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ABSTRACT 

Electrochemical deposition is utilized in various electronic and photovoltaic 

applications and in the protective coating industries.  This dissertation primarily 

addresses the environmental aspects of electrochemical deposition.  In the first part of 

this study, Pb dissolution in drinking water was investigated in the presence of two 

disinfectants: free chlorine (in the form of HOCl/OCl-) and monochloramine (NH2Cl).  In 

the second part of this study, epitaxial SnS nanodisks were electrodeposited onto a 

Au(100) substrate. 

 Water utility systems use either free chlorine or monochloramine in their 

disinfection program.  Whereas free chlorine reacts with natural organic matter in the 

water to produce halogenated organic byproducts that are suspected to be carcinogens, 

NH2Cl, a weaker oxidant, may lead to elevated Pb levels in drinking water.  

Thermodynamically, NH2Cl is capable of oxidizing Pb and Pb2+ species to PbO2, which 

is a stable and insoluble oxide of Pb and should minimize the Pb dissolution.  However, 

experimental results utilizing EQCM, XRD, and SEM show that NH2Cl elevated Pb 

levels in water by oxidizing Pb or reducing PbO2 films to soluble Pb2+ species.  The 

solubility of PbO2 in NH2Cl increases if the concentration of NH2Cl increases or the pH 

of the water decreases from pH 10 to pH 7.   

 Epitaxial films of δ-SnS were deposited electrochemically on single-crystal 

Au(100) surfaces from an acidic solution at 70 ºC.  The films grew with [100] and [301] 

out-of-plane orientations and four equivalent in-plane orientations.  For the SnS(100) 

orientation, the in-plane mismatch was 2.4% in the [010] direction and 6.1% in the [001] 

direction.  For the (301) orientation, the in-plane mismatch was 2.4% in the [010] 

direction and 3.4% in the ]310[  direction.  SEM images of the deposit show a disk-like 

morphology with a diameter of 300 nm and a thickness of 50 nm. 
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1. INTRODUCTION 

This dissertation presents an investigation of the electrodeposition of 

polycrystalline and epitaxial films on conducting substrates such as polycrystalline and 

single crystal gold.  This low cost room temperature deposition technique is 

advantageous for the synthesis of metal oxide and metal chalcogenide films.  In the first 

part of the study, lead (Pb) and lead oxide (PbO2) films were investigated in the presence 

of free chlorine (HOCl/OCl-) and monochloramine (NH2Cl) disinfectants.  A weaker 

oxidant, NH2Cl, increases Pb levels in drinking water by either oxidizing Pb or reducing 

PbO2 to soluble Pb2+ species.  A stronger oxidant, HOCl/OCl-, prevents Pb dissolution by 

oxidizing Pb and Pb2+ to PbO2 insoluble layers.  In the second part of the study, 

electrochemical deposition was utilized to grow tin sulfide (SnS) films a on Au(100) 

substrate.  The films grew epitaxially with preferred [100] and [301] out-of-plane 

orientations.  In this introduction, background information on the studies described in 

these papers will be provided. 

1.1 BACKGROUND 

Electrodeposition offers several advantages as a means of materials synthesis.  

The technique is fast, inexpensive, and can be used to deposit films onto conducting 

substrates with different shapes and sizes.  Electrodeposition can also be performed at 

room temperature, which helps minimize solid state diffusion in the film and substrate.  

As a result, the applications of the electrodeposition technique include semiconductors, 

protective coatings, metal plating, and energy storage materials.  The driving force and 

deposition rate can be accurately controlled by varying the electrode potential or current 
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density.  The amount of material deposited on the electrode can be determined from the 

accumulated charge passed during deposition, as stated by Faraday’s Law in equation 1. 

                                                              
nF
Q  N =                                                                 (1) 

where N is the number of moles of the material produced at the electrode (mol), Q is the 

total charge (coulombs), n is the number of electrons, and F is the Faraday constant 

(96485 C mol-1).  If the film is dense, the film thickness (cm) can be estimated using 

Faraday’s Law according to eq 2. 

                                                 
ρnFA

QM  thickness =                                                             (2) 

where M is the molecular weight of the deposit, A is the area of the electrode (cm2), and 

ρ  is the density of the material (g/cm3).  This technique has been used to deposit a wide 

variety of materials, including metals,1,2 ceramics,3-5 alloys,6 semiconductors,7,8 

superlattices,9-12 and superconductors.13  The focus of the Switzer group at the Missouri 

University of Science and Technology is electrodepositing nanostructured metal oxide 

semiconductors, magnetic materials, and catalysts.  By varying deposition parameters 

such as applied current density, potential, pH, solution temperature, and organic 

additives, the crystallographic orientation of the electrochemically deposited films on 

polycrystalline and single crystal substrates can be modified.  Recently, the group has 

also published some work on environmental science and biomineralization.14-16 

 Of specific interest in this dissertation is the effect of HOCl/OCl- and NH2Cl on 

Pb and PbO2 dissolution in drinking water. Films of Pb and PbO2 were electrodeposited 

on gold quartz crystals using the redox change method, in which a metal of a low 

oxidation state that is stable in the deposition solution is reduced or oxidized at the 
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electrode surface.  In this case, Pb2+ ions in the deposition bath were reduced to form Pb 

metal or were oxidized to form PbO2 films. 

Reduction:                    Pb2+ + 2e-    Pb                                                             (3) 

Oxidation:                    PbO + 2OH-   PbO2 + H2O + 2e-                                  (4) 

It should be noted that PbO is amphoteric and dissolves as biplumbite ions (HPbO2
-) in 

very strong alkaline solutions.17  The deposited Pb or PbO2 films were immersed in 

disinfectant solutions for mass change monitoring via quartz crystal microbalance 

(QCM). 

 The QCM is a versatile gravimetric device with detection limits in the nanogram 

range.18  It consists of a thin quartz crystal sandwiched between two metal electrodes that 

establishes an alternating electric field across the crystal, causing vibrational motion of 

the crystal at its resonant frequency.  The vibrational motion of the quartz crystal 

establishes a transverse acoustic wave that propagates across the thickness of the crystal, 

reflecting back into the crystal at the surfaces.  When a uniform layer of a foreign 

material is added to the surface of the quartz crystal, the acoustic wave will travel across 

the interface between the quartz and the layer and will propagate through the foreign 

layer.18  Assuming that the foreign material and the quartz exhibit the acoustic properties, 

a fractional change in film thickness then results in a fractional change in frequency.  

This relationship between the change in mass and frequency is known as Sauerbrey 

equation: 

                                                          
A
mf

f 1/2

2
0

)(
2-

  
ρµ

∆
=∆                                                          (5) 
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where is the measured frequency shift,  is the resonant frequency of the quartz 

crystal (5 MHz), ∆  is the mass change, 

f∆ 0f

m ρ  is the density of quartz (2.648 g/cm3), µ  is 

the shear modulus of quartz (2.947x1011 dyn/cm2), and A is the piezoelectrically active 

area. 

The ability to expose one side of the QCM as a working electrode in an 

electrochemical solution while simultaneously measuring mass changes has provided a 

powerful approach to examining electrochemical processes involving thin films, 

including monolayer and submonolayer films.18  Electrochemical quartz crystal 

microbalances (the abbreviations EQCM and QCM are used to distinguish between 

electrochemical and nonelectrochemical applications of QCM technology) have been 

used in wide variety of studies such as underpotential deposition of metals,19 sensors for 

heavy metal ions,20 protein-DNA interaction,21 and oscillation of Cu/Cu2O layered 

nanostructures.22,23  In this dissertation, the QCM is used to study the dissolution of Pb 

(Paper I) and PbO2 (Paper III) films in disinfectant solutions. 

1.2 CHEMICAL THERMODYNAMICS VERSUS KINETICS 

For any given chemical reaction, two concepts influence the product distribution: 

thermodynamics and kinetics.  Chemical thermodynamics is concerned with macroscopic 

properties that can be measured.  It is used to predict what types of chemical and physical 

processes are possible (and under what conditions) and to calculate the final quantity of 

the products in the state of equilibrium after a process has been carried out.  Chemical 

kinetics, the study of the rates and mechanisms of chemical reactions, gives information 

about how rapidly a reaction is achieved.  For example, perchlorate (ClO4
-) is a very 

strong oxidizing agent, yet it is being used as an electrolyte in many electrochemical 
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studies because the rate at which perchlorate reacts with other redox species in a solution 

is slow.  Therefore, the two concepts are taught separately in most physical chemistry 

textbooks.  In the second paper of this dissertation, electrochemical measurements are 

used to compare the kinetics and thermodynamics of the electron-transfer reactions of 

free chlorine and NH2Cl.  The thermodynamics of the two disinfectant reductions are 

compared by calculating the standard reduction potentials from thermodynamic cycles 

and by performing equilibrium (open-circuit) potential measurements.  The reduction 

kinetics of the two disinfectants was studied using a Au rotating disk electrode (RDE).  

The RDE was used to minimize mass transport to the electrode, so that the kinetics can 

be examined separately from mass transport. 

1.2.1 Chemical Thermodynamics.  When a chemical reaction has reached 

equilibrium, the equilibrium constant, K, is related to the free energy (∆Gº) by the 

equation 

                                  KRTG ln    −=°∆                                                                  (6) 

where R is the molar gas constant (8.314 mol-1K-1) and T is the absolute temperature 

(Kelvin).  In an electrochemical cell, ∆Gº is related to a standard electrode potential (Eº) 

by 

                                  °−=°∆ nFEG                                                                         (7) 

where n is the number of moles of electrons and F is the Faraday’s constant (96485 C 

mol-1).  As a result, the standard electrode potential of any redox couple in both acidic 

and alkaline solutions can be calculated using eq 6 and 7 assuming that the equilibrium 

constant is known.  The standard electrode potential is defined when an electrochemical 

reaction has reached its equilibrium and both the oxidized and reduced species are in unit 
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activity.  When the standard state has been deviated, the formal potential for the reaction 

can be calculate using the Nernst equation: 

                                                  Q
nF
RTEE ln−°=                                                             (8) 

where E is the formal potential (V) and Q is the reaction quotient (dimensionless). 

 An equilibrium potential or open-circuit potential is the electrical potential of an 

electrode, which is measured against the reference electrode when no current is passing 

through the electrode.  Equilibrium potentials are sometimes referred to in the literature 

as oxidation-reduction potentials (ORPs).24  The equilibrium potential of a redox couples 

can be measured using an inert electrode such as Au or Pt in a solution containing 

equimolar of the redox species. 

In electrochemistry, the current (or electrode reaction rate) is carried by ions in a 

solution.  These groups of ions move in certain directions from the bulk solution to the 

electrode surface and, thus, produce a drift or flux of ions.  A flux of ions fuels the 

charge-transfer reactions which occur near the electrode surface25.  This movement of 

material from one place to another in solution is called mass transfer.  If the movement is 

caused by the concentration gradient, it is called diffusion.  If differences in electrostatic 

potential cause an electric field to be produced in the solution, which in turn results in the 

movement of ions, it is called migration.  Finally, if a difference of pressure or density or 

temperature causes the liquid to move, this mass transfer mode is called convection.   

1.2.2 Kinetics.  In an electrochemical cell, the reaction rate is generally governed 

by mass transfer of species or by the kinetics of the electrode reaction itself.  When 

studying the kinetics of the reaction, care must be taken to exclude mass transfer from 

kinetic control.  Mass transfer effects can be minimized by forced convection of the 

 



 7

solution using a rotating disk electrode (RDE).  The standard heterogeneous rate constant 

(kº) and the exchange current density (j0) can be determined using the RDE by both 

Koutecky-Levich analysis and by a linear approximation to the Butler-Volmer equation 

used at very low overpotential26.  Both methods assume that the open circuit potential is 

known.  The Koutecky-Levich equation is given in eq 9. 

                        
CnFADiiii klk

6/12/13/262.0
11111

−+=+=
νω

                                     (9) 

where  

i is the measured current (A),  

ik is the current in the absence of mass –transport effects (A),  

il is the limiting current at high overpotential (A),  

n is the number of electrons transferred,  

F is Faraday’s constant (96485 Cmol-1),  

A is the electrode area (cm2),  

D is the diffusion coefficient (cm2s-1),  

ω is the angular frequency of rotation (s-1),  

ν is the kinematic viscosity (cm2s-1), and  

C is the concentration (molcm-3) 

A plot of 1/i vs. 1/ω1/2 (also called the Koutecky-Levich plot) should be linear with the 

intercept equal to 1/ik.  Determination of ik at different values of overpotentials then 

allows determination of the forward rate constant (kf), the standard heterogeneous rate 

constant (kº), and the transfer coefficient (α). 
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The standard heterogeneous rate constant (kº) can also be estimated from the 

Butler-Volmer equation 

                                         [ ]RTFRTF eei /)1(/
0

ηαηα −− −=i                                     (10) 

where i is the measured current (A), i0 is the exchange current (A), α is the transfer 

coefficient (dimensionless), and η is the applied overpotential.  At low overpotential 

(where mass-transport effects are minimal) and for small values of η, the Butler-Volmer 

equation given in eq 10 becomes eq 1126. 

                                          
RT

Fjj η0−
=                                                                (11) 

where j is the measured current density (Acm-2), and j0 is the exchange current density 

(Acm-2).  From eq. 11, j0 can be calculated from the slope of j versus η graph.  The 

standard heterogeneous rate constant (kº) is related to j0 by the equation 

                                                     CnFkj °=0                                                                 (12) 

1.3 EPITAXIAL ELECTRODEPOSITION 

Epitaxial films are useful in devices such as solar cells or semiconductors because 

the intrinsic properties of the material, rather than its grain boundaries, can be exploited.  

Epitaxy can be defined as the “the growth of crystals on a crystalline substrate that 

determines their orientation.”27  Given this definition, the film’s crystallographic 

orientation for a desired property can be selected by carefully choosing the substrate.  

Epitaxial films are typically deposited onto single crystal substrates through vapor 

deposition, for example, molecular beam epitaxy (MBE).28,29  In MBE, thin films are 

crystallized via reactions between thermally energetic atomic or molecular beams of the 
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desired elements on a crystalline substrate that is maintained at an elevated temperature.  

The entire process takes place in an ultrahigh vacuum.  MBE is the first technique to 

demonstrate monolayer-scale heterostructures.  Although widely used, the technique is 

quite expensive.  The growth of epitaxial films by electrodeposition is a low-cost 

alternative to this process. 

 Extensive work has been done on epitaxial growth using electrodeposition.30-34  

Single-crystal Cu-Ni strained layer superlattices on Cu(100) have been prepared 

electrochemically.12  Lincot has electrodeposited epitaxial CdTe films onto InP(111)35 

and ZnO onto GaN(0002)36 single crystals.  Epitaxial quantum dots of CdSe have been 

electrochemically prepared on Au(100) substrate.37  A hybrid electrochemical/chemical 

method (EC) of semiconductor nanocrystals has been prepared on graphite.38  The 

Switzer group has demonstrated that it is possible to form epitaxial films of δ-Bi2O3
39, 

Cu2O40,41, CuO42, ZnO43,44, Fe3O4
45, and α-PbO2

46 on single-crystal Au.  Epitaxial Cu2O 

films with tunable morphologies have been deposited on Si and InP single-crystals by the 

same group.47-49  This dissertation extends the epitaxial electrodeposition technique of δ-

SnS on a Au(100) substrate in Paper IV. 

 In a highly oriented epitaxial film, only reflections from a single set of planes are 

observed in the standard 2θ x-ray pattern [e.g., (100), (200), (300), etc.].  In order to 

determine whether the film has an in-plane orientation, it is necessary to examine other 

reflections that are oriented in-plane with respect to the sample normal.  X-ray diffraction 

pole figures are used to examine the in-plane orientation of the electrodeposited films.  

To bring other allowed reflections into the Bragg condition, the sample must be tilted 

using a goniometer.  Once the sample is tilted to the appropriate angle (χ) plane, it is then 
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rotated about the sample normal through the azimuthal angle (φ).  If the sample has an in-

plane orientation, the azimuthal scan will show separated peaks.  If the sample has a fiber 

texture, the azimuthal scan will consist of no distinct peaks and equal intensity will be 

observed at all azimuthal angles.  The same analysis can be performed on the substrate to 

determine whether there is a rotation of the film with respect to the substrate.  An 

azimuthal scan is obtained when the measurement is carried out for only one tilt angle, χ.  

A pole figure is obtained when the measurement is carried out by varying χ from 0-90º.  

X-ray rocking curves are another analysis that can be used to measure the 

crystallographic quality (i.e., mosaicity) of the films relative to the substrate.  

1.4 EFFECTS OF FREE CHLORINE AND MONOCHLORAMINE ON LEAD IN 

DRINKING WATER 

Controlling lead dissolution from lead service lines, brass fixtures, and solders is a 

goal for all water utilities systems.  According to the U.S. Environmental Protection 

Agency’s Lead and Copper Rule, the action limit for Pb in drinking water is 15 ppb.50-52  

In 2003, elevated Pb levels of up to 48,000 ppb were observed in many water districts, 

including Washington, D.C. and Greenville, North Carolina.53-55  One hypothesis about 

elevated Pb levels is that changing the disinfection program from free chlorine to NH2Cl 

could have caused lead leaching.14,15,55  Free chlorine has traditionally been used as a 

disinfectant in drinking water because of its ability to inactivate most pathogenic 

microorganisms.56  The side effect of using such a strong oxidant is that free chlorine also 

reacts with organic compounds present in water to produce chlorinated hydrocarbons 

such as trihalomethanes, which are suspected carcinogens.57  Switching to a less powerful 

oxidant, NH2Cl, seems to lower the water’s oxidation reduction potentials(ORPs) which 
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also cause the PbO2 protective layers in the Pb service lines to dissolve and the Pb levels 

to increase.15,24,58 

Although previous theoretical studies14,59-62 based on standard reduction potentials 

suggest that both free chlorine and NH2Cl are strong enough to oxidize Pb to PbO2, 

experimental results and reports in real systems show that only free chlorine forms PbO2, 

while NH2Cl forms Pb(II) species.14,54,63,64  The quartz crystal microbalance (QCM) is 

used to compare the effects of free chlorine and NH2Cl on the dissolution of Pb (Paper I) 

and PbO2 (Paper II) films.  The rotating disk electrode is used to estimate the 

heterogeneous rate constants (Paper II).  The equilibrium constants are determined using 

the polycrystalline Au electrode.  The Pb and PbO2 films are examined by scanning 

electron microscopy (SEM) and glancing-angle X-ray diffraction.   

1.4.1 Experimental.  All experiments were conducted using HPLC-grade water.  

Free chlorine solutions were made from a concentrated sodium hypochlorite solution 

with 10-13 vol % available chlorine.  NH2Cl solutions were prepared by mixing free 

chlorine with a 5-fold molar excess of aqueous NH3 to minimize dichloramine (NHCl2) 

formation.65,66  The concentration of free chlorine and NH2Cl were determined 

spectrophotometrically using a CARY 5 UV-Vis-NIR spectrophotometer. 

 Films of Pb or PbO2 were deposited electrochemically onto Au-coated, 

commercially available 9 MHz QCM crystals from the solution precursor of Pb2+ using a 

constant current.  A quartz crystal analyzer was used to monitor the mass change as a 

function of time while the film was immersed in a disinfectant solution.  The solutions for 

kinetic studies were maintained at pH 9 using NaHCO3 as a buffer and Na2SO4 as an 

electrolyte.  For the equilibrium potential measurements, the potentials were collected 
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from pH 7 to pH 12 using a polycrystalline Au or Pt as an electrode.  NaH2PO4, NaHCO3, 

and H3BO3 buffers were used.  Grazing incidence X-ray diffraction patterns were 

obtained using a Philips X’Pert diffractometer with Cu Kα source radiation.  SEM 

micrographs were obtained using a Hitachi model S4700 cold field-emission scanning 

electron microscope. 

1.4.2 Results and Discussion.  A total of 112 µg of Pb film is deposited on QCM 

electrode and then immersed in 1 mM free chlorine or NH2Cl solution at pH 8.  After 22 

hrs, the decrease in mass of the Pb film in free chlorine is approximately 5 µg, while the 

decrease in mass in the NH2Cl solution is 107 µg (Figure 1).  The Pb film turned red after 

treatment with free chlorine, but white after treatment with NH2Cl.  The glancing-angle 

XRD patterns reveal that the Pb film is oxidized to α-PbO2 after treatment with free 

chlorine, which is consistent with the red color of the film.  A weaker oxidant, NH2Cl, 

only oxidizes the Pb film to divalent Pb in the form of Pb3(CO3)2(OH)2 or hydrocerrusite, 

as is confirmed by the XRD.  The SEM images show that after treatment in free chlorine 

the Pb film is covered with nanoscale PbO2 with a particle size of 11 nm.  The Scherrer 

equation is used to determine the particle size from the broadening of the (111) reflection 

in the PbO2’s XRD pattern.67  The unreacted Pb film underneath is also visible in both the 

XRD scans and SEM images.  The surface of the Pb film after NH2Cl treatment contains 

only platelets with no unreacted Pb.  The results from QCM, SEM, and XRD experiments 

clearly show that exposing the Pb to NH2Cl causes the Pb to dissolve and form 

Pb3(CO3)2(OH)2.  Hydrocerrusite is commonly found as a coating on the inside of Pb 

service lines.15,68 
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 To validate the hypothesis that the increase in Pb levels in Washington, DC, is 

caused by the switch from free chlorine to NH2Cl, films of α-PbO2 are electrodeposited 

on a QCM electrode and treated in NH2Cl solution to monitor the mass change.  Schock 

et al. have suggested that PbO2 deposits are formed in chlorinated water if the oxidation-

reduction potential (ORP) is maintained at high enough levels.69,70  These PbO2 layers are 

insoluble and stable, which may cause them to serve as passivation layers for Pb-bearing 

materials.  If a weaker oxidant such as NH2Cl is used, PbO2 can be reduced to soluble 

Pb(II) species that can cause the Pb levels to increase. 

 The QCM results for the 55 µg PbO2 film immersed in 1 mM free chlorine, 1 mM 

NH2Cl, and 1 mM NH2Cl+0.05 mM phosphate at pH 7 are shown in Figure 2.  The mass 

versus time plots show that the PbO2 film treated in just NH2Cl solution has a mass loss 

of 17 µg, as compared to the film treated in free chlorine solution, which has a mass 

increase of 0.5 µg.  However, when phosphate is added to the NH2Cl solution, the film is 

passivated and a mass of 3.5 µg is gained.  The SEM image in Figure 3b also shows that 

the PbO2 particles dissolved after being treated in NH2Cl.  When phosphate is added to 

NH2Cl, the PbO2 film morphology does not change, as shown in Figure 3d.  Instead, 

fiber-like particles are formed over the PbO2 deposit.  The spot-mode EDS reveals that 

these fibers contain phosphorous.  The glancing-angle XRD patterns in Figure 4 confirm 

a mixture of crystalline PbO2 and lead phosphate hydroxide (Pb5(PO4)3(OH).  The X-ray 

pattern of the film after treatment in only NH2Cl does not contain hydrocerrusite, just 

crystalline PbO2 remainder, as shown in Figure 4b.  The dissolution of PbO2 depends on 

the concentration of NH2Cl and the solution pH.  The rate of dissolution increases at 

higher NH2Cl concentrations and at lower pHs. 
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The kinetics of the reduction of free chlorine and NH2Cl is carried out using a 

rotating disk electrode (RDE).  The standard heterogeneous rate constant (k0) and the 

exchange current density (j0) can be determined by using both Koutecky-Levich analysis 

(eq 9) and a linear approximation to the Butler-Volmer equation at low overpotential (eq 

10).  The methods give similar results for k0 and j0.  The rate constant and the exchange 

current density for the reduction of free chlorine (predominantly OCl- at pH 9) at 

equilibrium is about twice as large as those for the reduction of NH2Cl. 

The standard reduction potential of the NH2Cl/Cl- couple in both acidic and 

alkaline solutions can be estimated using the thermodynamic cycle (Paper II).  Using the 

equilibrium constant for NH2Cl hydrolysis (K = 2.63 x 10-11),71 the standard reduction 

potentials for NH2Cl in acidic media (eq 13) and alkaline media (eq 14) can be 

determined.   

             
(14)         NHE  vsV 0.74                 NH  OH  Cl  2e  OH  ClNH

(13)         NHE  vsV 1.45                           NH  Cl 2e  2H  ClNH
0

3
---

22

0 
4

--
2

+=++↔++

+=+↔++ ++

E

E

 The measured open circuit potentials for NH2Cl were performed on a 

polycrystalline Au electrode (area = 0.02 cm2) in solutions containing equimolar 

quantities of the redox species in 60 mM buffered solutions, as shown in Figure 5.  The 

solid line in Figure 5 is the calculated formal potential obtained from the Nernst equation 

(eq 8) at the same molar concentrations.  The open circuit potentials (open circles) are 

approximately 300 mV more negative than the calculated formal potential.  The deviation 

from the calculated potentials may be caused by either an error in the equilibrium 

constant or the reduction reactions of NH2Cl not proceeding as shown in eq 13 and eq 14.  

Competing reactions, such as the production of amidogen radical (NH2
•) which can 
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couple to form hydrazine, can cause the measured open circuit potentials to be different 

from the calculated formal potentials.72 

 Measuring open circuit potentials in free chlorine and NH2Cl solutions is 

important because it may be a useful diagnostic tool for determining the stability of Pb in 

the presence of these disinfectants.  Figure 6 shows the Pourbaix diagram for Pb-H2O-

CO2 system with the concentration of dissolve Pb species of 15 ppb.  The measured open 

circuit potentials are shown as open squares for free chlorine and as open circles for 

NH2Cl.  For the operating pH range of drinking water (pH 6.5-8.5), the open circuit 

potentials for NH2Cl are in the Pb(II) region, while free chlorine lie in the PbO2 region.  

The plot suggests that NH2Cl is a weaker oxidant that will oxidize Pb0 or reduce PbO2 to 

soluble Pb2+ species, increasing the Pb levels in drinking water.  Free chlorine will 

oxidize any form of Pb species only to insoluble PbO2, forming the protective coating of 

the Pb service line. 

1.4.3 Conclusion.  The QCM was used to compare the effect of Pb dissolution in 

free chlorine (HOCl/OCl-) and monochloramine (NH2Cl) disinfectant solutions.  The 

EQCM results show that both Pb and PbO2 films dissolve in NH2Cl.  The kinetic studies 

reveal that the NH2Cl rate constant is half as large that of free chlorine.  The 

thermodynamic studies also confirm that NH2Cl is a weaker oxidant than free chlorine.  

All experimental results indicate that only free chlorine can oxidize Pb to PbO2, but 

NH2Cl will convert films of Pb and PbO2 to soluble Pb(II) species at pH lower than 9.5.  

The PbO2 dissolution rate depends on pH and the NH2Cl concentration. 

 

 



 16

1.5 ELECTRODEPOSITION OF EPITAXIAL TIN SULFIDE NANODISKS ON 

SINGLE CRYSTAL AU(100) 

Tin sulfide is a p-type layered semiconductor with a band gap ranging from 1.05 

to 1.48 eV73-76, which is near the optimum energy bandgap of 1.5 eV required for 

efficient light absorption for solar energy applications.77  According to the study by 

Reddy et al. on optical properties of SnS films at different temperatures, the optical band 

gap of SnS films strong depends on the lattice parameters.78  Another investigation by 

Reddy and co-workers have reported that SnS could have a conversion efficiency as high 

as 25%.79  Sn and S are also inexpensive, environmentally benign, and ubiquitous in 

nature.  These properties make SnS suitable for use in making photovoltaic and 

photoelectrochemical cells. 

 Epitaxial films are typically deposited onto single crystal substrates using vapor 

deposition.  The advantages of electrochemical deposition over other deposition methods 

are its versatility, controlability, simplicity, and economy.  The electrodeposition is 

usually carried out at or near room temperature, which helps minimize solid state 

diffusion between the film and the substrate.  The thickness of the film is easily 

controlled by the charge passed through the electrode.  Electrochemical deposition 

method can be used to deposit materials on substrates of any shape or size.  Additionally, 

the departure from equilibrium is controlled through the applied overpotential and the 

morphology of the deposits is often dependent on solution additives and pH. 

 In this dissertation, epitaxial nanostructures of δ-SnS are electrodeposited onto 

single-crystal Au(100).  The high mismatch between the orthorhombic and the           
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face-centered cubic structure is minimized when the δ-SnS deposits with its a axis 

perpendicularly oriented to the surface of the Au(100) substrate. 

1.5.1 Experimental.  SnS was deposited using the method developed by 

Brownson et al.19  The deposition solution contained 50 mM SnCl2, 150 mM Na2S2O3 

(sodium thiosulfate), 0.2 M L-tartaric acid, and 0.1 M HCl.  The final pH of the solution 

was adjusted to 2.5 with 6 M NaOH.  The bath temperature was maintained at 70 ºC.  A 

standard three-electrode set up was used.  Platinum was used as a counter electrode and 

Ag/AgCl was used as a reference electrode.  The working electrode was a Au(100) single 

crystal with a gold wire fitted around it to serve as an electrical contact.  The working 

electrode was placed in the solution using the meniscus method.  Prior to deposition, the 

working electrode was electropolished and annealed under a H2 flame.  δ-SnS was 

deposited at a constant cathodic current density of 3 mA/cm2 for 30 min using an EG&G 

Princeton Applied Research model 273A potentiostat/galvanostat. 

 X-ray diffraction (XRD) measurements were taken with a high–resolution Philips 

X’Pert diffractometer.  The XRD scan was obtained using Cu Kα source radiation.  Pole 

figures were run on the same instrument in point-focus mode using a crossed slit 

collimator as the primary optics and a flat graphite monochrometer as the secondary 

optics.  Stereographic projections were generated using Carine Crystallography Software 

(version 3.1).  Scanning electron microscopy (SEM) images were taken with a Hitachi S-

4700 cold field emission SEM at an accelerating voltage of 5 keV. 

1.5.2 Results and Discussion.  The epitaxial deposition of SnS nanodisks are 

achieved by electrochemical reduction of SnCl2 in the presence of Na2S2O3 as a source of 

sulfur.  The chemistry of tin monosulfide electrodeposition is described by Brownson et 
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al.74  The XRD θ-2θ diffraction pattern of the SnS deposit on Au(100) is shown in Figure 

7.  Only three peaks are observed for SnS, which correspond well to the (200), (400), and 

(800) reflections of SnS.  No other reflections are observed in the 2θ scan, indicating 

preferential [100] orientation of the film.  The lattice parameter, a, is determined to be 

11.31 Å, which is similar to the δ-SnS polymorph reported by Brownson et al. (a = 

11.380 Å, b = 4.029 Å, c = 4.837 Å).74  To determine the in-plane orientations of the 

deposit, a SnS(210) pole figure was run as shown in Figure 8a.  Two different types of 

reflections can be seen in the pole figure.  To verify the assignment of in-plane 

orientations from the pole figure, the stereographic projections were generated in Figure 

8b-8d.  Figure 8d is the stereographic projection resulting when Figure 8b and c are 

overlaid, then rotated by 90º, 180º, and 270º.  By comparing the pole figure to the 

stereographic projections, the four equally-spaced (∆φ = 90º) peaks at χ = 54º are 

determined to correspond to the {100} reflections.  The other eight peaks at χ = 64º 

correspond to the {301} reflection. 

For the Sn{100} orientation, the lattice mismatch is calculated as 2.4% in the 

[010] in-plane direction and 6.1% in the [001] in-plane direction.  For the SnS{301} 

orientation, the mismatches in the [010] are 2.4% and 3.4% in the ]310[  in-plane 

direction.  The quality of the epitaxial δ-SnS nanostructure can be evaluated via x-ray 

azimuthal scans and x-ray rocking curves.  The average full width at half-maximum 

(fwhm) of δ-SnS in the azimuthal scan is 3.16º.  The average peak intensity of δ-SnS 

relative to the background is 16 to 1, indicating that δ-SnS has a [100] orientation with 

little or no fiber texture.  The x-ray rocking curve of SnS(400)/(301) indicates that δ-SnS 

has a [100] out-of-plane orientation with a 2.9º mosaic spread.  The scanning electron 
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micrograph in Figure 9 shows that the δ-SnS deposit has a disk-like structure.  The disks 

are approximately 300 nm in diameter and 50 nm in thickness.  The ratio of Sn:S is 

1:1.08 when measured by energy-dispersive spectroscopy (EDS). 

1.5.3 Conclusion.  Epitaxial δ-SnS nanodisks are electrodeposited on Au(100) 

single crystal using the cathodic deposition approach.  The δ-SnS deposit grows with two 

different out-of-plane orientations of [100] and [301], which are aligned with the Au 

substrate.  The quality of the δ-SnS is analyzed by azimuthal and rocking curve scans.  

The rocking curve shows that the film has a 2.9º mosaic spread.  EDS also confirms a 1:1 

Sn to S ratio. 
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Figure 1: Pb QCM electrodes after treatment in free chlorine and monochloramine 

solution at pH 8. 
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Figure 2: QCM measurements of the change in mass of 0.3 µm thick PbO2 films 

immersed in solution at pH 7 of 1 mM NH2Cl, 1 mM free chlorine, and 1 mM NH2Cl + 

0.05 mM orthophosphate. 
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Figure 3: Scanning electron micrographs of 0.3 µm thick PbO2 films (a) as-deposited, (b) 

after immersion in 1 mM NH2Cl at pH 7, (c) after immersion in 1 mM free chlorine at pH 

7, and (d) after immersion in 1 mM NH2Cl + 0.05 mM orthophosphate at pH 7. 
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Figure 4: Glancing-angle X-ray diffraction patterns of 0.3 µm thick PbO2 films (a) as-

deposited, (b) after immersion of 1 mM NH2Cl at pH 7, (c) after immersion of 1 mM free 

chlorine at pH 7, and (d) after immersion of 1 mM NH2Cl+0.05 mM orthophosphate at 

pH 7. The standard powder patterns for (e) α-PbO2 and (f) Pb5(PO4)3OH are also shown.  

The Au(111) peaks marked with an asterisk at 2θ = 38.18º are from the Au-coated 

EQCM electrode. 
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Figure 5: Measured equilibrium potentials (shown as open circles) for the NH2Cl/Cl- 

couple as a function of pH.  A linear fit to the measured equilibrium potentials gives two 

linear regions.  Calculated formal potentials from the Nernst equation are also shown as 

solid lines, which change slope at a pH of 9.25, corresponding to the pKa of NH4
+. 
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Figure 6: Pourbaix diagram for Pb-H2O-CO2 system with the concentration of dissolved 

Pb species equal to 7.25x10-8 M (15 ppb) and the concentration of dissolved inorganic 

carbon equal to 1.5x10-3 M (18 ppm) at 25 ºC.  Measured equilibrium potentials are 

shown as open squares for free chlorine, and as open circles for NH2Cl.  The change in 

slope for the linear fit to the measured equilibrium potentials for free chlorine 

corresponds to the pKa = 7.5 of HOCl. 
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Figure 7: X-ray diffraction θ-2θ scan probing the out-of-plane orientation of a δ-SnS 

film electrodposited on Au(100). 

 

 

 

 

 

 

 

 

 

 



 33

 

Au[010]

]1Au[00
A

CB 

D

 

Figure 8: (a) (210) X-ray pole figure of SnS film.  The four spots at χ = 54º correspond 

to the angles between the (210) and (200) planes, and the eight spots at χ = 64º 

correspond to the angles between the (210) and (301) planes.  Stereographic projections 

for (b) SnS(100) and (c) SnS(301) orientations indicating the positions where (210)-type 

reflections should be observed in the pole figure.  (d) Expected (210) stereographic 

projection for four domains. 
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Figure 9: SEM micrograph of an epitaxial SnS on Au(100) showing a nanodisk-like 

morphology. 

 

 

 

 

 

 

 

 

 

 

 

 



 35

PAPER I 

Evidence that Monochloramine Disinfectant Could Lead to 

Elevated Pb Levels in Drinking Water 
 

Jay A. Switzer*, Vishnu V. Rajasekharan, Sansanee Boonsalee, Elizabeth A. Kulp,and  
Eric W. Bohannan 

 
Department of Chemistry and Graduate Center for Materials Research 

Missouri University of Science and Technology, Missouri, U.S.A 65409-1170 
Email: jswitzer@mst.edu 

Reproduced with permission from ES&T/vol 40.  Copyright 2006 American Chemical Society 

 
 

Abstract 

 Many water districts have recently shifted from free chlorine (in the form of 

HOCl/OCl-) to monochloramine (NH2Cl) as a disinfectant for drinking water in order to 

lower the concentration of chlorinated hydrocarbon by-products in the water. There is 

concern that the use of NH2Cl disinfectant may lead to higher Pb levels in drinking water. 

In this study, the electrochemical quartz crystal microbalance is used to compare the 

effects of these two disinfectants on the dissolution of Pb films. A 0.5 µm thick Pb film 

nearly completely dissolves in a NH2Cl solution, but it is passivated in a HOCl/OCl-
 

solution. X-ray diffraction analysis shows that the NH2Cl oxidizes Pb to Pb(II) species 

such as Pb3(OH)2(CO3)2, whereas the stronger oxidant HOCl/OCl-
 oxidizes Pb to Pb(IV) 

as an insoluble PbO2 conversion coating. Although NH2Cl may produce less halogenated 

organic byproducts than HOCl/OCl-
 when used as a disinfectant, it may lead to increased 

Pb levels in drinking water. 
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Introduction 

 Free chlorine has traditionally been used as a disinfectant in drinking water 

because of its ability to inactivate most pathogenic micro-organisms quickly. (1)  

However, chlorine reacts with organic compounds present in the water to produce 

halogenated organic byproducts such as trihalomethanes (THMs), which are suspected to 

be carcinogens. (2)  In 1998, the U.S. Environmental Protection Agency (EPA) 

established a maximum contaminant limit of 80 ppb for total trihalomethanes in drinking 

water. (3)  In an attempt to meet this low level of trihalomethanes, several water utilities 

have switched from free chlorine (in the form of HOCl/OCl-) to chloramines such as 

monochloramine (NH2Cl) because of their lower tendency to produce halogenated 

organic byproducts.  Coincident with the shift from free chlorine to NH2Cl, some water 

districts have reported Pb levels in drinking water that exceed the action limit of 15 ppb 

set by the EPA.  Lead levels of up to 48,000 ppb were observed in Washington, DC in the 

fall of 2003, following their shift from free chorine to NH2Cl in the year 2000. (4,5)  

Elevated Pb levels were also reported in Greenville, N.C. drinking water after switching 

from free chlorine to NH2Cl. (6)  The monochloramine may lead to high Pb levels by 

oxidizing Pb in service lines, solder, and brass to soluble Pb(II). (5,7)  Edwards and Dudi 

have shown evidence that monochloramine can lead to increased Pb leaching rates from 

Pb-containing brass fixtures. (5)  Schock and co-workers have suggested that free 

chlorine is a powerful enough oxidant that the Pb is passivated by being oxidized to 

insoluble PbO2. (8)  They have shown by X-ray diffraction (XRD) that the Pb service 

lines in Cincinnati, Ohio are lined with a layer of PbO2. (8)  Cincinnati has a history of 

using free chlorine in their disinfectant program. 
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 In this paper, we use the electrochemical quartz crystal microbalance (EQCM) to 

compare the effects of NH2Cl and HOCl/OCl- on the dissolution of Pb films.  The EQCM 

can measure nanogram changes in mass on the electrode surface while the electrode is 

immersed in solution by monitoring the changes in resonant frequency of a quartz 

oscillator. (9) We have previously used the EQCM to follow the electrodeposition of 

layered Cu/Cu2O nanostructures in real time. (10) The EQCM has been used by other 

groups to study corrosion processes, including anodic corrosion layers on Pb in sulfuric 

acid. (11,12)  We also examine the Pb films by scanning electron microscopy (SEM) and 

glancing-angle XRD after exposure to the two disinfectants. 

 

Experimental 

Disinfectant Solutions 

 All experiments were conducted using HPLC-grade water from Aldrich. A 

sodium hypochlorite solution with 10-13 vol% available chlorine was used as a source 

for HOCl/OCl-. Monochloramine  and HOCl/OCl- solutions were prepared fresh for each 

experiment. The NH2Cl solutions were prepared by reacting OCl- with a five-fold molar 

excess of aqueous NH3. (13,14) The excess NH3 minimizes the formation of 

dichloramine (NHCl2).  To prepare the NH2Cl solutions, 5 mL of 100 mM NH3 was 

added to a rapidly stirred 20 mL solution of 5 mM NaOCl.  The pH was adjusted to 8 

with 10 mM H2SO4. 1 mL of 100 mM KCl was added as an external Cl- source, and the 

solution was diluted to a total volume of 100 mL.  The final concentrations in the solution 

were approximately 1 mM OCl-, 4 mM NH4
+, and 1 mM Cl-. At pH 8 the unreacted 

ammonia is predominately NH4
+.  The relatively high concentrations of disinfectants in 

this study were used so that the concentration of the disinfectants remained relatively 
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constant during the corrosion studies, and because the concentrations of the 1 mM 

solutions could be determined spectrophotometrically. The actual concentrations of OCl- 

and NH2Cl were determined spectrophotometrically at 292 nm (ε = 350 M-1cm-1) and 243 

nm (ε = 461 M-1cm-1), respectively, using molar absorptivities from the literature. (13) 

The spectrophotometric measurements were made with a CARY 5 UV-Vis-NIR 

spectrophotometer.  

Pb Electrodeposition and Dissolution 

 Films of Pb were electrodeposited with an EG&G model 273A 

potentiostat/galvanostat. The polycrystalline Pb films were electrodeposited at a constant 

current density of 15 mA/cm2 from a solution of 0.1 M Pb(ClO4)2 in 1 M HClO4.  The 

films were deposited onto Au-coated, commercially-available 9 MHz AT-cut quartz 

crystals (Seiko model QA-AM9-Au) that were used for the EQCM experiments.  The Pb 

films were used immediately after deposition for the EQCM studies. XRD analysis 

showed that the films were Pb, with no evidence of PbO. The EQCM electrodes were 

installed in a Teflon holder so that only one electrode face with an area of 0.2 cm2 was 

exposed to the solution. The total mass of Pb deposited was 112 µg.  The 

electrodeposited Pb films were then exposed to separate 35 mL unstirred 1 mM solutions 

of NH2Cl and HOCl/OCl-.  Each solution was adjusted to a pH of 8, and contained 1 mM 

Cl-.  No effort was made to exclude dissolved CO2 from the HOCl/OCl-  and NH2Cl 

solutions.  The mass of Pb was determined as a function of time after treatment with the 

two disinfectants by monitoring the frequency change of the EQCM electrode using a 

quartz crystal analyzer (Seiko model QCA917).  A gate time of 1 s and an output range of 

±20 kHz/10 V were used with the analyzer.  The concentration of Pb in the solutions after 
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the treatment with the two disinfectants was determined by flame atomic absorption 

spectroscopy using a Varian model SpectrAA 50 atomic absorption spectrometer with a 

Pb lamp of 217 nm wavelength. The detection limit of the instrument is approximately 

0.1 ppm.  Solutions were not filtered prior to atomic absorption analysis.  

XRD and SEM Instrumentation 

 Grazing incidence x-ray diffraction (XRD) patterns were obtained with a Philips 

X’Pert diffractometer using Cu Kα source radiation with an x-ray mirror (PW3088/60) as 

the incident beam module and a 0.18° parallel plate collimator as the diffracted beam 

module.  A fixed incident angle of 1° was maintained and the instrument was operated in 

the continuous mode with a step size of 0.03° and a counting time of 10 seconds.  SEM 

micrographs were obtained with a Hitachi model S4700 cold field-emission scanning 

electron microscope.   

 

Results and Discussion 

 Figure 1 shows the mass of the Pb electrode as a function of time in the NH2Cl 

and HOCl/OCl- solutions.  The Pb dissolves to a much greater extent in the NH2Cl 

solution than it does in the HOCl/OCl- solution.  The decrease in mass of the 112 µg Pb 

film in the HOCl/OCl- is about 5 µg, while the decrease in mass in the NH2Cl solution is 

107 µg. The Pb film turned red after treatment with HOCl/OCl-, and it turned white after 

treatment with NH2Cl. The red color after treatment with HOCl/OCl- is consistent with 

the formation of PbO2 on the electrode surface. We have shown in unpublished 

experiments that reddish-brown PbO2 powder (verified by x-ray diffraction) is formed 

when HOCl/OCl- is added to a pH 8 aqueous solution of Pb(II).  Figure 2 shows SEM 
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micrographs of electrodeposited Pb films after treatment with the two disinfectants.  The 

Pb film is covered with nanometer scale crystallites after the HOCl/OCl- treatment 

(Figure 2a), while the surface contains platelets after the NH2Cl treatment (Figure 2b).  

Glancing-angle XRD analysis of the films shows that the film treated with HOCl/OCl- 

contains primarily α-PbO2 and unreacted Pb, with a small amount of β-PbO2 (Figure 3a). 

The minor peaks due to β-PbO2 are marked with an asterisk in Figure 3a.  Based on the 

line broadening in the XRD pattern, the crystallite size of the α-PbO2 is 11 nm. The 

crystallite size was calculated from the broadening of the (111) reflection of PbO2 using 

the Scherrer equation. (15) The triangular facets in Figure 2a are [111]-oriented Pb 

covered with a conversion coating of nanocrystalline PbO2 produced by the HOCl/OCl- 

oxidation. The film treated with NH2Cl contains only divalent Pb in the form of 

hydrocerrusite, Pb3(OH)2(CO3)2, with no evidence of PbO2 or unreacted Pb (Figure 3b). 

The EQCM, SEM, and XRD experiments show that exposing the Pb to NH2Cl causes the 

Pb to dissolve and form Pb3(OH)2(CO3)2. Hydrocerrusite is commonly found as a coating 

on the inside of Pb service lines.(16) 

 After the Pb films were treated with the two disinfectants, the solutions were 

analyzed for Pb by atomic absorption spectroscopy (AA).  The AA analysis showed 0.2 

ppm (close to the 0.1 ppm detection limit) Pb for the solution containing HOCl/OCl- and 

1.7 ppm Pb for the NH2Cl containing solution. The greater dissolution of Pb in the NH2Cl 

solution is consistent with the higher solubility of Pb3(OH)2(CO3)2 compared with PbO2.  

The Ksp values for Pb3(OH)2(CO3)2 and PbO2 are 10-18.8 and 10-66, respectively.(17,18) 

 The standard reduction potential of the NH2Cl/Cl- couple in both acidic and 

alkaline solutions can be estimated using the equilibrium constant for Equation 1 that was 
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determined by Margerum and co-workers from kinetic measurements (19),  the standard 

reduction potentials for HOCl/Cl- and OCl-/Cl-, and the pKa for NH4
+/NH3 (pKa = 9.25). 

(20)  The calculated standard reduction potential for NH2Cl in alkaline solution (Equation 

2) is +0.69 V vs. NHE, and the calculated standard reduction potential for NH2Cl in 

acidic solution (Equation 3) is +1.4 V vs. NHE.  The standard reduction potentials for 

free chlorine and PbO2 reduction in equations 4-7 are taken from the literature. (20) 

NH3  +  HOCl    NH2Cl  +  H2O                                  K = 3.8 x 1010 M-1              (1) 

NH2Cl  +  H2O  +  2e-    Cl-  +  OH-  +  NH3               E° = + 0.69 V vs. NHE       (2) 

NH2Cl  +  2H+  +  2e-    Cl-  +  NH4
+                           E° = + 1.4 V vs NHE        (3) 

OCl-  +  H2O  +  2e-    Cl-  +  2OH-                              E° = + 0.81 V vs. NHE      (4) 

HOCl  +  H+  +  2e-    Cl-  +  H2O                                E° = + 1.482 V vs. NHE     (5) 

PbO2  +  H2O  +  2e-    PbO  +  2OH-                          E° = + 0.247 V vs. NHE     (6) 

PbO2  +  4H+  +  2e-    Pb2+  +   2H2O                          E° = + 1.455 V vs. NHE     (7) 

 Free chlorine (HOCl/OCl-) is a slightly stronger oxidizing agent than NH2Cl in 

both acidic and alkaline media than, consistent with our results. Because the pKa of 

HOCl is 7.40 (20), the free chlorine is predominately OCl- at pH 8. At this pH the 

solution is 80 mol% OCl- and 20 mol% HOCl. We cannot determine from our 

experiments whether OCl- or HOCl is the active species in the oxidation reactions.  

 The standard reduction potentials shown for Equations 2 through 7 are for all of 

the reactants and products at unit activity. Formal reduction potentials for these reactions 

at pH 8 can also be estimated from the Nernst equation for the concentrations used in this 

study, and for Pb2+ concentrations at the action limit of 15 ppb (7.2 x 10-8 M).  Formal 

reduction potentials for the NH2Cl/Cl-, HOCl/Cl-,  OCl-/Cl-, and PbO2/Pb2+ couples are 

1.0 V, 1.25 V, 1.17 V, and 0.72 V vs. NHE, respectively. Hence, both disinfectants are 

thermodynamically capable of oxidizing Pb(II) to PbO2 according to these calculations. 
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The fact that NH2Cl does not produce a passivating PbO2 layer suggests that there is 

either an error in the calculated standard reduction potentials for Equations 2 and 3 due to 

uncertainty in the equilibrium constant for Equation 1 (21,22), or that the kinetics of 

oxidation by NH2Cl are not facile.  We have performed measurements of the equilibrium 

potentials of monochloramine and free chlorine at pH 8 by measuring the open-circuit 

potential of a Pt electrode in solutions of the same concentrations that were used in this 

study. The potentials were measured versus a saturated calomel electrode (SCE), and then 

converted to the normal hydrogen electrode by adding 0.242 V.  The equilibrium 

potentials that we measured for monochloramine and free chlorine at pH 8 were 0.65 V 

and 1.02 V vs. NHE, respectively.  These measured equilibrium potentials are more 

consistent with our experimental results than the calculated formal potentials, because 

they predict that NH2Cl will oxidize Pb to Pb(II), but it is not a powerful enough oxidant 

to produce PbO2. These equilibrium potential measurements suggest that a modern 

electrochemical study (e.g., rotating disk voltammetry) of the thermodynamics and 

kinetics of the reduction of both free chlorine and NH2Cl is warranted. 

 Free chlorine and monochloramine are not simple outer-sphere electron transfer 

agents.  Margerum et al. have shown, for instance, that the oxidation of nitrite ion by 

NH2Cl proceeds by acid-catalyzed transfer of Cl+ from NH2Cl to NO2
- to produce NO2Cl 

as an intermediate. (19) The mechanism of oxidation of Pb by NH2Cl is probably more 

complicated than the simple electron transfer that is suggested in Equations 2 and 3.  Our 

EQCM studies do show, however, that NH2Cl is capable of dissolving Pb by producing 

Pb(II). Treatment of the Pb with HOCl/OCl- leads to lower Pb dissolution, due to the 

production of a conversion coating of PbO2 on the Pb. Although NH2Cl may produce less 
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halogenated organic byproducts than free chlorine when used as a disinfectant in drinking 

water, it may lead to increased Pb levels. 
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Figure 1: EQCM measurement of the change in mass of 0.5 µm thick Pb films immersed 

in 1 mM solutions of (a) HOCl/OCl- and (b) NH2Cl at pH 8. Dissolution of Pb is greater 

in the NH2Cl solution. The dashed line corresponds to total dissolution of the 112 µg Pb 

film.
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Figure 2: Scanning electron micrographs of 0.5 µm thick Pb films immersed in 1 mM 

solutions of (a) HOCl/OCl- and (b) NH2Cl at pH 8. 
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Figure 3:  Glancing angle x-ray diffraction patterns of 0.5 µm thick Pb films after being 

immersed in 1 mM solutions of (a) HOCl/OCl- and (b) NH2Cl at pH 8. The standard 

powder patterns for α-PbO2 and Pb3(OH)2(CO3)2 are shown in (a) and (b), respectively.  

The Pb film exposed to HOCl/OCl¯ contains primarily α-PbO2, unreacted Pb, and a small 

amount of β-PbO2 (marked with an asterisk). The Pb film exposed to NH2Cl contains 

only Pb3(OH)2(CO3)2, with no remaining Pb. The Au(111) peaks in both diffraction 

patterns are from the Au-coated EQCM electrode. The x-ray radiation is CuKα. 
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Abstract 

 The commonly used disinfectants in drinking water are free chlorine (in the form 

of HOCl/OCl-) and monochloramine (NH2Cl).  While free chlorine reacts with natural 

organic matter in water to produce chlorinated hydrocarbon byproducts, there is also 

concern that NH2Cl may react with Pb to produce soluble Pb(II) products – leading to 

elevated Pb levels in drinking water.  In this study, electrochemical methods are used to 

compare the thermodynamics and kinetics of the reduction of these two disinfectants.  

The standard reduction potential for NH2Cl/Cl- was estimated to be +1.45 V in acidic 

media and +0.74 V in alkaline media versus NHE using thermodynamic cycles. The 

kinetics of electroreduction of the two disinfectants was studied using an Au rotating disk 

electrode. The exchange current densities estimated from Koutecky–Levich plots were 

8.2 × 10-5 A/cm2 and 4.1 × 10-5 A/cm2, and by low overpotential experiments were 7.5 ± 

0.3 × 10-5 A/cm2 and 3.7 ± 0.4 × 10-5 A/cm2 for free chlorine and NH2Cl, respectively.  

The rate constant for the electrochemical reduction of free chlorine at equilibrium is 

approximately twice as large as that for the reduction of NH2Cl.  Equilibrium potential 
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measurements show that free chlorine will oxidize Pb to PbO2 above pH 1.7, whereas 

NH2Cl will oxidize Pb to PbO2 only above about pH 9.5, if the total dissolved inorganic 

carbon (DIC) is 18 ppm.  Hence, NH2Cl is not capable of producing a passivating PbO2 

layer on Pb, and could lead to elevated levels of dissolved Pb in drinking water.    

Introduction 

 Free chlorine (in the form of hypochlorous acid (HOCl) & hypochlorite anion 

(OCl-)) and monochloramine (NH2Cl) have been used as disinfectants in drinking water 

(1). They both, however, produce disinfection byproducts. Free chlorine reacts with 

organic compounds present in water to produce chlorinated hydrocarbons such as 

trihalomethanes, which are suspected to be carcinogens (2). There is also evidence that 

NH2Cl reacts with Pb present in lead service lines, solder, and brass to form soluble 

Pb(II) (3-6). As a consequence, it is important to understand the difference in reactivity of 

these two disinfectants to ensure the safety of drinking water.   

 In our earlier work, we showed that NH2Cl oxidized Pb to soluble Pb(II) species, 

whereas free chlorine produced a passivating layer of PbO2 on the Pb (3). Previous 

theoretical studies (3,7-10) showed that both NH2Cl and free chlorine are capable of 

oxidizing Pb to PbO2, based on the standard reduction potential.  However, in real 

systems only free chlorine forms PbO2, whereas NH2Cl forms Pb(II) species (3-6,11,12).  

The chemical reactivity (9,13-26) and the electroactivity (27-32) of these 

disinfectants have been studied by other workers.  For example, Valentine and co-

workers have studied the mechanistic aspects of the reactions between NH2Cl and Fe(II) 

in aqueous solutions (15-17).  They have presented evidence that the oxidation of Fe(II) 

to Fe(III) by monochloramine occurs through the formation of a reactive intermediate 
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(amidogen radical (NH2
•)) via two sequential one-electron steps (15).  Wrona and Piela 

studied the electroreduction of chloramines on rotating Pt and Au electrodes (27).  They 

also suggest that the electroreduction of monochloramine occurs via the formation of 

amidogen radical.   

In the present work, we use electrochemical measurements to provide a direct 

comparison of the kinetics and thermodynamics of the electron transfer reactions of free 

chlorine and NH2Cl. The thermodynamics of the reduction of the two disinfectants is 

compared by calculating the standard reduction potentials from thermodynamic cycles, 

and by performing equilibrium (i.e., open-circuit) potential measurements.  The chemical 

reversibility and redox activity of the two disinfectants is probed in unstirred solution by 

cyclic voltammetry. The kinetics of reduction of the two disinfectants is studied using a 

Au rotating disk electrode (RDE).  The RDE is used to control mass transport to the 

electrode, so that the kinetics can be separated from mass transport by using Koutecky-

Levich analysis. Finally, the equilibrium potentials of free chlorine and NH2Cl are plotted 

on a Pourbaix diagram for the Pb-H2O-CO2 system in order to understand the effects of 

the two disinfectants on the dissolution of Pb. 

Experimental Section 

 All experiments were conducted using deionized 18 MΩ-cm water from a 

Barnstead NANOpure ultrapure water system. A sodium hypochlorite (NaOCl) solution 

with 10-13 vol% available chlorine was used as a source for free chlorine. NH2Cl and 

free chlorine solutions were prepared fresh for each experiment. Free chlorine and NH2Cl 

have characteristic UV absorption bands.  The actual concentrations of OCl- (at pH 9 the 

predominant species of free chlorine is OCl- (97 %)) and NH2Cl were determined 
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spectrophotometrically at 292 nm (ε = 350 M-1cm-1) (21) and 243 nm (ε = 461 M-1cm-1) 

(21), respectively.  The concentration of NHCl2 was determined at 206 nm (ε = 2100    

M-1cm-1) (27).   

The NH2Cl solutions were prepared by reacting free chlorine with a five-fold 

molar excess of aqueous NH3.  The excess NH3 minimizes the formation of dichloramine 

(NHCl2) (33). To prepare the NH2Cl solutions, 5 mL of 100 mM NH3 was added to a 

rapidly stirred 20 mL solution of 5 mM NaOCl.  The solutions for kinetic studies were 

buffered at pH 9 with 60 mM NaHCO3. The supporting electrolyte was 100 mM Na2SO4. 

For the equilibrium potential measurements, 60 mM NaH2PO4 was used as a buffer for 

pH 7-8, and 60 mM of NaHCO3 or H3BO3 were used as buffers in the pH range of 9 to 

12. It is important to note that these buffers can be used to study the electrochemistry of 

NH2Cl and free chlorine on inert electrodes such as Au or Pt, but they would complicate 

studies involving Pb or PbO2 electrodes because of the formation of insoluble Pb(II) 

carbonates and phosphates. 

 A Fisher Scientific Accumet Model 15 digital pH meter equipped with an 

Accumet combination electrode was used for the pH measurements. An Accumet 

chloride combination ion selective electrode was used to measure the chloride ion 

concentration. A Hach ammonia gas sensing combination electrode was used to measure 

the total excess ammonia present in the NH2Cl containing solutions.  Typically, 

approximately 4 mM total ammonia was present after the formation of NH2Cl.

 Electrochemical experiments were performed using a Brinkmann PGSTAT 100 

potentiostat controlled by GPES software v. 4.9.  The experiments were run at room 

temperature in a cell that was not thermostatted. A polycrystalline Au electrode (Pine 
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instruments, USA) of geometric area 0.196 cm2 was used for stationary and rotating disk 

studies.  A MSRX speed controller from Pine instrument company was used to vary the 

rotation rates.  The counter electrode was a Pt wire. A saturated calomel electrode (SCE) 

was used as the reference electrode in all electrochemical experiments.  All potentials, 

except equilibrium potentials, are reported versus the SCE.  The equilibrium potentials 

are reported versus the normal hydrogen electrode (NHE) by adding 0.242 V to the 

potential measured versus SCE.  The equilibrium potentials were measured on an Au 

electrode after equilibrating for 1000 s.  Equilibrium potentials must be measured with a 

high impedance voltmeter or electrometer, so that the equilibrium is not shifted by 

current flow.  In our studies the Brinkmann PGSTAT 100 potentiostat (input impedance 

greater than 100 Gohm) was used for these measurements. The working solutions were 

deoxygenated by bubbling with argon (99.998 %)(BOC gases). 

Results and Discussion  

Calculation of the standard reduction potential of NH2Cl 

 The standard reduction potential of the NH2Cl/Cl- couple in both acidic and 

alkaline solutions can be estimated using the following parameters: the equilibrium 

constants for Equation 1 (20), 2, 4 & 5 and the standard reduction potentials for HOCl/Cl- 

and OCl-/Cl-, (Equations 3 & 6) (34). The relationship between the free energy, 

equilibrium constant and standard reduction potential (∆G° = -RT ln K = -nFE°) was then 

used to calculate the ∆G° for the reactions below. By convention, the equilibrium 

constants are shown without units, although they are based on molar concentrations. 

NH2Cl  +  H2O   NH3  +  HOCl       K = 2.63 x 10-11;  ∆G1°= 60 kJ/mol (1) 

NH3 + H+  NH4
+     K = 1.78 x 109;  ∆G2°= -53 kJ/mol (2) 
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HOCl  +  H+  +  2e-    Cl-  +  H2O     E° = +1.482 V; ∆G3°= -286 kJ/mol (3) 

HOCl  OCl- +  H+     K = 2.9 x 10-8; ∆G4°= 43 kJ/mol (4) 

H+ + OH-  H2O       K = 5.56 x 1015; ∆G5°= -90 kJ/mol (5) 

OCl-  +  H2O  +  2e-    Cl-  +  2OH-     E° = +0.81 V;  ∆G6°= -156 kJ/mol (6) 

 The standard reduction potentials of NH2Cl in acidic and alkaline solutions can be 

determined by standard thermodynamic cycles. To estimate ∆Gaº for the reduction 

reaction of NH2Cl in acidic media (i.e., pH = 0), the ∆Gºs for the elementary reactions 

shown in Equations 1, 2 & 3 are summed, as shown in Equation 7. 

∆Gaº = ∆G1° + ∆G2° + ∆G3° = -279 kJ/mol  (7) 

From Equation 7 the standard reduction potential for NH2Cl can be determined, and is 

given below in Equation 8 

NH2Cl + 2H+ + 2e-  Cl- + NH4
+ E° = +1.45 V vs. NHE           (8) 

To estimate ∆Gbº for the reduction reaction of NH2Cl in alkaline media (i.e., pH = 14), 

the ∆Gºs for the elementary reactions shown in Equations 1, 4, 5 & 6 are summed, as 

shown in Equation 9. 

∆Gbº = ∆G1° + ∆G4° + ∆G5° + ∆G6°  = -143 kJ/mol  (9) 

From Equation 9 the standard reduction potential for NH2Cl can be determined, and is 

given below in Equation 10 

NH2Cl  +  H2O  +  2e-    Cl-  +  OH-  +  NH3 E° = +0.74 V vs. NHE          (10) 

Equilibrium potentials for NH2Cl 

   Equilibrium (i.e., open-circuit) potential measurements for NH2Cl were 

performed on a Au electrode in solutions containing equimolar quantities of the redox 

species in 60 mM buffered solutions.  Equilibrium potentials are also referred to in the 
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literature as oxidation-reduction potentials (ORPs).  James et al. have previously used 

ORP measurements to compare the relative impact of various disinfectants on metallic 

plumbing material solubility and speciation (35).  Figure 1 shows a plot of the measured 

(open circles) equilibrium potentials for NH2Cl as a function of pH.  Figure 1 also 

compares the measured equilibrium potentials to calculated formal potentials.  The 

standard reduction potentials for Equations 8 & 10 are for all of the reactants and 

products at unit activity.  Formal potentials for these reactions at other concentrations and 

pHs can be calculated from the Nernst equation (Equation 11). 

                                                  E = Eo – RT/nF lnQ         (11) 

where E is the formal potential (V), Eo is the standard reduction potential (V), R is the 

molar gas constant (8.314 Jmol-1K-1), T is the absolute temperature (K), n is the number 

of electrons transferred, F is Faraday’s constant (96,485 C), and Q is the reaction quotient 

(dimensionless). 

 The formal reduction potentials (solid lines) calculated from Equation 11 are  

shown in Figure 1. The formal potentials were calculated from Equation 11 with [NH2Cl] 

= [Cl-] = 1 mM, and [NH3] + [NH4
+] = 4 mM.  For the calculated formal potentials, a 

Nernstian slope of 59 mV/pH is predicted at low pH, and a slope of 29.5 mV/pH is 

predicted at high pH.  The change in slope at pH 9.25 is due to the fact that NH4
+ (pKa = 

9.25) is formed below the pKa, and NH3 is formed above the pKa. The slope of a linear 

fit for the values of measured equilibrium potentials is 75 mV/pH below pH 9.4 and 41 

mV/pH above pH 9.4.   

 The measured equilibrium potential is approximately 300 mV more negative than 

the calculated formal potential at pH 9.25.  This suggests that there is either an error in 
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the calculated standard reduction potentials for Equations 8 and 10 due to an error in the 

equilibrium constant for Equation 1 (9,36), or that the reduction of NH2Cl does not 

proceed by the reactions shown in Equations 8 and 10. One explanation is that there are 

competing reactions involving reactive amidogen (NH2
•) radical intermediates. The 

radicals could either couple to produce hydrazine or react with bicarbonate in solution. In 

either case, the measured equilibrium potential would be different from the calculated 

formal potential. Valentine and co-workers have shown evidence for the formation of the 

amidogen radical during oxidation of Fe(II) (15). They have also proposed that these 

radicals can be scavenged by bicarbonate or that radical-radical coupling can occur to 

produce hydrazine. Piela and Wrona have also suggested that the amidogen radical is 

produced in the rate determining, one-electron step during the electroreduction of NH2Cl 

(27).  

Cyclic voltammetry of OCl-  and NH2Cl 

 Figures 2a and b show cyclic voltammograms (CVs) of  (a) OCl- and  (b) NH2Cl 

in Ar-purged solutions containing 60 mM NaHCO3 and 0.1 M Na2SO4 at pH 9 for 

various concentrations of the two disinfectants.  The CVs were run in an unstirred 

solution at a scan rate of 50 mV/s on a Au stationary electrode.  In the CVs, OCl- and 

NH2Cl both show single cathodic peaks at approximately 0.32 V and 0.03 V, 

respectively.  There are no significant anodic peaks corresponding to these cathodic 

peaks, showing that the reactions are electrochemically irreversible reductions.  In 

oxygen-saturated solutions (not shown), both solutions show an additional cathodic peak 

at -0.25 V due to the reduction of dissolved oxygen.  The cathodic peak currents for the 
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reduction of both OCl- and NH2Cl increase linearly as the concentrations of the two 

disinfectants are increased. 

Rotating disk studies of the reduction of  OCl-  and NH2Cl  

 The standard heterogeneous rate constant (ko) for the reduction of OCl- and 

NH2Cl can be determined at the equilibrium potential (i.e., zero driving force) using the 

rotating disk electrode by both Koutecky–Levich analysis, and by using a linear 

approximation to the Butler-Volmer equation at very low overpotential (37).  Figures 3a 

and b show linear sweep voltammograms of 1.7 mM OCl- and NH2Cl, respectively, in an 

Ar-purged solution containing 60 mM NaHCO3 and 0.1 M Na2SO4 at pH 9 at a scan rate 

of 50 mV/s on a Au rotating disk electrode at various rotation rates.  Both disinfectants 

show mixed kinetic-diffusion regimes at intermediate potentials and mass-transport-

limited currents at high overpotentials. Koutecky-Levich analysis was done in the mixed 

kinetic-diffusion regimes. The Koutecky–Levich equation is shown in Equation 12. 

                            1/i = 1/ik + 1/il = 1/ik + 1/(0.62nFAD2/3ω1/2υ-1/6C)        (12) 

where i is the measured current (A), ik is the current in the absence of any mass-transport 

effects (A), il is the limiting current at high overpotential (A), n is the number of electrons 

transferred, F is Faraday’s constant (96,485 C), A is the electrode area (cm2), D is the 

diffusion coefficient (cm2s-1), ω is the angular frequency of rotation (s-1), υ is the 

kinematic viscosity (cm2s-1) and C is the concentration (mol/cm3). 

 Figure 4 shows Koutecky–Levich plots of 1/i versus 1/ω1/2 for (a) OCl and (b) 

NH2Cl at a series of overpotentials (η). The overpotentials were approximated by taking 

the difference between the applied electrode potential and the open circuit potentials  of 

0.67 V for OCl- and 0.47 V for NH2Cl. Straight lines are observed for both disinfectants 
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with intercepts corresponding to their kinetic currents (ik) for a wide range of 

overpotentials (0.375 to 0.575 V).  The kinetic currents (ik) can be converted to rate 

constants (kf) using equation 13.   

                                                           ik = nFAkfC          (13) 

where n is the number of electrons transferred, F is Faraday’s constant (C), A is the 

electrode area (cm2), kf is the forward rate constant (cm/s), and C is the concentration 

(mol/cm3). We assumed n = 2 for these calculations. 

Figure 5 shows a plot of ln kf(E) versus overpotential (η).  This plot should have a 

slope of –αF/RT and an intercept equal to ln (kº) (37). The α value determined from the 

slope for OCl- was 0.3, and for NH2Cl was 0.2.  The kº value obtained for OCl- was 2.5 × 

10-4 cm/s and, for NH2Cl was 1.2 × 10-4 cm/s.  The exchange current densities (jo) 

determined from these kº values using Equation 13 and normalizing for the electrode area 

were 8.2 × 10-5 A/cm2 and 4.1 × 10-5 A/cm2 for OCl- and NH2Cl, respectively.  These 

values show that at equilibrium, the rate constant for the reduction of OCl- is 

approximately twice that of NH2Cl.   

 The standard heterogeneous rate constant ko can also be estimated from linear 

sweep voltammograms at low overpotential, where mass-transport effects are minimal.  

For small values of overpotential, η, the Butler–Volmer equation is approximated by 

Equation 14 (37,38). 

                                                       j = -joFη/(RT) (14) 

where j is the measured current density (A/cm2), jo is the exchange current density 

(A/cm2), F is Faraday’s constant (C), η is the applied overpotential (V), R is the molar 

gas constant (Jmol-1K-1), and T is the absolute temperature (F/RT = 38.92 V-1 at 298 K). 
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Figure 6 shows plots of j versus η for 1.7 mM OCl- and NH2Cl in an Ar-purged solution 

containing 60 mM NaHCO3 and 0.1 M Na2SO4 at pH 9.  The voltammograms were run at 

a scan rate of 1 mV/s on a Au electrode at 900 rpm.  The slopes of the j versus η plots for 

the disinfectants were not dependent on the rotation rate.  The slopes of five different 

rotation rates (700 rpm, 900, 1100, 1300, and 1500) were obtained to estimate the error 

involved in the measurements.  The exchange current densities, jo, determined from these 

slopes are 7.5 ± 0.3 × 10-5 A/cm2 for OCl- and 3.7 ± 0.4 × 10-5 A/cm2 for NH2Cl.  The kº 

values determined from the jo values are 2.3 ± 0.1 × 10-4 and 1.1 ± 0.1 × 10-4 cm/s for 

OCl- and NH2Cl, respectively.   

The exchange current densities and standard heterogeneous rate constant for OCl- 

and NH2Cl are summarized in Table 1 for measurement by both Koutecky–Levich 

analysis and by the linear approximation of the Butler-Volmer equation at low 

overpotential.  Both methods show that at equilibrium (zero driving force), the rate 

constant for the reduction of OCl- is approximately twice that of NH2Cl.   

Measured equilibrium potential as a diagnostic tool to determine the stability of Pb  

Figure 7 shows the Pourbaix diagram for the Pb-H2O-CO2 system along with the 

measured formal potentials of NH2Cl and free chlorine.  This diagram is constructed to 

determine the stability of Pb in the presence of these disinfectants.  Figure 7 is similar to 

the one constructed by Schock and co-workers (39-41).  The concentration of the 

dissolved Pb(II) species in Figure 7 is fixed at the action level of Pb in drinking water 

(7.2 × 10-8 M) (15 ppb).  The concentration of total dissolved inorganic carbon (DIC) is 

chosen as 1.5 mM (18 ppm), which is the value previously used by Schock et al. (40). 

The Gibbs free energies of formation of the different Pb species at 298 K and 1 atm are 
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used to calculate the equilibrium constants and standard reduction potentials for the 

chemical and electrochemical reactions of different Pb species (41).  The lead carbonate 

species are included in Figure 7, due to the importance of carbonate compounds of the 

Pb(II) species (41-44).  In our previous study we observed a lead carbonate phase 

(hydrocerrusite (Pb3(CO3)2(OH)2)), when a Pb film was exposed to a solution containing 

NH2Cl (3).   

In Figure 7, the measured equilibrium potentials for NH2Cl/Cl- are more negative 

than those of the free chlorine species for pH values that are relevant to drinking water.  

This is a direct indication that NH2Cl is a thermodynamically weaker oxidizing agent 

than free chlorine.  Figure 7 shows that free chlorine is thermodynamically capable of 

oxidizing Pb to PbO2 above pH 1.7, whereas NH2Cl is thermodynamically capable of 

oxidizing Pb to PbO2 only above about pH 9.5 at the DIC level of 18 ppm.  Even above 

pH 9.5, the driving force for the production of PbO2 by NH2Cl is small.  It is also 

dependent on the concentration of Pb(II) used to calculate the Pourbaix diagram, and on 

the concentration of dissolved inorganic carbon. The relationship of the measured 

equilibrium potentials with the Pb(II)/PbO2 boundary in the Pourbaix diagram is 

consistent with our previous in-situ Pb dissolution studies at pH 8, in which NH2Cl 

oxidizes Pb to Pb(II) species such as Pb3(CO3)2(OH)2, whereas free chlorine oxidizes Pb 

to insoluble, tetravalent PbO2 (3).  The measurement of equilibrium potentials in drinking 

water may prove to be a useful diagnostic tool to determine the stability of Pb in the 

presence of these disinfectants. 
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Table I: Comparison of the kinetic parameters determined by the Koutecky-Levich and 

low overpotential methods for the electrochemical reduction of NH2Cl and OCl-. 

 

 Method 

Koutecky–Levich plot Low overpotential plot  

jo (A/cm2) ko (cm/s) α jo (A/cm2) ko (cm/s) 

NH2Cl 4.1 × 10-5 1.2 × 10-4 0.2 3.7 ± 0.4 × 10-5 1.1± 0.1   × 10-4 

OCl- 8.2 × 10-5 2.5 × 10-4 0.3 7.5 ± 0.3 × 10-5 2.3 ± 0.1  × 10-4 
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Figure 1: Measured equilibrium potentials (shown as open circles) for the NH2Cl/Cl- 

couple as a function of pH. A linear fit to the measured equilibrium potentials gives two 

linear regions.  Below pH 9.4 the slope is 75 mV/pH, and above pH 9.4 the slope is 41 

mV/pH. Calculated formal potentials from the Nernst equation are also shown as solid 

lines, which change slope at a pH of 9.25, corresponding to the pKa of NH4
+. 
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Figure 2: Cyclic voltammograms for the reduction (a) OCl- and (b) NH2Cl on a 

stationary Au electrode at a scan rate of 50 mV/s. The CVs were run in unstirred 

solutions of OCl- and NH2Cl of various concentrations.  The pH 9 solutions were Ar 

purged, and contained 0.1 M Na2SO4 and  60 mM NaHCO3. 
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Figure 3:  Linear sweep voltammograms of 1.7 mM (a) OCl- (b) NH2Cl on a Au rotating 

disk electrode at rotation rates from 700 to 2100 rpm. The voltammograms were run at a 

sweep rate of 50 mV/s  in Ar-purged solutions containing 0.1 M Na2SO4, 60 mM 

NaHCO3 at pH 9. 

 

 



 71

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4:  Koutecky–Levich plots for 1.7 mM (a) OCl- (b) NH2Cl at a series of different 

overpotentials (η). Open circuit values of 0.67 V for OCl- and 0.47 V for NH2Cl were 

used to approximate the overpotentials for determining the kinetic currents (ik). 
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Figure 5: Plots of ln kf(E) versus overpotential (η) for the data obtained from the 

Koutecky–Levich plots shown in Figure 4.  The intercept of the linear fits is ln (k°), and 

the slope is proportional to the transfer coefficient (α). 
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Figure 6: Plots of current density (j) versus overpotential (η) in the small overpotential 

range (0 to 60 mV) for OCl- and NH2Cl at a rotation rate of 900 rpm in an Ar-purged 

solution containing 0.1 M Na2SO4, 60 mM NaHCO3 at pH 9. The scan rate was 1 mV/s. 
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Figure 7: Pourbaix diagram for Pb-H2O-CO2 system with the concentration of dissolved 

Pb species equal to 7.25 × 10-8 M (15 ppb) and the concentration of dissolved inorganic 

carbon equal to 1.5× 10-3 M (18 ppm) at 25 °C.  Measured equilibrium potentials are 

shown as open squares for free chlorine, and as open circles for NH2Cl.  A linear fit to the 

measured equilibrium potentials for free chlorine gives two linear regions.  Below pH 7.5 

(corresponding to the pKa = 7.5 of HOCl) the slope is 70 mV/pH, and above pH 7.5 the 

slope is 90 mV/pH. 
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Abstract 

 Lead dioxide (PbO2) is known to be a stable and insoluble oxide of lead.  In water 

utility systems, PbO2 is often found in lead service lines if the water has a high oxidation-

reduction potential (ORP).  The PbO2 is believed to passivate the lead pipes and help 

control the plumbosolvency problem.  This paper utilizes the electrochemical quartz 

crystal microbalance to compare the dissolution of electrodeposited PbO2 films in two 

disinfectants: free chlorine (in the form of  HOCl/OCl-) and monochloramine (NH2Cl).  

The PbO2 film has a mass gain of 0.50 µg when immersed in the stronger oxidant, 

HOCl/OCl- at concentrations of of 1 mM.  Surprisingly, although NH2Cl is also an 

oxidizing agent, it reduces the PbO2 films to soluble Pb2+.  The solubility of PbO2 in 

NH2Cl decreases as the pH is increased.  The 55 µg as-deposited PbO2 film has a mass 

loss of 17, 2.5, 0.12, and 0.21 µg when immersed in 1 mM NH2Cl solution for 22 hours at 

pH 7, 8, 9, and 10, respectively.  However, if 0.05 mM orthophosphate is added to NH2Cl 

solution at pH 7, then the PbO2 film is passivated with Pb5(PO4)3(OH) and has a mass 
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increase of 3.5 µg.  The PbO2 dissolution rate in NH2Cl solution increases as a function 

of the NH2Cl concentration.  The PbO2 dissolution rate is (3.2±1.7)x10-3, (3.4±1.8)x10-3, 

(9.1±9.3)x10-3, (9.0±7.1)x10-3, (16±7.2)x10-3, and (25±6.9)x10-3 µg/min in solutions 

containing 0, 3, 10, 20, 35, and 50 ppm NH2Cl, respectively.  Experiments with actual Pb 

service lines also confirm that free chlorine oxidizes Pb(II) compounds to PbO2, but 

NH2Cl reduces it back to Pb(II) species.  Hence, a PbO2 layer is not stable in NH2Cl, but 

dissolves as soluble Pb2+.  These results suggest that the use of NH2Cl disinfectant could 

lead to elevated Pb levels in drinking water by reducing PbO2 to soluble Pb(II), and that 

orthophosphate addition could help mitigate the Pb dissolution. 

Introduction 

 Controlling lead dissolution from lead service lines, brass fixtures, and solders is a 

goal for all water utility systems.  In 1991, the U.S. Environmental Protection Agency’s 

(EPA) Lead and Copper Rule established an action limit of 15 ppb for Pb in drinking 

water (1-3).  Lead solubility models have been constructed for aqueous Pb complexes and 

solid Pb species dependent on pH, dissolved inorganic carbon (DIC), and orthophosphate 

concentration (4-6).  These models predict that soluble Pb2+ reacts with carbonate and 

phosphate to form solid Pb(II) compounds such as PbCO3 (cerussite), Pb3(CO3)2(OH)2 

(hydrocerussite), and Pb5(PO4)3OH, which serve as passivation layers and thus control 

the Pb solubility.   

Recently, elevated Pb levels were observed in many water districts including 

Washington, D.C. and Greenville, NC (7-9).  One hypothesis is that changing the 

disinfection program from free chlorine to monochloramine could cause lead leaching (8, 

10-12).  In our previous work, we showed by utilizing electrochemical quartz crystal 
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microbalance (EQCM) (10) and equilibrium potential measurements (11) that free 

chlorine (in the form of HOCl/OCl-) oxidizes Pb to insoluble PbO2 above pH 1.7.  

However, monochloramine (NH2Cl) oxidizes Pb to more soluble Pb(II) species such as 

Pb3(CO3)2(OH)2.  Based on the standard reduction potential, NH2Cl is 

thermodynamically capable of oxidizing Pb to PbO2; but experimental results show that if 

the dissolved inorganic carbon, DIC, is 18 ppm, NH2Cl can only oxidize Pb to PbO2 

above pH 9.5.  Schock et al. have also suggested that insoluble PbO2 layers are formed in 

chlorinated water if the oxidation-reduction potential (ORP) is maintained at high enough 

levels (13-15).  These PbO2 layers are insoluble and stable, which may cause them to 

serve as passivation layers for Pb-bearing materials.  If a weaker oxidant such as NH2Cl 

is used, then PbO2 can be reduced to soluble Pb(II) species, which can cause the Pb levels 

to increase. 

In this study, the EQCM is used to compare the rate of dissolution of PbO2 films 

in solutions of different NH2Cl concentrations.  It is also used to study the effects of 

NH2Cl, HOCl/OCl-, and orthophosphate additives on the dissolution of electrodeposited 

PbO2 films.  The methodology is similar to our previous work (10).  However, in this 

study we are using the EQCM to follow the dissolution of PbO2 films rather than Pb films 

in the disinfection solutions.  The EQCM is an extremely sensitive device capable of 

measuring nanogram mass changes in the solution by monitoring the changes in resonant 

frequency of the quartz oscillator (16).  The EQCM has been used by our group and by 

others to study the corrosion of Pb in real time (10, 17-18).  We characterize the PbO2 

films by scanning electron microscopy (SEM) and glancing-angle X-ray diffraction 
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(XRD).  Additionally, we report on the effect of free chlorine and NH2Cl treatment on 

actual Pb service lines by using glancing-angle XRD and optical microscopy. 

Experimental Section 

Disinfectant Solutions 

All experiments were conducted using HPLC-grade water from Aldrich.  A 

sodium hypochlorite (NaOCl) solution with 10-13% available chlorine was used as a 

source for HOCl/OCl-.  Fresh NH2Cl and HOCl/OCl- solutions were prepared for each 

experiment.  The actual concentrations of HOCl, OCl-, and NH2Cl were determined 

spectrophotometrically at 235 mM (ε = 100 M-1cm-1), 292 nm (ε = 350 M-1cm-1) and 243 

nm (ε = 461 M-1cm-1), respectively, using molar absorptivities from the literature (19).  

The spectrophotometric measurements were made with a CARY 5 UV-Vis-NIR 

spectrophotometer. 

 The NH2Cl solutions were prepared by reacting free chlorine with a five-fold 

molar excess of aqueous NH3.  The excess NH3 minimizes the formation of dichloramine 

(NHCl2) (19, 20).  To prepare the NH2Cl solutions, 5 mL of 100 mM NH3 was added to a 

rapidly stirred 5 mL of 20 mM NaOCl.  For the phosphate studies, 100 µL of 0.1 M 

NaH2PO4 was added to the NH2Cl solutions.  Then, 10 mM H2SO4 was used to obtain the 

desired pH.  The solution was diluted to a total volume of 100 mL.  The final 

concentrations in the solution were approximately 1 mM NH2Cl, 4 mM NH4
+, 1 mM Cl-, 

and 0.052 mM PO4
3-.  The concentrations of HOCl and OCl- in free chlorine solutions at 

pH 7 were approximately 1 mM and 0.7 mM, respectively. These high concentrations of 

disinfectants were used so that the concentration of the disinfectants remained 

approximately constant during the dissolution studies, and so that the data acquisition 
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could be achieved in a reasonable time to prevent drifting of the EQCM instrument. 

These disinfectant concentrations were used consistently throughout the paper, except for 

in the study of the PbO2 dissolution rate as a function of the concentration of NH2Cl, in 

which concentrations of 0, 3, 10, 20, 35, and 50 ppm were used.   

PbO2 Electrodeposition and Dissolution 

 Films of PbO2 were electrodeposited with an EG&G model 273A 

potentiostat/galvanostat from a solution of 0.1 M Pb(NO3)2 in 5 M NaOH at room 

temperature (21).  The polycrystalline PbO2 films were electrodeposited at a constant 

current density of 1 mA/cm2 onto Au-coated, commercially available 9 MHz AT-cut 

quartz crystals (Seiko EG&G model QA-AM9-Au) for the EQCM experiments.  The 

PbO2 films were used immediately after deposition for the EQCM studies.  XRD analysis 

showed that the films were orthorhombic α-PbO2 with a space group Pbcn (a = 0.4971, b 

= 0.5956, and c = 0.5438).  There was no evidence of PbO in the XRD pattern.  The 

EQCM electrodes were installed in a Teflon holder so that only one electrode face with 

an area of 0.2 cm2 was exposed to the solution.  The total mass of PbO2 deposited was 55 

µg, and its thickness was approximately 0.3 µm.  The electrodeposited PbO2 films were 

then exposed to separate 100 mL slowly stirred solutions of NH2Cl and HOCl/OCl-.  

Dissolved CO2 was not excluded from the solutions.  After treatment in disinfectant 

solutions, the mass of PbO2 was determined as a function of time by monitoring the 

frequency change of the EQCM electrode using a Seiko model QCA917 quartz crystal 

analyzer in conjunction with a Nicolet Pro10 oscilloscope.  A gate time of 1 s and an 

output range of ±20 kHz/10V were used with the analyzer.   
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Lead service line experiments 

Lead service lines that had been removed from service were received from the 

City of Grand Rapids Water System, Lake Michigan Filtration Plant, MI.  These lead 

service lines were 30 cm in length with a 1.2 cm inner diameter and a 2.8 cm outer 

diameter.  One of the pipes was cut into ring segments approximately 2.5 cm thick with a 

pipe cutter.  Each segment was then cut open with aviation snips to yield 4 samples.  

Each sample was wrapped in Kimwipes® and flattened with a vise.  A flat specimen is 

necessary for the XRD measurements.  The surface inside the lead service line was 

covered with yellow and white particles.  Several layers of transparent nail polish were 

applied to the back, sides, and around the surface so that only the surface films were 

exposed with an area of approximately 0.8 cm2.  Each sample was immersed in 1 mM 

free chlorine and in 1 mM NH2Cl at pH 8 for 24 hrs. 

XRD and SEM instrumentation 

 Grazing incidence XRD patterns were obtained with a Philips X’Pert 

diffractometer using Cu Kα source radiation with an X-ray mirror (PW3088/60) as the 

incident beam module and a 0.18º parallel plate collimator as the diffracted beam module.  

A fixed incident angle of 1º was maintained, and the instrument was operated in the 

continuous mode with a step size of 0.03º and a counting time of 5 s.  SEM micrographs 

were obtained with a Hitachi model S-4700 cold field-emission scanning electron 

microscope. 
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Results and Discussion 

Dissolution rate of PbO2 in NH2Cl as a function of concentration 

 The changes in mass and dissolution rate of PbO2 films in NH2Cl solution at 

different concentrations at pH 7 are shown in Figure 1.  The dissolution rate studies were 

repeated 3 times for each concentration and the error bars indicate one standard deviation.  

The rates of PbO2 dissolution are determined for 0, 3, 10, 20, 35, and 50 ppm NH2Cl.  

Each line in Figure 1a shows the PbO2 mass decrease for each NH2Cl concentration when 

the electrode is treated for 2.5 hours.  Taking the slopes from the lines in Figure 1a, the 

PbO2 film dissolution rate can be determined for each concentration and plotted in Figure 

1b.  The film dissolves more quickly as the NH2Cl concentration increases.  The 

dissolution rates in 0, 3, 10, 20, 35, and 50 ppm NH2Cl are (3.2 ± 1.7) x 10-3, (3.4 ± 1.8 ) 

x10-3, (9.1±9.3)x10-3, (9.0±7.1)x10-3, (16±7.2)x10-3, and (25±6.9)x10-3 µg/min, 

respectively. 

Dissolution of PbO2 in NH2Cl at different pHs 

 Figure 2 shows the mass of electrodeposited α-PbO2 films as a function of time in 

1 mM NH2Cl solution at different pHs.  The PbO2 dissolution rate increases as the pH 

decreases.  During a 22 hour period, the decrease in mass of the 55 µg as-deposited PbO2 

film is 17, 2.5, 0.12, and 0.21 µg for pH 7, 8, 9, and 10, respectively.  After treatment, all 

sample surfaces contain red films, which are consistent with the red color of PbO2.  XRD 

analysis confirms that all samples contain only α-PbO2.   

Dissolution of PbO2 in NH2Cl, HOCl/OCl-, and NH2Cl+phosphate at pH 7 

 Figure 3 shows the change in mass of electrodeposited PbO2 films in NH2Cl, 

HOCl/OCl-, and NH2Cl + 0.05 mM phosphate at pH 7.  The mass vs. time plots show that 
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the PbO2 film treated in NH2Cl solution has a mass decrease of 17 µg (Figure 3a), as 

compared with the film treated in HOCl/OCl- solution, which has a mass increase of 0.5 

µg (Figure 3b).  However, when 0.05 mM phosphate is added to the NH2Cl solution at 

the same pH, the film is passivated and a mass of 3.5 µg is gained (Figure 3c).  Glancing-

angle XRD patterns of the films are shown in Figure 4(a-d).  Figures 4e and 4f also show 

powder diffraction pattern files for α-PbO2 and Pb5(PO4)3OH, respectively.  The XRD 

pattern of the as-deposited 0.3 µm thick PbO2 film without any treatment shows that the 

film is PbO2.  After treatment in NH2Cl solution (Figure 4b) and HOCl/OCl- solution 

(Figure 4c) at pH 7, the PbO2 film shows the same XRD pattern as it did before 

treatment.  However, the XRD peak intensity of the PbO2 film in NH2Cl is greatly 

reduced, which suggests that less material is on the electrode surface.  The XRD pattern 

of the PbO2 film treatment in NH2Cl+phosphate (Figure 4d) shows that the electrode 

surface consists of PbO2 and lead phosphate hydroxide (Pb5(PO4)3OH).  The Au substrate 

peaks are marked with an asterisk. The Pb is divalent in this compound. 

 Figure 5 (a-d) shows the SEM micrographs that correspond to the films in Figure 

4 (a-d).  The morphology of the PbO2 film without any treatment is uniform and shows 

PbO2 particles with a particle size of approximately 400-600 nm.  After the film has been 

treated in NH2Cl, the surface morphology is completely changed (Figure 5b).  The film 

dissolves and PbO2 particles are etched, which is consistent with the EQCM experiment 

and XRD pattern.  The morphology of the PbO2 film after treatment in HOCl/OCl- is 

similar to that of the film before treatment (Figure 5c).  The SEM image along with the 

EQCM experiment and XRD suggest that PbO2 is quite stable in free chlorine solution.  

Figure 5d shows the PbO2 film after treatment in 1 mM NH2Cl+0.05 mM phosphate.  The 
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image reveals a formation of fibers that cover the surface of PbO2.  Spot-mode EDS 

performed on these fibers indicated that they contain 2.2 atom % of phosphorous.  

Glancing-angle XRD also confirmed that the film had Pb5(PO4)3OH 

(hydropyromorphite).  The low coverage of Pb5(PO4)3OH suggests a slow rate of film 

formation, as mentioned by Schock (5).  The SEM image in Figure 5d is in agreement 

with the EQCM experiment in Figure 3c, showing that the mass of PbO2 continued to 

increase because of the Pb5(PO4)3OH film formation, which can serve as passivation 

layers for PbO2.   

 Measured equilibrium potentials for free chlorine and NH2Cl are consistent with 

the EQCM results.  Figure 6 shows the E-pH diagram for lead in water along with the 

measured equilibrium potentials (also referred to as oxidation-reduction potentials, or 

ORPs) of NH2Cl and free chlorine.  Details of the procedure used to prepare these 

solutions and the instrumentation used for ORP measurements can be found elsewhere 

(11). The concentration of DIC is set to 1.5 mM (18 ppm), which is the value previously 

used by Schock et al. (13).  Dissolved Pb (II) species concentrations are set to 7.2 x10-8 

M (15 ppb), which is the EPA action level for Pb in drinking water.  The Gibbs free 

energies of formation of the Pb species at 298 K and 1 atm used to calculate the 

equilibrium constants and standard reduction potentials for the chemical and 

electrochemical reactions of different Pb species are given by Schock et al. (6).  James et 

al. previously reported the effect of oxidant type and concentration on the ORP in 

carbonate buffered solution as a function of pH (22).  Figure 5 is similar to the Pourbaix 

diagram shown by Rajasekharan et al. (11).  However, more equilibrium potential 

measurements of NH2Cl were added to the plot from pH 7-8, which is relevant to the pH 
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range used in this study.  The oxygen reduction reaction (i.e., O2  H2O) is also included 

in the figure as a dashed line.  The thick solid lines are the calculated formal potential for 

the Pb2+ and DIC concentrations given above.  The thin solid blue and red lines are linear 

fits for the free chlorine and NH2Cl measured equilibrium potentials, respectively.  All 

measurements for NH2Cl and free chlorine were performed on a Au electrode in solutions 

containing equimolar quantities of the redox species in 60 mM buffered solution.   

 As shown in Figure 6, the measured equilibrium potentials for free chlorine are 

more positive than those of NH2Cl for pH values relevant to drinking water, which shows 

that NH2Cl is a less powerful oxidant than free chlorine.  These results are in agreement 

with the EQCM results in Figure 3, in which there is no mass loss for the PbO2 film in 

free chlorine solution.  Figure 6 also indicates that PbO2 is thermodynamically stable in 

free chlorine, but is dissolved as Pb2+ or forms other soluble Pb(II) species such as 

Pb(CO3)0 in a solution of NH2Cl at a pH lower than approximately 9.5.  As the pH 

decreases from 9 to 7, the measured equilibrium potentials for NH2Cl are more negative 

than the formal potential for Pb2+/PbO2.  Again, this is in agreement with the EQCM 

results in Figure 2 which show that PbO2 film dissolves more rapidly as the pH decreases.  

 Our results have shown that the dissolution of PbO2 does occur in NH2Cl.  

Another point that we would like to address in the paper is the mechanism of dissolution 

of PbO2.  That is, does the material dissolve as Pb(IV), or is the Pb(IV) first reduced to 

Pb(II) which then dissolves.  Solubility products provide some guidance to address this 

question. To confirm that PbO2 film does not dissolve in the solution as Pb(IV), but 

rather is reduced to Pb(II), the amount of dissolved species in equilibrium with its solid 
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form can be calculated from the solubility products (Ksp).  The Ksp values for β-PbO2 (23) 

and PbO (6) are given in eq 1-2. 

PbO2 + 2H2O  Pb4+ + 4OH-                                                                  Ksp = 10-65.49    (1) 

PbO + H2O  Pb2+ + 2OH-                                                                     Ksp = 10-14.92    (2) 

Using the solubility-product expression (Ksp = [A]a[B]b), the calculated mass decrease in 

solution for PbO2 dissolved as Pb4+ would be 5.45x10-6 µg.  If, however, PbO2 is allowed 

to reduce to PbO, the solid will dissolve as Pb2+ and a mass of 1387 µg will be lost.  The 

calculated mass decrease for PbO2 dissolved as Pb4+ is too small compared with the 

measured EQCM results in Figure 1a with 0 ppm NH2Cl.  Therefore, it is more probable 

that PbO2 is reduced and dissolved as Pb2+ ions in the solution.  Finally, the XRD in 

Figure 4d also confirms the presence of Pb(II) species as Pb5(PO4)3OH when phosphate 

is added in the NH2Cl solution, indicating that PbO2 is reduced to Pb(II).  Hence, the 

phosphate experiments provide additional evidence that the Pb(IV) is reduced to Pb(II) 

by NH2Cl. 

 In this study, we show through EQCM results and measured equilibrium 

potentials that PbO2 dissolves in NH2Cl disinfectant solution.  However, the reducing 

agent that causes the dissolution of PbO2 to Pb2+ has not been identified.  Therefore, we 

performed two control experiments.  In our first hypothesis, we consider the reduction of 

PbO2 by Cl- according to the half and net redox reactions in acidic solution given in eq 3-

5. 

NH2Cl + 2H+ + 2e-  Cl- + NH4
+                                             E0 = 1.4 V vs NHE         (3) 

PbO2 + 4H+ + 2e-  Pb2+ + 2H2O                                            E0 = 1.455 V vs NHE      (4) 

PbO2 + Cl- + NH4
+ + 2H+  Pb2+ + NH2Cl + 2H2O                E0 = 0.055 V vs NHE     (5) 
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A PbO2 film was immersed in a solution containing 1 mM Cl- and 4 mM NH4
+ at pH 7.  

The plot of mass vs. time reveals that the PbO2 loses mass by only 2.40 µg after the 

experiment.  Spectrophotometry does not show any evidence for NH2Cl, suggesting that 

oxidation of Cl- to NH2Cl (reaction 5) is not occurring.  In addition, this control 

experiment suggests that the PbO2 does not dissolve by complexing the Pb(IV) with 

ammonia. 

 A second hypothesis for PbO2 dissolution is the reduction of PbO2 to Pb2+ by 

water.  In this case, the water would be oxidized to molecular oxygen.  The calculated 

formal reduction potential for O2/H2O at pH 7 is 0.816 V vs NHE, which is more 

negative than the formal reduction potential for PbO2 at pH 7, suggesting that water can 

reduce PbO2 to Pb2+ at this pH.  A control experiment of PbO2 immersed in pure water at 

pH 7 without NH2Cl was also carried out.  The plot of mass vs. time indicates a PbO2 

mass decrease of only 0.92 µg. 

These control experiments suggest that neither species mentioned above is the 

active reducing agent for PbO2.  The reduction of PbO2 to Pb2+ in NH2Cl solution may be 

caused by a decomposition product of NH2Cl.  Margerum et al. have shown that NH2Cl 

oxidizes nitrite ion by means of an acid-catalyzed transfer of Cl+ from NH2Cl to NO2
-, 

producing NO2Cl as an intermediate (24).  Other unidentified intermediate species, such 

as the amidogen radical (NH2•), may also be involved in NH2Cl reduction.  Piela and 

Wrona have described the reduction mechanism of monochloramine that leads to the 

production of the amidogen radical (NH2•) in the rate-determining step (25).  According 

to Vikesland and Valentine, this radical can combine with itself to form hydrazine, N2H4 

(26).  Hydrazine is a reducing agent that could reduce PbO2 to Pb2+. 
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Experiments with lead service lines 

Figure 7 shows glancing-angle XRD patterns and the corresponding optical 

micrographs of a lead service line from Grand Rapids, MI before and after treatment in 1 

mM free chlorine and 1 mM NH2Cl at pH 8 for 24 hours.  The surface of all the samples 

before treatment was covered with yellow and white powder.  The glancing-angle XRD 

in Figure 7a shows that the powder mostly consists of Pb3(CO3)2(OH)2 and PbO 

(litharge) with a small amount of β-PbO2.  After the sample was treated in free chlorine, 

the surface changed color from white and yellow to reddish brown; and additional peaks 

of α-PbO2 and PbClOH are present in the XRD pattern (Figure 7b).  The same pipe 

sample was then immersed in NH2Cl.  The XRD pattern in Figure 7c shows that the β-

PbO2 peak at 2θ = 25.39º almost disappears and the α-PbO2 peak at 2θ = 23.31º 

completely disappears (shown by arrows), confirming that the NH2Cl reduces α-PbO2 to 

Pb(II) species.  The PbClOH peak also disappears from the pattern.  The surface of the 

lead pipe also changes from reddish brown to white.  It should be noted from the XRD 

pattern that, after treatment in NH2Cl, the PbO changes its polymorph from litharge to 

massicot.  The same Pb pipe sample was used in Figure 7 (a-c).  These experiments were 

performed on 4 separate samples, which all showed similar results. 

 We have shown in our previous work that NH2Cl can increase the Pb levels in 

water by oxidizing a pure Pb film to Pb2+ (10).  However, in real water systems, pure Pb 

pipes are not exposed to NH2Cl.  The pipes are already covered with passivation layers, 

such as PbCO3, Pb3(CO3)2(OH)2, Pb5(PO4)3OH, PbO, and PbO2.  Other studies have 

suggested that PbO2 could be a good passivation material to control the plumbosolvency 

problem (13,14).  This paper shows direct evidence that NH2Cl can also affect the 
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dissolution of PbO2.  Although the mechanism of the reduction of PbO2 to Pb2+ in NH2Cl 

is not fully understood, the EQCM results show that PbO2 films are unstable in NH2Cl 

solution, especially at neutral pH.  The addition of orthophosphate to a water system with 

an NH2Cl disinfection program should minimize the reduction of the PbO2 films by 

producing a Pb5(PO4)3OH passivation film. 
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 Figure 1: (a) EQCM measurements of the change in mass of 0.3 µm thick PbO2 films 

immersed in 0, 3,10, 20, 35, and 50 ppm NH2Cl solution at pH 7.  (b) Rate of PbO2 

dissolution as a function of the NH2Cl concentration. 
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Figure 2: EQCM measurements of the change in mass of 0.3 µm thick PbO2 fims 

immersed in 1 mM NH2Cl solution at (a) pH 7, (b) pH 8, and (c) pH 9 and 10.  The total 

PbO2 mass deposited was 55 µg. 
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Figure 3: EQCM measurement of the change in mass of 0.3 µm thick PbO2 films 

immersed in solution at pH 7 of (a) 1 mM NH2Cl, (b) 1 mM free chlorine, and (c) 1 mM 

NH2Cl + 0.05 mM orthophosphate. 

 

 

 

 

 

 

 

 

 

 

 



 95

20 30 40 50 60 70

0

200

400

0

200

400

20 30 40 50 60
0

300
0

300
600
900

f) Pb5(PO4)3(OH)

 

2θ (degrees)

* a) before treatment

 
 b) NH2Cl

 

 
 

e) α-PbO2

 

d) NH2Cl+0.05mM phosphate

 

 

c) HOCl/OCl-

 In
te

ns
ity

 
Figure 4: Glancing-angle X-ray diffraction patterns of 0.3 µm thick PbO2 films (a) as-

deposited, (b) after immersion of 1 mM NH2Cl at pH 7, (c) after immersion of 1 mM free 

chlorine at pH 7, and (d) after immersion of 1 mM NH2Cl+0.05 mM orthophosphate at 

pH 7. The standard powder patterns for (e) α-PbO2 and (f) Pb5(PO4)3OH are also shown.  

The Au(111) peaks marked with an asterisk at 2θ = 38.18º are from the Au-coated 

EQCM electrode. 
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Figure 5: Scanning electron micrographs of 0.3 µm thick PbO2 films (a) as-deposited, (b) 

after immersion in 1 mM NH2Cl at pH 7, (c) after immersion in 1 mM free chlorine at pH 

7, and (d) after immersion in 1 mM NH2Cl+0.05 mM orthophosphate at pH 7. 
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Figure 6: E-pH (Pourbaix) diagram for lead with the concentration of dissolved Pb 

species equal to 7.25 x 10 -8 M (15 ppb) and the dissolved inorganic carbon (DIC) 

concentration equal to 1.5 x 10-3 M (18 ppm) at 25 ºC.  Measured equilibrium potentials 

are shown as blue open squares for free chlorine and as red open circles for NH2Cl.  A 

linear fit to the measured equilibrium potentials for free chlorine or NH2Cl gives two 

linear regions.  Below pH 7.5 (pKa HOCl = 7.5) the slope is 72 mV/pH, and above pH 7.5 

the slope is 90 mV/pH.  A linear fit to measured equilibrium potentials for NH2Cl below 

pH 9.5 (pKa NH2Cl = 9.5) has a slope of 75 mV/pH, and above pH 9.5 has a slope of 45 

mV/pH.  The linear fit for NH2Cl crosses the PbCO3
0/PbO2 boundary at pH 9.4. 
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Figure 7: Glancing-angle X-ray diffraction patterns and optical micrographs of an actual 

Pb service line sample (a) before treatment, (b) after immersion in 1 mM free chlorine at 

pH 8, and (c) after immersion in 1 mM NH2Cl at pH 8 (black arrows indicate the 

disappearance of PbO2).  The reflections from Pb3(CO3)2(OH)2 and Pb are marked with 

sharps (#) and an asterisk (*), respectively. 
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ABSTRACT.  Epitaxial nanodisks of tin sulfide (δ-SnS) are deposited electrochemically 

on a [100]-oriented single crystal Au substrate from an acidic solution at 70 ºC.  The δ-

SnS grows with two different out-of-plane orientations of [100] and [301] and four 

equivalent in-plane orientations.  X-ray pole figures reveal the following epitaxial 

relationships: SnS(100)[010]//Au(100)[010], SnS(100)[ //Au(100)[010], 

SnS(100)[ //Au(100)[010], SnS(100) ]100[ //Au(100)[010], 

SnS(301)[ //Au(100)[010], SnS(301)]010 ]010[ //Au(100)[010], 

SnS(301) ]310[ //Au(100)[010], and SnS(301)[ //Au(100)[010].  For the SnS(100) 

orientation, the in-plane mismatch is 2.4% in the [010] direction and 6.1% in the [001] 

direction.  For the (301) orientation, the in-plane mismatch is 2.4% in the [010] direction 

and 3.4% in the [  direction.  The δ-SnS deposits with a disk-like morphology with a 

diameter of 300 nm and a thickness of 50 nm. 

]010

]001

]031

]310

Key words: electrodeposition, epitaxy, tin sulfide 
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INTRODUCTION 

 Epitaxial films are typically deposited onto single crystal substrates using vapor 

deposition.  Recently, many research groups have utilized the electrochemical deposition 

method to produce epitaxial films.1-6  The advantages of this method over other 

deposition methods are its versatility, high level of control, simplicity and economy.  The 

deposition is usually carried out at or near room temperature, which helps minimize solid 

state diffusion between the film and substrate.  The thickness of the film is easily 

controlled by the charge passed through the electrode.  The electrochemical deposition 

method can be used to deposit materials on substrates of any shape or size.  In addition, 

the departure from equilibrium is controlled through the applied overpotential, and the 

morphology of the deposits is often dependent on solution additives and pH.  Our group 

has previously employed electrodeposition in aqueous solution to grow epitaxial films of 

δ-Bi2O3
7, Cu2O6,8, CuO9, ZnO10,11, Fe3O4

12, PbO2
13, Tl2O3

14, and PbS15 on single-crystal 

Au.  We have also electrodeposited epitaxial Cu2O films and nanostructures with tunable 

morphologies onto Si and InP single crystals.16-18   

 Tin sulfide is a p-type layered semiconductor with a band gap ranging from 1.05 

to 1.48 eV19-22 depending on the preparation method, which is near the optimum energy 

bandgap of 1.5 eV required for efficient light absorption for solar energy applications.23  

According to the recent study by Reddy and co-workers on the optical properties of SnS 

films, the optical bandgap of SnS depends strongly on the lattice parameters.24  Reddy et 

al. have fabricated p-SnS/n-CdS polycrystalline thin films with a solar conversion 

efficiency of 1.3%.25  Based on the bandgap of the material,  a conversion efficiency of 

more than 25% is possible.25,26  Additionally, Sn and S are inexpensive, environmentally 
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benign, and ubiquitous in nature.19,20,22  These properties make SnS suitable for use in 

making photovoltaic and photoelectrochemical cells.  SnS have been synthesized using 

many techniques including, for example, electrodeposition19-22,27,28,   pulse deposition29,30, 

spray pyrolysis31,32, chemical vapor deposition33, and molecular beam epitaxy.34 

Here, we show that epitaxial nanostructures of δ-SnS can be electrodeposited onto 

single-crystal Au(100).  The SnS was electrodeposited by the method developed by 

Brownson et al.19 from a solution of SnCl2, thiosulfate, and L-tartaric acid at pH 2.5.  Our 

motivation for depositing epitaxial δ-SnS on Au is twofold.  First, we are interested in 

depositing high-aspect-ratio epitaxial deposits of the material for possible 

photoelectrochemical and photovoltaic applications.  Electron-hole recombination should 

be minimized in the epitaxial structures because of the lack of grain boundaries in the 

direction perpendicular to the substrate.  Also, the high aspect ratio should maximize 

collection of charge carriers.  Recently, fabrication of high-aspect-ratio (length/diameter) 

semiconductors (Si, CdSe, CdTe) for photoelectrochemical and photovoltaic devices has 

attracted much attention compared with the conventional planar geometry.35-38  The 

Lewis group has theoretically and experimentally shown that nanorod arrays of 

Cd(Se,Te) arranged perpendicular to the substrate enhance the overall efficiency.  The 

design increases the charge carrier collection to the ultra-thin p-n junction that is parallel 

to the substrate but orthogonal to the light absorption.35,39.  Our second motivation for 

studying this epitaxial system is that it provides fundamental information on the epitaxial 

growth of high-mismatch systems. δ-SnS has an orthorhombic structure (a = 11.380 Å, b 

= 4.029 Å, c = 4.837 Å),20 whereas Au (a = 4.079 Å) has a face-centered cubic structure. 

We show in this work that mismatch is minimized when the δ-SnS deposits with the a 
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axis of δ-SnS oriented perpendicular to the surface of the Au(100) substrate. The δ-SnS 

nanostructures were characterized by X-ray diffraction, X-ray pole figures, and rocking 

curves.  The film morphology was examined via scanning electron microscopy (SEM). 

EXPERIMENTAL SECTION 

 SnS was deposited using the method developed by Brownson et al.19  The 

deposition solution contained 50 mM SnCl2, 150 mM Na2S2O3 (sodium thiosulfate), 0.2 

M L-tartaric acid, and 0.1 M HCl.  The final pH of the solution was adjusted to 2.5 with 6 

M NaOH.  The bath temperature was maintained at 70 ºC.  When sodium thiosulfate was 

added to the solution, colloidal sulfur formed due to thiosulfate disproportionation.  The 

cell consisted of a platinum counter electrode and a Ag/AgCl reference electrode.  The 

working electrode was an Au(100) single-crystal purchased from Monocrystal Company 

(diameter 10 mm, thickness 2 mm).  A gold wire was wrapped around the single crystal 

to serve as an electrical contact.  The Au(100) working electrode was placed in the 

solution using the meniscus method.  Prior to deposition, the Au(100) single-crystal was 

electropolished and annealed in a hydrogen flame.  Electropolishing was performed at a 

constant anodic current density of 1.5 A/cm2 in a solution containing 50 vol % ethanol, 

25 vol % ethylene glycol, and 25 vol % concentrated HCl at 55 ºC with a graphite 

counter electrode.  The deposition solution was deaerated with Ar for 30 min prior to 

deposition to prevent the oxidation of Sn2+.  Argon gas was passed continually over the 

surface of the solution during deposition.  The deposition was carried out in a fume hood.  

SnS films were deposited at a constant cathodic current density of 3 mA/cm2 for 30 min 

with an EG&G Princeton Applied Research model 273A potentiostat/galvanostat. 
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 X-ray diffraction (XRD) measurements were taken with a high–resolution Philips 

X’Pert diffractometer.  The film XRD scan was obtained using Cu Kα1 source radiation 

with a combination X-ray mirror and two-crystal Ge(220) two-bounce hybrid 

monochrometer.  The secondary optics module was a 0.18º parallel plate collimator.  

Rocking curves were run using a triple axis/rocking curve assembly as the secondary 

optics.  The instrumental broadening is 25 arcseconds.  Pole figures were run on the same 

instrument in point-focus mode using a crossed slit collimator as the primary optics and a 

flat graphite monochrometer as the secondary optics.  Stereographic projections were 

generated using Carine Crystallography Software (version 3.1).  Scanning electron 

microscopy (SEM) images were taken with a Hitachi S-4700 cold field emission SEM at 

an accelerating voltage of 5 keV. 

RESULTS AND DISCUSSION 

 The epitaxial deposition of SnS nanodisks are achieved by electrochemical 

reduction of SnCl2 in the presence of Na2S2O3 as a source of sulfur.  The chemistry of tin 

monosulfide electrodeposition is described elsewhere.20  The deposition current of 3 

mA/cm2 used in this study corresponds to the potential of approximately -0.45 V vs 

Ag/AgCl.  This potential is 390 mV more positive than the potential of -0.86 V vs SCE 

reported by Brownson et al.19 at the same current density, which is likely due to the 

higher electrical conductivity and catalytic activity of Au compared to the ITO.  When a 

film is grown on a polycrystalline substrate such as stainless steel, the measured potential 

is -0.75 V vs Ag/AgCl. 

 The XRD θ-2θ diffraction pattern of the SnS deposit on Au(100) is shown in 

Figure 1.  Only three peaks are observed for SnS, which correspond well to the (200), 
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(400), and (800) reflections of SnS.  No other reflections are observed in the 2θ scan, 

indicating preferential [100] orientation of the film.  Because only the {h00} type is 

observed in the diffraction pattern, only one lattice parameter can be determined (a = 

11.31 Å).  This value is similar to the a lattice parameter of δ-SnS polymorph reported by 

Brownson et al. (a = 11.380 Å, b = 4.029 Å, c = 4.837 Å).20  However, when a 

polycrystalline SnS is deposited on stainless steel using the same bath condition, the 

lattice parameters are a = 11.22 Å, b = 3.989 Å, c = 4.328 Å.  The lattice parameters 

obtained from the polycrystalline deposit are quite similar to the literature values of α-

SnS (a = 11.18 Å, b = 3.982 Å, c = 4.329 Å, JCPDS no. 73-1859).40  When the SnS(210) 

pole figure was run to determine the in-plane orientation of the film relative to the 

substrate, two different reflections that correspond to the [100] and [301] orientations can 

be seen.  Pole figures are obtained by choosing a specific plane to probe while measuring 

the diffracted intensity as a function of tilt (χ) and rotation (φ).  The (210) pole figure of 

the SnS is shown in Figure 2a, and the (111) pole figure of Au(100) is shown in Figure 

2b.  The radial grid lines in the pole figures correspond to 30º increments in χ.  The SnS 

pole figure exhibits four equally-spaced (∆φ = 90º) peaks at χ = 54º, which is in 

agreement with the calculated χ = 54.5º that corresponds to the angle between the (210) 

and (100) planes in SnS.  The other eight peaks at χ = 64º agree well with the calculated χ 

= 63.9º, corresponding to the angle between the (210) and (301) planes.  The average 

peak height in Figure 2a is 360 counts/s for the (100) reflections and 76 counts/s for the 

(301) reflections, which indicates that the SnS deposit has a majority [100] orientation.  

The XRD diffraction pattern only shows 3 peaks because the (400) and (301) reflections 

overlap (2θ400 = 31.995º and 2θ301 = 31.655º). 
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 To help verify the assignment of in-plane orientations from the pole figure, 

stereographic projections were generated (Figure 3).  The stereographic projections in 

Figure 3 are constructed using the orthorhombic α-SnS structure, because the atomic 

positions for α-SnS structure are well known and because δ-SnS is a slightly distorted 

structure of α-SnS.20  Figure 3a and 3b show the (100) and (301) stereographic 

projections, respectively, of orthorhombic α-SnS while probing the (210)-type 

reflections.  In Figure 3a, the spots at χ = 54.5º are assigned to the {210} reflections due 

to the [100] orientation.  Similarly, the spots at χ = 63.9º correspond to the {210} 

reflections in Figure 3b due to the [301] orientation.  Figure 3a and 3b are the resulting 

stereographic projections, assuming that only one domain of each orientation is 

deposited.  However, the Au(100) substrate has four-fold symmetry, so it is reasonable to 

expect four domains of each orientation being deposited on the surface.  Overlaying 

Figure 3a and 3b on top of each other, then rotating the image by 90º, 180º, and 270º 

results in the stereographic projection shown in Figure 3c.  The stereographic projection 

matches the experimentally observed pole figure shown in Figure 2a.  The Au(111) pole 

figure in Figure 2b has four equally spaced peaks at χ = 55º, which is consistent with the 

angle between (111) and (100) planes in the cubic system.  By comparing the two pole 

figures with the calculated stereographic projections, the in-plane orientation of SnS on 

Au is determined.  The epitaxial relationships can be expressed as 

SnS(100)[010]//Au(100)[010], SnS(100) ]010[ //Au(100)[010], 

SnS(100)[ //Au(100)[010], SnS(100)]001 ]100[ //Au(100)[010], 

SnS(301)[ //Au(100)[010], SnS(301)]010 ]010[ //Au(100)[010], 

SnS(301) ]310[ //Au(100)[010], and SnS(301) ]031[ //Au(100)[010].  The SnS structure is 
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characterized as layers of double planes.19,20,41  Each plane consists of Sn-S bonds 

arranged in zigzag chains that are parallel to the substrate (perpendicular to the a-axis)19.  

For the SnS(100) plane, the spacing between two adjacent sulfur atoms is 3.982 Å along 

the b-axis and 4.329 Å along the c-axis.  By comparing the spacings between sulfur 

atoms and Au atoms (4.079 Å), the lattice mismatch is calculated to be 2.4% in the [010] 

in-plane direction and 6.1% in the [001] in-plane direction.  Hence, the system minimizes 

the lattice mismatch by placing the larger a lattice parameter (11.380 Å) perpendicular to 

the substrate.  The b (4.029 Å) and c (4.837 Å) lattice parameters are similar to each 

other, and they are closer in value to the lattice parameter (4.079Å) of the Au substrate.  

For the SnS[301] orientation, the (301) plane is also aligned with the Au.  The distance 

between two sulfur atoms in the [010] direction is 3.982 Å and the ]310[  direction is 

8.437Å.  The mismatches in the [010] and ]310[  in-plane directions are 2.4% and 3.4%, 

respectively. 

The quality of the epitaxial δ-SnS nanostructure can be obtained by x-ray 

azimuthal scans and x-ray rocking curves.  An azimuthal scan is a cross section of a pole 

figure at a tilt angle, χ, which corresponds to the maximum intensity of the reflections in 

the pole figure.  Figure 4 shows azimuthal scans for the (210) reflections of δ-SnS at a tilt 

angle of 54.5º.  The expected four-fold symmetry is observed for the δ-SnS deposit and 

the substrate.  The average full width at half-maximum (fwhm) of δ-SnS is 3.16º.  The 

average peak intensity of δ-SnS relative to the background is 16 to 1, indicating that δ-

SnS has a [100] orientation with little or no fiber texture.  If the deposit had a fiber 

texture, the ratio between the average peak intensity relative to the background would be 

1:1.  Figure 5a and 5b show the x-ray rocking curves of SnS(400)/(301) and Au(200).  
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The fwhm of SnS(400)/(301) and Au(200) are 2.9º and 0.23º, respectively.  These results 

indicate that δ-SnS has a [100] out-of-plane orientation with a 2.9º mosaic spread. 

 Scanning electron micrographs of δ-SnS electrodeposited with a cathodic current 

density of 3 mA/cm2 are shown in Figure 6a and 6b at two different magnifications.  The 

thickness of the δ-SnS deposit is approximately 800 nm, as determined by cross-section 

analysis on Au sputtered on glass.  The morphology of the δ-SnS deposit has a disk-like 

structure.  The disks are approximately 300 nm in diameter and 50 nm in thickness.  The 

ratio of Sn:S is 1:1.08 when measured by energy-dispersive spectroscopy (EDS).   

CONCLUSION 

 Epitaxial δ-SnS nanodisks are electrodeposited on Au(100) single crystal using 

the cathodic deposition approach.  The deposition solution was originally developed by 

Brownson et al.19  The δ-SnS deposit grows with two different in-plane orientations of 

(100) and (301), which are aligned with the Au substrate.  The two orientations can only 

be distinguished by x-ray pole figures.  The quality of the δ-SnS is analyzed by azimuthal 

and rocking curve scans.  The rocking curve shows that the film has a 2.9º mosaic spread.  

EDS also confirms a 1:1 Sn to S ratio.  For photovoltatic and photoelectrochemical 

applications, it will be interesting in future work to deposit δ-SnS on less expensive Au-

sputtered glass which has a [111] orientation.  It will also be interesting to deposit 

epitaxial SnS/Si and SnS/InP heterojunctions. 
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Figure 1: X-ray diffraction θ-2θ scan probing the out-of-plane orientation of an SnS film 

electrodeposited on Au(100). 
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Figure 2: X-ray pole figures of (A) SnS film.  The four spots at χ = 54º correspond to the 

angles between the (210) and (200) planes, and the eight spots at χ = 64º correspond to 

the angles between the (210) and (301) planes.  (B) Au(100).  The four spots at χ = 

54ºcorrespond to the angle between (111) and (100) planes of Au.  The radial grid lines in 

the pole figures correspond to 30º increments in χ. 
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Figure 3: Stereographic projections for (A) SnS(100) and (B) SnS(301) orientations 

indicating the positions where the (210)-type reflections should be observed in the pole 

figure.  (C) Expected (210) stereographic projection for four domains obtained by 

overlaying the stereographic projections for the two orientations in (A) and (B) and 

rotating by 90º, 180º, 270º. 
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Figure 4: Azimuthal scan for (210) reflection of SnS.  The azimuthal scans were 

obtained by setting 2θ equal to the angle of maximum diffracted intensity for the 

reflection of interest (2θ = 27.48º) and tilting the sample to the angle, χ, corresponding to 

the angle between the plane of interest and (100) planes (χ = 54.5º for SnS).  The general 

4-fold symmetry is observed for SnS.  The average fwhm is 3.16º. 
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Figure 5: X-ray rocking curves for (A) SnS(400)/(301), and (B) Au(200).  Full width at 

half-maximum (fwhm) is 2.9º for SnS(400)/(301) and 0.23º for Au(200). 
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Figure 6: SEM micrographs of an epitaxial film of SnS on Au(100).  Micrograph (B) is a 

higher-magnification image of the SnS film shown in (A).   
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APPENDIX 

 

THE EFFECT OF DIFFERENT CATIONS ON LEAD DIOXIDE 

ELECTRODEPOSITION 

 

 Lead dioxide is a highly conductive oxide that is in lead acid batteries and as an 

anode material for the manufacture of chlorate and perchlorate.  Lead dioxide exists in 

three polymorphs: tetragonal (β-PbO2), orthorhombic (α-PbO2), and cubic.  The cubic 

PbO2 phase is prepared at high pressure.1  The pure phase of tetragonal or orthorhombic 

PbO2 can be obtained via electrodeposition. The deposition of β-PbO2 occurs from acidic 

media at high current densities, whereas α-PbO2 can be obtained from both basic and 

acidic solutions at low current densities.2,3   

 Although synthesizing tetragonal or orthorhombic PbO2 polymorphs depends 

primarily on the solution pH, other parameters such as cations from the solution also 

affect the PbO2 structure.4  For instance, Petersson et al. found that the β-PbO2 to α-PbO2 

ratio increased with decreasing cation size (H+ > Li+ > Na+ > K+) in perchlorate 

solutions.5   Different modifications of PbO2 also exhibit different physical properties in 

lead-acid battery applications.  β-PbO2 has a higher discharge capacity, active surface 

area, and self discharge current than α-PbO2.4  Mindt has also studied the electrical 

property of α- and β-PbO2.  He measured  the resistivity of α-PbO2 films to be 10-3 ohm 

cm, whereas the resistivity of β-PbO2 films are in the order of 10-4 ohm cm.6  The higher 

resistivity of α-PbO2 films result from a lower electron mobility that overcompensates for 

the effect of a higher electron concentration in this phase.6  The high electrical 
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conductivity in PbO2 most likely comes from the defect chemistry due to non-

stoichiometry.  However, it is not certain whether the non-stoichiometric composition is 

caused by cations interstitial or oxygen vacancies.6,7  Studies by Peterrson et al., however, 

seem to suggest that PbO2 phases can be modified by changing cations in the solution.5 

 This study presents some preliminary experimental results on the effects of group 

I metal ions (Li+, Na+, K+, Cs+) on the electrodeposition of PbO2 in highly alkaline 

solutions.  The films were analyzed by chronopotentiometry, X-ray diffraction (XRD), 

and scanning electron microscopy (SEM).  The results are still incomplete and somewhat 

inconsistent. 

EXPERIMENTAL SECTION  

 The deposition of PbO2 was carried out at 40 ºC (50 ºC for the reflectance 

measurements) from a solution of 50 mM Pb(NO3)2 in 2M XOH (X = Li+, Na+, K+, Cs+).  

The working electrode consisted of a stainless steel electrode (area = 1.77 cm2).  A 

stainless steel wire fitted around the edge of the substrate served as an electrical contact 

during deposition.  The films were deposited on one side of the crystal using the 

meniscus method.  The counter electrode was a Pt wire.  A constant current density of 1 

mA/cm2 was applied to the working electrode using an EG&G Princeton Applied 

Research model 273A potentiostat/galvanostat.  To measure the reflectance spectra, the 

films were deposited on the large area stainless steel plates (area = 7.5 cm2).  Then, an 

insulating glass slide was attached to the deposits with 3M super glue and used to pull 

them away from the plates to avoid interference due to reflectance of the stainless steel. 

 X-ray diffraction measurements were taken with a high-resolution Philips X’Pert 

diffractometer.  The film XRD scan was obtained using Cu Kα source radiation.  The 
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SEM images were taken with a Hitachi S-4700 cold field emission scanning electron 

microscope.  The reflectance spectra were measured at wavelength from λ = 250 nm to λ 

= 3000 nm using a Cary 5 spectrophotometer. 

RESULTS AND DISCUSSION 

 The electrodeposited orthorhombic α-PbO2 films from a highly alkaline NaOH 

solution exhibit a strong out-of-plane [100] texture.3  The XRD pattern exhibits no 

evidence of a tetragonal or cubic phase, as shown in Figure 1.   Other experimental 

results also reveal that PbO2 films grown from 2M LiOH, KOH, or CsOH solutions also 

deposited with an orthorhombic structure.  Comparison of the (200) peak in the XRD 

patterns of the films grown from Li+, K+, and Cs+ does not show any evidence for the 

peak shift.  The potential versus time plot in Figure 2 shows that, at the same current 

density and bath temperature, a film in LiOH solution deposited with the potential 

approximately 150 mV higher than other cations.  Films grown from just 0.1M Pb(NO3)2 

solution had mixed α- and β-PbO2.  However, when the concentration of LiOH was 

varied, the XRD patterns show different results.  Figure 3 shows XRD θ-2θ scans of 

PbO2 grown from 0.5 to 2.0 M LiOH.  The asterisks denote the stainless steel substrate 

peaks.  Films grown from 1.5 and 2 M LiOH show only a strong (200) out-of-plane 

orientation at 2θ = 36º, which is similar to the α-PbO2 film deposited from NaOH or 

KOH.  The film changes from crystalline to amorphous when 1 M LiOH is used indicated 

by an amorphous hump in the XRD pattern.  When the film is deposited from 0.5 M 

LiOH, the XRD pattern shows that there is reflection from β-PbO2 in addition to the α-

PbO2 phase.  Inductively coupled plasma mass spectrometry (ICPMS) was used to 

determine the Li content in the samples.  The ICPMS results reveal that, for PbO2 
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deposited from 0.5, 1.0, and 1.5 M, the Li content in the film are 3.3 mol%, 9.4 mol%, 

and 13 mol%, respectively, compared to Pb.  However, the XRD results revealed that the 

film structures grown from LiOH solutions are not consistent.  Some old samples grown 

from 2 M LiOH exhibited pure β-PbO2.  The author has attempted to deposit pure β-PbO2 

structure, but it is not reproducible.  Mindt suggested that, using low concentration of 

Pb2+ and current density seem to promote the β-PbO2 growth.6  It should be noted that, 

when LiOH is mixed with any other cations in solutions, the results always give an 

amorphous material as shown in Figure 4.  The mixture of cations other than Li+ always 

produces α-PbO2. 

 Figure 5 shows the scanning electron microscopy (SEM) images of films grown 

from different cations in the solutions.  Figure 5a is an SEM image of an α-PbO2 

nanostructure from 2M NaOH.  This film grows with a strong out-of-plane (200) 

orientation, as shown in Figure 1.  Films of α-PbO2 grown from KOH and CsOH show 

similar morphologies.  An amorphous film grown from a LiOH solution shows a compact 

structure, but its particle sizes are not uniform as shown in Figure 5b.  Figure 5c shows an 

SEM image of an amorphous film deposited from LiOH and NaOH mixture.  The image 

reveals a very compact structure with uniform, nano-sized particles. 

 The reflectance spectra for 3 µm thick α-PbO2 films from different cations are 

shown in Figure 6.  Each film is deposited in 2M XOH at 5 mA/cm2.  The reflectance in 

the visible range is low, but increases rapidly in the near-infrared due to the plasma edge 

of the free electrons.  The wavelength where the edge occurs gives the information about 

the carrier concentration.  The steepness of the plasma edge is sensitive to the electron 

mobility.  The steeper the edge, the higher the mobilities.8  From Figure 6, a PbO2 film 
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deposited from LiOH has the lowest carrier concentration and the lowest electron 

mobility.  Films deposited from NaOH, KOH, and CsOH have similar carrier 

concentrations and mobilities.  It should be noted that, although the optical spectrum of 

the film from Li solution is very different from the others, x-ray diffraction shows that 

this particular film also has α-PbO2 structure with no other phases present. 
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Figure 1: X-ray diffraction θ-2θ scan probing the out-of-plane orientation of α-PbO2 film 

50 mM Pb(NO3)2 in 2M XOH (X = Na+, K+, Cs+). 
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Figure 2: Chronopotentiometry of 50 mM Pb(NO3)2 solution in 2M XOH (X = Li+, Na+, 

K+, Cs+). 
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Figure 3: X-ray diffraction θ-2θ scan probing the out-of-plane orientation of α-PbO2 

films deposited from different concentration of LiOH 
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Figure 4: X-ray diffraction θ-2θ scan of a PbO2 film deposited from a mixture of 1M

 

 

LiOH + 1M NaOH at 1 mA/cm2. 
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Figure 5: SEM micrographs of PbO2 deposited from (a) 2M NaOH, (b) 2M LiOH, and 

(c) a mixture of 1M LiOH+ 1M NaOH. 
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igure 6: Reflectance spectra for a 3 µm thick α-PbO2 films from 2M XOH (X = Li+, 
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