplification concept in conjugated polymers, and can be used to design amplifying turn-

on fluorescent sensors for various practically useful analytes such as hydrogen sulfide and 

cysteine.  

In the last part of this dissertation, we present a series of poly(p-phenylene ethynylene) thin 

films prepared by stepwise surface-initiated polymerization. In addition to experimental simplicity 

and reproducibility of the preparation, and broad variety of compatible building blocks, this 

method requires low material consumption and no purification for the final bulk thin films. The 

stepwise surface-initiated polymerization yields dense films of covalently immobilized polymer 

chains with precisely controlled molecular structure and organization. 
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CHAPTER 1. INTRODUCTION TO CONJUGATED POLYMERS AS 
CHEMOSENSORY MATERIALS  

1.1 Overview of Conjugated Polymers  

Conjugated polymers (CPs) are organic macromolecules with p-conjugation delocalized 

over a large number of repeating units.1 The field of conjugated polymers became popular since 

finding of metallic electrical conductivity in oxidatively doped polyacetylene (PAc) films by 

Shirakawa, Heeger, and MacDiarmid in 1977 (in 2000 they received Nobel Prize in Chemistry for 

that discovery).2–4 They found that the conductivity of polyacetylene increased nearly ten orders 

of magnitude upon exposure of the polymer film to iodine.5,6 Since that initial studies, extensive 

research on the photophysical, electrochemical, and magnetic properties of conjugated polymers 

has been a popular target in academic community.7 In addition to fundamental research 

significance, the tunable electronic and optical properties, flexibility, and solution processability 

made conjugated polymers a promising class of materials for the next generation electronics such 

as organic light-emitting diodes (OLEDs),8 organic field-effect transistors (OFETs),9 

photorefractive devices,10 organic photovoltaic cells (OPVs),11 and chemosensory materials.12–16  

 

Figure 1.1. Representative chemical structures and abbreviated names of common conjugated 
polymers. 

These properties mainly stem from (1) the extended p-electron delocalization over entire 

conjugated polymer backbone which reduces the energy gap between the valence and the 

conduction bands down to 1.5~3.0 eV; and (2) the efficiency of inter- and intramolecular excitation 
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energy (exciton) migration, especially in the condensed and solid state. Figure 1.1 shows common 

conjugated polymers such as poly(para-phenylene) (PPP), poly(para-phenylene vinylene)s(PPV), 

poly(para-phenylene ethynylene) (PPE), polythiophene (PT), poly(thienylene vinylene) (PTVs), 

poly(3,4-ethylenedioxythiophene) (PEDOT), polyaniline (PANI), polypyrrole (PPy), and 

polyfluorene (PFO).17 

1.2 Inter- and Intramolecular Excitation Energy Transfer  

It is important to understand how the electronic excitation energy (exciton) transfers 

in/between conjugated polymer chains prior to designing OLED, OFET, solar cells, and chemo-

/biosensory devices.18 A quasi-particle exciton is generally referred to the excitation energy and 

the surrounding environment changes in bond length and angles along the π-conjugated system in 

response to the formation of the excited state.19  

 

Figure 1.2. Schematic diagrams showing mechanisms of Förster (top) and Dexter (bottom) energy 
transfer processes. 

Generally, excitation energy can migrate intermolecularly and/or intramolecularly, in 

which the former occurs via dipole–induced dipole through-space interactions (Förster-type)20 and 

the latter happens by the combination of through-space mechanism and via the through-bond 

mechanism occurring through strong orbital overlap between chromophores (Dexter-type) (Figure 
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1.2).21 Nevertheless, whether the Förster-type or Dexter-type mechanism dominates the excitation 

energy transfer in conjugated polymers still remains a point of debates in research literature owing 

to the difficulty of quantitative differentiating one from the other.22,23 In an ideal scenario of strong 

intrachain electronic coupling where through-bond Dexter-type mechanism dominates, excitons 

one-dimensionally walk along the isolated polymer chains whose structure is hypothesized to be a 

defect-free planar conformation with complete electron delocalization along the backbone. In 

reality, however, the disordered nature of conjugated polymers tends to form abundance of 

structural defects such as kinking, coiling, twisting, etc., whereby these inherently defects can 

greatly inhibit Dexter energy migration since the orbital coherence between segmented 

chromophores is discontinuous (Figure 1.3).24  

 

Figure 1.3. Example of single-chain conformation of a poly(phenylene vinlyene) conjugated 
polymer, referred to as the defect cylinder conformation. Conformational disorder produces a 
chain of linked chromophores (or conformational subunits) outlined conceptually by the boxes. 
The intramolecular excitation energy transfer (migration along the backbone) is the predominant 
mechanism when the polymer chain assumes an open, extended conformation, typical for solutions 
in good solvents such as chloroform; on the other hand, intermolecular interactions (hopping 
between segments in close proximity) are dominant for tightly coiled configurations, typically 
found in polymer nanoparticles, or thin films. Reproduced with permission from Ref. 24. 
Copyright ã 2009 The American Association for the Advancement of Science. 
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 The luminescence signature of intermolecular migration usually combines bathochromic 

emission, longer lifetime, and lower quantum yield, since delocalization between segments 

reduces the excited state energy relative to the isolated chain exciton. A detailed elucidation of 

these two mechanisms was presented by Schwartz et al.25 In that work, isolated extended alkoxy-

PPV macromolecular chains were incorporated into long cylindrical pores of an extended silica 

matrix in order to eliminate any intermolecular interactions, and the polarized luminescence 

spectroscopy showed that the excitation energy diffusion along the isolated polymer backbone was 

a slower process (10-11 ~ 10-10 s) due to weak dipole coupling along the extended polymer chain. 

At the same time, intermolecular energy migration was found to be much faster (10-12 ~ 10-11 s).  

Although intramolecular energy transfer is generally considered less efficient than its 

intermolecular counterpart, some recent studies have shown that the intramolecular migration in 

isolated polymers may be actually efficient. Swager et al. found that intramolecular energy transfer 

indeed was the major pathway for excitation migration in conjugated polymers in anisotropic 

Langmuir-Blodgett films of monolayered PPE.26–28 The substantial contribution of through-bond 

Dexter-type mechanism of excitation energy transfer along the conjugated polymer backbone was 

found in chain-extended conformations of uniformly aligned PPEs in nematic liquid crystalline 

media (Figure 1.4).29 Unlike through-space hopping by Förster-type route, excitation energy 

transfer by orbital overlap is dramatically affected by structural defects and molecular alignments. 

This significance was elegantly addressed by dissolving PPE derivatives in nematic liquid crystals, 

allowing finely manipulation of the chain-extension lengths and molecular alignments of the PPE 

backbone. The end-capped low-energy gap fluorophores was introduced to accept intramolecular 

excitations and therefore the efficiency of energy migration could be evaluated via site-selective 

emission of the termini. When the temperature was increased above the nematic-isotropic 
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transition of the liquid crystal, the dramatically diminished fluorescence from the terminal 

fluorophores, along with simultaneous increase in the backbone PPE emission strongly indicated 

the disrupting of conjugated length and related diminishing of the energy migration by Dexter-

type mechanism. 

 

Figure 1.4. Simplified representation of conjugated polymer PPE in isotropic and liquid crystalline 
solutions. In isotropic solution, the conformational disorder in the polymer backbone prevents 
efficient intramolecular exciton migration, thus resulting in predominant emission from the PPE 
backbone. In nematic liquid crystalline solution, the increased electronic conjugation in the 
straightened and planarized polymer chains is higher, which leads to the enhanced intramolecular 
migration toward the terminal groups with a concomitant increase in the termini’s emission. 
Reproduced with permission from Ref. 29. Copyright ã 2005 American Chemical Society. 

Quantitative differentiation of the contribution from intermolecular and intramolecular 

energy transfer pathways can be performed by subensemble analytical methods such as cryogenic 

single molecular spectroscopy.30 This analytical method is based on the measuring zero-phonon 

transition line accompanying distinct vibrionic band of individual chromophores within a polymer 

chain, and thereby can differentiate between intermolecular, intramolecular, and dynamic modes 

of disorder. Lupton et al. recently investigated poly(3-hexylthiophene) (P3HT) in Zeonex480 and 

poly(methyl methacrylate) (PMMA) matrices, to simulate isolated and aggregated polymer chains, 

respectively. They found that single chromophore in the conjugated chain was flexible and could 

adopt wide range of subtly varying conformations (e.g. bending of backbone, chain torsion, and 
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changes in bond alternation) that affect the adjacent chromophore in a single chain through 

coherent oscillation, which is also responsible for intermolecular energy transfer.  

Förster and Dexter mechanisms both contribute greatly to energy transfer in conjugated 

polymers. Although the Förster mechanism is considered to play a major role in high concentration 

solutions and aggregates states due to close interchain distance, Dexter energy transfer, which is 

based on orbital overlap along π-electron delocalized conjugated backbone, is efficient in more 

dilute solutions. 

1.3 Signal Amplification in Conjugated Polymer Sensors 

A photon absorption generates a strongly bound electron-hole pair (exciton) that can 

randomly walk along the conjugated system as well as hop from one conjugated system to another 

before a photophysical and/or photochemical process occurs. By using site-selective fluorescence 

technique, it was found that inherent Stokes shift in conjugated polymers is smaller than that 

induced by exciton migration. Therefore, the photoluminescence occurring from the lower energy 

gap segments gives conjugated polymer a larger Stokes shift and inhomogeneous featureless 

luminescence spectrum. In case of an isolated polymer chain, excitation energy migration happens 

intramolecularly in a slow process relying on orbital overlap,31 and the diffusion length of exciton 

ranges from 5 to 14 nm.32,33 Swager et al. demonstrated, by end-capping poly(para-phenylene 

ethynylene)s with a lower energy gap anthracene end groups, that the exciton effectively migrates 

to the lowest energy gap site (Figure 1.5).34 

On the other hand, conjugated polymer photoluminescence can be efficiently quenched via 

a photoinduced electron transfer (PET) process, where excited state electron on the conduction 

band is brought back to the valence band by passing through the LUMO of an electron-deficient 

analyte bound to the polymer backbone. Combined with an efficient exciton migration (especially 
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when it becomes a three-dimensional process in solid and condensed states), this process is known 

as “turn-off” amplification mechanism. Swager et al. and Whitten et al. independently 

demonstrated that electron-deficient molecules such as nitro-aromatic explosives can effectively 

bind to electron-reach conjugated polymers (Figure 1.6).35,36,37 They showed that a single chemical 

binding or unbinding event can trigger electronic perturbations along the entire π-electron 

conjugated backbone, thereby the collective response can be measured optically or 

electrochemically. It is important to note that such a response is dominated by static quenching. 

 

Figure 1.5. Representation of energy migration in a conjugated polymer molecular wire with a 
decrease in band gap at the termini. Reproduced with permission from Ref. 34. Copyright ã 1995 
American Chemical Society. 

In contrast to the “turn-off” mechanism where the metal-ligand coordination or van der 

Waals interactions between the polymers and the electron-deficient quenchers are responsible for 

the photoluminescence quenching, Kim and Swager demonstrated an example of an unprecedented 

“turn-on” fluorescence amplifying conjugated polymer for fluoride anion detection.38 In Figure 

1.7, a non-emissive pendant fluoride-reactive group, electronically coupled with the conjugated 

polymer backbone, lactonizes to form a lower-energy coumarin fluorophore after treating with 

analytical amount of fluoride anion. This forces the excitons produced in the polymer backbone to 

migrate to the lower-energy coumarin site with accompanying increase in the coumarin 

fluorescence. The resulting fluorescence amplification is approximately 100 times with respect to 



 8 

a small molecule analog. However, there are only a limited number of suitable analytical reactions 

that can form a lower-energy highly fluorescent fluorophore where its absorption and emission are 

bathochromically shifted relative to the CP backbone. This indeed intrinsically limits the generality 

and application potential of this approach. 

 

Figure 1.6. Conceptual illustration of energy migration to a receptor site occupied by PET 
quencher methyl viologen (paraquat, PQ2+). When the excited electron encounters a receptor site 
with a bound PQ2+ group, electron transfer quenching occurs. Reproduced with permission from 
Ref. 37. Copyright ã 1995 American Chemical Society. 

 

Figure 1.7. Schematic band diagram illustrating the mechanism by which a semiconducting 
polymer can produce an enhanced turn-on fluorescence chemosensory response. The horizontal 
dimension represents the position along the polymer backbone shown schematically at the bottom. 
Excitons are created by absorption of a photon (hu) and they migrate along the polymer backbone. 
Fluoride-induced lactonization of the electronically coupled receptor groups produces an exciton 
trapping site with a smaller band gap (Eg) and recombination of excitons at that site results in a 
new amplified emission. Reproduced with permission from Ref. 38. Copyright ã 2003 Wiley-
VCH. 

To address this challenge, Nesterov et al. introduced an alternative “higher energy gap” 

paradigm — where instead of relying on the formation of a smaller energy gap emissive site where 



 9 

excitation energy from the conjugated polymer backbone is funneled, the generation of a local 

higher energy gap site in the π-conjugated backbone is able to restrict the energy migration along 

the isolated π-electron conjugated system.39 Importantly, this concept relies on the small changes 

at the analyte-reactive site rather than on drastic changes in the π-electron conjugated backbone  

Poly(p-arylene vinylene)s (PAVs) emerged as an excellent conjugated polymer choice for this 

mechanism due to its extraordinary emissive nature and low energy band gap (lem > 500 nm), as 

well as a better feasibility to functionalize with analyte-specific receptor groups compared to other 

classes of conjugated polymers. In the initial study, diethyl chlorophosphate (DCP), a commonly 

used mimics of organophosphorus warfare agents, was chosen as an analytical detection target. 

The PAV polymer sensor incorporated naphthalene based hydroxy oxime reactive group that can 

facilely convert to the corresponding isoxazole upon reacting with DCP.  The formation of 

isoxazole unit, which possesses a noticeable higher HOMO-LUMO gap relative to the unreacted 

hydroxy oxime, resulted in an amplified turn-on fluorescent response. Since the turn-on response 

in the higher energy gap mechanism is based on modulation of the intramolecular exciton 

migration in CPs, it produces an amplification effect similar to that observed in cases of turn-off 

sensors for electron deficient analytes.  

 

Figure 1.8. Schematic diagram illustrating the higher energy gap control of CP fluorescence: an 
analyte (red circle) binding creates a local higher energy gap site in the CP backbone which acts 
as a “roadblock” and decreases the length of the excitation/exciton migration along the π-
conjugated system, resulting in the increase of fluorescent intensity of the conjugated polymer. 
Reproduced with permission from Ref. 39. Copyright ã 2013 American Chemical Society. 
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1.4 Turn-On Sensory Systems Based on Fluorescent Conjugated Polymers  

1.4.1 Sensing Metal Ions 

In contrast to turn-off, quenching-based conjugated polymer fluorescent sensors, research 

literature describes rather limited number of turn-on conjugated polymer based fluorescent 

sensors. This is probably related to the difficulties with general design principles of such sensors. 

Below, we provide an overview of known turn-on sensors based on conjugated polymers.  Many 

of such sensors are based on binding metal cations by chelating ligands which results in 

diminishing PET quenching process. Jones et al. reported sensor 1 based on poly[p-(phenylene 

ethylene)-alt-(thienylene ethynylene)] containing N,N,N’-trimethylethylenediamine (tmeda-

PPETE) pendant units that showed turn-on selective fluorescent response on Hg2+ over Ca2+, Zn2+ 

and H+ at the submicromolar concentrations.40 The low quantum yield of the pristine polymer (fFL 

= 0.09) was attributed to PET from the conjugated backbone to the amino group of the 

uncomplexed receptor tmeda. Upon binding with Hg2+, a stable tmeda/Hg2+ complex was formed 

which lowered the HOMO of the receptor and inhibited the PET process, resulting in the increase 

of the fluorescence intensity. Fan and Jones also prepared an inorganic/organic hybrid complex, 

tmeda-PPETE/Cu2+, which showed selective response on detection of Fe2+ cations.41 In the initial 

state, the pre-coordinating with Cu2+ completely quenched the polymer fluorescence.  

Upon the addition of Fe2+, tmeda-PPETE/Cu2+ hybrid system showed a gradual 

enhancement in fluorescence up to 150-fold, and was highly selective toward Fe2+ over Ca2+, Hg2+, 

Zn2+, Ni2+, Co2+, Mn2+, and H+ ions. The authors proposed that the amplified fluorescent response 

not only simply resulted from the difference in association constants between tmeda and various 

metal ions, but was due to the competitive binding between Cu2+ and other metal ions. 
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Zhu and co-workers reported a poly(p-phenylene ethynylene) derivative 2 incorporating a 

single diastereomer (R,R)-salen unit as a Zn2+ receptor that showed a 7.8-fold increase in 

fluorescence upon gradual addition of Zn2+.42 The formation of Zn2+ metallopolymer significantly 

suppressed PET quenching process as well as resulted in planarization of the polymer backbone 

to increase the π-electron conjugation. Noteworthy, 2 exhibited a good selectivity for Zn2+ over 

Cd2+ and Hg2+ despite all three ions being in the same group of the periodic table and having 

closed-shell configurations.  

Li and co-workers also investigated Hg2+ detection by the rhodamine incorporating poly[p-

(phenylene ethylene)-alt-(thienylene ethynylene) sensor polymer 3.43 Changes that were observed 

upon addition of Hg2+ in both absorption and fluorescence spectra could be attributed to FRET 

from the conjugated backbone to the ring-opened isomer of rhodamine. It was found that the 

fluorescence intensity ratio of conjugated backbone to rhodamine emission bands increased by a 

factor of 18.6. Sensor 3 showed good selectivity toward Hg2+, even over the background of 20 

equiv. of metal ions including Li+, Na+, K+, Ca2+, Ba2+, Mg2+, Al3+, Ag+, Cu2+, Co2+, Ni2+, Mn2+, 

Pb2+, Zn2+, and Cd2+.  

   

Recently, Hua and co-workers have prepared poly(fluorene-co-thiocarbonyl quinacridone) 

Hg2+ fluorescence turn-on probe 4, which demonstrated excellent sensitivity and 32-fold 

fluorescent intensity increase upon analyte binding.44 The fluorescent emission of 4 was initially 
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suppressed by the presence of thiocarbonyl moiety in the conjugated backbone. Addition of 

mercury ion resulted in conversion of thiocarbonyl to carbonyl functional group bringing about 

the absorbance change and turn-on intensity increase in fluorescence. Furthermore, Hua also 

demonstrated that the nanoparticles of 4 expressed good sensitivity and selectivity toward Hg2+ in 

PBS solution and in the presence of HeLa cells. 

 

 

Wang et al. reported a K+ sensor based on excitation energy transfer from water-soluble 

polyfluorene 5 to the fluorescein labelled G-rich single-strained DNA.45 With quaternary 
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ammonium cations in the side chains, 5 can electrostatically attract to the negatively charged G-

rich ssDNA and form a 1:1 complex with it. The loose complex of 5 and random coiled ssDNA 

showed a predominant fluorescence band from 5 at 422 nm and a low-intensity band at 527 nm 

due to an inefficient FRET from polymer 5 to fluorescein chromophore. Addition of the complex 

of 5 and fluorescein-labeled ssDNA to an aqueous solution of K+ resulted in the significant turn-

on increase of the fluorescein fluorescence band, which was due to shortening the distance between 

5 and G-quadruplex forming in the presence of K+. The FRET ratio (I527/I422) of the polyfluorene 

to fluorescein emission bands increased about 2, 3.4, and 16 times in the presence of 8.5, 30, and 

50 mM KCl, respectively. Selectivity examination showed a much weaker response on the addition 

of Mg2+ and Ca2+; and negligible response on Na+, NH4+, and Li+ due to the inability of these ions 

to facilitate formation of the G-quadruplex secondary structure. 

Smith et al. exploited benzo-15-crown-5-ether based poly(p-phenylene vinylene)s 

derivative (CE-OPV) 6 as an Eu3+ chemosensor.46 Sensor 6 represented a rare case when a crown-

ether based conjugated polymer exhibited turn-on fluorescence enhancement since ion-enhanced 

aggregation typically effectively traps and non-radiatively dissipates the emissive energy.47 The 

authors argued that the fluorescence enhancement could be caused by suppression of ICT. 

    

Zhu et al. have prepared a chiral conjugated polymer by joining a (R,R)-salen ligand with 

a perylenetetracarboxylic acid derivative.48 Conjugated polymer sensor 7 exhibited only a weak 
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fluorescent band at 635 nm prior to coordinating with added Hg2+, and the authors proposed that 

it was attributed to an efficient intramolecular charge transfer (ICT) between the salen and 

perylenetetracarboxylate units along the polymer backbone. They observed a significant (up to 26 

times) increase of fluorescence intensity upon addition of Hg2+ with an excellent selectivity. 

 

1.4.2 Small Organic Molecules and Bioanalytes 

Lippard and co-workers reported a bipyridyl-incorporating poly(p-phenylene vinylene) 

conjugated polymer sensor 8 to detect NO gaseous molecule with nanomolar sensitivity.49 8/Cu2+ 

complex showed a moderate fluorescence quenching, whereas the introduction of 300 eq. of NO 

increased the polymer emission by 2.8-fold. The authors proposed that in alcohol solution, the NO 

can reduce paramagnetic Cu2+ cation to diamagnetic Cu1+ cation; the paramagnetic properties of 

Cu2+ were mainly responsible for the initial fluorescence quenching. 

Li and co-workers prepared a polyfluorene derivative 9 containing imidazole pendant side 

groups that are chelating toward Cu2+ to be used as a cyanide turn-on sensor.50 Excitation energy 

transfer from the conjugated polymer backbone to imidazole-bound Cu2+ lead to dramatic 

reduction in fluorescence emission at 402 nm while the replacement of imidazole with other 
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nitrogen-containing heterocyclic units would not be sufficient to diminish the emission. 9/Cu2+ 

complex showed a significant fluorescence response upon the addition of CN–. 

 

 

Zhu et al. demonstrated that a chiral imine-based conjugated polymer 10 incorporating 

both (S)-2,2′-binaphthol (BINOL) and (S)-2,2′-binaphthyldiamine (BINAM) units can selectively 

recognize (D)-phenylalaninol over its enantiomer (L)-phenylalaninol.51  The binding of (D)-

phenylalaninol to the chiral polymer backbone inhibited PET process and therefore triggered the 

fluorescence turn-on response. The enantioselective response of 10 can be attributed to the 

formation of a more stable 10/(D)-phenylalaninol diastereomer complex stemming from the 

interactions of hydroxy and imine functional groups on BINOL and a target amino alcohol. 

Noteworthy, reduction of imine units upon the treatment with NaBH4 converted 10 in a non-

conjugated polymer which showed a much lower fluorescence response. The polymer 10 showed 

an enantiomeric fluorescence difference ratio (ef) of 6.85-fold for (D)-phenylalaninol with respect 

to its enantiomer. The authors unveiled good analyte selectivity of 10 since no significant 

fluorescence enhancement was noticed upon addition of (D)/(L)-mandelic acid, (R)/(S)-
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phenylethylamine, and (D)/(L)-phenylglycinol. The authors further extended the concept of 

enantioselective recognition for the sensing chiral (L)-a-hydroxycarboxylic acids.52 (R,R)-salen 

incorporating poly(p-phenylene ethynylene) 11 showed only a weak fluorescence since the strong 

intramolecular hydrogen bonding between the hydroxy and imine groups on the salen moiety 

quenched the fluorescence of 11, whereas the fluorescent emission could be subsequently restored 

by binding of target (L)-a-hydroxycarboxylic acids. The sensor 11 showed ef of 8.41 for (L)-

mandelic acid over (D)-mandelic acid, and 6.55 for (L)-lactic acid over (D)-lactic acid. Reduction 

of the imine group to saturated amine resulted in a disordered and flexible polymer with a strong 

intrinsic fluorescence. In contrast to polymer sensor 11, the reduced disordered polymer showed 

formation of an unstable complex with mandelic acid which was acting as a site for nonradiative 

relaxation, leading to fluorescence quenching (turn-off response). 

   

Recently, Pu and co-workers reported a chiral 1,1′-bis-2-naphthol based conjugated 

polymer 12 whose fluorescence was initially quenched by the aldehyde groups.53 Treating the 

enantiomeric polymer (S)-12/Zn2+ complex with (R)-leucinol yielded a large increase in 

fluorescence emission at 535 nm, whereas a weaker fluorescence increase was observed for (L)-

leucinol. In addition, good selectivity over various 2-aminoalcohols was observed. The authors 

hypothesized that the most sterically bulky substituent adjacent to the chiral amine center gave the 

highest ef value. The importance of having conjugated polymer entity was demonstrated by the 
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fact that a small molecule counterpart of the polymer 12 showed only a negligible difference in 

the enantioselective fluorescent response. 

Wang et al. designed conjugated hydroxy-functionalized polyquinoline polymer 13 as a 

fluoride anion sensor, which operated based on the formation of hydrogen bonding between F– and 

the hydroxy group.54 Addition of F– resulted in the appearance of a new absorption peak at around 

500 nm, as well as significantly increased the fluorescence band at 620 nm up to 147-fold. In 

contrast, a small molecule counterpart of the polymer 13 exhibited only a much smaller 14.7 times 

fluorescent enhancement. The authors proposed that the turn-on sensing effect involved two 

mechanisms: the formation of phenolate induced by F– and the ICT between quinolone and the 

phenolate moieties. The former was investigated by 1H NMR using a small molecule analog which 

showed diminishing of the hydroxy peak.  The role of the second mechanism was clearly indicated 

by the long range bathochromic shift in absorption and emission spectra. Additionally, no obvious 

change occurred upon addition of Cl–, Br–, and H2PO4–. 

   

Thomas and Swager reported an amino-functionalized poly(p-phenylene) 14 whose 

fluorescence could be increased by adding trace amounts of a reducing agent hydrazine.55 

Although 14 showed such an enhancement only in thin films, the observed hydrazine detection 
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limit was 100 ppb. It was likely due to the presence of inherently oxidized defect sites in the bulk 

materials as well as the much greater exciton migration in conjugated polymers in solid state 

relative to an isolated chain in dilute solution. It is noteworthy that less electron-rich 15 and 16 

showed lower response compared to 14, indicating that most readily oxidized polymer gave the 

largest fluorescence enhancement. 

Tian et al. prepared naphthalimide-functionalized poly(phenylacetylene) 17 which 

exhibited both fluorescent ratiometric and colorimetric responses on addition of F–.56 In the 

presence of F–, ICT could be facilitated by the conversion of amide (electron donor) to imine 

(electron acceptor) moiety,57 resulting in a large electron density redistribution and showing charge 

transfer peaks in the UV-vis and emission spectra. 17 demonstrated good selectivity for fluoride 

over other halogen anions such as Br–, Cl–, and I–. 

    

Kakuchi and co-workers introduced a concept of anion/urea halogen bonding promoted 

deaggregation that unquenched the fluorescence of conjugated polymers.58 Urea-functionalized 

poly(phenylenebutadiynylene) 18 intrinsically favors interchain aggregation since the abundant 

urea units tend to form multiple intermolecular hydrogen bonds, which resulted in the aggregation-

induced quenched polymer emission band at 460 nm. Upon addition of F–, the stronger association 

between F– anion and urea resulted in disassembly of the aggregated state of 18 thereby producing 
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a new fluorescence band at 493 nm originating from the isolated polymer. Polymer sensor 18 

showed a good response on F–; however, it also showed a relatively low selectivity and lacked 

discrimination against other anions such as AcO–, BzO–, and N3–. 

   

In a sharp contrast to the above-described work, Zhao and Schanze developed a conjugated 

polymer sensor where anion-enhanced aggregation resulted in a turn-on ratiometric fluorescent 

response.59 The cationic polyelectrolyte poly(p-phenylene ethynylene) 19 bearing ammonium-

functionalized side chains showed excellent water solubility and intense blue fluorescence at 432 

nm with well resolved vibronic structure. The intensity of the emission band at 432 nm decreased 

upon increasing concentration of added pyrophosphate which was accompanied by enhancement 

of a red-shifted broad emission band at 520 nm.  The latter was due to the pyrophosphate-induced 

aggregation of conjugated polymer 19 and resulting intermolecular exciton coupling. On the other 

hand, phosphate anion chelated 19 showed no change in absorption and fluorescence spectra. The 

authors hypothesized that pyrophosphate bearing two anionic units could efficiently crosslink the 

polycationic chains of 19 thereby resulting in aggregation and aggregation-related observed 

spectroscopic changes. 
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Bai et al. prepared a 2,2′-bisimidazole incorporating conjugated polymer 20 whose 

fluorescence was effectively quenched upon formation of a complex with Cu2+ through PET 

between the polymer backbone and Cu2+ as the electron acceptor.60 The 20/Cu2+ complex 

demonstrated good fluorescence enhancement upon titration with pyrophosphate anion due to the 

formation of a more stable complex of pyrophosphate/Cu2+ thereby inhibiting the PET process. Of 

many common hard and soft anions, only pyrophosphate was found to trigger fluorescence 

enhancement of up to 9-fold within three minutes and the pyrophosphate detection limit was found 

to be 0.17 ppm.  

The same authors also utilized poly[2,2′-bisimidazole-co-carbazole] conjugated polymer 

21 as a platform for sensing cysteine.61 Upon addition of Ag+ to the polymer, the complex 21/Ag+ 

showed decreasing intensity of fluorescence emission at 416 nm and a simultaneous red shift of 

40 nm. Two possible mechanisms were proposed to rationalize this observation: the first was PET 

from the polymer 21 to Ag+ and the second was Ag+-induced interchain aggregation resulting in 

an efficient FRET.62 The complex 21/Ag+ was then used to detect cysteine since Ag+ possesses 

strong association constant towards cysteine. The fluorescence ratio (F416nm/F456nm) increased 4 

times upon addition of cysteine, and the detection limit was established at 90 nM. 21/Ag+ complex 

showed good selectivity towards cysteine among 15 other amino acids, yet glutathione showed a 

similar fluorescence response. 
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Swager et al. demonstrated that a nonemissive thioether-containing poly(p-phenylene 

ethynylene) 22 displayed amplified turn-on fluorescence when exposed to hydrogen peroxide.63 

Pristine 22 showed a low fluorescence quantum yield (lFL 457 nm, FFL 0.01), but it was increased 

by more than 49-fold upon the addition of an oxidizing agent H2O2. Low concentration of H2O2 

(100 nM) was sufficient to trigger the fluorescence response from 22 in three hours, however 

excess amount of H2O2 lead to oxidizing the ethynyl linker thereby interrupting the π-electron 

conjugated system. Fluorescence lifetime studies of 22 showed that the increased kFL was due to 

the greater spatial overlap of the frontier molecular orbitals due to delocalization of the HOMO 

along the conjugated backbone and the increased tFL was due to the decrease in the rate if 

intersystem crossing. 

Thomas and co-workers reported diaryltetracene-functionalized poly(fluorene-co-

phenylene) 23 as a ratiometric fluorescent singlet oxygen (1O2) sensor.64 The pendant 

diaryltetracene can undergo [4+2] cycloaddition with 1O2 to form endoperoxide species. Formation 

of these species can suppress excitation energy migration from the polymer backbone to 

diaryltetracene chromophore and therefore restore fluorescence of the polymer backbone. This 

resulted in drastic changes in the emission spectra, where a tetracene emission band at 512 nm 

steadily decreased whereas the polymer backbone emission band at 417 nm increased. 

  

n

22

SS

S S

C4H9 C4H9

C4H9 C4H9

OC10H21

C10H21O

C8H17 C8H17 O

H3CO

O

OCH3

n

23



 22 

The authors also showcased an alternative route of the excitation energy migration 

interruption. In conjugated polymer 24, the 1O2 acceptor diethynyltetracene unit was electronically 

coupled to the excitation energy donor poly(p-phenylene ethynylene).65 Upon exposure to reactive 

singlet oxygen, fluorescence of the conjugated polymer backbone at 469 nm greatly increased. 

This was due to the oxidized tetracene chromophore no longer accepting excitation energy. Time-

resolved fluorescence spectroscopy and excited-state lifetime studies found that the lifetime of 24 

gradually increased with an increasing fraction of the oxidized tetracene. 

 

Rochat and Swager reported an n-type conjugated polymer poly(pyridinium p-phenylene) 

25 that was designed as a sensor for electron rich bioanalytes.66 This sensor could detect 

concentration of caffeine as low as 25 ppm. Reduction of 48% in fluorescence intensity with 

electron rich indole units could be attributed to the quenching due to electron transfer from indole 

to the high ionization potential conjugated polymer. This was evaluated in Stern-Volmer 
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quenching experiments and fluorescence lifetime studies.67,68 Unexpectedly, other analytes 

resulted in an increase in emission intensity, thus suggesting a more complex fluorescence 

amplification mechanism. With its large hydrophobic pentiptycene unit, 25 could display some 

intermolecular hydrophobic interactions which could be interrupted by added aromatic analytes. 

Swager and coworkers also demonstrated a pseudoratiometric polymer-on/dye-off 

mechanism for sensing cyclic ketone vapors.69 The loading of 0.5 wt. % of a squaraine dye in the 

thin film of poly(p-phenylene ethynylene) 26 facilitated excitation energy transfer from the 

polymer to the squaraine chromophore. The insignificant spectral overlap between emission of 26 

and squaraine absorption indicated domination of the Dexter-type mechanism of energy migration 

and therefore the excitation energy transfer was extremely sensitive to the intermolecular distance 

and orientation. Introduction of cyclohexanone upon exposure of the thin film to the analyte vapor 

sterically disturbed and changed mutual positions of the conjugated polymer and squaraine thereby 

resulting in decreasing energy migration to the squarane chromophore, with overall decrease of 

squaraine fluorescence band and concomitant increase of the fluorescence emission from 26.  

 

A wide variety of analytes ranging from metal ions, small organic nucleophiles to large 

biomolecules can be categorized into four main fluorescence turn-on mechanisms, such as FRET, 

aggregation/deaggregation, suppression of ICT, and suppression of PET. FRET requires 
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sophisticated chromophore design to allow spectral overlap between energy donors and acceptors. 

Aggregation/deaggregation is highly dependent on the surrounding solvent molecules resulting in 

ratiometric fluorescence response. On the other hand, suppression of ICT/PET is usually operated 

through direct removal/neutralization of electron deficient quenchers from the polymer chains 

leading to fluorescent reminiscence of conjugated polymers without causing emission shift. While 

there is a continuous ongoing expansion of the research on chemosensor design based on the four 

conventional strategies, this dissertation will focus on a new concept towards the design of turn-

on fluorescent sensors. 

1.5 Research Focus  

This dissertation focuses on the developing and studies of the higher energy gap paradigm 

as a general principle in designing turn-on amplifying fluorescent conjugated polymer sensors, as 

the previous developments of turn-on fluorescent conjugated polymer sensors were impeded due 

to the need for excessively sophisticated design in terms of energy level matching and the practical 

difficulty in materials synthesis. To demonstrate the practical utility of the higher energy gap 

paradigm, chapter 2 describes the development of an efficient turn-on amplifying fluorescent 

sensor for hydrogen sulfide — an important industrial and biomedical analytical target. From a 

fundamental standpoint, the higher energy gap paradigm demonstrated the importance of the 

through-bond (Dexter-type) mechanism for intramolecular energy transfer in conjugated polymers 

— still a widely debated issue. 

In chapter 3, to further generalize and study in detail the higher energy gap paradigm, a 

conjugated polymer based amplifying turn-on fluorescence sensor for cysteine detection is 

described. In particular, it illustrated sensitivity of the higher energy gap mechanism even to very 
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small (about 0.1 eV) changes in HOMO-LUMO gap at the receptor side, which makes it a concept 

of choice for designing a broad variety of practically useful chemosensors.   

Chapter 4 describes the development of a new concept towards preparation of precision 

conjugated polymer thin films via stepwise alternating polymerization. A series of immobilized 

alternating donor-acceptor poly(p-arylene ethynylene)s (PAEs) ultrathin films was prepared via 

grafted-from stepwise Sonogashira polymerization. This chapter exemplified stepwise metal-

catalyzed polymerization as an efficient and economical approach to precision conjugated polymer 

films. The properties, structure and morphology of the thin films have been investigated using 

atomic force microscopy (AFM), grazing incidence X-ray scattering and neutron reflectometry, as 

well as optical spectroscopy and electrochemical methods. 
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CHAPTER 2. HIGHER ENERGY GAP CONTROL OF FLUORESCENCE 
IN CONJUGATED POLYMERS: TURN-ON AMPLIFYING 

CHEMOSENSORS FOR HYDROGEN SULFIDE* 

2.1 Introduction 

Signal amplification through photoexcitation energy (exciton) migration is a characteristic 

feature of conjugated polymer (CP) fluorescent sensory materials.1–3 Amplifying CP-based 

fluorescent chemo- and biosensors are attractive for sensing a broad variety of analytes including 

environmental hazards, explosives, and chemical warfare agents and biological species.4–9 

Compared to small-molecule based sensors, they provide higher sensitivity, broader analyte 

detection range, and tenability of spectroscopic response characteristic. The large majority of the 

conventional amplifying CP-based fluorescent sensors utilize the effect of CP fluorescence 

quenching by electrodeficient anayltes via photoinduced electron transfer mechanism and 

therefore display a turn-off response.10–15 On the other hand, sensors displaying turn-on fluorescent 

response (i.e., increasing their fluorescent emission upon interacting with an analyte) are more 

desirable from a practical standpoint but are much more difficult to design. A typical scheme that 

allows achieving an amplified turn-on response utilizes reversal of the CP fluorescence quenching 

phenomenon. In such a scheme, the CP fluorescence is initially diminished through the reversible 

coordination of a quenching moiety to the polymer conjugated backbone.  A selective interaction 

of a target analyte with the quenching moiety shifts the equilibrium toward the anaylte-quencher 

complex, therefore restoring the CP fluorescence.16–18  

________________ 

* “Reproduced in part with permission from Chiang, C.-H.; Pangeni, D.; Nesterov, E. E. 
Macromolecules 2017, 50, 6961-6966, DOI: 10.1021/acs.macromol.7b01706, Copyright 2017 
American Chemical Society.” 
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A related scheme utilizing fluorescent resonance energy transfer (FRET) effect for turn-on 

sensing of various non-quenching analytes (such as DNA and other biomolecules) has been also 

developed.19–21 Although useful and efficient, these approaches possess intrinsic limitation such 

as relative complexity of the sensing scheme, the need to employ chromophores with spectral 

characteristics matching the FRET requirements, and the necessity to functionalized one of the 

components of the sensor (or the CP itself) with a FRET acceptor fluorophore. An alternative (but 

less commonly used) approach to achieve amplified turn-on response is to incorporate an analyte-

specific unit/chromophore as part of the polymer p-conjugated backbone.22 In dilute solution of 

CP sensors, the intramolecular excitation energy (exciton) transfer process occurs by the 

combination of through-space dipole-induced dipole (Förster-type) mechanism and through-bond 

electron exchange (Dexter-type) mechanism.23–25 Although the relative contribution of through-

bond mechanism is often debated to be inessential compared to the contribution of the through-

space mechanism,26,27 its major role has been demonstrated in some specific cases.28,29 Indeed, 

when the sensing unit is electronically coupled to the polymer p-electron system, the fluorescent 

behavior is controlled by the through-bond energy transfer (which does not depend on the spectral 

overlap which determines the efficiency of the FRET-based sensors) and therefore could provide 

a powerful general mechanism to achieve an amplified fluorescent response. On the basis of this 

consideration, we recently proposed a “higher energy gap” paradigm, where a turn-on 

amplification can be achieved via restricting exciton migration in the p-conjugated polymer 

backbone through generating a higher energy gap site upon reaction with an analyte.30 In this 

scheme, the receptor site is part of the CP p-conjugated system (Figure 2.1). Reaction with a target 

analyte results in a local increase in the energy (HOMO-LUMO) gap at that site, which creates a 

local “roadblock” that randomly migrating excitons in the polymer backbone cannot pass through 
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via the through-bond mechanism. Although the intramolecularly migrating excitons can still pass 

through the “roadblock” sites via the through-space (Förster-type) mechanism, the major reduction 

in the efficiency of the through-bond contribution is expected to substantially shorten the exciton 

diffusion length. Such a restriction of the exciton diffusion length should reduce the probability of 

exciton nonradiative quenching due to decreasing its chance to encounter with intrinsically present 

quenching sites in the CP chain, such as conformational or structural defects, as well as transient 

defects such as triplet states, photogenerated free charge carriers, or charge-separated states, 

etc.31,32 Therefore, by the design, this is expected to result in an increasing intensity of the CP 

fluorescent emission, i.e., a pronounced turn-on effect. Importantly, the fluorescent intensity 

enhancement in this case originates in the CP π-electron system and therefore does not depend on 

whether the reaction with analyte produces a fluorescent or nonfluorescent chromophore—a major 

and universal advantage of the current approach over all the other previously developed schemes. 

Since the fluorescence enhancement via the “higher energy gap” mechanism directly related to the 

exciton migration in CP, it should produce a similar kind of signal amplification as with utilizing 

quenching-based turn-off fluorescent sensing schemes. In the present work, we demonstrate how 

the general “higher energy gap” principle can be employed to rationally design an efficient 

amplifying turn-on fluorescent sensor for H2S detection. 

 

Figure 2.1. Schematic diagram of the “higher energy gap” control of CP fluorescence: reaction 
with an analyte (red circle) creates a local higher energy gap site in the CP backbone which 
shortens the exciton diffusion length in the polymer, therefore causing an increase in the intensity 
of fluorescent emission. 



 34 

 Hydrogen sulfide (H2S) is an attractive target for the development of different types of 

sensors owing its significance in industrial toxicology, human physiology, pathology, and 

biomedicine.33–36 In particular, its presence at low (from nanomolar to micromolar) concentration 

in biological media has made it a popular target for the development of fluorescent 

chemosensors.37–43 However, none of the described H2S-responsive chemosensors were 

amplifying, whereas, due to the low concentration in physiological media, its detection would 

benefit from signal amplification provided by using the CP platform. Therefore, to demonstrate 

the power of the “higher energy gap” paradigm, we decided to apply it toward designing an 

amplifying fluorescent turn-on sensor for H2S. We also demonstrated the role of various structural 

factors in the design of the “higher energy gap” sensors and how the sensing performance of such 

systems can be rationally optimized. 

2.2 Molecular Design and Synthesis Routes 

 In order to design an amplifying turn-on sensor based on the “higher energy gap” principle, 

one needs to choose a relatively low energy fluorescent polymer and functionalize it with an 

analyte-specific unit in such a way that the reaction with the analyte would generate a local increase 

in the CP backbone energy gap. Typically, for each analyte of interest there are a few reactions 

that satisfy this requirement. For H2S detection, we decided to use nucleophilic addition of 

hydrosulfide anion HS- (form of H2S in the physiological conditions) to an electron-deficient 

double bond as such a reaction.44,45 Therefore, we proposed a CP sensor 2-P1 which includes an 

H2S receptor unit that is a fusion between cyanine and naphthalene moieties (Scheme 1a). The 

naphthalene fragment of the receptor is part of the polymer’s poly(arylene vinlyene) p-conjugated 

backbone. The specific selection of poly(arylene vinlyene) conjugated polymer was dictated by 

the requirement to have a fluorescent CP with a relatively low energy gap as a main prerequisite 
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for the “higher energy gap” design. Reaction of hydrosulfide anion with the cyanine moiety in 2-

P1 results in an effective electronic “isolation” of this p-delocalized unit from the naphthalene 

moiety, therefore resulting in a substantial increase in the HOMO-LUMO gap at this local site, but 

without disrupting the overall p-conjugation in the polymer. Preliminary DFT computations (at 

the B3LYP/6-31G* level of theory) confirmed that the HOMO-LUMO gap of the receptor 

chromophore would increase from 2.84 to 4.12 eV after the reaction with HS- due to the effective 

electronic isolation of the cyanine unit from the CP p-conjugated system (Figure 2.2). Therefore, 

this shall create a local higher energy gap site – an effective “roadblock” for excitons randomly 

migrating in the polymer p-conjugated backbone. Restricting the intramolecular exciton migration 

would result in an amplified turn-on fluorescent response. 

 

Figure 2.2. DFT computational studies (B3LYP/6-31G*) of the HOMO-LUMO gap change in the 
cyanine receptor upon reaction with H2S. The molecule was truncated for better computational 
efficiency. Computed HOMO and LUMO surfaces of the initial receptor indicate complete 
electronic delocalization over the entire molecule. Reaction with HS- effectively electronically 
isolates the former cyanine unit resulting in the increasing energy gap of the p-conjugated moiety 
from 2.84 to 4.12 eV. 
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 The polymer 2-P1 was functionalized with tri(ethylene glycol) (TEG) substituents in order 

to increase the polymer’s solubility in aqueous media (as H2S detection is normally carried out in 

aqueous system). It was prepared using Suzuki coupling polymerization of the two properly 

functionalized monomers followed by postpolymerization installation of the cyanine moiety via 

Knoevenagel condensation and subsequent purification via reprecipitation and dialysis. 

Determination of the extent of fluorescent amplification in the polymer sensor 2-P1 required 

comparison with a corresponding small-molecules sensor analogue 2-M1 (Scheme 1b) which was 

also prepared using Suzuki coupling. Since the “higher energy gap” mechanism is based on 

blocking the intramolecular exciton migration in the CP p-conjugated backbone, it was expected 

to be significantly affect by the polymer conjugation length. In order to test this, through varying 

the polymerization conditions, we prepared two polymer 2-P1a and 2-P1b with different 

molecular weights–polymer 2-P1a with a number-average molecular weight Mn 27.7 kDa and a 

shorter polymer 2-P1b with Mn 15.5 kDa. We anticipated a much stronger response with the 

polymer sensor 2-P1a due to its higher conjugation length.  

 

Scheme 2.1. (a) Mechanism of H2S sensing through the formation of the higher energy gap site in 
the backbone of CP 2-P1; (b) structure of the small-molecule sensor 2-M1 and control CP 2-P2. 



 37 

To further confirm the action of the “higher energy gap” mechanism in polymer 2-P1, we 

prepared a reference conjugated polymer 2-P2 (Mn 15.9 kDa) without the cyanine H2S sensing 

moiety to test that the poly(arylene vinlyene) conjugated backbone itself would not produce 

spectroscopic response on H2S addition (Scheme 2.1b). 

2.3 Photophysical Properties and Fluorescent Amplification 

The UV/vis absorption spectrum of the small-molecule sensor 2-M1 displayed an intense 

band at 324 nm and a smaller band at 447 nm, the latter possible due to the presence of the cyanine 

moiety (Figure 2.2, left). In contrast, the polymer 2-P1a displayed the main absorption band at 416 

nm (bathochromic shift of 92 nm compared to the main band of 2-M1) which reflected substantial 

electronic delocalization in the polymer. No separate longer wavelength cyanine chromophore 

band was noticeable, although it could be overshadowed by the intense main CP band. Polymer 2-

P1b (with a lower degree of polymerization) expectedly displayed a less bathochromically shifted 

absorption band, which reflected its apparently lower conjugation length (Figure 2.2, left). A 

noticeable shoulder at approximately 450 nm was indicative of the presence of the cyanine moiety 

chromophore. Similar to absorption spectra, fluorescence spectra also indicated a significant 

electronic delocalization in the cased of CP sensor 2-P1a and 2-P1b, which displayed broad band 

with a maximum at approximately 510 nm and a shoulder at 680 nm, possible due to the energy 

transfer to the lower energy cyanine chromophore (Figure 2.2, right). The overall fluorescent 

intensity of the polymers 2-P1a and 2-P1b was quite low, possible due to strong exciton quenching 

with the electron–deficient cyanine moieties. 

 We first tested the response of the small-molecule sensor 2-M1. Addition of 200 nM 

aqueous HS- to a dilute 13.3 µM solution of 2-M1 in acetonitrile produced no detectable change 

in absorption spectrum and an approximately 2.5-fold enhancement in the integrated fluorescent 



 38 

intensity F/F0 (expressed as a ration of integrated intensities with and without added analyte). 

Further increasing of the added HS- concentration up to 10 µM produced no change in the 

absorption spectra and resulted in the unexpected decrease of the fluorescent intensity (Figure 2.5). 

Overall, the small-molecule sensor 2-M1 demonstrated a rather insignificant turn-on fluorescent 

response and a narrow analyte detection range, therefore indicating its poor ability to act as an H2S 

fluorescent sensor. 

 

Figure 2.3. Normalized UV/vis absorption (left) and normalized fluorescence (right) spectra of CP 
sensor 2-P1a and 2-P1b and related compounds in acetonitrile solutions. Concentrations: 10.8 µM 
(2-P1a and 2-P1b), 13.3 µM (2-M1), and 10.0 µM (2-P2). Extinction coefficient (M-1cm-1): 32600 
(2-P1a), 14800 (2-P1b), 46400 (2-M1), and 5500 (2-P2). 

 We then proceeded with studying the CP sensor 2-P1a designed using the “higher energy 

gap” principle. Adding increasing concentrations (from 200 nM to 0.1 mM) of aqueous HS- to a 

dilute 10.8 µM solution of 2-P1a in acetonitrile produced a substantial gradual increase of the 

fluorescent emission, up to 74-fold as an integrated intensity ration F/F0 (Figure 2.4). The lack of 

a significant change in the absorption spectra as well as no substantial wavelength shift 

accompanying the fluorescence enhancement indicated only minor electronic perturbations in the 

extended p-electron conjugated system of 2-P1a upon reaction with HS-, in agreement with our 

design based on the higher energy gap mechanism. Indeed, creating exciton “roadblocks” in the 

CP 2-P1a backbone via reaction of the cyanine receptor with HS- diminished exciton 
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intramolecular migration length and resulted in increasing fluorescent emission from the polymer. 

Overall, the polymer 2-P1a sensor demonstrated a significant turn-on response, with 

approximately 10 times higher detection sensitivity and a broad analyte detection range, all in a 

dramatic contrast with the poor sensing performance of the small-molecules analogue 2-M1 

(Figure 2.5). Also in a good agreement with the “higher energy gap” mechanism, CP sensor 2-

P1b, with a smaller degree of polymerization, displayed a much diminished turn-on sensing 

performance, with only a 30-fold maximal increase in F/F0 and approximately 20 times lower 

sensitivity than the polymer 2-P1a (Figure 2.5). Indeed, the overall short conjugation length in 2-

P1b was responsible for a more limited intramolecular exciton migration and thus a smaller 

fluorescent enhancement upon creating higher energy gap “roadblocks” in the CP backbone. That 

the “roadblocks” responsible for the turn-on fluorescence enhancement were created via the 

reaction of HS- with the cyanine moiety was clearly illustrated by the control polymer 2-P2 which 

showed absolutely no response on HS- addition (Figure 2.5). 

 

Figure 2.4. Change in absorption (left) and fluorescence (right) spectra of a 10.8 µM solution of 
2-P1a in acetonitrile upon addition of increasing concentration of H2S (the spectra were acquired 
in 6 min after H2S addition). The inset shows a photograph of the solution before and after addition 
of 100 µM HS- upon irradiation with a hand-held UV lamps.  

 When evaluating the role of the “higher energy gap” mechanism in controlling the turn-on 

fluorescent response in the present case, it is important also to discuss possible contribution of an 
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alternative mechanism based on fluorescence quenching by electron-deficient cyanine moiety in 

the CP sensors 2-P1a and 2-P1b. In principle, the cyanine unites can potentially play the role of 

quencher of the polymer fluorescence, and the subsequent reaction with HS- can essentially 

convert these electron-deficient quenchers to nonquenchers. A similar mechanism for the 

fluorescence control of a small-molecules organic fluorophores has been previously 

demonstrated.46–48 It is possible that such a quenching might be responsible for the initially low 

fluorescent intensity of the polymer 2-P1a,b, and reduction of this quenching via reaction with 

HS- could be part of the mechanism for the observed fluorescence enhancement. However, the 

dominant role of this alternative mechanism in our case is hardly possible. Indeed, considering the 

high density of the “quenching” cyanine sites in the CPs (one cyanine group per repeating unit), 

and taking into account the “superquenching” mechanism based on intramolecular exciton 

migration to the quenching sites,1,4,16 reaction even of a large fraction of cyanine units with HS- 

would still leave enough quenching sites on the CP chain to keep overall fluorescence low.  

 
Figure 2.5. Change in integrated fluorescence intensity of acetonitrile solution of polymer 2-P1a, 
2-P1b, and 2-P2, and monomer compound 2-M1 upon addition of increasing concentration H2S. 
The intensity is expressed as a ration of integrated area of a fluorescence band at each H2S 
concentration divided by the area of the fluorescent band in the absence of analyte (F/F0). THe 
plot uses logarithmic scale for the H2S concentration axis to illustrate the broad range (from 
nanomolar to millimolar) of detectable anaylte concentrations in the case of polymer sensor 2-P1a. 
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 Only when most cyanine sites have reacted with HS- (i.e., at the very high H2S 

concentrations) could one expect the fluorescence turn-on response, if this mechanism played any 

significant role. Thus, if the alternative mechanism dominated, the turn-on response at the very 

low H2S concentration would not be observed. This directly contradicts our experimental 

observation of the broad detection range starting with nanomolar H2S concentrations and 

demonstrates the dominant role of the “higher energy gap” mechanism. Quantitative estimation of 

the relative contribution of the two mechanism is difficult and is beyond the scope of this work. 

 

Figure 2.6. Normalized integrated fluorescence intensity (as a ratio of integrated areas of 
fluorescent bands after and before addition of the analyte) of a 10.8 µM solution of polymer 2-P1a 
in acetonitrile upon addition of various analytes. 

 For the practical applications of the sensor polymer 2-P1a, it should display not only high 

sensitivity but also high selectivity toward the target analyte. Figure 2.6 shows fluorescent 

response of 2-P1a to various potentially competing nucleophiles, including a model for reactive 

oxygen species (H2O2) and ubiquitous biological thiols (glutathione (GSH) and cysteine (Cys)). 

Although F- and S2O3- anions did cause a small increase of fluorescence, only H2S stimulated a 

significant fluorescent response. Therefore, excellent selectivity of 2-P1a coupled with its high 
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response sensitivity and broad analyte concentration detection range could make it an excellent 

H2S detector. 

2.4 Conclusions 

 We have developed a novel general principle for desiging efficient amplifying turn-on 

fluorescent sensors based on the “higher energy gap” paradigm. The “higher energy gap” 

mechanism is based on the restricting intramolecular exciton migration in CPs by creating high-

energy sites in the conjugated polymer backbone upon reaction with analyte. Fundamentally, the 

success of this paradigm illustrates the importance of the through-bond (Dexter-type) mechanism 

for intramolecular energy transfer in conjugated polymers–a point of controversial debates in the 

literature. From the broader materials design standpoint, this means that in order to achieve the 

best efficiency of the “higher energy gap” mechanism, one needs to use CPs with smaller energy 

gap, potentially even smaller than that provided by the poly(arylene vinylene) backbone used in 

the present work. From a general practical standpoint, the new concept described herein will enable 

simple design of a wide range of highly efficient amplifying turn-on fluorescent sensors and 

indicators, based on conventional analyte-selective reactions. 
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CHAPTER 3. FLUORESCENCE TURN-ON AMPLIFYING CONJUGATED 
POLYMER SENSORS FOR CYSTEINE DETECTION 

3.1 Introduction 

L-cysteine (Cys) is one of the most important and abundant sulfur-containing amino acids 

for building proteins in organisms as well as regulating antioxidant glutathione (GSH) levels inside 

cells.1,2 Deviated concentration of Cys in human body is connected to a variety of syndromes, e.g. 

hair depigmentation, edema, lethargy, liver damage, leucocyte loss, and Alzheimer’s disease.3–5 

Traditional methods for measuring Cys levels such as high performance liquid chromatography,6 

mass spectrometry,7 and capillary electrophoresis8 require high instrumental expenses, long data 

collecting time, and destruction of samples. Importantly, these methods are not optimal for home 

testing or point-of-care emergency room. To understand the real role of Cys in physiological 

processes of eukaryotic cells, inorganic nanoparticles and organic fluorescent chemosensors have 

been developed for in vitro and in vivo examinations.9–12 The investigation is significant yet 

difficult since other biothiols, e.g. GSH, H2S, and homocysteine (Hcy), can sabotage the analysis. 

Specifically, concentration level of GSH in living cells is 1-10 mM whereas Cys level is orders of 

magnitude lower (at the µM level); furthermore, similarity between Hcy and Cys in terms of 

structure and reactivity renders them to react with the same receptor sites of the sensory 

molecules.13,14 Conventionally, development of the fluorescent chemosensors for assaying Cys is 

mainly based on its affinity toward heavy metal ions and strong nucleophilicity.15 Therefore, 

numerous organic reactions have been exploited, including Michael addition,16 cleavage of 

sulfonamide and sulfonate ester,17,18 cleavage of selenium-nitrogen bonds,19 cleavage of 

disulfide,20,21 and cyclization of aldehyde.22  It has been proven that N-terminal cysteine rapidly 

forms thiazolidine in the presence of aldehyde in biomimic solution.23 Strongin et al. reported that 

xanthene derivative 1 containing free aldehyde as a receptor can efficiently monitor Cys and Hcy 



 48 

concentration down to µM level.22 Upon the addition of Cys, UV-vis spectrum of the xanthene 

derivative showed ratiometric behavior and the fluorescence of it was quenched. Barbas III and 

coworkers demonstrated that a small molecule sensor 2 increased its fluorescence intensity after 

reacting with Cys, showing the moderate detection range from 100 ppm to 5000 ppm.24 Lin et al. 

also published a ratiometric fluorescent sensor 3 for Cys and Hcy detection.25 Composed of an 

electron rich phenanthroimidazole and electron deficient aldehyde moiety, the pristine small 

molecule sensor exhibited a fluorescence band at 519 nm, which was assigned as originating from 

intramolecular charge transfer. Upon cyclization with Cys or Hcy, the intensity of the 

intramolecular charger transfer band diminished which was accompanied by an intensity increase 

of a new emission band at 394 nm, originating from the phenanthroimidazole moiety. Hong et al. 

prepared an ortho-hydroxy aldehyde-functionalized coumarin derivative 4, which acted as a 

fluorescence turn-on sensor for the detection of Cys and Hcy.26  

 

In the aqueous solution (HEPES buffer, pH 7.4), the coumarin derivative showed very low 

fluorescence due to the photoinduced electron transfer from the coumarin to the aldehyde. 
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Formation of thiazolidine upon reaction of aldehyde with Cys greatly increased the fluorescence 

up to 100 times in intensity. The author proposed that the enhancement was resulted from the 

hydrogen bonding between the electron lone pair at the nitrogen of thiazolidine and the hydroxyl 

group on the coumarin. Generally, design of the biological Cys sensor molecules requires rather 

complex synthesis and precise adjustment of the electronic characteristics of the sensor (e.g. sensor 

design based on FRET energy migration mechanism requires achieving spectral overlap between 

emission of donor and absorbance of acceptor). In a previous study in our group, an anthraldehyde 

end-capped oligo(p-phenylene ethynylene) (OPE) structure was used to modulate excitation 

energy transfer through the formation of a thiazolidine moiety at the terminus of the π-conjugated 

oligomer (Figure 3.1).27 

 

Figure 3.1. (A) General structure of end-functionalized OPE and its immobilization on glass 
surface; (B) reaction of cysteine and a schematic diagram to show origin of the ratiometric 
fluorescent response. 

 These OPEs were self-assembled on a glass surface to form a monolayer-thick film. The 

OPE monolayer film was exposed to an aqueous solution of Cys at 90 ºC for 20 minutes to allow 

the analytes react with the aldehyde end-caps through cyclization. Therefore, the reaction with Cys 
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resulted in a gradual increase in the ratio of fluorescence intensity F450/F520, where F450 refers to 

the anthracenyl end-group emission and F520 is emission from the oligo(p-phenylene ethynylene) 

core. The observed ratiometric fluorescence effect stemmed from raising the energy gap of the 

terminal acceptor fluorophore above the energy gap of the donor conjugated oligomer 

chromophore. This demonstrated the principle possibility to control excitation energy migration 

in conjugated oligomers (and polymers) by changing the HOMO-LUMO gap of one of the 

conjugated units. Recently, we proposed the novel concept of the “higher energy gap” controlled 

fluorescence amplification and demonstrated how it could be used in design of turn-on fluorescent 

sensors for the detection of organophosphorous warfare agent mimic diethyl chlorophosphate,28 

and biochemical messenger hydrogen sulfide,29 respectively. The “higher energy gap” mechanism 

can be triggered when a target analyte interacts with a receptor along the conjugated polymer 

backbone and results in increasing the local HOMO-LUMO gap at that site. Unlike conventional 

fluorescence “turn-on” amplification approaches that often require elaborate synthesis and 

sophisticated specialized design, e.g. installation of a removable fluorescence quenching moiety 

or utilizing a scheme where a precursor strongly electronically coupled with polymer backbone 

would form a high emissive fluorophore upon an analytical reaction. In this part of the project, we 

decided to apply the “higher energy gap” concept towards the detection of Cys in aqueous 

environment, utilizing aldehyde reaction with cysteine.  Although a number of fluorescent Cys 

sensors have been described in literature, none of them were amplifying, and therefore could not 

benefit from the ability to detect a broad range of Cys concentrations. 

3.2 Molecular Design of the Cysteine Sensor 

 To design a “higher energy gap” controlled fluorescence turn-on amplifying conjugated 

polymer for achieving the Cys detection, poly(naphthylene vinylene) scaffold was employed as 
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the suitable low energy gap conjugated polymer platform.  Similar scaffold has been previously 

successfully applied in design of amplifying sensors for organophosphate warfare agent mimics 

diethyl chlorophosphate and biomedical analyte hydrogen sulfide (described in the previous 

chapter). Among a variety of reported analytical reactions targeting Cys, we identified the reaction 

of an aldehyde functional group that can efficiently react with Cys to form a thiazolidine five-

membered ring. In addition to the relatively simple and straightforward synthetic route, the 

cyclization to form thiazolidine can efficiently tune the local energy gap of the chromophore 

without affecting the overall p-electron conjugation in the polymer backbone. Preliminary DFT 

computational study (at the B3LYP/6-31G* level of theory) indicated that the formation of the 

thiazolidine unit would increase the HOMO-LUMO gap of the receptor chromophore from 4.01 

to 4.15 eV (Figure 3.2). While such a small energy gap change (0.14 eV) was predicted, one can 

anticipate that, according to the “higher energy gap” mechanism, this could be sufficient to 

effectively restrict intramolecular exciton migration and result in the amplified turn-on fluorescent 

response.  

3.3 Synthetic Routes for Cys Conjugated Polymer Sensor 

The initial synthetic route developed to approach conjugated polymer sensors for Cys 

detection began from the alkylation of 2-S9 with 1,3-propansultone under basic condition in a 

solution of butanone-ethanol 1/1 mixture to generate water-soluble potassium sulfonate salt 3-1, 

which could be readily purified by precipitation from cold water to give the product in a moderate 

yield (56%). The water-soluble potassium sulfonate side chain was chosen since triethylene glycol 

monomethyl ether (TEG) group (used in the H2S sensor design) provided only limited solubility 

not sufficient to perform analytical measurements in aqueous media such as in phosphate-buffered 

saline (PBS) solution. The subsequent Suzuki polymerization of 3-1 and 2-S6 utilizing Pd(OAc)2 
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and XPhos and K3PO4 as base was carried out in aqueous phase (H2O-THF 1/1) to give Cys 

polymer sensors 3-P1, 3-P2, 3-P3, and 3-P4, which were prepared by varying reaction time to 

achieve different degree of polymerization on the assumption of step-growth mechanism (8 hours 

for 3-P1, 24 hours for 3-P2, 48 hours for 3-P3, and 72 hours for 3-P4).  

 

Figure 3.2. DFT studies (at B3LYP/6-31G* level) of the HOMO-LUMO gap change in the 
aldehyde-functionalized receptor upon reaction with Cys. The molecule was truncated for better 
simulation efficiency. The computed HOMO and LUMO surfaces of the initial receptor indicate 
complete electronic delocalization over the entire molecule. Reaction with Cys effectively 
converted initial aldehyde into thiazoldine leading to the increasing energy gap of the p-conjugated 
system from 4.01 to 4.15 eV. 

All four crude polymers were purified via dialysis in deionized water for 2 days (using a 

membrane with 3.5 kDa cutoff for 3-P1, and 8 kDa for other three polymers). We assume that 

using this approach we obtained polymer sensors with different conjugated backbone lengths. The 

accurate values of molecular weights of these polymers are yet to be determined as the polymers 

appear to show heavy intermolecular aggregation during GPC experiments (DMF as eluent). These 

experiments are currently in progress. Such aggregation indeed could stem from the insufficient 

solubilizing ability of TEG side chains. To compare the effect of fluorescent amplification in the 

longer p-conjugated systems with a much shorter system, small molecule reference 3-M1 was 
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prepared by Suzuki coupling of 3-1 and 2-S12, and the crude product was then purified by 

vigorously rinsing with THF and CH2Cl2 following by recrystallization from H2O-EtOH 1/9 to 

give the product as a light greenish solid in 83% yield. The chemical structure was then elucidated 

by NMR and further supported by HR-ESI-MS (m/z calc.: 497.1423; found: 497.1427). 

 

 

Scheme 3.1. Synthetic route to conjugated polymers for Cys detection (3-P1, 3-P2, 3-P3, and 3-
P4) and the small molecule analog 3-M1.  

3.4 Photophysical Characteristics and Fluorescent Amplification 

We characterized all fluorescent Cys sensor polymers using UV-vis and fluorescence 

spectroscopies. All the studies were performed using solutions in 1X PBS in ultrapure water, and 

the analytical reaction with Cys was allowed to run at 50 ºC for 1 hour to reach the equilibrium. 

The UV-vis absorption spectrum of the small molecule 3-M1 showed a major absorption band at 
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316 nm with a second, weaker band centered at 400 nm. The latter can be assigned as appearing 

due to weak intramolecular charge transfer from naphthalene to aldehyde moiety (Figure 3.3). For 

pristine solutions of polymer sensor 3-P1, an absorbance band with two maxima at 337 and 394 

nm with an onset at 521 nm was observed. For polymer sensor 3-P2, 3-P3, and 3-P4, with 

presumably higher degree of polymerization, all the UV-vis absorption spectra showed featureless 

intense broad bands. The significantly higher extinction coefficients indicated a possibility of the 

heavy aggregation occurring in solutions in the case of polymers with higher molecular weights. 

The fluorescence spectrum of 3-M1 showed a single band with maximum at 495 nm, whereas the 

conjugated polymer sensors 3-P1, 3-P2, 3-P3, and 3-P4 were almost non-emissive.  

 

Figure 3.3. UV-vis absorption (normalized, left) and fluorescence (right, inset: normalized FL) 
spectra of polymer sensors 3-P1, 3-P2, 3-P3, and 3-P4 and small molecule reference 3-M1 in 1X 
PBS. Concentration: 6.25 µM (3-P1, 3-P2, 3-P3, and 3-P4), and 37.5 µM (3-M1). (Extinction 
Coefficients (M-1 cm-1): 3136 (3-P1), 67696 (3-P2), 128971 (3-P3), 136229 (3-P4), and 15750 (3-
M1). 

Based on general considerations of fluorescent properties of conjugated polymers, we 

expected that the extended p-conjugation along the polymer backbone should result in 

bathochromic shifts relative to the model sensor 3-M1 in both UV-vis and fluorescence spectra. 

However, the normalized fluorescent spectra of the polymer sensors, regardless of their molecular 

weights, exhibited the same position of the emission maxima as in the small m0olecule sensor 3-
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M1. Upon addition of Cys, the small molecule reference 3-M1 showed a moderate gradual 

decrease in fluorescence intensity, and insignificant changes in UV-vis absorption spectra, even 

upon addition of large excess of Cys.  The fluorescence intensity decrease (turn-off response) could 

probably be explained by the heavy atom effect from sulfur upon formation of thiazolidine moiety. 

Additionally, this could be attributed to the lower solubility of the thiazolidine derivative in the 

aqueous conditions, causing some material precipitating from the solution. Indeed, we observed 

accumulation of an insoluble solid from the measured samples after some time.  

 

Figure 3.4. Changes in absorption (left) and fluorescence (right) spectra of a 37.5 µM solution of 
3-M1 in 1XPBS upon addition of increasing concentrations of Cys.  

 On the other hand, copolymer 3-P1, 3-P2, 3-P3, and 3-P4 showed rather insignificant 

changes in UV-vis and fluorescence spectra upon addition of micromolar concentrations of Cys, 

yet the significant enhancement in fluorescence was observed upon addition of millimolar levels 

of Cys (Figure 3.5). The narrow Cys detection range could be attributed to the aggregation of the 

polymer chains in solution. Regarding the amplification ratio, as presented in Figure 3.6, 3-P1 

showed an up to 30-fold amplification, and 3-P2, 3-P3, and 3-P4 showed smaller, 10 to 15 times, 

enhancements. The unexpected observation that the polymers with longer chains showed lower 

fluorescence amplification was contrary to the higher energy gap mechanism, as polymer sensors 
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with longer conjugated chain length were expected to show higher fluorescent amplification (see 

Chapter 2).  This unexpected behavior could likely result from the poor solubility of the polymer 

in aqueous media, which induced intermolecular aggregation. Such aggregation would naturally 

be more prevalent in the case of longer macromolecular chains. 

 

Figure 3.5. Changes in absorption (left) and fluorescence (right) spectra of a 6.25 µM solution of 
3-P1, 3-P2, 3-P3, and 3-P4 in 1XPBS upon addition of increasing concentrations of Cys. 
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The intermolecular aggregation would create numerous close contacts between individual 

polymer chains which facilitate intermolecular energy transfer via the through-space (Förster-type) 

mechanism.  The possibility of intermolecular energy migration would allow exciton “detour” of 

the local higher energy site in the conjugated backbone, thereby deactivating the higher energy 

gap mechanism. Indeed, intermolecular excitation energy transfer is considered to occur more 

efficiently as compared to the intramolecular pathway. 

 

Figure 3.6. Change in integrated fluorescence intensity of polymers 3-P1, 3-P2, 3-P3, and 3-P4 
solution in 1XPBS (6.25 µM), and small molecule 3-M1 (37.5 µM) upon addition of increasing 
concentrations of Cys. The intensity is expressed as a ratio of integrated area of a fluorescent band 
at each Cys concentration to the fluorescent band in the absence of analyte (F/F0).  

3.5 Conclusions 

A series of conjugated polymers functionalized with electronically coupled aldehyde 

receptor for the detection of cysteine has been prepared. The featureless UV-vis spectra and high 

extinction coefficients indicated the polymers were highly aggregated in aqueous media. Upon 

addition of cysteine, the conjugated polymers exhibited substantial amplified fluorescent turn-on 
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response: sensor 3-P1 showed a 30-times enhancement in fluorescence intensity, and 3-P2, 3-P3, 

and 3-P4 showed 10 to 15-folds amplification, in the minimolar concentration range. This study 

demonstrated that the “higher energy gap” control mechanism for fluorescence turn-on 

amplification can be inhibited by intermolecular aggregation and, more importantly, is highly 

sensitive even to the small increase in local HOMO-LUMO gap at the reactive site.  Further 

continuation of this work requires design and preparation of more water-soluble analogs of the 

conjugated polymer sensors, in order to minimize the effect of intermolecular aggregation. This 

work is ongoing. 
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CHAPTER 4. CONJUGATED POLYMER THIN FILMS WITH ORDERED 
MOLECULAR ORGANIZATION AND MORPHOLOGY BY STEPWISE 

SURFACE-INITIATED POLYMERIZATION 

4.1 Introduction 

Performance of conjugated polymers based electronic and optoelectronic devices greatly 

depends on intrinsic electronic properties of polymers and their organizations as bulk materials.1–3 

While uniform alignments of conjugated polymer chains provide potential benefits for charge 

injection and charge transportation process, fine adjustment on it and further manipulation of 

mesoscale morphology in thin films remain a significant challenge.4 Currently, one most utilized 

solution-based approach is spin-casting that utilizes centrifugal force to randomly disperse 

polymer molecules onto substrates where the physical adsorbed thin films can be easily removed 

mechanically or chemically. Chemisorption of appropriate end groups, such as alkoxysilane or 

phosphonate, of conjugated polymers (grafting-to) yields more robust thin films yet the polymer 

chains tend to form “mushroom” aggregates in solution prior to binding with surface.5–7 The 

“mushroom” architectures result in limited grafting density. On the other hand, surface-initiated 

polymerization (grafting-from) has been extensively harnessed in preparation of conjugated 

polymer thin films, such as polythiophene8–10, polyfluorene11, poly(p-phenylene)12,13, and poly(p-

phenylene ethynylene)14. It is evident that this purification-free approach can produce very thick 

films with highly dense interchain packing. Furthermore, monomers used for surface-initiated 

polymerization do not require solubilizing side chains, which are major sites where oxidation , 

therefore, photo- and thermal degradation start.  The solubilizing chains usually hinder the polymer 

packing resulting in effective “dilution” of the “semiconducting” fraction in bulk materials. 

However, this method is limited to chain-growth polymerization, and requires problematic 

immobilization of air-sensitive imitators, and sophisticated experimental settings.15 One 



 62 

intermediary technique is to implement solution polymerization in the presence of a substrate 

decorated with functional groups which can take part in polymerization (grafting-through).16,17 Step-

growth polymerization can occur spontaneously in the solution and on the surface thereby causing 

rough polymer thin films.   

Alternating donor-acceptor conjugated copolymers allow one to chemically manage 

electronic properties of bulky materials since extent of orbital coherence between electron 

donating and accepting moieties can bring the band gap below 2.0 eV (a threshold for practical 

applications as semiconducting materials), as a result of lowering the required energy for the π-π* 

transition.18–21 Such low band gap conjugated polymers exhibit several promising redox and 

photoelectronic properties, e.g. broad and long wavelength absorption, solid-state charge transfer, 

and multiple charge states in a small potential window. Among various low band gap conjugated 

polymers, poly(p-arylene ethynylene)s (PAEs) are especially attracting due to its unique linear 

rigid p-conjugated backbone and exceptional ability to transfer photoexcitation energy.22–27 

Furthermore, relatively simple and straightforward synthesis of monomers, mild and highly 

reproducible polymerization conditions which can tolerate numerous functional groups, including 

sulfonate, amine, carboxylate, hydroxy, and biologically active ligands  indeed facilitate the 

generalizing of PAEs.   

In a previous study, our group demonstrated preparation of semiconducting thin films of 

poly(bithiophenetriazole fluorene) and poly(triazole fluorene) using surface-initiated stepwise 

click polymerization.28 The robustness, regioselectivity and chemoselectivity of Cu(I)-catalyzed 

acetylene-azide click reaction allowed to prepare highly organized anisotropic semiconducting 

polymer thin films with precise control of thickness and polymer molecular structure. However, 

the triazole units were not completely “conjugated” in a sense that they possess properties of 
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“cross-conjugated” units, and thus do not allow complete p-electron delocalization. In this chapter 

we describe our development, for the first time, of a simple and efficient procedure for the highly 

ordered truly conjugated immobilized poly(p-phenylene ethynylene) (PPE) thin films (Figure 4.1) 

consisting of precisely defined alternating donor-acceptor units using surface-initiated stepwise 

Sonogashira polymerization under mild reaction condition.  

 

Figure 4.1. Chemical structures of surface-confined PPE polymer thin films prepared in this study. 

4.2 Synthetic Strategy towards Surface-Confined PPE Thin Films  

The surface-confined initiator 4-1, triethoxy(4-iodophenyl)silane, was prepared from 

commercially available 1,4-diiodobenzene through halogen-lithium exchange reaction following 

by the quenching of organolithium compound with tetraethoxysilane, as shown in scheme 4-1. The 

initiator 4-1 was covalently immobilized onto the homogeneous inorganic oxide substrate to 

generate surface-immobilized self-assembled monolayer 4-SAM1. To prepare DMDM 

semiconducting polymer thin film, 4-SAM1 was immersed into a solution of 1,4-dimethoxy-2,5-

diethynylbenzene (2), Pd(PPh3)4, and CuI in toluene/diisopropylamine at 40 ºC for 30 minutes to 

obtain an ethynyl-terminated thin film (step A). After thoroughly rinsing with toluene under inert 

gas atmosphere to remove unbounded reactants, catalysts, and reaction byproducts, the ethynyl-

terminated thin film was then immersed into a solution of 1,4-diiodo-2,5-dimethoxybenzene (5), 
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Pd(PPh3)4, and CuI in toluene/diisopropylamine at 40 ºC for 30 minutes followed by vigorous 

washing with toluene and sonication for 3 minutes to obtain an iodo-terminated thin film (step B). 

The conjugated polymer thin film DMDM was prepared by alternation of steps A and B for 9 

times, and exhibited robust chemical and mechanical tolerance. We further demonstrated the 

preparation of an n-type polymeric semiconductor TFTF, and low band gap conjugated polymer 

thin films TFDM and DMBTD, following the same approach and utilizing different diethynyl- 

and/or diiodo-monomers. While dimerization of diethynyl-functional monomers could occur in 

the presence of trace amount of Cu(I) and oxygen, neither self-coupling nor polymeric aggregates 

were observed during the entire reaction period.  

 

Scheme 4.1. Preparation of semiconducting PPE thin films via stepwise surface-imitated 
Sonogashira polymerization. 

Furthermore, for the best quality of the polymer films, the reaction solutions were prepared 

freshly at every single step, thereby maintaining the well-defined reactants concentrations, and 

minimizing formation of possible byproducts generated in reaction media over more extended 

reaction times.  
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4.3 Photophysical Characteristics of the Surface-Confined PPE Thin Films.  

The evolution of the polymer thin films could be tracked by UV-vis absorption (Figure 

4.2). The initiator surface-immobilized monolayer 4-SAM1 displayed a distinct UV-vis 

absorbance maximum at 239 nm corresponding to π-π* transition of the phenyl group. We then 

measured the UV-vis progression of the thin films after each coupling cycle (one step A followed 

by one step B) at the iodo-termination step, in order to avoid potential oxidation of the ethynyl 

terminal group during the UV–vis measurements. In DMDM thin films, absorbance maximum 

(labs 409 nm) showed a significant bathochromic shift (170 nm) accompanied by a linear increase 

in the absorption intensity: this appeared as a clear evidence for the extension of π-electron 

delocalization. Furthermore, the featureless long wavelength onset tailing beyond the detection 

range of the spectrometer indicated possible significant intermolecular electronic delocalization as 

a result of the close packed macromolecular chain arrangement on the surface. Likewise, TFTF 

thin film showed absorbance maximum at 351 nm with a red shift of 112 nm with respect to the 

initiator monolayer, and the linear increase of optical absorbance referred to the gradual growth of 

the polymer film. In the alternating donor-acceptor TFDM thin film, a broad absorption band 

featured a dual maximum at 330 and 405 nm, the latter can be assigned as a charge transfer band 

between the donor and acceptor moieties. Incorporating a stronger electron acceptor monomeric 

block 2,1,3-benzothiadiazole, semiconducting film DMBTD exhibited a broad absorbance with 

two maxima at 329 and 466 nm. It is worth noticing that the severe red-tailing of the long 

wavelength onset of the absorption band made an accurate determination of the energy band gap 

impossible. The energy band gaps of the four semiconducting polymer thin films determined using 

UV-vis spectroscopy and electrochemical studies are presented in Table 4.1. 

The semiconducting polymers prepared by surface-initiated stepwise Sonogashira polymerization 

are expected to display uniform chain alignment in the direction perpendicular to the substrate 

surface and form a highly ordered densely packed bulk film. This is due to the highly rigid rod-

like nature of the PPE macromolecules. To compare the polymer chain organization in surface-
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confined thin films with the structure of thin films prepared by spin-casting method, the 

corresponding soluble analogs of TFDM and DMBTD, conjugated polymers 4-P1 (Mn 5.9 kDa; 

PDI 1.8) and 4-P2 (Mn 22.3 kDa; PDI 3.1) were synthesized by conventional Sonogashira 

polymerization. As the analog of TFDM, the solution of 4-P1 in CHCl3 showed a UV-vis 

absorbance maximum at 443 nm, which was assigned to charge transfer between electron donating 

and accepting units. The spin-casted 4-P1 thin film showed a similar absorbance signature with an 

additional shoulder at 500 nm and an onset-tail implying the increased intermolecular electronic 

delocalization. In sharp contrast, the UV-vis of TFDM showed a 40 nm hypsochromic shift 

relative to 4-P1 in CHCl3. In the case of DMBTD, a blue shift in absorption (40 nm) was observed 

compared to the soluble analog 4-P2 in toluene (labs 524 nm), while its spin-casted thin film 

showed a 40 nm bathochromic shift.  

 

Figure 4.2. UV-vis tracking of the growth of thin films of (a) DMDM and (c) TFTF; linear 
relationship of Eabs and cycle numbers of (b) DMDM and (d) TFTF. 

 These unusual results indicated that the alignment of polymer chains in the thin films 

prepared by surface-initiated polymerization was intrinsically different from the nanoscale 

organization of the thin films prepared by spin-casting of the soluble analogs. Bathochromic shifts 
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in absorption spectra are usually reported for spin-cast films because spin-casting procedure 

mechanically disperses isolated polymers on substrates leading to random molecular alignments. 

However, the substantial hypsochromic shifts in absorption spectra of TFDM and DMBTD thin 

films would be the consequence of a predominant normal to surface uniform alignment of the 

polymer backbones, in which the neighboring interacting p-conjugated units could form face-to-

face stacked aggregates (similar to H-aggregates). Nevertheless, the broad bands with long 

wavelength tailing in absorption spectra of the thin films could stem from the mixture of face-to-

face and head-to-tail aggregates (similar to J-aggregates).  

 

Figure 4.3. UV-vis tracking of the growth of thin films of (a) TFDM and (c) DMBTD; linear 
relationship of Eabs and cycle numbers of (b) TFDM and (d) DMBTD. 

4.4 Morphology and Uniformity of PPE Thin Films. 

The surface morphology of TFDM and DMBTD thin films was analyzed by atomic force 

microscopy (AFM). Both thin films revealed a dense surface coverage with exceedingly smooth 

morphology. The thin film of DMBTD was composed of numerous uniform circular domains of 

average diameter 35 nm (Figure 4.6) with an approximate RMS roughness of 2.4 nm. The similarly 

shaped circular domains (60 nm in average diameter) were also observed in TFDM thin film 
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(Figure 4.5). The formation of circular domains could stem from the polymer backbone structure 

and supramolecular alignment of the surface-confined polymer in the bulk thin films. The dense 

surface morphology with circular domains for the thin films was highly reproducible throughout 

this study.  

 

 

Figure 4.4. (a) Superimposed UV-vis spectra of TFDM from solution (black), spin-casting (red) 
and grafting-from (blue); (b) Supreimposed UV-vis spectra of DMBTD from solution (black), 
spin-casting (red) and grafting-from (blue). 
 

 

Figure 4.5. Representative tapping mode AFM image of TFDM on quartz substrate. The 
topography (a) and phase (c) in 3 µm x 3 µm scan area; and the zoom-in topography (b) and phase 
(d) in 0.7 µm x 0.7 µm scan area. 
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 To further evaluate nanoscale details and across-the-film structure of the semiconducting 

thin films, we prepared deuterated DMBTD (d-DMBTD) thin films for neutron reflectometry 

studies. Neutron scattering is considered as a “soft” method, compared to X-ray scattering, and 

shows high sensitivity to deuterium element than hydrogen since they possess different scattering 

cross-section for neutrons. In the scattering length density (SLD) profile based on the best fitting 

model (Figure 4.X), we clearly observed the thickness of d-DMBTD around 14.5 nm, which was 

in a good match with the theoretical value (13.2 nm) assuming the polymer chains were aligned 

normally to the substrate. The constant scattering length density (SLD) of approximately 2.8 ´ 10-

6 Å-2 across 80% of the thin film thickness and the corresponding mass density of this high-density 

region calculated from this SLD value was 0.87 g cm-3, indicating that the thin film consisted of 

densely packed d-DMBTD polymer chains. 

 

Figure 4.6. Representative tapping mode AFM image of DMBTD on quartz substrate. The 
topography (a) and phase (c) in 4 µm x 4 µm scan area; and the zoom-in topography (b) and phase 
(d) in 0.7 µm x 0.7 µm scan area. 
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4.5 Electrochemical Properties of PPE Thin Films.  

 All the PPE thin films were found remarkably stable and unaffected by prolonged 

sonication in organic solvents (CHCl3, toluene, THF, acetone, MeOH, and EtOH) and water. 

Electrochemical studies of the thin films were conducted by cyclic voltammetry (CV) using thin 

films on ITO substrates as working electrodes and 0.1 M solution of n-Bu4NPF6 in acetonitrile as 

the supporting electrolyte. DMDM, TFTF, and TFDM showed irreversible oxidation or reduction 

features over the scans, but we were able to acquire information about their electronic energy 

levels before the degradation. As shown in table 4.1, the highest occupied molecular orbital 

energy level of DMDM (EHOMO) was estimated at –5.99 eV against vacuum level. The lowest  

  

Figure 4.7. Neutron reflectometry study of d-DMBTD thin film prepared by surface-initiated 
stepwise Sonogashira polymerization on a quartz substrate.  

Table 4.1. Electrochemical Onset Potentials and Electronic Energy Levels of the Polymer Thin 
Films.  

 jox(V vs Fc/Fc+)/  
EHOMO (eV)a 

jred(V vs Fc/Fc+)/  
ELUMO (eV)b 

Egec (eV) 
 

Egopt (eV)c 
 

DM 0.89/-5.99 n.a.d/-3.51e n.a.d 2.48 
TF n.a.d/-6.52e -1.17/-3.93 n.a.d 2.59 

TFDM 1.05/-6.15 -1.37/-3.73 2.42 2.45 

DMBTD 0.54/-5.64 -0.86/-4.24 1.40 1.87 
4-P1 0.89/-5.99 -1.43/-3.67 2.32 2.38 

4-P2 0.56/-5.66 -1.33/-3.77 1.89 2.04 
aCalculated according to the equation: EHOMO = -(jox + 5.1) (eV). bCalculated according to the 
equation: ELUMO = -(jred + 5.1) (eV). CEstimated from the onset wavelength of the absorption 
spectra: Egopt = 1240/lonset. dMeasurement on the cyclic voltammograms is unavailable. 
eCalculated according to the equation: Egopt = ELUMO - EHOMO. 
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unoccupied molecular orbital energy level of TFTF (ELUMO) was determined at –3.93 eV. The 

EHOMO and ELUMO of TFDM were at –615 and –3.73 eV, respectively. These energy levels were 

in line with the values found from common semiconducting polymers. DMBTD gave EHOMO at 

–5.64 eV and ELUMO at -4.24 eV, and as expected, its energy band gap was slightly lower than 

2.0 eV due to the strong donor-acceptor electronic coupling. 

4.6 Conclusions 

We have developed preparation of surface-confined semiconducting poly(p-phenylene 

ethynylene) thin films via stepwise Sonogashira polymerization. This efficient and yet 

unprecedented approach allowed us to prepare PPE thin film with precise structure and controlled 

nanoscale morphology. All the thin films showed excellent chemical and mechanical tolerance. 

Both TFDM and DMBTD showed unusual hyposchromic shifts in Eabs and long vibronic tails 

relative to their spin-casting counterparts, which was due to the highly dense uniform packing and 

face-to-face stacking of the p-conjugated units. AFM studies showed smooth morphology for 

DMBTF and good RMS roughness. Furthermore, the thickness of d-DMBTF thin film obtained 

using neutron reflectometry exhibited excellent match to the theoretical value assuming uniform 

normal-to-surface orientation of the conjugated macromolecules.  
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CHAPTER 5. EXPERIMENTAL SECTION 

5.1 General Considerations 

All reactions were performed under an atmosphere of dry nitrogen, except those that 

required Schlenk techniques, which were conducted under an atmosphere of ultrapure argon. 

Melting points were determined in open capillaries and were uncorrected. Chromatographic 

separations were carried out on silica gel (Sorbent Technologies, 60 Å, 40-63 µm, pH = 6.0-7.0) 

slurry packed into glass columns. Toluene, THF, DCM, ether, and hexane were dried by passing 

through columns of activated alumina and N,N-dimethylformamide (DMF) was dried through a 

column of molecular sieves both contained in a PS-400 Solvent Purification System from 

Innovative Technologies, Inc. The water content in the solvents was periodically controlled by 

coulometric titration on a Mettler Toledo DL 32 diaphragm-less coulometric titrator. 

Tetrabutylammonium hexafluorophosphate for electrochemical measurements was obtained from 

Aldrich and used after recrystallization from ethanol. Isopropylmagnesium chloride (2.0 M 

solution in THF) was purchased from Acros Organic, organometallic reagents were titrated with 

salicylaldehyde phenylhydrazone prior to use.1 High purity Pd(PPh3)4 was obtained from Stem, 

while all other reagents were obtained from Sigma-Aldrich and Alfa Aesar and used as received. 

Indium tin oxide (ITO) coated glass slides (25x75x1.1 mm3 polished float glass, 8-12 Ohm/sq. 

surface resistivity) were purchased from Delta Technologies, Ltd. 75x25 mm2 sized polished 

rectangular quartz slides were purchased from Chemglass. 1H NMR spectra were recorded at 400 

MHz or 500 MHz unless otherwise indicated and were reported in parts per million downfield 

from tetramethylsilane. GPC analysis of polymers was performed with an Agilent 1100 

chromatograph equipped with two PLgel 5 µm MIXED-C and one PLgel 5 µM 1000 Å columns 

connected in series, using THF as a mobile phase, and calibrated against polystyrene standard. 
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Dialysis purification was carried out using Spectrum Laboratories, Inc. Spectra/Por® dialysis 

tubing with MWCO 3.5kDa or 8kDa. DFT computations were performed under Windows version 

of Gaussian 09 computational package.2 UV-vis absorption spectra were recorded on an Agilent 

Cary 5000 UV-Vis-NIR spectrometer. Fluorescence studies were carried out using a PTI 

QuantaMaster4/2006SE spectrofluorimeter. Electrochemical measurements were carried out using 

a three-electrode system with Pt button working electrode (diameter 2mm), Ag/AgNO3 non-

aqueous reference electrode, and Pt wire counter electrode. Polymer thin film attached ITO 

substrate was used to replace Pt button working electrode when solid state measurement was 

necessary. The reference electrode was checked against ferrocene standard every time before and 

after the experiments were performed, and the measured potentials were corrected based on the 

Fc/Fc+ redox potential value. All experiments were carried out in 0.1 M Bu4NPF6 solution in THF 

or DCM as supporting electrolyte. High resolution mass spectra were obtained at the LSU 

Department of Chemistry Mass Spectrometry Facility.  

5.2 Substrate Cleaning and Activation 

Rectangular quartz slides (75 x 25mm) were cut using a ceramic cutting. The glass pieces 

were then washed with hexane, DMC, acetone, methanol, and then water for 30 minutes each 

under sonication. The slides were then thoroughly dried under a flow of nitrogen.  The cleaned 

slides were placed in 20 mL scintillation vials and filled with freshly prepared piranha solution 

(7:3 H2SO4:30% H2O2) until the cover slip was submerged. (CAUTION: Piranha solutions are 

extremely corrosive and oxidizing.  It must be prepared carefully due to exothermic mixing.  

Ensure that all contact surfaces are clean and free of any solvents from previous washings or other 

organic contaminants or else explosive conditions can be generated.)  The vials were placed at rt 

for 1 h, then the slide removed and rinsed with copious amounts of Millipore-filtered water.  The 
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rinsed slides were then dried under a flow of nitrogen and protected from dust and other 

particulates for 3 hours and were then ready for immobilization. ITO was activated using “basic 

piranha” (NH4OH:H2O2:Water, 1:1:5) and prewashed using the same procedure as the glass slides. 

And placed at 75oC for 1, then the slide removed and rinsed with copious amounts of Millipore-

filtered water.  The rinsed slides were then dried under a flow of nitrogen and protected from dust 

and other particulates for 3 hours and were then ready for immobilization. 

5.3 Atomic Force Microscopy 

 Samples were characterized with a model 5500 atomic force microscope (AFM) equipped 

with Picoscan v5.3.3 software (Agilent Technologies, Chandler, Az). Images were acquired using 

tapping mode in ambient condition. Nanoshaving was conducted using contact mode. Oxide-

sharpened silicon nitride cantilevers with force constants ranging from 0.1 to 0.6 N/m were used 

for imaging (Veeco Probes, Santa Barbara, CA). Digital images were processed with Gwyddion 

open source software (version 2.9), which is supported by the Czech Metrology Institute.3 

5.4 Neutron Reflectometry 

Neutron reflectivity measurements were performed at the Spallation Neutron Source 

Liquids Reflectometer (SNS-LR, Beamline 4B) at the ORNL. The reflectivity data were collected 

using a sequence of 3.25-Å-wide continuous wavelength bands (selected from 2.63 Å < l < 16.63 

Å) and incident angles (ranging over 0.60º < q < 2.71º), where l is the neutron wavelength and q 

is the scattering angle. Using these settings, the momentum transfer, q = (4π sin q/ l) was varied 

over a range of 0.008 Å-1 < q < 0.22 Å-1. Reflectivity curves were assembled by combining seven 

different wavelength and angle data sets together, maintaining a constant sample footprint and 

relative instrumental resolution of dq/q = 0.023 by varying the incident-beam apertures.  
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The reduced data consisted of absolute neutron reflectivity (R) vs. neutron momentum 

transfer q. Layers4 and Motofit5 software were used to fit the measured reflectivity curves, 

providing the reflectivity of a model scattering length density profile, which can be analyzed to 

determine the structure of the thin films. One or two layers were used to model the depth profiles 

of the films. The scattering length density, thickness, and roughness of each layer was freely varied 

in the fitting procedure. The quality of fit was gauged by minimizing c2 between data and model 

reflectivity curves. 

5.5 Supporting Information Associated to Chapter II 

 

Figure 5.1. Change in absorption (left) and fluorescence (right) spectra of a 13.3 µM solution of 
the small-molecule sensor 2-M1 in acetonitrile upon addition of increasing concentrations of H2S 
(the spectra were acquired in 6 min after H2S addition).   

 

Figure 5.2. Change in absorption (left) and fluorescence (right) spectra of a 10.8 µM solution of 
the lower molecular weight polymer sensor 2-P1b in acetonitrile upon addition of increasing 
concentrations of H2S (the spectra were acquired in 6 min after H2S addition).  
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Figure 5.3. Absorption (left) and fluorescence (right) spectra of a 10.0 µM solution of the control 
polymer 2-P2 in acetonitrile upon addition of increasing concentrations of H2S (the spectra were 
acquired in 6 min after H2S addition).  

 

Figure 5.4. GPC elution traces for conjugated polymers 2-SP1a and 2-SP1b (precursors to sensor 
polymers 2-P1a and 2-P1b), and 2-P2.  Experimental conditions: solvent THF, flow rate 0.7 mL 
min–1, UV/vis absorbance detection at 450 nm. 

5.6 Supporting Information Associated to Chapter IV 

 

Figure 5.5. Photoluminescence spectra of TFDM, 4-P1 in DCM, and spin-casted 4-P1 (left), and 
DMBTD, 4-P2 in toluene, and spin-casted 4-P2. 
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Figure 5.6. Excitation spectra of TFDM, 4-P1 in DCM, and spin-casted 4-P1 (left), and DMBTD, 
4-P2 in toluene, and spin-casted 4-P2. 

 

Figure 5.7.  Determination of TFDM film thickness by “nanoshaving” to reference the quartz 
substrate as a baseline in a scanning area of 3 µm x 3 µm; topography (left), phase (middle) and 
cursor profile (right). 

 

Figure 5.8.  Determination of DMBTD film thickness by “nanoshaving” to reference the quartz 
substrate as a baseline in a scanning area of 3 µm x 3 µm; topography (left), phase (middle) and 
cursor profile (right).  
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5.7 Synthetic Details 

 

 

Scheme 5.1. Synthesis of polymer sensors 2-P1a-b, control polymer 2-P2, and small-molecule 
sensor 2-M1. 
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Scheme 5.2. Synthesis of small molecule building blocks, and soluble polymer 4-P1 and 4-P2. 

Triethylene glycol monomethyl ether tosylate (2-S1)6 and 1,4-dibromo-2,5-bis(2-(2-

(2-methoxyethoxy)ethoxy)ethoxy)benzene (2-S3)7 were prepared generally following 

established literature procedures.  
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1,4-bis(2-(2-(2-Methoxyethoxy)ethoxy)ethoxy)-2,5-((trimethylsilyl)ethynyl)ben-zene 

(2-S4). A solution of 1.75 g (17.8 mmol) of trimethylsilylacetylene, 2.53 g (4.46 mmol) of 2-S3, 

103 mg (88.7 µmol) of Pd(PPh3)4, and 25.1 mg (0.131 mmol) of CuI in 150 mL of toluene/i-Pr2NH 

(7:3) mixture was stirred in a sealed Airfree flask at 70 °C for 48 h. After allowing to cool down 

to room temperature, the reaction mixture was filtered through a glass filter, and the filtrate was 

concentrated in vacuo.  The crude product was purified by column chromatography on silica gel 

(eluent ethyl acetate – CH2Cl2 (1:5)) to afford 2.15 g (78%) of 2-S4 as a colorless liquid that slowly 

solidified into a white waxy solid, Rf 0.38. 1H NMR (400 MHz, CDCl3) d 6.93 (s, 2H), 4.14 (t, J 

= 4.8 Hz, 4H), 3.89 (t, J = 4.8 Hz, 4H), 3.81 (t, J = 4.8 Hz, 4H), 3.70-3.66 (m, 8H), 3.57 (t, J = 4.8 

Hz, 4H), 3.40 (s, 6H), 0.27 (s, 18H). 

1,4-bis(2-(2-(2-Methoxyethoxy)ethoxy)ethoxy)-2,5-diethynylbenzene (2-S5). A 

solution of 317 mg (5.65 mmol) of KOH in 132 mL of MeOH/THF (1:3) was added into a solution 

of 1.41 g (2.35 mmol) of 2-S4 in 48 mL of THF, and the resulting solution was stirred at room 

temperature for 1 h. The reaction mixture was poured into water, extracted with dichloromethane 

(3 X 100 mL) and the organic fraction was washed with water (3 X 100 mL), dried over Na2SO4, 

and concentrated in vacuo.   The crude product was purified by column chromatography on silica 

gel (eluent ethyl acetate – CH2Cl2 (1:5)) to afford 990 mg (85%) of 2-S5 as a colorless liquid that 

slowly solidified into a white waxy solid at low temperature, Rf 0.43. 1H NMR (400 MHz, CDCl3) 

d 6.99 (s, 2H), 4.15 (t, J = 4.8 Hz, 4H), 3.86 (t, J = 4.8 Hz, 4H), 3.77 (t, J = 4.8 Hz, 4H), 3.68-3.64 

(m, 8H), 3.55 (t, J = 4.8 Hz, 4H), 3.37 (s, 6H), 3.33 (s, 2H). 

1,4-bis(2-(2-(2-Methoxyethoxy)ethoxy)ethoxy)-2,5-bis((4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-1-yl)benzene (2-S6). A mixture of 800 mg (1.78 mmol) of 2-S5, 707 mg (4.09 

mmol) of pinacolborane, and 46.0 mg (0.178 mmol) of ZrCp2HCl in 20 mL of 1,2-dichloroethane 
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was stirred in a sealed Airfree flask at 65 °C for 72 h. After allowing to cool down to room 

temperature, the reaction mixture was poured into water, extracted with dichloromethane (3 X 100 

mL), and the organic fraction was washed with water (3 X 100 mL), and dried over Na2SO4. 

Concentration in vacuo afforded crude product that was further purified by column 

chromatography on silica gel (eluent ethyl acetate – CH2Cl2 (1:1)) to afford 1.00 g (64%) of 2-S6 

as a yellow sticky liquid that slowly solidified into a yellow solid at low temperature, Rf 0.30. 1H 

NMR (400 MHz, CDCl3) d 7.70 (d, J = 18.6 Hz, 2H), 7.10 (s, 2H), 6.14 (d, J =18.6 Hz, 2H), 4.15-

4.09 (m, 4H), 3.90-3.84 (m, 4H), 3.77-3.74 (m, 4H), 3.71-3.66 (m, 12H), 3.56-3.54 (m, 4H), 3.37 

(s, 6H), 1.30 (s, 24H). 

3,6-Dibromo-2-hydroxy-1-naphthaldehyde (2-S9) was prepared starting from 6-bromo-

2-naphthol following the previously described procedure.8  

3,6-Dibromo-2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-1-naphthaldehyde (2-S10). A 

mixture of 1.03 g (3.03 mmol) of 2-S9, 2.89 g (9.09 mmol) of 2-S1, and 1.26 g (9.09 mmol) of 

K2CO3 in 15 mL of DMF was stirred at 80 °C for 48 h. After allowing to cool to room temperature, 

the reaction mixture was poured into ethyl acetate, washed successively with H2O (3 X 50 mL) 

and brine, extracted with ethyl acetate (3 X 50 mL), and dried over Na2SO4. After concentrating 

in vacuo, the crude product was purified by column chromatography (eluent ethyl acetate – hexane 

(1:5)) to afford 1.19 g (82%) of 2-S10 as a yellow liquid which was slowly solidified as a white 

waxy solid at low temperature, Rf 0.43.  1H NMR (400 MHz, CDCl3) d 10.82 (s, 1H), 9.09 (d, J = 

9.2 Hz, 1H), 8.22 (s, 1H), 7.90 (d, J = 2.1 Hz, 1H), 7.70 (dd, J1 = 9.2 Hz, J2 = 2.1 Hz, 1H), 4.36 (t, 

J = 4.8 Hz, 2H), 3.92 (t, J = 4.8 Hz, 2H), 3.73-3.71 (m, 2H), 3.68-3.64 (m, 4H), 3.54 (t, J = 4.8 

Hz, 2H), 3.37 (s, 3H). 
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3,6-Dibromo-2-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-1-(2-methylprop-1-enyl)-

naphthalene (2-S11).  A solution of n-BuLi in hexanes (0.48 mL (0.768 mmol) of 1.6 M solution) 

was added dropwise into a solution of 327 mg (0.756 mmol) of isopropyltriphenylphosphonium 

iodide in 10 mL of THF at 0 °C. The resulting mixture was stirred at this temperature for 1 h, 

followed by addition of a solution of 200 mg (0.420 mmol) of 2-S10 in 10 mL of THF. The reaction 

mixture was stirred at room temperature for 16 h, then 10 mL of H2O was added and the resulting 

mixture was stirred for 30 min. The solvents were removed under reduced pressure, and the residue 

was diluted with ethyl acetate and filtered through a pad of Celite. The filtrate was washed with 

water (3 X 100 mL), extracted with ethyl acetate (3 X 100 mL), dried over Na2SO4, and 

concentrated in vacuo.  The crude product was purified by column chromatography on silica gel 

(eluent ethyl acetate – hexane (1:5)) to yield 193 mg (92%) of 2-S11 as a clear liquid, Rf 0.52. 1H 

NMR (400 MHz, CDCl3) d 7.91 (s, 1H), 7.85 (s, 1H), 7.69 (d, J = 9.0 Hz, 1H), 7.50 (d, J = 9.0 Hz, 

1H), 6.35 (s, 1H), 4.05 (t, J = 5.1 Hz, 2H), 3.84 (t, J = 5.1 Hz, 2H), 3.75 (t, J = 5.1 Hz, 2H), 3.70-

3.65 (m, 4H), 3.55 (t, J = 5.1 Hz, 2H), 3.38 (s, 3H), 2.03 (s, 3H), 1.49 (s, 3H). 

(E)-4,4,5,5-tetramethyl-2-styryl-1,3,2-dioxaborolane (2-S12). A mixture of 500 mg 

(4.89 mmol) of phenylacetylene, 1.82 g (14.3 mmol) of pinacolborane, and 126 mg (0.489 mmol) 

of ZrCp2HCl in 20 mL of 1,2-dichloroethane was stirred in a sealed Airfree flask at 65 °C for 72 

h. After allowing to cool down to room temperature, the reaction mixture was poured into H2O, 

extracted with dichloromethane (3 X 100 mL), washed with H2O (3 X 100 mL), and dried over 

Na2SO4. Concentration in vacuo afforded crude product that was further purified by column 

chromatography on silica gel (eluent hexane – CH2Cl2 (3:1)) to afford 630 mg (59%) of 2-5 as a 

yellow sticky liquid, Rf 0.51 1H NMR (400 MHz, CDCl3) d 7.59 (d, J = 8.0 Hz, 2H), 7.42-7.29 (m, 

4H), 6.19 (d, J = 18.4 Hz, 1H), 1.34 (s, 12H). 
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Precursor polymer 2-SP1a. A solution of 961 mg (4.53 mmol) of K3PO4 in 2 mL of H2O 

was added into a solution of 297 mg (0.623 mmol) of 2-S10, 400 mg (0.566 mmol) of S6, 6.00 mg 

(26.7 µmol) of Pd(OAc)2 and 27.1 mg (56.8 µmol) of XPhos in 10 mL of toluene, and the resulting 

solution was stirred in a sealed Airfree flask at 60 °C for 60 h. After allowing to cool down to room 

temperature, the reaction mixture was precipitated in MeOH resulting in 261 mg (60%) of 2-SP1a 

as a yellow sticky solid, Mn 20.3 kDa, PDI 2.44 (GPC, vs. polystyrene). 1H NMR (400 MHz, 

CD2Cl2) d 10.86 (s, 1H), 9.13 (s, 1H), 8.34 (s, 1H), 7.94 (s, 2H), 7.77-7.62 (m, 3H), 7.40-7.32 (m, 

3H), 4.37-4.20 (m, 6H), 3.97-3.42 (m, 30H), 3.31-3.24 (m, 9H). 

Precursor polymer 2-SP1b. A solution of 0.18 g (0.85 mmol) of K3PO4 in 1 mL of H2O 

was added into a solution of 55 mg (0.12 mmol) of 2-S10, 74 mg (0.11 mmol) of 2-S6, 1.0 mg (5.3 

µmol) of Pd(OAc)2 and 42 mg (11 µmol) of XPhos in 5 mL of toluene, and the resulting solution 

was stirred in a sealed Airfree flask at 60 °C for 20 h. After allowing to cool down to room 

temperature, the reaction mixture was precipitated in MeOH resulting in 18 mg (20%) of 2-SP1b 

as a yellow sticky solid, Mn 11.3 kDa, PDI 2.14 (GPC, vs. polystyrene). 1H NMR spectrum was 

similar to that of polymer 2-SP1a. 

Polymer 2-P1a. A solution of 38 mg (49 µmol) of 2-SP1a, 0.45 g (1.5 mmol) of 1,2,3,3-

tetramethyl-3H-indolium iodide, and 0.15 g (1.5 mmol) of KOAc in 2 mL of Ac2O was stirred at 

80 °C for 2 h. The reaction mixture was allowed to cool down to room temperature, and Ac2O was 

removed in vacuo. The residue was dissolved in dichloromethane, and precipitated in hexane, and 

the resulting brown solid was washed successively with ethyl acetate and acetone. The crude 

product was further purified by dialysis from acetonitrile for 24 h to afford 38 mg (81%) of 2-P1a 

as a red sticky solid.  The number average molecular weight Mn 27.7 kDa was calculated based on 

Mn of the precursor polymer 2-SP1a. 1H NMR (400 MHz, CD2Cl2) d 8.95-8.91 (m, 1H), 8.40-8.33 
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(m, 2H), 8.12-8.02 (m, 3H), 7.81-7.58 (m, 7H), 7.48-7.27 (m, 3H), 4.33-4.28 (m, 9H), 3.99-3.43 

(m, 30H), 3.31-3.24 (m, 9H), 2.03 (s, 6H). 

Polymer 2-P1b was prepared following the procedure for polymer 2-P1a, using 10 mg (13 

µmol) of 2-SP1b, 0.12 g (0.39 mmol) of 1,2,3,3-tetramethyl-3H-indolium iodide, and 38 mg (0.39 

mmol) of KOAc in 1 mL of Ac2O.  This yielded 2 mg (17%) of 2-P1b as a red sticky solid.  The 

number average molecular weight Mn 15.5 kDa was calculated based on Mn of the precursor 

polymer SP1b. 1H NMR spectrum was similar to that of polymer 2-P1a. 

Control polymer 2-P2. A solution of 0.26 g (1.2 mmol) of K3PO4 in 1 mL of H2O was 

added into a solution of 80 mg (0.16 mmol) of 2-S11, 0.11 g (0.15 mmol) of 2-S6, 1.7 mg (7.6 

µmol) of Pd(OAc)2 and 7.1 mg (15 µmol) of XPhos in 5 mL of toluene, and the resulting solution 

was stirred in a sealed Airfree flask at 60 °C for 72 h. After allowing to cool down to room 

temperature, the reaction mixture was precipitated in MeOH to afford 50 mg (42%) of 2-P3 as a 

yellow sticky solid, Mn 15.9 kDa, PDI 2.24 (GPC, vs. polystyrene). 1H NMR (400 MHz, CD2Cl2) 

d 8.09-6.95 (m, 10H), 6.45-6.34 (m, 1H), 4.30- 3.28 (m, 45H), 2.06 (s, 3H), 1.58 (s, 3H).  

3,6-bis(2-Phenylethenyl)-2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-1-naphthaldehyde 

(2-S13). A solution of 401 mg (1.89 mmol) of K3PO4 in 2 mL of H2O was added into a solution of 

150 mg (0.315 mmol) of 2-S10, 0.181 mg (0.79 mmol) of 2-S12, 4.2 mg (16 µmol) of Pd(OAc)2 

and 17 mg (32 µmol) of BrettPhos in 5 mL of 1,4-dioxane, and the resulting solution was stirred 

in a sealed Airfree flask at 80 °C for 72 h. After allowing to cool down to room temperature, the 

reaction mixture was poured into H2O, extracted with dichloromethane (3 X 50 mL), washed with 

H2O (3 X 50 mL), and dried over Na2SO4. Concentration in vacuo afforded crude product that was 

further purified by column chromatography on silica gel (eluent ethyl acetate – CH2Cl2 (1:10)) to 
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afford 120 mg (73%) of 2-S13 as a yellow sticky solid, Rf 0.44. 1H NMR (400 MHz, CDCl3) d 

10.90 (s, 1H), 9.18 (d, J = 9.5 Hz, 1H), 8.30 (s, 1H), 7.86 (s, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.62 

(d, J = 11.4 Hz, 2H), 7.59-7.53 (m, 3H), 7.44-7.38 (m, 4H), 7.34-7.28 (m, 3H), 7.26-7.25 (m, 2H), 

4.24 (t, J = 4.3 Hz, 2H), 3.89 (t, J = 4.3 Hz, 2H), 3.75-3.73 (m, 2H), 3.71-3.69 (m, 2H), 3.65-3.63 

(m, 2H), 3.54-3.52 (m, 2H), 3.36 (s, 3H). 

Small-molecule sensor 2-M1. A solution of 60 mg (0.11 mmol) of 2-S13, 38 mg (0.13 

mmol) of 1,2,3,3-tetramethyl-3H-indolium iodide, and 3 mg (32 µmol) of KOAc in 1 mL of Ac2O 

was stirred at 80 °C for 2 h. The reaction mixture was allowed to cool down to room temperature, 

and the solvent was removed under reduced pressure. The residue was dissolved in 

dichloromethane, precipitated in hexane, and the resulting brown solid was washed thoroughly 

with ethyl acetate to afford 18 mg (24%) of 2-M1 as a red sticky solid. 1H NMR (400 MHz, 

CD2Cl2) d 8.89 (d, J = 16.4 Hz, 1H), 8.34 (s, 1H), 8.31(d, J = 8.7 Hz, 1H), 8.05 (d, J = 16.4 Hz, 

1H), 8.01-7.99 (m, 2H), 7.78-7.76 (m, 1H), 7.70-7.61 (m, 7H), 7.56 (d, J = 16.4 Hz, 1H), 7.46-

7.29 (m, 9H), 4.29 (s, 3H), 4.22-4.20 (m, 2H), 3.91-3.89 (m, 2H), 3.71-3.69 (m, 2H), 3.61-3.59 

(m, 2H), 3.53-3.51 (m, 2H), 3.46-3.44 (m, 2H), 3.27 (s, 3H), 2.00 (s, 6H). 

Potassium 3-(3,6-dibromo-1-formylnaphthalen-2-yloxy)propane-1-sulfonate (3-1). A 

mixture of 26 mg (0.46 mmol) KOH in 1 mL of ethanol was added into a solution of 100 mg (0.3 

mmol) of 9 in 3 mL of methyl ethyl ketone at 70 °C. A solution of 56 mg (0.46 mmol) 43 of 1,3-

propanesultone in 1 mL of methyl ethyl ketone was added into the reaction mixture and stirred for 

overnight. After cooling down to rt, the reaction mixture was poured into acetone and white solid 

was precipitated. The white solid was collected after centrifuge and recrystallized from hot water 

to afford 77 mg (56%) of 10 as a white solid. 1H NMR (d6-DMSO, 400 MHz): δ 10.61 (s, 1H), 

8.96 (d, 1H), 8.70 (s, 1H), 8.29 (s, 1H), 7.85 (d, 1H), 4.23 (t, 2H), 2.65 (t, 2H), 2.17 (m, 2H). 
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Copolymer 3-P1, 3-P2, 3-P3, and 3-P4. Polymerization of copolymer 3-P1, 3-P2, 3-P3, 

and 3-P4 was performed using stock solutions of 120 mg (0.57 mmol) of K3PO4 in 12 mL of H2O, 

50 mg (0.07 mmol) of 2-S6 in 4 mL of THF, 32 mg (0.07 mmol) of 3-1 in 4 mL of THF, 0.3 mg 

(1.4 µmol) of Pd(OAc)2  in 2 mL of THF and 1.7 mg (3.5 µmol) of XPhos in 2 mL of THF. Every 

stock solution was divided into four portions with equal volume, and resulting portions of reaction 

reagents and starting materials were then combined to give four reacting solutions with exactly the 

same concentrations. The reactions were conducted in 20 mL polycarbonate-capped glass vials at 

55 °C in glove box. The reactions were then workup individually after 8 h for 3-P1, 24 h for 3-P2, 

48 h for 3-P3, and 72 h for 3-P4. After allowing to cool down to room temperature, the reaction 

mixture was precipitated in acetone following by dialysis from deionized water for 2 days (3.5 

kDa cutoff for 3-P1, and 8 kDa for others) to yield 10 mg of 3-P1 (72%), 5 mg of 3-P2 (36%), 6 

mg of 3-P3 (44%), and 6 mg of 3-P4 (44%) as yellow sticky solid. 1H NMR of 3-P1 (d6-DMSO, 

400 MHz) d 10.73 (s, 1H), 9.03 (s, 1H), 8.56 (s, 1H), 8.11-7.02 (br, 8H), 4.28-3.88 (br, 9H), 3.66-

3.26 (br, 17H), 3.19-3.08 (m, 6H) 2.70 (s, 2H), 2.19 (s, 2H). 

Small-molecule sensor 3-M1. A solution of 70 mg (0.33 mmol) of K3PO4 in 2 mL of H2O 

was added into a solution of 25 mg (0.06 mmol) of 3-1, 38 mg (0.17 mmol) of 2-S12, 0.6 mg (2.8 

µmol) of Pd(OAc)2 and 3 mg (5.5 µmol) of XPhos in 2 mL of toluene, and the resulting solution 

was stirred in a sealed Airfree flask at 70 °C for 72 h. After allowing to cool down to room 

temperature, the reaction mixture was poured into acetone to form solid crude product. The solid 

was then vigorously washing with CH2Cl2 and THF to afford 22 mg (83%) of 2-S13 as a light 

greenish solid. 1H NMR (d6-DMSO, 400 MHz) d 10.72 (s, 1H), 9.04 (d, J = 8.0 Hz, 1H), 8.67 (s, 

1H), 8.12 (s, 1H), 8.15 (d, J = 12.0 Hz, 1H), 7.73-7.67 (m, 4H), 7.65 (d, J = 12.0 Hz, 1H), 7.46-
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7.40 (m, 6H), 7.36-7.31 (m, 3H), 4.18 (t, J = 8.0 Hz, 2H), 2.68 (t, J = 8.0 Hz, 2H), 2.17 (t, J = 8.0 

Hz, 2H). HR-ESI-MS (m/z calc.: 497.1423; found: 497.1427). 

 Triethoxy(4-iodophenyl)silane (4-1) was synthesized through a modified literature 

procedure.1 A solution of 0.7 mL (6.67 mmol of 1.85 M solution in THF) i-PrMgCl was added 

dropwise to a solution of 2.0 g (6.06 mmol) 1,4-diiodobenzene in 15 mL of anhydrous THF at −40 

°C under N2 atmosphere. The resulting mixture was stirred for 6 h to give a solution of   (4-

iodophenyl)magnesium chloride. The as prepared solution of (4-iodophenyl)magnesium chloride 

was added dropwise via cannula to a solution of 3.12 g (30.3 mmol) Si(OEt)4 in 5 mL of anhydrous 

THF. The resulting solution was stirred at −40 °C for 1 h and then allowed to warm to rt overnight. 

The reaction mixture was diluted with 100mL of CH2Cl2, washed with H2O, and extracted with 

CH2Cl2. The organic fraction was washed with brine, dried over Na2SO4, and concentrated in 

vacuo. The crude mixture was purified by Kugelrohr distillation (8 mm Hg, over temperature 130 

°C) to give 0.67 g (32%) of 4-1 as a clear liquid. 1H NMR(CDCl3, 400 MHz) d 7.76 (d, J = 8.0 

Hz, 2H), 7.41 (d, J = 8.0 Hz, 2H), 3.88 (q, J = 6.8 Hz, 6H), 1.26 (t, J = 6.8 Hz, 12H).  

1,4-Diiodo-2,5-dimethoxybenzene (4-5) was prepared as described in the literature.9  

1,4-Dimethoxy-2,5-bis(trimethylsilylethynyl)benzene (4-S2). 1.51 g (15.39 mmol) of 

(trimethylsilyl)acetylene was added to a mixture of 2 g (5.13 mmol) of 4-5, 119 mg (0.1 mmol) of 

Pd(PPh3)4 and 29 mg (0.15 mmol) of CuI in 150 mL of toluene - i-Pr2NH (7:3). The resulting 

mixture was stirred at 70 °C in a sealed air-free flask for 48 h. After cooling down to rt, the mixture 

was concentrated in vacuo, and the crude product was purified by column chromatography on 

silica gel eluted with CH2Cl2 - hexane (1:3) to afford 1.36 g (90%) of 4-S2 as a white solid. 1H 

NMR(CDCl3, 400 MHz) d 6.93 (s, 2H), 3.85 (s, 6H), 0.28 (s, 18H). 
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1,4-Dimethoxy-2,5-diethynylbenzene (4-2). A solution of 1.3 g  (3.93 mmol) of 4-S2 in 5 

mL of CH2Cl2 was added into a mixture of 5.44 g (39.3 mmol) of K2CO3 in 80 mL of MeOH - 

CH2Cl2 (1:1). The resulting mixture was stirred at room temperature for 1 h. The mixture was 

filtered and the filtrate was collected and then diluted in 100 mL of CH2Cl2, washed with H2O for 

three times, and then extracted with 100 mL of CH2Cl2 for three times. The resulting organic 

fraction was washed with brine, dried over Na2SO4, and concentrated in vacuo. The crude product 

was purified by column chromatography on silica gel eluted with CH2Cl2 - hexane (1:3) to afford 

695 mg (95%) of 4-2 as a white solid. 1H NMR(CDCl3, 400 MHz) d 6.98 (s, 2H), 3.86 (s, 6H), 

3.40 (s, 2H). 

1,4-Diiodo-2,5-bis(trifluoromethyl)benzene (4-6) was synthesized through a modified 

literature procedure.10 3 g (14.01 mmol) of 1,4-bis(trifluoromethyl)benzene was added into a 

mixture of 4.50 g (21.02 mmol) of NaIO4, 6.98 g (42.03 mmole) of KI in 100 mL of H2SO4 at rt. 

The resulting mixture was stirred at 90 °C for 16 h. After cooling to rt, the mixture was poured 

into ice, washed with H2O, and filtered. The residual was collected, washed with NaS2O3 (aq), 

extracted with CH2Cl2. The resulting organic fraction was washed with brine, dried over Na2SO4, 

concentrated in vacuo, and recrystallized from hexane to afford 3.24 g (50%) of 4-6 as a white 

solid. 1H NMR(CDCl3, 400 MHz) d 8.22 (s, 2H). 

 1,4-Bis(trifluoromethyl)-2,5-bis(trimethylsilylethynyl)benzene (4-S3) was prepared 

utilizing the same procedure as 4-S2. 1.7 g (97%) of 4-S3 as a white solid was acquired. 1H 

NMR(CDCl3, 400 MHz) d 7.84 (s, 2H), 0.28 (s, 18H). 

1,4-Bis(trifluoromethyl)-2,5-diethynylbenzene (4-3). A solution of 1.7 g (4.18 mmol) of 

4-S3 in 5 mL of THF was added into a mixture of 5.78 g (41.82 mmol) of K2CO3 in 80 mL of 

MeOH - THF (1:1). The resulting mixture was stirred at room temperature for 1 h. The mixture 
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was filtered and the filtrate was collected and then diluted in 100 mL of CH2Cl2, washed with H2O 

for three times, and then extracted with 100 mL of CH2Cl2 for three times. The resulting organic 

fraction was washed with brine, dried over Na2SO4, and concentrated in vacuo. The crude product 

was purified by column chromatography on silica gel eluted with CH2Cl2 - hexane (1:3) to afford 

987 mg (90%) of 4-3 as a white solid. 1H NMR(CDCl3, 400 MHz) d 7.94 (s, 2H), 3.86 (s, 2H). 

1,4-Dibromo-2,5-d6-dimethoxybenzene (4-S4). A solution of 1 g (3.73 mmol) of 2,5-

dibromohydroquinone, 1.35 g (9.33 mmol) of d3-methyl iodide, and 2.06 g (14.92 mmol) of K2CO3  

in 25 mL of DMF was stirred at 40 °C for 48 h. After cooling down to rt, the mixture was filtrated 

and the filtrate was purified by column chromatography on silica gel (DCM – hexane (3:1)) to 

yield 900 mg (80%) of 4-S4 as a white solid, Rf 0.34. 1H NMR (400 MHz, CDCl3) d 7.10 (s, 2H). 

1,4-d6-Dimethoxy-2,5-bis(trimethylsilylethynyl)benzene (4-S5). 709 g (7.22 mmol) of 

(trimethylsilyl)acetylene was added to a mixture of 650 g (2.41 mmol) of 4-S4, 139 mg (0.12 

mmol) of Pd(PPh3)4 and 46 mg (0.24 mmol) of CuI in 100 mL of toluene - i-Pr2NH (7:3). The 

resulting mixture was stirred at 70 °C in a sealed air-free flask for 48 h. After cooling down to rt, 

the mixture was concentrated in vacuo, and the crude product was purified by column 

chromatography on silica gel eluted with CH2Cl2 - hexane (1:3) to afford 510 mg (63%) of 4-S5 

as a white solid. 1H NMR(CDCl3, 400 MHz) d 6.90 (s, 2H), 0.27 (s, 18H). 

1,4-d6-Dimethoxy-2,5-diethynylbenzene (4-4). A solution of 510 mg (1.52 mmol) of 4-S5 

in 10 mL of THF was added into a mixture of 204 mg (3.64 mmol) of KOH in 40 mL of MeOH - 

THF (1:1). The resulting mixture was stirred at room temperature for 1 h. The mixture was filtered 

and the filtrate was collected and then diluted in 100 mL of CH2Cl2, washed with H2O for three 

times, and then extracted with 100 mL of CH2Cl2 for three times. The resulting organic fraction 

was washed with brine, dried over Na2SO4, and concentrated in vacuo. The crude product was 
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purified by column chromatography on silica gel eluted with CH2Cl2 - hexane (1:3) to afford 276 

mg (95%) of 4-4 as a white solid. 1H NMR(CDCl3, 400 MHz) d 6.98 (s, 2H), 3.40 (s, 2H). 

Alternating donor-acceptor type conjugated polymer 4-P1. 35 mg (0.064 mmol) of 1,4-

Bis(tetradecyloxy-2,5-diethynyl)benzene, 30 mg (0.064 mmol) of 4-6, 1.4 mg (2 mmol%) of 

Pd(PPh3)4 and 0.24 mg (2 mmol%) of CuI in 10 mL of toluene - i-Pr2NH (7:3). The resulting 

mixture was stirred at 70 °C in a sealed air-free flask for 72 h. After cooling down to rt, the mixture 

was poured into 50 mL of acetone to afford 30 mg (63% Mn 5.9 kDa PDI 1.8) of 4-P1 as a yellow 

solid. 1H NMR(CDCl3, 400 MHz) d 7.98 (m, 2H), 7.02 (s, 2H), 4.05 (m, 4H), 1.87 (m, 4H), 1.43 

(m, 44H), 0.89 (m, 6H). 

Alternating donor-acceptor type conjugated polymer 4-7. 20 mg (0.036 mmol) of 1,4-

Bis(tetradecyloxy-2,5-diethynylbenzene, 14 mg (0.036 mmol) of 4,7-diiodobenzo[c][1,2,5]-

thiadiazole, 0.8 mg (2 mmol%) of Pd(PPh3)4 and 0.2 mg (2 mmol%) of CuI in 5 mL of toluene - 

i-Pr2NH (7:3). The resulting mixture was stirred at 70 °C in a sealed air-free flask for 72 h. After 

cooling down to rt, the mixture was poured into 50 mL of acetone to afford 20 mg (80% Mn 22.3 

kDa PDI 3.1) of 4-P2 as a red solid. 1H NMR(CD2Cl2, 400 MHz) d 7.82 (s, 2H), 7.19 (s, 2H), 4.13 

(t, 4H), 1.92 (t, 4H), 1.4 (m, 44H), 0.86 (m, 6H) 
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CONCLUSIONS 

 A CP sensor 2-P1a (Mn ~27.7 kDa) incorporates an H2S naphthalene cyanine receptor 

which is part of the poly(arylene vinylene) p-conjugated backbone. Adding increasing 

concentrations (200 nM to 0.1 mM) of aqueous H2S to a dilute solution of 2-P1a in acetonitrile 

produced a substantial gradual increase of the fluorescent emission, up to 74-fold as an integrated 

intensity ratio F/F0. The lack of a significant change in the absorption spectra as well as negligible 

wavelength shift accompanying the fluorescence enhancement indicated only the minor electronic 

perturbations in the extended p-electron conjugated system of 2-P1a upon reaction with H2S. The 

corresponding small-molecule sensor 2-M1 (prepared as a reference) produced no detectable 

change in the absorption spectrum and only an approximately 2.5-fold enhancement in F/F0. Thus, 

the small-molecule sensor demonstrated a rather insignificant turn-on fluorescent response and a 

narrow analyte detection range. According to the “higher energy gap” mechanism, we expected 

that the sensing performance would be greatly affected by the polymer conjugation length, since 

this mechanism is based on restricting the intramolecular exciton migration in the CP p-conjugated 

backbone. Indeed, a CP sensor 2-P1b (Mn ~15.5 kDa) with a lower degree of polymerization 

displayed a much-diminished turn-on sensing performance, with only a 30-fold maximum increase 

in F/F0 and approximately 20 times lower H2S sensitivity than the polymer 2-P1a. This illustrated 

that the overall short conjugation length in 2-P1b was responsible for a more limited 

intramolecular exciton migration and thus a smaller fluorescent enhancement upon creating higher 

energy gap exciton “roadblocks” in the CP backbone.  

 To prove that the “roadblocks” responsible for the turn-on amplified fluorescence 

enhancement were created via the reaction of H2S with the cyanine moiety, we checked a control 

polymer 2-P2 which, as was expected, showed absolutely no response on H2S addition. As an 
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excellent illustration of the power of the “higher energy gap” concept in fluorescent sensor design, 

the polymer sensor 2-P1a demonstrated a superior turn-on response, with approximately 10 times 

higher detection sensitivity and a broad analyte detection range, all in a dramatic contrast with the 

poor sensing performance of the small molecule analogue 2-M1.  

 To better understand the minimal requirements to the energy gap modulation for achieving 

an amplified fluorescence response in the “higher energy gap” mechanism, we turned to the 

cysteine sensor based on the reaction of an aromatic aldehyde with cysteine to form thiazolidine. 

Preliminary DFT (B3LYP/6-31G*) computations indicated that such a conversion would result in 

the energy gap change of approximately 0.1 eV. Such change normally would be too small to use 

in the design of conventional sensors, however it could be sufficient within the framework of the 

“higher energy gap” mechanism. Four CP sensors 3-P1, 3-P2, 3-P3, and 3-P4 were prepared by 

step-growth Suzuki polymerization using various reaction times to achieve different degree of 

polymerization. The goal was to obtain polymer sensors with different p-conjugation length. The 

accurate values of molecular weight of these polymers are yet to be determined as the polymers 

appear to show strong intermolecular aggregation during GPC experiments. Indeed, the featureless 

UV/vis spectra and unusually high extinction coefficients also indicated that the polymers were 

highly aggregated in aqueous media. Such aggregation could stem from the insufficient 

solubilizing ability of the side chains in aqueous environment.  

 Regarding the amplification ratio, CP sensor 3-P1 exhibited an up to 30-fold F/F0 whereas 

3-P2, 3-P3, and 3-P4 exhibited smaller, 10 to 15-fold enhancements, and all four polymers showed 

rather insignificant changes in absorption spectra after adding millimolar levels of cysteine. In 

contrast, small molecule sensor 3-M1 showed a moderate decrease in fluorescence intensity, due 

to the insufficient energy gap change.   
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 Although, to our satisfaction, the “higher energy gap” based polymer sensors showed a 

reasonable turn-on response in the situation where a small-molecule sensor was not operational, 

we were not satisfied with a relatively small magnitude of the turn-on response. The less than 

desired sensing performance could be caused by poor solubility of the polymer in aqueous media, 

which induced intermolecular aggregation. Such aggregation could be responsible for numerous 

close contacts between individual polymer chains which would facilitate intermolecular exciton 

migration via the through-space mechanism. The possibility of intermolecular energy migration 

would allow an exciton “detour” of the local higher energy gap site in the CP backbone, thereby 

diminishing the effect of the higher energy gap mechanism. 

 Uniform alignment and improved molecular organization of CP chains in thin films could 

provide potential benefits for charge injection and charge transport processes in thin-film 

electronic and optoelectronic devices. However, fine adjustment and further fine-tuning of 

mesoscale morphology in films remain a significant and not yet solved challenge. In Chapter 4, 

we developed a precision stepwise Sonogashira polymerization to prepare a series of highly packed 

surface-immobilized PPE films with complete structural and morphological control. This method 

involves preparing thin films by adding one monomer repeating unit at a time using Sonogashira 

coupling protocol, and can be extended towards preparation of polymer chains of up to 20-30 

repeating units. 

 In UV/vis spectra, all surface-confined PPE films showed significant bathochromic shift 

accompanied by a linear increase in the optical density: a clear evidence for the extension of the 

p-electron delocalization. It is worth noticing that the absorbance maxima in surface-confined 

precision polymers were hypsochromically shifted relative to the spectra of spin-cast reference 

films films. This unusual (and previously unobserved) phenomenon could stem from the 
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interruption of continuous intramolecular p-conjugation caused by the alternating and uniform CP 

backbone twisting formed during the stepwise polymerization in the densely packed film. Indeed, 

atomic force microscopy studies on TFDM and DMBTD films exhibited highly dense packing 

and dramatic difference in morphology from the corresponding spin-cast films. To confirm the 

hypothesis of alternating backbone twisting, grazing-incidence wide-angle X-ray scattering studies 

showed that PPE films were amorphous and deficient of interchain p-p stacking as a result of 

torsional twisting. From the neutron reflectometry (NR) studies, we obtained the thickness of a 

deuterated DMBTD film at 14.5 nm, which was in a good match with the theoretical value (13.2 

nm) considering the polymer chains were aligned normally to the substrate. The mass density 

obtained the scattering length density in NR studies was 0.87 g cm-3 indicating that the DMBTD 

film consisted of densely and uniformly packed polymer chains. In conclusion, the PPE films 

prepared by precision surface-confined stepwise Sonogashira polymerization showed unique and 

previously unobtainable thin-film morphology and polymer structure, which resulted in interesting 

electronic properties potentially well-suited for the applications in devices requiring enhanced 

charge transport across the film (e.g. organic light-emitting devices). 



 98 

APPENDIX A: PERMISSIONS 

 

11/4/17, 19(21RightsLink Printable License

Page 1 of 6https://s100.copyright.com/App/PrintableLicenseFrame.jsp?publish…5b-afe5-4a13-abfd-b078b41b7c10%20%20&targetPage=printablelicense

THE AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE LICENSE
TERMS AND CONDITIONS

Nov 04, 2017

This Agreement between Louisiana state university -- Chien-Hung Chiang ("You") and The
American Association for the Advancement of Science ("The American Association for the
Advancement of Science") consists of your license details and the terms and conditions
provided by The American Association for the Advancement of Science and Copyright
Clearance Center.

License Number 4222191265734

License date Nov 04, 2017

Licensed Content Publisher The American Association for the Advancement of Science

Licensed Content Publication Science

Licensed Content Title Coherent Intrachain Energy Migration in a Conjugated Polymer at
Room Temperature

Licensed Content Author Elisabetta Collini,Gregory D. Scholes

Licensed Content Date Jan 16, 2009

Licensed Content Volume 323

Licensed Content Issue 5912

Volume number 323

Issue number 5912

Type of Use Thesis / Dissertation

Requestor type Scientist/individual at a research institution

Format Print and electronic

Portion Figure

Number of figures/tables 1

Order reference number

Title of your thesis /
dissertation

Higher energy gap of fluorescence in conjugated polymers

Expected completion date Nov 2017

Estimated size(pages) 100

Requestor Location Louisiana state university
232 Choppin Hall

BATON ROUGE, LA 70808
United States
Attn: Louisiana state university

Billing Type Invoice

Billing Address Louisiana state university
232 Choppin Hall



 99 

 

11/4/17, 19(28Rightslink® by Copyright Clearance Center

Page 1 of 1https://s100.copyright.com/AppDispatchServlet

Title: Conjugation Enhancement of
Intramolecular Exciton Migration
in Poly(p-phenylene
ethynylene)s

Author: Evgueni E. Nesterov, Zhengguo
Zhu, Timothy M. Swager

Publication: Journal of the American
Chemical Society

Publisher: American Chemical Society
Date: Jul 1, 2005
Copyright © 2005, American Chemical Society

  Logged in as:
  Chien-Hung Chiang
  Louisiana state university
  Account #:
  3001190298

 

PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because no
fee is being charged for your order. Please note the following:

Permission is granted for your request in both print and electronic formats, and
translations.
If figures and/or tables were requested, they may be adapted or used in part.
Please print this page for your records and send a copy of it to your publisher/graduate
school.
Appropriate credit for the requested material should be given as follows: "Reprinted
(adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright
(YEAR) American Chemical Society." Insert appropriate information in place of the
capitalized words.
One-time permission is granted only for the use specified in your request. No additional
uses are granted (such as derivative works or other editions). For any other uses, please
submit a new request.

If credit is given to another source for the material you requested, permission must be obtained
from that source.

    

 
Copyright © 2017 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions. 
Comments? We would like to hear from you. E-mail us at customercare@copyright.com 



 100 

 

Title: Fluorescence Studies of Poly(p-
phenyleneethynylene)s: The
Effect of Anthracene Substitution

Author: Timothy M. Swager, Caroline J.
Gil, Mark S. Wrighton

Publication: The Journal of Physical
Chemistry A

Publisher: American Chemical Society
Date: Apr 1, 1995
Copyright © 1995, American Chemical Society

  Logged in as:
  Chien-Hung Chiang
  Louisiana state university
  Account #:
  3001190298

 

PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because no
fee is being charged for your order. Please note the following:

Permission is granted for your request in both print and electronic formats, and
translations.
If figures and/or tables were requested, they may be adapted or used in part.
Please print this page for your records and send a copy of it to your publisher/graduate
school.
Appropriate credit for the requested material should be given as follows: "Reprinted
(adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright
(YEAR) American Chemical Society." Insert appropriate information in place of the
capitalized words.
One-time permission is granted only for the use specified in your request. No additional
uses are granted (such as derivative works or other editions). For any other uses, please
submit a new request.

If credit is given to another source for the material you requested, permission must be obtained
from that source.

    

 
Copyright © 2017 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions. 
Comments? We would like to hear from you. E-mail us at customercare@copyright.com 



 101 

 

Title: Method for enhancing the
sensitivity of fluorescent
chemosensors: energy migration
in conjugated polymers

Author: Qin Zhou, Timothy M. Swager
Publication: Journal of the American

Chemical Society
Publisher: American Chemical Society
Date: Jul 1, 1995
Copyright © 1995, American Chemical Society

  Logged in as:
  Chien-Hung Chiang
  Louisiana state university
  Account #:
  3001190298

 

PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because no
fee is being charged for your order. Please note the following:

Permission is granted for your request in both print and electronic formats, and
translations.
If figures and/or tables were requested, they may be adapted or used in part.
Please print this page for your records and send a copy of it to your publisher/graduate
school.
Appropriate credit for the requested material should be given as follows: "Reprinted
(adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright
(YEAR) American Chemical Society." Insert appropriate information in place of the
capitalized words.
One-time permission is granted only for the use specified in your request. No additional
uses are granted (such as derivative works or other editions). For any other uses, please
submit a new request.

If credit is given to another source for the material you requested, permission must be obtained
from that source.

    

 
Copyright © 2017 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions. 
Comments? We would like to hear from you. E-mail us at customercare@copyright.com 



 102 

 

8/31/17, 21)51RightsLink Printable License

Page 1 of 5https://s100.copyright.com/App/PrintableLicenseFrame.jsp?publis…f-1698-408d-a3a3-524d48e00ce5%20%20&targetPage=printablelicense

JOHN WILEY AND SONS LICENSE
TERMS AND CONDITIONS

Aug 31, 2017

This Agreement between Louisiana state university -- Chien-Hung Chiang ("You") and John
Wiley and Sons ("John Wiley and Sons") consists of your license details and the terms and
conditions provided by John Wiley and Sons and Copyright Clearance Center.

License Number 4179681046870

License date Aug 31, 2017

Licensed Content Publisher John Wiley and Sons

Licensed Content Publication Angewandte Chemie International Edition

Licensed Content Title A Fluorescent Self-Amplifying Wavelength-Responsive Sensory
Polymer for Fluoride Ions

Licensed Content Author Tae-Hyun Kim,Timothy M. Swager

Licensed Content Date Sep 23, 2003

Licensed Content Pages 4

Type of use Dissertation/Thesis

Requestor type University/Academic

Format Print and electronic

Portion Figure/table

Number of figures/tables 1

Original Wiley figure/table
number(s)

figure 2

Will you be translating? No

Title of your thesis /
dissertation

Higher energy gap of fluorescence in conjugated polymers

Expected completion date Nov 2017

Expected size (number of
pages)

100

Requestor Location Louisiana state university
232 Choppin Hall

BATON ROUGE, LA 70808
United States
Attn: Louisiana state university

Publisher Tax ID EU826007151

Billing Type Invoice

Billing Address Louisiana state university
232 Choppin Hall

BATON ROUGE, LA 70808



 103 

 

Title: “Higher Energy Gap” Control in
Fluorescent Conjugated
Polymers: Turn-On Amplified
Detection of Organophosphorous
Agents

Author: Deepa Pangeni, Evgueni E.
Nesterov

Publication: Macromolecules
Publisher: American Chemical Society
Date: Sep 1, 2013
Copyright © 2013, American Chemical Society

  Logged in as:
  Chien-Hung Chiang
  Louisiana state university
  Account #:
  3001190298

 

PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because no
fee is being charged for your order. Please note the following:

Permission is granted for your request in both print and electronic formats, and
translations.
If figures and/or tables were requested, they may be adapted or used in part.
Please print this page for your records and send a copy of it to your publisher/graduate
school.
Appropriate credit for the requested material should be given as follows: "Reprinted
(adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright
(YEAR) American Chemical Society." Insert appropriate information in place of the
capitalized words.
One-time permission is granted only for the use specified in your request. No additional
uses are granted (such as derivative works or other editions). For any other uses, please
submit a new request.

If credit is given to another source for the material you requested, permission must be obtained
from that source.

    

 
Copyright © 2017 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions. 
Comments? We would like to hear from you. E-mail us at customercare@copyright.com 



 104 

 
  



 105 

APPENDIX B: 1H NMR SPECTRA OF KEY COMPOUNDS 

 

 

Figure Appendix B.1.1H NMR spectrum of compound 2-S5 (CDCl3, 400 MHz). 
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Figure Appendix B.2.1H NMR spectrum of compound 2-S6 (CDCl3, 400 MHz). 
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Figure Appendix B.3.1H NMR spectrum of compound 2-S9 (CDCl3, 400 MHz). 
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Figure Appendix B.4.1H NMR spectrum of compound 2-S10 (CDCl3, 400 MHz). 



 109 

 

Figure Appendix B.5.1H NMR spectrum of compound 2-S11 (CDCl3, 400 MHz). 
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Figure Appendix B.6.1H NMR spectrum of compound 2-S12 (CDCl3, 400 MHz). 
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Figure Appendix B.7.1H NMR spectrum of compound 2-S13 (CDCl3, 400 MHz). 
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Figure Appendix B.8.1H NMR spectrum of compound 2-M1 (CD2Cl2, 400 MHz). 
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Figure Appendix B.9.1H NMR spectrum of compound 2-SP1a (CD2Cl2, 400 MHz). 
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Figure Appendix B.10.1H NMR spectrum of compound 2-SP1b (CD2Cl2, 400 MHz). 
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Figure Appendix B.11.1H NMR spectrum of compound 2-P1a (CD2Cl2, 400 MHz). 
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Figure Appendix B.12.1H NMR spectrum of compound 2-P1b (CD2Cl2, 400 MHz). 
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Figure Appendix B.13.1H NMR spectrum of compound 2-P2 (CD2Cl2, 400 MHz). 
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Figure Appendix B.14.1H NMR spectrum of compound 3-1 (d6-DMSO, 400 MHz). 
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Figure Appendix B.15.1H NMR spectrum of compound 3-P1 (d6-DMSO, 400 MHz). 
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Figure Appendix B.16.1H NMR spectrum of compound 3-M1 (d6-DMSO, 400 MHz). 
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Figure Appendix B.17.1H NMR spectrum of compound 4-1 (CDCl3, 400 MHz). 
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Figure Appendix B.18.1H NMR spectrum of compound 4-S1 (CDCl3, 400 MHz). 
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Figure Appendix B.19.1H NMR spectrum of compound 4-2 (CDCl3, 400 MHz). 
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Figure Appendix B.20.1H NMR spectrum of compound 4-6 (CDCl3, 400 MHz). 
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Figure 

Appendix B.21.1H NMR spectrum of compound 4-S3 (CDCl3, 400 MHz). 
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Figure Appendix B.22.1H NMR spectrum of compound 4-3 (CDCl3, 400 MHz). 
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Figure Appendix B.23.1H NMR spectrum of compound 4-S4 (CDCl3, 400 MHz). 
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Figure Appendix B.24.1H NMR spectrum of compound 4-S5 (CDCl3, 400 MHz). 



 129 

 

Figure Appendix B.25.1H NMR spectrum of compound 4-4 (CDCl3, 400 MHz). 
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Figure Appendix B.26.1H NMR spectrum of compound 4-P1 (CDCl3, 400 MHz). 
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Figure Appendix B.27.1H NMR spectrum of compound 4-P2 (CD2Cl2, 400 MHz). 
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