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Abstract 

Soil is an important environmental component, and the study of soil processes have many 

practical implications such as improvement in agriculture, mitigation of climate change etc. The 

widespread use of Agricultural Chemicals (ACs) in modern agriculture has resulted in adverse 

effects in environment and human health mostly through contamination into food and water 

sources. Study of fate, bioavailability, and transport of ACs involves molecular level 

understanding of their interactions with soil. This can be challenging due to complex and 

heterogeneous nature of soil. One common approach used is the correlation of macroscopic 

properties of soil, (e.g. sorption) with empirical parameters such as carbon content, elemental ratios 

etc. While these metrics provide insight into important soil characteristics, the results are not 

sufficient to elucidate in-depth molecular level interactions of soil with ACs. Several attempts to 

synthesize artificial test soil substrates have been proposed to overcome this limitation. However, 

the exact composition of these “artificial soils” are also ill-defined as they use organic components 

from plant derived materials. This work demonstrates the design and synthesis of Engineered Soil 

Surrogates (ESSs) using controlled radical polymerization for use in study of geomacromolecular 

processes including sorption of ACs into the soil. The initial design of ESSs consisted of SiO2 as 

an inorganic matrix tethered with multi-block oligomers containing alky (tier-1), O-aryl (tier-2) 

and polar (tier-3) blocks carefully selected to echo hydrophobic, aromatic and hydrophilic 

components of the Soil Organic Matter (SOM) respectively. A series ESSs of increasing 

complexity were used in concert with sorption isotherm data obtained by batch mode experiments 

using Norflurazon (NOR) as a model AC. As the polarity of the second tier increased, the ability 

of the ESS to sorb NOR decreased, as was the case when a polar third tier was added, pointing to 

a largely hydrophobic driving force for NOR adsorption to the ESSs. Hydrogen bonding, pi-

stacking, confirmation and hydration were also shown to influence binding of NOR to ESS. 
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Additionally, the results from isotherm based sorption studies of ESS are compared with that of 

chemically modified real soil in a quest to develop realistic soil model.  
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Chapter 1. Introduction to Soil and Its Sorption properties 

1.1 Soil 

 Soil is an abundant natural resource with enormous economic and environmental 

significance. FAO food balance sheets show that more than 99.7% of human food calories come 

from terrestrial environment.1 The world population is increasing at an alarming rate; doubling to 

7.3 billion between 1960 and 2010.2 By 2050, the population in projected to be about 9-10 billion 

and the food demand is expected to rise from 50-90%.3  The increasing population puts an 

additional stress on the available land affecting the amount and quality of available soil. The 

amount of available land decreased from 7.91 to 5.15 and then to 2.02 hectares per capita from 

year 1900 to 1950 and 2005 respectively.2 The conversion of natural lands to croplands, pastures, 

urban areas, reservoirs, and other anthropogenic landscapes represents the most visible and 

pervasive form of human impact on the environment.4 In 2002, roughly 40% of Earth’s land 

surface was under agriculture, and 85% had some level of anthropogenic influence.5 Almost 50% 

of all potentially vegetated land surface globally has been converted to croplands, pastures and 

rangelands.6-9 

Soil is complex mixture of minerals, water, air, organic matter, and countless organisms 

that live on decaying remains of once-living things.10 The typical soil consists of approximately 

45% minerals, 5% organic matter, 20-30% water, and 20-30% air.11 The mineral portion of the 

soil is formed by the weathering of rocks while Soil organic matter (SOM) comes from 

decomposition of living entities that are recycled by numerous micro-organisms. Plants intake the 

nutrients formed by degradation of organic compounds which subsequently gets passed to animals 

and then released back to the soil through decomposition. Globally, SOM is estimated to contain 

two-thirds of the global terrestrial carbon storage and is critical for maintaining soil fertility and 
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long-term agricultural sustainability.12 As a ubiquitous natural resource and an important 

ecological component, there is an enormous interest in soil for a) sustainable agriculture and b) 

combating climate change. 

1.1.1. Sustainable agriculture 

Human use and management of soil and water resources have shaped the development, 

persistence, decline, and regeneration of human civilizations that are sustained by agriculture.13-15 

The evolution of human societies is closely intertwined with the evolution of agricultural practices 

since the adoption of agrarian lifestyle sometime between 10000 and 12000 years ago.16-18 The 

optimum utilization of soil for sustainable and environmental friendly agriculture requires 

knowledge of the composition and transformation of the components that make up the soil. 

In the natural forest ecosystem where the nutrients on the soil are absorbed by plants and 

recycled upon decomposition, the soil composition remains relatively unaltered for years. 

However, in the agriculture ecosystem, the nutrients, especially the macronutrients (N, P and K) 

need to be replenished as the biomass produced are removed from soil for harvest. This leads to 

continuous change in the composition of soil over time which can lead to decreased productivity 

if proper soil amendment techniques are not applied. The nutrients in the soil are recycled through 

a complex nutrient cycle that involves a range of physical, chemical and biological processes; and 

the maintenance of healthy soil needs optimization of the relative amounts of essential ingredients 

to the soil. Ideal soils for agriculture are balanced in contributions from mineral components, soil 

organic matter (SOM), air, and water. The balanced contributions of these components allow for 

water retention and drainage, oxygen in the root zone, nutrients to facilitate crop growth; and they 

provide physical support for plants. The distribution of these soil components in a particular soil 

is influenced by the five factors of soil formation: parent material, time, climate, organisms, and 
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topography.19 With molecular level understanding of soil, the efficacy of the traditional soil 

amendment techniques  can be increased. Also, use novel humic acid based carbon materials have 

prepared by pyrolysis techniques such as biochar and black carbon etc. have proven useful in not 

only for increased productivity of soil but also in prevention of leaching of herbicides into 

groundwater and reduction of anthropogenic emission of CO2 into the atmosphere.20-22  

1.1.2. Combating climate change 

The Earth’s climate is directly dependent on the composition of the atmosphere, especially 

the amount of greenhouse gases (GHG) in the atmosphere. Because GHG absorb infrared 

radiation, an increased concentration of GHG in the Earth’s atmosphere is linked to a global 

increase in temperature. This is turn, affects global climate such as rainfall, air pressure etc. with 

potential for catastrophic damage through floods, storms, hurricane, wildfire etc.23-24 Greenhouse 

gases such as CO2, CH4, N2O, O3 and H2O are produced by both natural processes and human 

activities, whereas chlorofluorocarbons are produced by human activity for use as cleaning agents, 

refrigerants and electric insulators. Carbon dioxide and methane are the primary contributors to 

global warming caused by human activity; methane being roughly 25 times more potent GHG per 

mass than carbon dioxide.24-25Annual GHG emissions are estimated to be 10 billion tons (10 GT), 

15% of which comes from land-use changes, while the majority is attributed to fossil fuel use and 

production.26-27 

Until the beginning of the industrial revolution in 18th century, the reported concentrations 

of CO2 and CH4 had never exceeded approximately 280 ppm and 790 ppb respectively. Current 

concentrations of CO2 are about 390 ppm and CH4 levels exceed 1,770 ppb. Both numbers are 

much higher than at any time during the last 650,000 years. This increase in CO2 content in the 

atmosphere has led to about 0.3 - 0.6 °C increase in global temperature in recent years. 23At present, 
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GHG are estimated to be at the level of 430 ppm carbon dioxide equivalent .24, 28 It is predicted 

that in the year 2050, the global temperature rise may be as high as to 7.5 °C, if current trends and 

practices are continued.23 In addition, the increased temperature leads to more production of 

greenhouse gas through a feedback loop exacerbating the already existing climate change. A 26-

year-long soil warming study in a hardwood forest found that warming temperatures could spur 

recurring pulses of carbon dioxide emissions from soils. In order to limit a global increase in 

temperature to a conservative 2 - 2.4 °C, in order to keep the planet from the most detrimental 

effects of climate change, the GHG in the atmosphere should not exceed 490 ppm CO2. 
24, 27 

The global soil carbon pool of 2500 gigatons (Gt) includes about 1550 Gt of soil organic 

carbon and 950 Gt of soil inorganic carbon(SOC). The soil C pool is 3.3 times the size of the 

atmospheric pool (760 Gt) and 4.5 times the size of the biotic pool (560 Gt). The SOC pool to 1-

m depth ranges from 30 tons/ha in arid climates to 800 tons/ha in organic soils in cold regions, and 

a predominant range of 50 to 150 tons/ha.29 This creates an enormous potential for use of soil in 

mitigating climate change by storing atmospheric CO2 and other greenhouse gases in soil, and 

preventing the escape of carbon as potent greenhouse gases. Even a small shift in the carbon pool 

from atmosphere to soil per specific area can have a profound effect because soil is an abundant 

resource. With proper management of global croplands, there is a potential to store an additional 

1.85 Gt of carbon each year; which equals to the amount of carbon emission from global 

transportation sector.9 With a proper understanding of the carbon sequesterion process in soil, 

SOM could play an important role in mitigating the increased levels of GHG in atmosphere and 

their adverse effects because SOM serves both as a carbon source and carbon sink. 
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1.1.3. Inorganic matrix in soil 

The mineral component of the soil is produced from weathering of rocks over several years. 

This can be roughly classified as sand (0.05–2 mm), silt (0.002–0.05 mm) and clay (< 0.002 mm) 

based on the particle size; the relative amounts of each component determines the overall soil 

texture. Chemically, the mineral portion of soil is predominantly composed of silicates while 

oxides, carbonates and sulfates etc. are also found in smaller amounts.30 Because of the small 

particle size and complex porous structure with high specific surface area that allows strong 

physical and chemical interactions among themselves and with dissolved species, clay particles 

play a major role in the sorption of nutrients and agricultural chemicals (AC) in soil. The nature 

of interactions includes electrostatic attractive and repulsive forces, hydrophilic and hydrophobic 

interactions and specific cation exchange reactions.31 Layer charge, type of exchangeable cation 

and the sizes of the clay mineral particles are the most important clay mineral parameters that 

determine the surface chemistry. For the sorbate molecules on clay, the size, shape, charge and 

hydrophobic/hydrophilic character are the dominant factors.32  

Clay minerals are organized into sheets of silicates and aluminates that form a three 

dimensional structures with repeating pattern. Silicates and aluminate sheets stacks upon each 

other to form layers. The nature of stacking of sheets determine the rigidity, wettability and types 

of molecules present in between the layers. For example, stacking of silicate and aluminate ratio 

1:1 layer does not  contain water molecules, and hence only slightly swell upon wetting. Clays 

with silicates to aluminates ratio 2:1 accommodate water and metal cations sandwiched between 

layered units.  Layer silicate clays are primarily negatively charged because their stacks of 

aluminum-oxygen and silicon-oxygen sheets are often chemically substituted by ions of lower 

valance. In many soils, they represent the largest source of negative charge. Metal-(oxyhydr)oxides 
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are variably charged because their surfaces become hydroxylated when exposed to water33 and 

assume anionic, neutral, or cationic forms based on the degree of protonation, which varies as a 

function of solution pH. Thus, these variably charged minerals adopt a net positive surface charge 

at low pH and a net negative surface charge at high pH.34-35 Inner spheres of clay contain layers of 

sheets of Al-O or Si-O bonds as repeating backbone structures which are negatively charged and 

often complexes with metal cations. Through cation exchange, the physical properties of clay can 

be altered, especially the surface charge. Outer sphere contains hydroxy groups as the water 

molecules first physically adsorb to surface and then react to convert Si-O-Si or Al-O-Al bonds to 

Si-OH or Al-OH.31, 36-37 Figure 1.1 shows a diagrammatic sketch of sodium enriched 

montmorillonite clay with stacked layers to form sheets and sodium cations  in between two sheets. 

 

 

Figure 1.1. Illustrative structure of sodium enriched montmorillonite with closely packed 

tetrahedral and octahedral sheets with exchangeable Na+ ions in between the stacked sheets.  
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1.1.4. Soil Organic Matter (SOM) 

SOM is composed plant and animal residues at various stage of decomposition; vegetal 

source being the primary contributor. Residues of plant polysaccharides, fats, lignin etc. are rich 

in soil and their relative abundance gives characteristic properties to the soil. Sugars represent the 

majority of organic compounds in the biosphere because they are the basic components of all 

polysaccharides: cellulose, hemicellulose (polyoses), starch, pectin, fructanes, and glucanes as 

well as  chitin.38  Since polysaccharides make up about 50-70% of dry mass of the plants, they are 

the most important source of organic carbon in soil.39 Cuticle, a water- impervious protective layer 

found in the epidermis of higher plants is composed of cutin is the most abundant lipid polyester 

in vascular plants, and is composed of glycerol and C16-C18 inter-esterified fatty acid derivatives, 

such as hydroxy and hydroxy-epoxy substituted fatty acids.40 Lignin forms important structural 

materials in the support tissues of vascular tissues such as cell wall of wood and bark and their 

structure consists of aromatic rings with -OH and -OCH3 substitutions, linked by various strong 

covalent bonds (alkyl-aryl ether and C-C). Lignin is the biggest contributor of aromatic moieties  

as a plant component in terrestrial ecosystems and represents approximately 20% dry mass of plant 

litter input into soils.38, 41 In higher plants, lignins are chemically connected to cellulose and 

hemicellulose in the cellulosic fiber walls, providing strength and rigidity to the plant structures as 

well as resistance to the biodegradation of carbohydrates and to environmental stresses.42-44  

Organic compounds derived from plants, animals, and microorganisms undergo a  

continuous state of chemical transformation via many possible routes such as catalysis by light, 

enzymes, and mineral surfaces etc. known as humification. All living things have a mechanism 

(for eg. cell membrane in animals, cell wall in plants, cuticle layers in leaves of plants) that serve 

to compartmentalize their body structures to prevent water from dissolving away the structural 
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features and essential chemicals. The flow of water in and out of living systems is regulated 

through features such as semipermeable membrane. Once the body of living systems make its way 

into the soil after death, the hydrophilic barriers are gradually decomposed by microorganisms. 

Decomposers in aerobic soils utilize oxygen, a strong electron acceptor to introduce functional 

groups such as -OH or -COOH into hydrocarbons through oxidation, thereby increasing the 

polarity of SOM. As the polarity increases, hydrophobic organic compounds gradually transform 

to amphiphilic compounds; the magnitude of which depends on the extent of oxidation. Although 

it is practically impossible to determine exact chemical structures and their amounts in the soil, the 

functional groups and their relative abundance can be determined by wet-lab and spectroscopic 

methods.45 These analyses suggest that SOM contains a multitude of reactive sites such as 

ionizable alcohols and phenols (-OH), carboxylic acids (-COOH), thiols (-SH) and amino groups 

(R-NH2), as well as aromatic (-Ar-) and aliphatic [(-CH2-)n] moieties that are the principally un-

charged regions of the soil solid phase as illustrated in Figure 1.2.  

 

Figure 1.2. Illustrative sketch of chemical structure of humic acid containing aliphatic, aromatic 

and polar groups. 
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 Early studies to elucidate the structure of SOM involved base extractions of soil that yields 

a dark colored material relatively resistant to further chemical treatments. This “recalcitrant” 

known as humic substances was hypothesized to possess characteristics of the structure of humus, 

the dark colored decomposed organic matter in soil. Humic substances have been used as a proxy 

for SOM, and additives for soil amendment. However, there is a debate among scientific 

community on whether the extraction of soil through alkaline treatment renders soil extract with 

structure and properties of humus. Various studies have been done to address this hypothesis by 

subjecting plant-based compounds to reaction conditions that imitate the humification process such 

as  enzymatic/biotic syntheses by polypheoloxidase or tyrosinase treatment of “lignin-like” 

compounds in a phosphate buffer at neutral pH.46-47 Similarly, Abiotic/mineral-catalyzed syntheses 

such as autoxidative reactions  of trihydroxyphenols and benzoic acids at pH ≥ 6 are shown to  

form quinones, which link with other phenols, phenol polymers, amino acids or peptides to form 

macromolecular substances.48 Recent publications have demonstrated mechanistically the 

formation of cross-linked polyphenolic materials from simple phenolic monomers such as caffeic 

acid, coumaric acid and fumaric acid.49  

Based on evidence thus far, alkaline extractions of soil to some extent imitate the formation 

of humus from degraded fragments of larger polymers, and small molecules at different stages of 

humification process. A lot of earlier theories on structure of SOM and its characteristics are 

influenced by studies performed with humic materials obtained from such extraction process. At 

alkaline pH >13, all the phenolic OH and carboxyl moieties of the SOM exist in deprotonated 

anionic state and hence are soluble in aqueous solution. At this pH, lignin moieties are also shown 

to break down into smaller fragments which can undergo base catalyzed condensation reactions, 

autoxidative reactions etc. to cross-linked polymer with the constituent building blocks rearranged 
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differently than that in the original animal or plant source. This eclectic pool of cross-linked 

organic compounds obtained from the extraction process cannot be specifically classified into any 

class of biopolymers or characterized through isolation. However, as an effective solubilization of 

organic fraction of the soil in aqueous medium, alkaline extraction of soil certainly is a useful 

approach to separate most organic components from the inorganic matrix and allows more 

effective characterization of humic materials and SOM.  

1.2. Agricultural Chemicals (ACs) 

 Farmers have been aware of the fact that the nutrients in soil need to be replenished since 

ancient times and they used manures, decayed plant leaves and animals to increase yields. There 

are also records of use of sulphur compounds to kill insects by Sumerians as about 4500 years 

ago.. Pyrethrum, which is derived from dried flowers of Chrysanthemum cinerariaefolium, also 

known as “Pyrethrum daisies” has been used as an insecticide for over 2000 years. Many inorganic 

chemicals such as have also been used as pesticides. For example, Bordeaux mixture based on 

copper sulfate and lime is still used as a fungicide.51 The rise of ACs has significantly increased in 

recent years with about 28 billion dollars spent on fertilizers and 15 billion dollars on other 

agricultural chemicals in US alone in 2013.52 Although various types of chemicals make their way 

into soil and subsequently into food and water, the majority of them are ACs as they are widely 

used around the globe to support global food demand. 

 Fertilizers provide plants with essential nutrients to growth and replenish the soil with the 

nutrients once the crops are harvested. Since the end of World War II, there was a significant spike 

in use of chemical fertilizers in soil, especially the N based fertilizers. This was followed by 

widespread use of synthetic chemicals supplements as macronutrients (N, P, K fertilizers), 

secondary nutrients (Ca, Mg, S) and micronutrients (B, Cl, Cu, Fe, MN and Zn). Mineral forms of 
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N and P fertilizer were widely used to replenish and supplement the essential nutrients in soil 

which resulted in a significant increase in agricultural production. Howeveron the downside,this 

form of mineral easily finds its way to surface water which led to eutrophication or algal blooms 

that kill the aquatic animals by depriving them of dissolved oxygen in water.53 These days, 

fertilizers are available in markets as a single nutrient as well as mixture of more than one nutrient.  

 Pesticides (herbicides, insecticides, fungicides etc.) are chemicals that prevent or mitigate 

the harm done to crops by weeds and insects. The use of synthetic pesticides accelerated in the 

1940s after the discovery of the effects of   chlorinated pesticides such as DDT, BHC, aldrin, 

dieldrin, endrin, chlordane, 2,4-D etc., with DDT the most widely used pesticide because of its 

efficacy with broad range of pests. However, in 1947, house flies were found to have developed a 

resistance to DDT and its adverse effects were seen in the plants and animals.54 In the 1950s, there 

was an increased use of these pesticides along with new formulations that lead to increased 

production and availability of food. In 1962, Rachel Carson highlighted the adverse effects caused 

by the indiscriminate use of pesticides in her book “Silent Spring” which raised concern over 

widespread use pesticides and also incited research on environmentally benign pesticides for 

agricultural use.55 Subsequent decades saw development of new pesticides and herbicides such as 

imidazolinone, dinitroanilines, aryloxyphenoxypropionate, cyclohexanediones families including 

glyphosphate, the world’s highest selling herbicide. These new pesticides have been proven to be 

more environmentally benign and lesser chance of resistance by pests and weeds but there exist 

several potential risks that could arise because of the improper use of these ACs by farmers and 

their accumulation in soil and surface water and eventually in ground water through leaching.  

 Contamination of pesticide chemicals into our food and water as well as the pollution of 

groundwater causes many short and long term problems. A major risk posed by the use of pesticide 
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chemicals is that they not only eliminate the target species but also kill or adversely affect the 

health of other species including plants, animals and human beings. Introduction of harmful 

pesticides in the aquatic food chain has been shown to adversely affect aquatic organisms 

manifested by the decreased motility and fertility and increased mortality of those organisms.56-57 

The contamination also adversely affects wildlife through consumption of pollutant directly 

present on their food and water or through consumption of fish and other aquatic animals.55, 58-59 

The consumption of pesticides contaminated food and water have also been proven to adversely 

affect human health. For example, halogenated pesticides such as dichlorodiphenyl 

trichloroethane, atrazine, 2.4-D, trifluralin have been shown to act as endocrine disruptors.60 

Furthermore, the health risk associated with the contamination of human body by pesticides 

include developmental toxicity, teratogenicity, pregnancy loss, neurologic effects, and disorders 

on cognitive abilities.61-65 Most of these health effects are irreversible may be seen for long time 

in the future, even after these chemicals are no longer in use because of the accumulated pesticide 

in soil and ground water. 

1.3. Sorption of ACs in soil  

  Sorption is a dynamic relationship between numerous chemicals  (eg. ACs), soil and water. 

Sorption plays a major role in determining the bioavailability, transport and fate of ACs in 

environment.  The functional groups in soil form stable complexes with ions in solution. The outer 

sphere of soil has water around them and therefore, the complex formed by outer spheres of soils 

are formed by relatively weak electrostatic interactions and H-bonding and hydrophobic 

interactions. These types of interactions are rapid, reversible and strongly affected by ionic strength 

of solution. The inner-sphere complexes sphere is composed of strong ionic or covalent bonds. 

These interactions take longer to form or break because of the slower nature of interactions as well 
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as lower availability of functional groups than outer sphere. The sorbents in soil are comprised 

mainly of layers of silicate clay, metal ions as oxides and hydroxides and SOM. Variations in the 

abundance, surface area and chemical composition of these three sorbents significantly influence 

the sorption characteristics of a given soil.35 

Water acts as a dynamic media for transport of nutrients in soil and plays a critical role in 

distribution of hydrophobic, hydrophilic and amphiphilic domains within SOM. Water as a polar 

solvent surrounds amphiphilic structures where polar domains are situated in the interface and 

non-polar domains orient themselves in a cluster through hydrophobic interaction to minimize 

contact with water. The driving force for this process is the increase in entropy of the system 

through decrease in surface area of SOM and hence the decrease in entrapment of water in a 

solvation shell around SOM.50 Other forces such as electrostatic interactions, hydrogen bonding 

and π-π interactions also determine the confirmation of SOM within soil. Hydration can allow 

certain polar group in SOM to be available for sorption opening a new binding site. Sorption can 

also occur through physical entrapment of ACs which is directly dependent on the confirmation of 

SOM and hence, the extent of hydration. Therefore, the interface of soil and water allows sorption 

through complex interactions among amphiphilic SOM and polar inorganic surfaces and ACs. 

Surface functional groups available for sorption determine the characteristics of the interaction 

such as affinity, equilibrium binding constants etc.  

1.4. Methods of sorption studies 

Sorption studies are conducted by equilibrating sorbate with sorbent under isothermal 

conditions and controlled ionic strength and pH. Sorption parameters such as partioning 

coefficient, binding constant, etc. can be determined through batch mode or flow-through 

experiments. Batch equilibration method is commonly used by soil scientists because it is 
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relatively easy and quick process although it is an unrealistic compared to flow or column 

experiments. The sorbate (soil) is stirred/shaken with sorbent (chemical of interest) until an 

equilibrium is reached between the sorbent sorbed to soil and that remaining in the solution. The 

concentration of sorbate in solution is measured using chromatographic/spectroscopic methods 

such as (HPLC, UV-Vis, NMR) and through mass balance, concentration of sorbed material can 

be determined. Prior to these measurements, the optimum soil to solution ratio and the required  

time for sorbate and  sorbent to equillibrate are determined. Various protocols are proposed to 

create uniformity in sorption experiments and the one prescribed by OECD is most commonly 

used by soil scientists worldwide.66 For one soil type, the sorption studies are done at a range of 

sorbent concentrations  the sorption process is highly dependent on concentration of sorbent. 

 The data obtained from sorption experiments can be fitted to sorption models such as 

Langmuir, Freundlich etc. Although the Freundlich model is purely empirical and does not 

accurately account for the sorption process in soil, it is widely used among soil scientists to study 

sorption in soil.67-71. Freundlich isotherms give two parameters: KF and N which provide a 

mechanistic view of the sorption process. The KF value also known Freundlich binding parameter 

describes the sorption capacity. The higher KF value represents the larger intensity of binding 

interaction or affinity towards sorbate and sorbent. The N value represents the sorption linearity or 

the heterogeneity of sorption sites. N values ranges from 0 to 1 and the lesser it deviates from 1, 

the more linear the sorption is. Linear sorption means the sorption of molecules without any 

specificity in binding site such the case with octanol-water partitioning of a chemical where the 

sorbent distributes between the two phases based on the hydrophobicity (or hydrophilicity) of the 

chemical. In soils, linear sorption is only seen at lower concentration of sorbate or if there is only 

pure partitioning. Most soils show a non-linear sorption behavior with N values lesser than 1 
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implicating the role of site-specific binding site filling in addition to linear partitioning between 

two phases; and hence the presence of heterogenous binding sites. 

In this study, isotherms for the binding of ACs to soil are determined using the 

concentration of sorbate present on the sorbent (𝐶𝑠) at sorption equilibrium plotted against the 

concentration of sorbate remaining in the aqueous phase (𝐶𝑎𝑞). The isotherm data was analyzed 

using two approaches: the distribution coefficient (eq. 1) and the Freundlich isotherm (eq. 3): 

𝐾𝑑 =
𝐶𝑠

𝐶𝑎𝑞
                                                                                                   𝐸𝑞. 1  

𝐾𝑜𝑐
𝑠𝑜𝑟 = 𝐾𝑑

𝑠𝑜𝑟  ∙  
100

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑜𝑟𝑔𝑎𝑛𝑖𝑐
                                              𝐸𝑞. 2  

The term  Kd is known as distribution coefficient and is the ratio of concentration of sorbent 

on sorbate to the concentration of sorbate in solution and is highly dependent on the nature of 

sorbent. The higher value of  Kd  at a sorbate concentration means that sorbent has a greater amount 

of sorbent adsorbed on sorbent. In most soils, as the hydrophobicity of AC increase, they show 

increased Kd value as these molecules preferentially interact with and adsorb on SOM than the 

surrounding aqueous solution. On the contrary, hydrophilic molecules show relatively lower  Kd 

values as they are solvated by water and repelled by the hydrophobic moieties in SOM. Kd can be 

normalized with respect to the organic carbon fraction (Eq. 2) to give 𝐾𝑜𝑐
𝑠𝑜𝑟representing the 

dependence of sorbate binding to the amount of organic fraction found in SOM.72-73  

𝑙𝑜𝑔𝐶𝑠 = 𝑙𝑜𝑔𝐾𝐹 + 𝑁𝑙𝑜𝑔𝐶𝑎𝑞                                                            𝐸𝑞. 3  

 

1.5. Engineered natural organic sorbents for environmental applications 

 

The complex and heterogeneous nature of soil makes an objective study of the composition 

and their interaction with other chemicals challenging. This puts a detailed molecular level 

understanding of the structure/property relationships that apply to soil studies interfacing state of 
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the art biochemical and macromolecular fields outside of current capabilities. The currently 

available studies are based on the characterization of the bulk properties of natural soils and 

correlation of bulk parameters to the observed behavior through empirical evidence in order to 

gain insight into the fate and transport (e.g.  bioavailability) of organic pollutants in soil such as 

hydrophobic organic compounds(HOCs) that includes agricultural chemicals (ACs). Initial studies 

in this area showed that there is a direct correlation between the amount of SOM and the sorption 

capacity for ACs.74 Followed by this finding are the studies based on correlation of other 

parameters such as oxygen content75 or polarity indices of SOM based on elemental ratios76-77 on 

sorption capacity. There are several studies that link the relationship between aromatic content and 

sorption capacity of HOC78-80 supported by isotherm based analyses of non-linear and competitive 

sorption.81-83 However, similar isotherms have been reported in studies with soil containing highly 

aliphatic NOM demonstrating the role of aliphatic moieties as well.84-86 While these studies are 

very useful in broad categorization of soil and to some extent in the prediction of properties of soil 

based on bulk characterization, a detailed mechanistic understanding of the molecular level 

interactions of soil with HOCs is lacking.  

In an attempt to create uniformity in soil composition for scientific studies, various 

artificial soil test substrates have been proposed with simple to complex compositions depending 

on the nature of the study. One of the most commonly known artificial soil test substrates was 

proposed by Organization of Economic Cooperation and Development (OECD) in 1984 which 

specifies soil composition as a mix of 70% industrial sand (fines in the range 50-200 microns), 

20% kaolin clay (>30% kaolinite), and 10% organic content which was recommended to be 

sphagnum peat with pH close to 5.5-6.0.87 However, there are several reports of artificial soils 

prepared by the OECD prescribed recipe producing variable results.88-92 In addition, sphagnum 
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peat is scarce and completely unavailable in many regions, including the tropics. Several other 

recipes have been proposed that contain only the most essential components of soil with reduced 

heterogeneity and biological complexity and have been utilized in several studies such as microbial 

growth, ecotoxicity etc.93-94  Most of the proposed artificial soil test substrates lack any control of 

soil structure or mineral nutrient content, although these two factors are critical for soil 

functioning.95 The inorganic matrix can be somewhat accurately replicated but artificial examples 

of the organic component of soil suffers a large inconsistency in composition and properties due 

to variation in source of the peat/ humic acid component utilized and hence are not reliable test 

substrates for critical studies.96-99  

In this work, a novel platform for the study of environmental processes, with focus on the 

sorption of hydrophobic pollutants is demonstrated. This platform known as Engineered Soil 

Surrogates (ESS) are prepared by tethering multi-block oligomers with carefully selected chemical 

composition onto mesoporous silica. The multi block oligomers are designed to echo the structure 

of SOM and consist of an aliphatic (tier-1), O-aryl (tier-2) and polar (tier-3) blocks as surrogates 

for hydrophobic, aromatic and polar domains of SOM. A series ESSs of increasing complexity 

were used in concert with sorption isotherm data obtained by batch mode experiments using 

Norflurazon (NOR) as a model AC. 
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Chapter 2. Design and Synthesis of Engineered Soil Surrogates by SI-ATRP 

and Their Sorption with Agricultural Chemicals 

 
2.1. Design and synthesis of Engineered Soil Surrogates 

The primary objective of Engineered Soil Surrogate (ESS) synthesis is to echo the 

molecular level composition of soil organic matter with simple and well-defined chemical 

structure in a controlled and scalable manner. For this purpose, the chemical components of 

building blocks were chosen based on established models of SOM with some generalizations.27-31 

Based on these models, three major classes of chemical moieties, namely alkyl, O-aryl and polar 

domains were considered as building blocks of SOM. The alkyl components represent 

hydrophobic domain and the polar groups represent hydrophilic domains. The aryl groups 

represent both hydrophilic and hydrophobic (amphiphilic) components as their polarities depend 

on the nature of substituent(s) present on aromatic rings. Another factor to consider is the 

organization of these domains or components within the ESS based on hydrophilic, hydrophobic 

and other interactions in aqueous environment that determines the overall ESS architecture. When 

SOM consisting of hydrophilic, amphiphilic and polar domains is associated with a central mineral 

particle, the SOM is assumed to rearrange itself forming condensed/glassy inner layer close to the 

mineral surface and loose/rubbery outer layer away from mineral surface according to polymer 

based models of SOM.5-6, 27, 32 The non-polar moieties situate themselves in the interface of 

mineral/SOM as condensed inner layer in order to minimize contact with water. On the contrary, 

the polar domains situate themselves on the outside where they can solvate in the outside water 

shell resulting in a thermodynamically stable confirmation. The stepwise incorporation of the 

above mentioned components or “tiers” onto a silica particle (illustrated in Figure 2.1) allowed for 

a systematic study of the role of each component on soil morphology and sorption properties. 
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The exact chemical structures that serve as a surrogate for each component of SOM were 

carefully selected to echo the actual structure of soil components. The alkyl groups composed of  

linear aliphatic chains served as a surrogate for plant lipids such as cuticular materials, one of the 

major constituents of the non-polar groups in SOM. 33-34 The linear hydrocarbon chain consisting 

of 6, 12 and 18 carbons were immobilized on silica to give Tier-I ESS (Figure 2.2). On the terminal 

end of Tier-I ESS was appended a series of oligo(O-aryl) groups of 5-10 units to form Tier-II ESS. 

The O-aryl groups constituted hydroxy, methoxy and acetyl substituted aromatic rings  that were 

chosen to i)echo the building block of lignin, as this is the major source of aryl moieties in SOM35-

36 ii) vary polarity and iii) examine a range of potential molecular level interactions, including π-π 

interactions and H-bonding. Finally, an oligomethylmethacrylate and an oligo(methacrylic acid) 

was appended to the terminal end of Tier-II ESS to give tier-III ESS. The tier-III oligomer chains 

serve as a surrogate for polar groups such as plant sugars within SOM that represents the majority 

of dry weight in plant biomass.37 A series of ESSs with increasing complexity (Figure 2.2) was 

synthesized for systematic study of the effects of each domains within SOM for sorption of ACs. 

 

Figure 2.1. An illustrative representative of one, two, and three tired ESSs, starting with a central 

silica particle.  
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Figure 2.2. Molecular structures of the specific tiers incorporated into the range of ESSs. 
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2.1.1. Synthesis of Tier-I ESS. 

  Aliphatic hydrocarbons C6, C12 and C18 were immobilized onto silica by a reaction of 

corresponding hydrocarbons having a trichlorosilyl end group with silica in toluene (as shown in 

Scheme 2.1) at 90 ºC for 24 hours followed by a washing step. The resulting ESSs were 

characterized using thermogravimetric analysis (TGA) and 13C CP-MAS (solid state) NMR.  

 

Scheme 2.1. Synthetic route to Tier-I ESS.  

2.1.2. Synthesis of Tier-II ESS through polymerization of (O-) aryl monomers. 

  To extend the Tier-I aliphatic hydrocarbon chain with an oligo aryl and O-aryl chain of 5-

10 units, an atom-transfer radical polymerization (SI-ATRP) initiator (2-bromoisobutyryl bromide 

2) was condensed with 10-undecen-1-ol 1 to synthesize 10-undecen-1-yl 2-bromoisobutyrate 3 

following a procedure reported previously with slight modification (as shown in scheme 2).38 The 

compound 10-undecen-1-ol 1 was chosen because it was the largest commercially available 

aliphatic compound with alcohol and olefin end groups. The alkene terminus of 3 was converted 

into a trichlorosilyl end group by Pt catalyzed hydrosilation reaction with trichlorosilane. Platinum 

(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex solution, also known as Karstedt’s catalyst 

(1 mole %) was used in this reaction leading to quantitative conversion into 11-(2-Bromo-2-

methyl)propionyloxy undecyltrichloriosilane 4 verified by disappearance of vinyl proton signals 

in 1H NMR (Appendix). Subsequently, 4 was immobilized onto silica by refluxing in toluene. 

Surface coverage was verified by TGA and XPS (which is sensitive to the surface composition of 

the particles) and verifies the presence of the C11-Br compound on the surface (Figure 2.3). The 
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XPS results confirm the attachment of ATRP initiator on the silica particles showing a C1s peak 

and the C1s/Si2p ratio of 6.54 for a sample with 12.0% TOF, versus the unmodified silica showing 

only Si2p, Si2s and O1s peaks as expected.  
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Figure 2.3. XPS of unmodified silica compared to initiator immobilized on silica (SiO2-C11-Br) 
(Note: This work was contributed by Balamurugan Subramanian) 

 

In SiO2-C11-Br, the terminal bromine acts as a site of ATRP polymerization upon 

extraction by transitional metal catalyst such as Cu(I)Br.39 The loading of initiator attached to the 

aliphatic chain on SiO2 can be controlled by adjusting the ratio of 11-(2-Bromo-2-methyl) 

propionyloxy undecyltrichlorosilane 4 to SiO2 during the grafting process as shown in Scheme 

2.2. Figure 2.4 shows the relation between 4: SiO2 ratio and the amount of loading on silica 

reported as percentage of total organic fraction (%TOF) measured by TGA. For the systematic 

study of effects of adding a tier-II of poly(o-aryl) oligomers and subsequent addition of tier-III 
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polar oligomer, SiO2-C11-Br with %TOF of 3-5% was targeted to keep the overall % TOF in the 

range of 5-25% as in typical soil models.  

 

Scheme 2.2. Synthesis of 11-(2-Bromo-2-methyl)propionyloxy undecyltrichloriosilane and 

subsequent immobilization onto silica particles to synthesize SiO2-C11-Br. 

 

 

 

 

 

 

 

Figure 2.4. Percent loading of the total organic fraction (% TOF) onto SiO2 as a function of the 

quantity of reagent 11-(2-Bromo-2-methyl) propionyloxy undecyltrichlorosilane 4. 

 

Starting with SiO2-C11-Br, SI-ATRP (Scheme 2.3) was employed to polymerize aryl and 

O-aryl monomers using Cu(I)Br catalyst and PMDETA ligand to append oligomers of 5-10 units 

on Br terminus. ATRP was the method of choice as it is a well-established method of controlled 
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polymerization, especially with styrene derivatives, and many options were available for surface 

initiated polymerization in literature to obtain targeted DP and  low polydispersity values.40-43 

Styrene polymerized readily in toluene at 90 ºC and the average degree of polymerization (DPavg) 

was controlled by adjusting the monomer to initiator ratio as shown in figure 2.5. In order to 

introduce O-aryl groups as second tier, commercially available acetyl protected 4-vinyl phenol 

monomer was chosen because the phenolic monomers are challenging for ATRP.44-46 The 

polymerization of 4-acetoxystyrene required roughly 4 times the monomer concentration and an 

elevated temperature of 140 ºC which was accomplished using xylene as a solvent. The 

introduction of O-aryl groups on the aromatic portion was intended to model the structure of lignin 

which contains cross-linked polyaryl rings with abundant hydroxyl substitutions on aromatic ring. 

The introduction of polar groups into polyaromatic second tier domain in a sense mimics the 

humification process in soil that transforms non-polar structural moieties into relatively more polar 

groups through oxidation processes. To take this even further, acetyl protected 2-methoxy 4-vinyl 

phenol was used as the monomer of choice for the introduction of methoxy substitution on the 

aromatic ring next to phenolic –OH groups which provides intermolecular H-bonding and potential 

polar changes in electron density of the ring. The commercially available monomer 2-methoxy 4-

vinylphenol 5 required protection of the phenolic group, using acetic anhydride to form the ATRP 

compatible monomer 3-methoxy 4-acetoxystyrene 6 (Scheme 2.4).47 The polymerization of 4-

acetoxty 3-methoxystyrene also required roughly 5 times the concentration than styrene and 

elevated temperature of 140 ºC in xylenes resulting in successful synthesis of O-aryl tier-II ESSs 

with required DPavg. 

Followed by the polymerization of the tier-II block, the acetyl protecting groups were 

hydrolyzed to expose the phenolic –OH in aromatic rings. The selective hydrolysis of acetyl ester 
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was accomplished by stirring Tier-II ESS in hydrazine hydrate (NH2.NH2) and THF for 12 hrs 

(Scheme 2.5). The hydrolysis of the acetyl group was confirmed with solid state 13C NMR and 

TGA. The expected mass loss from hydrolysis matched closely with the observed mass loss with 

TGA indicating selective and quantitative removal of the acetyl protecting group. 

 

Scheme 2.3. ATRP approach to fabricating Tier-II lignin model structure of natural soil. 
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Figure 2.5. Average degree of polymerization (DPavg.) of the tier-two oligomeric styrene (in 

toluene at 90°C for 2 hr) as a function of the ratio of monomer to initiator [M]/[I]. 

 

 

Scheme 2.4. Protection of phenolic group of 2-methoxy 4-vinylphenol 5. 
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Scheme 2.5. Deprotection of phenolic groups on ESS6 and ESS8. 

2.1.3. Synthesis of Tier-III ESS through polymerization of polar monomer.  

The third tier of the ESS was envisioned to be a monomer with carboxyl groups to model 

polar groups in SOM. Although methacrylic acid seemed to be an ideal repeating unit, ATRP of 

acidic monomers is challenging  and therefore, methyl methacrylate was chosen.44-46 Methyl 

methacrylate (MMA) was readily available and there are numerous reports of MMA 

polymerization through SI-ATRP in literature.40, 48-49 The terminal Br caps the propagating radical 

at the end of polymerization (as shown in Scheme 2.3) allowing a subsequent polymerization of a 

second monomer giving the reaction characteristics of a “living polymerization”.39, 50  MMA was 

polymerized using Toluene at 90 ºC to yield ESS with a polar third tier as shown in Scheme 2.6. 

Upon polymerization of MMA, attempts of the hydrolysis of the methyl ester by stirring in NaOH 

solution and then LiOH solution yielded the desired conversion indicated by solid state 13C NMR 

but also resulted in the hydrolysis of silica particles apparent from the change of texture from 

particles to clumped solid. Following a report of selective cleavage of the methyl ester using 

NaCN/HMPA to convert the carboxylate esters to carboxylic acids, the desired chemical 
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transformation was achieved indicated by loss of methyl groups by  solid state 13C NMR (Figure 

2.6) .51 However, TGA showed more mass loss than expected indicating potential loss of oligomer 

chains through cleavage of ester located in between 1st and 2nd tier of the oligomer. 

 

Figure 2.6. 13C solid state NMR of hydrolysis of SiO2-C11-PS-PMMA using various approaches. 
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Scheme 2.6. ATRP approach to Tier-III ESS through polymerization of methylmethacrylate 

followed by conversion to methacrylic acid. 

 

2.1.4. Replacing PMMA with P(t-Butyl)MA as an alternative route to SiO2-C11-PS-PMAA 

 As an alternate route to tier-III ESS synthesis with poly(methacrylic acid) as the polar 

third tier, an oligomeric (t-butyl) methacrylate was appended to tier-II SiO2-C11-PS using similar 

ATRP conditions as in PMMA polymerization (Scheme 2.7). Selective hydrolysis of t-butyl ester 

is shown to proceed under mild conditions with butylene gas as only side product and is 

therefore popularly used as a protecting group for carboxylic acids.52-54 Following a report from 

literature55, small scale (0.2g ESS material) hydrolysis attempt of SiO2-C11-PS-(t-But) MA using 

conc. H3PO4 (5eq) in toluene gave the required selective cleavage of t-butyl ester (without 

hydrolysis of the ester between first and second tier). This was confirmed by 13C solid state 
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NMR (Figure 2.7), and TGA (Appendix N); with the observed %mass loss matching the 

theoretical % mass loss upon selective hydrolysis. However, with an upscale reaction (2g ESS 

material), the TGA data on hydrolyzed product showed more % mass loss than expected most 

likely due to cleavage of the ester between first and second tiers leading to loss of oligomer. 

Milder conditions such as organic acids or diluted inorganic acid solution is recommended for 

the selective hydrolysis in larger scale reactions.56-58 

 

Scheme 2.7. ATRP approach to Tier-III ESS through polymerization of (t-butyl)methacrylate 

followed by conversion  to methacrylic acid. 
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Figure 2.7. 13C solid state NMR of hydrolysis of SiO2-C11-PS-(t-butyl)MA to give SiO2-C11-PS-

PMAA indicated by the loss of intense peak at around 30 ppm (Note these samples contain EtOH  

with peaks at 18 and 58 ppm as it was the last solvent in washing step.) 

 

2.2. Physical Characterization of ESSs 

 The analysis of the synthesized small molecule precursors was done using a Bruker 

400MHz 1H NMR. The analysis of the ESS materials posed a challenge as they were 

immobilized on solid silica surface. 13C CP-MAS (solid state) NMR proved to be useful in the 

characterization of ESS materials as it is not only qualitative toward functional group elucidation 

but also semi-quantitative. The percentage of total organic fraction (%TOF) and average degree 

of polymerization (DPavg) were calculated using data obtained by thermogravimetric analysis 

(TGA). 

2.2.1. 13C CP-MAS (solid state) NMR 

 The solid-state NMR analysis employed 1H-13C cross polarization magic angle spinning 

(CP-MAS) technique and was performed on an AV 400 MHz Bruker solid-state instrument with 

sample packed into a 4 or 2.5 mm ZrO2 rotor. Spectra were acquired using the following 

parameters: 2048 scans, ramp cross-polarization, contact time of 2 ms, 2.0 s delay between scans; 

spinning speed of 12-15 kHz, a 120 Hz line broadening function was applied, and referenced to y-

glycine -CH2- signal at 43.5 ppm. XPS data were acquired with a Kratos AXIS 165 system with a 

SiO2-C11-PS-P(t-but)MA 

SiO2-C11-PS-PMAA 
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monochromatic AlKα source and a hemispherical electron energy analyzer. The pressure in the 

analyzing chamber was less than 3 × 10-9 torr. Survey spectra were recorded with 80 eV pass 

energy and high-resolution elemental spectra were recorded with 40 eV pass energy 150 W X-ray 

beam power. High-resolution elemental spectra were recorded with 40 eV pass energy. The X-ray 

beam power used in all spectra collection is 150 W. The reported binding energies were based on 

the analyzer energy calibration (Au 4f measured at 84.0 eV for all samples). The peaks in the high- 

resolution elemental spectra were fit using the software supplied with the instrument. A linear 

background was used for the data processing. Figure 2.8 shows stacked 13C CP-MAS NMR spectra 

of all three tier examples. The NMR spectra of all ESSs along with small molecule precursors with 

labelled peaks are included in Appendix 2. 

 

Figure 2.8. Solid State 13C NMR of ESS materials with increasing complexity. 
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2.2.2. TGA 

 The TGA analysis was performed on 4 to 8 mg of sample using a TA System TGA 2950 

with a ramp temperature of 25ºC to 600 ºC at 10 ºC /minute under nitrogen atmosphere and % 

mass loss of surface grafted silica was plotted against the temperature. TGAs of SiO2-C11-Br 

precursor (Figure 2.9) and ESS materials (Appendix) showed a steep mass loss from around 100 

ºC to 180 ºC followed by little mass loss up to 180 ºC and then another steep mass loss up to 600 

ºC. The initial mass loss from 25 ºC to 180 ºC was attributed to loss of water and volatile 

compounds introduced in sample from washing steps and the mass loss above 180 ºC to the loss 

of actual organic matter introduced onto silica through grafting process. The % mass loss of 

organic content was adjusted by subtracting the %TOF of low boiling point impurities (B.P < 180 

ºC) followed by subtraction of % organic loss on blank silica as shown in equation 2. Equation 1 

demonstrates the %TOF calculation for blank silica before modification heated overnight at 100 

°C (ESS1) which gives the value 2.13%.  

 

Figure 2.9. TGA thermogram of SiO2-C11-Br. The derivative of weight loss (%/°C) plot shows 

steep mass loss up to 120 °C, no mass loss at 120-220 °C and further mass loss above 220 °C 
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𝑊180−600
𝑐𝑜𝑟𝑟 𝑆𝑖𝑙𝑖𝑐𝑎

= (
𝑊180−600

𝑆𝑖𝑙𝑖𝑐𝑎

100−𝑊25−180
𝑠𝑖𝑙𝑖𝑐𝑎)  = (

2.055

100−3.867
)  = 0.0213                                                𝐸𝑞. 1  

Where, 

𝑊180−600
𝑐𝑜𝑟𝑟 𝑆𝑖𝑙𝑖𝑐𝑎

 = 𝑊180−600 corrected by the 𝑊𝑅𝑇−180  for blank silica (ESS1) 

𝑊180−600 = weight loss (%) from 180-600 °C for ESS1 

𝑊25−180= weight loss (%) from room temp to 180 °C for ESS1 

𝑊180−600
𝑐𝑜𝑟𝑟 = ((

𝑊180−600

100 − 𝑊25−180
) −  (

𝑊180−600
𝑆𝑖𝑙𝑖𝑐𝑎

100 − 𝑊25−180
𝑠𝑖𝑙𝑖𝑐𝑎

)) × 100                                   𝐸𝑞. 2  

Where, 

 𝑊180−600
𝑐𝑜𝑟𝑟  = 𝑊180−600 corrected by the 𝑊𝑅𝑇−180 (ESS organic fraction) 

𝑊180−600 = weight loss (%) from 180-600 °C for ESS  

𝑊25−180= weight loss (%) from room temp to 180 °C for ESS 

 The % TOF values of SiO2-C11-Br precursor along with ESS materials after each 

polymerization were used to quantitatively determine the average degree of polymerization 

(DPavg). The calculation of DPavg for the two and three-tiered ESS is shown below along with a 

generic equation for nth tier. For DPavg. calculations, imagine a solid substrate like SiO2 of mass 

S grafted with initiator functionalized block of mass I which initiates a polymerization to add a 

block of polymer of mass P. After grafting of initiator on SiO2 and after each polymerization, 

TGA data is collected.  If S is the mass of an inorganic surface from TGA; and I, P are the 

masses of organic oligomers on the inorganic surface determined from TGA (e.g. I=aliphatic, 
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P=Aromatic), we can calculate the dimensionless fraction of organic matter (%TOF) of I, P and 

Q using equations 3-5 respectively. 

 

𝐴 =
𝐼

𝐼 + 𝑆
                                                                                                                Eq 3  

where A is the mass fraction of organic matter after initial grafting onto inorganic matter   

𝐵 =
𝐼 + 𝑃

𝐼 + 𝑃 + 𝑆
                                                                                                        Eq 4          

where B is the organic fraction after first polymerization step 

𝐶 =
𝐼 + 𝑃 + 𝑄

𝐼 + 𝑃 + 𝑄 + 𝑆
                                                                                               Eq 5 

where C is the organic fraction after second polymerization step 

A, B and C can be easily determined from TGA data. 

Equation 3 can be rewritten as follows. 

𝐼 + 𝑆 =
𝐼

𝐴
                                                                                                               Eq 6 

Equation 4 can be written as follows: 
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𝐼 + 𝑃 + 𝑆 =
𝐼 + 𝑃

𝐵
                                                                                              Eq 7 

Substituting equation 6 in equation 4, 

𝐵 =
𝐼 + 𝑃

(
𝐼
𝐴) + 𝑃

                                                                                                        Eq 8 

Dividing both numerator and denominator of equation 8 by I, we get 

𝐵 =
(1 +

𝑃
𝐼 )

1
𝐴 +

𝑃
𝐼

                                                                                                         Eq 9 

Rearrangement of equation 9 leads to equations 10, 11 and 12. 

𝐵

𝐴
+ 𝐵

𝑃

𝐼
= 1 +

𝑃

𝐼
                                                                                                Eq 10 

(
𝑃

𝐼
) (𝐵 − 1) =

𝐴 − 𝐵

𝐴
                                                                                        Eq 11 

𝑃

𝐼
=

𝐴 − 𝐵

𝐴(𝐵 − 1)
                                                                                                      Eq 12 

The mass I can be written as 

𝐼 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝐼 ∗ 𝑀𝑊 𝑜𝑓 𝐼                                                       Eq 13 

Equations 12 and 13 combined give equation 14. 

𝑃

#𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝐼
=

(𝐴 − 𝐵)

𝐴 ∗ (𝐵 − 1)
∗ 𝑀𝑊 𝑜𝑓 𝐼                                                         Eq 14 

The quantity 
𝑃

#𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝐼
  is the average mass of added block P per initiator and dividing it by the 

molecular weight of repeating unit gives the degree of polymerization (DP). 
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Substituting equation 7 in equation 5, 

𝐶 =
𝐼 + 𝑃 + 𝑄

𝐼 + 𝑃
𝐵 + 𝑄

                                                                                               Eq 15 

Dividing both numerator and denominator in equation 15 by I gives equation 16 

𝐶 =
1 +

𝑃
𝐼 +

𝑄
𝐼

(𝐼 + 𝑃)
𝐵𝐼 +

𝑄
𝐼

                                                                                        Eq 16 

Rearrangement of equation 16 gives equations 17-23. 

𝐶(𝐼 + 𝑃)

𝐵𝐼
+

𝐶𝑄

𝐼
= 1 +

𝑃

𝐼
+

𝑄

𝐼
                                                                   Eq 17 

(
𝑄

𝐼
) (𝐶 − 1) = 1 +

𝑃

𝐼
−

𝐶𝐼

𝐵𝐼
−

𝐶𝑃

𝐵𝐼
                                                            Eq 18 

(
𝑄

𝐼
) (𝐶 − 1) = 1 −

𝐶

𝐵
+ (

𝑃

𝐼
) (1 −

𝐶

𝐵
)                                                      Eq 19 

(
𝑄

𝐼
) (𝐶 − 1) = (

(𝐵 − 𝐶)

𝐵
) (1 +

𝑃

𝐼
)                                                         Eq 20 

𝑄

𝐼
= (

𝐵 − 𝐶

𝐵(𝐶 − 1)
) (1 +

A − B

A(B − 1)
)                                                             Eq 21 

𝑄

𝐼
= (

𝐵 − 𝐶

𝐵(𝐶 − 1)
) (

𝐴𝐵 − 𝐴 + 𝐴 − 𝐵

𝐴(𝐵 − 1)
)                                                       Eq 22 

𝑄

𝐼
=

(𝐵 − 𝐶)𝐵(𝐴 − 1)

𝐴𝐵(𝐶 − 1)(𝐵 − 1)
                                                                             Eq 23 

Equations 23 and 13 combined give equation 24. 

𝑄

#𝑚𝑜𝑙𝑒𝑠 𝑜𝑓𝐼 ∗ 𝑀𝑊 𝑜𝑓 𝐼
=

(𝐵 − 𝐶)(𝐴 − 1)

𝐴(𝐶 − 1)(𝐵 − 1)
                                       Eq 24 
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𝑄

#𝑚𝑜𝑙𝑒𝑠 𝑜𝑓𝐼
=

(𝐵 − 𝐶)(𝐴 − 1)

𝐴(𝐶 − 1)(𝐵 − 1)
∗ 𝑀𝑊 𝑜𝑓 𝐼                                        Eq 25 

The quantity 
𝑄

#𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝐼
 is the mass of polymerized block Q per initiator chain and dividing it by 

the molecular weight of repeating unit gives the degree of polymerization (DP). The above 

calculation can be done for further tiers to obtain a generic equation for DPavg. calculation for nth 

block as follows. 

𝐴𝑣𝑔 𝐷𝑃 𝑜𝑓 𝑛𝑡ℎ 𝑡𝑖𝑒𝑟 =                                                                                                                                 
 

(𝑊180−600(𝑛−1)
𝑐𝑜𝑟𝑟 − 𝑊180−600(𝑛)

𝑐𝑜𝑟𝑟 )(𝑊180−600(1𝑠𝑡 𝑡𝑖𝑒𝑟)
𝑐𝑜𝑟𝑟 − 1)

𝑊180−600(1𝑠𝑡 𝑡𝑖𝑒𝑟)
𝑐𝑜𝑟𝑟 (𝑊180−600(𝑛)

𝑐𝑜𝑟𝑟 − 1)(𝑊180−600(𝑛−1)
𝑐𝑜𝑟𝑟 − 1)

∗
𝑀𝑊 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑡𝑖𝑒𝑟

𝑀𝑊 𝑜𝑓 𝑟𝑒𝑝𝑒𝑎𝑡𝑖𝑛𝑔 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑛𝑡ℎ 𝑏𝑙𝑜𝑐𝑘
 

            Eq 26 

Where, 𝑊180−600(𝑛)
𝑐𝑜𝑟𝑟  = corrected weight loss (%) from 180-600 °C after nth tier polymerization 

Using the above generic equation 26, the DPavg of the nth tier can be calculated assuming 

each initiator leads to a polymer growth without termination. Table 2.1 shows the DPavg of tier-2 

and tier-3 ESS along with %TOF and grafting density of all ESS. 
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Table 2.1. Calculated values of total organic fraction, grafting density and degree of 

polymerization from TGA analysis of ESS materials. 

 

 Entry ESS Identifier %TOF 

Graft 

density* 

#mmol/g 

DPavg. 

(tier-II) 

DPavg. 

(tier-III) 

 ESS1 SiO2 2.241    

T
ie

r-
I 

ESS2 SiO2-C6 2.589 0.3040   

ESS3 SiO2-C12 4.319 0.2550   

ESS4 SiO2-C18 4.972 0.1961   

T
ie

r-
II

 

ESS5 SiO2-C11-PS 15.30 0.1379 8.935  

ESS6 SiO2-C11-PAS 18.36 0.1407 7.427  

ESS7 SiO2-C11-PAMS 18.50 0.1377 6.524  

ESS8 SiO2-C11-PASH 13.94 0.1479 6.001  

ESS9 SiO2-C11-PAMSH 17.65 0.1479 7.062  

T
ie

r-
II

I 

ESS10 SiO2-C11-PS-PMMA 15.54 0.0892 10.69 5.674 

ESS11 SiO2-C11-PS-PMAA 9.501 0.0892 (10.69)ǂ (5.674)ǂ 

 

*Values for the Tier-II and Tier III materials are based on the mmol/g of the C11-Br initiator.  
# DP: Degree of polymerization   
ǂ Based on DP of ESS10 

(Note: Synthesis of ESS2-ESS5 was contributed by Benjamin Haywood and ESS7 by Ghada 

Abdalla) 

 

 

2.3. Sorption study of ESS with Norflurazon (NOR) 

 Following the synthesis and characterization of the ESSs, they were used in sorption 

studies with a model AC. Norflurazon (Figure 2.10) was employed as a model AC because it is 

widely applied as a preemergence herbicide to control many annual broadleaf and grass weeds as 
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brand names Zorial or Evital with 500,000 Kg of Norflurazon applied in United States alone.59-60 

In addition, there are several reports of absorption and desorption studies of Norflurazon with 

various soil types in literature61-64 as their pervasive presence in environment60, 65 is of concern to 

scientific community. Norflurazon is expected and proven to form various kinds of interactions 

with soil such as Van der Waals61, 66, π-π interactions62, 67, and hydrogen bonding62. Norflurazon 

also contains –CF3 group which can be used as an analytical handle in 19F NMR as well as 19F- 

13C heteronuclear correlation NMR spectroscopy.68  

 
 

Figure 2.10. Chemical structure of Norflurazon 

The sorption study of ESSs with ACs was  performed based on OECD guideline for testing 

of chemicals: Adsorption-Desorption using bath equilibrium method with some modifications 

outlined in Appendix N.69 A typical sorption experiment for each ESS involves determination of 

soil to solution ratio and equilibration time prior to the determination of actual sorption parameters 

through batch mode experiments. Once these two factors are measured, the ESSs are stirred with 

NOR solutions of various concentrations for the number of days determined by equilibration time 

experiment. The liquid portion from sorption mixture (ESS + background solution + NOR) is then 

centrifuged and supernatant is injected into HPLC to determine the equilibrium sorbent 

concentration in solution. For each NOR concentration, the sorption experiment was done in three 

repetitions along with a control and a blank. By mass balance, the equilibrium sorbent 

concentration in ESS is calculated. The measured values of NOR present on the sorbent (𝐶𝑠) at 

sorption equilibrium and the concentration of sorbate remaining in the aqueous phase (𝐶𝑎𝑞) can be 
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used to characterize sorption behavior of soil using two approaches that are popularly used among 

soil scientists for characterization of sorption behavior : i) the Distribution coefficient  and ii) the 

Freundlich Isotherm.62, 70 The distribution coefficient 𝐾𝑑 is calculated using equation 27 which is 

normalized with the organic content (%TOF) in equation 28. The Freundlich equation 29 which 

gives useful parameters such as Freundlich binding parameter (𝐾𝐹) and exponent of linearity (N) 

can also be written in log form as shown in equation 30. 

𝐾𝑑 =
𝐶𝑠

𝐶𝑎𝑞
                                                                                                   𝐸𝑞. 27  

𝐾𝑜𝑐
𝑠𝑜𝑟 = 𝐾𝑑

𝑠𝑜𝑟  ∙  
100

𝑊180−600
𝑐𝑜𝑟𝑟                                                                         𝐸𝑞. 28  

𝐶𝑠 = 𝐾𝐹𝐶𝑎𝑞
𝑁                                                                                              𝐸𝑞. 29  

𝑙𝑜𝑔𝐶𝑠 = 𝑙𝑜𝑔𝐾𝐹 + 𝑁𝑙𝑜𝑔𝐶𝑎𝑞                                                                    𝐸𝑞. 30  

Where 𝐶𝑠 is the equilibrium concentration of NOR present on the sorbent and 𝐶𝑎𝑞 is the 

equilibrium concentration of sorbate remaining in the aqueous phase.  

2.4. Sorption Analysis of NOR by ESSs 

The obtained data on sorption of NOR by ESSs can be analyzed through various 

approaches such as the nature and the amount of organic carbon, physical availability of the 

binding sites, partitioning of sorbent in aqueous and solid phase, and specific physical and 

chemical interactions. Extent of hydration of each ESS was expected to be a major factor in 

sorption as it influences the morphology of the oligomeric chains in aqueous conditions. In 

addition, the experimental pH condition is critical as it determines the state of protonation and 

hence the nature of interactions with NOR. 
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Table 2.2. Freundlich adsorption isotherm binding parameter (𝐾F), linear regression constant (𝑁), 

and goodness of fit (R2) for NOR with each of the ESSs; and calculated organic fraction normalized 

distribution coefficient (𝐾𝑜𝑐
𝑠𝑜𝑟) at selected sorption aqueous equilibrium concentration (𝐶𝑎𝑞) of 1, 

8, and 20 ppm. 

 

 

   Sorption log 𝑲𝒐𝒄
𝒔𝒐𝒓 

  Entry log 𝐾𝐹
𝑠𝑜𝑟 𝑁𝑠𝑜𝑟  R2 𝐶𝑎𝑞 = 1 

ppm 

𝐶𝑎𝑞 = 8 

ppm 

𝐶𝑎𝑞 = 20 

ppm 

  ESS1 1.185 

(0.103)c 

0.746 

(0.134) 

0.838 2.855 

(2.151) 

2.626 

(1.922) 

2.525 

(1.821) 

T
ie

r-
I 

 ESS2 2.051 

(0.075) 

0.992 

(0.095) 

0.948 3.633 

(2.617) 

3.626 

(2.609) 

3.622 

(2.606) 

 ESS3 2.824 

(0.011) 

0.910 

(0.018) 

0.998 4.179 

(2.482) 

4.098 

(2.401) 

4.062 

(2.365) 

 ESS4 3.199 

(0.008) 

0.797 

(0.015) 

0.998 4.493 

(2.773) 

4.310 

(2.590) 

4.229 

(2.51) 

T
ie

r-
II

 

 ESS5 3.033 

(0.010) 

0.853 

(0.020) 

0.997 3.846 

(2.209) 

3.714 

(2.077) 

3.655 

(2.018) 

 ESS6 2.837 

(0.022) 

0.974 

(0.041) 

0.99 3.571 

(2.190) 

3.548 

(2.167) 

3.537 

(2.157) 

 ESS7 2.246 

(0.052) 

0.993 

(0.08) 

0.963 2.972 

(1.879) 

2.966 

(1.872) 

2.963 

(1.869) 

 ESS8 2.699 

(0.010) 

0.909 

(0.016) 

0.998 3.551 

(1.789) 

3.469 

(1.706) 

3.433 

(1.67) 

 ESS9 2.543 

(0.018) 

0.785 

(0.029) 

0.992 3.269 

(1.841) 

3.075 

(1.646) 

2.989 

(1.56) 

T
ie

r-
II

I 

 ESS10 2.524 

(0.009) 

0.907 

(0.014) 

0.999 3.329 

(1.525) 

3.245 

(1.440) 

3.208 

(1.403) 

 ESS11 2.540 

(0.029) 

0.861 

(0.043) 

0.985 3.556 

(2.255) 

3.431 

(2.130) 

3.376 

(2.075) 

aUnits of 𝐾𝐹 = (µg/g)/(µg/l)n     bUnits of 𝐾𝑜𝑐
𝑠𝑜𝑟 = (µg kg/C)      c() = Standard deviation 

(Note: The work in this table was contributed by Benjamin Haywood and Ghada Abdalla) 
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ESS1 acts as a baseline sorbent and its sorption parameters are used as a reference to 

compare that of other ESSs. ESS2 through ESS4 are one-tiered ESSs with aliphatic chains of C6, 

C12 and C18 respectively which model lipids in SOM. With increase in the length of aliphatic tiers, 

there was direct increase in log 𝐾𝐹
𝑠𝑜𝑟 and log 𝐾𝑜𝑐

𝑠𝑜𝑟
 values showing increased sorption onto ESS. 

This is expected because the increased length of carbon chain and %TOF creates additional binding 

sites for hydrophobic NOR. The 𝑁𝑠𝑜𝑟 values show a decreasing trend with increasing aliphatic 

chain length indicating that the sorption behavior deviates from linear partitioning between sorbent 

and solution phases possibly due to creation of new binding sites. These can occur as shown in 

Figure 2.11 for the one-tiered system; the longer chains fold over in the aqueous environment to 

minimize contact with water giving rise to heterogeneous binding sites. Such conformational 

changes can be envisioned to introduce internal and external binding sites, with the internal sites 

being strong but more sterically hindered, and hence, demonstrating less linear NOR sorption 

behavior as seen by the decreasing  𝑁𝑠𝑜𝑟values in Table 2.2. From this finding one can infer that 

the extent of hydration in ESSs plays a critical role in sorption of NOR as it influences the 

confirmation of oligomers in solution.  

In ESS 5, an oligostyrene block of about 9 units is appended to the aliphatic end of C11 

aliphatic block to give the first model of tier-II ESS (Table 2.1). With an additional block, the 

%TOF increases about thee fold compared to ESS3 and ESS4 but the log 𝐾𝐹
𝑠𝑜𝑟 and log 𝐾𝑜𝑐

𝑠𝑜𝑟
  values 

show a slight decrease. This important observation indicates that the sorption capacity is not only 

a function of the amount of organic matter in surrogate soil but also the nature of the organic 

matter. One reason for this decrease in sorption could be hydrophobic interaction of oligomer 

chains among themselves thereby decreasing the number of sorption sites available for NOR. 

Another explanation could be the hydration of oligostyrene block which forms a polar hydration 
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shell around the oligomer preventing NOR from sorption onto the oligomer. This effect is more 

pronounced with introduction of polar groups as substituents on aromatic rings in ESS6-ESS9. 

ESS6 differs from ESS5 by the presence of polar acetyl group on para position of aromatic 

rings and a slightly larger %TOF. As mentioned earlier, the log 𝐾𝐹
𝑠𝑜𝑟 and log 𝐾𝑜𝑐

𝑠𝑜𝑟
  values decreases 

due to hydration of the polar block. This is also accompanied by increase in  

𝑁𝑠𝑜𝑟  value toward 1 indicating the decrease in heterogeneity of binding sites. This trend continues 

with the introduction of a methoxy group on adjacent carbon to the acetyl group in aromatic ring 

in ESS 7 which shows further decrease in log 𝐾𝐹
𝑠𝑜𝑟 and log 𝐾𝑜𝑐

𝑠𝑜𝑟
  values and increase in N value 

to 0.993 compared to 0.853 (ESS5) and 0.974 (ESS6). This shift in sorption behavior towards 

linear partitioning must be due to loss of binding sites as the hydrated second block stretches the 

aliphatic first-tier (as shown in Fig 11) that is primarily responsible for NOR binding as observed 

so far.  

The acetyl groups in ESS6 are hydrolyzed to give -OH substitution on aromatic rings of 

ESS8 which is expected to increase the polarity and hence the extent of hydration. As expected, 

the  log 𝐾𝐹
𝑠𝑜𝑟value decreased (from 2.837 to 2.699) upon hydrolysis as did log 𝐾𝑜𝑐

𝑠𝑜𝑟
. It is also 

possible that the acetoxy addition of ESS6 sterically blocks access of the hydrophobic NOR 

binding to the hydrophobic portion of the surrogate soil.  Hydrolysis of the acetyl group leaves a 

phenolic group to give ESS8 which is capable of hydrogen bonding, however the phenol at the 

buffer pH of 5.75 is still protonated and may only provide a small increase in polarity of the 

aromatic region (Figure 2.12). The 𝑁𝑠𝑜𝑟 value goes to 0.998 further corroborating the loss of 

binding sites by stretching of the first aliphatic tier.  

 

 



53 
 

 

Figure 2.11. Illustration of surface oligomer morphology of ESSs accounting for extent of 

hydration, oligomer functionality and intramolecular interactions. 

 

The hydrolysis of ESS7 to ESS9 however showed slight increase in log 𝐾𝐹
𝑠𝑜𝑟 and log 𝐾𝑜𝑐

𝑠𝑜𝑟
  

values which was surprising at first but can be explained by the presence of a nearby -OCH3 group 

next to phenolic -OH in ESS9 which is capable of intramolecular H-bonding. (Fig 12) This 

chemical structuring increases the negative ionic character of the oxygen of the phenolic group 

and consequently the entire aromatic group.  This affords electron donation into the ESS9 aromatic 

ring which promotes pi-pi interactions with the electron deficient aromatic ring of NOR.  The 

partially ionized aromatic ring of ESS9 is also capable of electrostatic interactions with NOR, 

since NOR has several amine groups that are at different stages of protonation under the buffer pH 

of 5.75. The greater polarity of the ESS9 would also be anticipated to increase hydration which 

has a repelling effect on NOR, however, this appears to be overcome by the molecular level 
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binding interactions between NOR and ESS9 described above. Thus, sorption non-linearity is seen 

to be influenced by specific binding sites within the polar part of the oligomer chains arising from 

a range of non-covalent interactions with NOR, such as π-π interactions and hydrogen bonding.  

 

Figure 2.12. Illustration of intramolecular H-bonding between phenolic –OH and nearby methoxy 

oxygen in ESS 9 a.  Phenolic group of ESS8 remains neutral at pH = 5.75 b.  An additional 

methoxy group of ESS9 affords hydrogen bonding that creates a dipole capable of hydration. 

 

The addition of methylmethacrylate to the polystyrene based ESS5 as the third tier gave 

ESS10, which was converted to methacrylic acid as a polar third tier in ESS11. Compared to the 

oligostyrene functionalized ESS5, both ESS10 and ESS11 exhibit significant reduction in log 

𝐾𝐹
𝑠𝑜𝑟 and log 𝐾𝑜𝑐

𝑠𝑜𝑟
  values for NOR, which follows suit with the earlier hypothesis that polar groups 

create a hydration shell that inhibits the affinity and binding of NOR.  This important observation 

supports the idea that interactions of NOR are directed toward the hydrophobic oligostyrene and 

aliphatic tiers.  Hydrolysis of ESS10 to give carboxylic acids in the third tier (ESS11) does not 

show a significant change in log 𝐾𝐹
𝑠𝑜𝑟 and only a small increase in log 𝐾𝑜𝑐

𝑠𝑜𝑟, indicating that the 

third tier chain only provides a hydration shell and is not participating directly in the binding of 

NOR.  Overall for the ESS5 through ESS11 series, the lower log 𝐾𝐹
𝑠𝑜𝑟 and log 𝐾𝑜𝑐

𝑠𝑜𝑟
  can be 

explained by the hydration process blocking non-linear sorption sites; with these sites eliminated, 

one will obtain both a lower log 𝐾𝐹
𝑠𝑜𝑟and log 𝐾𝑜𝑐

𝑠𝑜𝑟
  value and a higher initial N value as the polarity 

of the block oligomer chain increases, until specific chemical interactions in the hydrated layer 

cause the 𝑁𝑠𝑜𝑟  value to decrease.  
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Chapter 3. Expansion of Synthetic Approach and Scope of Surface Modified 

with Multi-Block Oligomers in Study of Geomacromolecular matrices 
 

3.1.  Background 

3.1.1. Controlled Radical Polymerization (CRP) 

Although traditional radical polymerization methods are widely used for majority of the 

everyday products, they give poor control in molecular weight and high polydispersity of polymer 

chains which is a disadvantage for synthesis controlled architecture for important applications. The 

poor control is the result of high concentration of active radicals and rapidly growing polymer 

chains leading to frequent termination events, chain transfer to another polymer molecule or 

solvent, cross-linking and autoacceleration. Controlled radical polymerization (CRP) is also 

known as reversible deactivation radical polymerization (RDRP) and is widely used to synthesize 

polymers with controlled structure and architecture. CRP or RDRP utilize a dynamic equilibrium 

between the propagating radicals and the dormant species, with the equilibrium highly favorable 

towards dormant species to keep the concentration of the propagating radical to a small fraction in 

order to reduce the termination events and facilitate controlled addition of monomers to each 

growing chain uniformly. For example, atom-transfer radical polymerization (ATRP) approach 

employs reversible deactivation of propagating radicals to form dormant species that can be 

intermittently reactivated in a catalytic manner 1-3. Another type of CRP, stable radical mediated 

polymerization (SMRP) uses a similar approach but the reversible deactivation of propagating 

radicals occurs spontaneously with aminoxyl (e.g. nixtroxide mediated) radicals4 or 

organometallic species.5 Another approach to CRP such known as degenerative transfer radical 

polymerization (DTRP) employs degenerate transfer between propagating radicals and a dormant 

species such as in reversible addition−fragmentation chain-transfer polymerization (RAFT),6-7 or 

iodine transfer radical polymerization (ITRP).8-9 
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3.1.2 Atom-transfer radical polymerization (ATRP) 

ATRP is a widely used Controlled Radical Polymerization CRP which employs an alkyl 

halide initiator and transition metal complex catalyst.  It is attractive because of the simple 

experimental setup, with readily available initiators and catalysts that can be used in a range of 

solvents under a broad spectrum of reaction conditions, allowing precise control over final polymer 

MW and architecture.2-3, 10-11 Unlike conventional radical polymerization with slow continuous 

initiation, fast propagation, and inevitable radical termination; CRP creates and exploits a dynamic 

equilibrium between growing radicals and dormant species. Because of this equilibrium and faster 

initiation, only 1-10% of the growing chains are terminated while the remaining chains are dormant 

species, capable of reactivation, functionalization, and chain extension to form block copolymers; 

thus CRP behaves as a ‘living’ system.10, 12-13 Additionally, relatively fast initiation gives control 

over molecular weight with a narrow distribution. The average degree of polymerization (DPavg) 

is given Eq. 1 where p is the extent of reaction. For total conversion of monomer, p =1 and hence, 

DPavg = [M]/[I]. In a relatively efficient polymerization such as ATRP, the desired DPavg can be 

obtained by adjusting the [M]/[I] ratio equal to the desired DPavg. 

 

Scheme 3.1. General scheme of an ATRP10  

𝐷𝑃𝑎𝑣𝑔 = 𝑝 ∗
[𝑀]

[𝐼]
                                                                                𝐸𝑞. 1 
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The general scheme of an ATRP is shown in Scheme 3.1. Pn-X is the dormant species 

which can be either an alkyl halide initiator or the growing polymer chain with halide end cap. The 

activation takes place with reversible abstraction of halogen by metal catalyst (Mtm) through 

oxidation to one higher oxidation state (Mtm+1). The abstraction of halogen by metal is an 

equilibrium phenomenon with the equilibrium constant (KATRP) relatively much higher towards 

the dormant species Pn-X; converting only a small fraction to active species. Pn* acts as an active 

species and can repetitively add monomer (M) to it in a small time window before it is converted 

back to the dormant phase. Typical ATRP equilibrium constants (KATRP) are in the order of 10-9 

which means that about one in a billion polymer molecules are in activated to Pn* at a moment.14 

This results in very small radical concentration and hence the reduced termination events keeping 

the rate of termination (kt) minimal. This allows the monomers to add to all the propagating radicals 

in a relatively even fashion leading to narrow polydispersity of the resulting polymer. 

The rate of polymerization of ATRP (Rp) depends on the propagation rate constant (kp) 

and on the concentrations of monomer and growing radical. The concentration of the growing 

radical depends on the ATRP equilibrium constant (KATRP), as well as on the concentrations of 

the dormant species, activators, and deactivators. The equilibrium constant KATRP is equal to the 

ratio of rate of activation to the rate of deactivation (as shown in Eq. 2) and depends on the 

strength of both the Pn–X and the Mtm+1–X bonds. For a ATRP system catalyzed by Cu(I)X, the 

equilibrium constant increases with the strength of the CuII–X bonds, or the halogenophilicity of 

the CuI complex, and decreases with the strength of the C–X bonds.16  

KATRP =
𝑘act

𝑘deact
                                                                                          Eq. 2  
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Several studies on ATRP of  vinyl monomers such as styrenes15 and methacrylates16 are 

largely available in the literature. Many of these studies have been  conducted by utilizing 

transition metal catalyst such as copper,17-18 iron,19 ruthenium,20 and rhenium21 systems. For the 

polymerization of styrenes, heterogeneous mixtures of a copper(I) halide and a neutral chelating 

amine, imine or pyridine ligand are most commonly used.17 One major limitation of traditional 

ATRP is that it requires extremely strict oxygen-free condition and relatively large amounts of Cu 

catalyst compared to recently developed variations of ATRP. Techniques that require low amount 

of Cu such as initiators for continuous activator regeneration (ICAR) ATRP and activators 

regenerated by electron transfer (ARGET) ATRP have gained attention. ICAR ATRP utilizes a 

source of organic free radicals to continuously regenerated the Cu(I) activator, which is otherwise 

depleted through termination when used in small quantity.27 In ARGET ATRP, an excess reducing 

agent such as tin(II) 2-ethylhexanoate, or vitamin C etc. are used to convert Cu(II) to Cu(I) and to 

improve oxygen tolerance.8 Another limitation of ATRP is that it  is  challenging  and often 

incompatible  for polymerization of monomers containing acidic and phenolic groups such as 

methacrylic acid and 4-vinylphenol etc. The possible reasons include ligand protonation at low 

pH, coordination of the catalyst to the carboxyl group of monomers  and  and displacement of the 

halide anion from the oxidise Cu(II) dormant phase. 22-23 For polymerization acidic and phenol 

monomers, they can be converted to ATRP compatible polymers before polymerization and 

deprotected post-polymerization. For this work, ATRP was chosen as a method of polymerization 

for the synthesis of multi-block oligomers  in because  of it’s robustness and  ease of synthesis of 

polymers with controlled molecular weights and narrow polydispersity using various monomers 

under mild conditions. 
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3.1.3 Surface modification of solid substrates with polymers 

Surface functionalized polymers have been shown to be useful to improve mechanical, 

physical, chemical, mechanical and functional properties of surface for biocompatibility24, 

adhesion25, lubrication26, corrosion resistance and anti-fouling27, removal of metals28, separation29, 

immobilization of catalyst30, etc.  The diverse nature of possible solid surfaces such as gold31, 

carbon nanotube32, graphene (oxide)33-34, mesoporous carbon35 and mesoporous silica 36-37 etc. The 

development of controlled polymerization techniques and effective surface chemistry has allowed 

for synthesis of surface grafted polymers with controlled architecture and design an array of 

composite materials containing inorganic and organic components. These materials possess 

diverse structural and functional features that have proven useful in novel applications such as 

drug delivery 38, stimuli responsive surfaces39, electrochemical capacitors40, molecular recognition 

41,  CO2 adsorption42 etc.  

There are various approaches to modification of solid surface with polymeric materials. 

The first method is to physically adsorb polymer onto the surface followed by cross-linking to 

entrap the surface in polymer matrix. This method has found useful application in 

chromatography43-44; however, degradation and loss of polymer under harsh conditions was 

observed.45 There are also reports of non-covalent modification of nanoparticles through emulsion 

polymerization in the presence of nanoparticles. The second method is to immobilize polymers on 

surface through formation of covalent linkage with the surface, known as grafting. Methods to 

form covalent bond formation with a solid surface in literature include thiol end-functionalization 

of polymer for grafting to gold 46-47, amidation of peptides48 and dendritic polymers49, silane 

functionalization of polymer for grafting to  silica surface50 etc. In general, assembly of surface 

grafted polymers is accomplished using two approaches: a) “grafting from” and b) “grafting onto” 



66 
 

     3.1.3.1. “Grafting from” approach 

Grafting from approach involves in situ growth of the polymer on solid surface. The first 

step of grafting from approach usually requires introduction of initiator for polymerization onto 

the solid surface. For conventional radical polymerization44 the radical initiators are attached to 

the solid substrate. Similarly, for CRP, the initiating species can be covalently functionalized on 

solid surface followed by the polymerization reaction. The “grafting from” approach is good for 

achieving higher grafting densities of polymers on a surface because there are relatively smaller 

steric interactions among small initiating species as opposed to immobilization of large polymeric 

molecules in “grafting onto” approach. However, the presence of a solid surface in the 

polymerization reaction adds an additional variable to otherwise well understood solution phase 

polymerization. The characterization of such materials also may pose a challenge, often requiring 

additional and less elucidative techniques depending on the nature of the surface/polymer 

composition.

 

Figure 3.1. Illustrative scheme of “grafting from” and “grafting onto” approach to modification 

of solid surface with polymers. 
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     3.1.3.2. “Grafting onto” approach 

 The “grafting onto” approach involves chemical reactions of end-functional group of pre-

formed polymer chains with the solid substrate to form a covalent linkage. The reactions of the 

already prepared polymer end group can be performed in solution of the polymer or from the 

polymer melt, and may require chemically modified surface chemistry for attachment. While this 

approach is not ideal for densely distributed polymers on a surface because of steric hindrance, the 

structural features of the polymers such as degree of polymerization (DP) and polydispersity index 

(PDI) can be precisely controlled because of more homogeneous reaction conditions and 

compatibility with most state-of-art characterization techniques.  

In chapter 2, the “grafting from” approach was utilized to grow polymers from a silica 

surface for ESS synthesis. Based on popular soil models, the targeted grafting density were low 

with % TOF in the range of 5-25% which can also be easily achieved through “grafting onto” 

approach. This approach has been shown to yield higher grafting density and %TOF and therefore 

expected to show great potential for improved scalability while also improving the control in the 

structure. During the synthesis of a multi-block oligomer platform, the polymer chains can be 

characterized in-situ and after polymerization of each block using popular techniques such as 

(solution state) NMR and mass spectroscopy. Several controlled radical polymerization techniques 

are commonly used to synthesize multi block oligomers with controlled DPavg and PDI. In this 

Chapter, synthesis of multi-block oligomers through solution-phase ATRP followed by grafting 

onto approach is utilized for ESS is synthesis in a quest to improve control and scalability of the 

ESS structures. 
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3.1.4. Grafting of polymers on mesoporous SiO2 substrate 

Use of silica-based materials is common in fields of bioengineering51, catalysis52, 

separation29, 53, composite materials54 etc. Because of their porous structure, silicates and silica 

nanoparticles have useful surface related applications55 such as removal of metals56, large surface 

for catalysis52, CO2 capture57, controlled drug release58, template for nanowire synthesis59, 

aerogels60 etc. Si-O and Si-C bonds are longer and more polarized than the analogous C-C bond, 

with lower steric hindrance barrier for rotation for the siloxane backbone.61 Because of the diverse 

use of silica, several approaches to modify silica surface with polymers have been explored. 

Mesoporous organic-silica composite materials are either prepared directly by co-condensation of 

organosilanes during the synthesis of mesoporous silica62 or by grafting of organosilanes onto pre-

prepared mesoporous silica surfaces.63-64 Polymer modification of SiO2 surface is achieved 

through traditional radical polymerization approaches such as i) physical adsorption of monomer 

followed by polymerization65  ii) emulsion polymerization in the presence of nanoparticles66 iii) 

“grafting from” surface initiated polymerization37, 63 and iv)  “grafting onto” 67-68 approaches. 

Conventional polymerization techniques as well as CRP techniques  such as ATRP37, 63, 69, RAFT 

70-71, nitroxide-mediated polymerization (NMP)72-73 using monomers such as methyl 

methacrylate63, 69, 74-75, styrene 63, 72, 75, N-isopropylacrylamide 76-77 acrylonitrile etc. Although 

these techniques have proven useful in design and synthesis of polymer modified silica, precise 

control of brush thickness, composition and architectures still remains a major challenge.  

3.2. Solution phase polymerization of block oligomers for ESS development by “grafting 

onto” approach 

 

As demonstrated in Chapter 2, engineered soil surrogates (ESSs) prepared by grafting 

multi-block oligomers on SiO2 served as a useful platform in study of molecular-level interaction 

of soils with model Agricultural Chemicals (ACs) and their effects in bulk property of the materials 
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such as sorption. The ability to precisely control the platform architecture and scale them as per 

the subject of study provides a prospect for design of simple to complex architectures to gain 

insight into the geomacromolecular processes that are elusive because of their complexity and 

heterogeneity of the chemical structures involved. Although SI-ATRP synthesis of ESS as shown 

in Chapter 2 proved to be successful in synthesis of one, two and three- tiered oligomers on SiO2 

surface, the process showed some limitations related to solid-phase synthesis. For the solid phase 

synthesis, problems encountered included the following: a) the polymerization was monomer 

inefficient; requiring approximately 5, 20, 25 times the amount of monomer than theoretically 

required for styrene, 4-acetoxystyrene and 4-acetoxy 3-methoxystyrene respectively and b) the 

characterization of the ESS materials was difficult because of their insolubility in solvents for 

solution-state Nuclear Magnetic Resonance (NMR) spectroscopy and mass spectrometric 

analyses. 

Scheme 3.2 shows the synthesis ATRP initiator coupled C11 aliphatic chain (3) followed 

by synthesis of multi-block oligomer chains consisting of aliphatic, O-aryl and polar blocks in 

solution using ATRP, and subsequently grafting onto SiO2. For the synthesis of a C11 aliphatic 

chain with an ATRP initiator (C11-initiator, 3), 10-undecen-1-ol 1 was coupled with 2-

bromoisobutyryl bromide 2. ATRP was employed to polymerize vinyl monomers such as styrene 

and substituted styrenes, and methyl methacrylate as the first polymerized block appended to C11-

initiator to give tier-2 oligomer. ATRP was carried out in refluxing toluene for 24 hours using 

initiator (3) to Cu(I)Br catalyst ratio of 4:1 (25 mol% cat. based on initiator) and [M]/[I] ratio equal 

to the desired average degree of polymerization (DPavg). 
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Scheme 3.2. Grafting onto approach to ESS synthesis  

To synthesize tier-3 oligomers with alkyl (tier-1), O-aryl (tier-2) and polar(tier-3) blocks, 

a tier-2 oligomer was used as a macroinitiator for subsequent polymerization after workup 

procedure exploiting the “living” characteristic of the ATRP. Also, multi-block oligomers were 

synthesized with the composition of tier-2 and tier-3 reversed (i.e. polar block as tier -2 and O-aryl 

block as tier-3). Similar to the polymerization of tier-2 oligomers, the polymerization was achieved 

using (macro)initiator to Cu(Br) ratio of 4:1 (25 mol% cat. based on initiator), [M]/[I] ratio equal 

to the desired average degree of polymerization (DPavg), with PMDETA ligand (catalyst: ligand 

=1:1.1) by refluxing in toluene (110 °C) for 24 hours. Finally, tier-2 and tier-3 oligomers were 

hydrosilated using 5.5 mol. equivalent trichlorosilane and Karstedt’s catalyst (vinyl groups: Pt 
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=100:1). The resulting trichlorisilyl end-group containing tier-2 and tier-3 oligomers were 

covalently attached to silica by refluxing in toluene for 24 hours as shown in Scheme 3.2. 

3.2.1 Physical Characterization of multi-block oligomers  

Prior to the grafting process, the structures tier-2 oligomers and the polymerization of the 

blocks was verified by using Bruker 400 MHz 1H NMR. Figure 3.2 shows the 1H NMR of C11-

initiator (3) (top), tier-2 (middle) and tier-3 (bottom) oligomers with oligostyrene as second block 

and oligo (methyl methacrylate) as third block. The DPavg of the oligomers were calculated by 

using integration of vinyl chain end of the C11-initiator and the aromatic protons for oligostyrene, 

and O-CH3 peak for methyl methacrylate as shown in subsequent sections (Figures 3.4, 3.7). 

 

Figure 3.2. 1H NMR of C11-initiator (3) in CDCl3 (top) and subsequent addition of tier-2 

oligostyrene in acetone-D6 (middle) and tier-3 oligo (methylmethacrylate) in acetone-D6 (bottom). 

 

The tier-2 and tier-3 oligomers were also characterized by matrix assisted laser desorption 

ionization (MALDI). The MALDI results were used to verify the structures and determine the 
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degree of polymerization (DP) and polydispersity index (PDI). A MALDI-TOF spectrum of tier-

2 oligomer containing oligo (4-acetoxy-3-methoxystyrene) as second block is shown in Figure 3.5 

along with interpretation of the molecular weights observed in Table 3.2. For tier-3 oligomers, the 

identification of exact MW peaks was challenging; however, the molecular weights were in the 

range corresponding to the DPavg values obtained from NMR data. The MALDI of tier-2 and tier-

3 oligomers are also shown in Appendix 3. 

3.2.2 Initial results for solution phase synthesis of oligostyrene on C11-initiator (3) 

Initially, polymerization of styrene was investigated with C11-initiator (3) using 10:1 

initiator: Cu(I)Br ratio (10 mol% based on initiator) with an aim to polymerize an oligostyrene 

block (tier-2) with approximate DPavg of 5. The polymerization reaction used [M]/[I] ratio of 5.5 

and the polymerization was carried out in toluene at 110 °C for 24 hours with aliquots collected 

after 12, 18 and 24 hours. Following the removal of unreacted monomer with high vacuum, the 

samples were analyzed by 1H NMR. The DPavg were calculated for each aliquot by using the 

relative integration of vinyl peaks of C11-initiator and the aromatic peaks of oligostyrene. NMR 

results indicated polymerization with DPavg of 2.1 in 12 hr., a slight increase to 2.3 in 18 hr., and 

no further polymerization indicated by the same DPavg of 2.3 for 24 hr. aliquot (Figure 3.3). This 

was suspected to be caused by insufficient amount of catalyst. Increasing the catalyst to 16 mol % 

(based on initiator) showed 41% conversion in 6 hours proving our initial suspicion. For 

subsequent studies, catalyst loading of 25 mol% based on initiator was adopted which is relatively 

low amount of catalyst compared to literature. For comparison, 25 mol% catalyst based on initiator 

for [M]/[I] of 10 translates to 2.5mol % based on monomer. 
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Figure 3.3. 1H NMR of initiator (top) followed by the polymerization of styrene for 12, 18, 24 hr 

and the 25 mol% catalyst (based on initiator). 

 

3.2.3 Polymerization of (tier-2) styrene and styrene derivatives on C11-initiator (3) 

The polymerization of styrene, 4-acetoxystyrene and 4-acetoxy3-methoxystytene with 

desired DPavg was obtained by using 25mol% Cu(I)Br and refluxing toluene for 24 hr. to obtain 

oligomers with DP approximately equal to [M]/[I]. The polymerization of styrene with [M]/[I] 

ratio of 5.4 gave a DPavg of approximately 5 which upon purification yielded pure oligomer with 

DPavg of 6.3. The increased DPavg upon trituration with methanol is possibly due to loss of small 

molecular weight oligomers because of their higher solubility. Fig 3.4 shows the 1H NMR of tier-

2 oligostyrene with labeled peaks and illustration of DPavg calculation by using vinyl protons of 

the aliphatic chain as reference integral. 



74 
 

 
 

Figure 3.4. 1H NMR of C11-PS6.3 oligomer chain with labeled peaks and illustration of DPavg 

calculation using integration of peaks. 

 

The polymerization of 4-acetoxystyrene and 4-acetoxy 3-methoxystyrene gave similar 

results to styrene. Table 3.1 shows the reaction conditions and the DPavg of the polymerization of 

the aforementioned monomers obtained from NMR analysis of crude and purified products. Figure 

3.5 shows the MALDI-TOF spectrum of oligo (4-acetoxy 3-methoxystyrene). The molecular 

weights of MALDI spectrum are interpreted in Table 3.2. Because the sample was dissolved in 

acetone for MALDI analysis, the observed MW are a sum of MW of expected oligomer and one 

or more two molecules. The bolded MWs in Table 3.2 are the MWs that match with the spectrum 

in Fig 3.5. 
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Table 3.1. Reaction conditions and results of polymerization of PAS and PAMS monomers. 

Entry Monomer Rxn temp./ 

Solvent/Time 

Cu(I)Br  

(based on Ini) 

[M]/[I] DPavg by 

NMR/MALDI 

1 4-acetoxystyrene Refluxing 

toluene, 24hr 

25 mol% 5.52 (5.6/ NA) 

(crude) 

2 4-actoxy 3-methoxystyrene Refluxing 

toluene, 24 hr. 

25 mol% 5.93 (8.0/7.0) 

(purified) 

 

 

 

Figure 3.5. MALDI spectrum of oligo (4-acetoxy 3-methoxystyrene) on C11-initiator (3).  

PDI was calculated to be 1.05 
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Table 3.2. Interpretation of MALDI spectra of C11-oligo(PAMS) in Figure 3.5 by calculation of 

MW of each oligomer chain and possible changes to MW in MALDI. Bolded numbers represent 

matching MW from spectrum. 

 

DP MW of 

oligomer 

MW of  

(oligomer + 

acetone) 

MW of 

(oligomer 

+acetone)-1 

 

MW of 

(oligomer + 2X 

acetone)-1 

 

2 703.7 761.78 760.78 818.86 

3 895.91 953.99 952.99 1011.07 

4 1088.12 1146.2 1145.2 1203.28 

5 1280.33 1338.41 1337.41 1395.49 

6 1472.54 1530.62 1529.62 1587.7 

7 1664.75 1722.83 1721.83 1779.91 

8 1856.96 1915.04 1914.04 1972.12 

9 2049.17 2107.25 2106.25 2164.33 

10 2241.38 2299.46 2298.46 2356.54 

11 2433.59 2491.67 2490.67 2548.75 

12 2625.8 2683.88 2682.88 2740.96 

13 2818.01 2876.09 2875.09 2933.17 

14 3010.22 3068.3 3067.3 3125.38 
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3.2.4 Polymerization of (tier-2) methylmethacrylate with on C11-initiator (3) 

 Although initial design of ESS in Chapter 2 consisted of oligo (methyl methacrylate) and 

oligo (methacrylic acid) as a polar third tier, incorporation of oligo (methyl methacrylate) as a 

second tier was explored in solution phase synthesis. The reversal in position of polar third tier 

and O-aryl second tier may be one of the systematic changes in ESS required to test the role of 

polar moieties in SOM. With an aim to polymerize a PMMA oligomer block with C11-initiator 

with approximate DPavg of 5 and 10, similar ATRP conditions as in styrene polymerization were 

employed. Polymerization were carried out in refluxing toluene using 25mol% Cu(I)Br catalyst 

based on the initiator, and PMDETA as a ligand for 24 hours. The polymerization was also seen 

to go to completion in 24 hours using reduced amount of copper, 16 mol% based on initiator. The 

washing of the crude products with hexane for purification led to increased DPavg, as seen for 

styrene derivatives possibly due to higher solubility of lower MW oligomers in the solvent. 

 

Figure 3.6. Polymerization of methylmethacrylate to synthesize oligomers of approximately 5 and 

10 units with obtained DPavg for crude and washed samples as a function of [M]/[I]. 
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3.2.5 Polymerization of a subsequent (tier-3) oligomer block from (tier-2) macroinitiators 

 Using Similar ATRP conditions utilized in previous sections (Table 3.1), subsequent block 

of styrene and PMMA were added to tier-2 oligomers using C11-oligostyrene and C11-oligo (methyl 

methacrylate) as macroinitiators. The tier-2 oligomers were used as macroinitiators because the 

ATRP with Cu(I)Br leads to capping of chain ends with –Br groups, known as chain end 

functionality (CEF). The preservation chain end functionality can be a challenge as some 

propagating chains can terminate by recombination, disproportionation and chain transfer 

processes. Large initiator concentration is known to lead to low CEF as a result of increased 

bimolecular termination.78 Diluting the polymerization reaction was expected to mitigate 

termination events by decreasing the concentration of initiator and propagating radical, and hence 

the increase CEF. However, the increased amount may lead to higher chain transfer to the solvent 

leading to decreased CEF. In synthesis of tier-2 oilgomers, all polymerization reactions were 

conducted in relatively dilute conditions. The diluted reactions in toluene, which is popularly used 

in many radical polymerizations, including ATRP was expected to give preserved CEF and hence 

the extendibility of tier-2 oligomers with subsequent polymerization of another block to synthesize 

tier-3 oligomers. Figure 3.2 shows 1H NMRs of sequential polymerization of oligostyrene and 

oligo (methyl methacrylate) with C11-initiator (3, Scheme 3.2) The 1H NMR of of tier -3 oligomer 

C11-PS4.7-PMMA4.2 with labelled peaks and DPavg calculation is shown in Figure 3.7.  

 Based on these results the solution phase approach to oligomer synthesis is superior to 

solid-phase synthesis. The solution phase polymerization required smaller amount of catalyst (25 

mol% based on initiator as opposed to 50 mol%) than SI-ATRP. The solution phase polymerization 

demonstrated 5, 20 and 25 times greater monomer efficiency for polymerization of styrene,  
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Figure 3.7. 1H NMR of C11-PS4.2-PMMA4.7 tier-3 oligomer chain with labeled peaks and 

illustration of DPavg calculation. 

 

4-acetoxystyrene and 4-acetoxy-3-methoxystyrene respectively, giving almost quantitative 

conversions in all polymerization including methylmethacrylate. While the SI-ATRP required 

refluxing in xylenes at temperature of 145°C for 24 hours for polymerization of 4-acetoxystyrene 

and 4-acetoxy 3-methoxystyrene, solution phase ATRP was conducted by refluxing toluene at 

110°C to obtain desired oligomer. This relatively milder condition was also effective for solution 

phase ATRP of styrene and methyl methacrylate. 

3.3. Grafting of block oligomers onto silica 

 Following the synthesis of tier-2 and tier-3 oligomers by solution phase ATRP, the vinyl 

end group of the oligomer was converted into a trichlorosilyl group for tethering the oligomer 

chains onto silica. For hydrosilation, the oligomer was dissolved in toluene and 5 mol equivalents 
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of trichlorosilane 1% Karstedt’s catalyst (platinum (0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane 

complex solution in xylene). The resulting –SiCl3 chain ends of oligomers were used for 

attachment on SiO2 surface by refluxing toluene for 24 hours (Scheme 3.2). 

The efficiency of grafting step was analyzed by using a tier-2 oligomer containing PMMA 

with DPavg of 10, attached to a C11-initiator with trichlorosilyl end group. On three separate 

reactions with 5.0g SiO2 on each, 0.7g, 1.4g and 2.1g Cl3Si-C11-PMMA10 were added and refluxed 

in 50ml toluene for 24 hours. After a three step washing process with toluene, acetonitrile and 

ethanol followed by drying, the oligomer grafted silica were analyzed by TGA to calculate %TOF 

of each grafting reactions. The obtained %TOF from TGA were plotted against theoretical %TOF 

as shown in Figure 3. Theoretical %TOF is the percentage of total organic fraction that would be 

seen for the perfect grafting efficiency, as shown in equation 3. The calculation of %TOF using 

TGA data is demonstrated in Chapter 2.  

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 %𝑇𝑂𝐹 =
𝑚𝑎𝑠𝑠 𝑜𝑓  𝑜𝑙𝑖𝑔𝑜𝑚𝑒𝑟

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑜𝑙𝑖𝑔𝑜𝑚𝑒𝑟 + 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑆𝑖𝑂2
∗ 100                                        𝐸𝑞. 3 
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Figure 3.8. Grafting performance of Cl3Si-C11-PMMA10 tier-2 oligomer on SiO2 plotted as a 

function of %TOF measured by TGA and theoretical %TOF. 

 

 Grafting of tier-3 oligomer Cl3Si-C11-PS5-PMMA5 showed resulted in 15% TOF (Entry 1, 

Table 3.3). However, switching the order of blocks to Cl3Si-C11-PMMA4-PS5 (Entry 2, Table 3.3) 

showed significantly lower TOF of 3% although the theoretical % TOF is higher than the former 

oligomer. Increase in DPavg of tier-2 PMMA block to 10 (Entry 2, Table 3.3) resulted in low 

%TOF as well. This indicated the effect of relative positon of PS and PMMA segments on the 

availability of SiO2 surface for trichlorosilyl end groups. This is probably due to the confirmation 

of oligomer in a non-polar solvent such as toluene where the polar trichlorosilyl end groups folds 

into nearby polar PMMA block making them inaccessible to the surface. Table 3.3 shows the 

grafting conditions of tier 3 oligomers along with theoretical %TOF and the values observed by 

TGA. 
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Table 3.3. Grafting performance of tier-3 oligomers and reaction conditions  

Entry Oligomer (Olig) Mass of 

Olig (g) 

SiO2 

(g) 

Toluene 

(ml) 

%TOF  

(theory) 

%TOF 

(by TGA) 

1 Cl3Si-C11-PS5-PMMA5 1.5 g 5.0 g 50 ml 23% 15% 

2 Cl3Si-C11-PMMA4-PS5 2.2 g 5.0 g 50 ml 31% 3.0% 

3 Cl3Si-C11-PMMA10-PS5 0.9 g 3.3 g 35 ml 21% 3.4% 

              

3.3.1 Physical Characterization of multi-block oligomers post surface grafting 

Once the oligomer chains were grafted onto solid surface, they were analyzed by two 

approaches: i) thermogravimetric analysis ii) 13C CP-MAS (solid state) NMR. The TGA data was 

used to determine the percentage of the organic fraction (%TOF) of the surface grafted materials. 

The detailed methods to determine %TOF by accounting the mass of volatiles (in 25-180 °C range) 

and subtraction of %TOF from blank silica are outlined in Chapter 2. Figure 4 shows 13C CP-MAS 

(solid state) NMR of tier-2 and tier-3 oligomers after “grafting onto” silica. 

 

Figure 3.9. 13C CP-MAS (solid-state) NMR of tier-2 tier-3 oligomers post grafting. 

SiO2-C11-PS5.8 

SiO2-C11-PMMA10 

SiO2-C11-PS6.5-PMMA7.2 
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3.4. Clay based ESSs by “grafting onto” 

In addition to silica, clay is another major mineral component of soils, and it is of interest 

to study the binding effects of ACs on clay-supported ESSs in addition to silica supported ESSs. 

Clay is an important inorganic component of soil consisting of layers of tetrahedral silicates and 

octahedral aluminates in a nanometric ordered structure. As discussed in Chapter 1, most of the 

clay materials are negatively charged. Therefore, natural and chemically modified clays have been 

studied for the adsorption and removal of toxic metal ions from water solution. The excellent 

adsorption towards metals is also aided by large potential for ion exchange, high specific surface 

area and pore volume. Clays uptake heavy metal ions through a series of complex adsorption 

mechanisms such as bonding to the edges, surface complexation and ion exchange. Often, the 

chemical modification of clays involves pre-treatment with organic compounds either by mixing 

or by covalent bond formation to convert them to hydrophobic and organophilic materials for 

adsorption of HOCs. A study on effect of surface modification showed that the sorption of 

cypermethrin to particulate organic matter increased with the increasing coating of the clay mineral 

montmorillonite by humic material. Similarly, Ahangar et al. reported that the removal of clay 

minerals increased sorption capacity of soils for diuron and phenanthrene79-80. the lower sorption 

associated with increased amount of clay may be a result of blockade of sorption sites of SOM by 

mineral SOM interactions. Also the polar edges of the clay structure form a hydration layer in 

aqueous solution which prevents sorption of non-polar organic pollutants onto the surface of the 

mineral. This is also supported by the increased sorption of organic pollutants by inorganic rich 

soil in non-aqueous solutions where the high sorption intensity by minerals often interferes with 

the study on effect of SOM interactions with organic pollutants.81-82 
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 Aforementioned properties of clay minerals indicate that incorporation of clay component 

in an artificial soil such as engineered soil surrogates (discussed in Chapter 2) will further help in 

understanding in depth the molecular level interactions involving clay-based soils and ACs. 

Following a systematic study of the effects of organic matter’s chemical structure on AC sorption 

through functionalization of multi-block oligomer chains on mesoporous SiO2, one obvious 

question arises- will replacement of SiO2 by clays in ESS show similar trends in sorption of 

norflurazon as in Chapter 2? Based on the previous arguments and findings in Chapter 2, the 

sorption of norflurazon in aqueous solution is not expected to change significantly as the organic 

phase is mainly responsible for sorption, inorganic phase acting as a solid support surrounded non-

polar first tier and possibly water in exposed mineral surface. However, this cannot be said for 

other pollutants of different size, polarity or ability to create specific chemical interactions with 

clay minerals. Another topic of interest is the structural features of pollutant that causes differences 

in sorption between mesoporous silica and clay minerals. To answer these questions and verify the 

predictions, a novel design of ESS with clay as inorganic matrix was envisioned. Similar to SiO2 

based ESS, the preparation of clay based ESS involves modification of clay with multi-block 

oligomer chains with each block as a model for components of SOM such as lipids, lignin and 

polar groups.  

Initial attempts to modify sodium (ion-exchanged) montmorillonite (Na-MONT) (source: 

SWY-2) was done by refluxing trichlorosilyl end-functionalized multi-block oligomer Cl3Si-C11-

PMMA5-PS5 (DPavg are approximate) refluxing in toluene for 24 hr. yielded low TOF of 2% on 

clay surface (Entry 1, Table 3.4) measured by TGA (Appendix). Increasing the concentration of 

oligomer by i) reducing the amount of solvent and ii) increasing the relative amount of oligomer 

was expected to improve grafting performance. However, doing so led to even lower %TOF (Entry 
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2, Table 3.4). The relatively low %TOF in clays is consistent with the findings from grafting on 

SiO2 (Table 3.3, Entry 2 and 3) where oligomers with PMMA as a second block gave poor grafting 

efficiency possibly due oligomer confirmation with trichlorisilyl groups unavailable for surface 

chemistry. The poor grafting efficiency may have been caused by lower availability of SiOH 

functional groups on montmorillonite because of the ordered structure of the clay mineral with 

closely stacked tetrahedral and octahedral sheets with no significant Si-OH groups available for 

grafting. However, more work is needed, especially grafting of oligomers with Cl3Si-PS-PMMA 

which gave significantly better grafting performance for grafting onto Silica (Table 3.3, Entry 1) 

13C CP-MAS NMR of the modified clay minerals showed no carbon signals, most likely due very 

low organic content. 

Table 3.4. Grafting of tier-3 Cl3Si-C11-PMMA5-PS5 oligomer on sodium montmorillonite with 

theoretical and observed %TOF 

 

Entry Mass of Na 

MONT 

Mass of 

Oligomer 

 

Volume of 

Toluene 

%TOF 

(Theoretical) 

%TOF 

(by TGA) 

1 5.0g 1.7g 50ml 25 2.0 

2 1.6g 1.58g 15ml 50 1.2 

             

Another approach to modification of clay surface is the immobilization of cation containing 

polymerization initiators (for grafting from) and cation end terminated polymers (for grafting 

onto). In the literature, most of the modification of clay with hydrophobic organic compounds is 

achieved by replacing the clay’s natural inorganic exchange cations with organic cations through 

ion exchange process. This is because organic cations form the organic-clay complex by inserting 

into the interlayer galleries.  Most commonly used organic cations are quaternary ammonium salts 

with a general structure [(CH3)3NR]+ or [(CH3)2NR2]+, where R is an aromatic or aliphatic 
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hydrocarbon.83-84 Pure clays are modified with initiators or monomers containing a such organic 

cations followed by a polymerization reaction.  

3.5. Comparison between ESS and real soil: Acetylation of Pahokee peat 

 Humic substances are described as heterogeneous polyelectrolytes that are predominantly 

negatively charged at natural soil pH values. The major sources of negative charge in humic 

substances are oxygen containing groups such as carboxylic and phenolics, although other less 

abundant N and S containing functional groups also contribute to the anionic character.85 These 

polyelectrolytic anions act as binding sites for protons and metal ions. Various attempts to   

determine the nature of oxygen containing functional groups are done using methods such as direct 

and indirect potentiometric titrations, radiometric determination, infrared spectroscopy, 13C-NMR 

or 29Si-NMR.86 Humic substances are chemically derivatized to enhance and separate the NMR 

signals of the hydroxyl groups.87-89 There are several reports on the contribution of specific 

functional groups on the total humic acidity by  selective derivatization of hydroxyls and 

carboxylic acids using  “protecting groups”.85-86, 90-91  

To compare the sorption data of a series of Engineered Soil Surrogates (ESSs) from 

Chapter 2 with real soils, Elliott soil and Pahokee peat were acetylated and characterized. Scheme 

3.3 outlines the reaction conditions for acetylation of the soils.  Approximately 2g of soils were 

immersed in 30 ml neat acetic anhydride and six drops of concentrated H2SO4 were added followed 

by stirring at 70°C for 5 hours. For a control reaction, exact same process was done using DMSO 

instead of acetic anhydride. 13C NMR analysis of the dried Eliott soil did not show any significant 

extent of acetylation due to lower percentage of total organic fraction (%TOF). However, 

acetylation of Pahokee peat was successful indicated by the 5% increased TOF in the TGA and 

the enhanced carbonyl C peak (around 180ppm) in 13C CP-MAS NMR (Figure 3.10) The 
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acetylated Pahokee peat was used to test the sorption of norflurazon and compared with previously 

reported 92 sorption parameters of unmodified Pahokee peat along with acetylated and non-

acetylated ESS with results outlined in Table 3.5. 

 

 

 

 

 

 

 

             

 

Scheme 3.3. Acetylation of Pahokee peat and the control reaction 

 

  
 

Figure. 3.10. a) TGA thermogram of Pahokee peat (left) b) 13C CP-MAS (solid-state) NMR of 

Pahokee peat (right) 

 

Acetylation 

Control 
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Table 3.5. Comparison of log 𝐾𝐹
𝑠𝑜𝑟 values of non-acetylated and acetylated ESS/Pahokee peat 

obtained from batch mode sorption experiment. 

 

Non-acetylated Soil/ ESS  log 

𝐾𝐹
𝑠𝑜𝑟 

 log 

𝐾𝐹
𝑠𝑜𝑟 

Acetylated Soil/ESS  

ESS8 

 

2.669 2.837 ESS6 

 
ESS9 

 

2.543 2.246 ESS7 

 
Pahokee peat 2.334 2.515 Acetylated Pahokee peat 

(Note: Determination 𝐾𝐹
𝑠𝑜𝑟 value of acetylated Pahokee peat was contributed by Ragib Hasan) 

 

 The sorption capacity for norflurazon was found to be greater in the acetylated Pahokee 

peat compared to the natural Pahokee peat as shown in Table 1. For interpretation of this result, 

the chemical change brought about by acetylation should be considered. Andjelkovic et al. reported 

acid catalyzed acetylation of humic substances with acetic anhydride for blocking of hydroxyl 

groups in alcohols and phenols.85 The same study reported that the acetylation lead to modification 

of some of the carboxyl groups along with alcohols and phenols determined by direct and indirect 

titrations. Therefore, the acetylation process leads to conversion of polar –OH and –COOH groups 

to relatively less polar groups. In unmodified Pahokee peat at pH of 5.7 of the sorption experiment, 

the majority of the phenol and almost all of the alcohol are in the protonated –OH form while the 

carboxylic acids may be in both protonated and deprotonated forms in comparable numbers.  
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Based on the state of protonation at sorption condition, unmodified Pahokee peat contains 

highly polar groups and has high affinity towards water. Acetylation of the Pahokee peat 

significantly reduces the polarity and hence decreased affinity towards water. This is supported by 

early reports that esterification greatly decreases the water-sorbing capacity of the hydroxyl groups 

in cellulose.93-95 During the sorption of norflurazon from aqueous solution, the hydration of 

unmodified Pahokee peat is expected to form hydration layers around abundant polar groups that 

hinders adsorption of hydrophobic norflurazon on the organic matter. However, once the polarity 

of these sites is decreased through acetylation, the inhibiting effect of hydration layer on adsorption 

is decreased leading to increased sorption of norflurazon. This can be viewed as a competitive 

sorption where Pahokee peat is a sorbate whereas water and norflurazon are sorbents. The decrease 

in polarity of SOM and soil overall gives the hydrophobic norflurazon an increased competitive 

advantage for sorption onto the soil.82 

After systematic investigation on role of the chemical structures of each tiers in sorption 

of organic compound, as shown in Chapter 2, one question arises- what makes a surrogate soil 

more “soil-like” so that better models of soils can be synthesized? One pragmatic approach to 

design of ESS for modeling soils is to incorporate chemical structures that creates comparable bulk 

properties and eliminate the ones that show contrary bulk properties to the real soils. Comparison 

of sorption trends between ESS and Pahokee peat shows that ESS8 exhibited a trend in sorption 

affinity similar to Pahokee peat with 𝐾𝐹
𝑠𝑜𝑟value greater for acetylated phenolic group which can 

be explained from hydration perspective as discussed earlier. On the contrary, ESS9 showed the 

sorption trend in contrary to that of ESS8 and Pahokee peat. This is attributed to the ability of 

ESS9 to create specific binding interactions with norflurazon as a result of intermolecular H-

bonding between phenolic –OH and the nearby O-methyl oxygen (as illustrated in Figure 2.12, 
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Chapter 2). Although comparison of acetylation between tier-2 ESSs and Pahokee peat 

(specifically ESS8, ESS9 versus Pahokee peat) may seem difficult because of the much complex 

and heterogeneous nature of Pahokee peat and the lack of selectivity of the acetylation reaction for 

phenolic moieties, this could be a guide to design for more realistic soil models. The presence of 

neighboring phenolic and methoxy groups in ortho position to each other as in ESS9 has been 

shown to be a recurring structure in native lignin.96-98 However the particular arrangement of native 

structure may not remain intact. This is also supported by various studies that show the role of 

phenolic –OH in lignin to participate in condensation reactions resulting in inter-connected 

macromolecular structure of humic acid as they degrade in natual environments.99-100 This may 

lead to low abundance of lignin derived chemical functionalities in Pahokee peat that possess 

structural features such as the one incorporated in O-aryl block of ESS9. 

3.6. Future work: Cross-linking of ESSs 

In synthetic polymers, cross-linking leads to increased molecular weight, mechanical 

strength as well as physical and chemical stability. The formation of interconnected polymer 

network also leads to decreased solubility and biodegradability.101 There are growing evidence of 

cross-linking processes in geomacromolecular matrices such as the presence of matrix bound 

dicarboxylic acids in peat, humin and humic acid, 102-104 and  kerogens105-106 as confirmed through 

chemolysis studies. There are indications on roles of cross-linking in humification, the process by 

which smaller molecules undergo secondary synthesis through mineral/biotic catalyzed 

condensation reactions to give oxidized, amphiphilic, high molecular weight, condensed materials. 

A study on a non-hydrolysable organic fraction of a deep tropical soil 14C dated about 8300 years  

revealed the presence of highly condensed cross-linked structure.107 Therefore, cross-linking 

reaction is responsible for stabilization and protection of soil by physical, chemical and mechanical 
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reinforcement, and by decreasing the bioavailability of the chemicals and microbes that are 

responsible for soil’s degradation. Cross-linking is also shown to play an important role in 

diagenesis of organic polymers. Brown coal, a soft combustible sedimentary rock formed by 

naturally compressed peat is shown to possess densely cross-linked, supramolecular structure.108 

Through cross-linking reactions, polysulfides, ammonia and amino acids are shown to introduce 

S and N containing functional groups into the structure of marine sediments.109-111 This 

phenomenon has been observed observed in early diagenesis of  kerogen112,  protokerogen and 

humics in marine environments.109 

Cross-linking of macromolecules in soil has a significant effect on the sorption of HOC. In 

soil, the cross-linking can occur by two ways: a) covalent cross-links by organic compounds and 

b) complexation cross-links by polyvalent metal ions. Covalent cross-links are relatively 

irreversible under ambient conditions and are part of permanent structure of soil.113 However, 

cross-links formed through complexation of SOM polyelectrolyte with polyvalent metal are 

dynamic and reversible.114 The effect of cross-linkers on the overall morphology of soil depends 

on the nature and the extent of cross-links present in it. Cross- can create new binding sites within 

SOM and hence increase the affinity of the sorbent towards sorbate molecules. For example, For 

example, Cross-linking of leonardite potassium humate with N,N -methylene bisacrylamide 

greatly increased its water absorbing capacity.115.The creation of new binding sites due to cross-

links can increase the heterogeneity of binding sites leading to non-linear sorption. For example, 

Lu and Pignatello demonstrated that complexation of a soil humic acid with Al3+ reduced sorption 

linearity of hydrophobic compounds because of increase in the glassy character of humic acid 

through cross-linking.116 Large extent of cross-linking in soil may cause decrease in sorption of 
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HOC by soil as a result of formation of condensed structure with minimal free volume limiting the 

access of sorbate molecules to the binding sites. 

As discussed earlier, the cross-linking has significant effects on structure, confirmation and 

degradability of soil as well as its sorption properties. Therefore, incorporation of cross-links in 

the design of ESS is important for improving their prospects in study of geomacromolecular 

matrices including soil. The polar third tier consisting of poly (acrylic acid) or poly (methyl 

methacrylate) could be a site where cross-links can be easily formed using typically used 

bifunctional molecules such as dicarboxylic acids, diamines etc. Figure 3.11 shows cross-linking 

of polar third-tier of existing ESS structures with hexamethylenediamine, one of many possible 

ways of cross-linking the oligomers on ESS surface to design more complex soil models. 

 

Figure 3.11. Illustration of the possible cross-link formation in between outermost polar blocks 

of tier-3 ESS. 
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Appendix 1. Experimentals for Chapter 2 

 
Materials and Methods. Chemicals: The monomers styrene, 4-vinylphenyl acetate, 4-vinyl-2-

methoxy phenol, methyl methacrylate were obtained from Aldrich and used after passing through 

alumina column to remove the inhibitor except 4-vinyl-2-methoxy phenol. Trichlorohexylsilane, 

trichlorododecylsilane and trichlorooctadecylsilane were obtained from Gelest. Silica gel (Merck 

grade 9385, pore size 60 Å, 230-400 mesh) 10-unden-1-ol, 2-bromoisobutyryl bromide, triethyl 

amine, trichlorosilane, Platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (Karstedt’s 

catalyst), copper bromide (CuBr), N,N,N’,N”,N”-pentamethyldiethyltriamine (PMDETA), acetic 

anhydride, pyridine, dimethylaminopyridine (DMAP) and hydrazine hydrate were obtained from 

Aldrich. Solvents (toluene, diethylether, hexane, acetonitrile, ethanol, ethyl acetate) were obtained 

from VWR. 

     Synthesis of 10-undecen-1-yl 2-bromoisobutyrate 3. The synthesis of 10-undecen-1-yl-2- 

bromoisobutyrate was accomplished following a procedure reported previously with slight 

modification.43 To a solution of 10-undecen-1-ol 1 (4.08mL, 20.36mmol) in 100 mL diethyl ether 

in a 500mL round bottom flask (RBF) was added triethylamine (3.13 mL, 22.40 mmol). The flask 

was cooled to 0oC and a solution of 2-bromoisobutyryl bromide 2 (2.8mL, 22.4 mmol) in dry 

diethyl ether (50mL) was added dropwise through a dropping funnel with stirring over 10 minutes. 

The reaction mixture was allowed to come to room temperature and stirred for 15 hours. During 

the reaction, triethylammonium bromide (Et3N
+Br -) precipitated out from the reaction mixture. 

After the completion of reaction, 50 mL of hexanes was added and the precipitate was removed 

by gravity filtration. The solvent was removed under reduced pressure to give a colorless liquid 

which was purified by column chromatography using a 25:1 mixture of hexane and ethyl acetate. 

1H NMR was used to confirm the formation of the product. 1H NMR (400 MHz, CDCl3) δ: 5.81 
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(ddt, J = 17.2, 10.1, 6.7 Hz, 1H), 5.02-4.92 (m,2H), 4.93 (t, J = 6.6 Hz, 2H), 4.17 (t, J = 6.6 Hz, 

2H),2.90-1.98(m, 2H) 1.94 (s, 6H), 1.78-1.61(m, 2H), 1.56( s,6H), 1.44-1.23(m, 13H) ppm. 

     Synthesis of 11-(2-Bromo-2-methyl)propionyloxy undecyltrichloriosilane 4. To a 100 mL 

RBF at 0oC was added 10-undecen-1-yl 2-bromoisobutyrate 3 (7.11g , 22.27 mmol) and 

trichlorosilane (11.33mL, 112mmol) under nitrogen atmosphere followed by platinum(0)-1,3-

divinyl-1,1,3,3-tetramethyldisiloxane complex solution in xylene, Pt ~2 % (Karstedt’s catalyst) 

from Sigma(140 µL, 12µmol) and the reaction mixture was allowed to stir at room temperature 

for 24 hrs. The excess reagent (HSiCl3) was removed under reduced pressure and the remaining 

product was dissolved in 50 mL hexanes and quickly filtered through a plug of silica to remove 

the catalyst. The product was obtained as a colorless liquid and the purity of the product was 

confirmed with disappearance of vinyl signals in 1H NMR. 1 H NMR (400 MHz, CDCl3) 4.17 (t, 

J = 6.6 Hz, 2H), 1.94 (s, 6H), 1.70-1.60 (m, 4H), 1.55-0.89 (m, 16H) ppm  

     Synthesis of 2-methoxy-4-vinylphenyl acetate 6. Acetic anhydride (63mL, 666 mmol), 

pyridine (65 mL, 806 mmol) and DMAP (0.4 g, 3.27 mmol) were dissolved in DCM (50 mL) at 0 

0C in a clean 500 mL RBF. Using a dropping funnel, 2-methoxy-4-vinyl phenol (10 g, 66.6 mmol) 

in DCM (50 mL) was added under nitrogen over 20 minutes, then allowed to come to room 

temperature and the reaction mixture stirred for 24 hr at room temperature. The reaction mixture 

was washed with 3 x 100 mL 10% CuSO4 solution, 3 x 100 mL of saturated NaHCO3 solution and 

3 x 100 mL NaCl solution then dried with anhydrous MgSO4. The solvent was removed under 

reduced pressure and the resulting yellow oil product was purified by column chromatography 

using 1:9 ethyl acetate: hexane mixture yielding a colorless liquid.1H NMR (400 MHz, CDCl3) δ: 

7.02-6.99 (m, 3H), 6.69 (dd, 1H), 5.70 (dd, 1H), 5.26 (dd, 1H), 3.87 (s, 3H), 2.32 (s, 3H) ppm. 
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     Surface grafting of Tier-I ESSs on silica. In preparation, the SiO2 gel was activated by heating 

overnight in an oven at 120 °C. The functionalization of silica with C6, C12 and C18 aliphatic 

hydrocarbon chains was accomplished by heating corresponding trichlorosilyl-end group 

containing hydrocarbons with 3.0 g SiO2 in Toluene at 80 °C. In a standard reaction, the toluene is 

added to a RBF charged with SiO2, then the trichlorosilyl-end functionalized hydrocarbon 

(0.216mL C6, 0.350mL C12 and 0.245mL C18) was added via a syringe dropwise and the reaction 

mixture heated at 80 °C for 15 hours. Afterwards, the reaction mixture was allowed to cool to room 

temperature and the toluene was decanted after allowing the product to fully settle. The product 

was washed (2 x 25mL each) using toluene, acetonitrile, then methanol. The resulting material was 

dried in an oven overnight at 80 °C. TGA and 13C CP MAS NMR were used to confirm the product. 

     Surface grafting of Tier-I ESS with terminal ATRP initiator (SiO2-C11-Br). In a 100 mL 

RBF, 6g of silica gel and 50mL Toluene were added together under nitrogen atmosphere and 

placed in oil bath at 80 °C. After 5 minutes, 11-(2-Bromo-2-methyl)propionyloxy 

undecyltrichloriosilane 4 (0.45mL) was added dropwise over 10 minutes and refluxed for 18 hr. 

The reaction mixture was then cooled and the silica particles were washed with toluene, then with 

acetonitrile and finally with ethanol (2 x 50mL solvent each wash). The particles were then dried 

under nitrogen in an oven at 50 °C for 48 hr. TGA and 13C CP MAS NMR were used to confirm 

the product. 

     Surface graft extension for Tier-II oligo-(styrene)n block ESS (SiO2-C11-PS). In a 500 mL 

RBF charged with 50 mL of toluene, 5.0g SiO2-C11-Br with 4.37% TOF (w/w) coverage (0.218 g 

C11-Br, 0.68 mmol) was added. The mixture was purged with N2 gas for 5 minutes followed by 

addition of CuBr (212 mg, 1.48 mmol) catalyst and N,N,N′,N′′,N′′-pentamethyldiethylenetriamine 

(PMDETA) ligand (0.32 mL, 1.53 mmol). While purging, styrene monomer (3.0 g, 28.8 mmol) 
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was added via pipette, and the RBF fitted with a condenser. The reaction mixture was purged with 

N2 gas for another 5 minutes then placed in an oil bath at 90 °C with stirring for 1 hr. The resultant 

product mixture was cooled down to room temperature and washed with 2 x 50 mL toluene, 2 x 

50mL acetonitrile, 2 x 50mL ethanol, 2 x 50mL half-saturated EDTA solution, 2 x 50mL water 

and 2 x 50mL ethanol and then placed in oven at 50o C for 48 hours. The resulting faintly blue 

colored powder was analyzed by TGA and solid-state NMR. 

     Surface graft extension for Tier-II oligo-(4-acetoxystyrene)n block ESS (SiO2-C11-PAS). 

In a 250 mL RBF charged with 17 mL of xylene, 2.28g of SiO2-C11-Br with 4.52% TOF (w/w) 

coverage (0.10g, 0.32 mmol C11-Br) was added. The mixture was purged with N2 gas for 5 minutes 

followed by addition of CuBr (182mg ,1.27 x 10-3 mol) catalyst and N,N,N′,N′′,N′′- 

pentamethyldiethylenetriamine (PMDETA) ligand (0.32mL, 1.53 m mol) . While purging, the 

monomer 4-acetoxystyrene (7.8 g, 48 mmol) was added via pipette, and the RBF fitted with a 

condenser. The reaction mixture was purged with N2 gas for another 5 minutes and placed in an 

oil bath at 145 °C with stirring for 24 hrs. The resultant mixture was cooled down to room 

temperature and washed with 2 x 50mL toluene, 2 x 50mL acetonitrile, 2 x 50mL ethanol, 2 x 

50mL half-saturated EDTA solution, 2 x 50mL water and 2 x 50mL ethanol and then placed in 

oven at 50 °C with stirring under positive N2 pressure for 48 hours. The resulting tan colored 

powder was analyzed by TGA and solid-state NMR. 

     Surface graft extension for Tier-II oligo-(4-acetoxy-3-methoxystyrene)n block ESS (SiO2-

C11-PAMS). In a 250 mL RBF charged with 17 mL of xylene, 2.26g of SiO2-C11-Br with 4.42 

%TOF(w/w) coverage (0.099g, 0.31mmol C11-Br) was added. The mixture was purged with N2 

gas for 5 minutes followed by addition of CuBr (184mg,1.28 mmol) catalyst and N,N,N′,N′′,N′′-

pentamethyldiethylenetriamine (PMDETA) ligand (0.32mL, 1.53 mmol ). While purging with N2, 
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the monomer 2-methoxy-4-vinylphenyl acetate 6 (10.0g, 52 mmol) was added via pipette, and the 

RBF fitted with a condenser. The reaction mixture was purged with N2 gas for another 5 minutes 

and placed in an oil bath at 145 °C with stirring for 24 hours. The resultant mixture was cooled 

down to room temperature and washed with 2 x 50mL toluene, 2 x 50mL acetonitrile, 2 x 50mL 

ethanol, 2 x 50mL half-saturated EDTA solution, 2 x 50mL water and 2 x 50mL ethanol and then 

placed in oven at 50 °C for 24 hours. The resulting tan colored powder was analyzed by TGA and 

solid-state NMR. 

     Hydrolysis of acetoxy group of SiO2-C11-PAS and SiO2-C11-PAMS. Polymer functionalized 

silica SiO2-C11-PAS/ SiO2-C11-PAMS (Approximately 2.0 g) was added to a 250mL RBF and 

40mL THF per gram of the polymer functionalized silica gel was added and stirred. Hydrazine 

hydrate (1.165mL/g polymer functionalized silica) was added drop wise and the RBF was flushed 

with N2 gas and sealed with stopper. The mixture was stirred at room temperature for 10 hrs. 

Afterward, the resulting mixture was washed with 2x50mL THF, 50mL ethyl acetate and 50 mL 

ethanol and then oven dried under N2 at 50 °C for 48 hrs. The resulting solid was analyzed by TGA 

and solid-state NMR.  

     Surface graft extension for Tier-III oligo-(styrene)n-(methylmethacrylate)M block ESS 

(SiO2-C11-PS-PMMA). In a 500 mL RBF, 50 mL of toluene was added. 5.0 g of initiator 

functionalized silica gel with 2.87% (w/w) coverage (0.14 g, 0.45 mmol C11-Br) was added. The 

mixture was purged with N2 gas for 5 minutes followed by addition of CuBr (212 mg ,1.48 mmol) 

catalyst and N,N,N′,N′′,N′′- pentamethyldiethylenetriamine (PMDETA) ligand (0.32 mL, 1.53 

mmol) were added respectively. Styrene monomer (2.0 g, 19.2 mmol) was added and a condenser 

was attached to the RBF. The reaction mixture was purged with N2 gas for another 5 minutes and 

placed in an oil bath at 90 oC with stirring for 1 hour. The reaction was cooled down to room 
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temperature and the solvent along with dissolved unreacted monomer was decanted off under 

nitrogen atmosphere. 50 mL of toluene was added to the flask and bubbled with N2 for 5 minutes. 

Again, CuBr (212 mg ,1.48 mmol) catalyst and N,N,N′,N′′,N′′- pentamethyldiethylenetriamine 

(PMDETA) ligand (0.32mL, 1.53mmol) were added to the flask followed by the addition of methyl 

methacrylate monomer (4.0g, 40mmol) under nitrogen atmosphere and the reaction mixture was 

refluxed with stirring at 90oC for 18 hrs. The reaction mixture was cooled down to room 

temperature, and washed with toluene, (2x50mL) acetonitrile,( 2x50)mL ethanol,( 2x50mL) half-

saturated EDTA solution, (2x50mL) water and (2x50mL) ethanol and then placed in oven at 50o 

C under positive N2 pressure for 24 hours. The resulting product SiO2-C11-PS-PMMA(ESS10) was 

analyzed by TGA and solid-state NMR. 

     Synthesis of SiO2-C11-PS-PMAA. In a 100 mL RBF, added 0.5g NaCN and 10 mL 

hexamethylphosphoramide (HMPA) and the mixture was placed in sonicator for 10 minutes. 

NaCN partially dissolved in HMPA leaving few chunks of NaCN suspended in the mixture. Added 

2.0g of SiO2-C11-PS-PMMA to the RBF and capped with a septa. The mixture was placed in oil 

bath at 70oC with stirring for 24 hours. The reaction mixture was cooled and washed with toluene, 

(2x20mL) acetonitrile , 0.01M HCl solution (2X20mL) and finally with ethanol,(2x20mL). The 

resulting product SiO2-C11-PS-PMAA (ESS11) was placed in oven at 50o C for 24 hours and was 

analyzed by TGA and solid-state NMR.  

     Washing. After the grafting of each tier in SiO2 gel, there are several washing steps involved 

with solvents of wide-range of polarities in order to make sure the ESS is free from the reagents 

from the reaction. The initiator-functionalized SiO2 is washed with 2 x 50mL each of toluene, 

acetonitrile and ethanol. The post-polymerization washing step is more rigorous as it requires the 

removal of Cu catalyst residues. This washing involves 2 x 50mL each of toluene, acetonitrile, 



109 
 

ethanol, half-saturated ethylenediaminetetraceticacid (EDTA) solution, water and ethanol again. 

The washed ESS sample is then dried in an oven under N2 flow at 50 °C for 24 hrs.  

     Thermo-Gravimetric Analysis (TGA), Solid State Nuclear Magnetic Resonance (NMR) 

Analysis, and X-ray Photoelectron Spectroscopy (XPS). All ESSs were characterized by a 

combination of TGA, solid-state NMR, and XPS. The TGA analysis was performed on 4 to 8 mg 

of sample using a TA System TGA 2950, with a temperature ramp of room temperature (RT) to 

600 ºC at a rate of 10 ºC per minute. The percent mass loss versus temperature was plotted. The 

solid-state NMR analysis employed 1H-13C cross polarization magic angle spinning (CP-MAS) 

technique and was performed on an AV 400 MHz Bruker solid-state instrument with sample 

packed into a 4 or 2.5 mm ZrO2 rotor. Spectra were acquired using the following parameters: 2048 

scans, ramp cross-polarization, contact time of 2 ms, 2.0 s delay between scans; spinning speed of 

12-15 kHz, a 120 Hz line broadening function was applied, and referenced to y-glycine -CH2- 

signal at 43.5 ppm. XPS data were acquired with a Kratos AXIS 165 system with a monochromatic 

AlKα source and a hemispherical electron energy analyzer. The pressure in the analyzing chamber 

was less than 3 × 10-9 torr. Survey spectra were recorded with 80 eV pass energy and high-

resolution elemental spectra were recorded with 40 eV pass energy 150 W X-ray beam power. 

High-resolution elemental spectra were recorded with 40 eV pass energy. The X-ray beam power 

used in all spectra collection is 150 W. The reported binding energies were based on the analyzer 

energy calibration (Au 4f measured at 84.0 eV for all samples). The peaks in the high- resolution 

elemental spectra were fit using the software supplied with the instrument. A linear background 

was used for the data processing. 

     NOR Sorption and Desorption Isotherms. The background solution used for all experiments 

consisted of 18 Ωm water containing 0.01 M CaCl2 (96.0 %, Sigma-Aldrich St. Louis, MO), 100 
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ppm NaN3 (99 %, Acros), and 0.05 M MES (high purity, VWR Radnor, PA) at a pH of 5.75 to 

maintain a constant ionic strength, suppress biological activity,17 and maintain pH, respectively. 

Additionally, 0.1% v/v methanol (reagent grade, VWR Radnor, PA) was used to help dissolve 

NOR into the background solution to create a stock solution of NOR.  

     The batch sorption and desorption isotherm experiments were carried out in accordance with 

the OECD method 106 (OECD (2000), Test No. 106: Adsorption -- Desorption Using a Batch 

Equilibrium Method, OECD Guidelines for the Testing of Chemicals, Section 1, OECD 

Publishing, Paris).44 Each experiment was performed with sets consisting of four replicates for 

each data point, a background solution with ESS blank, and a NOR solution control (NOR 

concentration control). Two “sizes” (i.e., normal- and small-scale) of sorption-desorption 

experiments were performed due to a limitation in available ESS quantity for some of the ESSs. 

For ESS 1 through ESS 9, 8 mL of sorbate solution in an 8 mL clear glass scintillation screw-cap 

vial with Teflon-lined septa (VWR Radnor, PA) was used. For ESS 10 and 11 (because of small 

quantity available), 2 mL of sorbate solution in a 2 mL plastic micro conical vial (VWR Radnor, 

PA) was used. No NOR sorption was found for either type of vessel (vial and cap) used.  

     The required amount of ESS was added to each sample and blank vessel and recorded with a 

deviation of ± 0.1 mg or less. The appropriate solution was then added to the to the appropriate 

samples and controls (NOR solution) as well as blanks (background solution) vessels and the 

weights were appropriately recorded. Specifically, the isotherms were performed with eight NOR 

concentrations of 1, 2, 4, 6, 8, 12, 16, and 20 ppm. The mixtures were then horizontally shaking 

(i.e., agitated) in the dark at 150 rpm with a temperature of 25 ± 1 ºC (Refrigerated Incubator 

Shaker, New Brunswick Scientific Edison, NJ). After the samples were centrifuged at 3400 rpm 
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for 10 minutes (Sorvall Biofuge Stratos). Then 7 mL (normal-scale) and 1.8 mL (small-scale) of 

the supernatant was removed for analysis and the remaining mixtures were weighed. 

     Prior to isotherm experiments of NOR with the ESSs, the soil-to-solution ratio and mass 

balance, as well as sorption kinetics equilibrium experiments, were performed to determine the 

appropriate solution-to-soil ratio and equilibrium time for each ESS studied, again in accordance 

with the OECD method 106. 

 Soil to solution ratio and sorption kinetics of ESSs 

 

Table A.1. Soil-to-solution (S2S) ratio, sorption kinetics, and desorption kinetics with 20 ppm 

Norflurazon (NOR) of each ESS; weight (S2S), time (kinetics) and the percent sorption-desorption 

of NOR (standard deviation) included. 

Entry S2S ratio Sorption kinetics Desorption kinetics 

ESS1 300 mg - 22.27 (1.02) 5 days - 26.97 (0.88) 5 days - 76.60 (0.02) 

ESS2 20 mg - 47.31 (0.17) 5 days - 48.28 (0.22) 5 days - 11.80 (0.02) 

ESS3 20 mg - 65.46 (0.10) 5 days - 58.55 (0.14) 5 days - 36.40 (0.01) 

ESS4 20 mg - 73.13 (0.11) 5 days - 69.85 (0.13) 5 days - 25.00 (0.01) 

ESS5 20 mg - 65.12 (0.62) 5 days - 67.23 (0.34) 5 days - 24.45 (0.02) 

ESS6 20 mg - 74.88 (0.91) 5 days - 74.03 (0.12) 5 days - 14.58 (0.02) 

ESS7 40 mg - 51.95 (0.16) 6 days - 45.09 (0.21) 6 days - 26.47 (0.03) 

ESS8 20 mg - 53.01 (0.21) 5 days - 52.89 (0.16) 5 days - 24.67 (0.03) 

ESS9 40 mg - 51.95 (0.15) 6 days - 53.82 (0.21) 6 days - 20.70 (0.02) 

ESS10 5 mg - 44.17 (1.10) 5 days - 35.73 (0.22) 5 days - 37.68 (0.07) 

ESS11 5 mg - 38.56 (0.48) 2 days - 39.34 (0.32) 4 days - 41.67 (0.09) 
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Figure A.1. Percent sorption of 20 ppm Norflurazon on 10 mg of ESS3 at (a) pH 6.00 and a 

concentration of 0.1 - 0.001 M of MES buffer as well as a non-buffered set as control and (b) 

various pH in buffer of 0.05 M MES. With concentration of 0.01 M Mes buffer and pH 5.75 chosen 

for all experiments.  
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Appendix 2. Spectra for Chapter 2 

 NMR spectra 

  

 

Figure A.2. 1H NMR spectra of 10-undecen-1-yl-2-bromoisobutyrate (3) 

 

 

Figure A.3. 1H NMR spectra of 11-(2-Bromo-2-methyl) propionyloxy undecyltrichloriosilane (4) 
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Figure A.4. 1H NMR spectra of 2-methoxy-4-vinylphenyl acetate (6) 

 

 

Figure A.5. CP-MAS 13C NMR of SiO2-C6 (ESS 2) 
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Figure A.6. CP-MAS 13C NMR of SiO2-C12 (ESS 3) 

 

 

Figure A.7. CP-MAS 13C NMR of SiO2-C18 (ESS 4) 
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Figure A.8. CP-MAS 13C NMR of SiO2-C11-PS (ESS 5) 

 

 

Figure A.9. CP-MAS 13C NMR of SiO2-C11-PAS (ESS 6) 
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Figure A.10. CP-MAS 13C NMR of SiO2-C11-PAMS (ESS 7) 

 

 

Figure A.11. CP-MAS 13C NMR of SiO2-C11-PASH (ESS8). The NMR also shows some residual solvent 

from final washing step (peaks x and y). 
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Figure A.12. CP-MAS 13C NMR of SiO2-C11-PAMSH (ESS9) 

 

 

Figure A.13. CP-MAS 13C NMR of SiO2-C11-PS-PMMA (ESS10) 
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Figure A.14. CP-MAS 13C NMR of SiO2-C11-PS-PMAA (ESS11) 
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TGA Thermograms 

        
 

   
 

 

Figure A.15. TGA thermograms of blank silica  
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Figure A.16. TGA thermograms of Tier-I ESSs. SiO2-C6 was synthesized in 3 batches and the mixture in 

equal amounts was used for sorption studies. 
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Figure A.17. TGA thermograms of  SiO2-C11-PS Tier-II ESSs and their SiO2-C11-Br precursor. SiO2-C11-

PS was synthesized in two batches and mixed in equal amounts for use in sorption studies. 
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Figure A.18. TGA thermograms of SiO2-C11-PAS and SiO2-C11-PAMS Tier-II ESSs and their SiO2-C11-

Br precursor 
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Figure A.19. TGA thermograms of SiO2-C11-PASH Tier-II ESSs and their SiO2-C11-Br and SiO2-C11-PS 

precursors. SiO2-C11-PASH was synthesized in two batches and mixed in equal amounts for use in 

sorption studies. 
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Figure A.20. TGA thermograms of SiO2-C11-PAMSH Tier-II ESSs and their SiO2-C11-Br and SiO2-C11-

PS precursors. SiO2-C11-PAMSH was synthesized in two batches and mixed in equal amounts for use in 

sorption studies. 
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Figure A.21. TGA thermograms of SiO2-C11-PS-PMMA and SiO2-C11-PS-PMAA tier-III ESSs and their 

SiO2-C11-Br and SiO2-C11-PS precursors.  
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Appendix 3. Experimental and Spectra for Chapter 3 

 
     Screening reaction with (0.1 equivalent 10mol% Cu(I)Br based on moles of initiator) 

In a 100ml RBF charged with 25 ml of toluene, 2.0g initiator (6.3 mmol) was added and the RBF 

was purged with N2 for 5 minutes. Cu(I)Br (89 mg, 62mmol) and PMDETA (0.13ml, 62 mmol) 

were added followed by purging with N2 for another 5 minutes. Styrene (3.58g, 36 mmol) was 

added and the reaction was refluxed in toluene. Aliquots were taken in 12, 18 and 24 hr and 

analyzed by NMR. 

     ATRP for tier-II oligomer to obtain approx. 5 units of styrene 

In a 250 ml RBF charged with 50 ml Toluene, 2.0g initiator (6.3 mmol) was added and the RBF 

was purged with N2 for 5 minutes. Cu(I)Br (224 mg, 156mmol) and PMDETA (0.32 ml, 156ml) 

were added followed by purging with N2 for another 5 minutes. Styrene (3.58g, 36 mmol) was 

added and the reaction was refluxed in toluene for 24 hours. The crude product was washed with 

5x20 ml methanol and put under high vacuum for 5 hours. Resulting product was characterized 

with NMR and MALDI. 

To obtain DP of N, [M]/[I] ratio adjusted to slightly more than N. 

     ATRP f for tier-II oligomer to obtain approx. 5 units of PMMA 

In a 250 ml RBF charged with 50 ml Toluene, 2.0g initiator (6.3 mmol) was added and the RBF 

was purged with N2 for 5 minutes. Cu(I)Br (224 mg, 157mmol) and PMDETA (0.32 ml, 156 

mmol) were added followed by purging with N2 for another 5 minutes. Methyl methacrylate 

(3.45g, 35 mmol) was added and the reaction was refluxed in toluene for 24 hours. The crude 

product was washed with 5x20 ml hexane and put under high vacuum for 5 hours. Resulting 

product was characterized with NMR and MALDI. 

To obtain DP of N, [M]/[I] ratio adjusted slightly more than N. 
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     Generic reaction to obtain tier-III oligomer form tier-2 macroinitiator to obtain DP N 

In a 250 ml RBF charged with 50 ml Toluene, approximately 4g tier-2 macroinitiator was added 

and the RBF was purged with N2 for 5 minutes. Cu(I)Br (25 mol % or 0.25 mol equivalent) and 

PMDETA (25 mol% or 0.25 mol equivalent) were added followed by purging with N2 for 

another 5 minutes. Momomer (Slightly excess than N* moles of initiator) was added and the 

reaction was refluxed in toluene for 24 hours. The crude product was washed with 5x20 ml 

methanol and put under high vacuum for 5 hours. Resulting product was characterized with 

NMR and MALDI 

     Experimental for MALDI 

A sample solution of about 0.1 mg/mL was prepared by adding acetone into a sample. A 

saturated solution of 2,5-Dihydroxybenzoic acid (DHB; Sigma-Aldrich, St. Louis, MO, USA) 

dissolved in methanol was used as the matrix. A sample solution of 0.5 uL was first deposited to 

the MALDI target plate followed by 0.5 uL matrix deposition above it and mixing before the 

drying of the components. MALDI-TOF MS measurements were performed on a commercial 

instrument (Ultraflextreme, Bruker Daltonics, Billerica, MA, USA). Mass spectra were recorded 

in positive ion reflectron mode with an accelerating voltage of 25 kV and analyzed in the mass 

range of 500–4500 Da. The spectra were acquired after calibration of the instrument with a 

peptide standard (Peptide Calibration Standard II, Bruker Daltonics, MA, USA). A minimum of 

500 laser shots per sample was used to generate each mass spectrum. 

     Experimental for solid-state TGA and 13C-NMR 

All ESSs were characterized by a combination of TGA, solid-state NMR, and XPS. The TGA 

analysis was performed on 4 to 8 mg of sample using a TA System TGA 2950, with a 

temperature ramp of room temperature (RT) to 600 ºC at a rate of 10 ºC per minute. The percent 

mass loss versus temperature was plotted. The solid-state NMR analysis employed 1H-13C cross 
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polarization magic angle spinning (CP-MAS) technique and was performed on an AV 400 MHz 

Bruker solid-state instrument with sample packed into a 4 or 2.5 mm ZrO2 rotor. Spectra were 

acquired using the following parameters: 2048 scans, ramp cross-polarization, contact time of 2 

ms, 2.0 s delay between scans; spinning speed of 12-15 kHz, a 120 Hz line broadening function 

was applied, and referenced to y-glycine -CH2- signal at 43.5 ppm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



130 
 

S3. Grafting performance of SiCl3-C11-PMMA10 

 

 

Figure A.22. TGA of 7.0% TOF grafted SiO2-C11-PMMA10 

 

 

Figure A.23. TGA of 12.4% TOF grafted SiO2-C11-PMMA10 

 

 

Figure A.24. TGA of 16.4% TOF grafted SiO2-C11-PMMA10 
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S4. MALDI-TOF spectra of oligomers 

 

 

Figure A.25. MALDI TOF of C11-PS oligomer showing peaks with MW difference of 104. 

(styrene repeating unit). Although the exact peak MW was not seen, the MW ranges shows 

DPavg 10.  
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Figure A.26. MALDI TOF of C11-PMMA-PS oligomer showing peaks with MW difference of 

100 (MMA repeating unit). Although the MWs did not match exactly with the peaks, MW range 

suggests DPavg of both PS and PMMA to be 5 from MW calculations shown in the figure. 
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