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ABSTRACT  

Outbreaks of shiga-toxin producing Escherichia coli (STEC), namely E. coli O157:H7, 

with other multi-drug resistant bacteria (MDRB) alongside the unfortunate dearth in antibiotic 

drug development have helped to create a platform in which infections caused by pathogenic 

bacteria have become superior. This problem necessitates the development of novel 

antimicrobial agents with high potency and low toxicity. 

The research presented in this dissertation explores a novel pragmatic therapeutic 

approach for control, prevention, and treatment of infectious disease using Active-

Pharmaceutical Ingredient-based Ionic Liquids (API-ILs) and Groups of Uniform Materials 

Based on Organic Salts (GUMBOS). Accordingly, several antiseptic- and antibiotic-based API-

ILs and GUMBOS were synthesized and characterized using a combination of analytical and 

microbiological techniques. Overall, this research presents an advanced alternative to 

combination antibiotic therapy by using a novel group of ionic antimicrobial materials that have 

controlled pharmacokinetics, improved bioavailabilities, reduced toxicities, multi-modal 

properties, and potent antimicrobial spectrum of activity as a viable alternative to combating 

bacterial infections. 

The first part of this research provides the physical characterization and subsequent in 

vitro antimicrobial activity of ampicillin-based ILs consisting of several different quaternary 

ammonium compounds (QACs) on Escherichia coli O157:H7, Klebsiella pneumoniae, 

Staphylococcus aureus, and Listeria monocytogenes. The synthesized API-ILs were validated 

with proton nuclear magnetic resonance spectroscopy (NMR) and elemental analysis. Melting 

points, critical micelle concentrations, and solubility were among the other physical properties 
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investigated. Improved antibacterial activity was evaluated using Loewe’s Additivity 

Mathematical Model and interaction indices were established and compared to mixtures of 

precursor QACs and ampicillin. 

The second part of the dissertation research focuses on the synthesis and antibacterial 

activity of GUMBOS created from an antiseptic and several β-lactam antibiotics. Using anion 

metathesis, four β-lactam antibiotic-based chlorhexidine GUMBOS were synthesized prior to 

validation using proton and carbon NMR, mass spectrometry, elemental analysis, and absorbance 

spectroscopy. Several orders of improvement in in vitro antibacterial activities were obtained on 

isolates of Escherichia coli O157:H7, Salmonella typhi, Acinetobacter baumanii, Enterbacter 

clocae, Enterbacter aerogenes, Klebsiella pneumoniae, Pseudomonas aeruginosa, Serratia 

marscescens, Staphylococcus aureus, Streptococcus mutans Streptococcus facaelis, Micrococcus 

luteus, Bacillus cereus, and Methicillin-resistant Staphylococcus aureus. Interaction indices 

show the GUMBOS to be synergetic ion-pairs despite additivity and antagonism observed by the 

mixtures of antiseptic and antibiotic precursor ions.  Furthermore, the mechanisms of action 

studies for these materials were defined with emphasis on membrane permeability and 

membrane potential. Finally, acute cytotoxicity against fibroblast, endothelium, and cervical 

cellular lines in addition to an assessment of intestinal permeability and bioavailability were 

completed.     

Specific target applications for this work include the reduction of STEC fecal shedding 

from ruminant sources, prevention of meningitis onset in neonates by the eradication of Group B. 

Streptococci, reduction in catheter-associated bacteremia, and extension of antibacterial efficacy 

and spectrum of activity of antibiotics against multi-drug-resistant microbes that colonize in 

wound beds.  
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CHAPTER 1 INTRODUCTION 

1.1 Bacteriology and Infectious Disease 

1.1.1 Bacteria 

Originally called “animalcules”, bacteria were studied microscopically by Antonie van 

Leeuwenhoek during the mid- 17
th

 century.
1
 They were not known as bacteria until the 1830s 

when Christian Gottfried Ehrenbug defined the genus based on his scientific observations as 

“non-spore forming rod-shaped bacteria”. 
1
However, bacteria are defined as single-celled, 

prokaryotic microorganisms.
1
 Bacteria have several morphologies (i.e. spheres, rods, and spirals) 

and sizes which range on the scale of microns (Figure 1.1). Most bacteria are spherical, named 

cocci, or rod-shaped, called bacilli.
1
 Slight differences in the morphology from spheres or rods 

have led to different classes of bacteria named by their shapes such as comma (Vibrio), spiral 

(Spirilla), or coiled (Spirochaetes). The shapes of bacteria are determined by the cell wall and its 

cytoskeleton.
 1

 Aside from morphology, bacteria arrange in ordered arrays that add to their 

diverse nomenclature. For example, Streptococci species form chains whereas Staphylococci 

species form clusters.  

 

Figure 1.1. Types of bacteria by shape. 
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1.1.2 Morphology and Cellular Structure 

Bacteria are visually distinguishable using Gram-staining (named after Christian Gram, 

Danish scientist and physician, 1853-1938).
1
 This bacteriological method separates bacteria into 

two classes based on their abilities to retain dyes and the physical properties of their cellular 

walls. Additionally, this method allows for their morphologies and arrangements to be visualized 

microscopically. The principle of Gram-staining is premised on the notion that Gram-positive 

bacteria have a thicker cellular wall than Gram-negative.
1
 Hence, Gram-positive bacteria retain 

both the crystal violet and safranin stains while Gram-negative bacteria only show the pink 

safranin dye. Examples of Gram-positive bacteria are Staphylococcus and Enterococcus and 

examples of Gram-negative bacteria are Escherichia and Salmonella. 

 

Figure 1.2. Basic components of a bacterial cell. 
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Bacteria are structurally composed of two major parts: intracellular and extracellular 

components (Figure 1.2). The intracellular components are enclosed by a hydrophobic cell 

membrane which envelopes its essential materials. Prokaryotes are structurally simple as 

compared to eukaryotic cells since they do not contain various membrane bound organelles.
1
 

Instead of mitochondria, bacteria use micro-compartments that maintain cellular metabolisms 

and membrane potentials which are generated via biochemical reactions across cellular 

membranes.
1
 Bacteria have a nucleoid that stores its genetic material. The only common feature 

amongst all cells is the presence of ribosomes which helps to generate proteins and enzymes for 

routine function. The intracellular components are protected by a cellular wall composed of 

peptidoglycan, which is also the lethal target of beta (β)-lactam antibiotics.
1
 As previously 

mentioned, Gram-staining reveals the structural differences in the extracellular components of 

Gram-positive and Gram-negative bacteria. Gram-positive bacteria have a thicker cell wall that 

is composed of both peptidoglycan and techoic acid layers, which helps to retain Gram-stains.
1
 

However, Gram-negative bacteria have a thin layer of a peptidoglycan cell wall with a thick 

secondary cell membrane composed of lipopolysaccharides and lipoproteins.
1
 Although the 

conventional structure of bacteria contains a cell membrane and cell wall, the thickness and 

assembly can vary affecting the bacterium’s susceptibility to many antimicrobial agents. 

Additional components on the extracellular framework, can include flagella, fimbriae, and pilli 

as well as the production of protective slime layers, but are not characteristic of the bacteria 

studied in this research and details about their roles are omitted. 

1.1.3 Growth and Reproduction 

Bacteria are asexual microorganisms that reproduce via binary fission. Cell growth are 

defined as occurring in three phases, i.e. lag phase, logarithmic phase, and stationary phase, prior 

to cell death.
1
 The first phase, called the lag phase, allows the bacteria to adapt to its growth 
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environment. This is a slow growth process and has the highest protein synthesis rates prior to 

the logarithmic phase. In this phase, the bacteria have become well-adjusted to its environment 

and begin to multiply exponentially. The rate at which bacteria multiply is known as the growth 

rate which is dependent on the cells splitting rate known as generation time.
1
 The rate limiting 

factor during this phase is the speed in which the key nutrients required for optimal growth are 

consumed. Once depleted, bacteria growth becomes static and cells enter into the stationary 

phase. This phase causes cells to adapt to the lack of nutrients as they try to survive in a stress 

response state.
1
 Prior to cell death, bacteria express high amounts of genetic information relevant 

to DNA repair, antioxidant metabolism, and nutrient transport.  

1.1.4 Associations with Other Organisms  

Bacteria are highly adaptable and thus are found in a wide variety of environments. They 

are capable of forming complex associations with other organisms in which these associations 

can be categorized as parasitism, mutualism, and commensalism.
1
 Within the scope of this 

dissertation, only associations based on commensalism and parasitism will be addressed. 

Bacteria that exercise commensalism are able to survive without harming or helping the host. 

Examples of commensalism lie in the types of bacteria that innocuously reside inside the mouth, 

nose, and intestinal tract of mammals.
1
In any type of benefit to the host, the colonization of these 

bacteria prevents the intrusion of harmful bacteria into that site. As a result, some are beneficial 

as part of the normal human flora while some bacteria can cause several diseases and infections. 

Bacteria that unilaterally deplete the host’s health and detrimentally affect its immune system as 

an effort to survive are considered to be opportunistic and are parasitic.
1
 These bacteria 

proliferate at the expense of the host causing its exposure to various secreted poisonous 

substances. Contact with such poisons (i.e. endotoxins and exotoxins) can result in the onset of 
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disease and infection.
1
 Therefore antibacterial agents are used to prevent the effects of their 

parasitic intrusion that results in host morbidity and mortality.  

1.1.5 Pathogenic Bacteria and Infectious Disease 

Pathogenic bacteria are microorganisms that cause infection which sometimes result in 

disease. Their degree of pathogenicity or virulence is often the result of their genetic, 

biochemical, or structural features.
1
 Since pathogenic bacteria are parasitic microorganisms, the 

degree of virulence is dependent on the strength of the host’s immune system, the resilience or 

susceptibility of the bacteria, and the bacteria’s virulence factors.
1
  Pathogenic bacteria have two 

main methods of inflicting disease: 1) invading tissues and colonizing and/or 2) producing 

toxins.
1
 Invasiveness allows the bacteria to initially adhere to the tissue surface, grow, and 

produce extracellular substances that debilitate host mechanisms.
1
  This usually occurs at sites 

exposed to the external environment such as the urogenital tract, digestive tract, respiratory tract 

and the eye. Bacteria that prey on these sites have special adherence mechanisms which allow 

resistance to host defenses. There are two mechanisms (i.e. nonspecific adherence and specific 

adherence) that facilitate bacteria cell adhesion, in which examples of bacterium-specific 

adhesin-receptors per adhesion site are listed in Table 1.1.
1
 Nonspecific adherence to eukaryotic 

cells uses various attractive forces and Brownian motion.
1
 However, a bacteria’s ability to 

specifically adhere to a site relies on a receptor and ligand relationship.  Receptors are commonly 

peptides, proteins, or carbohydrates, on the surface of a eukaryotic cell.
1
 However, the bacterial 

ligand is called an adhesin. Adhesins are polymeric cell surface proteins that control the 

complimentary interaction between the bacteria and host cell receptor site.
1
 This is a property of 

the bacteria extracellular components, namely the pilli and fimbriae.  More specifically, some 

bacteria choose particular cells and tissue sites in which to colonize. Examples of histotropic 

bacteria that use their invasiveness to inflict disease are Pseudomonas aeruginosa, Acinetobacter 
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baumanii, and Enterbacter cloacae, since they have an apparent tissue preference over others. 

The methods in which these bacteria and some others adhere to cell receptors sites and the 

resulting disease are highlighted in Table 1.1.  

Table 1.1. Examples of adhesin-receptors per adhesion site by various bacteria.
2
 

Bacterium Adhesin Receptor Attachment site Disease 

Streptococcus 

pneumoniae 

Cell-bound 

protein 

N-acetylhexos-amine-

galactose disaccharide 
Mucosal 

epithelium 
Pneumonia 

Amino terminus of 

fibronectin 

Staphylococcus 

aureus 

Cell-bound 

protein 

Species-specific 

carbohydrate(s) 

Mucosal 

epithelium 
Various 

Enterotoxigenic 

E. coli 

Type-I 

fimbriae 
Complex carbohydrate 

Intestinal 

epithelium 
Diarrhea 

Uropathogenic 

E. coli 

Type I 

fimbriae 

Globobiose linked to 

ceramide lipid 

Urethral 

epithelium 
Urethritis 

Pseudomonas 

aeruginosa 

Type-I V 

Pilli 

Species-specific  

carbohydrate(s) 
Upper 

respiratory tract 
Pneumonia 

Klebsiella 

pneumoniae 

Type-I  

fimbriae 

Species-specific  

carbohydrate(s) 
Upper 

respiratory tract 
Pneumonia 

Enterobacter 

cloacae 

Type – I 

fimbriae 

Species-specific  

carbohydrate(s) 
Mucosal 

epithelium 
Pneumonia 

Acinetobacter 

baumanii 

Cell-bound 

protein 

Species-specific  

carbohydrate(s) 

Mucosal 

epithelium 
Pneumonia 

 

The other method, toxigenesis, is a method in which bacteria excretes either endotoxins or 

exotoxins which can adversely affect the host. Endotoxins are cell-associated molecules that are 

usually found within the outer membrane (i.e. lipopolysaccharide) of Gram-negative bacteria.
1
 

These toxins are not secreted by cells, but rather are released when lysed by antibiotic therapy or 

the host’s immune defenses.
1
 Bacteria that harvest endotoxins are Gram-negative pathogens such 
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as Neisseria meningitides that causes meningococcal disease and Listeria monocytogenes that 

causes listeriosis. By contrast, exotoxins are released from bacterial cells. Some exotoxins 

behave differently on target cells and can be categorized by: (1) identification of toxin-producing 

organism, (2) identification of organism susceptible to toxin, (3) target susceptibility to toxin, (4) 

chemical structure or morphology, (5) resistance to environmental stressors, and (6) 

chronological discovery-based nomenclature.
2 

Many exotoxins can be identified by several of 

these categories. An example of an exotoxin is botulinum toxin produced by Clostridium 

botulinum. Both endotoxins and exotoxins can be transported in circulation and result in 

cytotoxic effects at localized and remote sites of invasion.
1
  

1.2 Introduction to Antibacterial Drugs  

1.2.1 History of Antibiotic Development 

The emergence of antibiotic drug resistance among bacteria has become an increasing 

health problem. Therefore, to better understand this dilemma it is useful to understand the 

history and development of antibacterial drugs or antimicrobial agents. Antimicrobial agents 

are generally classified into two categories: 1) antimicrobial drugs such as antibiotics amongst 

other systemic drugs for infection treatment, and 2) antiseptics and disinfectants, used to 

sterilize surfaces.
1 

Several types of antimicrobial drugs exist. Naturally occurring drugs 

synthesized from microorganisms are defined as antibiotics.
1
 Chemically synthesized drugs 

that do not resemble the pharmacophoric groups of antibiotics are called synthetic drugs.
1
 The 

majority of antimicrobial drugs that have been developed are known as semi-synthetic drugs, 

which are chemical derivatives of antibiotics.
 1

 

Prior to modern day medicine, society relied on plant products to treat disease even 

though their therapeutic properties were not clearly understood. These earlier medicines were 

most effective on protozoan disease rather than bacterial infections. Early records show that both 
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cinchona and ipecacuanha roots were effective treatments for malaria and dysentery, 

respectively.
3
 Bacterial infections (i.e. syphilis) caused by Trepnema pallidum was treated with 

guaiacum and heartsease and sometimes systemic mercury.
3
 

The use of synthetic materials as antimicrobial agents serendipitously began with Paul 

Ehrlich. He hypothesized that a “magic bullet” for the diagnosis and treatment of opportunistic 

bacterial infections could come about a combinatorial based staining treatment that consisted of a 

pathogen selective dye and a bactericidal toxin.
4
 In the midst of searching for a less toxic version 

of the sleeping sickness cure Atoxyl, Ehrlich with Sahachiro Hata discovered that the 

arsphenamine compound known as Salvarsan had anti-syphilitic activity.
4
 However, this 

compound required the body to metabolize it into its active form even though still exploiting 

patients to its idiosyncratic side effects. Sulfonamides or sulfa-drugs are credited to be the first 

class of synthetic drugs. The antibacterial property of the first sulfonamide, trademarked as 

Prontosil, was discovered by Gerhard Domagk.
4
 It had strong preferential antibacterial activity 

for hemolytic streptococci rather than other Gram-positive cocci. Unfortunately, Prontosil did 

not show antibacterial activity in vitro. Later it was revealed by Ernest Fourneau that when 

Protosil is administered in vivo it is metabolized into two portions, an inactive dye and a 

pharmacologically active sulfanilamide.
4
 This discovery led to the manipulation of the 

sulfanilamide molecule as an effort to identify more broadly active, potent antimicrobials with 

reduced cytotoxicity.  

The idea to use microorganisms therapeutically is not new. Known formally as 

antibiotics, this approach was used to describe any substance produced by one microorganism 

that inhibited the growth of a secondary opportunistic microorganism.
1
 This definition excludes 

naturally occurring substances lethal to microorganisms that were not produced by other 
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microorganisms or chemically synthesized substances such as in the case of sulfonamides.
1
 

Native Americans relied on antibiotic therapy for many years. Early Native American documents 

report the use of a “slimy” fungus to treat skin abscesses.
3
 In the 1890s, Rudolf Emmerich and 

Oscar Low Coghill at the United States Department of Agriculture's Northern Regional Research 

Laboratory in Illinois used mold from a cantaloupe to produce higher yields of penicillin.
5
 

Throughout the 1940s and 1950s, substantial efforts were pursued to capitalize on the new found 

ability to extract high yields of penicillin. Dorothy Crowfoot Hodgkin elucidated the 6-

aminopenicillanic acid (6-APA) chemical structure of penicillin in 1945.
5
   

A variety of antibiotics surfaced after the discovery of penicillin, mostly those composed 

of the 6-APA backbone. In 1948, Giuseppe Brotzu isolated a similar drug to penicillin known as 

cephalosporin from Cephalosporium acremonium.
5
 It is documented to be one of the first 

antibiotics effective against Salmonella typhi, which was resistant to other penicillin analogs. 

Guy Newton, Edward Abraham, and Sir William Dunn isolated cephalosporin C, in which the 7-

aminocephalosporanic acid (7-ACA) backbone was determined.
5
 Cephalothin was the first 

synthetic cephalosporin manufactured by Eli Lilly & Co. in 1964.
1
 Other antibiotics were 

subsequently developed. For example, Selman Waksman and Albert Schatz are accredited for the 

discovery of streptomycin and neomycin, later part of the antibiotic class of aminoglycosides.
6
 

Likewise, Rene Dubos discovered the polypeptide-type antibiotic gramicidin from Bacillus 

brevis in 1939.
7
 Shortly after, chlortetracycline and chloramphenicol were added to the growing 

antibiotic arsenal.
4, 8

 In 1962, the synthesis of nalidixic acid led to another antibiotic class known 

as fluoroquinolones.
4
  

The drugs developed since the 1960s have been analogs of existing synthetic antibacterial 

drugs. Resulting in more than 12,000 different active agents, structural modifications to the 
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pharmacophoric skeletons of existing antibiotics have resulted in improved bactericidal potency, 

broadened spectrum of activity, reduced toxicity, and attenuated adverse side effects.
 
 

Collectively, antibiotics have been the most important factor in extending the human lifespan.  

1.2.2 Types of Antibacterial Drugs by Class  

Infections caused by some bacteria pose a serious threat. Primarily, Gram-negative 

bacteria are quite efficient in acquiring resistance which can limit antibiotic therapy. Aside from 

deactivating various antibiotics, Gram-negative bacteria are able to release endotoxins from their 

outer membranes which also makes antibiotic therapy a contraindicated treatment option as well.  

Traditional synthetic approaches have yet to make a substantial contribution to any new 

classes of antibacterial agents. Thus, clinicians have relied on a series of antibiotic analogs that 

have reduced toxicities with increase spectrum and potent antibacterial activities. Though not 

differing vastly in structural components, the pharmacophoric groups of these antibacterial 

agents still face deactivation mechanisms already utilized by both Gram-negative and Gram-

positive bacteria.  In this section, mechanisms of action for each antibiotic class and mechanisms 

of antibiotic resistance are outlined.  

1.2.2.1 Inhibitors of Cell-wall Synthesis 

Beta-(β)-lactam  antibiotics and inhibitors are among the most commonly prescribed 

drugs, grouped together based upon the key pharmacophoric feature, the β-lactam ring, which 

inhibits the activity of transpeptidase and causing the cell wall to become defective.
1
 The basic 

structure of β-lactams consists of three parts: 1) a fused β-lactam ring, 2) a free carboxylic acid 

group, and 3) a substituted amino acid group.
1
 Structural variation around the β-lactam ring has 

yielded other drugs within this class such as penicillins, cephalosporins, carbapenems, and 

monobactams with added greater antimicrobial potency against broader spectra of 

microorganisms (Figure 1.3).  Most advances in antibacterial therapy have been effective on 
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Gram-positive bacteria, but recently approved β-lactam antibiotics such as ertapenem and 

doripenem have shown useful against Pseudomonas aeruginosa. Since some β-lactam antibiotics 

have lost potency against various species of Gram-negative bacteria, they are often combined 

with β-lactamase inhibitors.
1
 Inhibitors prevent enzymatic degradation of β-lactam drugs caused 

by β-lactamase (penicillinase) enzymes. Currently, there are three β-lactamase inhibitors 

available (i.e. sulbactam, tazobactam, and clavulanic acid).
1
 Due to the emergence of resistance 

to both β-lactam drugs and β-lactamase inhibitors, particularly by Gram-negative bacteria, these 

agents are losing usefulness in treating nosocomial infections. 

 

Figure 1.3. General structure of the five classes of β-lactam antibiotics. 

Other examples of antibiotics that attack the cell wall are within the class of 

glycopeptides. Glycopeptides are composed of either a glycosylated cyclic or polycyclic 

nonribosomal peptide which makes these molecules very large compared to other cell wall 

inhibitors (Figure 1.4). These antibiotics deactivate Gram-positive bacteria by binding to the 
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acyl-D-alanyl-D-alanine units that prevents the formation of new additions to the peptidoglycan 

cell wall.
1
 Due to their large sizes, these molecules are often excluded from Gram-negative 

bacteria and were commonly used to treat Gram-positive bacterial infections. Additionally, they 

are bacteriostatic against most species but are lethal to Enterococci species. However, 

vancomycin-resistance towards both Staphylococci and Enterococci species and toxicity has 

limited its clinical use.  

 

Figure 1.4. Two examples of glycopeptide antibiotics. 

1.2.2.2 Inhibitors of Protein and Nucleic Acid Synthesis 

Other conventional antibiotics belong to classes that attack protein synthesis or inhibit nucleic 

acid synthesis. Examples of these types of antibiotics are shown in Figure 1.5. Antibiotics that 

target the protein synthetic pathways selectively target bacterial ribosomes. Known as 

aminoglycosides, these molecules consist of amino-modified sugars and enter the bacterial cell 

through active transport to subsequently bind to the ribosomal subunit.
1 

With over 14 analogs, 

these molecules selectively target different ribosomal subunits within the cell.
1 

For instance, 

streptomycins target the 30S ribosomal subunit; whereas, kanamycins and neomycins bind to 

both 30S and 50S subunits but in different locations than streptomycins.
1
 In addition to protein 
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inhibition, these molecules are also capable of disrupting the cell membrane by creating fissures 

and causing the intracellular components to leak. This antibiotic is typically administered to treat 

Gram-negative bacterial infections; however, modification to ribosomal proteins, alteration to 

cellular membranes or degradation of this antibiotic has led to increased bacterial resistance.
1
  

 

Figure 1.5. Examples of three types of antibiotics that inhibit protein and nucleic acid syntheses.  

 

Chloramphenicol is a broad-spectrum antibiotic that also inhibits protein synthesis by targeting 

the 70S ribosomes.
1
 This molecule is active against resistant Gram-positive bacteria and some 

Gram-negative bacteria.  For example, this drug is not an effective treatment for infections 

caused by Pseudomonas aeruginosa or Enterobacter species.  This antibiotic has been replaced 

by more recent, inexpensive alternatives but still remains the ideal treatment for meningitis and 

infections in those with penicillin allergy. Unfortunately, therapeutic use of this antibiotic has 

resulted in several adverse reactions such as aplastic anemia, leukemia, and Gray Baby 

Syndrome.
1
 Resistance to chloramphenicol has also been reported. Enzymatic degradation of 

chloramphenicol by chloramphenicol acetyl-transferase prevents its binding to the bacterial 

ribosome.
1 

Similar to other large molecules, changes in the outer membrane permeability in 
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Gram-negative bacteria also inhibits the entrance of the bacteriostatic drug.  Lastly, tetracyclines 

target protein synthesis by binding to the 30S subunit and deactivating aminoacyl tRNA. 

Tetracyclines are cationic broad-spectrum antibiotics consisting of four fused rings.
1
  Resistance 

also limits the clinical use of this type of antibiotic in that it is easily removed by efflux pumps, 

proteins have modified its target ribosomal binding subunit, or it is enzymatically inactivated.
1
 

 

Figure 1.6. Examples of DNA- and RNA-targeting antibiotics. 

 

Some antibiotics that inhibit nucleic acid synthesis also stop folate synthesis. 

Representative DNA and RNA targeting antibiotics are shown in Figure 1.6. Folate is a 

coenzyme used to produce DNA and RNA in bacteria and is the target of sulfonamides and 

diaminopyrimidines.
1 

Limited to sulfur allergies, sulfonamides are commonly not used unless 

used in combination with a diaminopyrimidine as in the formulation of trimethoprim-

sulfamethoxazole.
1
 The inefficacy of sulfonamide drugs results from the over-production of p-

aminobenzoic acid or production of dihydropteroate synthetase while the over-production of 

dihydrofolate reductase or production of a drug resistant version collectively limits the activity of 

diaminopyrimidines.
1 

Quinolones also inhibit bacteria growth by acting on enzymes in DNA 

synthesis. Its broad spectrum activity results from its ability to target primary DNA in Gram-

negative bacteria and topoisomerase IV in Gram-positive bacteria.
1
Quinolone resistance results 

from decreased expression of membrane porins which enables its activity on DNA.
1 

However, 
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modifications in efflux pumps and alterations in target enzymes also prevent this antibiotic from 

being effective.  

A new class of antibiotics, known as glycylcyclines, has broad-spectrum antibacterial 

action for both drug-susceptible and resistant Gram-positive and Gram-negative microorganisms 

(Figure 1.7). Similar to tetracycline and aminoglycoside antibiotics, glycylcyclines antibiotics 

block protein synthesis by binding to the 30S ribosomal unit in the bacterial cell.
1
The most 

recent advancement, Tigecycline, was approved in 2005 by the United State Food and Drug 

Administration (FDA) as a treatment for skin and wound infections.
1 

Unfortunately, this 

antibiotic’s utility is limited due to its inability to overcome the resistant efflux pump 

mechanism, specifically MexXY, in P. aeruginosa bacterial cells.
1
Another recently developed 

antibiotic that exhibits good antimicrobial activity against Enterobacteriaceae is fosfomycin 

tromethamine.
1 

Although it has better pharmacokinetic properties, it also shows limited activity 

against P. aeruginosa. Both tigecycline and fosfomycin are the better antibiotic options available 

to treat infections caused by Gram-negative bacteria; however, concerns about resistance still 

prevail

Figure 1.7. Structures of Tigecycline and Fosfomycin antibiotics. 
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1.2.2.3 Antimicrobial Peptides 

Antimicrobial peptides are a unique and diverse class of biologically available molecules 

that have broad spectrum activity against a wide variety of microorganisms, including drug-

resistant bacteria. Composed generally of 12 – 50 amino acids, these peptides consist mostly of 

positively charged amino acids (i.e. arginine, lysine, or histadine) and hydrophobic residues.
1 

Similar to other proteins, these antimicrobial agents can possess α-helical, β-stranded, β-hairpin, 

or extended configurations.
1 

Because of its amphipathicity, these agents are able to partition into 

biological membranes by folding and inserting through the lipid bilayers forming pores. Their 

major mechanism of action involves membrane permeation, but these agents are able to target 

various sites within the bacterial cell making them highly effective.
1
 An example of a potent 

antimicrobial peptide is Polymyxin B, the most promising new additions to this class being 

ceraginins and the NAB-series of polymyxins.
1 

Often considered as a last resort, these agents 

have suffered from induced cytotoxicity and narrow spectrum activity against Gram-positive 

bacteria.  

1.2.2.4 Anti-Toxigenesis and Invasiveness Inhibitors 

An indirect approach to treating infections caused by Gram-negative bacteria is to 

interfere with the virulence factors and efflux pump regulation in the cells instead of targeting 

bacteria viability.
1 

This approach prevents the process of infection because the bacteria cell is 

unable to recognize host signals thereby limiting its pathogenic effect on the host.  This results in 

limited colonization in histological morbidity and improved host immune response.  Main anti-

virulence target approaches include inhibitors of toxins and adhesins, organism specific virulence 

gene expression, and organisms specific cell-to-cell signaling.
2
 Controlling the activity of efflux 

pumps is another viable method to improve the efficacy of antibiotics on these organisms. Since 

Gram-negative bacteria rely heavily on efflux pumps to prevent the intrusion of antibiotics, this 
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is a sensible target when using combination drug therapy. Though useful in improving activity 

against multi-drug resistant (MDR) bacteria, these agents are limited and few have been 

approved for clinical use.  

1.2.3 Mechanisms of Antibiotic Action and Resistance 

Antibiotics are often grouped by their antibacterial action and spectrum of activity against 

a range of microorganisms. Targeting different regions of the bacterial cell allow for a variety of 

antibiotics to be used alternatively to ineffective antibiotics. The inability for an antibiotic to 

detrimentally impact the survival of bacteria in which it once was effective is known as antibiotic 

resistance.
1 

Sometimes an innate feature of a bacterial species, antibiotic resistance is often an 

adaptation in which the bacterium modifies its cellular structure to resist the treatment of a 

familiar class of antibiotics. 

Antibiotic resistance can be categorized into two types, intrinsic or acquired. Intrinsic 

resistance is an inherited trait within a bacterial species that prevents the bacterium from being 

negatively affected by a class of antibiotics.
1
 This particular type of resistance requires no 

alterations to the DNA of the microorganism. Usually, antibiotics are ineffective on this type of 

species because the microbe either lacks an antibiotic target or has a barrier in which the 

antibiotic is unable to permeate. A classic example is the intrinsic resistance of mycoplasmas to 

β-lactam antibiotics, since they lack the peptidoglycan cell wall that these drugs target.
1
 The 

second example is the impermeable outer membrane present in Enterobacteriaecae.
1
 Acquired 

resistance can also occur through genetic mutation.
1 

This type of resistance happens when an 

organism that is slowly exposed to an antibiotic adapts so it can tolerate further exposure to a 

particular class of antibiotics. Bacteria with acquired resistance are also able to structurally 

modify and deactivate an antibiotic, alter a drug’s accessibility to its target, or inhibit the drug’s 
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uptake.
1 

A summary regarding each class of antibiotic, mechanism of action, and mechanism of 

resistance is outlined in Table 1.2. 

1.3 Introduction to Antiseptics and Disinfectants 

Antiseptics and disinfectants have been indispensable in controlling infections in hospital 

settings and maintaining food safety and quality. Although the terms antiseptic and disinfectant 

are commonly used interchangeably, the two can be distinguished by their roles. By definition, 

antiseptics are defined as broad-spectrum antimicrobials that destroy or inhibit the growth of 

microorganisms on living tissues, while disinfectants inhibit bacterial existence on inanimate 

objects or surfaces.
1
 Both agents have an essential role in controlling microbial growth as either 

an agent in sterilization or preservation.
1
 Sterilization uses the chemical nature of an 

antimicrobial agent to remove the presence of microorganisms from a surface.
1
 For instance, 

physicians sterilize their hands using surgical scrubs prior to surgery to eliminate the presence of 

any bacteria that could be transmitted or cause an infection. On the other hand, preservation uses 

the chemical nature of an antimicrobial to inhibit the growth of bacteria in a consumer product 

such as in food packaging or cosmetic applique.
9
 Whichever the type of antimicrobial agent or 

application, its mechanism of action can be summarized by four key functions: 1) its electrostatic 

attraction to the bacterium cell, 2) interaction of the agent with the cellular surface, 3) 

permeation of the cell structure, and 4) action at the target site
9
. In spite of the vast number and 

types of biocides available and their more detailed independent mechanisms of action, only 

quaternary ammonium and bisbiguanidinium compounds and their interactions with different 

types of bacteria will be discussed in further detail, as these are the biocides used in the research 

presented in this dissertation. However, Table 1.3 categorically lists other examples of anti-
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Table 1.2. Summary of antibiotic classes, activities, and current mechanisms of action, and resistances.  

Antibiotic Class Mechanism of Action Mechanism of Resistance 

β-lactam Binds to penicillin binding 

proteins (PBPs), inhibiting 

peptidoglycan cross-linking in 

the cell wall. 

β-lactamase enzymes hydrolyze the β-lactam ring making it unable to inhibit 

peptidoglycan crosslinking 

Glycopeptides Binds to acyl-D-alanyl-D-

alanine in the peptidoglycan 

cell wall 

Enzymes use D-alanyl-D-lactate to construct peptidoglycan cell wall instead 

of acyl-D-alanyl-D-alanine 

Aminoglycosides 

& 

Chloramphenicol 

Binds to the 30S and/or 50S 

ribosomal subunit  

Protein structure modification in the ribosome inhibits binding; Changes in 

cell membrane that causes a reduction in antibiotic active transport ; 

Antibiotic is enzymatically hydrolyzed causing  structural modification  

Tetracyclines Inhibits protein synthesis by 

binding to 30S subunit in the 

ribosomal interfering with 

binding of aminoacyl tRNA.  

Bacteria efflux pumps prevent drug from entering; “Protection” proteins 

prevent binding to the ribosome target; Antibiotic is enzymatically hydrolyzed 

causing  structural modification 

Macrolides Promotes dissociation  of 

tRNA from the ribosome 

inhibiting ribosome assembly 

and preventing protein 

elongation by inhibiting 

peptide bond formation  

Bacteria efflux pumps prevent drug from entering; Site mutation of the 

ribosome allosterically prevents antibiotic binding 

Sulfonamides Interfere with nucleic acid 

synthesis by inhibiting folate 

synthesis 

Overproduction in dihydrofolate reductase or alterations is dihydropteroate 

synthetase enzymes prevent antibiotic interference 

Quinolones Target DNA gyrase and 

topoisomerase IV  

Decreased expression of membrane porins; Bacteria efflux pumps prevent 

drug from entering; Mutations in protein targets that reduce antibiotic binding 

affinity 
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Table 1.3. Chemical structures and use of select antiseptics and disinfectants against non-sporulating bacteria (Adapted from G. 

McDonnell and A. D. Russell (1999), with permission from the American Society for Microbiology). 

Chemical 

Class 

Example Structure Biocidal 

Class 

Mechanism of Action 

Alcohols Ethanol 

 

Sterilization 

Disinfection 

Preservation 

Results in bacterial cell lysis via 

membrane damage, protein 

denaturation, and interference 

with metabolism 

Aldehydes Glutaraldehyde 

 

Sterilization 

Disinfection 

Preservation 

Binds strongly to unprotonated 

amines on cell surfaces inhibiting 

transport and enzymatic systems 

Biguanides Chlorhexidine 

 

Antisepsis 

Antiplaque 

Deodorant 

Preservation 

Results in cell lysis by acting on 

membrane, precipitating proteins, 

and leaking intracellular materials 

Halogen-

releasing 

Agents 

Iodine 

 

Disinfection 

Antisepsis 

Cleaning 

Targets free-sulfur amino acids 

cysteine and methionine, 

nucleotides, and fatty acids 

Heavy 

Metal 

Silver 

 

Disinfection 

Preservation 

Antisepsis 

Inactivates enzymes and protein 

function  

Peroxygens Hydrogen 

Peroxide 
 

Disinfection 

Preservation 

Produces active hydroxyl free 

radicals that attack lipids, 

proteins, and DNA 

Quaternary 

Ammonium 

Compounds 

Benzalkonium 

chloride 

 

Disinfection 

Antisepsis 

Preservation 

Cleaning 

Distorts membrane integrity and 

results in intracellular material 

leakage 
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-septics and disinfectants by its application and chemical class to illustrate the similarities and 

differences between the types. 

1.3.1 Quaternary Ammonium Compounds  

Quaternary ammonium compounds (QAC)s represent a small fraction of surface-active 

agents that possess antibacterial properties widely used in disinfection. Other surface active 

agents with antimicrobial activities may lack a charge (i.e. nonionic) or have multiple charges 

(i.e. cationic, anionic, zwitterionic, or amphoteric). Most positively charged molecules with 

antimicrobial activity are QACs, although there are some molecules with negative charges.  

Structurally, these molecules consist of a charged “water-loving” head group and an aliphathic 

“water-fearing” tail group (Figure 1.8).  This imbalance between its hydrophilic and hydrophobic 

regions helps its surface-active properties to be conducive in its antimicrobial activity.
10

  

 

Figure 1.8. Structure of cetyltrimethylammonium bromide as a representative cationic 

quaternary ammonium compound. 

The primary mechanism of action for QACs lies primarily in its membrane activity. 

Figure 1.9 illustrates the events that have been postulated to lead to bacteria cell death after 

exposure to a QAC: a) the QAC is adsorbed on to the cellular surface; b) the QAC penetrates the 

cellular wall in Gram-positive bacteria or the outer membrane in Gram-negative bacteria; c) the 

Hydrophilic  Region
“Water Loving”Hydrophobic  Region

“Water Fearing”
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inner membrane is imbalanced by the QAC perturbing the organization of the lipid bilayer; d) 

cellular structure begins to collapse allowing intracellular materials to leak; e) proteins and 

nucleic acids are degraded; and f) the cell wall is destroyed by autolytic enzymes.
11, 12

  

 
Figure 1.9. Hypothesized mechanism of action for quaternary ammonium biocides where a-f 

show progressive adsorption of the quaternary headgroup to acidic phospholipids in the 

membrane with increasing QAC exposure/concentration. A decreased fluidity of the bilayers and 

the creation of hydrophilic voids are formed in the membrane causing protein activity to be 

disrupted, cell lysis, and solubilization of membrane components into micelles (Adapted from P. 

Gilbert and L.E. Moore (2005), with permission from John Wiley and Sons).  

In summary, examination of the literature suggests that QACs cause structural 

deformities and damage the cytoplasmic membrane within bacterial cells.
12, 13 
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1.3.2 Chlorhexidine and Bisbiguanidines  

Molecules containing a bisbiguanide structure, e.g. polyhexamethylene biguanides 

(PHMB), are heavily used in antiseptic oral products and surgical scrubs. Originally synthesized 

in the early 20
th

 century, these molecules have shown exceptional pharmacological activities. An 

example of a PHMB molecule with profound antimicrobial activity is the dicationic salt 

chlorhexidine (1,1’-hexamethylenebis(5-chlorophenyl)biguanide). This molecule is 

symmetrically balanced by two chlorophenyl moieties appended to a charged guanidine group 

linked together by a hexylmethylene-chain (Figure 1.10). Chlorhexidine is strongly basic and is 

stabilized when made into a salt.
14

 This structural modification effects the physical properties of 

chlorhexidine in that its relative hydrophobicity, solubility, and bioavailability is changed when 

dihydrochloride, diacetate, or digluconate are introduced to the chlorhexidine base.
14

 Regardless 

of the type of chlorhexidine formulated, the antibacterial activities remain unchanged.
14

 

Collectively, bisbiguanide molecules have broad-spectrum activity as a membrane active agent 

against both sporulating and non-sporulating bacteria, mycobacteria, yeasts, protozoa, and lipid-

enveloped viruses.
9
 Chlorhexidine antimicrobial activity is concentration dependent. At low 

concentrations, chlorhexidine predominantly affects membrane integrity; whereas at high 

concentrations it is capable of precipitating cytoplasmic materials.
9
 There are a few external 

factors that can diminish chlorhexidine antibacterial activity. Mainly, the presence of anionic 

substances (i.e. pus, lecithin, sodium dodecyl sulfate, and sodium carboxymethylcellulose), 

variable pH, or the high abundance of protein or sera has been reported to interfere with 

chlorhexidine antibacterial activity in vivo.
9, 13, 14

 On the other hand, chlorhexidine has shown 

compatibility with various anionic antibiotics like sulfonamides, β-lactams, tetracyclines, and 

chloramphenicol in which its antimicrobial efficacy is not suppressed.
15, 16
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Figure 1.10. Structure of chlorhexidine base. 

The potent antimicrobial activity of chlorhexidine salts made these molecules of 

particular interest in the medical field. Thus, a variety of consumer products were developed 

specifically for topical applications. Its potent activity against hemolytic streptococci made 

chlorhexidine optimal for treating wound infections and preventing sepsis.
9, 13, 14

 However, 

further evaluation of bisbiguanides was required to qualify its use to treat systemic infections or 

to use as an antiseptic. It was also shown that handwashing with chlorhexidine was able to 

reduce skin flora as much as 90%.
9
 Its post-antimicrobial activity (i.e. approximately 6 hours) on 

skin is another attractive feature for the prevention of skin sepsis and drug-resistant S. aureus or 

Enteroccoci outbreaks.
17-19

 Additionally, chlorhexidine provided in the nasal cavity in 

combination with mupirocin helped reduce the incidence of methicillin-resistant S. aureus 

among patients in intensive-care.
20

 This bisbiguanide has also been effective in reducing catheter 

colonization and oropharynx infections.
21

 

For decades, chlorhexidine has been widely approved as a skin and mucous membrane 

antiseptic. Its use intravenously was prohibited after in vivo testing in mice, calves, and rabbits 

revealed an 81-fold reduction in therapeutic index.
22

 As a result, chlorhexidine salts were 
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restricted to topical and oral applications where acute toxicity was less. Research suggests its 

nontoxicity in topical or oral applications to result from its poor absorption.
23

 Although trace 

percutaneous absorption occurs, it was also noted that chlorhexidine was safe to use in obstetrics, 

ocular infections, and wound care since it did not induce birth defects, skin sensitivity (<2% 

w/v), or eye irritation (<0.2% w/v).
14

 It is not recommended for use in pre-operative sterility 

involving the central nervous system since it has occasionally shown ability to degenerate 

nerves.
14

 However, insufficient clinical data does not conclusively prohibit its use as a skin 

preparative before lumbar puncture, epidural catheter placement, or neurosurgical procedures. 

Since, chlorhexidine has been provided commercially at concentrations ranging between 0.5% - 

4%, with and without co-solvents.  

Chlorhexidine has been applied in both clinical and domestic settings for more than 50 

years. Since that time few reports have indicated the development of resistance or significant loss 

in antimicrobial activity. Although a five-fold difference in antimicrobial activity was noted by 

Kropinski et al., this difference was attributed to structural changes in the bacterial cell.
24

 Of its 

broad spectrum antibacterial activity, chlorhexidine is particularly ineffective against some 

nonfermenting Gram-negative bacteria such as Pseudomonas species; however, if used with a 

chelating agent it has been shown to be effective against this bacterium.
17

 Few assumptions 

imply that current plasmid-mediated resistance, currently observed against QACs, will 

negatively alter chlorhexidine efficacy.    

1.3.3 Structural Differences between QACs and Chlorhexidine and Their Antibacterial 

Mechanism of Activity  

The differences between QAC and chlorhexidine structures directly explain their 

dissimilarity in antimicrobial activity. Typically, long alkyl chains between 12- 16 carbons are 

required for QACs to inflict damage on bacterial cells.
9, 10, 13, 25

 Still great difficulty arises in 
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achieving optimal chain lengths required to permeate the cell without becoming solubilized by 

the hydrophobic core of the bacteria.
13

 Since QACs interact fully with the membrane, they are 

susceptible to efflux pump resistance mechanisms.
9, 13

 This is not the case with chlorhexidine 

since the inflexible six-carbon chain length is fixed and does not result in the bacteria dissolving 

or inactivating it.
13

 This is because bisbiguanides interact solely with the surface of the lipid 

bilayer through cation displacement and head-group bridging via oblique insertion unlike QACs 

which interdigitates into the bilayer. Figure 1.11 describes chlorhexidine’s mechanism of action. 

 

Figure 1.11. Hypothesized mechanism of action for the interaction of chlorhexidine with the 

bacterial cytomplasmic membrane. Diagram shows progressive decreases in fluidity of the outer 

leaflet with increasing exposure to the bisbiguanide (Adapted from P. Gilbert and L.E. Moore 

(2005), with permission from John Wiley and Sons). 
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The charged guanidinium groups present in chlorhexidine facilitates cell membrane adsorption 

which places it optimally at the cell surface so that chlorhexidine can bridge between bilayer 

phospholipids and displace its associated divalent cations.
13

 This results from the similar length 

of the hexamethylene linker to the distance between phospholipid head groups that aids in 

chlorhexidine binding, oblique insertion into lipid bilayer or cell wall, and antimicrobial 

activity.
26, 27

 Research indicates that increasing or decreasing the hexamethylene linker length 

detrimentally interferes with its binding ability and membrane disruption.
13, 28

 Chlorhexidine is 

able to overcome osmosregulation provided by multi-drug efflux pumps, detrimentally affecting 

many functions related to cell viability like inhibiting respiration, solubilizing membranes, or 

destroying metabolic function.
13, 28

 For the said reasons, there are more reports indicating 

resistance to QACs than to chlorhexidine salts. 

1.4 Combination Antibacterial Drug Therapy (CAT)  

Since antibiotic-resistant bacteria have dominated the arsenal of antimicrobial drugs 

currently available, there is a growing need to optimize the use of old and new antibiotics to treat 

infections. Combination antibiotic therapy (CAT) has been a promising strategy to combat 

bacterial resistance.  Combination antibiotic therapy is a polytherapeutic approach that requires 

the use of more than one antibiotic to remove an infection, mainly resistant infections.
29

 This 

approach relies on four principal modes of action for improved antibacterial activity to be 

observed using two or more compounds. Pokrovskaya and Baasov summarized the role of the 

second drug in the four methods as follows: i) its use to prevent the degradation or modification 

of the primary drug, ii)  inhibits the efflux pumps so that Drug A can be retained until 

concentrations capable of bacteriolysis are accumulated, iii) impairs the tolerance mechanism of 

the microorganism, and iv) targets the pathway that drug A inhibited so that it could deactivate 
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the bacterium.
30

 For CAT to be successful, the two drugs’ mechanisms must differ and not 

interfere with each other and the target bacteria must be phenotypically susceptible to 

treatment.
31

 The overall goal of CAT is to achieve synergy, or a drug combination that results in 

better antibacterial activity than either antibiotic when used individually. Desirable synergistic 

combinations allow for lower concentrations of drugs within combination to be implemented and 

toxic dose-related responses to be reduced.
32

 Although a useful approach in treating MDR 

Mycobacterium tuberculosis, HIV, Alzheimer’s disease, and a variety of different cancers among 

other chronic and infectious disease, only CAT applied to bacterial infections will be henceforth 

described.
33-37

 

Preliminary successful antimicrobial combinations arose from the use of β-lactam drugs 

with beta-lactamase inhibitors or aminoglycoside antibiotics. Examples of current CAT 

containing β-lactam drugs with beta-lactamase inhibitors are Co-Amoxiclav (Amoxicillin + 

Clavulanate), Timentin (Ticarcillin + Clavulanate), Unasyn (Ampicillin + Sulbactam), and Zosyn 

(Piperacillin + Tazobactam).
29, 31, 38

 However, some antibiotic combinations do not result in 

improvement or affect the organisms’ vitality (additivity) while other combinations interfere 

with the antibacterial activity of each antibiotic (antagonism). This has led to a number of 

combination drug therapies that have become the staple in treating resistant infections, while 

several pharmaceutical companies seek to discover improved dual-mode-of-action compounds. 

Therefore, the use of multiple drugs in tandem is gaining momentum as a systematic approach to 

treat infectious disease.  

Many studies have evaluated the effects of combining multiple antibiotics in vitro; 

however, clinical studies often contradict superior in vitro antibacterial combinations.  Since the 

late 1950s, creative CAT has expanded the types of antimicrobials used to treat arduous 
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infections but the optimization for CAT for a variety of bacterial infections has been a struggle. 

A direct result of the antibiotic susceptibility of bacteria and its unique dependence upon 

bacterial species, host tolerance, and dosing regimen often makes CAT a hit-or-miss approach.
31

 

Therefore, correlating in vitro laboratory results with in vivo clinical treatments for bacterial 

infections has so far been challenging. Since some successful combinations have arisen in the 

past, scientists are still motivated to find better combined drug systems. Thus, the pursuit has 

been mainly focused on particular types of bacterial infections.   

In recent years, experimental CAT has focused on Gram-negative bacterial infections 

since β-lactam/penicillinase inhibitor combinations have been very successful against resistant 

Gram-positive bacteria. Some CAT treatments included experiments using Gram-negative 

bacteria without complex resistant mechanisms. For example, synergetic antibacterial activity 

was observed in the treatment of pathogenic E. coli using combinations that consisted of 

aminocoumarin, novobiocin, and tetracycline; however antagonism was seen with novobiocin 

combinations with chloramphenicol, erythromycin, and lincomycin.
39

 Successful antibiotic 

combinations were often subsequently investigated against difficult Gram-negative bacteria such 

as Pseudomonas species.  Thus, the successful CAT consisting of  novobiocin and tetracycline 

also show superior efficacy against six Pseudomonas species.
40

 Other combinations containing 

β-lactam antibiotics with aminoglycosides have also been evaluated as a CAT treatment option 

for Gram-negative infections. Dalton et al. reported the mean susceptibility of thirty 

Pseudomonas isolates to in vitro carbenicillin and gentamicin combinations.
41

 However, clinical 

evaluation of 66 patients receiving gentamicin alone or in combination with penicillin, 

ampicillin, chloramphenicol, or streptomycin showed contradictory in vitro antibacterial 

activity.
42

 Only dual aminoglycoside + aminoglycide CAT (e.g. kanamycin + gentamicin) were 
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synergetic in the treatment for the different Pseudomonal infections.
42

 Aminoglycoside 

antibiotics have also been effective in combination with select tetracyclines.
43

 For instance, the 

ability of oxytetracycline to suppress the production of acid in combination with neomycin was 

synergetic against six enteropathogenic Gram-negative bacteria.
44

 Although β-lactam + 

aminoglycoside CAT are effective against a broad panel of Gram-negative bacteria, they 

sometimes cause kidney failure or worsen the current condition of a patient.
45

  For example, β-

lactam + aminoglycosides CAT in febrile neutropenic patients is reported to be effective yet 

dangerous to the survival of these patients. DeJace et al. found that response rates of dual β-

lactam + β-lactam CAT is similar to β-lactam + aminoglycosides CAT against most 

Enterobacteriaceae, excluding Pseudomonas species.
38

 These results were contradicted in vivo 

after evaluating 7,600 patients and comparing the response observed for  β-lactam monotherapy 

and β-lactam + aminoglycoside CAT diagnosed with Pseudomonas aeruginosa infections 
38

.  

Silbiger et al. concluded that the use of β-lactam + aminoglycoside CAT resulted in unchanged 

fatality rates and increased the incidence of nephrotoxicity.
46

 More than 148 cases suggest that 

there is no clinical benefit for the use of β-lactam + aminoglycoside CAT for treating febrile 

neutropenia, pneumonia, abdominal/urinary tract infections, sepsis/bacteremia, endocarditis, or 

bronchitis.
45

 As an alternative, hospitalized febrile neutropenic patients with Pseudomonal 

infections that were currently not receiving fluoroquinolone therapy was able to be administered 

β-lactam + ciprofloxacin CAT with a lower incidence of kidney failure.
47

  

Resistant Gram-negative rods harboring extended spectrum β-lactamases (ESBL), 

Klebsiella pneumoniae carbapenemases (KPC), and the New Delhi metallo-β-lactamases (NDM-

1, NDM-2) have been the most recent targets for CAT. Still in its infancy, successful CAT 

against bacteria containing multiple-resistant mechanisms has only been performed in vitro. For 
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example, the use of polymyxins combined with fluoroquinolones or glycylcyclines have resulted 

in additive and synergetic interaction indices when used to treat NDM-1 producing  

Enterobacteriaceae.
48

 Similarly, combined tigecycline and high-dose meropenem concentrations 

and colistin + meropenem CAT were effective against KPC isolates.
49, 50

  Combination studies 

with tigecycline + imipenem, tigecycline + amikacin, and tigecycline + ciprofloxacin yielded 

synergy against MDR  Klebsiella species and E. coli.
51

 Ultimately, combinations under 

investigation include mixtures of all antibiotic classes to improve the efficacy of current 

antimicrobials against drug-resistant bacteria.
52, 53

 Mixtures of antibiotics with nonantibiotics 

have shown to be a useful approach to also extend therapy against MDR bacteria.
54

  

Since 1975, natural plant products have yielded synergetic responses with a variety of 

antibiotic classes against both Gram-positive and Gram-negative bacteria. Most of the research 

supports this CAT approach as an effective treatment against Methicillin-resistant S. aureus and 

Vancomycin-Resistant Enterococcus species. A review by Hemaiswarya et al. lists the following 

examples of effective natural products used with β-lactam drugs: carnosol epigallocatechin 

gallate (EGCg), tea catechin, green tea extract, Corilagin, Baicalin, Tellimagrandin I, Rugosin B, 

pomegranate extract, myricetin, sophoraflavanone, and novoimanin.
55

 The use of green tea 

extract with levofloxacin, myricetin with β-lactam/β-lactamase inhibitors, and 

butylatedhydroxyaniosole with vancomycin was successful against E. coli O157:H7, ESBL-K. 

pneumoniae, and non-susceptible E. coli, respectively.
55

 Although the most latest approach, Ejim 

et al. investigated the utility of 1,057 FDA approved nonantibiotic materials in potentiating the 

antibacterial activity of tetracycline drugs against opportunistic pathogens P. aeruginosa (PA01), 

E. coli (BW25113),  and S. aureus (ATCC 29213).  The most notable finding was the observed 

synergy in the use of nonantibiotic loperamide (trade name: Imodium) with antibiotic 
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minocycline both in vitro and in vivo.
54

 These finding suggest the use of nonantibiotic + 

antibiotic CAT as potential treatments for MDR bacterial infections with minimal adverse effects 

on normal bacterial flora or host health.  

Examination of recent literature clearly supports the use of CAT to treat difficult 

infections. Although this polytherapy can allow a patient the convenience of fewer dose 

regimens with potent antimicrobial activity and broadened activity spectrum, several problems 

associated with polytherapy still exist. Sometimes the selections of particular antibiotic mixtures 

are clinically contraindicated because either drug elicits unwanted side effects.
32, 38, 39, 42

  Aside 

from higher costs and uncontrollable drug responses with narrow therapeutic windows, each 

aforementioned CAT formulation is limited to the serendipitous chance that each drug will arrive 

and deactivate a bacterial cell at the same time without causing adverse or idiosyncratic reactions 

to the host or generating MDR organisms.
56

  

1.4.1 Hybrid Antibiotics 

The development of hybrid antibiotics is a recent approach to CAT. More specifically, it 

consists of two covalently linked antibiotics, as opposed to consisting of two unreactive salts in a 

mixture, that inhibit dissimilar targets in a bacterial cell. This alternative to CAT was 

hypothesized to control the pharmacokinetic properties of antibiotics within combinations and 

prevent adverse host responses. However, hybrid antibiotics are not effective in treating bacterial 

infections caused by MDR strains. For that reason, most hybrid antibiotics consist of the drug 

classes that have the least antibiotic resistance mechanisms developed against them.  In addition 

to the controlled phamacokinetic properties, other advantages include improvements in 

antibacterial activity (potentiation), enhanced receptor binding affinity, increased spectrum of 

microorganisms’ susceptibility against mono-resistant strains, and reduced host toxicity.  
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Hybrid antibiotics are a blend between conventional CAT and prodrug antibiotics. Their 

differences are illustrated in Figure 1.12.  More specifically, this antibiotic combination consists 

of a linker between the antibiotic pair. This important feature is an adaptation from prodrug 

systems and is used to facilitate delivery of the two agents in tandem. Although not the main 

focus of the research presented in this dissertation, the mechanism behind prodrug activity is 

highlighted as it pertains to hybrid antibiotics. Most hybrid antibiotics are tethered together using 

a covalent bond. However, several sub-types of covalent links can be used to deliver the 

antimicrobial agents to the bacterial cell target. Covalent-bound hybrid antibiotics require the use 

of a labile covalent bond between the two antibiotic components so it can undergo chemical 

hydrolysis, enzymatic cleavage, or are environmentally responsive so that tethered-antibiotics 

can be released to the bacterial cell target synchronously. Similar to CAT, synergetic, 

antagonistic, and additive effects can be observed in hybrid antibiotic systems; this concept will 

be discussed in the next section titled “Loewe’s Additivity Model”.  Therefore, the antibiotic 

components must be judiciously chosen to yield the greatest antimicrobial activity. Similarly, the 

most appropriate length and type of linker must be identified that will facilitate the best 

bactericidal behavior.  

Most hybrid antibiotics reviewed to date consists of either fluoroquinolone or 

aminoglycoside antibiotics. An example lies in the potent fluoroquinolone-oxazolidinone hybrid 

known as MCB-3681 which contains a 4-hydroxy-piperidine linker. This patented antibiotic 

hybrid has shown antibacterial activity against Bacillus anthracis as well as other drug resistant 

Gram-positive and Gram-negative bacteria.
57

 A phosphate ester derivative of the MCB-3681 

prodrug has since progressed into human clinical trials.
58

 Likewise, fluoroquinolone-

anilinouracil hybrids have potent DNA polymerase and growth inhibitive properties. The best 
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representative of this antibiotic hybrid is the 251D fluoroquinolone-anilinouracil hybrid. This 

hybrid has shown enhanced antibacterial activities, as compared to its precursor antibiotics, when 

investigating its use on fluoroquinolone-resistant bacteria.
59

 Yu and co-workers reported the 

development of aminoglycoside hybrids consisting of chloramphenicol or oxazolidinone to have 

broad-spectrum activity against Gram-positive and Gram-negative bacterial strains. These 

hybrids possess enhanced affinities to bind specifically to RNAs with lower dissociation 

constants than the neomycin B aminoglycoside antibiotic.
57, 60-62

 In spite of their improved 

binding affinities to RNA, their antimicrobial activities do not correlate well with their 

dissociation constants and have been reportedly lower than the neomycin B aminoglycoside 

when used alone.
30

 Thus, this hybrid has not been investigated for use in human trials. In some 

instances the antibacterial activity of antibiotic hybrids are not greater than the precursor 

antibiotics. However, they have found use to treat resistant infections. Aminoglycoside-

fluoroquinolone antibiotic hybrids were able to overcome some of the most prevalent 

aminoglycoside resistance enzymes while still effectively inhibiting bacterial protein synthesis, 

DNA gyrase, and topoisomerase IV activities.
63

 In summary, most hybrid systems reported to 

date have been more effective in targeting active sites than the stoichiometric mixture of the 

antibiotic precursor components despite fickle in vitro antibacterial activities. As a result, it is a 

common hypothesis that there is a lower propensity to develop bacterial resistance to hybrid 

antibiotics. However, this type of antibiotic therapy is not the main focus of this dissertation and 

will not be described in great detail. Accordingly, an extensive review of the hybrid antibiotic 

systems can be found by Pokrovskaya and Baasov.
30
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Figure 1.12. Schematic representating the differences between conventional combination 

antibiotic therapy and hybrid antibiotic therapy. 

1.4.2 Loewe’s Additivity Model 

Studies at the forefront of pre-clinical drug development have continued to be a recent 

topic of frequent and growing interest among pharmacologists. For instance, the ability to 

quantify various interactions of drugs on the physiology of the body accurately is of utmost 

importance in the study of combination drug therapy. In conventional combination studies, 

interest centers on whether the drug combination creates an enhanced, worsened, or nullified 

effect as compared to that expected from the activities of the individual components.  

Strategic and empirical models are necessary to premise the rationale of combination 

drug therapy and several have since been developed to calculate the “interaction index” between 

the components in a mixture.  As a result, many statistical techniques have surfaced to assess 
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drug interactions when two or more compounds are mixed, namely Bliss Independence (1939), 

64-67
  the Additivity Envelope (1979), 

68
 and Loewe’s Additivity models (1926).

31, 32, 38, 69-73
 To be 

more specific, the Bliss independence model suggests that the interaction between two drugs is 

equal to the multiplication product of the activities of the agents when used individually. 

Accordingly, this implies that two drugs do not pharmacologically or physiologically interact 

with each other for the enhanced effect to be observed. The augmented therapeutic effect is often 

caused by independent modes and/or differing sites of activity for each compound in a mixture. 

Linear drug concentration-effect relationships are only supported by Bliss Independence model 

and not for nonlinear drug concentration-effect relationship such as the commonly observed 

sigmoidal curve seen in Loewe’s Additivity model.
70

 Hence, this model has limited applicability. 

Secondly, the additivity envelope model is used only to describe the log-linear cell survival 

relationship observed in radiation studies and cannot be applied to cytotoxic agents.
74

 Therefore, 

the appropriate mathematical model used throughout this dissertation research is Loewe’s 

Additivity Model which considers the commonly observed sigmoidal shape of the concentration-

effect relationship for combination cytotoxic agents.
70

  

Loewe’s Additivity Model is often illustrated graphically along a 3-dimensional surface 

with two horizontal lines that indicate the concentrations of the two drugs in combination and a 

vertical line that indicates the response respective to the fixed concentration of combined 

drugs.
69, 70

 This 3-dimensional iso-effect curve that represents the set of all drug combinations 

and their respective drug-like response is called an isobologram.
71

 Isobolograms were introduced 

by Fraser (c.a. 1870) as an area relationship between survival and drug combinations of toxic 

drug (atropine) and antidote (physostigmine) mixtures to illustrate interaction antagonisms.
74

 

Subsequently, Loewe used a similar relationship to define the synergetic reactions between two 
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drugs in a mixture and has since been refined by various investigators.
71

 Loewe used a straight 

line isobole to denote a zero (additive) interaction when the combined drugs caused in a similar 

dose-response relationship to the individual drugs as indicated in Figure 1.13. He also 

emphasized that the isobole would be curved concave upward or downward when the drug 

mixtures had dissimilar dose-response relationships from the parent drugs and this would denote 

either synergy or antagonism, respectively.  

 

Figure 1.13. Representative concentration-response isobologram attributed to the activity of two 

drugs in combination, where (a) is the line of additivity, (b & c) indicate synergetic combinations 

and (d & e) indicate antagonistic mixtures. 

 

Based on this model, the interaction index (I) between components in a mixture can be 

described numerically as either (1) synergetic, when their combined effects are greater than the 
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sum of their individual effects (I < 1), (2) additive or neutral, when the combined effect is equal 

to their individual activities (1 ≤ I ≥ 3), or (3) antagonistic, when the effect is smaller than one of 

the drugs itself or the presence of one drug nullifies the activity of the other (I < 3).
75-77

 

The general equation (Eq. 1.1) of the Loewe additivity is defined as, 

    
  

  
 

  

  
                                                                                               (Eq. 1.1) 

where d1 and d2 are doses of each drug in the mixture that yield an equal effect to drug 1 (D1) 

and drug 2 (D2) when used alone. This relationship was modified in this research to 

accommodate the interaction index of the novel API-ILs and GUMBOS as (Eq. 1.2.): 

  

Here, the concentration of drug 1 and 2 in the GUMBOS are calculated using the percent 

abundance of cation or anion responsible for the antibacterial activity within either GUMBOS or 

API-ILs and is multiplied by its minimum inhibitory concentrations (MIC) prior to dividing by 

the MIC of the precursor antibacterial agent when used alone. Interaction indices gauge how well 

the components in the GUMBOS interact as it compares to the stoichiometric mixture of the 

GUMBOS parent materials so the utility of these materials as potential pharmaceutics can be 

compared to established combination antibiotic therapies. The standard checkerboard titration of 

multiple drugs tested against bacteria in tandem will be explained further in the Antibacterial 

Techniques and Characterization section.    

1.5 Ionic Liquids  

Ionic liquids (ILs) are a class of tunable ionic compounds that melt below 100 °C. These 

salts can be divided into two types (i.e. room-temperature ILs with Mp < 25°C and frozen IL 
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with Mp between 25 – 100°C) despite their similar chemical and physical properties.
78

 These 

salts typically contain organic ions with differing sizes that allow changes in the usual physical 

properties observed in high-melting inorganic salts into the rare physical properties unique to 

ILs. Structurally, ILs have asymmetrical, bulky cations and anions that do not allow an ordered 

packing lattice structure which inhibits efficient crystallization and requires lower energy to melt 

these materials.
78

 Other physical properties unique to ILs are its nonvolatile, negligible vapor 

pressure, nonflammable, and recyclable nature. In general, ILs are much more conductive, 

viscous, and dense than conventional organic solvents. Its high solvating power comes from its 

ability to behave as both a hydrogen bond acceptor (anion) and donor (cation) with molecules 

bearing both donor and acceptor sites.
78

 As a result, two classes of ILs have been categorized 

based on their aqueous miscibility. In summary, all of the physical features explain their 

attractive thermal and chemical stability, and wide electrochemical window that attribute to their 

“green” identity.
79

  To date, three generations of ILs have been reported in which first generation 

ILs have been applied to systems that would benefit from their physical and chemical property 

sets. Examples of cations and anions commonly used in first-generation ILs are shown in Figure 

1.14.  The cations usually consist of substituted heterocyclic amines and quaternary 

phosphonium groups, such as various alkylated imidazoliums, pyridinium, pyrrolidinium, and 

phosphonium ions. Typically, halides are the anions used in first-generation ILs. Applications 

that benefit from the customizable chemical and physical properties of first-generation ILs are 

often found in non-biologically related industries that do not require air stable, nontoxic low-

melting materials.  
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Figure 1.14. Representative cations and anions that compose first-, second-, and third generation 

ionic liquids (ILs) and groups of uniform materials based on organic salts (GUMBOS).  

Since the most desirable feature of ILs is the ability to manipulate ion pairs to design 

task-specific molecules, researchers have begun investigating applied ILs by incorporating the 

applications into either ion. This has led to the development of second- and third generation ILs 

for applications that require more features than those related to its chemical and physical 

properties. In particular, second- and third-generation ILs take advantage of the limitless number 

of applied salts that melt below 100°C. Second-generation ILs, composed of halogen-free ions, 

were developed to provide environmentally-friendly and stable molten salts for use in energetic 

materials, synthesis, and chromatography. Most ILs consisting of tetrafluoroborate [BF4
-
], 

hexafuorophosphate [PF6
-
], bis (trifluoromethane)sulfonamide [NTf2

-
], and 
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bis(perfluoroethylsulfonyl)imide [BETI
-
] are examples of second-generation ILs. Although a 

safer alternative and more stable, these salts still possessed the features of conventional ILs such 

as tunable solvent miscibility, ionic conductivity, selectivity, durability, resistance to thermal 

degradation, and negligible vapor pressure. Third-generation ILs are the most task-specific group 

of salts since they were especially synthesized to be application driven. For example, third-

generation ILs consider all salts that in addition to having environmentally-friendly chemical and 

physical properties, they possess features that make them functional as primary active 

components in the desirable application. These salts have steadily emerged in to applications that 

once relied solely on organic or inorganic molecules. Although few in number, third-generation 

ILs have shown to have chirality, spectroscopy, antimicrobial, and medicinal uses. The diverse 

applications of ILs are numerous but can be limited by its defined thermal definition; thus, the 

emergence of a Group of Uniform Materials Based on Organic Salts (GUMBOS) redefines the 

useful limits of organic salts, thereby exponentially increasing the types of applied ions.   

1.5.1 Groups of Uniform Materials Based on Organic Salts (GUMBOS) 

The three generations of IL are not exclusive when the extended melting range provided 

by GUMBOS is considered. Previously, the definition of ILs was limited by the types of task-

specific salts synthesized with melting points that exceeded 100°C. That is not the case with 

GUMBOS, which have melting points between 25°C and 250°C and still possesses the features 

of third-generation ILs.  GUMBOS which are composed of organic and/or inorganic ions have a 

unique architectural platform in that multi-modal properties innate to the desired application can 

be incorporated into the salt via a judicious selection of the ions. To date, GUMBOS have 

exemplified the feasibility of architecturally modified amorphous nanomaterials 

(nanoGUMBOS) with multi-modal functionalities for application in energy conversion, 
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molecular sensing and extraction, biomolecular detection and imaging, and anticancer 

therapeutics.
78-88

 Although most of the GUMBOS research has been published on the nanoscale, 

the interesting properties observed in nanoGUMBOS remain expressed when used in the bulk 

form as well. This new field of multi-modal salts is being extensively investigated in the Warner 

Research Lab at Louisiana State University. 

1.5.2 Antibacterial Ionic Liquids 

Since ionic liquids (ILs) have offered promise as reagents that have the potential to 

replace many hazardous volatile organic solvents, interest in the use of ionic liquids in 

contamination control has reached a level sufficient to spur their commercialization as a green 

alternative to volatile sterilants. Many approaches have been used to achieve a nontoxic and 

biodegradable IL. More specifically, incorporating enzyme-hydrolyzing groups, short alkyl 

chain, and non-halide containing stable anions has been sought to maintain the “green” 

reputation of ILs in the ecosystem.
89-92

 In 2007, Docherty et al. observed that  alkyl chains 

between 6 and 10 carbons in pyridinium-based IL can be mineralized better than comparable 

imidazolium-based ILs.
93

 Similarly, pyridinium-based ILs with pyridine or nicotinic acid side 

groups were exceptionally biodegradable under aerobic conditions implemented by Harjani et 

al.
94

 However, it was reported that some ILs are poorly biodegradable and should not be 

considered “green” although it is suggested that these particular types of ILs  may be useful in 

antimicrobial applications since  an inherent toxicity to bacteria was evident.
95

 Supported by the 

findings of Romero et al., the IL bactericidal activity is said to have resulted from the inability of 

bacteria to use imidazolium salts as a carbon source. Quantitative-structure activity relationship 

(QSAR) findings show the alkyl length of the cationic substituents and type of halide anion 

detrimentally impact bacteria viability the most and govern the roles of IL in eco-toxicological 
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toxicity.
90, 91

 However, conflicting issues about their general safety and rates of biodegradation 

have been published.
96-99

 For instance, some IL cationic groups (i.e. imidazolium, pyridinium, 

and pyrrolidinium) were not lethal to Zebra fish, but ammonium-based ILs were more fatal than 

some organic solvents. Likewise, other IL eco-toxicological studies suggest significant toxicity 

to Pseudokirchneriella supcapitata (algae) and Caenorhabditis elegans (multi-cellular soil 

nematodes). Subsequent studies confirmed the “green”-prohibitive nature of these materials 

resulting in a shift in their application towards antiseptics and disinfectants.
98, 99

 

As previously mentioned, the potential to use ILs as antibacterial agents derived from 

concerns about their biodegradability and persistent environmental use. Over the last decade, 

most studies investigating the antimicrobial nature of ILs have been conducted on planktonic 

bacteria. In 2003, Pernak and Chwala introduced the broad spectrum antibacterial activity of five 

new groups of choline-derivative-based ILs.
100

 A total of 63 choline-based ILs consisting of 

halides, non-nutritive sweeteners, and imides were synthesized and characterized for 

antimicrobial activity against Gram-positive and Gram-negative bacteria and fungi.
100, 101

 Other 

studies with structurally modified imidazolium IL revealed that the presence of a long alkyl 

chain led to superior antimicrobial activity.
102, 103

 Another quaternary amine, pyrrolidinium, was 

found to be effective against bacterial rods, cocci, and fungi. Similar to the findings of Pernak et 

al., enhanced antimicrobial activity was present in pyrrolidinium IL with alkyl chain lengths 

ranging between 12- 16 carbons.
104

 Introducing multiple alkyl chains to conventional IL cations, 

as that present in  multi-geminal ILs, has led to improved antimicrobial activities as compared to 

geminal monomer, QACs,  or typical ILs.
105

 Additionally, QSAR studies reveal that undecane 

incorporated in chiral ammonium-based ILs sufficiently inhibited the viability of bacteria and 

fungi.
106, 107

 Biological properties of phosphonium-based ILs have also been evaluated. 
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Cieniecka-Rosionkiewicz et al. reported potent bactericidal activity against Gram-positive cocci 

with attenuated activity when the halide anion was replaced with a non-halide ion.
108

 Long alkyl 

chain ILs consisting of azolate anions have also been reported to possess multi-functional 

antimicrobial activity.
109

 However inconclusive findings suggest that the type of anion present in 

the IL system generally does not affect the antibacterial activity of the salt, and in fact that the 

cation is always responsible for IL antibacterial activity.
110

 Nevertheless three common findings 

that remain undisputed among present literature about the general features of ILs with 

antimicrobial activity are the presence of alkyl chain length, type of anion, and overall 

lipophilicity.
10, 111, 112

 

Few microbiological studies against nonplanktonic bacteria have been reported.  The first 

report of IL activity in preventing the formation of biofilms occurred in 2009 by Carson et al.  In 

this study, the antimicrobial activities a series of 1-alkyl-3-methylimidazolium chloride ILs have 

been evaluated against both planktonic and nonplanktonic clinical pathogens.
113

 Similar to the 

effects of ILs on planktonic bacteria, alkyl chain lengths greater than 10 carbons resulted in 

potent biofilm eradication.
113

 Overall, it is concluded that biofilms caused by Gram-positive 

bacteria and Candida species were more susceptible to 1-alkylmethylimidazolium ILs than 

Gram-negative bacterial biofilms.
113

 To date, 1-alkylquinolinium bromide ILs are considered to 

be the most potent antibiofilm ILs tested with superior toxicity to the previously synthesized 

antifouling IL, 1-alkyl-3-methyimidazolium ILs.
114

 

1.5.3 Active Pharmaceutical Ingredient Based Ionic Liquids 

First-generation ILs have been used extensively in organic chemistry for the synthesis of 

various biologically active compounds.
115

 However, the incorporation of active ingredients into 

the IL structure has recently led to another sector of third-generation ILs called Active 
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Pharmaceutical Ingredient-based ILs (API-ILs). Active Pharmaceutical Ingredient-based ILs are 

ionic salts that melt below 100°C in which either the cation or the anion contains a 

pharmaceutical ingredient in its structure (Figure 1.15).
116

 Although these materials have been 

coined API-ILs as of recently, literature shows that several existing pharmaceutical salts can also 

be classified as ILs.
117

 For instance, most therapeutic salts come in the form of a first-generation 

IL, even if the melting point exceeds 100°C. However, based on the definition of ILs, the API-

ILs with melting points exceeding 100°C are appropriately considered to be API-GUMBOS in 

which most of the historical API-ILs fall into this category.  

Conventional pharmaceutical salts typically contain an ion with a pharmacophoric group 

and an inert biocompatible counter-ion.
117

 Some pharmaceutical ingredient counter-ions that are 

generally regarded as safe by the Food and Drug Administration are sodium, potassium, sulfate, 

nitrate, chloride, or phosphate. Converting the acid/base form of different pharmaceutics into a 

salt-form consisting of an inert counter-ion may provide desirable thermal stability, 

bioavailability, and biocompatibility to the API.
117

 In this way, crystalline active solids with 

approved mechanisms and properties can be monitored without interference from a secondary 

active ion.  

Unfortunately, many APIs such as barbituates, sulfonamides, and steroids undergo 

polymorphic conversion and suffer from poor bioavailability which detrimentally affects their 

performance.
115

 The development of API-IL has shown to be a viable method to incorporate 

multiple functions into a salt while remedying pharmacological problems associated with API 

solids. This is represented in a couple of historical examples of structurally similar third-

generation API-ILs, developed in 1951 and 1952, namely, phenazone gentisate (i.e. analgesic, 

anti-inflammatory, antipyretic, Mp = 87–88°C) and diphenhydrammonium 8-chlorotheophylline 
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or Dimenhydrinate (antihistaminic, anitvertigo, motion sickness treatment, Mp = 102-107°C), 

respectively.
117

 Rantidine docusate is a recent example of an API-ILs that eliminated drug 

polymorphism associated with Ranitidine hydrochloride.
116

 Additionally, API-ILs such as 

lidocaine docusate and didecyldimethylammonium Ibuprofen are other examples in which 

challenges associated with APIs are overcome. In these particular cases the biologically active 

ions within the API-IL structures are anionic and/or cationic, possess the properties of its 

precursor ion, and remedy solvation properties caused by API crystallinity.
116, 118

 The added 

control of the ion diffusion from the higher energetics within API-IL is another enhancement that 

these materials offer.  

 

Figure 1.15. Schematic representing the activity of pharmaceutically active ionic liquids and 

GUMBOS. 

Overall, API-ILs are designed to possess ionic-synergetic efficacy for the intended 

purpose, have controlled, yet tunable chemical, physical, and biological properties, improve 

bioavailability and pharmacokinetic properties, and reduce toxicity.
115, 119
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advantages of both conventional combination antimicrobial therapy and hybrid antibiotic 

prodrug systems, although still vastly unique. With the exponential amount of possible active ion 

combinations, representative API-ILs or API-GUMBOS will be found in every sector of 

pharmaceutics.  
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CHAPTER 2 ANALYTICAL TECHNIQUES, MECHANISM OF ACTION 

VALIDATION, AND ANTIMICROBIAL CHARACTERIZATION 

The pharmacological techniques used to characterize the utility of ampicillin-based ionic 

liquids and β-lactam based chlorhexidine GUMBOS in biomedical application are highlighted in 

this section. More specifically, several studies that characterize the properties of the 

antimicrobial agents based on their physical and chemical features are described in addition to 

the absorbance and fluorescence methods used to validate their antimicrobial activity and 

mammalian cytotoxicity.   

2.1 Pharmacological Techniques and Characterization 

2.1.1 Rate of Dissolution 

Drug dissolution is an analytical parameter that assesses the release profile of drugs into 

aqueous environments.  By definition, dissolution involves the solubilization of the drug particles 

into the surrounding aqueous medium. This property is very important for systemic delivery of 

hydrophobic drugs. The kinetics of drug dissolution (DR) can be defined by the Noyes-Whitney 

equation (Equation 2.1), which correlates surface area (A), diffusion coefficient (D), boundary 

layer thickness (h), saturation solubility (Cs), and the amount of dissolved drug (Xd) in the 

volume of dissolution media (V).  

 

   
  

  
 

  

 
    

  

 
                                                          (Eq. 2.1) 

The dissolution rate (DR) or time required for drug to dissolve depends on the cohesive 

properties of the drug. More specifically, the physico-chemical properties of a drug and its 

physical form dictate how quickly a drug dissolves and will be absorbed. Therefore, many drugs 

are particularly formulated to control its rate of dissolution. Drugs are converted into a salt, free 

acid or base, or even pulverized to minimize the particle size and increase its dissolution rate. In 
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sum, more than 33% of drugs suffer from poor aqueous solubility and undergo chemical 

modifications to increase its systemic delivery. Hence, the onset of drug levels will be governed 

by the dissolution release kinetics of the drug.  

2.1.2  Predictive Intestinal Permeability 

Highly oral bioavailability is an attractive feature for novel antimicrobial drugs. It is 

defined as “the characteristics of a drug that affects the process by which unchanged drugs 

proceed from the site of administration to the site of measurement within the body”. 

Predominantly, its ability to provide convenience, patient compliance, and practicality as 

compared to conventional injections or suppositories makes this a valid characteristic for 

therapeutics. However, poor intestinal permeability (absorption) can label candidate molecules 

unsuitable regardless of their potent activity. This process can be affected by several 

physiological factors such as how well the drug was formulated or the contents of the 

gastrointestinal tract among other things. To overcome the potential physiological interferences 

inhibiting passive intestinal permeability, effective therapeutic agents have an optimal balance of 

lipophilicity/ hydrophilicity, hydrogen bonding, size, and charge since most drugs are passively 

absorbed through the lipid-aqueous interface of the cell membrane (transcellular transport) or 

water-filled tight junctions formed by the fusion of lipid membranes of adjacent cells 

(paracellular transport). Transcellular transport is the route commonly taken by molecules that 

are more lipophilic prior to becoming systemic. Thus, predicting drug oral bioavailability 

through intestinal permeability is vital to the success of candidate antimicrobial agents.  

Various in vitro assays have been developed to quantify the relative lipophilicity and 

intestinal permeability of therapeutic agents.  Yet, the Parallel Artificial Membrane Permeability 

Assay (BD Gentest pre-coated PAMPA Plate System; BD Biosciences, MA) and logarithmic 
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octanol-water partition coefficient assays were the techniques employed in this dissertation 

research. In the PAMPA technique, a diffusion cell consisting of a donor and acceptor 

compartment separated by a synthetic membrane was used to quantify the predictable intestinal 

permeability of the candidate molecules developed in this research. More specifically, this 

approach consists of a 96-well filter plate coated with a proprietary phospholipid membrane 

separating the donor and acceptor wells. Known concentrations of test solutions (e.g. 100 – 200 

µM in buffer) are added to the donor plate while only buffer is placed in the acceptor well. 

Typically, rates of diffusion can be calculated by quantifying changes in drug concentrations in 

the acceptor well. However, the assay is developed to measure the final drug concentration after 

5 hours of incubation using UV-vis spectroscopy. Effective permeability coefficients (Pe) are 

calculated based on initial millimolar concentration in donor well (Co), millimolar concentration 

in donor well at 5 hours (CD), millimolar concentration in acceptor well at 5 hours (CA), volumes 

of donor (VD) and acceptor wells (VA), well filter area (A, 0.3 cm
2
), and incubation time (t, 

18000 s) as calculated using the relationship in Equation 2.2.  

            

       
  

             
     

 

   
 

  
 

 

  
   

                                                       (Eq. 2.2) 

Pharmacologists can assess the drug-likeness of a given therapeutic agent based on its 

lipophilicity to various organic solvents or quantifying its partition coefficient. Specifically, the 

logarithmic octanol – water partition coefficient (Log P) is used extensively to describe a drug’s 

lipophilic properties and its preferential affinity to either octanol or water.  It is a ratiometric 

parameter based on the concentration of therapeutic in either phase of the two-phase system 

when at equilibrium (Equation 2.3). It logarithmic denotation is commonly used to characterize 

this value since it scales at least 12 orders of magnitude.  Many studies have shown that Log P is 
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a valuable parameter in correlating a drug’s transport process, its interactions with concomitant 

biological molecules, and its potential toxicity. Though the acquisition of Log P values can be 

logically simple, it can be irreproducible, time-consuming and expensive ultimately forging 

difficulty in its use at the screening level. Likewise, this method is not accurate for determining 

the partitioning nature of ionizable compounds because charged molecules do not partition into 

lipophilic environments regardless of its chemical features. However, the most reliable approach 

to date is the classical shake-flask method. To prevent minimal solvent miscibility, octanol is 

saturated with deionized water and allowed to separate for 24 hours prior to its use.  

Subsequently, a known concentration of candidate drug is added to the flask and allowed to mix 

for 2 hours minimal. The sample is then left undisturbed for 24 hours to allow the two solvents to 

separate and the analyte to partition into its desired phase. Both phases are quantified using 

absorbance spectroscopy and used to approximate the drugs lipophilic nature.   

         
         

       
                                                                             (Eq. 2.3) 

2.2  Antimicrobial Testing and Preparation 

Antimicrobial susceptibility testing is important to identify levels of pathogen 

susceptibility to specific antimicrobial agents and/or to detect the development of resistance in 

individual bacterial isolates. Various techniques and methods are used to quantify the effects 

antimicrobial agents have on bacteria and those techniques are described in this section. 

2.2.1  Turbidity Standards for Inoculum Preparation 

 Although there are many standards available to standardize the inoculum density for a 

susceptibility test, a BaSO4 turbidity standard equivalent to a 0.5 McFarland standard was used.  A 

0.5 McFarland standard was prepared as outlined by the Center for the Disease Control and 
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Prevention where 500 µL of 1.175% BaCl2 • 2H2O is added to 99.5 mL of 1% v/v H2SO4 under 

gentle stirring. Frequent stirring is necessary to maintain the suspension. The density of the 0.5 

MacFarland turbidity standard as verified using a spectrophotometer with a 1-cm light path at 625 

nm should range between 0.08 to 0.10. To appropriately match the MacFarland standard to the 

bacterial inoculum, the standard is dispensed in to same size vials as the bacteria inoculum and 

sealed and stored in the dark. The standard should be replaced every month as their densities may 

change and large precipitate may form. 

2.2.2  Broth Dilution Tests 

National Committee for Clinical Laboratory Standards (NCCLS) criteria outline broth 

dilution tests as a quantitative measure of the drug-bacteria response.
1
 In this method as depicted 

in Figure 2.1, two-fold dilutions of antibiotics are prepared in a liquid growth medium and 

dispensed in a 96-well microtiter plate. Stock concentrations of antimicrobial can be prepared in 

methanol, acetone, dimethylsulfoxide or in the testing solvent. Up to 2% organic solvent does 

not inhibit cell growth in aqueous medium. The antibiotic-containing wells are inoculated with a 

0.5 MacFarland standardized bacterial suspension to match 10
7
-10

8 
CFU/mL. To prepare the 

concentration of bacteria for testing, the bacterial suspension must be diluted 100-fold in growth 

medium to a final concentration of 10
5
-10

6 
CFU/mL. Equivolume amounts of bacterial 

suspension are dispensed to the antibiotic dilutions for testing. This gives a final concentration 

testing range 5 x 10
4
-5 x10

5 
CFU/mL. Following overnight incubation at 37°C, the wells are 

examined for visible bacterial growth as evidenced by turbidity. The lowest concentration of 

antibiotic that prevents growth is the minimal inhibitory concentration (MIC). This high-

throughput method allows for as many as 12 antibiotics to be tested across eight concentrations. 

A high yield of precision within one or two dilutions from the MIC value, as typically caused by 
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deviations in antibiotic dilutions, is expected with this approach. The key advantage of this 

technique is that it quantifies the affect a range of antimicrobial agents have on the viability of a 

microorganism despite its tedious preparation. Thus, the same plates used for the MIC test can be 

used to identify the minimum bactericidal concentration (MBC). The MBC is the minimum 

concentration that kills the entire culture. To determine this value, each well that shows no 

turbidity is subcultured on to a fresh agar plate or sterile broth and incubated overnight at 37°C. 

The lowest concentration of antimicrobial agent that maintains no growth after inoculation on an 

agar plate or in broth is considered to be the MBC of the antimicrobial agent.  

The checkerboard method, which is commonly used to measure the inhibitory properties 

of drugs used in combination, was incorporated in this study to evaluate the synergetic responses 

of precursor components at different concentrations. This approach combined with Loewe’s 

Additivity Model (Section 1.8.2) allows the calculation of a fractional inhibitory concentration 

(FIC) index in which the antibacterial potencies of agents can be assessed against a particular 

microorganism. This approach is most suitable in identifying drug combinations that effectively 

inhibit the growth of drug resistant bacteria that are not susceptible to one or more of the agents 

used in combination. The experimental method to determine the FIC is similar to what one 

performs to identify the MIC value. More specifically, serial dilutions of one drug is performed 

traverse the 96-well microtiter plate from Columns 1 – 12 while another drug is serially diluted 

from Rows A – H.  This allows each well in the microtiter plate to contain a different ratio of 

each drug and for multiple concentrations of Drug A to be tested with one concentration of Drug 

B, and vice versa. Subsequently, a known suspension of bacterial inocula is added to the wells in 

equivolume amounts and incubated for 18 – 24 hours at 37°C.  Growth is identified by the 

turbidity of the bacterial suspension in each well or the use of a dye that is responsive to the 
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presence of viable cells. The lowest FIC values of both drugs used in combination identifies the 

best agent to inhibit the drug resistant microorganism.  

 

Figure 2.1. Example of broth dilution susceptibility testing and determination of minimum 

inhibitory and minimum bactericidal concentrations. 

2.2.3  Kirby-Bauer Disk Diffusion Test  

 The Kirby-Bauer disk diffusion test is a qualitative susceptibility test that is often used to 

screen the efficacy of antimicrobial agents on specific microorganisms. This simple and practical 

test is performed by spreading a 10
8
 CFU/mL bacterial inoculum on to the surface of a large 

Müeller-Hinton agar plate. Müeller-Hinton agar is prepared using a commercially available 

dehydrated base according to the manufacturer's instructions. Antibiotic solutions are pipetted on 

to sterile dry 10 mm paper disks and dried to remove the solvent. Paper disks containing 

16 µM8 µM4 µM2 µM1 µM0.5 µM0.25 µM0.125 µM

Growth MIC No Growth

1:1 Serial dilutions 
in growth medium

MBC

Inoculation from MIC 
cultures into sterile, 

antimicrobial -free media
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dehydrated antibiotic are placed on the inoculated agar surface and incubated overnight at 37°C 

to develop inhibition zones.  

 The growth of susceptible bacteria around the antibiotic disk is inhibited causing different 

size “halos” to be formed (Figure 2.2). More specifically, the zones are formed by the diffusing 

antimicrobial agent through the agar and its growth inhibitive properties on the microorganism. 

Thus, the concentration of antimicrobial agent is highest closest to the disk and decreases 

logarithmically towards the halo boundary. This rate of diffusion is governed by the physical and 

chemical properties of the antibiotic. Its relative hydrophobicity, aqueous solubility, and 

molecular weight dictate how rapidly it will diffuse through the agar. For instance, large 

molecules diffuse more slowly than smaller molecules and hydrophilic molecules diffuse more 

rapidly than hydrophobic molecules. This technique is not completely suitable for hydrophobic 

drugs and this test may result in hydrophobic molecules being categorized as poor antimicrobial 

agents. Overall, these factors contribute to the breakpoint zone that shows qualitatively how 

susceptible bacteria are to that compound. 

 The major disadvantage of this method is that the bacteriostatic (growth inhibitive) or 

bactericidal (lethal) concentrations cannot be quantified since a MIC value cannot be effectively 

determined. This is because the amount of antimicrobial agent that adheres to the disk cannot be 

quantitatively controlled. Likewise, the susceptibility of the drug as resistant, intermediate, or 

susceptible is categorized based on zone diameter limits fit within National Committee for 

Clinical Laboratory Standards (NCCLS) criteria.
1
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Figure 2.2. Kirby-Bauer disk diffusion assay showing various zones of inhibition. 

2.2.4  Mechanism of Action Studies 

Mechanism of action studies can reveal the detrimental role these agents have on viable 

organisms. Thus, lethal effects of the antimicrobial agents were evaluated in tandem using 

spectroscopic based assays. More specifically, fluorescence-based assays were employed to 

measure bactericidal rate, membrane permeation and depolarization, and ability to sequester 

lipopolysaccharide endotoxin. Absorbance spectroscopy was used to study the interaction 

between GUMBOS and penicillinase enzyme based on Michaelis-Menten kinetics using a β-

lactam chromophore in competition. Lastly, scanning electron microscopy was used to visualize 

the detrimental effects the antimicrobial agents have on the bacterial cells.  

2.3  Absorbance-based Techniques 

Absorbance-based techniques have been used extensively in clinical experiments to 

evaluate the viability of microorganisms. Ultraviolet-visible absorption spectroscopy is the 

Diffusion 
Zone of 

Inhibition 

Sterile 
10 mm 

Paper Disk



 

63 

formal name for the analytical technique that quantifies the amount of energy molecules absorb 

when exposed to light. More specifically, this technique quantifies the percent transmittance 

(%T) observed by the difference in incident light at a particular wavelength that was transmitted 

to the sample (IT) and the remainder that passed through the sample (Io) to the detector.  

Equations 2.4 and 2.5 show the relationship between %T and absorbance (A).  

          
  

  
                                                                               (Eq. 2.4) 

           
  

  
                                                                              (Eq. 2.5) 

Since many clinical samples are in an aqueous medium, it is necessary for absorbance 

detection to occur in electromagnetic regions where water is optically transparent. Water is 

optically transparent across the entire electromagnetic spectrum between 190 - 700 nm which 

makes this technique ideal.  

A spectrophotometer consists of five linearly arranged basic components. The first 

component is a stable light source which can either be a continuum or line based. Continuum 

radiation sources provide a broad, featureless range of wavelengths. Depending on the 

wavelength of interest, xenon, deuterium, hydrogen, or tungsten lamps are used in 

spectrophotometers consisting of continuum light energy. In contrast, line-based sources produce 

narrow bands at specific wavelengths.  Examples of line sources are hollow cathode lamps and 

lasers, and neither was used in the absorbance instrumentation employed in the dissertation 

research. Thus, a 75W tungsten-halogen continuum lamp source was used to irradiate the third 

component, the sample. The second component is a monochromator that selects the desired 

wavelength for the study. It is the monochromatic light that passes through the third component, 

the sample. To eliminate the loss of light, the sample is placed in an optically transparent sample 
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holder made of glass, quartz, or plastic depending on the requirements of the experiment. The 

transmitted light that passes through the sample is then detected by a photomultiplier tube or 

photodiode-array. Figure 2.3 shows the instrumental configuration of absorbance 

spectrophotometer. 

 

Figure 2.3. Schematic of the instrumental configuration of conventional absorbance 

spectrophotometers. 

A 96-well microtiter plate reader was also used for absorbance measurements in this 

dissertation research. The major difference in absorbance-based plate readers and 

spectrophotometers is in the instrumental configuration (Figure 2.4). In this case, a specific 

wavelength of excited light passes through the sample well and strikes a secondary mirror that 

directs the transmitted light to the perpendicularly placed detector. Although conventional 

absorbance spectrophotometers are arranged linearly to permit the detection of all transmitted 

light, microplate readers achieve the same goal using mirrors. Likewise this optical arrangement 

promotes flexibility in the implementation of fluorescence experiments as well. The high-

throughput nature of plate readers is based on the ability to measure responses from multiple 

sample wells incrementally. Instead of a cuvette as commonly used in spectrophotometers, an 

optically transparent flat-bottom 96-well microtiter plate is used to contain the sample.   
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Figure 2.4. Instrumental configuration of a 96-well plate absorbance and emission plate reader.
2
 

2.3.1  Michaelis-Menten Kinetics 

Drug systems that monitor the activity between enzyme and substrates are best 

represented by Michaelis-Menten kinetic models. Specifically, it models the substrate conversion 

into product through a reversibly formed intermediate complex using an enzyme (Scheme 2.1). 

Symbolically enzyme kinetics can be denoted as S (substrate), E (enzyme), ES (complex), and P 

(product) using the following scheme:   

    
       
⇔       

  
⇔                                                                  (Scheme 2.1) 

Understanding this relationship, the interaction between a substrate and enzyme can be 

quantified. More precisely, several kinetic parameters can be investigated such as its rate of 

reaction (Vmax), turnover number (Kcat), binding affinity (Km), and catalytic efficiency 
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(Kcat/Km). Figure 2.5 illustrates the typical rate versus substrate concentration curve in which 

the enzyme kinetic constants are elucidated. The rate of reaction is not necessarily important 

when it comes to quantifying the effects an enzyme has on a substrate. In fact, Vmax is the value 

in which all enzyme active sites are consumed by substrate and changes in this rate of reaction 

can illustrate the types of substrate-enzyme interactions.  The turnover number, Kcat, is a first-

order rate constant that quantifies the number of molecules that the enzyme actively converts into 

product per unit of time.  This comprehensive value considers all enzyme-substrate, enzyme-

intermediate, and enzyme-product complexes. A less complicated value is the Michaelis-Menten 

constant, Km. Experimentally, this value is determined as the substrate concentration at half the 

maximum velocity. This value mostly correlates the binding affinity between the substrate and 

enzyme. For example, a drug with a large Km value is considered to bind poorly to the substrate 

active site.  The specificity constant (Kcat/Km) is the second-order rate constant that identifies 

how well the enzyme detaches from the complex and converts the complex into product. For 

some substrate-enzyme systems, the catalytic conversion from substrate to product might be 

instantaneous (i.e. Kcat/Km = 10
8
 – 10

9
 M

-1
 s

-1
).

3
 However, enzymes with poor catalytic 

efficiencies may have lower Kcat/Km values indicative of poor complex-product conversion or 

irreversible substrate-enzyme binding.  

In this research, Michaelis-Menten kinetics were used to monitor competition 

experiments between a β-lactam chromogenic substrate, candidate β-lactam GUMBOS, and 

penicillinase P-0389, type 1 (B. cereus 3/5/2/6) in an effort to identify the role the cation has in 

the degradation of the β-lactam antibiotics. In this way, indirect participation in the catalysis of 

the β-lactam anion in the GUMBOS can be investigated and changes in its specificity constant 

can be compared to the sodium antibiotic.   
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Figure 2.5. Representative rate versus substrate concentration plot obtained from Michaelis-

Menten kinetic experiments. 

The chromophore used in these experiments, CENTA, is a chromogenic analog to the β-

lactam drug Cephalothin. Though not able to be used therapeutically, this agent has successfully 

exploited the kinetic properties of various penicillinase enzymes.  Variations in its absorbance at 

either 260nm (decreasing; hydrolysis of the endocyclic amide bond) or 405 nm (increasing; 

appearance of the expulsed chromophore) facilitates the monitoring of CENTA hydrolysis as 

reported by Bebrone et al.
4
 However, CENTA is incapable of displaying penicillinase presence 

and activity in agar colonies and therefore is limited to in vitro solution kinetic studies of viable 

penicillinase-containing bacteria or pure and crude enzyme extracts. Michaelis-Menten kinetic 

constants are interpreted using the aforementioned rate versus substrate concentration plot and 

mathematical relationships. 

2.3.2  Mammalian Cell Cytotoxicity 

In vitro cytotoxicity tests are necessary to assess cellular damage that is inflicted by the 

presence of different chemical agents. Likewise, the development of high throughput cell 
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viability assays has been propelled by the requisite to categorize potential therapeutics from 

poisons. This allows hypothetically toxic agents to be removed early in the drug discovery 

process. As such, cell viability assays premised on the absorbance of tetrazolium-converted 

formazan dyes has created the groundwork for many viability quantification studies.   

There are several advantages to using in vitro cytotoxicity assays. Many assays have been 

developed to facilitate a quick and easy method to repetitiously assess drug toxicity. It relies on 

the sensitivity of an absorbance spectrophotometric plate reader and is able to be multiplexed to 

other systems. It also allows signal stability for flexible analysis time and minimal difference 

between sample plates. Sensitivity does depend on cell types, metabolic markers, incubation 

time, and cell quantity. Most importantly, it does not implement radioactive probes to assess cell 

viability.  In contrast, it can be cost prohibitive and possible artifacts can come about that 

complicate the precise quantification of cell viability. For example, cell growth patterns among 

long term assay analysis studies can become problematic in that cells with high passage numbers 

may not convert dyes equally as younger cells. Similarly, some test compounds can interfere 

with the absorbance of the chromogenic probe.  

The principle of tetrazolium-based assays relies upon the cellular metabolic activity of 

viable cells. In this case, mitochondrial reductases present in healthy, respirating cells are able to 

reduce the tetrazolium dye into formazan. When cellular damage has occurred by the presence of 

potential poisons, a reduction in the cell’s metabolic activity occurs with a subsequent 

attenuation in the tetrazolium salt conversion to the formazan molecule.  Dead cells are not able 

to reduce tetrazolium agents; thereby, creating a clear indicator of dead cells from living cells. 

To eliminate the confusion in dead and dying cells, most cytotoxicity measurements are 

performed either 24 hours or 48 hours after the addition of the novel therapeutic. That is because 
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apoptosis (programmed cell death) occurs within 30 minutes – 6 hours of drug exposure and 

robust cells may rehabilitate from toxicant exposure. More importantly, an absorbance 

measurement can be given by apoptotic cells (dying) and dying cells are not what is of interest in 

the early stages of drug discovery. 

The first popular assay for measuring cell viability in a microtiter plate came from 

Mosmann in 1983, in which it was reported that viable cells reduce the yellow aqueous MTT (3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) solution into a purple insoluble 

formazan crystal. Initially isopropanol was added as a cosolvent to dissolve the formazan solid.  

Nonetheless, dimethylsulfoxide, sodium dodecyl sulfate/dimethylformamide solutions, and other 

organic solvents have been used to also dissolve the formazan and make it readable using 

absorbance spectroscopy. This two-step assay creates a homogeneous solution with color 

intensity (λabs =570nm) that is directly related to cell population density. However, this assay has 

several chemical interferences that can distort the absorbance reading. Additionally, the judicious 

selection of a miscible co-solvent that will not destroy the microtiter plate is important as well. 

Therefore, the one-step MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium) tetrazolium assay was developed to produce an aqueous soluble 

formazan product (Figure 2.6). A major difference in this assay and the MTT assay is that a co-

solvent is not necessary due to the creation of the negatively charged formazan water-soluble 

molecule.  Though less sensitive than MTT, this assay also has similar benefits to the MTT assay 

but absorbs differently at 490nm.   



 

70 

 

Figure 2.6. Conversion of MTS to soluble formazan by cellular dehydrogenase enzymes present 

in viable cells.
5
 

2.4   Fluorescent-based Techniques  

Biomedical research relies heavily on fluorescence-based techniques to reveal 

mechanisms at the cellular and molecular levels. The sensitivity and flexibility in fluorescence 

spectroscopy makes this approach suitable to investigate the intracellular and extracellular 

mechanisms of both eukaryotic and prokaryotic cells. Likewise, the ability to miniaturize this 

approach in microtiter plates yields minimal analyte consumption. 

In fluorescence, a fluorophore absorbs a photon from an excitation source promoting it to 

a higher energy excited state in the same spin state.  Highly absorbing fluorophores may become 

excited to higher electronic states above the first singlet excited state (S1).  In this case, the 
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photon will undergo a non-radiative decay via internal conversion to S1.  Internal conversion 

may result from both vibrational and rotational losses such as collisions with solvent molecules 

or with other concomitants in the sample.  Fluorescence emission from the first excited singlet 

state to ground state is a rapid process and occurs between 1x10
-7

 to 1x10
-9

 seconds.
2
 A least 

probable radiative decay called phosphorescence occurs when an excited photon undergoes 

intersystem crossing to the excited triplet state and causes a phosphorescent emission as it decays 

to the ground triplet state.  Phosphorescence has a longer radiative decay than fluorescence (e.g. 

10
-4

 to 10 seconds) and as a result is usually the source used in glow-in-the-dark toys.
2
 Often 

times a photon will decay to a higher vibrational level in the ground singlet state because it has 

emitted less energy than it absorbed. This causes a change, namely Stokes shift, in the emission 

spectrum to a longer wavelength (or lower energy state) relative to the excitation wavelength.  

Many factors can contribute to a Stokes shift such solvent effects, energy transfer, and the 

formation of complexes. The electronic transitions (i.e. non-radiative and radiative processes) of 

a molecule are illustrated using a Jablonski diagram (Figure 2.7).
2
  

Steady-state fluorescence instrumentation consists of a light source, two monochromators 

(i.e. excitation and emission), a sample chamber, and a detector or photomultiplier tube (Figure 

2.8). Many light sources are available for use in fluorescence spectroscopy, including lasers, 

photodiodes, and lamps. Two monochromators are used to filter transmitted light before and 

after passing through the sample. Differing from absorbance spectroscopy, the second 

monochromator is positioned orthogonally from the excitation light path to reduce the detection 

of incident radiation.  Conventional fluorimeters use optically-transparent cuvettes (e.g. quartz, 

glass, polystyrene) to the wavelength ranges of interest to maximize the transmission and receipt 

of excited and emitted light, respectively. 



 

72 

 

Figure 2.7. Jablonski diagram illustrating photophysical transitions of an excited molecule. 

The optical pathway used in fluorescent plate readers is different than conventional 

steady state fluorimeters. Fluorescent microplate readers use special optics to guide the direction 

of the excited and emitted light to and from the sample well to the detector in an unconventional 

orthogonal manner. More specifically, excited light passes through the first monochromator to a 

mirror containing a hole that allows the excited light to be transmitted to the sample well. 

 Since the fluorescence occurs in all directions, the same mirror is used to direct the 

emitted light through the second monochromator to the detector. Opaque black-walled microtiter 

plates are used to minimize background fluorescence, scattering, and cross-talk between sample 

wells.  Microplate readers also use various types of light sources; however, a 75W tungsten-

halogen lamp was used as the light source for all fluorescence microtiter plate experiments 
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conducted in this dissertation. Tungsten-halogen lamps provide continuous light output from 250 

to 700 nm making this approach useful for assaying fluorophores that emit from UV to near-IR 

wavelengths.
2
 This high throughput approach uses an x-y scanning stage to continue automated 

measurements from well to well. A schematic of the optical pathway used in microplate reader 

was shown in Figure 2.4.  

 

 

Figure 2.8. Instrumental configuration of a fluorescence spectrophotometer. 

Both cuvette and microtiter plate steady-state fluorescence-based techniques were used in 

this dissertation to investigate the interactions the antimicrobial agents have with bacteria and to 
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elucidate their mechanisms of action.  Several advantages and disadvantages are evident in the 

use of fluorescent techniques applied to in vitro bacterial research. For instance, fluorescent 

probes are able to be incorporated into intact cells without disrupting cellular membrane 

integrity. Likewise, they can be used at all phases throughout their maturation (i.e. lag, 

exponential, stationary, and death phases). Some probes can be used to distinguish viable and 

nonviable bacterial cells as well as specific cellular components and their activities.  Thus, 

fluorescent probes were used in this research to examine the intracellular and extracellular 

changes within the microbe and their corresponding techniques and are briefly described below.  

2.4.1  1-N-Phenylnaphthylamine (NPN) Permeability Assay  

To investigate the membrane damage inflicted by the antimicrobial agents used in this 

research, an uncharged, lipophilic fluorophore called 1-N-Phenylnaphthylamine (NPN; λex = 

350nm, λem = 420 nm) was used Figure 2.9. Its drastic change in fluorescence emission from 

aqueous to lipophilic environments makes NPN a suitable probe to assess membrane damage. 

More specifically, NPN fluoresces weakly in aqueous environments but more strongly in 

hydrophobic environments similar to the interior of a bacterial membrane. NPN is not readily 

absorbed by viable bacteria cells and requires a membrane active antimicrobial agent to permeate 

the outer membrane for the fluorophore to interact with the lipophilic cellular constituents. 

Therefore, changes in the intensity of NPN steady-state fluorescence in membrane disrupted 

cells attributes this probe useful in elucidating antimicrobial agents and bacterial cell 

interactions. As such, NPN fluorescence has been used extensively to measure changes in outer 

membrane permeability of Gram-negative bacteria.
6-17
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Figure 2.9. Structure of 1-N-phenylnaphthylamine (NPN) fluorophore used in membrane 

permeability studies. 

2.4.2  BacLight Live/Dead Assay 

BacLight Live/Dead assay uses two DNA intercalating dyes green fluorescent SYTO 9 

and red fluorescent propidium iodide to investigate membrane integrity and cell viability. SYTO 

9 penetrates all membranes in which green fluorescence is maintained by intact membranes. 

However propidium iodide, which can only penetrate permeabilized membranes due to its large 

size and negative charge, produces a red fluorescence in membrane-damaged cells by displacing 

SYTO 9 and quenching its fluorescence via Förster resonance energy transfer (FRET). FRET is a 

mechanism that describes the transfer of energy between two fluorophores when the emission 

band from a donor fluorophore overlaps with the excitation energy of an acceptor fluorophore.
2
 

This transfer of energy causes the acceptor fluorophore to become excited and emit energy. 

FRET efficiency is governed by the distance between acceptor and donor molecules, both SYTO 

9 and propidium iodide must be in close proximity and the distance between donor – excitation 

and acceptor emission overlapping bands (<10nm).
2
 The overlapping excitation/emission 

wavelengths between SYTO 9 (488 nm/533 nm) and propidum iodide (530 nm/635 nm) allow 

for propidium iodide to consume all of the emitted energy from SYTO 9 leading to its detection 
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being quenched and consequent quantification of living and dead cells to be performed. 

Representative spectra showing differences in percent live/dead cells are shown in Figure 2.10.  

 

Figure 2.10. Structure of propidium iodide (A), SYTO 9 (B), and the spectra representing 

percentages of live and dead cells (C). 

2.4.3  BacLight Membrane Potential Assay 

Membrane potential is an important property of many functioning cells that governs the 

activity of biological processes. In theory, a voltage potential is generated when ions partition 

between the cells and the suspending medium thereby generating an electric charge. This 

difference in electrical potential between the interior and exterior of the cell can be quantified 

using the Nernst equation (Equation 2.6).   

  
  

  
  

      

     
                                                                   (Eq. 2.6) 

There are three factors that establish membrane potential: 1) intracellular and 

extracellular ion concentrations; 2) membrane permeability to ions by ion channels and their 

resulting ion conductance; and 3) the activity of electrogenic pumps that maintain the ion 

concentrations across the membrane.
15, 17, 18

 Therefore, an efflux or influx of certain ions (e.g. 
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potassium, sodium, chloride, hydrogen, magnesium, or calcium) into or from the cell in 

concentrations exceeding potential thresholds will cause detrimental effects on the viability of 

the organism or activity of the cellular process. The concentrations of select ions and the 

direction of flux are illustrated in Figure 2.11.  

There are two extremes in membrane potential. Hyperpolarization occurs when a cell’s 

membrane potential becomes more negative as caused by an efflux in potassium or influx or 

chloride. On the other hand, depolarization occurs when there is a net positive voltage in 

membrane potential. An influx in sodium ions or other cationic molecules can result in 

depolarization. When membrane active molecules permeate the cellular permeability barrier, 

ions contained extracellularly are able to distort membrane voltage as they travel inward. Thus, 

most membrane active molecules depolarize cells in addition to permeating the outer membrane. 

Studies on the neuronal networks, muscle contraction, and energy metabolism in both eukaryotes 

and prokaryotes have benefited from the use of voltage sensitive fluorescent probes. The ability 

of fluorescent probes to sense small incremental changes in membrane polarization and quantify 

differences in hyperpolarization or depolarization facilitates the impact various antibacterial 

agents have on bacterial cells. Much advancement in the development of voltage-sensitive 

probes and subsequent fluorescent based assays has been developed to overcome some 

challenges. More specifically, improvements in voltage sensitivity, absence of photodynamic 

damage, photobleaching, toxicity, and nonspecific binding have resulted in the success of 

erhodamine and carbocyanine dyes. 
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where the abundance of potassium K
+
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+
 (yellow), and calcium Ca

+2
 (blue) are 

highlighted and presented in an embedded table.  

The fluorogenic dye used in this research is 3, 3′-diethyloxacarbocyanine iodide (DIOC2) 

(Figure 2.12). This dye changes emission properties depending on the membrane potential 

environment of the cell. More specifically, DIOC2 partitions into the cell and accumulates in the 

cytosolic regions. It becomes red when the cell is intact and can aggregate and the membrane 

potential is normal. However, red fluorescence (λex 488nm, λemRed 612nm) decreases when the 

membrane potential is disrupted and the dye is released into the buffer medium. When the 

fluorophore is released into the aqueous medium as a result of depolarization, the strong 

fluorescence becomes green (λex 488nm, λemGreen 538nm).    
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Figure 2.12. Chemical structure of DIOC2 membrane potential probe. 

 

To determine if the novel compounds affect the membrane potential of bacterial 

membranes, aliquots of log-phase inocula are treated with the antimicrobial agents as outlined in 

the BacLight
TM

 Bacterial Membrane Potential assay kit. The  proton ionophore that destroys 

membrane potential by eliminating the proton gradient but does not destroy membrane integrity, 

carbonyl cyanide 3-chlorophenylhydrazone (CCCP), is used as a positive control; whereas, the 

membrane permeant ethylenediaminetetraacetic acid (EDTA) was is as a negative control since it 

does not detrimentally effect membrane potential.  Valinomycin, a potassium ionophore, helps to 

quantify the changes in membrane potential by translating fluorescence measurements into 

voltage so that the Nernst equation can be applied.  Endpoint fluorescence red/green ratiometric 

values are used to quantify intracellular cytosolic potassium concentrations, its leakage, and 

corresponding changes in Nernst membrane potential.  The red – to – green fluorescence ratio 

can distinguish the portion of bacteria with intact or hyperpolarized membranes (red 

fluorescence) and depolarized membranes (green fluorescence) since the   DiOC2 dye shifts from 

red – to – green emission upon changes in membrane potential and membrane integrity.     
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2.4.4  Lipopolysaccharide (LPS) Endotoxin Sequestration 

Blood poisoning due to the release of lipopolysaccharides (LPS), or endotoxins, into the 

blood stream post-antibiotic therapy of Gram-negative bacterial infections is a common and 

serious problem. It plays a key role in the morbidity and mortality of critically ill patients since 

there are no present therapeutic options available to nullify its traumatic effects. LPS consists of 

two portions, a polysaccharide and a lipid (Lipid A). The polysaccharide moiety consists of 

repeating oligosaccharide units in which the number of units is uniquely associated to the species 

and genus among Gram-negative bacteria. The active and toxic portion of LPS is the hydrophilic 

negatively charged bisphosphorylated diglucosamine Lipid A. Although LPS is considered 

chemically inert, its systemic presence sets a cascade of exaggerated immune responses that lead 

to the implications associated with blood poisoning. For example, endotoxemia (endotoxins in 

blood) can seriously interfere with the proper function of the blood circulatory system and 

ultimately result in multiple organ failure.  

To date, several macromolecules have been investigated for their potential in attenuating 

endotoxin-stimulated immunoinflammatory responses. More specifically, several polyclonal and 

monoclonal antibodies have been investigated for their ability to complex Lipid A. 

Unfortunately, both human and murine anti-Lipid A do not bind to LPS and thus show poor 

neutralization ability. Likewise, the use of non-antibody LPS complexants as an approach to 

prevent cellular recognition has been most recently pursued. Of this class, antimicrobial peptides 

(i.e. polymyxin B) have been recognized for their ability to sequester LPS but polymyxin B is 

too toxic for parenteral use. Hence, nontoxic analogs of polymyxin B with potent LPS 

sequestrating abilities are in development. Since many  potent drugs are not approved for 

parenteral use,  structural-activity relationships have been sought to identify the pharmacophoric 
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regions within these molecules that allow successful binding and sequestration of LPS to further 

incorporate these features into nontoxic alternatives. Therefore, polycationic hydrophobic 

molecules with a clear demarcation of charged apolar regions are considered to be important. 

Similarly, the intermolecular distance between cationic groups is suggested to be ~ 15Å apart to 

match the distance between negative phosphate groups in the Lipid A structure.
19-21

  Several 

cationic amphiphilic molecules already approved for therapeutic use have been screened for their 

Lipid A binding and LPS neutralization activity. Among them were antimalarial, antipsychotic, 

and antiseptics. The strongest binders among those tested were chlorhexidine which was able to 

bind Lipid A with an affinity 80 times greater than monobiganidies. This confirmed that the 

inter-cationic distance and basicity of the cationic groups in dicationic molecules are important 

for strong LPS binding.  

In this dissertation, chlorhexidine-based GUMBOS were investigated for their ability to 

sequester LPS endotoxins in vitro using the high-throughput BODIPY-cadaverine displacement 

assay.
22

 This assay uses the highly sensitive and robust BODIPY-TR Cadaverine (BC; λex 

=580nm ,λem = 620nm) which has been shown to bind strongly to LPS. Using a displacement 

type of assay, the addition of a stronger binder than BC causes the fluorophore to be released and 

fluorescence emission to increase. This assay has been miniaturized and can be performed 

reproducibly using a cuvette or 96-well plate.  Secondary properties of chlorhexidine can also be 

assessed when in the form of GUMBOS and the roles the various antibiotics have on its ability to 

successfully sequester LPS.  

2.5  Scanning Electron Microscopy 

Scanning electron microscopy (SEM) is a power microscopic technique used to 

characterize sub-micron materials and their morphologies. Its high spatial resolution capabilities 
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(i.e. <5nm) befits this technique to non-biological nanomaterials. However, SEM can also be 

used to characterize bacteria and visualize nanometer sized defects inflicted in its membrane.  

The instrumental configuration of a SEM is illustrated in Figure 2.13. A divergent electron gun is 

first used to generate a beam that is focused through condenser lenses to the sample. Scanning 

coils are used to move the electron beam across the sample that is focused using an objective 

lens. Electrons that collide with the sample become either backscattered or secondary electrons. 

Secondary electrons are collected into a photomultiplier tube which amplifies the electron signal 

and backscattered electrons are collected by a semiconductor array. Aberrations in the sample’s 

surface deflect electrons with different intensities thereby causing the viewer to see an artificial 

three-dimensional image of the sample. For example, surfaces that are closer to the 

photomultiplier tube will result in the production of more backscattered electrons and a higher 

signal and surfaces that are further away appear darker. Since SEM measure sample deflected 

electrons, the sample must be prepared differently from that required of conventional 

microscopes. More specifically, SEM samples must be conductive in order for electrons to be 

deflected to the detector. If not, the sample will absorb the electrons and immediately become 

decomposed. Therefore, SEM sample are contained on a metal stub using conductive tape and 

are covered with a conductive coating (e.g. gold or platinum).  
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Figure 2.13. Instrumental configuration of a scanning electron microscope. 
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CHAPTER 3 DESIGN, SYNTHESIS, AND BIOLOGICAL EVALUATION OF BETA (β)-

LACTAM ANTIBIOTIC-BASED IMIDAZOLIUM- AND PYRIDINIUM-TYPE 

IONIC LIQUIDS
1
  

3.1 Introduction 

Data accumulated over the last decade show that there is an association between 

antimicrobial resistance in Staphylococcus aureus, enterococci and Gram-negative bacilli and 

increases in mortality, morbidity, length of hospitalization, and cost of healthcare.
1, 2

 Patients 

infected with antimicrobial-resistant organisms have higher associated treatment costs (US 

$6,000–$30,000) than do patients with infections of antimicrobial-susceptible organisms.
3
 

Consequently, many antibiotics, particularly β-lactam drugs, are becoming less effective 

treatment options.
1, 4-7

 This challenge necessitates the development of more effective 

antibacterial agents. The development of ionic liquids (ILs) composed of antibiotics fortified 

with other antibacterial compounds was investigated in this study as a promising strategy to 

address antibiotic resistance.  

Many strategies have been proposed to extend the efficacy and antibacterial spectrum of 

current antibiotics. As alternatives to de novo drug synthesis, methods that employ organized 

media as potential delivery agents to improve the absorption of various pharmaceutical agents 

have met with some clinical success.
8-10

 Examples include the use of QACs to improve the 

absorption, transport, and efficacy of various drugs. Specifically, dihydropyridinium salt delivery 

systems have successfully achieved targeted penicillin delivery to the central nervous system.
11

 

Other pyridinium salts have been used to selectively facilitate drug transport across the brain-

blood barrier and dermis via enzymatic hydrolysis.
12-15

 Cetyltrimethylammonium bromide and 

related surfactants have enhanced drug absorption by various strains of Gram-negative and 

1
 Reprinted by permission of Chemical Biology and Drug Design. 
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Gram-positive bacteria.
16

 These formulation strategies have been shown to facilitate the uptake 

of various antibiotics and improve their treatment properties. 

In this study, a new set of ampicillin salts with quaternary ammonium cations, such as 1-

butyl-3-methylimidazolium, 1-hexadecyl-3-methylimidazolium, 1-hexadecyl-2,3-

dimethylimidazolium, cetyltrimethylammonium,  and cetylpyridinium were synthesized and 

found effective on Gram-negative bacteria Escherichia coli O157:H7 and Klebsiella 

pneumoniae, as well as the Gram-positive Staphylococcus aureus  and Enterococcus faecium. By 

taking advantage of the antibacterial nature of both the cationic and anionic components of the 

IL, we demonstrate the antibacterial utility of ILs for various biological and medical 

applications.   

3.2 Experimental  

3.2.1 Materials and Methods 

3.2.1.1 Reagents  

1-Methylimidazole and 1,2-dimethylimidazole, 1-bromohexadecane, cetylpyridinium 

bromide (CPB or [CP][Br]), cetyltrimethylammonium bromide (CTAB or [CTA][Br]), 1-butyl-

3-methyl-imidazolium chloride ([BmIm][Cl]),  sodium ampicillin ([Na][Amp]), sterile disks,  

brain heart infusion broth (BHI broth), Petri dishes (100 mm × 20 mm and 150 mm × 20 mm), 3-

(4,5-dimethyl-2-thiazyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT),  chloroform, and diethyl 

ether were purchased from Sigma Aldrich (St. Louis, MO) and used without further purification; 

isopropanol and acetone were purchased from Mallinckrodt Chemicals (Phillipsburg, NJ), and 

ethanol was purchased from Pharmco-Aaper and  Commercial Alcohols (Brookfield, CT). All 

solvents purchased were of analytical grade. Agar technical grade was purchased from Becton, 

Dickinson, and Company (Franklin Lakes, NJ).   
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3.2.1.2 Culture Preparation 

Test organisms used in this study, Escherichia coli O157:H7 (ATCC 43895), Escherichia 

coli (ATCC 25922), Staphylococcus aureus (ATCC 6538), Streptococcus mutans (PCM 2502), 

Enterococcus faecium (ATCC 49474), Listeria monocytogenes (NCTC 7973), Klebsiella 

pneumoniae (ATCC 4352), Salmonella enterica serovar typhimurium (ATCC 14028) were 

received as a gift from collaborator Dr. Marlene Janes.
17

  

3.2.1.3 General Procedure for Quaternization Reactions  

Equimolar amounts of 1-methylimidazole or 1,2-dimethylimidazole and 1-

bromohexadecane were stirred in anhydrous ethanol under reflux for 48 h in an argon 

atmosphere. Ethanol was removed and the product was washed with diethyl ether. A white solid 

was obtained after filtration. The product was dried and purified in acetone using the 

recrystallization method.  

3.2.1.4 General Procedure for Anion Metathesis  

A typical anion-metathesis reaction procedure is as follows: [CP][Br] (1 equiv.) was 

dissolved in chloroform with the slow addition of aqueous [Na][Amp] (1.1 equiv.) into the 

solution. The chloroform-water mixture (4:1 v/v) was stirred for 48 h at room temperature.  The 

upper aqueous solution was separated and washed with fresh chloroform to obtain all exchanged 

product. The removal of chloroform in vacuo yielded the white product, [CP][Amp], which was 

further freeze-dried on a lyophilizer. Other Amp-ILs (i.e. [Bmim][Amp], [C16M1Im][Amp], and 

[C16M2Im][Amp]) were synthesized in the same manner.  

3.2.1.5 Ionic Liquid Characterization  

These compounds were characterized using 
1
H-NMR (Bruker Avance-250, 250MHz) 

with DMSO-d6 as solvent. The elemental composition was determined using Leco 932 CHNS 

Analyzer (Atlantic Microlab, Inc.  Norcross, GA).  The thermal properties including melting 
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points were determined using a differential scanning calorimetry (DSC Q100, TA Instruments, 

Wilmington, DE). 

3.2.1.6 Critical Micelle Concentration (CMC) 

 The critical micelle concentration of the Amp-ILs was determined by measuring the 

surface tension with a Sigma 703 tensiometer at 298K. Several half-fold dilutions were made 

from a 2mM stock solution of both QAC and Amp-ILs. This method used a DuNuoy ring with a 

circumference of 5.992 cm.  

3.2.1.7 Solubility  

The solubility of Amp-ILs was determined using a Shimadzu UV-3101 PC scanning 

spectrophotometer. Briefly, this included measuring the absorbance of half-fold dilution series 

ranging up to 2 mg/mL of sodium ampicillin in water. Since sodium ampicillin has three 

characteristic absorption bands (i.e. 257 nm, 262 nm, and 268 nm),
18

  these bands were used to 

confirm and quantify the solubilities of the Amp-ILs via the construction of a calibration curve 

(R=0.99). Two mg/mL of each Amp-IL was dissolved in water with one minute of high mixing 

and thirty minutes of sonication at room temperature.  The suspension was filtered with a 0.45 

µm and the filtrate was measured for solubility. The Amp-IL acquired absorbance was converted 

into concentration using a Beer’s Law relationship from the sodium ampicillin slope. It was 

noted that the imidazolium bromide absorbs at lower energies and therefore does not interfere 

with the absorbance intensities of the ampicillin anion.
19-21

 Also, no absorption was detected for 

[CTA][Br] either. However, [CP][Br] does absorb within this same range. To compensate for the 

cross-absorbance in [CP][Amp], the absorbance of [CP][Br] at equal concentrations of 

[CP][Amp] were subtracted to only obtain the absorbance of the anionic portion of the Amp-IL.  
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3.2.1.8 Antibacterial activity - Minimum Inhibitory Concentration (MIC) and Minimum 

Bactericidal Concentration (MBC) 

 

The minimal inhibitory concentration (MIC) values were determined in triplicate by the 

broth dilution method in a 96-well microtiter plate using Müeller-Hinton Broth.
22

  The test 

organisms were grown individually on brain heart infusion (BHI) agar for 24 h at 37˚C prior to 

each antibacterial test. The growth was adjusted using colony plate counts. Bacteria of 10
5
 

CFU/mL concentrations were exposed to an Amp-IL concentration range of 0.8 μM to 0.2 mM. 

The MIC for each Amp-IL was recorded as the lowest concentration that showed no turbidity 

after 24 h of incubation at 37°C. Turbidity is an indication of microbial growth and if present, the 

corresponding concentration of antibacterial agent is considered ineffective.  To determine 

whether the Amp-ILs inhibited growth or killed the bacteria, twenty microliters of (3-[4,5- 

dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) or MTT (1 mg/mL) was added to the 

non-turbid wells of the MIC assay plate and incubated for 2 h at 37 ˚C for the bacteriostatic/-

cidal status determination.
23, 24

 In the case of viable cells with inhibited growth, the tetrazolium 

dye (i.e. yellow solution) would be metabolically reduced to aqueous soluble formazan crystals 

(i.e. purple solution); however, a solution containing dead bacterial cells would remain yellow. 
24

 

3.3  Results and Discussion  

3.3.1 Physical Characterization of Amp-ILs   

3.3.1.1 Synthesis and Characterization 

 The synthesis of 1-alkyl-3-methylimidazolium ILs involved the quaternization of 1-

methylimidazole or 1,2-dimethylimidazole with 1-bromohexadecane followed by anion-

exchange. Quaternization was carried out for 48 h under reflux in anhydrous ethanol under argon 

atmosphere. Amp-ILs (Table 3.1) were synthesized by anion-exchange reactions between the 

synthesized imidazolium bromides [Im][Br] or commercially available QAC (e.g. 
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cetyltrimethylammonium [CTA][Br] and cetylpyridinium bromide [CP][Br]) and excess sodium 

ampicillin [Na][Amp] in a chloroform-water (4:1 v/v)  mixture. The resulting products, 1-butyl-

3-methylimidazolium ampicillin [BmIm][Amp], 1-hexadecyl-3-methylimidazolium ampicillin 

[C16M1Im][Amp], 1-hexadecyl-2,3-dimethylimidazolium ampicillin [C16M2Im][Amp], 

cetyltrimethylammonium ampicillin [CTA][Amp], and cetylpyridinium ampicillin [CP][Amp], 

were isolated as solids at room temperature and purified by washing with anhydrous diethyl 

ether. These salts have limited solubility in water, but are soluble in ethanol, isopropanol, 

dimethylsulfoxide, and chloroform.  

3.3.1.2 Ampicillin – ILs NMR Characterization  

Amp-ILs were characterized using 
1
H-NMR (Figure 3.1) and elemental analysis. All 

Amp-ILs contained the chemical shifts of the ampicillin anion and the respective cations. In the 

case of [BmIm][Amp] and [C16M1Im][Amp], a singlet peak was observed with a chemical shift 

at 9.29 ppm and 9.11 ppm which was attributed to the acidic proton in the C2 position of both 

imidazolium cations. These peaks are also present in the di-substituted imidazolium halide salts. 

However, this acidic peak was absent in the spectra for [C16M2Im][Amp] because of the methyl 

group substituted on C2. In fact, a singlet at 3.73 ppm is evident of a methyl group substituted on 

the C2 position of the imidazolium. There was a small upfield shift once the halogen was 

exchanged for the less electron-donating ampicillin anion (not shown).  In addition, the chemical 

shifts between the hydrogens on the C4 and C5 positions of the imidazolium rings decreased 

upon successful metathesis. A secondary set of multiplets ranging from 8.27 – 9.19 ppm  present 

in the 
1
H-NMR of [CP][Amp] are attributed to the more electron withdrawing nitrogen in the 

pyridinium ring. The anion exchange from bromide to ampicillin anion was confirmed by 

examining the multiplet ranging from 7.11 – 7.52 ppm that was directly contributed by the 

benzyl group in the ampicillin structure. Proton peaks from the substituted methyls on the 
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quaternary ammonium group in [CTA][Amp] are also evident as a singlet at 1.25 ppm. Lastly, a 

strong singlet at approximately 1.22 ppm validated the existence of the long alkyl chain in the 

cation moiety for each Amp-IL.     

The surface tension of Amp-ILs and the corresponding surfactant cation groups at 

different concentrations was measured at 25°C to determine if the micellar properties of the 

cation were maintained. Figure 3.2 shows a comparison between the critical micelle 

concentrations (CMCs) between halide-QACs and Amp-ILs. The results show that in each case, 

the Amp-ILs has lower surface tension than the parent QACs. Critical micelle concentrations 

were determined from the plot of surface tension and concentration. The tensiometry 

measurements for [Bmim][Cl] and [Bmim][Amp] demonstrated no discontinuity and that a CMC 

could not be established. This correlates with previously reported data for [Bmim][Cl].
25

 Since 

ampicillin does not have a surfactant-like structure, no enhanced micellization properties were 

expected for [Bmim][Amp]. Thus, increasing CMCs for Amp-ILs occurs as [CP][Amp] ≤ 

[C16M1Im][Amp] < [C16M2Im][Amp] < [CTA][Amp]. This differs slightly from the order of the 

halide-QAC CMC values, in which [C16M1Im][Br] ≤ [C16M2Im][Br] < [CP][Br] < [CTA][Br]. 

Substantial reductions in surfactant-like properties for Amp-ILs ranged between 5 – 29 times as 

compared to halide-QAC, with the least and greatest change observed for [C16M2Im][Amp] and 

[CP][Amp], respectively. Since the CMC is dependent upon the nature of the amphiphile, size of 

the head group, and the length of the alkyl chain, this decrease in CMC is attributed mostly to the 

larger ampicillin anion that is likely to prevent hydration within the micellar core. This 

phenomenon was observed in CMC studies containing 1-dodecyl-3-methylimidazolium chloride 

[DMIM][Cl], in which CMC values were halved once a larger bromide ion replaced the chloride 

ion.
25-27

  Therefore, the metathesis of anions appears to modify the lipophilic/hydrophilic balance 
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observed in surfactants. Thereby, it is apparent that Amp-ILs are more hydrophobic than the 

starting materials used in this study.  

 

 

Figure 3.1. Stacked proton nuclear magnetic spectra of various Amp-ILs synthesized in this 

study, where A=[CP][Amp]; B= [CTA][Amp];  C =[C16M2Im][Amp]; D =  [C16M1Im][Amp]; 

E = [BmIm][Amp]; and F = [Na][Amp]. 

3.3.1.2.1 Cetylpyridinium Ampicillin ([CP][Amp]), 

Yellow solid, yield, 92%. Mp = 56˚C [CP][Amp]. CMC= 24 μM [CP][Amp]; 690 μM 

CPB. Water solubility: 348 μg/mL. 1H NMR (250 MHz, DMSO) δ 8.73 (tt, 5H), 7.24 (m, 5H), 

A)

B)

C)

D)

E)

F)



 

93 

2.09 (s, 14H), 1.91 (s, 4H), 1.49 (d, 6H), 1.24 (s, 20H), 0.86 (s, 2H). Anal. Cacld for 

C37H56N4O4S: C, 68.06; H, 8.64; N, 8.58; S,4.91. Found: C,67.97; H, 8.57; N, 8.55S, 4.84.  

 

3.3.1.2.2 1-Hexadecyl-3-methylimidazolium Ampicillin ([C16M1Im][Amp]) 

Off-white solid, yield, 91%. Mp = 55°C [C16M1Im][Amp].CMC= 24μM 

[C16M1Im][Amp]; 430μM [C16M1Im][Br]. Water solubility: 379 μg/mL. 1H NMR (250 MHz, 

DMSO) δ 9.11 (s, 1H), 8.31 (s, 1H), 7.72 (d, 2H), 7.59 – 7.12 (m, 5H), 5.36 (s, 2H), 4.14 (t, 2H), 

3.85 (s, 2H), 2.09 (s, 3H), 1.77 (t, 2H), 1.47 (dd, 10.0 Hz, 6H), 1.24 (s, 28H), 1.09 (s, 3H), 0.85 

(d, 2H).Anal. Cald for C36H57N5O4S: C, 65.92; H, 8.76; N, 10.68; S, 4.89. Found: C, 65.79; H, 

8.81; N, 10.42; S, 4.87.   

 

3.3.1.2.3 1-Hexadecyl-2,3-dimethylimiedazolium Ampicillin ([C16M2Im][Amp]) 

Off-white solid, yield, 94%. Mp =65˚C [C16M2Im][Amp]. CMC= 92 μM 

[C16M2Im][Amp]; 450 μM [C16M2Im][Br]. Water solubility: 475 μg/mL. 1H NMR (250 MHz, 

DMSO) δ 8.27 (s, 1H), 7.60 (dd, 2H), 7.53 – 6.95 (m,5H), 5.70 (s, 2H), 5.30 (d,  4H), 4.07 (t,  

2H), 3.73 (s, 3H), 2.09 (s, 1H), 1.68 (s, 6H), 1.22 (s, 30H),0.83 (d, 3H).Anal. Cald for 

C37H59N5O4S: C, 66.33; H, 8.88; N, 10.45; S, 4.79. Found: C, 66.21; H, 8.84; N, 10.44; S, 4.72.   

 

3.3.1.2.4 Cetyltrimethylammonium Ampicillin ([CTA][Amp]) 

Off-white solid at 90% yield. Mp = 73.89-81.36˚C, CMC= 101 μM [CTA][Amp]; 923 

μM [CTAB]. Water solubility: not determined. 
1
H NMR (250 MHz, DMSO) δ 9.03 (s, 1H), 7.80 

– 6.99 (m, 5H), 5.69 (s, 2H), 5.31 (d, J = 25.7 Hz, 2H), 3.93 – 3.77 (m, 2H), 3.27 (dd, J = 18.0, 

9.8 Hz, 2H), 3.03 (s, 9H), 1.66 (s, 2H), 1.63 – 1.36 (m, 26H), 1.25 (s, 6H),, 0.85 (d, J = 6.7 Hz, 
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3H). Anal. Cald for C35H60N4O4S: C, 66.42; H, 9.55; N, 8.85; O, 10.11; S, 5.07. Found: C,66.17; 

H, 9.53; N, 8.61; O, 10.58; S, 5.11.  

 

3.3.1.2.5 1-Butyl-3-methylimidazolium Ampicillin ([Bmim][Amp]) 

Yellow viscous liquid in 91% yield. Mp = liquid at room-temperature. CMC= none  

[Bmim][Amp]; none [Bmim][Cl]. Water solubility: not determined.  
1
H NMR (400 MHz, 

DMSO) δ 9.29 (s, 1H), 8.67 (s, 1H), 7.77 (d, J = 27.3 Hz, 2H), 7.52 – 7.11 (m, 3H), 5.35 (d, J = 

3.8 Hz, 1H), 4.49 (d, J = 13.2 Hz, 1H), 4.18 (t, J = 7.2 Hz, 2H), 3.92 – 3.74 (m, 4H), 3.47 – 3.09 

(m, 2H), 2.55 (d, J = 30.0 Hz, 1H), 2.09 (s, 1H), 1.86 – 1.71 (m, 2H), 1.54 (d, J = 11.2 Hz, 3H), 

1.42 (d, J = 20.6 Hz, 3H), 1.32- 1.22 (m, 4H), 0.99 – 0.84 (t, 2H). Anal. Cald for C24H33N5O4S: 

C, 59.12; H, 6.82; N, 14.36; O, 13.12; S, 6.58. Found: C, 59.01; H, 7.08; N, 14.22; O, 13.43; S, 

6.26.  

 

3.3.1.3 Solubility 

The solubility of Amp-ILs in water was characterized using UV-vis spectroscopy.  We 

determined the solubility for select Amp-ILs are 475, 379, and 348 µg/mL for [C16M2Im][Amp], 

[C16M1Im][Amp], [CP][Amp], respectively. A 100- to 150-fold reduction (R
2
=0.99) in the 

aqueous solubility of ampicillin was observed once the sodium was replaced with a quaternary 

ammonium group. Aqueous solubility for [BmIm][Amp] and [CTA][Amp] was not able to be 

accurately quantified. A positive control consisting of Amp-ILs in isopropanol confirmed that 

the anionic ampicillin was an intact part of the IL structure as evidenced by absorption bands at 

257, 262, and 268 nm.  
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 Figure 3.2. Comparsion between critical micelle concentrations  of imidazolium and pyridinium 

halides and their corresponding Amp-ILs. 
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Table 3.1.  Synthesis and structures of five ampicillin-based ionic liquids by anion-exchange reactions. 

C16-Quaternary Ammonium with Br
- 
as Anion 

Ampicillin – based IL 

C16-Quaternary Ammonium  with Ampicillin as Anion 

Structure Name and Abbreviation Structure Name and Abbreviation 

 

Cetyltrimethyl 

ammonium bromide 
[CTA][Br] 

 

Cetyltrimethyl 

ammonium ampicillin 
[CTA][Amp] 

 

1-butyl-3-

methylimidazolium 

chloride 

[BmIm] 

[Br] 

 

1-butyl-3-

methylimidazolium 

ampicillin 

[BmIm] 

[Amp] 

 

1-hexadecyl-3-

methylimidazolium 

bromide 

[C16M1Im] 

[Br] 

 

1-hexadecyl-3-

methylimidazolium 

ampicillin 

[C16M1Im] 

[Amp] 

 

1-hexadecyl-2,3-

dimethylimidazolium 

bromide 

[C16M2Im] 

[Br] 

 

1-hexadecyl-2,3-

dimethylimidazolium 

ampicillin 

[C16M2Im] 

[Amp] 

 

cetylpyridinium 

bromide 
[CP][Br] 

 

cetylpyridinium 

ampicillin 
[CP][Amp] 
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3.3.2 Antibacterial MIC of ILs  

3.3.2.1 Disk-Diffusion Results 

The antimicrobial activity of Amp-ILs were qualitatively tested against reference strains 

of Gram-positive (L.monocytogenes 7973 and S.aureus 6538) and Gram-negative 

(S.typhimurium 14028. and E. coli O157:H7 43895) bacteria.  The antimicrobial efficacy of 

Amp-ILs were qualitatively studied using the Kirby-Bauer Disk Diffusion method (NCCLS M7-

A7) against two Gram-positive and two Gram-negative bacteria prior to assessing the minimum 

inhibitory concentrations (MICs). Zones of inhibition are summarized in Figure 3.3.  

The propensity to diffuse and the antibacterial activity of Amp-ILs against select Gram-

positive and Gram-negative bacteria were evaluated by the disk-diffusion assay. According to 

the zone diameter interpretive standard values (NCCLS M2-A4, 1983), the susceptibility zone of 

Enterobacteriaceae and highly sensitive Gram-positive bacteria are above 14 mm and 29 mm for 

10 μg ampicillin, respectively (Table 3.2).  

Table 3.2.  Diffusion zone ranges based on NCCLs diameter criterion for sodium ampicillin 

disks against Gram-negative and Gram-positive bacteria. 

Antibiotic and Bacterial Class Disk 

potency 

Inhibition zone diameter to nearest mm 

    Resistant Intermediate Susceptible 

Ampicillin - Gram-negative rods and 

enterococci 

10 µg 11 12 – 13 14 

          

Ampicillin - Staphylococci and 

highly penicillin-sensitive organisms 

10 µg 20 21-28 29 

By these zone standards both Amp-ILs and [Na][Amp] are considered ampicillin resistant 

to Gram-positive bacteria. Therefore, interpretation of the results are based on Gram-negative 

bacteria susceptibility to these agents. In the case of [Na][Amp], a large diameter indicating 

Gram-negative susceptibility was observed. E. coli O157:H7 did not show susceptibility to any 
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of the Amp-ILs tested. Interestingly, susceptibility to S. typhimurium 14028 was observed for all 

Amp-ILs, except for the intermediate inhibition zone formed by [C16M1Im][Amp]. Overall, 

Amp-ILs diffused poorly as compared to [Na][Amp], While diffusion was not completely 

inhibited by combining the two salts, none of the Amp-IL compounds diffused as well as 

[Na][Amp]. We attribute this result to greater hydrophobicity in Amp-IL.; thereby, causing 

diffusion in aqueous-based agar to be limited.  Due to the aforementioned limitation among 

others caused by the physico-chemical properties of antimicrobial agents, inhibitive zones cannot 

be used to completely qualify antibacterial activity. Thus, the antibacterial activities of these 

compounds were tested in vitro using the broth-dilution MIC test. 

3.3.2.2 Minimum Inhibitory Concentration Results 

The antibacterial activity of ampicillin-type ammonium-, pyridinium-, and imidazolium-

based ILs were tested against eight bacteria (i.e. 4 Gram-positive and 4 Gram-negative). To 

quantify their antibacterial activities, the minimum inhibitory concentrations (MICs) and 

minimum bactericidal concentrations (MBC) were determined. As controls, the precursor ions of 

the Amp-ILs were evaluated for antimicrobial activity to determine the difference in activity 

between the molecular and IL form of the compounds. The MIC results demonstrate that each 

Amp-IL exhibited variable activity against both Gram-positive and Gram-negative bacteria 

(Table 3.3). In sum, the antibacterial activity against Gram-positive bacteria in order of higher 

MIC value is [CP][Amp] < [CTA][Amp] < [C16M2Im][Amp] < C16M1Im][Amp] < [Na][Amp] < 

[BmIm][Amp]. The antibacterial activity of Amp-ILs against Gram-negative bacteria follow a 

similar trend as [CP][Amp]<[CTA][Amp]<[C16M2Im][Amp]<C16M1Im][Amp]<[Na][Amp] < 

[BmIm][Amp]. Overall increases in activity ranged from 2-43 times compared to [Na][Amp]. 
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3.3.2.2.1 Ammonium – based Ampicillin Ionic Liquid 

The ammonium-type ampicillin IL is composed of four parts: the head ammonium, the 

C16-alkyl chain, three methyl groups, and the anion (bromide or ampicillin). The MICs of 

[CTA][Br] against Gram-positive bacteria are comparable to [CTA][Amp], although ranging 

from 2 – 30 µM. Considerable differences in antibacterial activity between [CTA][Br] and 

[CTA][Amp] reveal concentration gaps from 3 to 13 times. Effective antibacterial activities 

range from 5 to 30 µM for Gram-negative bacteria. Our results show that [CTA][Amp] was most 

effective against E. coli O157:H7 43895 and S. mutans 2502 with equal preferential activity  for 

both  classes of bacteria. Mediocre antibacterial activity was observed for remaining isolates with 

no preference to cell morphology. The antimicrobial mechanism of this Amp-IL is still not 

known in detail, but is thought to involve a general perturbation of the lipid bilayer in bacterial 

membranes; however more studies are necessary to validate this hypothesis. Several studies have 

reported that long alkyl QACs disrupt the outer membrane of Gram-negative bacteria more 

extensively than shorter chain compounds with subsequent intracellular leakage and cell death.
28

  

Not much literature has explained the roll of QACs on the antimicrobial mechanism of action in 

Gram-positive systems. However, we attribute this activity to the presence of the cell wall 

inhibitor, ampicillin.  

3.3.2.2.2 Imidazolium – based Ampicillin Ionic Liquids 

The antibacterial activity of imidazolium-type ampicillin salts were not only tested but 

correlated to structure and activity relationships and spectrum of activity. Mainly, the 

antibacterial activity of the C16-imidazolium ampicillin ILs will be discussed, since 

[BmIm][Amp] only showed mediocre activity against the organisms tested. Therefore, 

[C16M1Im][Amp] and [C16M2Im][Amp] are composed of three parts: the head imidazole, the 
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C16-alkyl chain, and the anion (bromide or ampicillin). The MICs of [C16M1Im][Br] and 

[C16M2Im][Br] against E. coli O157:H7 43895 and E. coli ATCC 25922 showed marginal 

difference however, the former had greater activity (Table 3.4). In the case of K. pneumoniae 

4352 and S. typhimurium 14028, [C16M1Im][Br] was more 4 times more effective. The 

antimicrobial mechanism of these types of long alkyl imidazolium bromides against bacteria is 

still not known in detail, but is thought to involve a general perturbation of the lipid bilayer in 

bacterial membranes.
29-31

  Similar to ammonium-type QAC, Ahlström et al. previously reported 

that QACs with a C16 hydrophobic chain affected the outer membrane of Gram-negative 

bacteria more extensively than shorter chain compounds leading to leakage of cytoplasmic 

material and eventual death of the bacterial cell.
28

  Previous studies have also demonstrated that 

imidazolium halides with hydrophobic groups in the C1 and C3 positions of the imidazolium 

ring demonstrated higher antibacterial activity than 1,2,3-trisubstituted imidazoles.
29

 This 

demonstrates that the relative antibacterial activity of these types of compounds can be attributed 

to the alkyl chain length and head group substitutions, but not the imidazole ring structure.  

In the case of the Gram-positive bacterium E. faecium 49474, [C16M1Im][Br] required six 

fewer moles than [C16M2Im][Br] to inhibit its growth (Table 3.4). S. aureus 6538, L. 

monocytogenes 7973, and S. mutans 2502 were equally susceptible to [C16M1Im][Br] and 

[C16M2Im][Br]. This result can be attributed to the lack of a lipopolysaccharide layer. In terms of 

the cation, Gram-positive bacteria have shown higher susceptibility than Gram-negative bacteria 

to permeation by the long alkyl chain present on the imidazolium ring. Thus, it is suggested that 

monoalkyl QACs bind by ionic and hydrophobic interactions to microbial membrane surfaces 

arranged with the hydrophobic tails inserted into the lipid bilayer, resulting in the rearrangement 

of the membrane and subsequent leakage of intracellular contents.
30

 The innocuous bromide 
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counter-ion does not add any antimicrobial benefit to the halide-QACs, thereby allowing the 

mechanism of action to be solely attributed to the properties of the cation.  It is important to note 

that the S. aureus 6538 used in this study acquired resistance amidst this investigation as 

determined by high MIC (e.g. 40 µM) and limited disk diffusion zone diameters (Figure 3.3).  

After undergoing anion exchange from bromide to the antibiotic, ampicillin, our results 

demonstrate a reduction in the amount of ampicillin required to inhibit the growth of the 

challenge pathogens. Since literature has suggested that there are minimal effects on antibacterial 

activity from the variation of the anion within imidazolium- and pyridinium-type ILs, any 

changes in antibacterial activity for our Amp-ILs will be attributed to the antibiotic ampicillin.
31-

33
 Similar to the investigation conducted by Docherty et al.,

34
 we also investigated the 

antibacterial activity of the halide salts, sodium bromide, potassium chloride, and sodium 

chloride in which no antibacterial activity was observed within the concentration range studied in 

this investigation (data not shown). When comparing the antibacterial activities of the ampicillin 

imidazoliums to the halide imidazoliums, improvements in antibacterial activity were evident 

(data not shown).  

Antibacterial activity against Gram-negative bacteria for imidazolium-type Amp-ILs 

show improved spectrum of activity between di- and tri-substituted imidazolium ampicillins.  

Minimal changes to the antibacterial activity were observed for both E. coli isolates. Nearly 6-

fold improvement in MIC values were achieved for K. pneumoniae  4352 for [C16M2Im][Amp]. 

Equal antibacterial activity was observed among all Gram-negative isolates treated with 

[C16M1Im][Amp]. These findings could be explained by the known activities of penicillin and its 

analogs against Gram-negative bacteria. For example, the β-lactam must be able to penetrate the 

outer LPS envelope and intrinsically bind to the different target proteins within the bacteria cell 
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wall.
35

 However, the LPS barrier protects the cell from large, hydrophobic permeating agents 

such as certain antibiotics, detergents,
36

 or in this case Amp-ILs. In addition, the large masses of 

the Amp-ILs may inhibit the compound from passing through pores located in the LPS layer and 

actively inhibit transpeptidase activity. Despite being specific to the types of bacteria, the pores 

located in E. coli, for example, do not allow molecules with masses larger than 600Da to enter 

the cell
37

 and our Amp-ILs have masses greater than 600 Da on average.  Therefore, the 

antibacterial activity of Amp-ILs against these microorganisms may be result from the cationic 

portion of the Amp-IL structure. This is further supported in the results outlined in Table 3.3 

where it is evident that neither halide nor ampicillin imidazolium produced substantial changes 

in antibacterial activity compared to [Na][Amp]. When comparing [C16M1Im][Amp] and 

[C16M2Im][Amp] to [Na][Amp], MICs for Gram-negative bacteria were 4-times better for K. 

pneumoniae 4352 but equally or worse treatments for the other microbes.  

It is commonly recognized that penicillin and its analogs are more effective on Gram-

positive than Gram-negative bacteria due to the absence of the LPS in Gram-positive bacteria 

and the readily accessible cellular wall.
38

 In Table 3.3, it can be seen that the antibacterial 

activities for ampicillin imidazoliums significantly improved requiring between 2 - 30 μM and 

0.8 – 30 μM for [C16M1Im][Amp] and [C16M2Im][Amp], respectively, to inhibit Gram-positive 

bacteria compared to 8 – 140 μM  required for [Na][Amp]. Similar activity is required to inhibit 

S. aureus for both ampicillin-type imidazoliums. When compared to [Na][Amp], both Amp-ILs 

required approximately 50% lower concentration to inhibit the growth of resistant S. aureus 

6538. It is believed that the acquired resistance shown by S. aureus 6538 in this study could be 

due to its development into a mucoid strain which is less susceptible to long-alkyl disinfectants. 

If this is the case, we attribute the [C16M2Im][Amp]’s improvement in antibacterial activity to 
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Amp-IL hydrophobicity and its likelihood to transport through the slime-layer of S. aureus 6538. 

Additionally, 2.25 times fewer moles are required for bacteriostatic activity against E. faecium 

49474, and equal MIC values are required to inhibit the growth of L. monocytogenes 7973 and S. 

mutans 2502. Therefore, imidazolium-based Amp-ILs are equally effective against all candidate 

Gram-negative pathogens tested in this study with preferential activity to Gram-positive bacteria, 

namely, E. faecium 49474. 

3.3.2.2.3 Pyridinium – based Ampicillin Ionic Liquids 

The antibacterial activity of the pyridinium-type ampicillin IL was also investigated.  

These compounds are also composed of three parts: the head pyridinium ring, the C16-alkyl 

chain, and the anion (bromide or ampicillin). Similar to imidazolium halides, pyridinium halides 

have been extensively investigated to determine the structural contributions to their disinfecting 

properties.
39

 The addition of a long alkyl chain to C1 on the pyridinium ring results in increased 

IL toxicity against Gram-negative planktonic bacteria.
34

 It has also been demonstrated that C16-

alkyl chains are the most effective portion of the ionic liquid structure when reducing the growth 

of bacteria.
29, 40

 Therefore, it is suggested that the hydrophobic chain on the pyridinium ring 

helps to perturb the cell wall. For the Amp-IL [CP][Amp], this cell wall permeation would 

improve the access of the ampicillin anion to the cell wall.  

The MICs of [CP][Amp] against Gram-negative microbes showed improvement in the 

antibacterial activities when converted into an Amp-IL (Table 3.3).  After exchange of the 

bromide to the ampicillin anion, improvements were observed up to 16 times and 3 times for 

Gram-negative and Gram-positive bacteria, respectively. These improvements are attributed to a 

combination of the long-alkyl pyridinium and ampicillin moieties. In comparison to the 

antibacterial activity of [Na][Amp], the MIC was most notably improved up to 163 times for 
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Gram-positive bacteria. The greatest difference in antibacterial activity between [CP][Amp] and 

[Na][Amp] was 7 times for Gram-negative microbes. The most significant improvement was 

observed when [CP][Amp] was used to inhibit E. faecium 49474  and E. coli 25922.   

As the MIC value was equal to MBC for each Amp-ILs, the antibacterial activities of 

these compounds were considered to be bactericidal. Therefore, we hypothesize that the 

antibacterial behavior of the investigated Amp-ILs are due to the combination of a cell wall 

permeant with a transpeptidase inhibitor. Overall, [CP][Amp] was most effective on K. 

pneumoniae 4352, E. coli 25922, S. aureus 6538, and E. faecium 49474 growth inhibition, with 

more effective activity on Gram-positive bacteria. This finding may be a result from the synergy 

between the membrane active cation and cell wall inhibiting anion. This will be further described 

in Section 3.4.2. 

3.3.3 Critical Micelle Concentration and Antibacterial Activity Relationship 

Amp-ILs are active well below their CMCs. This could be explained by the fact that 

below the CMC values, the ILs are free monomers and participate in antibacterial activity; 

whereas, above the CMC value the ILs are engaged in micelles and unavailable to participate in 

the disruption of the cell wall. In addition, this bactericidal activity depends upon their ability to 

adsorb at the water/cell membrane interface, as determined by the CMC value. The CMCs of 

[CTA][Amp], [C16M1Im][Amp],[C16M2Im][Amp], and [CP][Amp] were found to be 101, 24, 92, 

and 24 µM, respectively. Average MIC are approximately 1-6 times less than the CMC values, 

which clearly indicates that these compounds are probably not acting as detergents and are not 

forming micelles as a mechanism of action. Moreover, the interaction between the QAC and 

ampicillin as an Amp-IL is due to a change in the physical properties of the cation moiety. Since 

the CMC values were decreased upon metathesis, it appears that the free monomeric Amp-ILs 

are able to adsorb at the cell/water interface at dilute concentrations. Cell/wall adsorption can 
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lead to increases in cell wall solubility and cell membrane permeability by the monomeric Amp-

IL and lead to enhanced antimicrobial activity.  

 

Figure 3.3. Experimental zone diameters obtained using Kirby-Bauer disk diffusion assay. Top 

panel (A) demonstrate zones of inhibition results, and thresholds for resistance (R), intermediate 

(I), and susceptible (S) against E. coli O157:H7 and S. typhimurium. Bottom panel (B) 

demonstrates experimental inhibition zones acquired for S. aureus and L. monocytogenes. 



 

106 

Table 3.3. Minimum inhibitory concentrations (MIC, μM) of ammonium-, imidazolium-, and pyridinium-type ampicillin ionic 

liquids. MIC values and minimum bactericidal concentrations were equivalent in this study. 

 E. coli 

O157:H7 

43895 

K. 

pneumoniae 

4352 

E. coli 

ATCC 

25922 

S. 

typhimurium 

14028 

S. 

aureus 

6538 

E. 

faecium 

49474 

S. 

mutans 

2502 

L. 

monocytogenes 

7973 

[CTA][Amp] 5 30 11 6 25 2 12 30 

[C16M1Im][Amp] 19 30 20 30 30 1.8 20 30 

[C16M2Im][Amp] 17 30 18 19 25 0.8 20 30 

[CP][Amp] 17 19 6 30 13 0.8 20 30 

[BmIm][Amp] 150 200 180 20 200 170 200 50 

[Na][Amp] 20 130 10 0.8 40 130 140 8 

[CTA][Br] 19 30 30 80 10 11 20 30 

[C16M1Im][Br] 17 30 30 30 60 30 20 30 

[C16M2Im][Br] 19 13 30 120 50 18 20 30 

[CP][Br] 12 30 100 30 30 2 20 30 

[BmIm][Cl] NA NA NA NA NA NA NA NA 

NA – no activity observed within concentration range tested. 

Table 3.4.  Interaction indices for ammonium-, imidazolium-, and pyridinium-type ampicillin ionic liquids.* 

 E. coli 

O157:H7 

43895 

K. 

pneumoniae 

4352 

E. coli 

ATCC 

25922 

S. 

typhimurium 

14028 

S. 

aureus 

6538 

E. 

faecium 

49474 

S. 

mutans 

2502 

L. 

monocytogenes 

7973 

[CTA][Amp] 0.13 (S) 0.12 (S) 0.55 (N) 3.75 (N) 0.31 (S) 0.01 (S) 0.04 (S) 1.88 (N) 

[C16M1Im][Amp] 1.03 (N) 0.62 (N) 1.33 (N) 19.25 (A) 0.63 (N) 0.04 (S) 0.57 (S) 2.38 (N) 

[C16M2Im][Amp] 0.87 (N) 0.23 (S) 1.20 (N) 11.95 (A) 0.56 (N) 0.03 (S) 0.57 (N) 2.38 (N) 

[CP][Amp] 0.50 (S) 0.39 (S) 0.33 (S) 19.25 (A) 0.38 (S) 0.20 (S) 0.57 (N) 2.38 (N) 

*: Interaction indices could not be calculated for [BmIm][Amp] because no antimicrobial activity was observed for [BmIm][Cl].
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3.3.4 Effect of Ampicillin-content in ILs 

The activity of the IL compounds is more clearly described by normalizing the 

concentrations based on the percentage of ampicillin content within the Amp-ILs and [Na][Amp] 

(Equation 3.1).   

MIC
Mw

Mw

ILAmp

oateampicillin


     

(Eq. 3.1) 

 For all Amp-ILs, it was observed that the reduced concentration of ampicillin anion in 

Amp-ILs was required to inhibit bacterial growth compared to [Na][Amp] (Figure 3.4). 

Depending on the bacterial species, the ampicillin content required for inhibition was in the 

microbe susceptible range for ampicillin activity (i.e. 0.1 to 20 μg/mL), excluding 

[BmIm][Amp].
17

 The average concentrations of ampicillin, in Amp-ILs, required to kill Gram-

negative bacteria was were found to be 2.5, 4.5, 3.8, 3.3, and 34.1 μg/mL for [CTA][Amp], 

[C16M1Im][Amp], [C16M2Im][Amp], [CP][Amp], and [BmIm][Amp], respectively. Likewise, 

3.3, 3.7, 3.4, 2.9, and 38.4 μg/mL was required for bactericidal activity in Gram-positive 

bacteria. As previously stated, the average ampicillin content evident in [BmIm][Amp] is higher 

than the ampicillin-microbe susceptible range.  The average MIC in terms of ampicillin content 

for [Na][Amp] was found to be 13.2 and 26.0 μg/mL for Gram-negative and Gram-positive, 

respectively. This is a four- to nine-fold improvement in ampicillin content required for 

antibacterial activity when Amp-ILs are compared to [Na][Amp]. These results demonstrate that 

lower concentrations of Amp-ILs are capable of bactericidal activity against the tested 

inoculums. This demonstrates that lower dosage amounts of ampicillin could be implemented if 

applied in pharmaceutical systems as an Amp-IL.  



 

108 

 

 

Figure 3.4. Bar graph depicting active concentrations of ampicillin content within Amp-ILs from MIC (µM) for Gram-positive (A) 

and Gram-negative bacteria (B). 
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3.3.5  Antibacterial Activity of Combinations 

3.3.5.1 Combinatorial Effect of QAC and Sodium Ampicillin Co-Activity 

It has been reported that the effect of a pharmaceutical agent on both resistant and 

sensitive bacterial strains can be enhanced with surfactants. For example, Suling and O’Leary 

observed that the addition of CTAB increased the activity of penicillin G on E. coli, P. mirabilis, 

K. pneumoniae, and various Staphylococci strains.
41

 However, this was not completely evident in 

our study. We investigated this phenomena using imidazolium- and pyridinium-type Amp-ILs.  

It was observed that the use of both QAC and [Na][Amp] tested in combination did not 

outperform the antibacterial activities of the Amp-ILs. For example, in Figure 3.5 the 

antibacterial activities of [C16M1Im][Br] + [Na][Amp] and [CP][Br] + [Na][Amp] were 30% 

less, in comparison to [C16M1Im][Amp] and [CP][Amp] for E. coli O157:H7 43895. Similarly, 

the antibacterial activity of [C16M2Im][Br]+[Na][Amp] was reduced by 80%, compared to the IL 

form, when two components were combined against E. coli O157:H7. Our results demonstrate 

that the use of either QAC, [C16M1Im][Br] + [Na][Amp], or [C16M1Im][Amp] could equally 

inhibit the growth of E. faecium; whereas, both [CP][Amp] and [C16M2Im][Amp] required 73% 

reduction in concentration compared to the starting materials (Fig. 3.5). As controls [Na][Br] was 

added to each Amp-IL to understand the effect of the salt as a by-product in these studies, and it 

was observed that it did not enhance the antibacterial activity of the Amp-ILs. In fact, the 

antibacterial activities of Amp-IL were reduced with the addition of equal moles of [Na][Br]. It 

is hypothesized that this result is related to the change in the isotonic environment of the bacteria 

resulting in a reduction in bacteria size and steric inhibition of the molecule’s absorption. 

Overall, the Amp-ILs have an increased antibacterial activity for the investigated 

pathogens. In 83% of the experiments, we demonstrate that Amp-ILs are more effective 
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antibacterial agents than each salt individually, or in combination, for the tested bacteria. Further 

investigation of this behavior will be conducted in future studies.  

3.3.6 Loewe’s Additivity Model  

Table 3.4 illustrates the interaction indices of Amp-ILs as calculated according to the 

Loewe’s Additivity Model. This model reveals that Amp-ILs demonstrate independent 

interaction indices between cation and anion. In 38% of the antibacterial studies using Gram-

negative bacteria and 50% using Gram-positive bacteria, synergy was observed by the Amp-ILs. 

Additivity was observed in 44% and 50% of the Gram-negative and Gram-positive isolates. 

However, antagonism was only observed in 19% of the Amp-IL treatments on Gram-negative 

and none on Gram-positive microbes. These results show that [CP][Amp] and  [CTA][Amp] are 

the better Amp-ILs to obtain synergetic interactions in Gram-negative bacteria. Although 

minimal, the probability of observing antagonism in Gram-negative bacteria in test systems is 

20% likely. Systems containing Gram-positive bacteria show that in the worse instance, 

additivity could be observed. Nonetheless, synergy is still equally as probable when considering 

the use of the Amp-ILs alternative.    

A closer look at a comparison study between the interaction indices between Amp-ILs 

and the mixture of stoichiometric mixture reveal the benefit of using this approach. For instance, 

the interaction indices determined for [CP][Amp] and its precursors in combination (red bars) 

reveal that synergy was favorable for the Amp-IL against  both Gram-positive and Gram-

negative strains. Contrary to the previous result, the stoichiometric mixture revealed additivity 

and antagonism for E. coli O157:H7 and E. faecium, respectively. Upon comparing the 

differences in interaction indices between Amp-ILs and the precursor ion combination, a 2- and 

33-fold favorable improvement was observed when treating E. coli O157:H7 and E. faecium, 
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respectively with [CP][Amp]. Likewise, an unclean Amp-IL containing equimolar [Na][Br] 

demonstrated that the presence of by-product antagonizes the activity of  [CP][Amp] causing 

results to become additive and antagonistic.  

 In a similar system containing an Amp-IL consisting of a C16-imidazolium cation, it is 

apparent that the combination and presence of [Na][Br]  also attenuates the synergetic behavior.  

Although [C16M1Im][Amp] is marginally more synergetic than the precursor and unclean 

combinations, each system is considered to be additive according to established interaction index 

thresholds.  Thus, additivity was observed for [C16M1Im][Amp],  [C16M1Im][Br]+[Na][Amp], 

and [C16M1Im][Amp]+[Na][Br] (blue bars) against E. coli O157:H7. When treating E. faecium, 

[C16M1Im][Amp] demonstrated antagonism. We conclude that these results show that the co-

administration of sodium ampicillin and 1-hexamethyl-3-methylimidazolium bromide 

([C16M1Im][Br]+[Na][Amp]) are neutral and do not improve the activity of the other and the 

presence of [Na][Br] interferes with the synergetic activity of the Amp-IL.   

We also investigated the change in interaction index upon the addition of a methyl group 

to C-2 of the imidazolium structure and increase in hydrophobicity. Similar to the other Amp-

ILs, [C16M2Im][Amp] (green bars) was a more synergetic ion pair than the combinations against 

E. coli O157:H7 in spite of its moderate additive index. However, [C16M2Im][Amp] was 42 

times more synergetic than the mixtures when treating E. faecium. Likewise, the combination 

and presence of [Na][Br] with the Amp-IL antagonizes its activity causing a additive effect. In 

sum, the interaction indices ranging in order of increasing synergy is [C16M1Im][Br] > 

[C16M2Im][Amp] > [CP][Amp].  
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In each study, the differences in interaction indices are apparent.  For E. coli O157:H7, 

all Amp-ILs were more synergetic than either combination. Similarly, the more hydrophobic 

Amp-ILs (i.e. [CP][Amp] and [C16M2Im][Amp]) showed substantial improvements in synergy. 

Another common feature among the interaction indices calculated for systems containing Amp-

ILs and [Na][Br] is the attenuated observed synergy. We attribute this reduction in synergy to the 

relative hydrophilicity of the Amp-ILs. As the aqueous solubility is increased, there is a greater 

probability of the ions to dissociate and re-associate with the precursor counter-ions.  Thus, the 

relative interaction indices obtained for the Amp-ILs demonstrates an apparent increase in 

synergy with increasing hydrophobicity. 

3.4 Conclusion 

We have successfully demonstrated the synthesis and antibacterial application of a novel 

class of antibiotic-based ILs composed of either ammonium, imidazolium. or pyridinium cations. 

Improvements in the bactericidal activity of the ampicillin anion were obtained when the anion 

was combined with a QAC as the cation. The results indicate that Amp-ILs may be effective 

alternatives as antibacterial agents in lieu of the use of either individual ionic parent compounds 

(i.e. [QAC] or [Na][Amp]) or the combination in solution (i.e. [QAC] + [Na][Amp]).  

The advantages by use of antibiotic-based ILs are numerous. Aside from the possibility 

of extending the clinical usage of antibacterial agents that are associated with bacterial 

resistance, there is potential to improve the half-life, reduce dosage rates, tailor the 

bioavailability of the drug, reduce costs associated with new drug testing and formulation, and 

expand the therapeutic activity of the antibiotic by pairing it with other biological ions. 

Although, these specific types of ampicillin ionic liquids may be considered toxic and not 

cleared for systemic use, the potential to apply these antibacterial materials to biomedical 
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sterilization, food processing, and wound care therapy is promising.   Thus, Chapter 4 highlights 

an extension of this work in which a potent antiseptic and various β-lactam antibiotics are 

integrated for their potential use against pathogenic bacteria in disease prevention and 

eradication of E. coli O157:H7 from the terminal recta of cattle.  

 

Figure 3.5. Interaction indices calculated for ampicillin-based ionic liquids. Each color 

correlates to a specific Amp-IL, where red = [CP][Amp] and its combinations, blue = 

[C16M1Im][Amp] and its combinations, and green = [C16M2Im][Amp] and its combinations. 

Darker colors are measured by the left axis indicative of E. faecium results and the right axis 

describes the interaction indices against E. coli O157:H7. 
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CHAPTER 4 SYNTHESIS, CHARACTERIZATION, AND BIOLOGICAL 

EVALUATION OF BETA (β)-LACTAM BASED CHLORHEXIDINE GUMBOS 

AGAINST ENTEROHEMORRHAGIC ESCHERICHIA COLI 

4.1   Introduction 

Enterohemorrhagic Escherichia coli (EHEC) infections are associated with bloody 

diarrhea, thrombotic thrombocytopenic purpura, hemorrhagic colitis, and hemolytic uremic 

syndrome.
1, 2

 Although strains of EHEC are represented by several serotypes, the majority of 

severe infections are caused by serotype O157.
1, 3

 Cattle and other ruminants are reservoirs of 

infection and sources for fecal contamination in food and beverages; therefore, they are 

associated with large outbreaks of disease caused by EHEC.
4, 5

 Aside from enforcing good 

hygienic practices with all aspects of food handling, from harvest to preparation, EHEC 

transmission might be better controlled by reducing fecal shedding from food-producing 

animals.
2
 Several methods tested in attempts to control the colonization of pathogenic microbes 

in food-producing animals included regulating the animal’s diet and with vaccination.  Studies of 

such control measures to reduce or eliminate fecal shedding of EHEC in cattle have been 

inconclusive.
4, 6-8

 

One current approach to reduce EHEC fecal shedding in a food-producing animal is the 

use of antiseptics.  Various compounds have demonstrated some efficacy in the reduction of 

EHEC in a food-producing animal’s feces; however, many of these compounds are inherently 

toxic and not approved for this use in animals.  One such compound is the di-cationic biguanide, 

chlorhexidine. Low et al. reported that chlorhexidine enemas eliminated high-level fecal 

shedding and reduced low-level shedding by killing E. coli O157:H7 at the terminal rectum.
8
 

However, the effective concentrations used for eliminating or reducing EHEC fecal shedding are 

cytotoxic.
9-12

 Many antibiotics commonly used in animal feedlots selectively reduce fecal 
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shedding of EHEC in ruminants.
5
 One such antibiotic used in cattle feedlots is ampicillin. 

However, the rapid rise of antimicrobial resistance in Gram-negative bacteria, particularly in 

those with extended spectrum β-lactamases (ESBL), severely curtails the widespread use of 

antibiotics in the control of microbe colonization in food-producing animals.
13

 Other methods of 

reducing EHEC fecal shedding have been explored using FDA approved ionophores as feed 

additives. However, ionophores such as monensin, lasalocid, laidlomycin propionate, and 

bambermycin are ineffective in reducing EHEC shedding in fecal samples, particularly those 

isolated from sheep.
14, 15

     

With the goal of developing a safe and effective compound that could be administered to 

food-producing ruminants such as cattle, goats, and sheep to reduce fecal shedding of EHEC, 

chlorhexidine and ampicillin were combined to form a unique GUMBOS, chlorhexidine di-

ampicillin. These two compounds were chosen based primarily on their history of use in 

veterinary practice. Other β-lactam antibiotics -lactam antibiotics were also included to see if 

their differing degrees in antibacterial potency and spectrum of activity would positively or 

negatively affect EHEC eradication.  Integrating pharmaceutically active cations and anions into 

entities known as Active Pharmaceutical Ingredient – based Ionic Liquids (API-ILs) is an 

innovative approach to resolving issues associated with single or combination therapy using 

individual cationic or anionic agents. For example, API-ILs can be synthesized using antibiotics, 

analgesics, and anti-inflammatory drugs.
16-20

    

ILs are arbitrarily defined as salts that melt below 100˚C but there are many ion 

combinations that form salts with melting points less than 250˚C with interesting and useful 

properties.
21

 These ILs belong to a new category of applied low melting salts called Group of 

Uniform Material Based on Organic Salts (GUMBOS).
22

 Beta (β)-lactam chlorhexidine salts are 
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API-ILs that can be considered as GUMBOS. The purpose of this study was to synthesize and 

characterize GUMBOS composed of the antiseptic, chlorhexidine, and four β-lactam antibiotics 

(i.e. ampicillin, carbenicillin, oxacillin, and cephalothin) and investigate their antibacterial 

activities and mechanisms of action on several strains of EHEC. Cytotoxicity studies and 

predictive intestinal permeabilities were studied in vitro to assess the GUMBOS feasibility in 

removing EHEC from the terminal recta of ruminants.  

4.2  Materials and Methods 

4.2.1  Synthesis of Chlorhexidine di-ampicillin GUMBOS 

An excess of sodium antibiotic was added to a chlorhexidine methanolic solution in 

stoichiometric amounts to a round-bottom flask. The mixture was stirred for two days at room 

temperature to ensure the complete formation of chlorhexidine di-ampicillin, chlorhexidine 

carbenicillin, chlorhexidine di-oxacillin, and chlorhexidine di-cephalothin. After removing 

methanol using rotary evaporation, the un-reacted and by-products were removed by washing 

several times with deionized water. The products were finally dried under high vacuum 

overnight. Identity and purity of the GUMBOS were confirmed by 
1
H and 

13
C NMR 

spectroscopy and mass spectrometry. The structural components of the β-lactam based 

chlorhexidine GUMBOS are shown in Figure 4.1.  

4.2.2  Dissolution Profile Measurement 

 The dissolution rates for β-lactam based chlorhexidine GUMBOS were measured using 

UV spectrophotometry at 260 nm in 18.2 mΩ deionized water. Here, 20 mg samples were placed 

in a stirred, 100 ml Erlenmeyer flask containing 50 ml of 18.2 mΩ deionized water. Over time, 

one milliliter aliquots were collected and filtered through a 0.1 µm pore size syringe filter 

(Whatman). Dissolution profiles were measured in triplicate at room temperature until 

absorbance plateau.  
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4.2.3 In Vivo Prediction of Intestinal Permeability and Absorption  

Intestinal permeability was approximated using the BD Gentest Pre-coated PAMPA Plate 

System (BD Biosciences, MA, USA). The procedure required that 300 µL of 200 µM compound 

solutions in PBS buffer  (100mM, pH 7.4) be added to the wells in a donor plate while 200 µL of 

PBS buffer  were added to corresponding wells in an acceptor plate. After the acceptor plate was 

coupled to the donor plate, the assembly was incubated for 5 hours at 20°C. The last 100 µL of 

wells from the donor and acceptor plates were added to a UV transparent 96-well plate for 

quantification using a plate reader. The final concentrations in each plate were determined using 

calibration curves at 260 nm. Membrane permeability was calculated using formulas provided in 

the assay and resultant predictive intestinal absorption values were determined using a Log Pe ≥-

6 threshold that indicates ≥75% intestinal absorption. 

4.2.4 Antimicrobial Activity 

Seven strains of E. coli O157:H7 were used in this study (Table 4.3). Each isolate was 

grown individually on MacConkey Agar with sorbitol for 24 hours at 37°C. E. coli (ATCC 

25922) was used as a non-pathogenic strain. All bacteria were obtained from the collection 

maintained in the Food Safety/ Food Microbiology laboratory, Louisiana State University. 

Minimal inhibitory concentrations (MIC) were determined in triplicate by micro-broth 

dilution essentially as described by Motyl et al.
23

 Test inocula were prepared with colonies 

suspended in saline (0.85% NaCl) to a 0.5 McFarland standard. Cation-adjusted Mueller-Hinton 

broth (Difco, Detroit, MI) with 2% DMSO was used to serially dilute (1:1) GUMBOS, sodium 

antibiotic, chlorhexidine diacetate, or the stoichiometric combination of the antibiotic and 

chlorhexidine diacetate [2:1 v/v for chlorhexidine di-ampicillin, chlorhexidine di-cephalothin, 

and chlorhexidine di-oxacillin or 1:1 v/v] for chlorhexidine carbenicillin). After inoculation, 

plates were incubated 24 h at 37°C.  Minimum bactericidal concentrations of GUMBOS were 
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determined by plating the clear MIC wells from microtiter plates onto trypticase soy agar and 

looking for colonies after 24 h incubation. Antibacterial activity was statistically analyzed using 

SAS 9.2 (SAS Institute Inc., Cary, NC), p<0.05. 

4.2.5 GUMBOS Interaction Indices 

Loewe’s additivity model
24-26

 was used to evaluate the interaction index (I) of 

chlorhexidine diacetate and sodium antibiotic used in combination compared to I calculated for 

GUMBOS. An I value of <0.5 denotes synergy; the combined effects of two agents are greater 

than the sum of their individual effects. If I is ≥0.5 but ≤ 4, the effect of two agents is said to be 

additive (i.e., the combined effect is equal to individual activities). If I >4 then the two agents are 

considered antagonistic, meaning the effect of the combined agents is smaller than one of the 

agents alone.  

Equation 4.1 (Eq.4.1) shows the Loewe’s additivity mathematical model used to calculate 

I values for drug combinations, where X refers to a specific inhibition level (i.e. 99.9%), Ca and 

Cb are the concentrations of drug A and B when used in combination, and CA and CB are the 

concentrations of drug A and B administered separately and have the same level of inhibition 
26

. 

                                (Eq. 4.1) 

The model used to represent the mixture of chlorhexidine diacetate (CHXAc) and sodium 

antibiotic (NaβL) in the stoichiometric equivalent concentrations for the β-lactam based 

chlorhexidine GUMBOS is shown in Equation 4.2:  

                                                                 (Eq. 4.2)  

 

Models for the β-lactam based chlorhexidine GUMBOS are shown in Equations 4.3 and 4.4.   
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Equation 4.3 was used to calculate interaction indices for GUMBOS (i.e. chlorhexidine di-

ampicillin, chlorhexidine di-cephalothin, and chlorhexidine di-oxacillin) which consists of a 1 

chlorhexidine diacetate: 2 sodium antibiotic stoichiometric ratio. 

%1002%100 ]][[
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]][[
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                       (Eq. 4.4) 

Equation 4.4 was used to calculate interaction indices for chlorhexidine carbenicillin GUMBOS 

which consists of a 1 chlorhexidine diacetate: 1 disodium antibiotic stoichiometric ratio. 

4.2.6 Time-Kill Kinetics of Chlorhexidine di-ampicillin  

Since chlorhexidine di-ampicillin required the lowest concentration to kill EHEC isolates, 

its time-kill kinetics were performed as a model in reference to the antiseptic chlorhexidine 

diacetate. Time-kill kinetics of chlorhexidine di-ampicillin was assessed using the BacLight 

Live/Dead Assay (Molecular Probes, Carlsbad, CA) as outlined in the protocol. More 

specifically, E. coli O157:H7 strain 43895 suspensions were adjusted to 1 x 10
8
 CFU/mL (~0.3 

OD670) and treated with 7.3µM (MBC of chlorhexidine di-ampicillin) antimicrobial agent. At 

different times, bacteria aliquots were stained with fluorescent probe mixture (SYTO 9 and 

Propidium Iodide) and mixed thoroughly. Samples were incubated in the dark for 15 minutes 

prior to fluorescence detection.  

4.2.7  Mechanism of Action Studies  

4.2.7.1 Membrane Perturbating Activity of GUMBOS on E. coli 

Outer membrane permeation was evaluated using the 1-N-phenylnapthylamine (NPN) 

fluorescent probe as described previously by Hugo and Denyer and Helander et al.
27, 28

Briefly, E. 

coli O157:H7 strain 43895 grown into log-phase (λ630nm = 0.5 ± 0.5) was centrifuged (1,000 x 

g, 15 mins, 25ºC) and resuspended in half volume of HEPES buffer (5mM, pH 7.2). The 

hydrophobic probe, NPN (final concentration of 20 µM), was added to bacteria and dispensed 
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100 µL/well to black 96-well microtiter plates containing 100 µL of serially diluted GUMBOS 

or chlorhexidine diacetate ranging from 3 – 500 µM, buffer (negative control), or 500 µM EDTA 

(positive control). To test the impact divalent cations (i.e. Mg
+2

) have on the membrane 

permeating ability of GUMBOS as compared to known membrane permeating properties of 

chlorhexidine diacetate, a separate microtiter plate containing 5mM MgCl2 was used to assess 

the role divalent cations have on the membrane permeation of these compounds. Increases in 

fluorescence (λex 355nm, λem 405nm) were monitored within 3 mins from three parallel wells per 

sample and concentration, in triplicate.  

4.2.7.2  Membrane Potential Effect of Chlorhexidine di-ampicillin on E. coli  

BacLight
TM

 Bacterial Membrane Potential assay (Molecular Probes, Carlsbad, CA) was 

used as outlined in the protocol to determine if GUMBOS depolarizes EHEC bacterial 

membranes. Here, 100 µL aliquots of log-phase growth 10
6 

CFU/ml E. coli O157:H7 strain 

43895 was treated with 100 µL of 3 – 250 µM chlorhexidine diacetate or GUMBOS. Extents of 

depolarization were quantified according to a 5 µM valinomycin-potassium calibration curve (1 

– 50 mM KCl). The proton ionophore, carbonyl cyanide 3-chlorophenylhydrazone (CCCP), 

which destroys membrane potential by eliminating the proton gradient, was used as a positive 

control. After 30 minutes of antimicrobial treatment, bacteria were stained with 30 µM DIOC2 

(3, 3′-diethyloxacarbocyanine iodide). Fluorescence measurements (λex 488nm, λemGreen 538nm, 

and λemRed 612nm) were obtained in a black 96-well fluorescence microtiter plate. Endpoint 

fluorescence red/green ratiometric values were used to quantify intracellular cytosolic potassium 

concentrations, its leakage, and corresponding changes in Nernst membrane potential. The red – 

to – green fluorescence ratio identifies the portion of bacteria with intact membranes (red 

fluorescence) and depolarized membranes (green fluorescence) since the DIOC2 dye shifts from 

red – to – green emission upon changes in membrane potential and membrane integrity. 
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Fluorescence measurements were performed in triplicate using a FluoStar 0403 microplate 

reader (BMG Lab Tech GMbH, Ortenburg, Germany) within 10 minutes, from three parallel 

wells per sample concentration).     

4.2.7.3  Membrane Activity of Chlorhexidine di-ampicillin on E. coli 

Membrane effects of chlorhexidine di-ampicillin as compared to the parent salts 

individually were evaluated on log-phase cultures of EHEC isolates using SEM. EHEC cultures 

were prepared from the logarithmic growth phase to a 10
8
 CFU/ml starting concentration. 

Mueller-Hinton broth containing EHEC inocula of 10
8
 CFU/ml

 
were treated with supra-MICs of 

sodium ampicillin, chlorhexidine diacetate, chlorhexidine di-ampicillin, or the stoichiometric 

mixture of parent ions for 1 hour at 37°C. Untreated controls were prepared in cation-adjusted 

Mueller-Hinton growth
 
medium. Samples were fixed on a 0.2 μm pore polycarbonate filter in 

2.5% glutaraldehyde in 0.2 M cacodylate buffer pH 7.2 for 1h, then rinsed 5 times in 0.1 M 

cacodylate buffer containing 0.02M glycine over 12 h period. Then the materials were rinsed in 

water twice, dehydrated in ethanol series, dried with chemical hexamethyldisilazane (HMDS) 

series, mounted on aluminum SEM stubs, coated with platinum in an EMS550X sputter coater, 

and imaged with JSM-6610 High vacuum mode SEM (Peabody, MA). 

4.2.8  HeLa, NIH/3T3, and EOMA Cell Viability Tests 

To determine cell viability, the colorimetric MTS dye (CellTiter 96 ® AQueous One 

Solution Cell Proliferation Assay, Promega, Madison, WI) assay was used as an indicator of cell 

viability. HeLa (ATCC CCL-2), NIH/3T3 (ATCC CRL-1658), and EOMA (ATCC CRL-2586) 

were cells grown in Dulbecco’s Modified Eagle Medium – Reduced Serum (DMEM-RS) 

supplemented with 3% FBS were plated at a density of 1x10
4
 cells/well into 96-well culture 

plates (Falcon, Franklin Lakes, NJ). Varying concentrations (3 µM to 350 μM) of GUMBOS, 

chlorhexidine diacetate, and sodium antibiotic were used to treat cells for 24 h at 37ºC + 5% 
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CO2. Cells treated with medium only served as a negative control. After 24 h incubation, 40 µL 

of MTS solution was added to each well and incubated for an additional 1 hour. The absorbance 

intensity was measured using a Perkin Elmer Wallac Victor2 V Fluorescence/Luminescence 

Plate Reader (Boston, MA) at 490 nm. All experiments were performed in quadruplicate and the 

relative cell viability (%) was expressed as a percentage relative to the untreated control cells. 

Cytotoxicity was statistically analyzed using SAS 9.2 (SAS Institute Inc., Cary, NC), p<0.05. 

 

4.3 Results 

4.3.1 Representative GUMBOS Structural Analysis: Chlorhexidine di-Ampicillin 

The structural components for all β-lactam chlorhexidine based GUMBOS are illustrated 

in Figure 4.1. Using chlorhexidine di-ampicillin as a representative, inspection of its 

spectroscopic properties indicates that both chlorhexidine and ampicillin are present in the 

GUMBOS structure. More specifically, characteristic shifts in the 
1
H-NMR and 

13
C-NMR 

demonstrate changes in the chemical microenvironments of the ionic pairs, while particular 

photo-physical properties of respective ions were still observed using absorbance spectroscopies. 

Representative 
1
H-NMR and 

13
C-NMR obtained for chlorhexidine di-ampicillin are shown in 

Figures 4.2 and 4.3. Since all GUMBOS in this class contain chlorhexidine as the cation and 

various β-lactam antibiotic analogs as the anions, only the details regarding chlorhexidine di-

ampicillin will be discussed. However, structural assignments for all β-lactam based 

chlorhexidine GUMBOS are provided in Sections 4.3.1.1 – 4.3.1.4.  
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Figure 4.1 Molecular structures of dicationic chlorhexidine (top) and X counterions (from left to 

right) acetate, ampicillin, oxacillin, and cephalothin and Y counterion carbenicillin. GUMBOS 

consisting of chlorhexidine X consists of two anionic molecules electrostatically tethered to one 

chlorhexidine molecule, whereas chlorhexidine Y consist of one carbenicillin molecule ionically 

bound to chlorhexidine.   

Proton NMR of the ampicillin structure reveals that H-2 and H-3β are in the same plane; 

whereas H-5 and H-3α are in close proximity (Figure 4.2). Upon ion exchange, ampicillin’s H-

3α and H-3β protons experience isolated changes in their respective microenvironments which 

caused a 0.28 ppm shift upfield from 1.45 to 1.18 ppm for H-3β protons. We attribute this 

change to the close proximity of H-3β to either aromatic regions of chlorhexidine and secondary 

ampicillin in its new conformation. In addition to the downfield shifts observed for the aromatic 
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protons in ampicillin, the NH2
+
 groups in the guanidine structure shifted downfield from 7.51 to 

8.54 ppm after exchanging the acetate anions for ampicillin.  

The 
13

C-NMR spectra for chlorhexidine di-ampicillin also shows the presence of both 

cation and anion constituents (Figure 4.3). Beginning with the ampicillin molecule, three peaks 

(i.e. 173.4, 167.5 and 167.3 ppm) correspond to the carbonyl groups (i.e. C-2α, C-7, and C-9) in 

the anionic structure. Additionally, several peaks ranging between 122 – 139 ppm correlate to the 

phenyl groups within both cation and anion. Tertiary carbons in the thiazolidine ring of 

ampicillin (C-2) were confirmed by two peaks at 76 and 184 ppm. Contributions from the 

carbons adjacent to the secondary amine-functionalized carbamimidoyl group (C-11 and C-12) 

in the chlorhexidine cation and the primary and tertiary amines (i.e. C-10 and C-5) in the 

ampicillin anion were evident by peaks shown at 60, 61, 59 and 68 ppm, respectively. Lastly, the 

carbon peaks near 27 ppm are indicative of ampicillin’s C-3α and C-3β methyl groups and C-10 

in the hexamethyl linker in the chlorhexidine di-ampicillin structure, respectively.  

The molecular mass of chlorhexidine di-ampicillin was determined using ESI-TOF in the 

positive-ion mode (Figure 4.4). The spectra gave a base peak at m/z 1203.4, which is assigned 

[M + H]
 +

 of C54H66Cl2N16O8S2 (calc. 1202.24). This molecular formula corresponds to one 

chlorhexidine and two ampicillin molecules. Table 4.1 lists other m/z peaks which were found to 

correspond to monomer or [ampicillin – Na]
+
, dimer or 2 [ampicillin – Na]

+
, and 1:1 

chlorhexidine hydride: ampicillin. These results suggest that the reaction between one molecule 

of chlorhexidine and two molecules of ampicillin were successful.   

 The optical profile of chlorhexidine di-ampicillin was evaluated using CD and UV-vis 

spectrophotometry (Figure 4.5 and 4.6). The analyte absorbed strongly in the UV range of the 

spectrum which is typical of aromatic chromophores. Therefore, this analytical technique was 
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used to qualify the presence of each parent ion in chlorhexidine di-ampicillin. Three 

characteristic bands were evident in the absorption profile. The strong bands with a maximum at 

208 and 259 nm are due to n – σ* and π- π* transitions from the chlorhexidine cation; whereas, 

the weak absorbance band at 208 nm and 230 nm is attributed to the π- π* and n – π* transitions 

in the ampicillin anion, respectively.
29-31

 Therefore, the optical rotation of chlorhexidine di-

ampicillin was monitored between 200 and 300 nm.   

The molar ellipticity profile of sodium ampicillin consists of a strong Cotton band 

maximizing at about 232 nm, which suggests the intact β-lactam ring in the anionic structure.
32, 33

 

This agrees with Rasmussen and Higuchi,
42

 who proved that losses in β-lactam drug activity can 

be observed by monitoring the distinct optical rotary differences for intact and open β-lactam 

rings.  As such, the optical rotation was investigated for combinations of chlorhexidine diacetate 

and sodium ampicillin and the chlorhexidine di-ampicillin GUMBOS. The molar ellipticities of 

two ratios (e.g. 1:1 and 1:2 cation:anion)  of chlorhexidine diacetate and sodium ampicillin were 

investigated. In terms of the 1:1 combination of precursor ions, the ampicillin component rotated 

optically at 232 nm. This shows that the presence of chlorhexidine diacetate does not disturb the 

structural integrity of the ampicillin β-lactam ring. Since ampicillin is known to readily form 

dimers causing its molar ellipticity to shift towards lower energies, the stoichiometric mixture of 

chlorhexidine diacetate and sodium ampicillin were investigated.
34

  Similarly, a five nanometer 

bathochromic shift was observed for the 1:2 ratio of chlorhexidine diacetate: sodium ampicillin 

with a Cotton band at 237 nm. When investigating the molar ellipticity of chlorhexidine di-

ampicillin, a similar positive peak was observed at 222 nm which confirms that the anionic 

component was intact and that ampicillin did not form a dimeric species while exchanged with 

chlorhexidine.  This ten nanometer hypsochromic shift suggests that a higher energy is required 
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to rotate the ampicillin molecules in the GUMBOS structure.  We hypothesize the observed 

hypsochromatism to have occurred due to intermolecular hydrogen bonding and electrostatic 

attractive forces that restrict the molecular rotation of the ampicillin molecules within the 

GUMBOS structure. Supported by the Franck-Condon Principle, molecular vibrations observed 

by interactions with noninterfering concomitant molecules or adjacent molecules and a 

chromophore are known to modify its nuclear coordinates of a chromophore analogous to the 

solvation coordinate concept. Thus, the presence of both chlorhexidine and β-lactam antibiotics 

(e.g. ampicillin, carbenicillin, oxacillin, or cephalothin) were confirmed using spectroscopy.  

 

4.3.1.1 Chlorhexidine di-Ampicillin [CHX][Amp] 

Off-white solid, yield 98%. Water solubility: 126 μg/mL. Ksp: 4.63 x 10-12 M3. 1H 

NMR (400 MHz, DMSO-d6) δ 8.56 - 8.36 (m, 2 H). 7.21 - 7.50 (m, 18 H), 5.08 (d, J=2.74 Hz, 2 

H), 4.96 (s, 4 H), 3.69 (d, J=3.13 Hz, 2 H),  3.26 (br. s., 2 H), 3.07 (dt, J=7.04, 6.65 Hz, 4 H),  

1.85 (s, 4 H),  1.57 (s, 6 H),  1.49 (br. s., 4 H),  1.46 (br. quin., 4 H),  1.44 (br. s., 4 H),  1.27 (br. 

quin., 4 H),  1.17 (s, 6 H), 1.15 (br. s., 2 H) 13C NMR (101 MHz, DMSO) δ 180.88, 172.88, 

172.36, 166.94, 166.76, 139.07, 128.24, 127.01 – 128.43, 121.90, 76.07, 68.38, 60.80, 60.01, 

58.64, 27.38, 26.76, 25.97. Anal. Calcd for C54H68Cl2N16O8S2: C, 53.86; H, 5.69; Cl, 5.89; N, 

18.61; O, 10.63; S, 5.33. Found: C, 53.22; H, 5.81; Cl, 5.56; N, 18.37; S, 5.16. HRMS (ESI) m/z 

calcd for C54H68Cl2N16O8S2, [M+H
+
], 1203.4424; found, 1203.4136.  

4.3.1.2   Chlorhexidine Carbenicillin [CHX][Carb] 

Colorless solid, yield 93%. Mp = 178°C decomp. Water solubility: 52 μg/mL. Ksp: 3.53 

x 10
-9

 M
2
. 

1
H NMR (400 MHz, DMSO-d6) δ 0.69 - 0.76 (m, 1 H) 0.96 (s, 1 H) 1.06 (br. s., 2 H) 

1.15 (br. s., 4 H) 1.34 (br. s., 4 H) 1.40 - 1.54 (m, 5 H) 1.61 (s, 2 H) 2.96 (br. s., 4 H) 3.07 (s, 1 

H) 3.16 - 3.34 (m, 3 H) 3.43 (d, J=5.14 Hz, 1 H) 3.47 - 3.51 (m, 1 H) 3.52 - 3.56 (m, 1 H) 3.92 - 
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3.99 (m, 1 H) 4.18 - 4.27 (m, 1 H) 4.82 (br. s., 1 H) 6.96 - 7.20 (m, 9 H) 7.28 (br. s., 3 H) 7.36 - 

7.68 (m, 2 H) 8.24 - 8.35 (m, 1 H). 
13
C NMR (101 MHz, DMSO) δ 128.71, 122.65, 108.20, 

40.40, 40.19, 26.42. Anal. Calcd for C39H48Cl2N12O6S : C, 53.00; H, 5.47; Cl, 8.02; N, 19.02; O, 

10.86; S, 3.63. Found: C, 51.12; H, 5.68; Cl, 7.74; N, 18.34; S, 3.50. HRMS (ESI) m/z calcd for 

C39H48Cl2N12O6S, [M
+
], 883.8462; found, 883.8457.  

 

4.3.1.3  Chlorhexidine di-Cephalothin [CHX][Ceph] 

Orange solid, yield 83%. Water solubility: 218 μg/mL. Ksp: 1.89 x 10
-11

 M
3
. 

1
H NMR 

(400 MHz, DMSO-d6) δ 1.27 (br. s., 5 H) 1.45 (br. s., 6 H) 1.79 (d, J=3.42 Hz, 1 H) 2.01 (s, 6 H) 

3.07 (br. s., 5 H) 3.17 (s, 3 H) 3.27(d, J=17.61 Hz, 3 H) 3.33 (br. s., 4 H) 3.50 (d, J=17.36 Hz, 3 

H) 3.77 (d, J=2.93 Hz, 4 H) 4.79 (d, J=11.98 Hz, 2 H) 5.00 (d, J=4.65 Hz, 3 H) 5.03(s, 1 H) 5.53 

(dd, J=8.31, 4.89 Hz, 2 H) 6.89 - 6.98 (m, 5 H) 7.29 (d, J=8.80 Hz, 6 H) 7.33 - 7.38 (m, 2 H) 

7.44 (d, J=8.31 Hz, 13 H) 9.03 (d, J=8.31Hz, 2 H)
13
C NMR (101 MHz, DMSO) δ 170.97, 

170.41, 165.77, 163.59, 137.47, 134.44, 128.71, 127.04, 126.69, 125.39, 122.47, 113.60, 64.77, 

59.12, 57.67, 40.63, 40.42, 36.23, 26.42, 25.64, 21.17. Anal. Calcd for C54H62Cl2N14O12S4: C, 

49.96; H, 4.81; Cl, 5.46; N, 15.10; O, 14.79; S, 9.88. Found: C, 48.61; H, 4.99; Cl, 5.31; N, 

14.70; S, 9.61. HRMS (ESI) m/z calcd for C54H62Cl2N14O12S4, [M
+
], 1298.3227; found, 

1298.3199.  

4.3.1.4  Chlorhexidine di-Oxacillin [CHX][Oxa] 

Colorless solid, yield 85%. Water solubility: 167 μg/mL. Ksp: 8.38 x 10-12 M3. 1H 

NMR (400 MHz, DMSO-d6) δ 8.99 (d, J = 9.0 Hz, 4H), 7.90 – 7.85 (br. m, 2H),  7.76 (d, J=7.6 

Hz, 4H),  7.71 – 7.64 (br. S, 1H), 7.60 – 7.52 (br. m, 2 H). 7.52 - 7.43 (m, 15H), 7.38 (t, J = 7.4 

Hz, 2H),  7.28 (d, J = 8.4Hz), 4.96 (d, J=8.0 Hz, 2 H), 4.61 (t, J = 8.4 Hz, 2H), 3.67 (s,  8 H),  

3.40 ( s., 1 H), 3.27 (br. s., 2H), 3.05 (s, 4 H), 1.55 (s, 6H), 1.43 (br. m., 4H), 1.25(br. m., 4H), 



 

131 

1.19 (s, 6H), 13C NMR (101 MHz, DMSO) δ 173.07, 1708.51, 169.46, 161.59, 159.98, 138.94, 

129.85, 128.77, 128.22, 127.87, 121,84, 112.43, 75.22, 65.84, 59.67, 57.77, 52.01, 27.83, 26.02, 

11.81. Anal. Calcd for C60H68Cl2N16O10S2: C, 55.08; H, 5.24; Cl, 5.42; N, 17.13; O, 12.23; S, 

4.90. Found: C, 53.61; H, 5.40; Cl, 5.27; N, 16.67; S, 4.77. HRMS (ESI) m/z calcd for 

C60H68Cl2N16O10S2, [M
+
], 1308.3191; found, 1308.3062. 

4.3.2 Pharmacokinetic Properties and Bioavailability of β-lactam-based Chlorhexidine 

GUMBOS 

Pharmacokinetic properties of β-lactam-based chlorhexidine GUMBOS reveal an 

increase in hydrophobicity and a reduction in first-order dissolution rates when the anion is 

changed from acetate to an antibiotic (Figure 4.7). Dissolution rates were found to be 0.133   

min
-1

, 0.109 min
-1

, 0.044 min
-1

, and 0.038 min
-1

 for chlorhexidine di-ampicillin, chlorhexidine 

carbenicillin, chlorhexidine di-cephalothin, and chlorhexidine di-oxacillin GUMBOS, 

respectively. It was also observed that aqueous solubility increases with molecular weight and 

chlorhexidine-anion stoichiometry in which the anions rank in this order:  

carbenicillin < ampicillin < cephalothin < oxacillin  

 This suggests that tuning molecular weight and ionic stoichiometry can affect the relative 

hydrophobicity and dissolution rates of the GUMBOS.  

Table 4.1. Diffusion rates and predicted intestinal permeability acquired using PAMPA GenTest 

assay.

 Pe (cm/s) Log Pe 

Sodium ampicillin 1.81 x 10
-5

 -4.93 

Chlorhexidine diacetate 9.39 x 10
-7

 -6.02 

Chlorhexidine di-ampicillin 4.03 x 10
-6

 -5.39 
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Figure 4.2. Proton (
1
H)-NMR of chlorhexidine di-ampicillin. 
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Figure 4.3. Carbon (
13

C)-NMR  of chlorhexidine di-ampicillin. The peaks indicative of either ion are labeled as CHX (chlorhexidine) 

and AMP (ampicillin) in addition to their color coated structural assignments in the embedded picture.  
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Figure 4.4. Mass spectra of chlorhexidine di-ampicillin GUMBOS in both negative-ion mode 

(top) and positive-ion mode (bottom).
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Figure 4.5. Optical ellipticities of chlorhexidine di-ampicillin (solid) and sodium ampicillin 

(dashed) in PBS (100mM, pH 7.4). 
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Figure 4.6. Absorbance spectra of chlorhexidine di-ampicillin in methanol. 
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Table 4.2. List of ions with structures detected in positive-ion and negative-ion mode. 

 

Name Structure
Theoretical

Mass –to-Charge

Experimental Mass –to-Charge

[M + H]+ [M - H]-

Chlorhexidine di-ampicillin 1202.4235 1203.4276 1201.4159

Chlorhexidine ampicillin hydride 853.3128 852.3061

Ampicillin dimer 698.2193 697.2105

Chlorhexidine acetate hydride 564.2243 563.2119

Chlorhexidine base 505.4466 505.2187

Chlorhexidine fragment 423.9457 424.1974

Chlorhexidine fragment 335.8351 336.1724

Ampicillin monomer 349.1046 348.1008
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Figure 4.7. Release and first-order dissolution profiles of β-lactam based chlorhexidine GUMBOS in deionized water at 298 K.  

T= 298K MW
K1 Rate/ min-1 
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Chlorhexidine diacetate 625.65 na 19000
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Chlorhexidine di-oxacillin 1308.32 0.109 (0.97) 166.3

Chlorhexidine di-cephalothin 1298.32 0.044 (0.97) 150.32

Chlorhexidine carbenicillin 883.85 0.038 (0.98) 52.5
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Bioavailabilities of β-lactam-based chlorhexidine GUMBOS show that antibiotic-

chlorhexidine ionic pairs have better intestinal permeability than the acetate form (Table 4.2). 

Human intestinal absorption (HIA) was found to range between 86 – 95% for β-lactam-based  

chlorhexidine GUMBOS which is 20% better absorption over the use of chlorhexidine diacetate. 

The mean effective permeability coefficients (Pe) for β-lactam-based chlorhexidine GUMBOS in  

200µM PBS were found to be 9.39 (+/- 0.87) x 10
-7

 cm/s, 4.03 (+/- 1.03) x 10
-6

 cm/s, 3.67 (+/- 

0.74) x 10
-6

 cm/s, 4.98 (+/- 0.087) x 10
-6

 cm/s, and 4.91 (+/- 0.17) x 10
-6

 cm/s for chlorhexidine 

diacetate, chlorhexidine di-ampicillin, chlorhexidine carbenicillin, chlorhexidine di-cephalothin, 

and chlorhexidine di-oxacillin, respectively. Statistical analysis showed that the intestinal 

permeability of chlorhexidine diacetate was significantly increased by the use of antibiotics as 

anions (p<0.05). However, there was no significant difference between Pe values for the 

GUMBOS, indicating that the intestinal permeation was independent of the cationic moiety.  

4.3.3  Anti-EHEC Activity  

4.3.3.1  Representative Combination Antibacterial Activity with Chlorhexidine Diacetate 

and Sodium Ampicillin   

Different ratios of sodium ampicillin and chlorhexidine diacetate were found to have 

varying antibacterial activities against 6 EHEC isolates and E. coli 25922 (Figure 4.8). The most 

susceptible strain to either chlorhexidine diacetate, sodium ampicillin, or the various mixtures 

was found to be E. coli O157:H7 strain 43895. Additionally, EHEC isolates from chicken 301 

and human 43890 showed the greatest susceptibility to chlorhexidine diacetate alone. 

Chlorhexidine diacetate antibacterial activity was less effective on EHEC pork 204P and beef 

933 isolates and E. coli 25922. Sodium ampicillin was preferentially more active on two out of 

the seven E. coli strains investigated although all MIC values were less than 10 µM (4µg/mL) as 

shown in Figure 4.8.  All isolates tested were susceptible to both chlorhexidine diacetate and 

sodium ampicillin. 
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 Table 4.3. Sources of Escherichia coli Strains 

Strain Characteristics 

Escherichia coli 25922* Quality control strain, Clinical isolate (stx1-, stx2-) 

Escherichia coli O157:H7 43895* Hamburger isolate(stx1+, stx2+) 

Escherichia coli O157:H7 43889* Human isolate (stx1-, stx2+) 

Escherichia coli O157:H7 43890* Human isolate (stx1+, stx2-) 

Escherichia coli O157:H7 301C** Chicken isolate (stx1+, stx2+) 

Escherichia  coli O157:H7 204P** Pork isolate (stx1+, stx2+) 

Escherichia coli O157:H7 933 ** Beef isolate (stx1+, stx2+) 

Escherichia coli O157:H7 C7929** Apple cider isolate (stx1+, stx2+) 

* American Type Culture Collection, Manassas, VA 

** Michael P. Doyle, University of Georgia, GA 
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Figure 4.8. Antibacterial activities of chlorhexidine diacetate and sodium ampicillin in combination against E. coli 25922 and E. coli 

O157:H7 strains isolated from different sources. 
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Figure 4.9. Antibacterial activities of three mixtures of chlorhexidine diacetate and sodium ampicillin against E. coli 25922 and E. 

coli O157:H7 strains isolated from different sources. 
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Figure 4.10. Interaction indices for  mixtures of chlorhexidine diacetate and sodium ampicillin against E. coli 25922 and E. coli 

O157:H7 strains isolated from different sources. 
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When investigating the antibacterial activities of chlorhexidine diacetate and sodium 

ampicillin in mixtures, it is apparent that EHEC inhibition varies among strains. Overall, MIC 

values worsened as the abundance of sodium ampicillin increased to more than 50%, with 

greatest antagonism observed in E. coli 25922. When specifically examining the stoichiometric 

equivalent to the chlorhexidine di-ampicillin GUMBOS, the mixture is more effective against 

EHEC isolates than E. coli 25922 (Figure 4.9). The most effective antibacterial combination 

consisted of 66.6% chlorhexidine diacetate and 33.3% sodium ampicillin. Therefore, the 

effective combinations of chlorhexidine diacetate and sodium ampicillin required a larger 

abundance of chlorhexidine diacetate than sodium ampicillin.  

Figure 4.10 reveals the interaction indices obtained for combinations of chlorhexidine 

diacetate and sodium ampicillin in which majority of them were neutral. Increasing 

concentrations of sodium ampicillin resulted in increasing antagonism within mixtures. 

Synergetic responses are evident in concentrations greater than 50% chlorhexidine diacetate. As 

percentages of chlorhexidine diacetate exceeded 75%, interactions with sodium ampicillin led to 

antagonism and additivity.  

4.3.3.2  Chlorhexidine di-Ampicillin 

The antibacterial activities of the reacted chlorhexidine di-ampicillin GUMBOS were 

compared to chlorhexidine diacetate and sodium ampicillin and the stoichiometric combination 

of parent salts against EHEC (Table 4.4). Chlorhexidine di-ampicillin inhibited EHEC growth at 

a concentration ranging from 0.05 to 0.10 µM with an average inhibition observed at 0.07 µM. 

The average MICs for chlorhexidine diacetate and sodium ampicillin were 0.3 µM and 6.5 µM, 

respectively. Average inhibitory concentrations for the mixed salts (1:2 chlorhexidine diacetate 

and sodium ampicillin, v/v%) was determined to be 2.1 µM.  Thus, chlorhexidine di-ampicillin 

required 28 – 154 and 8 – 49 times lower concentration to inhibit the growth of EHEC isolates 
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than sodium ampicillin and the combination of parent salts, respectively. Although comparable, 

chlorhexidine di-ampicillin was 2-10 times more effective than chlorhexidine diacetate, with an 

average 4-fold improvement in MIC. Growth observed 24h after plating non-turbid MIC wells 

demonstrated that chlorhexidine di-ampicillin is bacteriostatic at lower concentrations, but 

bactericidal at concentrations greater than 7.3 µM (103x chlorhexidine di-ampicillin MIC).  

4.3.3.3  Chlorhexidine Carbenicillin 

The antibacterial activities of the reacted chlorhexidine carbenicillin GUMBOS were 

compared to chlorhexidine diacetate and disodium carbenicillin (Table 4.5). Chlorhexidine 

carbenicillin inhibited EHEC strain 43895 growth with 0.11 µM. The average MICs for 

chlorhexidine diacetate and disodium carbenicillin were 0.3 µM and 93.75 µM, respectively. 

Chlorhexidine carbenicillin required 3 and 852 times lower concentration to inhibit the growth of 

EHEC isolates than chlorhexidine diacetate and disodium carbenicillin, respectively. Similar to 

chlorhexidine di-ampicillin, comparable antibacterial activity to chlorhexidine diacetate was 

observed for chlorhexidine carbenicillin. Additionally, chlorhexidine carbenicillin is considered 

to be bacteriostatic since its MBC (i.e. 3.3 µM) is greater than its MIC by nearly 30x.  

4.3.3.4  Chlorhexidine di-Cephalothin 

The antibacterial activity of chlorhexidine di-cephalothin was compared to chlorhexidine 

diacetate and sodium cephalothin (Table 4.5). Chlorhexidine di-cephalothin inhibited EHEC 

strain 43895 growth with 0.10 µM. The average MICs for chlorhexidine diacetate was 0.3 µM. 

The antibacterial activity of sodium cephalothin was found to be 104 µM. Thus, chlorhexidine 

di-cephalothin required 3 and 1040 times lower concentration to inhibit the growth of EHEC 

isolates than chlorhexidine diacetate and sodium cephalothin, respectively. The MBC obtained 

for chlorhexidine di-cephalothin was also 3.3 µM which exceeds its MIC by 33-fold.  
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4.3.3.5  Chlorhexidine di-Oxacillin 

The antibacterial activity of chlorhexidine di-oxacillin was compared to chlorhexidine 

diacetate and sodium oxacillin (Table 4.5). Chlorhexidine di-cephalothin inhibited EHEC strain 

43895 growth with 0.13 µM. The average MICs for chlorhexidine diacetate was 0.3 µM. The 

antibacterial activity of sodium cephalothin was found to be 98 µM. Thus, chlorhexidine di-

cephalothin required 3 and 753 times lower concentration to inhibit the growth of EHEC isolates 

than chlorhexidine diacetate and sodium oxacillin, respectively. The MBC obtained for 

chlorhexidine di-cephalothin was also 3.3 µM which exceeds its MIC by 26-fold.  

4.3.4 Interaction Indices 

Interaction indices tabulated for GUMBOS were compared to the mixture of precursor 

salts in Table 4.6. Synergy was observed for chlorhexidine di-ampicillin in all EHEC isolates 

(Iavg = 0.28), whereas, both antagonism and additivity (Iavg = 3.3) were seen for the 

stoichiometric mixture in 71% and 29% of the test organisms, respectively. Additivity was 

observed for chlorhexidine di-ampicillin and the mixture against E. coli 25922.  

 Table 4.7 lists the interaction indices obtained for GUMBOS against E. coli O157:H7 

strain 43895 and E. coli ATCC 25922. The results reveal that all β-lactam based chlorhexidine 

GUMBOS were synergetic against E. coli O157:H7 strain 43895 with increased synergy by 

anion type in the following order:  

Ampicillin < Carbenicillin < Cephalothin < Oxacillin 

Interaction indices for the GUMBOS follow a similar trend, despite chlorhexidine di-ampicillin 

additivity, against E. coli ATCC 25922.  
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Table 4.4. Minimum inhibitory concentrations (µM) of antibacterial agents against E. coli O157:H7 strains isolated from different 

sources. Standard deviations are from three measurements. 

 

 

 

E. coli 

25922 

Chicken 

301C 

Pork 

204P 

Beef 

933 

Apple 

Cider 

C7929 

Hamburger 

43895 

Human 

43889 

Human 

43890 

Chlorhexidine 

diacetate 
0.3 ± 0.1 0.6 ± 0.05 0.1 ± 0.02 0.4 ± 0.06 0.3 ± 0.07 0.2 ± 0.03 0.3 ± 0.05 0.2 ± 0.03 

Sodium 

ampicillin 
7 ± 1 4 ± 0.5 5 ± 0.1 7 ± 0.1 10 ± 0.3 2 ± 0.2 10 ± 0.1 7 ± 0.3 

Combination 

1 Chlorhexidine 

diaceate:2 Sodium 

Ampicillin 

 

0.8 ± 0.1 2 ± 0.3 0.4 ± 0.1 1 ± 0.3 7 ± 1 0.7 ± 0.1 2 ± 0.03 2 ± 0.06 

Chlorhexidine 

di-ampicillin 
0.3 ± 0.1 0.06 ± 0.02 0.05 ± 0.01 0.08 ± 0.04 0.1 ± 0.04 0.08 ± 0.02 0.06 ± 0.02 0.07 ± 0.02 
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Table 4.5. Average minimum inhibitory concentrations (µM) of β-lactam-based chlorhexidine GUMBOS against E. coli ATCC 25922 

and E. coli O157:H7 ATCC 43895. Standard deviations are from six measurements. 

 
E. coli  

25922 

E. coli 

43895 

Chlorhexidine diacetate 0.28 ± 0.03 0.23 ± 0.02 

Chlorhexidine di-ampicillin 0.26 ± 0.10 0.08 ± 0.04 

Chlorhexidine carbenicillin 0.22 ± 0.06 0.11 ± 0.03 

Chlorhexidine di-cephalothin 0.20 ± 0.07 0.10 ± 0.03 

Chlorhexidine di-oxacillin 0.20 ± 0.06 0.13 ± 0.04 
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Table 4.6. Calculated interaction indices (classification denoted in parentheses, where A = Antagonism, N = Neutral, and S = 

Synergy) for chlorhexidine di-ampicillin GUMBOS and the combined parent salts according a modified Loewe's Additivity Model. 

 

 

E. coli 

25922 

Chicken 

301 C 

Pork 

204 P 

Beef 

933 

Apple 

Cider 

C7929 

Hamburger 

43895 

Human 

43889 

Human 

43890 

Stoichiometric 

Combination 

1 Chlorhexidine 

diaceate:2 Sodium 

Ampicillin 

 

2.8 (N) 1.4 (N) 1.9 (N) 1.2 (N) 10.1 (A) 1.5 (N) 2.0 (N) 5.1 (A) 

GUMBOS 

Chlorhexidine 

di-Ampicillin 

0.9 (N) 0.1 (S) 0.5 (S) 0.1 (S) 0.5 (S) 0.3 (S) 0.2 (S) 0.3 (S) 
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Table 4.7. Calculated interaction indices (classification denoted in parentheses, where A = Antagonism, N = Neutral, and S = 

Synergy) for β-lactam based chlorhexidine GUMBOS according a modified Loewe's Additivity Model. 

 

 
E. coli  

25922 

E. coli 

43895 

Chlorhexidine di-ampicillin 0.88 (A) 0.28 (S) 

Chlorhexidine carbenicillin 0.47  (S) 0.23 (S) 

Chlorhexidine di-cephalothin 0.33 (S) 0.22 (S) 

Chlorhexidine di-oxacillin 0.21 (S) 0.19 (S) 
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Figure 4.11. Killing kinetics of E. coli O157:H7 ATCC 43895 at 7.3 µM chlorhexidine di-ampicillin (Δ) and chlorhexidine diacetate 

(□) as compared to the control (◊). Error bars represent standard deviations from three measurements.  
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4.3.5 Time-kill Activity of Chlorhexidine di-ampicillin on E. coli O157:H7 43895   

Bactericidal rates for chlorhexidine di-ampicillin and chlorhexidine diacetate were 

monitored at the MBC for chlorhexidine di-ampicillin against 10
6
 CFU/ml, (Figure 4.11). A 

minimum of five hours minimal was required to kill 10
6 

CFU/mL bacteria at 7.3 µM for both 

chlorhexidine salts.  

4.3.6 Mechanism of Action Studies 

 

Figure 4.12. Effect of GUMBOS on E.coli O157:H7 ATCC 43895 outer membranes in absence 

(top) and presence (bottom) of 5mM magnesium ions. Results normalized to NPN membrane 

fluorescence obtained by EDTA as negative control.  

4.3.6.1  Effects of Divalent Cations on EHEC Susceptibility to GUMBOS  

The effects of divalent cations on the antibacterial susceptibility of chlorhexidine salts to 

E. coli O157:H7 strain 43895 was evaluated. The addition of 200 µM Ca
2+

 or Mg
2+

 antagonized 
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the antibacterial activity of all β-lactam based chlorhexidine GUMBOS equally to chlorhexidine 

diacetate (data not shown). This attenuation in antibacterial activity suggests that excess divalent 

cations interfere with the membrane activity of these agents and that the ions play a vital role in 

the GUMBOS mechanisms of action. 

4.3.6.2  Effects of GUMBOS on Permeability of E. coli O157:H7 strain 43895 Outer 

Membrane 

To determine whether GUMBOS targeted the outer membranes of EHEC, we performed 

the NPN assay. No fluorescence accumulation was evident when GUMBOS or starting materials 

were added to the buffer containing NPN absent of cells. The addition of GUMBOS to EHEC 

cells in the presence of NPN caused a time-dependent increase in fluorescence with fluorescence 

stability occurring at 3 minutes. Equal membrane permeation for all salts at concentrations below 

30 µM was observed (data not shown). At higher concentrations, the greatest damage in 

membrane integrity was observed by chlorhexidine di-ampicillin in the absence of extraneous 

magnesium ions (Figure 4.12). Enhanced membrane permeation, with respect to EDTA, 

decreases in the following order: chlorhexidine di-cephalothin > chlorhexidine carbenicillin > 

chlorhexidine di-oxacillin > chlorhexidine diacetate. As expected, EDTA also caused increases 

in fluorescence intensity without subsequent cell death. At the largest concentration, 

chlorhexidine di-cephalothin causes 10.5x more membrane damage than EDTA. Chlorhexidine 

di-ampicillin permeates the outer membrane 6x more effectively than EDTA. Chlorhexidine di-

oxacillin, chlorhexidine carbenicillin, and chlorhexidine diacetate detrimentally impacts the 

membrane 2.5, 2, and 0.8 times better than EDTA. At lower concentrations, the extent of damage 

is attenuated and the GUMBOS membrane activity are equally 2 times better than EDTA 

Normalized results demonstrate that six times less concentration of GUMBOS can permeate 

bacteria cells more efficiently than 250 µM EDTA. To confirm disrupted action on the outer 
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membrane via replacement of divalent cations with β-lactam based chlorhexidine GUMBOS, we 

investigated whether the divalent cations inhibited the increase in NPN fluorescence. Similar to 

EDTA, we found that the addition of either Ca
2+

 or Mg
2+

 inhibited the increase in NPN 

fluorescence induced by all chlorhexidine salts. Thus, the membrane activities of GUMBOS and 

chlorhexidine diacetate to the cellular outer membrane are antagonized by the presence of excess 

magnesium or calcium (Figure 4.12B). This indicates that displacement of divalent ions is an 

important feature for activity.  

4.3.6.3  Effects of GUMBOS on E. coli O157:H7 strain 43895 Membrane Potential 

Beta-lactam based chlorhexidine GUMBOS caused different extents of membrane 

depolarization at concentrations above 4 µM. More specifically, greater depolarization was 

achieved using chlorhexidine di-ampicillin as compared to the other chlorhexidine salts. Even 

more so, all GUMBOS outperformed chlorhexidine diacetate (Figure 4.13). The GUMBOS’ 

ability to depolarize E. coli outer membranes decrease in the following order: chlorhexidine di-

ampicillin, chlorhexidine di-cephalothin, chlorhexidine di-oxacillin, and chlorhexidine 

carbenicillin. Our results show that chlorhexidine diacetate is unable to depolarize EHEC cellular 

outer membranes as efficiently as GUMBOS.  

4.3.6.4 GUMBOS Activity on LPS-Rich and Deficient E. coli  

Antibacterial activity against wild-type and increased membrane permeable E. coli strains 

show that chlorhexidine di-ampicillin GUMBOS were 17x more effective in inhibiting E. coli 

imp4213 than wild-type E. coli (Figure 4.14). Likewise, chlorhexidine carbenicillin and 

chlorhexidine di-oxacillin preferentially inhibited E. coli imp4213 by 9x and 8x, respectively. 

This implies that β-lactam based chlorhexidine GUMBOS are able to cross the LPS-deficient 

outer membrane of imp4213 more readily than the LPS-rich membrane that is present in wild-

type E. coli. The MICs for chlorhexidine diacetate and GUMBOS were comparable in imp4213  
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Figure 4.13. Changes in Escherichia coli O157:H7 ATCC 43895 membrane potentials using DIOC2 stained cells treated with 

increasing concentrations of  GUMBOS. The Panel (A) show the red/green ratiometric fluorescence obtained for different 

concentration of GUMBOS. Using the Nernst equation, results in Panel (A) are converted to membrane potential values as shown in 

Panel (B). GUMBOS Error bars represent standard deviations from nine measurements.  
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inhibition; whereas, variable differences in antibacterial activity were observed with GUMBOS 

treatment on wild-type E. coli. 

Antibacterial activity on wild-type E. coli occurred in the following order: chlorhexidine 

di-ampicillin > chlorhexidine diacetate = chlorhexidine carbenicillin > chlorhexidine di-

oxacillin. We attribute this order to the already established mechanism of action for 

chlorhexidine salts that contain a bio-inactive counter-ion (i.e. dihydrochloride, diacetate, or 

digluconate).
9-11, 35-39

 Regardless of the anion, GUMBOS still interact with the outer membrane 

of Gram-negative bacteria at divalent-cation-binding sites on LPS, displaces stabilizing divalent 

cations, and causes outer membrane permeation similarly to other polycationic antibiotics. 

Furthermore, β-lactam antibiotics do not interfere with the membrane activity when 

chlorhexidine is used in the form of GUMBOS.   

 

Figure 4.14. Antibacterial activity of β-lactam based chlorhexidine GUMBOS against wild-type 

and imp4213 E. coli strains. 
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4.3.6.5  Effects of GUMBOS on membrane integrity of E. coli O157:H7 strain 43895.  

Scanning electron micrographs of post-treated EHEC revealed elongated cells following 

exposure to sodium ampicillin (Figure 4.15B). The cell surface for both untreated (Figure 4.15A) 

and sodium ampicillin treated EHEC present a smooth cell surface. Evaluation of imaged cells 

showed that untreated and sodium ampicillin treated cells maintained ultra-structural integrity of 

the outer membrane. Figures 4.15C and 4.15E illustrated that chlorhexidine diacetate and the 

mixture of salts disrupted the outer membrane of EHEC, as indicated by the ruffled surface of 

the cells. In addition to the ruffled cellular surface similar to chlorhexidine diacetate, there was 

long, undivided cells which is a feature of ampicillin treatment (Figure 4.15E). Our results 

demonstrate that > 90% of chlorhexidine di-ampicillin-exposed cells suffered from inner and 

outer membrane perturbation, which caused the intracellular materials to leak (Figure 4.15D). 

 

 

Figure 4.15. SEM images of A) untreated and antibacterial treated E. coli O157:H7 ATCC 

43895 with B) 50 µM sodium ampicillin, C) 50 µM chlorhexidine diacetate, D) 50 µM 

chlorhexidine di-ampicillin, and E) 50 µM stoichiometric mixture of parent salts.   

E
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4.3.7 Cytotoxicity 

Potential routes of administration were evaluated by monitoring acute mammalian 

cytotoxicity using HeLa cervical cells, NIH/3T3 fibroblasts, and EOMA endothelial cellular 

lines (Table 4.8). Overall, cytotoxicity of the investigated chlorhexidine salts and stoichiometric 

molar drug combinations increases in this order, ampicillin <oxacillin <cephalothin <acetate 

≤carbenicillin. Differences observed between cellular lines may indicate tunable therapeutic 

indices amongst chlorhexidine salts and potential expansion in administration routes. The 

impacts GUMBOS have on each cellular line tested are described in more detail in the 

subsequent sections. 

4.3.7.1  Cytotoxicity to HeLa Cervical Cells 

Cytotoxicity using HeLa cells is shown in Table 4.8. The acute toxicities (LD 50) of 

GUMBOS were determined to range between 44 to 149 µM. More specifically, the toxicity of 

chlorhexidine diacetate, sodium ampicillin, and combined chlorhexidine diacetate and sodium 

ampicillin was 43, and >400, and 76 µM, respectively. Chlorhexidine di-ampicillin is less toxic 

to cervical cells than starting materials and combined precursor ions with a LD50 of 149 µM. This 

GUMBOS is able to attenuate cytotoxicity nearly 2 – 3.5 times in comparison to chlorhexidine 

diacetate and the stoichiometrically combined chlorhexidine diacetate and sodium ampicillin 

salts, respectively. Although not as statistically significant from the mixture of chlorhexidine and 

antibiotic, both chlorhexidine di-cephalothin and chlorhexidine di-oxacillin had improved LD50 

values from chlorhexidine diacetate. Chlorhexidine carbenicillin is the only GUMBOS that had a 

LD50 value similar to chlorhexidine diacetate and worse than stoichiometric mixture of 

chlorhexidine diacetate and disodium carbenicillin. Reduced toxicity to cervical cells validates 

the use of some chlorhexidine salts systemically. 
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4.3.7.2  Cytotoxicity to NIH/3T3 Fibroblast Cells 

Cytotoxicity results to NIH/3T3 fibroblasts reveal that β-lactam based chlorhexidine 

GUMBOS are as equally nontoxic as chlorhexidine diacetate. As expected, β-lactam antibiotics 

were not toxic within the concentration range tested and cell viability did not significantly vary 

between chlorhexidine diacetate, mixtures, and GUMBOS when investigating acute toxicity 

against NIH/3T3 fibroblast cells. However, polytherapeutic mixtures containing chlorhexidine 

and antibiotic are more cytotoxic than β-lactam based chlorhexidine GUMBOS. Since 

chlorhexidine diacetate is commonly used non-systemically, or as a topical disinfectant, this 

shows that the novel chlorhexidine salts can continually be used topically without inflicting 

additional toxicity.  

4.3.7.3  Cytotoxicity to EOMA Endothelial Cells 

Similar to HeLa cells, GUMBOS treatment on EOMA endothelial cells show variable 

cytotoxicity. For instance, chlorhexidine carbenicillin and chlorhexidine di-oxacillin are more 

toxic to endothelial cells than chlorhexidine diacetate. On the other hand, chlorhexidine di-

ampicillin and chlorhexidine di-cephalothin are less toxic, with the latter by nearly 2x 

chlorhexidine diacetate. These differences in cytotoxicity show that some GUMBOS are safe to 

use systemically when large concentrations are considered. However, the antibacterial activities 

of these salts against EHEC are more than 1000x less than their respective EOMA LD50 values 

which suggests their safe use systemically. 

Acute toxicity for chlorhexidine diacetate, antibiotic, and GUMBOS was determined in 

vitro using HeLa, NIH/3T3, and EOMA cells. The LD50 values against all cells were about 43 

µM or 2.7% w/v for chlorhexidine diacetate which agrees with previously published values. 

Such concentrations of chlorhexidine have caused mild to severe inflammatory responses as well 

as induced apoptosis, necrosis, and over-expression of cellular stress indicators when used 
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systemically.
40-43

 Reports indicate that cytotoxicity results in mild to severe discomfort when 

increasing quantities of chlorhexidine are ingested, although it is poorly absorbed. Additionally, 

its use intravenously has caused hypotonic-induced hemolysis.
9
 Since literatures supports that a 

2% concentration of chlorhexidine may detrimentally affect host tissues, reducing the apparent 

toxicity associated with chlorhexidine in the GUMBOS structure is priority.  At the LD50 for 

chlorhexidine diacetate, mammalian cells treated with GUMBOS resulted in better cell viability. 

Thus, our results suggest that these cells were more sensitive to the toxic effects of chlorhexidine 

diacetate and its use with antibiotics in stoichiometric combination at concentrations above 3 

µM. Interestingly, the addition of antibiotic molecules to the chlorhexidine structure as a mixture 

or GUMBOS was able to reduce the cytotoxic effects of chlorhexidine on mammalian cells. This 

approach demonstrates that the reacted GUMBOS have potential to extend the antibacterial 

efficacy of antibiotics while reducing toxicities associated with chlorhexidine diacetate.  

In summary, GUMBOS toxicity to fibroblasts was similar as each salt but different with 

HeLa and EOMA cells. Both HeLa and EOMA viabilities are similar in β-lactam based 

chlorhexidine GUMBOS where ampicillin is the least toxic anion used and carbenicillin is the 

most. We attribute this to the cation-anion stoichiometry and anion size among GUMBOS. More 

specifically, a 3-fold increase in chlorhexidine carbenicillin toxicity to HeLa cells was observed 

when compared to chlorhexidine di-ampicillin. We attribute this difference in toxicity to the 

structural difference between the two antibiotics. It is apparent that modifying C-8 to a 

carboxylate (i.e. carbenicillin) forms a dianionic species that has a 1:1 cation-anion stoichiometry 

with chlorhexidine. This differs from the 1:2 stoichiometry of chlorhexidine di-ampicillin that 

has a primary amine on C-8 instead of a carboxylate like in carbenicillin. When comparing all 

GUMBOS to chlorhexidine carbenicillin, it is apparent that this molecular change most 
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negatively affected the cell viability of mammalian cells. Furthermore, the differences in acute 

toxicity infer that chlorhexidine di-ampicillin, chlorhexidine di-cephalothin, and chlorhexidine 

di-oxacillin would be better GUMBOS to use during the treatment of a systemic infection since 

they are less cytotoxic than the other chlorhexidine salts investigated. These results indicate that 

β-lactam based chlorhexidine GUMBOS are safer alternatives to antibiotic-chlorhexidine drug 

mixtures when used either topically or systemically.  

 

Table 4.8. Acute cytotoxicity (LD50) of chlorhexidine di-ampicillin, chlorhexidine diacetate, 

sodium ampicillin, and the stoichiometric equivalent on HeLa cells. Standard deviations from 

four measurements.  

Antimicrobial Agent HeLA NIH/3T3 EOMA 

Chlorhexidine diacetate 43 ± 6 47 ± 2 80 ± 3  

Chlorhexidine di-Ampicillin 149 ± 4 48 ± 3 109 ± 6  

Chlorhexidine diacetate + Sodium Ampicillin 76 ± 9 43 ± 2 67 ± 11  

     

Chlorhexidine Carbenicillin 44 ± 7 48 ± 7 73 ± 10  

Chlorhexidine diacetate + Disodium 

Carbenicillin 

58 ± 13 51 ± 4 59 ± 4  

     

Chlorhexidine di-Cephalothin 79 ±  12 52 ± 5 150 ± 13  

Chlorhexidine diacetate + Sodium 

Cephalothin 

64 ± 9 52 ± 6 103 ± 14  

     

Chlorhexidine di-Oxacillin 139 ± 6 48 ± 4 97 ± 16  

Chlorhexidine diacetate + Sodium Oxacillin 102 ± 21 44 ± 4 92 ± 7  
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4.4  Discussion 

The broth dilution technique indicated that GUMBOS were effective in inhibiting 

bacterial growth at 24 h when challenged with several EHEC isolates with MIC ranging between 

0.05 – 0.15 µM. These concentrations were significantly better than the MIC values obtained for 

mixtures of commercial chlorhexidine diacetate and antibiotic. This observation demonstrates 

that the GUMBOS would be a more effective antibacterial agent than simply using the two 

parent agents in combination on E. coli O157:H7. Likewise, interaction indices classify 

GUMBOS to be a synergetic ionic pair in comparison to the additive nature of the parent salts in 

mixture. Thus, our results indicate that the co-administration of antibiotic and chlorhexidine 

diacetate will not achieve similar synergy as observed by the reacted GUMBOS. Additionally, 

minimum bactericidal concentrations obtained for GUMBOS were comparable to the effective 

concentration used to eradicate EHEC from cattle in a study by Naylor et al.
8
 Time-kill results 

also show that GUMBOS are rapidly bactericidal as chlorhexidine diacetate. Such a quick 

reduction in cell number has been previously reported for chlorhexidine salts.
44, 45

 Overall, 

GUMBOS are bacteriostatic at lower concentrations and bactericidal at higher concentrations. 

This type of antibacterial activity is similar to chlorhexidine diacetate. At low concentrations, 

chlorhexidine is bacteriostatic primarily disrupting the bacterium’s osmotic equilibrium and 

causing the internal contents to leak; however, at higher concentrations of chlorhexidine, the 

contents of the bacterial cell begins to precipitate out.
46

   

  Since β-lactam chlorhexidine GUMBOS is composed of two separate and distinct 

antimicrobial agents, it is important to understand the underlying mechanism of their synergetic 

behavior and how it differs from the mixture of the two parent salts as combination drug therapy. 

Keeping the principle of combination antibiotic design in mind, investigating novel ion-pairs 
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with desirable synergistic combinations can allow lower concentrations of drugs within 

combinations to be implemented.
47

 Thus, integrating the membrane active chlorhexidine cation 

and cell wall targeting β-lactam antibiotic into a GUMBOS is hypothesized to deliver a lethal 

impact with a novel mechanism to decontaminate E. coli O157:H7 from infected cattle. Within 

this mechanism of action, we believe a hybridization of the independent activities and physical 

and chemical properties are governing the enhanced membrane activity at a localized site on the 

bacterial cell. Our results support that the mechanism of action for chlorhexidine is conserved 

within the β-lactam based chlorhexidine GUMBOS and that the antibiotic compliments this 

activity by modifying the physical and chemical properties of the antiseptic-antibiotic conjugate. 

To achieve equal membrane disruption, the mixture of salts would require the unlikely 

probability of antibiotic molecules and a chlorhexidine molecule arriving at the cell in a localized 

lethal dose and it reacting to subsequently change the physico-chemical properties of 

chlorhexidine. With this, the mechanism of action for GUMBOS must use attractive forces 

between the cation (chlorhexidine) and anion (antibiotic) to contain the ionic pair and remain as 

one unit while it inflicts antibacterial activity.  

Supported by an approach commonly known as ion pair transport, reacting counter-ions 

with active pharmaceutical agents has successfully been used to increase the lipophilicity, 

physiological compatibility, and poor bioavailability of certain hydrophilic drugs.
48, 49

 Thus, this 

method has shown effective in improving cellular uptake of hydrophilic drugs and to increase its 

overall molecular lipophilicity at the site where activity is to take place.
50

 Neubert and Dittrich 

reported that the incorporation of various lipophilic counter-ions on ampicillin improved its 

transport across cellular membranes.
51

 Therefore, the increased hydrophobicity of chlorhexidine 

as a counter-ion was expected to improve the membrane transport of antibiotic and 
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simultaneously maintain its antibacterial activity.
52

 Our results support that β-lactam based 

chlorhexidine GUMBOS as ion-pair are more hydrophobic than the more soluble antibiotic and 

chlorhexidine diacetate salts and can traverse membranes more efficiently. Lengsfeld et al. also 

found that hydrophobic ion pairs cross cell membranes easier than hydrophilic ionizable drugs, 

and the associated antibiotics show better minimum inhibitory concentrations than their parent 

salts.
50

 Therefore, the greater lipophilicity of the GUMBOS is a more efficient membrane 

permeant than other chlorhexidine salts (i.e. dihydrochloride, diacetate, or digluconate) with 

biologically inactive counter-ions.
9-11, 36, 37, 39

 Therefore, improved MICs and enhanced 

membrane permeation behavior observed in the GUMBOS system as compared to the free 

ionizable mixture of salts or individual parent ions is attributed to the hydrophobic nature of the 

novel GUMBOS.  

More importantly, we see that the membrane activity of the chlorhexidine moiety is 

apparent and enhanced in spite of the presence of the antibiotic in the GUMBOS form. This 

contradicts previous findings that suggest the presence of other anionic salts and detergents 

antagonize the antibacterial activity of chlorhexidine salt.
53

 The antibacterial activity of 

stoichiometric mixtures containing chlorhexidine diacetate and sodium antibiotic demonstrates 

that β-lactams do interfere with chlorhexidine activity when unreacted.
44, 54

 However, this is not 

the case with reacted β-lactam based chlorhexidine GUMBOS since synergetic and increased 

antimicrobial activity over the mixture was observed. Antibacterial activities observed in this 

study show that β-lactam antibiotics do not interfere with chlorhexidine when reacted and 

suggest that the two ions must be functional without inhibiting the activity of the other.  

Since polycationic molecules are reported to preferentially interact with the outer 

membranes of Gram-negative bacteria by acting to competitively displace divalent cations that 
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cross-bridge adjacent lipopolysaccharide ((LPS) molecules, we sought to investigate if this was 

true for β-lactam chlorhexidine GUMBOS. As such, the antibacterial activity of the novel 

GUMBOS, a dicationic antiseptic containing two β-lactam antibiotics, was further investigated 

using EHEC in the presence and absence of Ca
2+

 or Mg
2+ 

, wild-type E. coli, E. coli imp4213, and 

E. coli DH5a (pAMP) in pursuit of understanding its mechanism of action. It was found that 

EHEC susceptibility to all chlorhexidine salts were attenuated by Ca
2+ 

and Mg
2+

. These findings 

suggest that the antibacterial mechanism of action involves the displacement of divalent cations. 

Authors have shown that chlorhexidine salts (i.e. dihydrochloride, digluconate, and diacetate) are 

capable of permeating the outer membrane of E. coli and that this action was antagonized by 

divalent cations such as Mg
2+

 and Ca
2+

.
 45

 Upon addition of increasing concentrations of EDTA, 

which disrupts divalent-cation cross-bridges by chelation, the bactericidal activity against EHEC 

was restored in MIC studies containing Ca
2+

. Even more so, high concentrations of EDTA 

improved the GUMBOS antibacterial activity although it was not effective against EHEC alone. 

Harper and Epis also found that chlorhexidine antibacterial activity was improved in vitro when 

EDTA or EDTA/Tris systems were implemented against Gram-negative bacteria.
55 

We 

hypothesize that the presence of excess divalent cations may repel GUMBOS by inhibiting its 

interaction with LPS disallowing effective cation displacement. Therefore, improvements in MIC 

values with increasing EDTA show that the removal of divalent cations enables effective 

bactericidal activity.  

An enhancement of NPN fluorescence in intact EHEC cells upon exposure to increasing 

GUMBOS concentration supports that the GUMBOS permeabilized the outer membrane of 

EHEC cells. As expected, the addition of divalent cations inhibited their membrane activities, as 

observed by equal NPN fluorescence quenching. This could also be explained by competition 
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between GUMBOS and the divalent cations for a divalent-cation-binding site on the outer 

membrane since excess divalent cations reduce the likelihood of the GUMBOS effectively 

destabilizing the membrane. Both chlorhexidine diacetate and GUMBOS are sensitive to divalent 

cations and are similarly inhibited by their presence. Membrane potential studies also reveal that 

chlorhexidine di-ampicillin caused greater membrane damage to E. coli O157:H7 strain ATCC 

43895, than parent ion or mixture, resulting in superior depolarization of membrane potentials.
10, 

35, 37, 39
 In addition, our results further demonstrate that neither combination nor precursor ion 

resulted in comparable disruption of bacteria cell outer membranes or potentials.  

Antibacterial activities of chlorhexidine di-ampicillin (MIC = 0.16 µM) as a 

representative agent against ampicillin resistant strain of Escherichia coli DH5a (pAMP 

plasmid) shows that its antibacterial activity is 2.5x better than the combination (MIC = 0.36 

µM), but equal to chlorhexidine diacetate (MIC = 0.16 µM). This implies that the presence of 

free ampicillin within the drug combination acts as an antagonist to the antibacterial activity of 

chlorhexidine against ampicillin resistant strains. Since the MIC values of chlorhexidine di-

ampicillin are not equal to the drug mixture, ampicillin resistant E. coli DH5a cannot effectively 

deactivates the GUMBOS in the same way as the antiseptic/antibiotic combination. Thus, we are 

not certain if the antibiotic is degraded by penicillinase as a GUMBOS and future studies are 

underway to confirm this. However, our results suggest that neither the presence nor absence of 

ampicillin interferes with chlorhexidine antibacterial activity when reacted.    

4.5  Conclusions 

The results of this study suggest that β-lactam based chlorhexidine GUMBOS may be a 

viable alternative to antiseptics and antibiotics in the prevention of E. coli O157:H7 colonization 

from ruminant reservoirs of infection. More importantly, the levels of potency, reduced toxicity, 
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and improved synergy observed in GUMBOS were not exceeded by the equivalent combination 

of chlorhexidine diacetate and antibiotic. Examination of our data also indicates that GUMBOS 

have bactericidal activity against EHEC by directly disrupting the outer membrane. This activity 

is premised on the displacement of divalent cations from their binding sites on LPS on the outer 

membrane. The direct action of GUMBOS may contribute to its bactericidal activity against 

Gram-negative bacteria. Other applications beyond reducing fecal shedding of EHEC in cattle 

might be found wherever chlorhexidine might be used; for example, in the prevention of 

meningitis in neonates by the eradication of group B streptococci in the vaginas of pregnant 

women or in the reduction of resistant infections associated with catheter-induced bacteremia.  

Ultimately, the GUMBOS approach represents an alternative to traditional pharmaceutical drug 

design and conventional combination drug therapy.  
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CHAPTER 5 ANTIBACTERIAL EFFECTS OF BETA (β)-LACTAM ANTIBIOTIC-

CHLORHEXIDINE HYBRID SALTS ON ANTIBIOTIC RESISTANT 

MICROORGANISMS  

5.1 Introduction 

Multi-drug resistant (MDR) bacterial infections comprise more than 30% of 

nosocomial infections in the United States.
1
 Particularly, the associated morbidities from 

Gram-negative opportunistic bacteria (GNB) account for nearly 80% of intensive care unit 

infections including those specifically causing pneumonia, or infecting the urinary tract, blood 

stream, and surgical sites.
2,3

 Of the ten most common pathogens responsible for 84% of 

nosocomial infections, thirty-three percent is contributed by GNB, in which 8% result from 

MDR-GNB.
4
 These pathogens include ESBL producing Escherichia coli, ampicillin-resistant 

Klebsiella species, Acinetobacter baumanii, and Salmonella species, and fluoroquinolone- or 

carbapenem-resistant Enterobacteriaceae, Serratia marcescens and Pseudomonas 

aeruginosa.
5-10

 Infections arising from MDR-GNB primarily come from the microorganisms’ 

highly efficient innate drug resistance; however the lack of host resistant mechanisms, 

resulting from compromised immune systems, allows for infection to set more readily. Those 

elements (i.e. AmpC – β-lactamases, MBLs, ESBLs, oxacillinases, and KPC enzymes) 

combined with the lack of novel antibiotic development has created a platform in which 

infections due to antibiotic resistant bacteria have become superior.
11

 Therefore, prompt and 

appropriate pragmatic antimicrobial therapy is necessary to improve clinical prognosis in the 

treatment of severe resistant infections.
11

 

 Although the antibiotic arsenal is limited, very few effective treatment options for 

infections caused by MDR bacteria still remain. Primarily, combination drug therapy has 

become the principal approach used to treat skin and soft tissue infections caused by MDR-
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GNB and DR-Gram-positive bacteria (GPB).
9
 The use of multiple drugs in tandem is gaining 

momentum as a systematic approach to treat complex disease. This has led to a number of 

combination drug therapies that have become staples in treating such infections, while several 

pharmaceutical companies seek to discover improved dual-mode-of-action compounds. Common 

antibacterial combination drugs consists of β-lactam drugs approved in the U.S. are Co-

Amoxiclav (Amoxicillin + Clavulanate), Timentin (Ticarcillin + Clavulanate), Unasyn 

(Ampicillin + Sulbactam), and Zosyn (Piperacillin + Tazobactam). Since these drug 

combinations are losing drug efficacy, other combinations such as mixtures of polymyxin B and 

tigecycline, meropenem, cefepime, or amikacin or β-lactams with aminoglycosides are being 

investigated.
12, 13

 Likewise, mixtures of antibiotics with nonantibiotics are beginning to be 

considered as a useful approach to extend therapy against MDR bacteria.
14

 

Although the use of drugs in tandem might allow a patient the convenience of fewer dose 

regimens with potent antimicrobial activity, several problems associated with polytherapy exist. 

Aside from higher costs and uncontrollable drug responses with narrow therapeutic windows, 

each aforementioned combination drug formulation is limited to the serendipitous chance that 

each drug will arrive and deactivate a bacterial cell at the same time without causing adverse or 

idiosyncratic reactions to the host. However, neither of these treatment options is considered to 

be dual-mode-of-action and has yet to address the potential to cause lipopolysacharride (LPS) 

endotoxin blood poisoning. Therefore, extending drug mixtures to multi-modal ionic pairs that 

allow potent antimicrobials to be used in formulation with controlled pharmacokinetic properties 

and nontoxicity may be a viable alternative to combating MDR bacterial infections.  

Recently, we reported the improved antibacterial activities of β-lactam based 

chlorhexidine GUMBOS on several isolates of E. coli O157:H7 with the intent to control and 
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prevent the transmission of disease resulting from EHEC contamination from cattle ruminants. 

Since the GUMBOS display unparalleled antibacterial synergism, nontoxicity, and tunable 

pharmacokinetic properties it is interesting to investigate these materials as applied to other 

systems treated with combination drug therapy. Herein, we use β-lactam based chlorhexidine 

GUMBOS as a modern approach to treat MDR infections caused by GNB and GPB in addition 

to preventing subsequent blood poisoning.  The major objectives of this study were to investigate 

the antibacterial activity of β-lactam-based chlorhexidine GUMBOS against drug-susceptible 

(DS) and MDR bacteria and to exploit chlorhexidine’s abilities to sequester LPS endotoxin in 

vitro as a novel modern reacted ionic drug therapeutic treatment option.  

5.2 Materials and Methods 

5.2.1 Antimicrobial Activity 

Table 5.1 lists the clinical isolates that were used in this study. The minimum inhibitory 

concentration (MIC) values of the starting materials and GUMBOS and the fractional inhibitory 

concentrations (FIC) of the stoichiometric mixture were determined in triplicate by broth dilution 

method in 96-well micro-titer plates.
15

 Test inoculums were adjusted using saline (0.85% NaCl) 

according to a 0.5 McFarland standard using colonies grown individually on tryptic soy agar 

plates.  Cation-adjusted Mueller-Hinton broth with 5% DMSO was used to serially dilute (1:1) 

antibacterial agents from 0.012 µM to 200 µM and to adjust bacteria inoculums to 10
5
 - 10

6
 

CFU/mL. Isolates were treated with GUMBOS, sodium antibiotic salt, chlorhexidine diacetate, 

or combinations of sodium antibiotic salt and chlorhexidine diacetate in a checkerboard dilution 

format. The MIC or FIC for each antimicrobial agent was recorded as the lowest concentration 

that did not show visual turbidity after 24 h incubation at 37°C. Antibacterial activity was 

statistically analyzed using SAS 9.2 2 (SAS Institute Inc., Cary, NC, USA), p<0.05. 
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Table 5.1.  Sources and characteristics of drug-susceptible and drug-resistant bacterial strains 

Strain Characteristic 

Escherichia coli  25922
+
 Clinical isolate, Quality control organism 

Escherichia coli O157:H7 43895
+
 EHEC, hamburger isolate (stx1+, stx2+) 

Salmonella typhi
++

 Fluoroquinolone resistant 

Acinetobacter baumanii 225T2
++

 Respiratory isolate, MDR* 

Acinetobacter baumanii 250
++

 Skin isolate, MDR 

Acinetobacter baumanii 252
++

 Catheter isolate, MDR 

Acinetobacter baumanii 254
++

 Wound drain isolate, MDR 

Enterbacter cloacae 210T2
++

 Pleural fluid isolate, MDR 

Enterbacter aerogenes 221T2
++

 Sputum, MDR 

Klebsiella pneumoniae 10031
+
 Quality control organism  

Klebsiella pneumoniae 50T2
++

 Urine isolate, MDR 

Klebsiella pneumoniae 86T2
++

 Pleural fluid isolate, MDR 

Pseudomonas aeruginosa 124T2
++

 Respiratory: Sputum isolate, β-lactam drug resistant 

Pseudomonas aeruginosa 27853
+
 Blood isolate, Quality control organism 

Pseudomonas aeruginosa PSA3
++

 Urine Isolate, β-lactam drug resistant 

Pseudomonas aeruginosa PSA4
++

 
Sputum isolate,  β-lactam, fluoroquinolone, carbapenem 

drug resistant 

Serratia marscescens
++

 Wound isolate, MDR 

Staphylococcus aureus 25923
+
 Clinical isolate 

Streptococcus mutans35668
+
 Quality control organism 

Streptococcus facaelis 19433
+
 Quality control organism 

Micrococcus luteus 4698
+
 Quality control organism 

Streptococcus facaelis 9790
+
 Quality control organism 

Bacillus cereus 1178
+
 Quality control organism 

Methicillin-resistant 

Staphylococcus aureus 449
++

 
Wound isolate, vancomycin susceptible 

Methicillin-resistant 

Staphylococcus aureus KHR1
++

 

Prosthetic joint infection isolate, vancomycin 

susceptible 

*MDR= β-lactam, floroquinolone, carbapenem, aminoglycoside-resistant 
+ 

Obtained from American Type Culture Collection, Manassas, VA 
++ 

Obtained from Jeffrey A. Hobden, Louisiana State University Health Science Center, LA
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5.2.2 Lipopolysaccharide (LPS) Sequestration 

Lipopolysaccharide (E. coli O111:B4) of the highest purity was obtained commercially from 

Sigma Aldrich (St. Louis, MO, USA). (LPS) sequestration was investigated by competitively 

displacing BODIPY-cadaverine (BC, Molecular Probes, Inc. Eugene, OR, USA) that is bound to 

LPS using increasing concentrations of the chlorhexidine containing salts. More specifically, the 

BC-LPS conjugate was prepared by mixing 1 µM BC solution (Tris-buffer, pH 7.4, 50 mM) with 5 

mg/L of LPS. Then, small aliquots of chlorhexidine diacetate or GUMBOS were titrated into 3 mL 

of BC-LPS solution contained into a quartz cuvette. Changes in fluorescence (λex = 580 nm, λem = 

620 nm) was monitored  with a 1 cm pathlength quartz cuvette (Starna Cells) using a Spex 

Fluorolog – 3 spectrofluorimeter Model FL3-22TAU3 ( Jobin Yvon, Edison, NJ, USA) at room-

temperature. The percent BC displacement upon increasing concentration of chlorhexidine salts was 

determined by comparing the fluorescence of LPS with and without BC, where BC solution without 

LPS is the 100% displaced control sample.   

5.3 Results and Discussion 

5.3.1  Representative Antibacterial activities of Chlorhexidine diacetate and β-lactam 

Antibiotics against S. aureus 29523 and K. pneumoniae 10031  

Table 5.2 shows the MIC results for the starting material against representative Gram-

positive and Gram-negative bacteria. Effective MIC values for chlorhexidine diacetate treatment on 

S. aureus 29523 and K. pneumoniae 10031 are 0.8 ± 0.6 µM and 15.6 ± 6.3 µM, respectively. The 

MIC values obtained for chlorhexidine diacetate match the values obtained in other studies 

conducted on the S. aureus 29523. However, a three-fold decrease in MIC values was observed 

when K. pneumoniae 10031 were treated with chlorhexidine diacetate.  Beta-lactam antibiotics 

showed variable antibacterial activity on both Gram-positive and Gram-negative strains 

investigated. Staphylococcus aureus 29523 were increasingly susceptible to antibiotics in this order: 

sodium ampicillin < disodium carbenicillin < sodium cephalothin = sodium oxacillin. However, 
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disodium carbenicillin and sodium cephalothin were equally efficient in preventing K. pneumoniae 

10031 growth. Lack of antimicrobial activity was seen for sodium oxacillin and sodium ampicillin.    

Table 5.2. Antibacterial activities (MIC, µM) of chlorhexidine diacetate, sodium ampicillin, 

disodium carbenicillin, sodium cephalothin, and sodium oxacillin against representative 

microorganisms S. aureus 29523 and K. pneumoniae 10031. 

 S. aureus 29523 K. pneumoniae 10031 

Chlorhexidine diacetate 0.8 ± 0.6 15.6 ± 6.3 

Sodium Ampicillin 25  >50 

Disodium Carbenicillin 12.5 ± 3.3 12.5 ± 1.5 

Sodium Cephalothin 1.6 ± 0.4 12.5 ± 5.8 

Sodium Oxacillin 1.6 ±  0.2 >50 

5.3.2 Comparative Antibacterial Activities of Chlorhexidine and β-lactam Antibiotics in 

Combination and as GUMBOS  

Using the checkerboard technique, the combined effects of chlorhexidine diacetate and 

various β-lactam antibiotics against representative organisms S. aureus and K. pneumoniae are 

presented in Figures 5.1 and 5.2. Staphylococcus aureus 29523 was variably susceptible to 

combinations of chlorhexidine diacetate and β-lactam antibiotics. Carbenicillin was the most 

synergetic antibiotic used with chlorhexidine diacetate to inhibit S. aureus 29523 growth.  The most 

synergetic FIC ratio observed against the Gram-positive isolate consisted of 0.39 µM chlorhexidine 

diacetate and 1.56 µM carbenicillin disodium. Similarly, 1.56 µM sodium cephalothin compliments 

0.20 µM chlorhexidine diacetate antibacterial activities against S. aureus 29523.  Fewer synergetic 

ratios between chlorhexidine diacetate and sodium ampicillin or sodium oxacillin were seen in S. 

aureus 29523 growth inhibition studies. Predominantly, FIC ratios consisting of chlorhexidine 

diacetate and either sodium ampicillin or sodium oxacillin reveal that 66% combinations tested 

were additive for both. 

  In the FIC studies against K. pneumoniae 10031, fewer synergetic combinations were 

observed.  Interaction indices ranked from 0.5 – 5 for each antiseptic and antibiotic combination 

tested. More specifically, interaction indices suggest that the presence of antibiotic greatly 

antagonizes the activity of chlorhexidine diacetate. However, K. pneumoniae 10031 was the most 
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susceptible to combinations of chlorhexidine diacetate and disodium carbenicillin. In this case, 6.25 

µM chlorhexidine diacetate and 12.5 µM disodium carbenicillin efficiently inhibited K. pneumoniae 

10031 growth. Lower concentrations of chlorhexidine diacetate and disodium carbenicillin 

drastically become antagonistic and susceptibility to K. pneumoniae 10031are substantially 

reduced. The remaining antibiotics, sodium ampicillin, sodium cephalothin, and sodium oxacillin, 

showed increasing antagonism with the latter being the worst in combination with chlorhexidine 

diacetate. Despite the increasing antagonism in concentrations less than 12.5 µM chlorhexidine 

diacetate and 12.5 µM sodium ampicillin or sodium cephalothin, additivity is maintained in 80% of 

the FIC values tested.  

5.3.3 Antibacterial Activities of β-lactam-based Chlorhexidine GUMBOS  

5.3.3.1 Drug Susceptible and Drug Resistant Gram-positive  

The antibacterial activities of β-lactam based chlorhexidine GUMBOS were investigated 

against 6 drug-susceptible GPB and two Methicillin-resistant S. aureus strains. Figure 5.3 shows 

the results obtained for this study. Overall, it required less than 1.5 µM of the antibacterial agents to 

inhibit the growth of both DS-GPB and MRSA. For each GPB, chlorhexidine diacetate performs 

equally or worse than the GUMBOS. The antibacterial activities for the GUMBOS increase 

proportionately with molecular weight. More specifically, one or more GUMBOS are better 

inhibitors of GPB bacteria than chlorhexidine diacetate in 88% of isolates tested. It required 0.8 µM 

± 0.6 µM chlorhexidine diacetate to inhibit both DS-GPB and MRSA. Chlorhexidine diacetate was 

least effective against MRSA 449. When evaluating the activity of chlorhexidine di-ampicillin, B. 

cereus 1178, S. mutans 35668, and S. facaelis 19433 were the most susceptible. Staphylococcus 

aureus 25923 was least susceptible to chlorhexidine di-ampicillin. Both MRSA strains required 0.7 

µM ± 0.1 µM chlorhexidine di-ampicillin for growth inhibition. The average MICs of GPB required 

by chlorhexidine carbenicillin and chlorhexidine di-cephalothin were determined to be 0.5 µM ± 

0.3µM. The most effective β-lactam chlorhexidine GUMBOS used to treat GPB was found to be 
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chlorhexidine di-oxacillin.  More specifically, the concentration required to inhibit GPB ranges 

from 0.1 to 0.8 µM, with the latter the concentration to inhibit S. facaelis 9790. Likewise, both 

MRSA strains required 0.1 µM for growth inhibition. In summary, antibacterial potency for the 

novel β-lactam based chlorhexidine GUMBOS increases in the following order: chlorhexidine 

diacetate < chlorhexidine di-ampicillin < chlorhexidine carbenicillin < chlorhexidine di-cephalothin 

< chlorhexidine di-oxacillin.   

5.3.3.2 β-lactam antibiotic Susceptible Gram-Negative Bacteria 

The antibacterial activities of β-lactam based chlorhexidine GUMBOS were investigated against 

antibiotic susceptible GNB. Figure 5.4 shows the results obtained for this study. Overall, less than 

0.3 µM of the antibacterial agents were required to inhibit the growth of DS-GNB. For each DS-

GNB, chlorhexidine diacetate was outperformed by the GUMBOS. Escherichia coli 25922 required 

0.25 µM ± 0.05 µM antibacterial agents to inhibit its growth. Therefore, E. coli 25922 is equally 

susceptible to all chlorhexidine salts tested in this study. However, preferential antibacterial 

activities toward Escherichia coli (EHEC) 43895 and ampicillin-resistant S. typhi were seen when 

comparing the GUMBOS efficacy to quality control strain E. coli 25922. Escherichia coli 43895 

required 0.11 µM ± 0.3 µM GUMBOS to inhibit its growth. This concentration is half the 

concentration of chlorhexidine diacetate necessary to equally inhibit the growth of E. coli 25922.  

Hence, either type of GUMBOS is sufficient to inhibit the growth of EHEC 43895. It was observed 

that S. typhi was the most susceptible to GUMBOS investigated in this study. Interestingly, 

antibacterial activity increases proportionately with increasing molecular weight. Chlorhexidine di-

ampicillin was least effective in inhibiting S .typhi growth. The efficacy of the GUMBOS against S. 

typhi increases in this order: chlorhexidine di-ampicillin < chlorhexidine carbenicillin < 

chlorhexidine di-cephalothin < chlorhexidine di-oxacillin. Although worse, the antibacterial activity 

of chlorhexidine di-ampicillin against S.typhi is not statistically different from chlorhexidine 

diacetate.  
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Figure 5.1.  Interaction indices determined by fractional ihibitory concentrations (µM) of chlorhexidine diacetate and A) sodium 

ampicillin, B) disodium carbenicillin, C) sodium cephalothin, or D) sodium oxacillin against S. aureus 25923. 

A) B)

D)C)
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Figure 5.2. Interaction indices determined by fractional ihibitory concentrations (µM) of chlorhexidine diacetate and A) sodium ampicillin, 

B) disodium carbenicillin, C) sodium cephalothin, or D) sodium oxacillin against K. pneumoniae 10031.  

A) B)

C)
D)
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Figure 5.3. Antibacterial activity of β-lactam-based chlorhexidine GUMBOS on drug-susceptible and drug-resistant Gram-positive 

bacteria. 
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Figure 5.4. Antibacterial activity of β-lactam-based Chlorhexidine GUMBOS on drug-susceptible and drug-resistant Gram-negative 

bacteria. 
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5.3.3.3 Multi-Drug Resistant Gram-Negative Bacteria 

The antibacterial drug susceptibility of 14 ampicillin-resistant GNB was assayed by the 5 

chlorhexidine salts. Twelve of the fourteen ampicillin-resistant GNB are considered MDR, in which 

6 major bacterial genera responsible for MDR infections are represented.  Overall, less than 35 µM 

antibacterial agents were required to inhibit MDR-GNB growth. Chlorhexidine susceptibility for 

the clinical isolates of A. baumanii ranked with chlorhexidine di-oxacillin = chlorhexidine 

carbenicillin > chlorhexidine di-cephalothin > chlorhexidine di-ampicillin > chlorhexidine 

diacetate. Similar to other classes of bacteria investigated, A. baumanii increases with increasing 

molecular weight. However, it appears that this organism might be more susceptible to the 

decreased ionic stoichiometry or the unique structural configuration of the chlorhexidine 

carbenicillin GUMBOS. Both Enterobacter species were equally susceptible to the chlorhexidine 

salts. The most effective growth inhibitor of both E. aerogenes 221T2 and E. cloacae 210T2 was 

found to be chlorhexidine di-oxacillin; whereas, the least effective agent was chlorhexidine di-

ampicillin.  It required 10 – 20 µM of β-lactam based chlorhexidine GUMBOS to inhibit K. 

pneumoniae isolates. Although K. pneumoniae 10031 is not a MDR-GNB, greater antimicrobial 

susceptibility was only observed to chlorhexidine carbenicillin, chlorhexidine di-cephalothin, and 

chlorhexidine di-oxacillin. Chlorhexidine diacetate was able to efficiently inhibit both ampicillin-

resistant and MDR-K. pneumoniae growth with approximately 5 µM.  Ampicillin-resistant P. 

aeruginosa 27853 was more susceptible to the hydrophobic chlorhexidine di-oxacillin and 

chlorhexidine di-cephalothin GUMBOS only requiring 3 µM for growth inhibition. Minimum 

inhibitory concentrations between 10 – 16 µM were effective against MDR-P. aeruginosa. 

Chlorhexidine carbenicillin was found to be least effective on MDR-P. aeruginosa. Overall, mean 

antibacterial activities were found to be 11.2 µM, 14.7 µM, 15.4 µM, 15.6 µM, and 11.1 µM for 

chlorhexidine diacetate, chlorhexidine di-ampicillin, chlorhexidine carbenicillin, chlorhexidine di-

cephalothin, and chlorhexidine di-oxacillin, respectively.  
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5.3.4 Interaction Indices  

Figure 5.5 shows all interaction indices acquired for β-lactam-based chlorhexidine 

GUMBOS. It is apparent that different extents of synergy are observed for the GUMBOS for 

MRSA, DS-GPB, DS-GNB, and MDR-GNB. Although FIC indices of the antibiotic and 

chlorhexidine mixtures show ranges of additivity for all combinations against S. aureus 25923 and 

K. pneumoniae 10031, synergy was observed in each case that the β-lactam-based chlorhexidine 

GUMBOS was used.  Interaction indices (I) was found to range between 0.3 and 1.5 for GUMBOS. 

More specifically, decreasing synergy was observed for all isolates in this order: chlorhexidine di-

cephalothin > chlorhexidine di-ampicillin = chlorhexidine carbenicillin > chlorhexidine di-oxacillin. 

Likewise, all GUMBOS were synergetic against GPB, E. coli 43890, and E. coli 25922.  Interaction 

indices obtained for S. typhi and K. pneumoniae 10031reveal the GUMBOS to be additive and that 

neither chlorhexidine nor antibiotic are more effective than the other in the form of GUMBOS. For 

all of the GUMBOS, synergy was solely found for 14% of the MDR-GNB isolates. When 

considering synergy by type of GUMBOS, the combination of chlorhexidine and oxacillin in the 

form of chlorhexidine di-oxacillin proved to be a successful combination for 57% of the MDR-

GNB isolates. In conclusion, GUMBOS were able to synergistically inhibit % of the bacteria tested 

in this study.  Thus, the use of β-lactam antibiotics reacted with chlorhexidine yield better 

synergetic salt pairs (i.e. β-lactam-based chlorhexidine GUMBOS) that show better interaction 

indices than the combination of precursor salts on the same microorganisms.  

5.3.5 Antibacterial activity in 10% Human Serum Albumin 

The antibacterial activity of β-lactam based chlorhexidine GUMBOS were also assayed in 

the presence of 10% Human Serum Albumin (HSA, Sigma Aldrich, St. Louis, MO, USA). It was 

found that the antibacterial activities worsened variably for each chlorhexidine salt. Table 5.3 

reveals the MIC values obtained for each GUMBOS in the presence of 10% HSA. Using EHEC 

43895 as a representative microbe, it was observed that nearly 50-fold more chlorhexidine diacetate 
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was needed to inhibit its growth. Likewise, the GUMBOS required 90 – 300 times more material to 

inhibit the growth of E. coli O157:H7 43895, which was extremely susceptible to the GUMBOS in 

the absence of HSA. This suggests that systemic administration of these GUMBOS may be 

problematic in that the agents might interact strongly with albumin proteins causing their 

antibacterial activity to be limited.  Future studies will be required to investigate the in vivo 

potential of these agents. 

Table 5.3. Antibacterial activities (MIC, µM) of chlorhexidine diacetate, chlorhexidine di-

ampicillin, chlorhexidine carbenicillin, chlorhexidine di- cephalothin, and chlorhexidine di-

oxacillin against representative microorganism E. coli O157:H7 43895 in the presence of 10% 

human serum albumin. 

 E. coli O157:H7 

43895 

Chlorhexidine diacetate 11.7 ± 5.5 

Chlorhexidine di-ampicillin 15.6 ± 4.3 

Chlorhexidine carbenicillin 23.4 ± 11 

Chlorhexidine di-cephalothin 31.3 ± 8.2 

Chlorhexidine di-oxacillin 11.7±  5.5 

 

5.3.6 Therapeutic Indices Chlorhexidine and Antibiotics in Combination and as GUMBOS 

The therapeutic index (TI) is widely used to calculate the flexible dosing concentrations 

between the effective antibacterial activities and lethal concentrations of antibacterial drugs.  

Therefore, larger therapeutic indices indicate greater flexibility in the strength of concentrations 

used to treat systemic infections. As mentioned before in Chapter 4, chlorhexidine diacetate is an 

effective antimicrobial with poor intestinal bioavailability and higher systemic cytotoxicity; hence 

its therapeutic index is lower. Changing the antibiotic component in the GUMBOS has greatly 

expanded the therapeutic index of chlorhexidine when considering the different mammalian cell 

lines (Figure 5.6).   
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Ranges for GUMBOS TI (i.e. 100<TI <300) obtained by MRSA and DS-GPB. More 

specifically, TI varied among GPB in the following order: chlorhexidine di-ampicillin > 

chlorhexidine di-oxacillin > chlorhexidine di-cephalothin > chlorhexidine carbenicillin > 

chlorhexidine diacetate for HeLa cells. The TI obtained for NIH/3T3 fibroblasts show indifference 

among chlorhexidine salts. Endothelial cells also have variable TI; in which, the greatest and least 

TI was found for chlorhexidine di-cephalothin and chlorhexidine carbenicillin, respectively. Drug 

susceptible GNB consistently have the largest therapeutic index (i.e. 300<TI <900) for HeLa, 

NIH/3T3 and EOMA cells. Of the three cellular lines, NIH/3T3 fibroblasts had the lowest 

therapeutic index which suggests a discrete margin of GUMBOS treatment concentrations would be 

available for wounds.  However, the narrowest TI (i.e. 2<TI<10) was approximated for MDR-GNB. 

Therapeutic ranges for treating MDR-GNB systemic infections were improved 10-fold for β-

lactam-based chlorhexidine GUMBOS compared to the 3-fold therapeutic index observed for 

chlorhexidine diacetate.  

5.3.7 Lipopolysaccharide (LPS) Sequestration 

 The dose-dependent displacement of BODIPY-cadaverine from LPS endotoxin shows that 

each β-lactam GUMBOS can sequester LPS with differing affinities. Figure 5.7 illustrates that 

equal LPS sequestration can be achieved by concentrations of chlorhexidine diacetate and 

chlorhexidine di-ampicillin below 30 µM. However, greater concentrations of chlorhexidine di-

ampicillin have 16% better sequestration from 30 to 62 µM. The ability to sequester LPS by the 

remaining GUMBOS occurs slowly until 13 µM is reached. In which concentrations above 13 µM 

significantly discriminates the LPS sequestering abilities of chlorhexidine di-cephalothin and 

chlorhexidine di-oxacillin. At the maximum concentration of GUMBOS, 78 and 97% LPS was able 

to be bound by chlorhexidine di-cephalothin and chlorhexidine di-oxacillin, respectively. However, 

chlorhexidine carbenicillin was the worst LPS sequestering agent used in this study. Chlorhexidine  
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Figure 5.5. Interaction indices on MDR- and MDS bacteria for chlorhexidine di-ampicillin, chlorhexidine carbenicillin, chlorhexidine di-

cephalothin, and chlorhexidine di-oxacillin. 
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Figure 5.6. Therapeutic Indices using mean inhibitory concentrations per bacteria drug susceptibilities for β-lactam-based chlorhexidine 

GUMBOS, where A = HeLa, B = NIH/3T3, and C = EOMA. 
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Figure 5.7. Determination of BODIPY-cadaverine (BC) displacement from LPS (left) and remaining LPS concentration (right) by 

chlorhexidine diacetate, chlorhexidine di-ampicillin, chlorhexidine di-cephalothin, chlorhexidine di-oxacillin, and chlorhexidine 

carbenicillin. BODIPY-cadaverine was mixed with LPS and various concentrations of GUMBOS added. Displacement of BODIPY-

cadaverine from LPS was calculated as [1-(F − F0)/(Fmax− F0) ]* 100%, where F0 is the fluorescence intensity at LPS saturation with 

BODIPY-cadaverine and Fmax is the fluorescence intensity without LPS. 
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carbenicillin was only able to sequester 44% LPS. Further processing of this data using a 

Scatchard interpretation reveals further details about the binding affinities between GUMBOS 

and LPS. We found that the GUMBOS have very strong binding affinities to LPS. More 

specifically, increasing binding affinities occur in the following order: chlorhexidine 

carbenicillin < chlorhexidine di-cephalothin < chlorhexidine di-ampicillin < chlorhexidine 

diacetate < chlorhexidine di-oxacillin.   

Although not yet understood, the different abilities for GUMBOS to sequester LPS are 

hypothesized to be driven by the GUMBOS hydrophobicity and unique structural configuration. 

Our data shows that LPS sequestration increases with increasing hydrophobicity, where 

chlorhexidine diacetate is the least and chlorhexidine di-oxacillin is the greatest, within the 

GUMBOS consisting of two antibiotics. Therefore, this physical property is believed to facilitate 

the GUMBOS adsorption into the hydrophobic alkyl appendages of the lipid A moiety of LPS. 

This agrees with the findings of David et al. who have, to date, investigated the interaction of 

several lipopolyamines with the lipid A moiety of LPS.
16-20

 Although chlorhexidine carbenicillin 

is more hydrophobic than chlorhexidine diacetate, we believe that hydrophobicity alone is not 

capable of successfully removing LPS in vitro. When comparing chlorhexidine carbenicillin and 

chlorhexidine diacetate, the increased hydrophobicity of the GUMBOS has led to better 

antibacterial activity. However, the difference in stoichiometry or structural configuration may 

also contribute to the variances in LPS sequestering ability. Therefore, the intermolecular forces 

that contain the LPS-binding GUMBOS are believed to promote a favorable conformation that 

facilitates direct binding to the phosphate sites on the lipid A moiety of LPS. Since each 

phosphate group is approximately 16 Å apart,
19

 it is believed that these GUMBOS have a 

structural conformation that that allows the dicationic biguanidinium residues on the 



192 
 

chlorhexidine backbone to bind favorably to the LPS phosphate groups. The one-to-one 

stoichiometry between chlorhexidine and carbenicillin is thought to create a structural 

conformation that is too acute to successfully bind to the phosphates. This electrostatically driven 

process is hypothesized to occur in spite of the antibiotics since there are several hydrogen 

bonding donor and acceptor groups between the two ions that are able to maintain the ionic pair 

without the use of their charges. Further studies are required to confirm the hypotheses premised 

on the unique LPS-GUMBOS interactions and their ability to sequester LPS endotoxin better 

than chlorhexidine diacetate alone. However, this study suggests that the efficiency of these 

compounds may be a result of the culmination of the ability to suppress cell activation in 

addition to the antibacterial activities.   

5.4 Michaelis-Menten Kinetics using CENTA as a Substrate against Type I Penicillinase 

5.4.1 CENTA and Chlorhexidine  

Kinetic studies demonstrate that each component of the GUMBOS structure impacts the 

activity of penicillinase on CENTA degradation. Active ampicillin moieties within the 

GUMBOS structure is believed to specifically promote binding of chlorhexidine di-ampicillin to 

penicillin binding proteins (e.g. transpeptidase) as well as identify the GUMBOS role in 

enzymatic degradation by Type 1 penicillinases to be understood.  If ionic dissociation of the 

GUMBOS occurs, than it is expected that the kinetics of CENTA with either mixture or 

GUMBOS would be similar. Table 5.4 summarizes the kinetic results obtained for sodium 

ampicillin, chlorhexidine diacetate, and chlorhexidine di-ampicillin in the presence of CENTA.  

Using CENTA in combination with chlorhexidine diacetate suggests how the 

stoichiometric mixture containing unreacted 1:2 chlorhexidine diacetate: sodium ampicillin (v/v 

%) is impacted by enzyme hydrolysis. More importantly, the addition of chlorhexidine diacetate  
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Table 5.4. Average kinetic parameters between Type 1 penicillinase and CENTA substrate in the presence of sodium ampicillin, 

chlorhexidine diacetate, and chlorhexidine di-ampicillin secondary substrates. The Michaelis-Menten constants were calculated using 

linear regions from the different rate saturation curves.  Apparent values are an average with standard deviations from all kinetic 

parameters acquired for each inhibitor concentration from four measurements. 

Substrate Km (µM) 
Km, app 

 (µM) 

Vmax 

(mM/min) 

Vmax app 

 (mM/min) 
Kcat Kcat/K m (10

8
)

 
Ki (µM) 

Chlorhexidine  

diacetate 
- 3.33 ± 0.76 - 0.38 ± 0.09 641 ± 158 2.09 ± 0.99 na 

Chlorhexidine  

di-ampicillin 
- 42.3 ± 19.1 - 2.65 ± 0.87 4993 ± 1478 1.07 ± 0.22 59.3 ± 38.8 

Sodium ampicillin - 25.1 ± 13.5 - 1.60 ± 0.93 2715 ±1571 1.26 ± 0.39 25.0 ± 15.5 

CENTA 28.3 ± 4.4 - 2.77 ± 0.36 - 4707 ± 261 1.66 ± 0.74 - 

 

na: Inhibitor dissociation constant for chlorhexidine diacetate could not be calculated
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to increasing concentrations of CENTA revealed an uncompetitive-like inhibitive effect on the 

substrate although resembling a rare inhibition type known as induced- substrate inhibition 

(Figure 5.8). Since chlorhexidine diacetate does not structurally resemble the inhibitor it will not 

interfere with the penicillinase active binding site.  

 

Figure 5.8. Saturation curve with 0.5 units Type 1 penicillinase showing the relationship 

between CENTA (substrate) concentration and its degradation rates in the presence of increasing 

concentrations of chlorhexidine diacetate at 37°C.  

In fact, it is electrostatically attracted to CENTA’s anionic carboxylate groups within the 

enzyme-substrate complex, since penicillinase degradation would not compromise the charge-

distribution of this molecule.
21, 22

 It was observed that even at low concentrations of 

chlorhexidine diacetate, the degradative rate of CENTA (vmaxapp = 0.38 µM) was decreased 

suggesting that the conversion of enzyme-inhibitor-substrate complex to product is reduced. 
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Increasing CENTA concentrations were not able to overcome this inhibitive effect, so it is 

concluded that the presence of CENTA is required to provide a site for chlorhexidine diacetate to 

interfere with binding. Since this data does not follow conventional Michaelis-Menten kinetics, 

the inhibitor dissociation constant (Ki) could not be calculated. In summary, the mixture of 

precursor ions may prevent the degradation of ampicillin if the chlorhexidine diacetate and 

sodium ampicillin arrive synchronously to the active site of penicillinase. However, the unlikely 

probability of this occurring may not allow chlorhexidine to work synergistically with ampicillin.  

5.4.2 CENTA and Chlorhexidine di-Ampicillin 

As for chlorhexidine di-ampicillin, CENTA hydrolysis deviated substantially from 

standard Michaelis-Menten kinetics, demonstrating induced-substrate inhibition at higher 

substrate concentrations (Figure 5.9). This irreversible process behaves similarly to the system 

consisting of the stoichiometric mixture. Since ampicillin is structurally similar to CENTA and is 

electrostatically bound to the chlorhexidine molecule, initial competitive inhibition is observed at 

low concentration of GUMBOS. In this case, the GUMBOS compete with CENTA to bind to the 

free enzyme at the active site. At insufficient inhibitive concentrations, increasing the amount of 

CENTA allows it to overcome inhibition since penicillinase is consumed in the enzyme-substrate 

complex. However, if the individual rate saturation plots are evaluated in the presence of 

increasing chlorhexidine di-ampicillin, it appears that an induced-substrate inhibitive effect 

occurs upon increasing concentrations of CENTA substrate. Increasing the CENTA 

concentration enables penicillinase to bind additional molecules at other inactive sites which, in 

this case, may cause the chlorhexidine di-ampicillin’s physical and chemical properties to inflict 

protein distortion disabling penicillinase hydrolytic activity.
23

 Subsequent binding of the second 

substrate, chlorhexidine di-ampicillin, seems not to be productive and therefore reduces the 
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catalytic activity at the first step. In addition, binding chlorhexidine di-ampicillin drastically 

decreases the nucleophilic activity of water causing the deacylation step (i.e. conversion from 

enzyme-substrate complex to product) to be inhibited. On average, adding the chlorhexidine di-

ampicillin molecules had no effect on the overall substrate recognition and penicillinase active 

processes, since it is clear that the inhibition of activity is largely, if not entirely, due to the 

formation of the enzyme - GUMBOS complex. Although more studies are ongoing to investigate 

the influence GUMBOS has on penicillinase activity, we believe that chlorhexidine di-ampicillin 

will retain the binding affinity of the ampicillin moiety to the serine active site in the penicillin 

binding protein, transpeptidase. Additionally, our preliminary results suggest chlorhexidine di-

ampicillin irreversibly binds to these proteins detrimentally impacting the sequence of events 

required to degrade the β-lactam drug.  

 

Figure 5.9. Saturation curves with 0.5 units Type 1 penicillinase showing the relationship 

between CENTA (substrate) concentration and its degradation rates in the presence of increasing 

concentrations of chlorhexidine di-ampicillin at 37°C.  
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Thus, chlorhexidine di-ampicillin shows potential to resist enzymatic hydrolysis by Type 

1 penicillinase containing microorganisms as well as remain effective against ampicillin resistant 

microorganisms. However innate resistance mechanisms to β-lactam drugs present in non-

penicillinase Gram-negative bacteria may require the antibacterial activity to rely solely on the 

chlorhexidine molecule.      

5.5  Conclusion 

A trend among GUMBOS and their antibacterial activities, increasing molecular weights, 

and relative hydrophobicities were found to gauge drug susceptibility. In general, GUMBOS 

antibacterial activity was selective for drug-susceptible GNB over GPB, with both having better 

drug susceptibilities than MDR-GNB. Overall, the growth inhibitive activity of antibiotic-based 

GUMBOS on MDR-GNB occurred in this order: S. marscescens < E. cloacae < E. aerognes < 

A. baumanii < K. pneumonia < P. aeruginosa, in which the least antibacterial activity was 

observed on S. marscescens. In summary, 0.5 ± 0.2 µM 0.2 ± 0.07 µM, 14 ± 6 µM is required to 

inhibit GPB, DS-GNB, and MDR-GNB, respectively.  Since the MIC of GUMBOS (14 ± 6 µM) 

is insignificantly different from the MIC of chlorhexidine diacetate (11± 8 µM), it is assumed 

that the choice of antibiotic has a negligible impact on these particular microorganisms. Thus, 

incorporating chlorhexidine and β-lactam antibiotics into salts appears to only alter the physical 

properties of chlorhexidine resulting in better bacterial susceptibility. However, the abundance of 

protein in vivo may limit the systemic use of the materials as anti-infective agents.  
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To date, the ability to sequester LPS endotoxin as observed using fluorescence spectroscopic 

studies reveals an added, yet unexpected benefit from the inclusion of the chlorhexidine 

molecule into the GUMBOS structure. This work shows that the GUMBOS are able to neutralize 

the immunostimulatory endotoxins of GNB that are released from bacteria once treated with 

different bactericides. As implied by Zorko et al. the incorporation of bisbiguanides in 

combination with antibiotics does not result in lower concentrations of antibiotics.
24

 In fact, 

additivity is observed between the two components. However, improved antibacterial activities 

of the GUMBOS and large therapeutic index suggest that they would be useful to treat topical 

infections that result from DR- bacteria. In this case, the role of the chlorhexidine molecule in the 

GUMBOS would be to neutralize the pro-inflammatory endotoxin constituents that are released 

upon subsequent cell death at the same time as killing the microbe. Therefore, the LPS study 

preliminarily shows that these GUMBOS are dual-mode-of-action compounds and that in 

addition to eradicating an infection, at least 20% LPS endotoxin can be sequestered using the 

lowest MDR-GNB inhibitory concentration of GUMBOS. Preliminary findings suggest that the 

presence of the β-lactam anion in the GUMBOS still enables penicillin binding protein 

recognition; however, an irreversible substrate-induced inhibitive activity was found on Type I 

penicillinase suggesting the β-lactam drugs within the GUMBOS have an ability resist enzymatic 

degradation.  These results show that the GUMBOS are able to retain antibacterial activity 

against drug-resistant bacteria that use penicillinase as its primary resistance mechanism. Future 

work would be required to investigate the roles GUMBOS have on other types of bacterial 

resistance mechanisms and its antibacterial activity. Ultimately, the broad spectrum anti-

inflammatory/ antibacterial activity observed by the β-lactam based chlorhexidine GUMBOS 

shows that the properties of both ions are conserved as an ion-pair and that tunable therapeutic 
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treatments against drug-susceptible and drug-resistant bacteria are available by implementing 

this modular, ionic approach.   
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CHAPTER 6 CONCLUSIONS AND FUTURE STUDIES 

6.1 Concluding Remarks 

Adequate antibiotic therapy and antiseptic use are the cornerstones of appropriately 

managing all infectious disease. However, infections resulting from pathogenic bacteria, with 

drug resistant bacteria of a higher concern, have become paradoxical due to the contraindications 

surrounding the use of antibiotic therapy. Primarily, the fear of liberating endotoxins and the 

emergence of multi-drug resistant organisms have limited clinicians to the number of effective 

anti-infective agents available for treatment. Therefore, the synthesis and characterization of 

novel antibiotic- and antiseptic- hybrid salts derived from API-ILs and GUMBOS as discussed in 

this dissertation have shown to offer multiple advantages that allow for some antibiotics to be 

reconsidered for infection treatment. 

In Chapter 3, the development of ampicillin-based ILs using various antiseptic surfactants 

as cations, have revealed a reduction in the antibiotic content required to inhibit the growth of 

Gram-positive and Gram-negative bacteria. Although yielding additive interaction indices, their 

efficacies against E. coli O157:H7, K. pneumoniae, S. aureus, and E. faecium revealed that 

ampicillin-based ILs have outperformed the antibacterial activities of both quaternary 

ammonium halide and sodium ampicillin.  

In Chapter 4, the synergy found among four antibiotics and chlorhexidine combinations in 

the form of GUMBOS have shown to possibly expand the armamentarium available for 

combination antibiotic therapy. Larger therapeutic indices, improved bioavailability, and 

enhanced pharmacokinetic properties of these materials exploit the plausibility for these 

GUMBOS to be considered as modern forms of combinatorial drugs. Likewise, the reduction in 
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chlorhexidine toxicity observed in this study was also discussed. Potential for these novel 

nontoxic anti-infective agents lies in their abilities to remove pathogenic E. coli O157:H7 from 

the terminal recta of ruminants with unparalleled antibacterial activity and damage to the 

bacterium. Thus, mechanism studies exposed the potentiated membrane active properties of 

chlorhexidine upon the addition of β-lactam antibiotics as counter-ions.  

In Chapter 5, the application of antibiotic-based chlorhexidine GUMBOS was discussed 

for the prevention, control, and treatment of drug-resistant bacterial infections. Preliminary 

results show that these hybrid salts more effectively killed both drug-susceptible and drug-

resistant bacteria as compared to the mixture of precursor salts. Exploring the ability to remove 

lipopolysaccharide components in vitro using GUMBOS, revealed tunable endotoxin 

sequestration with potential to reduce the onset of endotoxemia, bacteremia, and sepsis. 

Penicillinase kinetics investigations revealed unusual GUMBOS-enzyme binding between 

chlorhexidine di-ampicillin and penicillinase suggesting the potential to use chlorhexidine as an 

inhibitor of β-lactam drug degradation when administered as a GUMBOS form. Developing 

multi-modal therapeutic GUMBOS by means of anti-infective agents derived from hybridizing 

antibiotics with antiseptics, as shown in this dissertation, show the ability potential to positively 

reduce the emergence of multi-drug resistant infections and subsequent endotoxin septicemia. 

6.2 Future Studies 

Until now, various approaches have been used to treat pathogenic infections and prevent 

transmission of disease such as, but not limited to, antibiotic development, vaccine 

administration, antiseptic use, and combined antibiotics. However, the emergence and re-

emergence of resistant infectious disease implicates the paramount importance to continue the 

pursuit of anti-infective agents. As such, the use of multi-functional anti-infective agents derived 
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from GUMBOS offer ways to modernize the therapeutic approaches required to detect, identify, 

and treat resistant infections. Incorporating other technologies into antimicrobial GUMBOS can 

potentially serve as localized markers of disease and as vesicles for antimicrobial drug-delivery.  

The need to rapidly treat surface- and deep-wounds often caused by, but not limited to, 

methicillin-resistant Staphylococcus aureus or Acinetobacter baumanii makes these types of 

multimodal GUMBOS developed in this research desirable. As such the development of 

nanoparticles derived from GUMBOS, or nanoGUMBOS, may provide a more bioavailable, 

nontoxic, and potent approach to treat disease systemically as compared to the bulk parent 

material.  Exploiting the properties often associated with the high surface area of nanoparticles 

may find conceivable use in anti-infective therapy. For example, anti-infective nanoGUMBOS 

can provide concentrated, localized therapy in a more bioavailable form.  

To remedy the contraindications associated with endotoxemia induced by antibiotic 

therapy, further studies investigating the anti-inflammatory properties of β-lactam based 

chlorhexidine GUMBOS via endotoxin sequestration in vitro have arisen.  Endotoxemia, or the 

presence of lipopolysacharride (LPS) endotoxins circulating in the blood, often occurs post-

antibiotic treatment and is therefore, contraindicated for Gram-negative bacterial infections. The 

presence of endotoxin in the blood can induce a systemic inflammatory cascade of responses 

leading to severe morbidity or even mortality. This problem necessitates advancements in 

prevention or treatment for systemic inflammatory response to endotoxin that is separate from 

targeting individual cellular mediators. Therefore, nontoxic systemic endotoxin sequestrants 

derived from anti-infective GUMBOS would be suitable for this effort. In this way, bacteria 

vitality can be inhibited and bacteria toxic wastes can be removed in vivo.  Moreover, LPS 

consists of different glycoforms that vary in activity. Thus, the affinities of GUMBOS to each 
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endotoxin glycoform may predicate their potential to be used as inhibitors of antibiotic-induced 

inflammation specific to a particular form of endotoxin.   

The development of multimodal gel-based GUMBOS is also plausible from this research 

using the modular concept. More specifically, GUMBOS can be synthesized to be species 

selective sensing agents that offer rapid and sensitive detection and antimicrobial therapy in 

tandem.  In this effort, the tunable properties of GUMBOS can be exploited by using antiseptic 

and antibiotic GUMBOS reacted with a species-selective chromogen that can allow for the 

simultaneous treatment and detection of multi-drug resistant bacteria, topically.  

This research also provides the groundwork to apply this technology to other vectors of 

infectious disease. In addition to targeting drug-resistant or pathogenic bacteria, the 

consideration of GUMBOS as anti-parasitic and antiviral agents can be segmented from this 

research. Incorporating functional groups onto charged drug scaffolds that are sensitive and 

active to a particular vector of disease is an ideal extension of this work. Likewise, this may 

serve useful in designing potent agents effective against some sporulating bacteria. The facile 

and rapid synthesis of GUMBOS from active pharmaceuticals approved by the U.S. Food and 

Drug Administration allow this modular, pragmatic approach to lead to the next generation of 

combination drug therapy equipped for disease control, detection, prevention, and eradication.   
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