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ABSTRACT 

 

A diverse set of human diseases is associated with the misfolding of proteins into 

insoluble fibrillar structures that have predominantly β-sheet secondary structure.  Thus it is 

imperative to elucidate the structural elements that contribute to β-sheet formation and stability. 

Peptides that autonomously form β-sheets are ideal models to study principles of protein folding 

and design. Gellman and coworkers first introduced an automonously folded β-hairpin (H-Arg-

Tyr-Val-Glu-Val-Yyy-Xxx-Orn-Lys-Ile-Leu-Gln-NH2) that remained monomeric up to ~1 mM. 

Circular dichroism (CD) and nuclear magnetic resonance (NMR) analyses revealed that 

incorporation of non-stereogenic Aib-Xxx dipeptidyl sequences into i+1 and i+2 positions of a 

model peptide nucleates a stable [2:4] left-handed type-I' β-turn in aqueous buffer.  The Aib-Gly 

dipeptidyl sequence has a backbone conformation that is superimposable on corresponding 

hairpins containing the DPro-Gly (type-II') and Aib-DAla (type-I') sequences.  The Aib-Gly turn 

sequence offers an attractive approach for preparing β-hairpin peptides because it eliminates cis-

trans isomerization within the β-turn region.   

Additionally, two peptides based on the hydrophobic core (Lys-Leu-Val-Phe-Phe) of 

amyloid β-protein (Aβ) that contain ααAAs at alternating positions, but differ in the positioning 

of the oligolysine chain (AMY-1, C-terminus; AMY-2, N-terminus) were prepared.  The effects 

of AMY-1 and AMY-2 on the aggregation of Aβ were studied, and it was determined that at 

stoichiometric concentrations, both peptides completely stop Aβ fibrillogenesis.  Equimolar 

mixtures of AMY-1 and Aβ form only globular aggregates as imaged by scanning force 

microscopy and transmission electron microscopy.  These samples show no signs of 

protofibrillic or fibrillic material even after prolonged periods of time (4.5 months).  Also, 10 



 xvii

mole percent of AMY-1 prevented Aβ self-assembly for long periods of time; aged samples (4.5 

months) show only a few protofibrillic or fibrillic aggregates.  AMY-2 interacts with Aβ 

differently in that equimolar mixtures form large (~ 1 µm) globular aggregates that do not 

progress to fibrils but precipitate out of solution.  The differences in the aggregation mediated by 

the two peptides is discussed in terms of a model where the peptide mitigators interfere with the 

native ability of Aβ to self- assemble by hydrophobic interactions either at the C-terminus or N-

terminus of the molecule.   
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CHAPTER 1. 

INTRODUCTION 

1.1 RESEARCH AIMS  

The goal of this research project was to gain insight into structural elements that contribute 

to the stability of β-sheet secondary structures and design conformationally constrained peptides 

aimed to mitigate protein misfolding. The key structural element in the experimental design 

employed the use of Cα,αdisubstituted amino acids (ααAAs) incorporated into peptide analogs.  

These amino acids are of particular interest because they have been shown to stabilize both helical 

and extended conformations.1-5  The method of investigating ααAAs contribution to β-sheet 

stability relied on two experimental strategies: first, the use of β-hairpin peptide models for 

elucidation into the fundamental mechanism of β-sheet formation and stability and second, 

designing peptide analogs that have a high affinity for β-sheet assemblies and determining their 

efficacy in mitigating protein misfolding processes.      

A specific aim of this research project was to determine the contribution of ααAAs as 

structural elements in both strand and turn portions of β-hairpin models.  To meet this aim, β-

hairpin peptides incorporating ααAAs in either the strand portion or in the i+1 residue of a β-turn 

were synthesized. The ααAA contributions to β-sheet formation and stability were determined 

using circular dichroism spectroscopy (CD) and nuclear magnetic resonance (NMR) spectroscopy.   

Peptide analogs were also designed to mitigate the misfolding of monomer proteins to 

misfolded states containing β-sheet secondary structures. In particular, this dissertation focuses on 

Aβ protein aggregates responsible for the formation of Aβ fibrils in Alzheimer’s disease (AD).  To 

this end, β-strand mimics were designed and synthesized.  In vitro and in vivo characteristics of 

peptide analogs in the presence and absence of Aβ were also investigated.  
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1.2 PROTEIN FOLDING AND CONFORMATIONAL DISEASES 

Proteins are macromolecules consisting of one or more polypeptide chains containing a few 

dozen to thousands of amino acids. The primary sequence of a protein or peptide, the amino acid 

sequence, is its most fundamental structural element.6, 7 Folding of these linear sequences into 

intricate molecular structures, necessary for the activation of different biological and chemical 

processes, plays a vital role in sustaining living systems.6, 8, 9  

Protein folding mechanisms are not completely understood.8, 9  Scientists have speculated 

that the process by which proteins fold into their native conformational states is dependent upon the 

length of the peptide chain, a nucleation-condensation process where a peptide chain has a 

transition state ensemble of many conformations from high free energy states to the most 

thermodynamically stable lowest-free energy state, and the amino acid sequence.7-11 At times, 

proteins form misfolded conformational states that compete with native protein folding pathways.  

Aggregation of proteins and peptides into misfolded states leads to debilitating and inactive cellular 

functions; therefore, a deeper understanding into the biological mechanism of protein 

folding/misfolding is paramount for  understanding the etiology of “conformational diseases”,11-16 

those characterized by protein misfolding, self association, aggregation, and protein deposition.   

Among the protein conformational diseases is a specific class known as “amyloidosis”.  

Approximately 20 different amyloidogenic precursor proteins have been implicated as a main 

component of the amyloidal aggregates many believe contribute to the pathogenesis associated with 

these diseases (Table 1.1).14, 16-18 Amyloidogenic diseases affect many different tissues and organs 

such as the pancreas (amylin, type-II diabetes), liver (ATP7B, Wilson’s disease), heart  (light chain 

amyloidosis; systemic amyloidosis), and kidneys (β2-microglobulin).6, 11, 19-21  Those localized to 

the central nervous system and specific regions of the brain are more devastating because they 

cause cellular malfunctions that slowly deteriorate metacognition and mobility.  
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Table 1.1.  Conformational diseases and their respective misfolded proteins. 

 PROTEIN DISORDER 

Amyloid β-peptide Alzheimer’s disease 
Tau protein Progressive supranuclear palsy, Pick’s 

disease, dementia pugilistica 
α-synuclein Parkinson’s disease 

Prion proteins (Prp) Creutzfeld-Jacob disease (CJD), fatal 
familial insomnia, sporadic insomnia, 

Gerstmann-Straussler-Scheinker disease 
(GSS) 

β2-microglobulin Hemodialysis-associated amyloidosis 
Amylin (IAPP) Type II diabetes 
Polyglutamine Huntington’s disease, Machado-Joseph 

atrophy 
Transthyretin Familial amyloid polyneuropathy, 

senile systemic amyloidosis 
GFAP Alexander’s disease 
ATP7B Wilson’s disease 

Superoxide dismutase Amylotropic lateral sclerosis 
Haemoglobin Sickle cell anemia 
ABri/ADan British/Danish dementia’s 

CTRF protein Cystic fibrosis 
Apolipoprotein A1 

(ApoA1) 
Familial amyloid polyneuropathy, 

endocrine disorders 
AH and AL 

(immunoglobin heavy 
and light chain 

fragments) 

Primary amyloidosis, 
immunity/inflammation disorders 

ACys (cystatin C) Hereditary cerebral amyloid angiopathy 
ALys (lysozyme) Hereditary systemic amyloidosis 

Gelosin Familial amyloid polyneuropathy 
(Finnish type) 

AA (serum amyloid A) Secondary amyloidosis 
Prolactin Prolactinoma of the pituitary 

AFib (Fibrinogen A 
fragment) 

Immunity/inflammation disorders 

Calcitonin fragment Endocrine disorders 
Lactoferrin Systemic disorders 
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 These include Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Creutzfeldt-

Jakob disease, and amyotrophic lateral sclerosis (Lou Gehrig’s disease) of which the 

amyloidogenic proteins, Aβ, α-synuclein, polyglutamine, prion proteins, and superoxide 

dismutase have been implicated.17, 18, 20 An increased understanding of what factors induce or 

stabilize β-sheet secondary structures may offer a novel approach toward producing biologically 

active materials capable of combating protein conformational diseases.   

1.3 THE STUDY OF β-SHEET SECONDARY STRUCTURE USING MODEL PEPTIDES 

 Model peptide systems have been the focus for understanding factors that contribute to β-

sheet stability.  Early attempts at investigating peptide secondary structure using peptide models 

were unsuccessful, and as a result, many investigators believed that short peptide fragments were 

largely unstructured in aqueous solution.  With the development of more sophisticated 

instrumentation, peptides were found to be good models for studying secondary structure.  

One of the simplest ways to study β-sheet structures is through β-sheet peptides known as 

β-hairpins;22-24 structural motifs comprised of two antiparallel β-strands connected by a loop,24-27 

where the loop portion of the hairpin is known as the β-turn (Figure 1.1).  A 16 amino acid 

residue peptide fragment of protein-G (B1 domain of immunoglobulin-G binding protein) was 

found to be monomeric upon dissolution and eventually adopted a β-hairpin structure suggesting 

the primacy of hairpins in the folding of protein-G.28 Also, CD and NMR analyses revealed that 

a small peptide fragment derived from Platelet factor-4 (PF4) β-sheet domain maintained a well-

ordered structure; thus, short peptides can be studied to elucidate factors that contribute to β-

sheet stability.29, 30  

β-Hairpin formation and stability has been studied extensively by accessing amino acid 

propensities in forming ordered secondary structures.  Although side-chain interactions and 
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interstrand hydrogen bonding have been found to promote β-hairpin formation, they are not 

sufficient to sustain the hairpin.25  Thus, introduction of stable turn motifs is critical for 

stabilizing β-hairpins, predicting folding kinetics, providing directional change in proteins, and 

serving as molecular recognition sites.31, 32  

1.3.1 INTRODUCTION TO β-TURNS  

Τurns are the most common structure found in proteins and are necessary for predicting 

secondary structure. They contribute to protein stability and have been shown to possess 

therapeutic potential in peptide-based drug design strategies.33  The term “β-turn” was first 

introduced in 1968 and was identified as being composed of four amino acid residues located in 

the  i to   i+3  residues  of  a  polypeptide  chain  (Figure 1.1).  Much  work  has  been  devoted to  

N
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Figure 1.1.  Schematic of β-turn and dihedral angles associated with a β-turn involving consecutive 
amino acid residues. 
 



 6

studying β-turn formation and stability. Early studies investigated the preference and turn 

potential of amino acid residues in nucleating various turn types.  The primary approach in 

designing β-turns is to exploit backbone conformational constraints (φ, ψ torsion angles).  

Ramachandran discovered that van der Waals interactions restrict free φ,ψ rotation, thereby 

limiting available protein conformational space,34, 35 thus turn motifs are classified based on local 

backbone conformational constraints and the distance between αCi and αCi+3.11, 33, 36-38 While 

type-I and type-II β-turns are commonly found in many proteins, their mirror images, type-I' and 

type-II' β-turns (inverse turns), are common to β-hairpin peptides because they form a left-

handed turn that is complementary to the natural right-handed twist of antiparallel β-sheets.31, 36, 

38-41   Specific turn types that are common to β-hairpin peptides will be elaborated in Chapter 2 

of this dissertation.   

1.4 PEPTIDE-BASED THERAPEUTICS   

There has been increased interest in the design of pharmacological targets capable of 

inhibiting   and/or   altering   amyloid   aggregation   and   fibril  formation.13,1 6    The  strategic    

rationale of most “therapeutic agents” is that they are capable of mitigating amyloid aggregation 

while remaining nontoxic to cell lines.  In a more biologically related scheme, ideal therapeutic 

targets should be able to cross the blood-brain barrier (BBB) and resist proteolytic degradation.  To 

date, a myriad of different approaches targeting Aβ amyloid aggregation and fibril formation have 

been proposed.  Many studies have explored inhibition of endoproteolytic enzymes,42-45 while 

others have employed the use of antibodies,15, 17, 46-48 senile plaque-associated biological molecules 

(SPAM),43, 49 small molecules,50-52 and peptides15, 53 to interfere with amyloid aggregation.  This 

dissertation focuses primarily on the use of peptide-based mitigators of Aβ fibril formation.   
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The use of peptides in drug design offers many advantages.  They provide for rational 

design strategies, have extremely high specificity, and have highly developed methods for 

analyzing different modes of action using various instrumental techniques.  Despite the significance 

of peptide-based drugs, there are drawbacks associated with the use of these particular compounds. 

They cannot be delivered to local targets because they do not readily cross the BBB, thus gaining 

access to required sites of action is highly unlikely.  In addition, peptides are subject to proteolysis 

and are rapidly inactivated by enzymes; therefore, administering peptide-based drugs is 

problematic.  However, peptides have been used therapeutically to treat diabetes (insulin), multiple 

sclerosis (Cop-1), and hypertension (ACE inhibitors) and are excellent candidates for potential 

pharmacological targets.54   

Aβ peptide mitigator design strategies were derived from an increased understanding of the 

Aβ primary sequence and its aggregation mechanisms.  From mutagenesis studies of Aβ, it has 

been shown that the hydrophobic core, KLVFF, serves as a key sequence in the self-assembly of 

Aβ.55, 56 The KLVFF peptide sequence forms amorphous aggregates, does not aggregate to form 

fibrils,55 but this sequence is capable of binding to and inhibiting formation of Aβ fibrils.  Thus, a 

number of groups have investigated peptides related to this sequence as a recognition element for 

Aβ and have investigated peptides containing this hydrophobic core as possible mitigators of 

aggregation and/or as Aβ fibril dissolution agents. These newly developed peptides are of particular 

interest because they are particularly hydrophobic and they adopt predominately random-coiled 

conformations which could interfere with β-sheet assemblies associated with Aβ fibrils.  Recent 

studies by Ferreira10, 48 suggest that the stability of Aβ fibrils is due to hydrophobic interactions.  

This hypothesis contributed to the design of the highly hydrophobic yet soluble AMY peptide 
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mitigators of Aβ amyloidal aggregation and fibril formation that will be discussed in detail in 

Chapter 4 of this dissertation.  
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CHAPTER 2.  

IMPACT OF α,α-DISUBSTITUTED AMINO ACIDS ON β-HAIRPIN FOLDING* 
 

2.1 INTRODUCTION 

 α-Helices and β-sheets are the most common secondary structural conformational motifs 

associated with proteins.  Elucidation of factors contributing to structural stability is fundamental 

for the development of biologically active molecules.1 Many protein-protein interactions are 

mediated by β-strands from one protein interacting with β-strands from another protein.  Thus 

there has been an increased interest in understanding the factors that stabilize and destabilize β-

sheet structures in proteins.  There is a clear understanding of structural stability for α-helical 

systems due to well-established peptide model systems and the highly cooperative nature of α-

helix folding.  However, β-sheet models have been more difficult to study due to their rapid self-

association in aqueous environments.  Some success was seen with β-sheet peptides excised 

from proteins such as ubiquitin, tendemistate, GB1, etc.,2 but most required the addition of 

organic solution to give significant β-hairpin structures.  Breakthroughs in the development of 

autonomously folding peptide β-sheet models in aqueous solution have centered on the use of 

turn elements in forming anti-parallel β-hairpin peptides.3   

 The most common proteinogenic β-turns are the type-I and type-II turns (refer to Table 

2.1 for φ/ψ torsion angles).3   These sequences generally are less likely to nucleate isolated β-

hairpins, as their native right-handed turn is not compatible with the preferred right handed twist 

of anti-parallel β-strands.  A much smaller number of four-residue turns in proteins are the 

"mirror image" type-I' and type-II' turns.  From a design perspective, type-I' and type-II' with 

                                                 
* Reprinted by permission of  John Wiley and Sons Inc. 
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Asx-Gly and Gly-Asx in the i+1 and i+2 positions of a β-turn, take advantage of the propensity 

of Gly, Asn, and Asp to exist in left-handed helical conformations that are highly disfavored for 

most proteinogenic residues.4-6  A key discovery allowing for the preparation of stable β-hairpin 

peptides was that DPro-Xxx sequences incorporated in the i+1 and i+2 positions have been 

shown to facilitate type-I' and type-II' turns while the corresponding LPro-Xxx sequences led to 

unfolded peptides.4-8   A number of other non-proteinogenic residues, such as Pro-DPro9, 10 (or 

DPro-Pro) and DPro-Aib,11 have been identified as forming highly stabilized "mirror image" β-

turns stabilizing β-hairpins. A large body of work now explores the use of these turn sequences 

in the stabilization of protein-based or de novo designed β-hairpins.   

 Searle and coworkers reported that local backbone constraints are vital in determining 

gross pattern shifts (δHα upfield and downfield chemical shifting12), but backbone torsion angles 

are not determinants to magnitude changes associated with Hα shifts when characterizing 

proteins. Effects such as geometry, orientation, and location of relative strands are more pressing 

factors.13 Cross-strand interactions such as hydrogen bonding14 and hydrophobic interactions15 

between antiparallel sheets play vital roles in forming stable β-hairpins, but there contribution to 

sheet stability was unclear.  Recently, Waters,16-20  Searle,21-23 Gellman,4, 24, 25 and Cochran26, 27 

groups have made apparent the importance of diagonal/cross-strand interaction to β-sheet 

stability based on heighten enthalpic and entropic effects which serves as driving forces towards 

β-sheet stability.        

This chapter will explore the use of the α,α-disubstituted amino acids (ααAAs) α-

aminoisobutyric acid (Aib, B), diisobutylglycine (Dibg, U), and dipropylglycine (Dpg, J) in both 

the β-strand portions of β-hairpin peptides and as β-turn inducers at the i+1 position of β-hairpin 
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peptides. It was hypothesized that α,α-disubstituted amino acids such as Aib might serve as 

excellent inducers of the type-I' β-turn due to their propensity to stabilize helical peptides as a  

 

Table 2.1.  Standard β-turn motifs and their conformational constraints 

Dihedral Angle (degrees)  

Turn Type φi+1 φi+2 ψi+1 ψi+2 

Type-I -60 -90 -30 0 

Type-I' +60 +90 +30 0 

Type-II -60 +80 +120 0 

Type-II' +60 -80 -120 0 
Table 2.1.  Canonical dihedral angles associated with type I/I' and type II/II'  
β-turns.  See Hutchinson and Thornton (Protien Sci. 1994, 3, 2207-16) for origin of  
dihedral angle values. 

 

result of their steric preference for gauche dihedral angles (±30-60°).28, 29   Although Aib is 

known to favor helical conformations,30 a crystallographic characterization revealed that Aib-

DAla incorporated at the i+1 and i+2 positions is capable of nucleating type-I' β-turns.12, 30, 31 

Dpg, along with its more bulky ααAA counterparts, have been known to stabilize both helical 

and extended (β-sheet-like) conformations and is speculated to induce β-turn formations.28-30, 32   

 The synthesis of four analogs (Figure 2.1) of the Gellman peptide (ΩDPG)5 with 

substitutions at the i+1 and i+2 positions of the β-turn (Table 2.2) and their solution 

conformational analysis by CD will be discussed.  Additionally, two peptides, one containing the 

Aib-Gly turn and the other containing the Aib-DAla turn was further characterized by NMR and 

restrained molecular dynamics.  To date, only one group has utilized an ααAA-Xxx sequence to 

induce a β-hairpin in an acyclic peptide, but this structural study was by X-ray crystallography 

and CD in organic solvents.12 
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Figure 2.1.  Schematic of ΩDPG peptide, which is known to fold in a type-II' β-hairpin in 
aqueous solution, and hairpin model peptide synthesized to probe for ααAA nucleation on β-
motifs.  Table 2.2 defines the amino acids incorporated into the turn portion (i+1 and i+2 
residues) of the β-turn. 
 
 

Table 2.2.  Peptide models (ΩXZ) used to probe nucleation 

Variants i+1 i+2 R1 R2 R3 R4 R5 R6 

ΩDPG DPro Gly Val H --- --- H H 

ΩBG Aib Gly Val H CH3 CH3 H H 

ΩAG Ala Gly Val H CH3 H H H 

ΩBDA Aib DAla Val H CH3 CH3 H CH3 

ΩJG Dpg Gly Val H Pr Pr H H 

ΩUG Dibg Gly Val H iBu iBu H H 

 

2.2  EXPERIMENTAL 

 Protected Fmoc-amino acid derivatives and Fmoc-PAL-PEG-PS, supports (initial loading 

0.18-0.22 mmol/g) for peptide synthesis were mainly from Applied Biosystems (Framingham, 

MA). Additional supplier of protected derivatives was Nova Biochem (Darmstadt, Germany).  

Piperidine (Pip), 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU), and triisopropylsilane (TIPS) were  
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purchased from Aldirch (Milwaukee, WI).   Trifluoroacetic acid (TFA) and N,N-

diisopropylethylamine (DIEA) were from Fisher (Pittsburgh, PA), and phenol crystals were 

purchased from Mallinckrodt (St. Louis, MI).  1-Hydroxybenzotriazole (HOBt), N-[(1H-

benzotriazol-1-yl)(dimethylamino)methylene]-N-methylmethanaminium tetrafluoroborate 

(TBTU), N-[(dimethylamino)-1H-1,2,3-triazolo[4,5-b]pyridin-1-yl-methylene]-N-

methylmethanaminium hexafluorophosphate N-oxide (HATU), and 7-

azabenzotriazolyoxytris(pyrrolidino) phosphonium hexafluorophosphate (PyAOP) were from 

Applied Biosystems.  

2.2.1 AMINO ACID SYNTHESIS 

The synthesis of Fmoc-Dpg-OH (3) followed protocols previously outlined (Scheme 2.1).33-36 

 

Scheme 2.1.  Synthetic route of N-terminal protected ααAA dipropylglycine- Dpg. 
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2.2.1.1.  SYNTHESIS OF 5,5-DIPROPYLHYDANTOIN (1) 

5,5-Dipropylhydantoin (1) was prepared following a Bucherer-Bergs protocol that was 

previously outlined for other ketones.33, 37, 38 A solution of 4-heptanone (20 g, 175.2 mmol), 

potassium cyanide (24 g, 367.6 mmol), and ammonium carbonate (37.2 g, 385.2 mmol) in 

CH3OH (100 mL) and H2O (100 mL) was heated at 50 ºC in a capped vessel for 36 hours. The 

precipitated solid was filtered and washed with small portion of water and dried in air. The 
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hydantoin was obtained as off-white powder (28.4 g, 88%). 1H (250 MHz, CD3SOCD3) δ: 10.52 

(s, 1H), 7.84 (s, 1H), 1.62-1.43 (m, 4H), 1.42-1.22 (m, 2H), 1.21-1.02 (m, 2H), 0.97-0.85 (t, 6H). 

2.2.1.2 SYNTHESIS OF 2,2-DIPROPYLGLYCINE (2) 

The hydantoin 1 (25 g, 136 mmol) was suspended in 5 N NaOH (272 mL, 1.36 mol) and 

heated under reflux for 40 hours. The mixture was cooled, acidified to pH 6.5 with concentrated 

HCl, and filtered. The filtrate was dried by removal of the solvent under vacuo and washed with 

small portion of acetone to remove the unreacted hydantoin. Both the filtrate and the solid that 

precipitated out upon acidification were extracted with warm ethanol for several times. 

Dipropylglycine was obtained by removal of ethanol in vacuo.  The white solid was further 

purified using Dowex 50X8-400 ion exchange resin to remove inorganic salts that formed as a 

result of acidification.  The ion exchange resin was activated by rinsing the resin with 6 N HCl 

followed by rinsing with water until the eluent was neutral.  Dipropylglycine, was dissolved in 6 

N HCl, added to the cationic exchange resin, and rinsed with water (2 L) to remove all inorganic 

salts.  The resin was then washed with 2 N NH4OH (1 L) to remove the amino acid from the 

resin (8.0 g, 37%).  Anal. Calcd for C23H27NO4: C, 60.35; H, 10.76; N, 8.80; Found: C, 60.51; N, 

10.64; N, 8.80.  1H ( 250 MHz, CD3SOCD3) δ: 7.34(s, 2H), 1.55-1.10 (m, 8H), 0.88-0.78 (t, 6H).  

2.2.1.3 Να-(9-FLUORENYLMETHOXYCARBONYL)-2,2-DIPROPYLGLYCINE (3) 

Following the procedure of Bolin,39 a suspension of 2 (3 g, 18.83 mmol) in a mixture of 

dry CH2Cl2 (45 mL) and trimethylsilyl chloride (4.76 mL, 37.66 mmol) was heated under reflux 

for 2 hours. The mixture was cooled in an ice bath, then DIEA (6.49 mL, 37 mmol) and Fmoc 

chloride (4.64 g, 18.60 mmol) were added in succession. The solution was stirred with cooling 

for 30 minutes and then warmed to room temperature. After stirring for 24 h, CH2Cl2, was 

removed  in  vacuo.   The resulting oil was dissolved in  deionized  water  (50 mL)  and extracted  
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with ethyl acetate (50 mL).  After separation, the aqueous layer was again extracted with ethyl 

acetate (2 x 50 mL). The combined organic layers were dried over MgSO4 and concentrated 

under reduced pressure, giving white solid product 3 (3.67 g, 57%). 1H (250 MHz, CD3SOCD3) 

δ: 10.68 (s, 1H), 7.91-7.88 (d, 2H), 7.71-7.69 (d, 2H), 7.44-7.29 (m, 4H), 6.95 (s, 1H), 4.28-4.21 

(m, 3H), 1.76-1.74 (m, 4H), 1.20-1.10 (m, 2H), 0.86-0.82 (m, 6H). Anal. Calcd for 

C23H27NO4(381.45): C, 74.42; H, 7.13; N, 3.67. Found: C, 72.57; H, 7.30; N, 3.80. 

2.2.2 PEPTIDE SYNTHESIS AND PURIFICATION 

All peptides were synthesized by standard solid-phase Fmoc chemistry on Fmoc-PAL-

PEG-PS (Peptide Amide Linker)-resin (0.2 mmol, 0.18 mmol/g loading) in continuous-flow 

mode on a Pioneer Peptide Synthesizer.  The side-chain protected amino acid derivatives utilized 

were Fmoc-Arg(Pbf)-OH, Fmoc-Gln(Trt)-OH, Fmoc-Glu-(tBu)-OH, Fmoc-Lys(Boc)-OH, and 

Fmoc-Orn(Boc)-OH.  Unless indicated otherwise, molar equivalents are given over resin-bound 

amine.  Standard Fmoc amino acid coupling chemistry utilized four equivalents each of amino 

acid, TBTU, and HOBt (final concentration of each = 0.25 M) dissolved in 0.5 M DIEA in DMF 

for 1 hr, except where noted.  Alternative methods for difficult couplings used four equivalents 

each of amino acid and HATU (final concentration of each = 0.25 M) dissolved in 0.5 M DIEA 

in DMF for 1 hr or four equivalents each of amino acid and PyAOP (final concentration of each 

= 0.25 M) dissolved in 0.5 M DIEA in DMF for 1 hr at 50 °C.  Couplings involved minimal 

preactivation time. Washings between reactions were carried out with DMF. For heated 

couplings, the normal resin column was fitted with a 100 mm OMNI column jacket (6331, 

OMNI Fit), which allowed for the column to be heated at 50 °C with a Lauda Model WK230 

circulating waterbath.   Fmoc group deprotection was accomplished using Pip-DBU-DMF 

(1:1:48)  for  5 min.    Once peptide assembly was complete, peptide was cleaved from the solid  
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support using Reagent B (88:5:5:2 TFA:phenol:water:TIPS).40  Approximately 10 mL of 

cleavage solution was added to 500 mg of resin and allowed to shake for 2 h then filtered.  The 

resin was rinsed with 2 mL of TFA and the added to the cleavage filtrate.  The filtrate was placed 

on a rotavapor at a temperature of 35 °C to reduce the amount of TFA to approximately half the 

original volume.  The remaining filtrate was precipitated by a dropwise addition into a ten-fold 

excess of cold ether.  The peptide was allowed to precipitate at -27 °C for 24 h.  The 

peptide/ether solution was then placed in a centrifuge at a speed of 4 x 1,000 rpms. The resulting 

pellet was washed (3 times) followed by drying for 4 h under vacuum.   

HPLC was performed on one of three systems:  (1) Waters 600E multisolvent delivery 

system with a Model 486 tunable detector controlled by Empower Software, detection at 220 

nm; (2) Waters 625 pump with a Model 996 diode array detector controlled by Millennium 

software, detection from 200-400 nm; (3) Waters Deltaprep system with detection at 220 nm.  

Three different columns were used for analysis and purification of peptides:  (Column A) 

analytical HPLC was performed using a Vydac analytical C-18 (5 µm, 300 Å) reversed-phase 

column (218TP54, 4.6 x 250 mm) at 1 mL/min;  (Column B) analytical and semi-preparative 

chromatography was performed on a Delta-Pak C4 (15 µm, 100 Å) reversed-phase column (8 x 

100 mm), at 1 mL/min; (Column C) preparative HPLC was performed on a Waters Delta-Pak C4 

(15 µm, 100 Å) reversed-phase cartridge (25 × 10 mm) in a radial compression module at 15 

mL/min.  Linear gradients of 0.1% aqueous TFA in H2O (v/v) (Buffer A) and 0.1% TFA in 

CH3CN (v/v) (Buffer B) were utilized in all HPLC.  See Figure 2.2 for details of the gradients.  

Fractions from semi-preparative and preparative HPLC were analyzed by matrix-assisted laser 

desorption ionization-time of flight (MALDI-TOF) on a Bruker Proflex III instrument with 

XMASS software.   
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Amino acid analysis was performed on a Dionex AAA-Direct system composed of a 

GS50 Gradient Pump, an AS50 Autosampler, and an ED50 Electrochemical Detector.  Peptides 

were hydrolyzed in 1 mL Pierce vacuum hydrolysis tubes using 6 N HCl for 24 h at 110 °C.  

Hydrolyzates were separated on a microbore anion exchange column, AminoPac PA10, (2 × 250 

mm) with a ternary gradient of deionized water, 0.25 M sodium hydroxide and 1.0 M sodium 

acetate.  Quantitation was performed with Pierce Amino Acid Standard H (Dionex, AminoPac 

PA1), diluted to produce a 4-level calibration curve of 18 amino acids from 50-200 picomoles 

and including norleucine as an internal standard, using PeakNet software.  Table 2.3 summarizes 

the purification and characterization of ΩDPG and the turn ΩXZ peptides.   

2.2.3 CIRCULAR DICHROISM MEASUREMENTS.   

All measurements were carried out using an Aviv Circular Dichroism Spectrometer 

Model 62DS with Igor plotting software.  CD spectra were the average of three scans made at 

1.00 nm intervals acquired from 260 nm to 190 nm (UV absorbance range). Samples were 

prepared from a dilution of stock peptide sample (~1 mM) and NaOAc buffer (100 mM, pH = 

3.8) in water to acquire a working solution of 50-500 µM peptide concentration in NaOAc (1 

mM pH = 3.8).  The spectrum of NaOAc buffer (1x) was used as the background subtraction in 

all experiments.   

2.2.4 NMR ANALYSIS  

2.2.4.1 PEPTIDE NMR SPECTROSCOPY  

ΩBG and ΩΒDA were dissolved in 200 mM sodium deuterioacetate buffer, containing 

10% D2O at pH 3.8 (uncorrected for isotopic effect). NMR spectra of ΩBG and ΩΒDA (1 mM) 

were recorded at 278.1 K on a 600 MHz Varian Inova 4-channel NMR spectrometer operating at 

600.13 MHz.  1-D  1H spectra acquired in a range of temperatures from 278.1  to  306.1 K  were  
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used to calculate temperature coefficients for the amide protons. Water signal was suppressed by 

applying a WATERGATE pulse sequence.41 Resonance assignments were performed using 2-D-

TOCSY and 1H/1H-ROESY experiments. NMR samples [U3]-ΩDPG and [J3]-ΩDPG consisted of 

1 mM peptide in 100 mM sodium deuterioacetate buffer containing 10% D2O, pH 3.8.  

Measurements were performed at 278.1 K on a 500 MHz Brucker NMR spectrometer.   

2.2.4.2 NMR STRUCTURE DETERMINATION   

Intra- and interresidue dipolar contacts for the SNN-PEP/DMT complex were identified 

using a 2-D ROESY spectrum (400 ms mixing time), and the structures were calculated using X-

PLOR.25. Structures were calculated using simulated annealing from an extended structure at an 

initial temperature (Ti ) of 1000 K with 12000 high steps, 6000 cooling steps, and a step size of 5 

fs to generate 100 conformers. Final structure refinement was carried out by gradually 

introducing van der Waals radii and Lennard-Jones potentials on the 100 structures using a Ti of 

300 K, 100,000 cooling steps, and a step size of 1 fs.  Subsequently, twenty lowest energy 

conformers were selected with violations less than 0.3 Å and the final structures were visualized 

using the MOLMOL software package.42 

2.3  RESULTS AND DISCUSSION 

2.3.1 ααAAS AS β-TURN DETERMINANTS 

2.3.1.1 PEPTIDE SYNTHESIS AND CHARACTERIZATION 

Peptides synthesized are shown in Figure 2.1 and the i+1 and i+2 residues of the β-turn 

are defined in Table 2.2.  The syntheses of ΩDPG, first introduced by Gellman,5 and an unfolded 

peptide standard ΩΑG were readily accomplished using standard coupling protocols with 

TBTU/HOBt/DIEA  as  the  activator.  These two peptides were of high crude purity (98% and  

85%, respectively) and were readily purified to homogeneity ≥ 99% (Table 2.3, entries 1 and 2).   
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For the synthesis of ΩBG, it was anticipated that the coupling of Aib and the following amino 

acid (Val-5) would be challenging so a double coupling HATU/DIEA protocol for these residues 

was employed.  This initial synthesis of ΩBG was found to be only 22% pure (Figure 2.2 A; blue 

line, full length product has tR of 32.3 min).  The impurity at tR of 30.6 min had a mass of 

1303.44 due to a deletion of Val-5, located at the N-terminal side of the ααAA residue.  Thus, 

the HATU was effective at incorporation of the Aib, but only moderately effective at coupling 

the branched Val residue to the N-terminus of Aib.  The Hammer laboratory and other groups 

have noted that most difficult couplings in ααAA-containing sequences are the ones onto the 

amino group of the ααAA.36, 43  One method used to address difficulties in coupling is heating 

the coupling reactions at 50 ºC.34, 36  Thus, ΩBG was synthesized a second time by double 

coupling of the Aib and Val-5 residue using activation with the HOAt-based phosphonium 

reagent PyAOP and DIEA  at 50 ºC.  ΩBG synthesized by this method was found to be 93% 

pure (Figure 2.2 A, red line), where the peptide due to Val deletion was no longer detectable.  

ΩBDA was also synthesized using PyAOP activations for the Aib and Val-5 at an elevated 

temperature of 50 °C and resulted in a clean chain assembly (Table 2.3, entry 4) with minimal 

impurities detected by UV absorbance (Figure 2.2 B, red line).  The Dpg-containing peptide ΩJG 

was synthesized using PyAOP activation as well, but HPLC (Figure 2.2 C, red line, desired ΩJG 

at tR of 32.5 min) showed that for this bulkier ααAA containing peptide, modified conditions 

were not effective.  The major side-product at tR of 27.7 min had a mass corresponding to 

deletion of all amino acid residues to the N-terminal side of the Dpg (Val, Glu, Val, Tyr, and 

Arg).  An adequate amount of ΩJG was isolated for solution characterization; therefore, further 

improvements in the synthesis were not pursued.  Alternate methods that utilize symmetrical 

anhydrides, mixed anhydrides, in combination with heating and non-polar solvents have been 
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Table 2.3.  Purification and MALDI-MS data of ΩDPG and ΩXZ turn variants. 

Entry  

 

Peptide 

 

Calculated 

[M+H]+ 

Observed MALDI-MS Crude Purity tR (min) 

 
 

Peptide content 

1 ΩDPG 1415.76 1415.71 98% 14.92 60% 

2 ΩAG 1389.72 1389.45 85% 13.49 85% 

3 ΩBG 1403.75 1403.60 93% 14.85 74% 

4 ΩBDA 1417.77 1418.24 79% 12.57 58% 

5 ΩJG 1458.65 1458.68 43% 17.17 63% 

6 ΩUG 1488.70 1488.68 88% n/a n/a 
B = Aib; J = Dpg; U = Dibg.  HPLC crude purities were determined from the area peak integration ratios from analytical HPLC. Purity 
determinations were performed using a PDA detection ranging from 200-400 nm. Retention times (tR ) correspond to the analytical HPLC of pure 
compounds.  Amino acid analysis (AAA) was used to determine net peptide content.  Refer to Appendix B for HPLC chromatograms and 
MALDI-MS spectra. 
 
 
 
 
 

 

Figure 2.2. Analytical HPLC chromatograms of ΩXZ variants.  Two columns were used for 
peptide analysis: Column A (black) and Column B (red and blue).  See 2.2.2 Peptide Synthesis 
and Purification for details. Buffer conditions: A: H2O and 0.1% TFA (v/v); B: CH3CN and 0.1% 
TFA (v/v), at 1 mL/min  (A) ΩBG crude peptide synthesized with HATU activation for Aib and 
Val-5 coupling (blue) with a gradient of 10% B to 70% B over 60 min; tR(ΩBG) of 32.3 min.  
The peak at 30.6 min occurred due to a Val-5 deletion from the peptide sequence.   The ΩBG 
crude peptide, using PyAOP activation at 50 °C for Aib and Val-5 coupling (red), was separated 
using a gradient of 10% to 27% B over 60 min followed by a ramp from 27% to 37% B over 10 
min (total gradient time 70 min); tR (ΩBG) of 38.9 min.  Pure ΩBG with PyAOP activation  at 
50 °C (black) was analyzed using a gradient of 10% B to 30% B over 20 min.  (Figure 2.2 
cont’d.)   

A.
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(B)  Crude ΩBDA (red) synthesized using PyAOP activation at 50 °C for Aib and Val-5 
coupling, gradient of 10% B to 70% B over 60 min; pure ΩBDA (black), gradient of 10% B to 
35% B over 20 min. (C) Αnalytical chromatogram of crude peptide ΩJG (red); tR (ΩJG) of 32.5 
min.  The peak at 27.7 min occurred due to the deletion of Arg-1, Tyr-2, Val-3, Glu-4,   and  
Val-5.  Pure ΩJG (black) with homogeneity (>99%); gradient of 10% B to 35% B over 35 min. 
 

B.

C.
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developed that might increase the yield of this peptide or other homologs.34, 36 In the synthesis of 

ΩUG, PyAOP activation was used for the coupling of Dibg-6 to Gly-7.  Coupling of Val-5 to the 

N-terminal-side of Dibg occurred via a doubling coupling of amino acid symmetrical anhydride.  

2.3.1.2 CIRCULAR DICHROISM 

Circular dichroism (CD) spectroscopy represents a facile instrumental method used to 

monitor secondary structure.44, 45  A negative band at approximately 217 nm (n→π∗ transitions) 

and a positive band at 197 nm (π→π∗ transitions) is characteristic of β-sheet secondary 

structures.46, 47 Additionally,  β-turns have their own CD signatures, which have been studied 

through the use of model cyclic and linear peptides.  Type-I/II' turns typically have an α-helical-

like CD, while type-I'/II turns have β-sheet-like conformations. Thus, the CD spectra of hairpin 

peptides containing these turn types will be a conglomerate of both the sheet and turn 

components.   

CD spectra of ΩDPG and the ΩXZ turn variants (25 °C, 50 µM) are shown in Figure 2.3.  

CD data showed that ΩDPG had a β-sheet conformation (data consistent with Gellman5).  As 

expected, the ΩAG peptide had a random coil conformation, as indicated by the negative band at 

195 nm; this peptide was not studied further and served as an unfolded comparison for the other 

β-sheet peptides.  In contrast, ΩBG and ΩBDA produced CD spectra that strongly indicated β-

sheet conformations (maxima around 200 nm; minima around 215 nm).  ΩJG and ΩUG, having 

almost identical CD curves, also produces a β-sheet secondary structure that was less ordered 

than the Aib homologues.  It was expected that the ααAA-Xxx hairpins would nucleate type-I/I' 

β-turns based on previous data derived from lowest energy conformations (backbone 

constraints), crystal structure determination, and detailed NMR analysis of other systems.11, 30, 48  

Thus, if the CD spectra are a mixture of turn and sheet components, it was somewhat surprising 
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to see the strong similarity in the CD data of ΩDPG (type-II' β-turn) and ΩBG and ΩBDA 

(putative type-I' β-turn).  The difference in the CD band for the more bulky ααAAs turn systems 

(J, U) could be indicative of the nucleation of a differing β-turn.     

 

 

Figure 2.3.   CD spectrum of  ΩDPG (DPro-Gly) overlayed with spectra of ΩXZ turn variants. 
Table 2.1 outlines turn designations. Scans were taken at 50 µM peptide concentration in 1 mM 
NaOAc buffer; pH 3.8 at 25 °C. Molar ellipticity- [θ ] units:  deg cm2 dmol-1. 
 

To test the aggregation behavior of the β-hairpin forming peptides, their CD spectra were 

measured over a concentration range of 50 µM-500 µM.  The CD of ΩDPG did not vary 

significantly over a 10-fold concentration range (Figure 2.4 A), which indicates that ΩDPG is not 

changing aggregation state over this concentration range.  This is consistent with the analytical 

ultracentrifugation results of Gellman that showed ΩDPG was monomeric at NMR 

concentrations (~1 mM).  The ααAA-hairpin peptides also showed no significant changes in CD 

intensity with a 10-fold increase in concentration (Figure 2.4 B, C, D), also indicating these 
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peptides do not change aggregation state over this concentration range and that they have a low 

propensity for aggregation.  

The DPro-Gly, Αib-Xxx, and Dpg-Gly hairpins were also thermally stable over a range of 

temperatures from 5 °C to 55 °C (Figure 2.4 E, F, G, H).  This data is shown also in Figure 2.5 as 

molar ellipticity at various maxima and minima in the spectra is plotted versus temperature.  In 

general, the data showed that the model hairpin peptides exhibited little signs of thermal 

denaturating up to 55 °C.   Also, the temperature denaturating curves were generally linear, thus 

suggesting the "denaturation" lacked cooperativity. 

The temperature dependent CD (Figure 2.4 F) of the Aib-Gly turn peptide showed a 

systematic decrease in β-sheet character at 202 nm, but the n→π∗ transitions at 218 nm were 

almost identical.  Figure 2.5 B shows the thermal denaturation of ΩBG at various molar 

ellipticities.  Comparable to ΩDPG, ΩBG lacked thermal denaturating. Both remain linear with a 

minimal decrease in slope over a wide temperature range.  Additionally ΩBG was 13C=O labeled 

at key positions and its thermal stability was measured.49, 50  Isotope-edited IR revealed that the 

Aib-Gly turn inducer partially unfolds (partial transition to random coil) at elevated temperatures 

up to 95 °C, but upon cooling, a reversible coil to sheet transition was observed.  This 

reversiblility was a result of incomplete protein unfolding due to the stability of the Aib-Gly turn 

sequence. 

The thermal denaturation experiment of the Aib-DAla turn (Figure 2.5 C) suggested that 

this β-hairpin was stable showing no signs of thermal denaturation. As temperature increased, 

this peptide became more folded at 25 °C followed by minimal to no unfolding at higher 

temperatures. The thermal denaturation studies of ΩJG suggest that substitution of more bulky 

ααAA Dpg could possibly have a negative effect on β-sheet stability (Figure 2.4 H).  As 
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temperature increased, there was a systematic decrease in β-sheet character (232 nm and 202 nm, 

Figure 2.5 D) suggesting partial protein unfolding at higher temperatures.  This is in line with the 

expected ability of Dpg to stabilize both helical (turn-like) conformations and extended 

conformations.28, 30   

2.3.1.3 NMR ANALYSIS 

While CD spectroscopy gives some idea of the overall fold of the peptide, to get more 

detailed structural information, NMR experiments on two of the ααAA-containing 

peptides, ΩBG and ΩBDA, were performed.  NMR studies were not performed on the more 

bulky turn sequences, ΩJG and ΩUG, because they displayed signs of self-assembly at 

concentrations above 400 µM.  With the aid of 2-D TOCSY and ROESY experiments, most of 

the H resonances in ΩBG could be assigned (Table 2.4).  Wishart et al.51, 52 and Dyson and 

Wright et al.53, 54 have shown that ∆δHα depends on the secondary structure of proteins and local 

backbone torsion angles. Using equation 2.1, peptides could be characterized as α-helical or β-

sheet relative to upfield and downfield δHα shifts, respectively, as compared to their random 

coiled values.51, 52, 55 Figure 2.6 summarizes the chemical shift index (A-∆δHα, B-∆δNH; 

Equation 2.1) for ΩDPG, ΩBG, and ΩBDA.  This is a widely used method probe for indication of 

protein secondary structure. Eight of the twelve residues of ΩBG and ΩBDA show a downfield 

shift suggestive of β-strand formation, similar to ΩDPG.  The ∆δHα data supports the hypothesis 

that Aib-Gly and Aib-DAla can form β-turns, which are capable of initializing β-strand motifs 

and producing an autonomously folded hairpin domain.  Further evidence of the folding of ΩBG 

and ΩBDA were obtained by measurement of through-space interactions by 2-D ROESY 

experiments suggesting that both hairpin models induce a type-I' β-turn.  Similar through-space 
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Figure 2.4.  Concentration studies (50 µM -500 µM peptide) (A) ΩDPG,  (B) ΩBG,  (C) ΩΒDA, 
and (D) ΩJG .  Temperature analysis (50 µM peptide, 5 °C -55 °C) of (E) ΩDPG,  (F) ΩBG,  (G) 
ΩΒDA, and (H) ΩJG.  All CD spectra were taken in l mM NaOAc; pH 3.8.  Molar ellipticity- 
[θ ] units:  deg cm2 dmol-1. 

 

F.

C. G.

D. H.

B.

A. E.
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Figure 2.5.  Thermal denaturation plots of  (A) ΩDPG; (B) ΩBG; (C) ΩBDA; and (D) ΩJG.  
Temperature range from 5 ºC to 55 ºC taken at 5 ºC-10 ºC intervals.  Data extracted from molar 
ellipticity values at given wavelengths.  Molar ellipticity- [θ ] units:  deg cm2 dmol-1.

 

 

Table 2.4.  NMR assignments of Hα of ΩYZ peptide variants 

     
Assignment RC 

(Wishart-C)
ΩDPG ΩBG ΩBDA 

R1 4.32 3.96 4.031 4.1 
Y2 4.43 5.02 5.141 5.23 
V3 4.11 4.22 4.343 4.53 
E4 4.24 4.76 4.926 4.45 
V5 4.11 4.46 4.159 4.2 
X6  4.28 - - 
G7 3.88 3.88, 3.66 3.632, 4.002 4.3 
O8 4.23 4.47 4.591 4.6 
K9 4.23 4.42 4.521 4.57 
I10 4.09 4.34 4.451 4.4 
L11 4.35 4.04 4.129 5.09 
Q12 4.28 4.18 4.269 4.25 

δGlyHα  0.22 0.37  
Gly values are the difference between the two diastereotopic Hα hydrogens. 

A. B.

C. D.
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∆δHα= (δHα
observed - δHα

random coil)  (Equation 2.1) 

 

 
Figure 2.6.  Chemical shift index of ΩDPG (blue, data collected by Gellman), ΩBG (grey) and 
ΩBDA (cyan) at 3.5 mM in 100 mM aqueous sodium deuterioacetate buffer, pH 3.8 (9:1 H2O: 
D2O), 278 K. (A) ∆δHα chemical shift index.  (B) ∆δNH chemical shift index. Values were 
determined using Equation 2.1 utilizing the random coil values of Wishart.  Gly values are the 
difference between the two diastereotopic Hα hydrogens. 
 

interactions were observed by Gellman and coworkers in the ΩDPG peptide including interstrand 

NH-NH NOEs as well as side-chain/side-chain interactions suggesting a turn aligning the two 

antiparallel strands in close proximity.  The NH-Gly7 ––> Hβ-Glu4 also supports a more folded 

orientation.  A number of "diagonal" side-chain/side-chain ROEs, including Hγ-Gln12 ––> 

HγVal3, Hβ/δ-Lys9 ––> HγTyr2, along with the , Hβ-Gln12 ––> HαTyr2, suggest a twisted 

hairpin. 

An overlay of the backbone for the three peptides (Figure 2.7) resulted in a RMSD ~0.4 

Å, for the average minimized structures. Moreover, ΩBG and ΩBDA adopt a [2:4] type-I' β-turn 

with a left-handed twist (see Masterson et al.56 for complete list of defined torsion angles) with 

only small differences in the lengths of the backbone hydrogen bonds. The structure of ΩDPG 

shows longer hydrogen bonds, while ΩΒDA and ΩBG show more uniform lengths along the 
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peptide backbone. This apparent discrepancy could be explained by the different protocols used 

for the structural refinement calculations.  

 

 

 

Figure 2.7. Superposition of ΩDPG, ΩBG, and ΩBDA backbone.  Structure determinations were 
calculated using XPLOR.2.5. 
 

2.3.2 EFFECTS OF ααAAs IN β-STRANDS 

The use of ααAAs in stabilizing β-sheet conformations is not completely understood.  

Wang et al.57 suggest that Aib and its more bulky ααAA homologues have conformational 

preferences depending on local peptide sequence. This occurs because the higher dialkylated 

amino acids conformations are strongly dependent on sequence and the solvating environment.  

Thus, it is imperative to design peptide models that define specific context-dependent factors 

stabilizing ααAAs in a desired conformational space.  Section 2.3.1 of this chapter has 

highlighted the importance of ααAAs in stabilizing β-turns; here, the importance of amino acid 

sequencing relative to peptide primary structure and cross-strand interactions will be investigated 
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using ααAAs.  To study local preferences, Dpg and Dibg have been incorporated into position-3 

of the β-strand portion of the previously studied, ΩDPG peptide. 

The UV-monitored continuous flow synthesis cycle indicated successful deprotection 

steps, rapid release and elimination of the UV absorbing Fmoc protecting group, and wash cycles 

for all amino acids prior to the coupling of Tyr-2 and Arg-1 for [J3]-ΩDPG.  PyAOP/DIEA was 

used as the activating agent with an amino acid double coupling at 50°C for the coupling of   

Dpg-3 ([J3]-ΩDPG) and Dibg-3 ([U3]-ΩDPG) to Glu-4 and for the coupling of Tyr-2 to Dpg-3 

([J3]-ΩDPG).   This was performed because previous studies by Fu et al.36 suggest that elevated 

temperatures at the N-acylated coupling site of ααAAs results in better product yields due to the 

use of phosphonium-based coupling agents and higher molecule to molecule interactions as a 

result of heating.  In the synthesis of [U3]-ΩDPG, Tyr-2 was double coupled to the peptide 

sequence via amino acid symmetrical anhydride coupling.  The HPLC chromatogram of [J3]-

ΩDPG displayed two distinct peaks with tR of 54.5 min and tR of 56.8 min (Appendix B-1). 

MALDI-MS corresponding to the peak with tR of 54.5 min suggested that residues Tyr-2 and 

Arg-1 did not couple to the peptide chain.  The peak with tR of 56.8 min had a mass 

corresponding to [J3]-ΩDPG (Appendix B-2; calc peaks-1456 mass units with m/z observed 

peaks [M+Na]+ at 1478 mass units and [M+K]+ at 1500 mass units; homogeneity > 99% 

determined by analytical HPLC).  The HPLC chromatogram of [U3]-ΩDPG had a major peak at 

tR of 38.5 min and a crude peptide content (determined by integration of peak area) of 83%.  

MALDI-MS data of the peak corresponding to tR of 38.5 min revealed the mass unit of the 

desired peptide sequence, calculated m/z 1486.7, observed m/z 1486.2.   Amino acid analysis 

(AAA) measurements were not performed on [U3]-ΩDPG and AAA results for [J3]-ΩDPG were 

inconclusive. 
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Circular dichroism measurements of  ΩDPG, [J3]-ΩDPG, and [U3]-ΩDPG were assayed in 

1mM NaOAc buffer (pH 3.8). ΩDPG is a well established autonomously folding β-hairpin used 

to study amino acid propensities in stabilizing β-sheet secondary structures and was used as a 

control peptide to assess the relative β-sheet character of [J3]-ΩDPG  and [U3]-ΩDPG.  It was 

hypothesized that the β- and γ-branching of Dpg and Dibg would increase β-sheet formation. 

The CD spectrum of ΩDPG (Figure 2.8, black) was characteristic of a β-sheet conformation. The 

CD spectrum of [J3]-ΩDPG (Figure 2.8, green) displayed the presence of a less structured β-sheet 

(minimum at 219 nm) with the presence of random coil (negative ellipticity below 200 nm) 

contributions while the CD spectrum of [U3]-ΩDPG (Figure 2.8, red) indicated a more ordered β-

sheet conformation as compared to the ΩDPG control peptide. The less ordered CD band for [J3]-

ΩDPG and the more ordered secondary structure for [U3]-ΩDPG suggest that the ααAAs (Dpg, J 

and Dibg, U) contribute to β-sheet formation and stability in a context- and sequence-dependent 

manner. 

With the use of 2-D NMR techniques (ROESY and TOSCY), peptide conformations, 

with respect to neighboring amino acid residues, were observed (Figure 2.9). Dyson and Wright 

random coil standards were chosen as they take into account the nearest neighbor effects of other 

residues, most nobably Pro and aromatic residues.53, 54 A downfield shift in the Hα chemical 

shift deviation (Figure 2.9) for eight of the nine amino acids measured (more folded secondary 

structure for seven residues), suggests [U3]-ΩDPG formed a more ordered β-sheet conformation.  

This is in good agreement with CD data (Figure 2.8).  Experimental results suggest that Dibg had 

a higher propensity to promote a β-sheet conformation in aqueous buffer when strategically 

placed in the β-strand region of a β-hairpin peptide.  CD spectroscopy and NMR analysis of the  
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Figure 2.8.  CD spectrum of ΩDPG, [J3]-ΩDPG, and [U3]-ΩDPG.  Scans were taken in 1mM 
NaOAc buffer, pH 3.8, (peptide concentration, 0.1mM).  Molar ellipticity- [θ ] units:  deg cm2 
dmol-1. 
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 Figure 2.9.  Chemical shift index of ΩDPG (black), [J3]-ΩDPG (green), and [U3]-ΩDPG (red) at 
3.5 mM in 100 mM aqueous sodium deuterioacetate buffer, pH 3.8 (9:1 H2O: D2O), 278.1 K. 
∆δHα values were determined utilizing the random coil values of Dyson and Wright (Equation 
2.1).  Gly values are the difference between the two diastereotopic α-hydrogens. 
 

Hα chemical shift deviation for [J3]-ΩDPG suggests that Dpg containing peptides form less 

ordered β-sheet conformations relative to their positioning in β-strands and β-turns (i+1 residue). 

2.4 CONCLUSION 

The Asn-Gly and DPro-Gly hairpins have been studied extensively.  DPro-Gly turns have 

been proven to have superiority in hairpin nucleation in aqueous buffer compared to Asn-Gly.  It 

was proposed that Aib-Xxx and ααAA-Gly turns would nucleate type-I'/II' β-turns.  CD and 

NMR analysis support the hypothesis that Aib-Xxx turns are sufficient in the nucleation of type-  
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I' β-hairpins.  The stereochemical effects of amino acid residues in the i+2 position of the β-turn 

are under further investigation. CD data and CD based thermal denaturation studies suggest that 

more bulky side-chain groups (larger than methyl groups) in the β-turn moderately destabilize 

the β-sheet secondary structures. 

 Dpg containing peptides form less ordered β-sheet conformations when Dpg is 

incorporated into both the i+1 position of a β-turn and β-strand portions of β-hairpin peptides.  

This would suggest that Dpg is nucleating a differing turn type.  Dibg containing peptides form 

less ordered β-sheets when Dibg is located in the i+1 position of a β-turn (section 2.3.1.2), but 

Dibg is an excellent promoter of β-sheet formation relative to its positioning in β-strands. This 

emphasizes the importance of side-chain interactions in stabilizing β-sheet conformations. More 

in depth CD and NMR structural analysis is needed to fully understand the local conformational 

preferences of ααAAs in β-sheets. 
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CHAPTER 3. 

INTRODUCTION TO ALZHEIMER’S DISEASE* 

3.1 THE HISTORY OF ALZHEIMER’S DISEASE 

One of the most prevalent protein conformational diseases is Alzheimer’s disease (AD).  AD

was first described in 1907 by Bavarian psychiatrist Alois Alzheimer.1, 2  Alzheimer described the

clinical observations of a 51-year old woman’s behavioral symptoms as complete helplessness 

having increased imbecility with continual increase in the lapse of metacognition as her illness

progressed.  In the post-mortem autopsy of the patient’s brain, Alzheimer noticed extensive

pathological changes such as a shrunken cortex3 and distinguishable fibrils combined in thick 

bundles located on the surface of neuronal cells.4 Alzheimer characterized this disease as progressive 

pre-senile dementia with cortex atrophy. In 1910, this disease was officially named Alzheimer’s

disease due to the detailed description of Auguste’s brain by the Bavarian neuropsychiatrist.5  

3.2 AD IMPACT ON SOCIETY 

Alzheimer’s disease is the most common form of dementia and is the 7th leading cause of 

death in America. Unfortunately, the death toll associated with this disease is on the rise; AD is one

of only two causes of death, the other being hypertension, to increase in ranking as a leading cause 

of death in the past five years.6 In 2000, approximately 4.5 million Americans were diagnosed with

AD. Today, 5 million Americans suffer with this disease and by the middle of the current century,

14 million are predicted to be diagnosed.7, 8  The reported statistics only take into account the

documented cases within the US population.  Worldwide, approximately more than 30 million

people are speculated to have this degenerative disease.   

With increasing technology over the past century, the distinguishable fibrils and thick

bundles initially reported by Alzheimer have been identified as being composed of amyloid protein

                                                 
* Reprinted by permission of The American Chemical Society. 
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 aggregates, mostly consisting of the β-amyloid protein (Aβ).  The amyloid hypothesis states that 

“accumulation of Aβ in the brain is the primary influence driving AD pathogenesis”;9, 10 

therefore, current research seeks to understand the causative role of the Aβ in the onset of AD. 

3.3 IDENTIFICATION OF THE β-AMYLOID PEPTIDE 

The initial identification of Aβ primary sequence, a highly hydrophobic peptide, 39-43 

amino acids in length, was obtained by Glenner and Wong in 1984,11 when they extracted Aβ 

extracted from both senile plaques and blood vessels and characterized this highly complex 

protein via Edman degradation and amino acid analysis (AAA).10-12  Based on oligonucleotide 

probes which complemented the Aβ peptide gene, scientists later discovered the gene 

responsible for encoding Aβ.  Subsequent work by Kang et al.13 lead to the cloning of the 

ubiquitously expressed transmembrane type-1 glycoprotein known as the amyloid precursor 

protein (APP).2, 9, 14 APP is cleaved in vivo by the α-, β-, and γ-secretases.  Cleavage of APP 

with the α-secretase enzyme produces non-amyloidegenic fragments of Aβ.  Normal secretion of 

the N-terminal fragment of Aβ occurs while the C-terminal fragment remain anchored to the cell 

membrane. Further cleavage with  γ-secretase then releases the inactive bound C-terminal 

fragment out of the cell.  However, cleavage using the β-sercetase results in the N-terminal 

cleavage of Aβ from APP and subsequent cleavage with the γ-secretase result in the release of 

the C-terminal side of Aβ from APP.  Sequential proteolytic processing of APP with the β- and 

γ-secretases lead to the production of the two neurotoxic isoforms of Aβ, Aβ1-40 (most abundant) 

and Aβ1-42 (second most abundant), (Figure 3.1).3, 9, 10, 15   

3.4 Aβ AGGREGATION  

Under normal physiological conditions, Aβ proteins are soluble and have been detected 

in normal human plasma (nm concentrations).  Aβ is naturally produced in both the blood and  
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Figure 3.1.  Proteolytic cleavage of Aβ from the Amyloid Precursor Protein (APP) by the α-, β-, 
and γ-secretases.   Cleavage of APP with the α-secretase produces two inactive fragments of Aβ.  
However, cleavage with β-secretase followed by cleavage with the γ-sercetase results in the 
release of full length Aβ from APP producing the two neurotoxic isoforms of Aβ, Aβ1-40 and 
Aβ1-42. 
 

brain of all humans and normally, it is fully catabolised, secreted, and released from cells before 

it can be deposited.15-17  However, the abnormal secretion of Aβ from APP in vivo leads to the 

formation of Aβ two neurotoxic isoforms.   

The fibrillogenesis process of Aβ has been under investigation in order to identify the 

neurotoxic entities associated with AD and for the development of medicinal strategies to target 

these neurotoxins.  In one of the first experiments assessing the aggregation behavior Aβ, Jarrett 

and Lansbury18-20 observed a delay period where supersaturated aqueous protein solutions (200 

µM -250 µM) remained clear for days followed by protein nucleation where insoluble fibrils 

were rapidly formed resulting in viscous and turbid solutions.  The lag phase associated with the 

thermodynamic solubility (amyloid stability) suggested that monomer dissolution to ordered 

peptide aggregates was slow and thermodynamically unfavored and formation of a stable nucleus 
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or addition of nuclei (seeding of solutions) served as a template for spontaneous fibril growth.  

These findings lead to the assumption that the nucleation step is the rate-determining step in 

fibril formation, thus introducing the widely accepted nucleation-dependent polymerization 

mechanism (Figure 3.2).18-20   

Lomakin et al.21, 22 showed that Aβ fibrillogensis was dependent on initial protein 

concentration.  Using light scattering techniques, they observed that if Aβ protein concentration 

was greater than its critical micelle concentration (cmc; ~25 µM),23, 24 spontaneous and 

reversible self-assembly of monomers to micelle was established followed by rapid fibril 

formation.  In contrast, if Aβ protein concentration was below its cmc, no micelles were formed 

and the predominate pathway was a heterogeneous nucleation process seeded by preformed 

aggregates or impurities not Aβ itself.  Lomakin’s model provided the theory that once the Aβ 

nucleus was formed (micelle acting as nuclei), fibril elongation was dependent on monomer 

concentration.   

Harper and Lansbury25, 26 agreed with the nucleation-dependent polymerization 

aggregation model, but was one of the first to discover differences between Aβ1-40 and Aβ1-42 

aggregation kinetics and identified a structural intermediate that was found to play an important 

role in the fibrillogenesis process of Αβ.  In agreement with Jarrett18-20 and Lansbury,27, 28 they 

noted that Aβ1-42 nucleated more quickly than Aβ1-40.  The increased hydrophobicity of the C-

terminus was responsible for the faster aggregation kinetics rather than initial concentration of 

full length Aβ as suggested by Lomakin et al.21  Harper et al.25, 26, 29 also observed three 

important events dealing with the observation of an intermediate species named “protofibril” 

using AFM.  First, protofibril elongation was slower than fibril elongation which supports initial 

models  that  suggests  nucleation  is  slow  and  polymerization  is  fast.    To  further  study  the  
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Figure 3.2.  Two step nucleation-dependent polymerization mechanism of fibril formation 
derived from Bitan et al. PNAS, 96, 6020-24 (1999).  
 

protofibrils role in the nucleation-dependent pathway, the group tested the efficiency of 

protofibril-to-fibril conversion and discovered that protofibrils were on-pathway precursors to 

fibrils.  Secondly, there was a distinct difference in the diameter of the relative protofibrils and 

fibrils depending on time and concentration. Thirdly, there appeared to be an overlap of 
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protofibrils (3-4 nm in height, 30-200 nm in length) where two or more long protofibrils become 

intertwined forming ordered branched or unbranched rigid type-1 fibrils (7-10 nm in height; 

range from 100 nm to greater than 1 µm in length).  This new information was paramount 

because it now suggested that protofibrils play a vital role in the assembly of Aβ fibrils and 

development of therapeutics agents targeting the protofibril-to-fibril transition could be effective 

at altering AD progression.     

Using size exclusion chromatography (SEC), light scattering, and EM, Walsh et al30, 31 

also studied the Aβ protofibril described by Harper.    Walsh and colleagues discovered that the 

protofibril intermediate was in equilibrium with low-weight Aβ (LWAβ; monomer, and dimer 

material), was capable of binding Congo-red and thioflavin-T (ThT) just as mature fibrils, and a 

contain β-sheet secondary structure similar to mature fibrils.  Although the protofibril 

intermediate was found to be in equilibrium with LWAβ, LWAβ had disorder random-coil 

conformations using CD spectroscopy and both had distinguishable morphologies.  An important 

discovery was in the biological activity of the protofibril.    Protofibrils, just as fibrils, perturbed 

neuronal metabolism and could be implemented as an initial indicator of neuronal dysfunction.  

LWAβ was ruled out as contributing to cell death because it exhibited no cytotoxicity in cortical 

neurons.31 Ambiguity lies between whether protofibrils or fibrils contribute to AD cytotoxicity 

and neurodegenerative conditions.  More recently, scientists have evidence to believe that 

protofibrils (soluble oligomers) correlate strongly with memory impairment7 and are the primary 

species contributing to neuronal death.32-36  

To characterize the initial stages of Αβ fibrillogenesis, photo-induced cross-linking of 

unmodified protein (PICUP), first introduced by Fancy et al.,37-39 proved to be an ideal method 

for determining Aβ oligomer size distributions.40  The basis of the PICUP experiment was 
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oligomers of Aβ would be “frozen” at a given state due to covalent cross-linking with a tris-

bipyridyl Ru (II) complex. The oligomers could then be analyzed in order to determine the 

oligomerization state just before cross-linking. PICUP studies revealed that LWAβ consist of 

materials ranging from monomers to hexamers40 (tetramer termination with Aβ1-40 and hexamer 

termination with Aβ1-42)41, 42
 in rapid equilibrium rather than the monomer/dimer state previously 

reported.31   It was also determined that Aβ1-40 aggregation proceeds via the previously described 

nucleation-dependent pathway, but Aβ1-42 aggregation pathway contains a prenucleation 

mechanism.  The monomers, dimers, and small oligomers (trimer) of Aβ1-42 are in equilibrium 

with one another.   Self-assembly of these initial intermediates forms a paranucleus (tetramer to 

hexamers) that nucleates larger unstructured oligomer formation (nonamers to 

dodecamers/octadecamers) followed by nucleation and polymerization of protofibrils to mature 

fibrils. Although Aβ1-40  has been more extensively studied in vitro and in vivo, proteinacious 

deposits of Aβ1-42 are more commonly found in AD diseased brains. Because Aβ1-40 and Aβ1-

42 exhibit two distinct aggregation pathways, it is imperative to identify the differences in 

aggregation and regulate both formation and progression the intermediates associated with both 

pathways.15, 41      

3.5 Aβ1-40 FIBRIL SUPRASTRUCTURE 

Fibrils are paracrystalline quaternary assemblies (Figure 3.3) that show Congo-red 

birefringence, show β-sheet secondary structures in CD and FTIR, and have a cross-β motif in 

X-ray diffraction.27, 43, 44  Several models have been proposed; all suggest the Aβ fibril consists 

of parallel or antiparallel β-sheet assemblies.  Parallel β-sheet alignments have been observed in 

longer segmented Aβ1-40
44-46 and Aβ10-35,47, 48 whereas antiparallel β-sheet alignments have been 

found in smaller, more hydrophobic peptide segments, Aβ 16-22 ,49  Aβ11-25,50 and Aβ34-42
51 using 
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solid-state NMR techniques.   Full-length Aβ1-40 has also shown antiparallel sheet alignments, 

but the structural characterization was based on ambiguous IR data (amide-I band signals).27, 45 

 

 
Figure 3.3.  Electron microscopy image of Aβ fibrils.  Aβ fibrils are typically 7-10 nm in height 
and range from 100 nm to greater than 1µm in length. Image was taken from Progress in Nuclear 
Magnetic Resonance Spectroscopy, 42, 53-68 (2003). 
 

 

Using 2-D 15N/13C (CO, Cα, and Cβ labeling) chemical shift correlation spectroscopy, it 

was determined that amino acid residues 12-24 and 30-40 from full-length Aβ1-40 orient in β-

strand conformations, where the average φ = −135° ± 25° and ψ =  140° ± 20°, while the first 10 

residues are fairly unstructured.43-47, 52, 53  Residues 25-29 (GSNKG) make up the 180° bend that 

aligns the two strands.  NMR and molecular modeling studies (Figure 3.4) show that Aβ fibrils 

form two in-registry parallel β-sheets having a β-turn (not indicative of a β-hairpin45, 52) that is 

stabilized by side-chain interactions (salt-bridge formation) between residues 23 (aspartic acid) 

and 28 (lysine).43, 46, 52, 54, 55 Protofilaments are stabilized through intermolecular hydrophobic 

contacts between residues 30-40 and 16-22 of each monomer unit (Figure 3.4 b).43 This 

hydrophobic contact along with electrostatic interactions further stabilize the structure in the 

cross β-motif (Figure 3.4 a) as fibrils grow because all polar and charged residues are located on 

the exterior (non-contact) portion of the motif.43, 46, 52 
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Figure 3.4.  Supramolecular structure of Aβ fibril.  (A) Cross β-sheet motif.  (B) Monomer 
addition of Aβ stabilized by side-chain hydrophobic interactions.  Image was taken from 
Biochemistry, 42, 3151-3159 (2003).  
 

3.6 CONCLUSION 

AD is a progressive and degenerative disease that directly affects over 30 million people 

worldwide.  There is no cure for this fatal and debilitating condition.  Researchers are 

investigating ways to slow the progression of AD and develop possible medicinal agents 

targeting Aβ aggregation. Monomeric Aβ, LWAβ, and oligomers (tetramer-decamers) are 

believed to pose no direct threat to neurological functions.  However, formation of the protofibril 

intermediate is believed to cause neurodegeneracy.  Although there is currently no structural 

representation of nonfibrillar aggregate materials, a well defined structure of the Aβ fibril does 

exists.  Understanding specific interactions that stabilize the Aβ fibril structure is important for 

the development of biologically active molecules that have the potential to prevent or mitigate 

protein misfolding. 
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CHAPTER 4. 

STOICHIOMETRIC INHIBITION OF AMYLOID β-PROTEIN 
AGGREGATION WITH PEPTIDES CONTAINING ALTERNATING  

Cα,α-DISUBSTITUTED AMINO ACIDS†‡ 
 
4.1 AMY PEPTIDE DESIGN 

The Αβ fibril cross β-sheet structure is stabilized by intrastrand and interstrand hydrogen 

bonding between two parallel β-sheets and by side-chain interactions (hydrophobic/electrostatic) 

(Figure 3.4).  This stability is a driving force for dimerization that leads to Aβ self-association 

and fibril formation.  Designing peptides that could prevent or interfere with these favorable 

interactions from one putative face would not prevent dimerization, but could prevent additional 

extended peptides from adding to sheet-like structures. 

A number of research groups have investigated peptides related to the hydrophobic core 

of Aβ (residue 16-22, Lys-Leu-Val-Phe-Phe-Ala-Glu; KLVFFAE) as potential blockers of Aβ 

aggregation and fibrillogenesis (Figure 4.1).  Their approach relied on self-recognition of the 

hydrophobic core with inhibitor compounds and the adaptation of specific conformational 

changes of Aβ with their proposed inhibitors to limit toxicity. Soto and coworkers used the 

recognition sequence, but incorporated L-Proline, due to its “β-sheet breaking” capabilities, 

within in the hydrophobic core of Aβ and found that this inhibitor was able to convert Aβ fibrils 

to amorphous aggregates and inhibit toxicity in vitro.1-3  Murphy et al.4-6 used a strategy where 

they designed peptides that bind to the hydrophobic core of Aβ and facilitate fibril formation by 

increasing the rate of Aβ aggregation. In addition, their peptides decreased Aβ cytotoxicity using 

PC-12 cell lines.  Researchers at the University of Chicago employed the use of N-methylated 

amino acids to prevent fibril formation.  Their study was based on the replacement of the peptide 

                                                 
† Reprinted by permission of The American Chemical Society 
‡ Reprinted by permission of Springer 
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backbone amide proton, which stablizes β-sheets via intrastrand/interstrand hydrogen bonding, 

with methyl groups. N-methyl amino acids form tertiary amides favoring trans-conformations; 

thus, peptides incorporating methylated amino acids are torsionally constrained to adopt β-strand 

conformations.7  Meredith et al. described inhibitors, where N-methylated amino acids were used 

in alternating positions of the hydrophobic core of Aβ that were adequate at blocking fibril 

formation, disassembled pre-formed fibrils, and were resistant to proteolytic digestion.8, 9 They 

also found that the alternating positioning of N-methylated amino acids was crucial for fibril 

inhibition because their peptides were designed so that when in β-strand conformations, one 

hydrogen bonding face would be blocked.  Chalifour10 and Tjernberg11 studied the 

stereoselective effects of Aβ hydrophobic core with the two most neurotoxic isoforms.  The 

rationale for their study was D-amino acids would create peptide bonds that are resistant to 

proteolyisis, thus making peptide models favorable therapeutic targets.  Their stereospecific 

results concluded that heterochiral stereospecificity is essential for inhibition.  More recently, 

aminoisobutyric acid (Aib) have been incorporated in peptides derived from hIAPP, the protein 

responsible for fibril formation in type-II diabetes.12  Aib is a helix promoting amino acid residue 

and compared to native protein controls, Aib containing peptides were capable of interfering 

with fibril formation and preventing the formation of β-sheet assemblies.  

Herein, the use of peptide analogs containing α,α-disubstituted amino acids  substituted 

into the hydrophobic core of Aβ  and their interaction with Aβ in aqueous buffer will be 

presented.  An alternating ααAA/L-amino acid design to give peptides that interact with Aβ by 

hydrogen bonding, but has one hydrogen bonding edge blocked due to side-chain interactions 

and steric hinderance, thus capping that facial side minimizing self-assembly has been utilized. 
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ααAAs are widely used in peptide design because of their structure-promoting effects.13-19 

Highly hydrophobic ααAAs with larger side-chain groups have been shown to stabilize extended  

 

 
Figure 4.1.  Peptidomimetic inhibitors of Aβ fibrillogenesis.  Inhibitor design strategy takes 
advantage of Aβ hydrophobic core self-recognition for binding while introducing β-sheet 
disrupting elements within the peptide sequence.   
 
conformations in homo-oligomers of diethylglycine,14, 17 thus it was hypothesized that peptides 

designed in this manner (Scheme 4.1) might have strong affinity for β-sheet assemblies of Aβ 

and also prevent further aggregation by blocking one face of the assembly.  The characterization 

of peptide mitigatiors using several physical techniques such as thioflavin-T (ThT) fluorescence 

spectroscopy, circular dichorism spectroscopy (CD), scanning force microscopy (SFM), and 

transmission electron microscopy (TEM) have been used to characterize the effects of peptide 

mitigators on Aβ aggregation and will also be discussed.   
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Scheme 4.1 Design of peptides with ααAAs as blockers of Aβ assembly. 

 

 

 

 

 

 

 

4.2 EXPERIMENTAL 

4.2.1 PEPTIDE SYNTHESIS 

The AMY peptides (Table 4.1) were synthesized using the following coupling and 

cleavage conditions.  Standard Fmoc coupling was carried out using the following reagents 

unless otherwise noted: PyAOP, 4 equiv; DIEA, 8 equiv; Fmoc-amino acids, 4 equiv (0.3 M) in 

DMF with a coupling time of 24 h while shaking. Fmoc removal was carried out using 

DMF:piperidine:DBU (93:5:2) for 30 min while shaking. The N-terminus and C-terminus oligio-

Lys chain was coupled to the resin bound peptide chain or the PAL-PEG-PS resin on a Pioneer 

Peptide Synthesizer using PyAOP in DMF. The remaining amino acid residues were manually 

incorporated into the sequence. Dpg, Phe, and Dbzg were incorporated into the peptide sequence 

using PyAOP/DIEA in DCE:DMF (1:1) at 50 ºC. The equiv of each reagent for coupling was as 

described above. Additionally, Dpg was coupled to resin bound support using bis(2-oxo-3-

oxazolidinyl)phosphinic chloride (BOP-Cl) mixed anhydride coupling.  The preformed mixed 

anhydride was prepared by treatment of Fmoc-Dpg-OH (1 equiv) with BOP-Cl (1 equiv) and 

DIEA (1 equiv) in CH2Cl2 for 2 h at 0 °C.  The mixed anhydride was concentrated and coupled 

to PAL-PEG-PS resin in DCE-DMF (4:1) for 8 h. Capping of the resin to eliminate any 
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unreactive active sites was performed using acetic anhydride (0.2 M in 0.28 M DIEA).  The Val 

residue was coupled to the N-terminus of Dbzg via amino acid symmetrical anhydride. The 

symmetrical anhydride was prepared by treatment of 2 equiv of Fmoc-Val-OH with 1 equiv of 

DCC in CH2Cl2 stirring at room temperature for 2 h followed by removal of the precipitated 

DCU by filtration. The symmetrical anhydride was concentrated, redissolved in the higher 

boiling DCE:DMF (9:1), and added for coupling of the amino acid residue to the resin-bound 

peptide chain. The reaction was carried out at 50 ºC for 24 h.  Dibg was coupled to Val using 

HATU (4 equiv), HOAt (4 equiv), DIEA (8 equiv), and Fmoc-Dibg-OH (4 equiv, 0.3 M) in 

DCE:DMF (1:1) at 50 ºC.  The first N-terminal Lys residue was coupled to Dibg via symmetrical 

anhydride coupling (as previously described) at 50 ºC.  Additional Lys residues were 

automatedly attached to the peptide chain using standard Fmoc solid-phase peptide chemistry. 

Following final deprotection procedure,  peptide cleavage from the solid support and side-chain 

deprotection was performed using a standard cleavage cocktail (Reagent B) of 

TFA:phenol:H2O:TIPS (8.2:0.5:0.5:0.2) 20, 21 for 2 h while shaking followed by extraction in 

30% acetic acid (HOAc) and chloroform (AMY-2). The filtrate concentrate was dissolved in 

cold 30% glacial acetic acid (HOAc) solution, diluted with two fold volume of chloroform, and 

the aqueous layer was extracted (3 times).  The aqueous layer was concentrated and redissolve in 

30% HOAc, frozen, and lyophilized to yield crude peptide.  AMY-1, AMY-3, and AMY-4 were 

co-precipitated in cold Et2O for 24 h at -27 °C.   The precipitate was then washed with cold Et2O 

and centrifuged at 4,000 rpm for 10 min (3 times). The supernatant was decanted and the 

remaining pellet was allowed to dry for 12 h yielding crude AMY-X product.   

The HC-(hydrophobic core) peptides (Table 4.1) were synthesized using four equivalents 

of amino acid and activation with TBTU, HOBt, and DIEA at a final concentration of 0.2 M 

unless noted otherwise. The NMHC and HC-B3 peptides were synthesized using PyAOP/DIEA 



 63

activation.  A stepwise coupling of each amino acid was obtained using the standard solid-phase 

Fmoc coupling chemistry.  A double coupling of each Aib residue and the N-terminal Aib 

residue (HC-B3) and each N-methylated amino acid residue and the N-terminal N-methylated 

amino acid residue (NMHC) was performed at 50 ºC to maximize coupling yields.  Peptide 

cleavages were performed using Reagent B. Following cleavage of the peptide from the solid 

support, the filtrate samples were combined and concentrated.  Pre-purification of peptides were 

performed from an extraction using 30% HOAc and Et2O (HC-K6) or by co-precipitation in cold 

Et2O at -27 °C for 24 h (HC-B3 and NMHC).    

4.2.2 PEPTIDE PURIFICATION AND CHARACTERIZATION 

All peptide purification and characterization was performed using protocols previously 

described in Chapter 2 section 2.2.2.  The peptides were purified using reversed-phase HPLC 

with linear gradients of 0.1% aqueous TFA in H2O (v/v) (Buffer A) and 0.1% TFA in CH3CN 

(v/v) (Buffer B).  The molecular masses of the peptides were verified using MALDI-MS and the 

net peptide content of all peptides was determined using AAA.  See Table 4.1 for HPLC, 

MALDI-MS, and AAA results.     

4.2.3 Aβ1-40 PEPTIDE AGGREGATION (MONOMERIC STARTING SOLUTIONS)  

  Lyophilized Αβ was dissolved in neat TFA at 1 mg/mL and sonicated for 10-15 min.  

TFA was then evaporated using using centrifugal evaporator at 30 mTorr (dark yellow oil).  The 

resulting oil was dissolved in HFIP at 1 mg/mL and incubated at 37 °C for 1 h. HFIP was 

removed using centrifugal evaporator at 30 mTorr (white powder).  The white powder was 

dissolved in HFIP at 1 mg/mL and incubated at 37 °C for 1 h.  HFIP was then removed and the 

resulting white powder was lyophilized overnight.  The white powder was then re-dissolved in 2 

mM KOH and 2x PBS (100 mM, 300 mM NaCl, pH 7.4) at 1:1 mole ratio and centrifuged for 10 

min at 13,000 g. Amino acid analysis was performed on the supernatant to verify peptide 
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concentration.  Samples were stored in a freezer at -72 °C until ready for use. 1:1 molar ratio 

mixtures of Aβ:inhibitor (500 µM: 500 µM) were diluted 1:10 and allowed to co-incubate at     

37 °C at various time intervals.   

4.2.4 CIRCULAR DICHROISM MEASUREMENTS 

All measurements were carried out using an Aviv Circular Dichroism Spectrometer 

Model 62DS with Igor plotting software.  Samples were prepared by diluting 10x stock solution 

of Aβ1-40 (500 µM) and 10x PBS (500 mM, 1.5 M NaCl) with ultra-pure deionized water to 

acquire a working solution of 50 µM Aβ in PBS (50 mM, 150 mM NaCl; pH 7.4). Prior to each 

dilution, individual 10x samples and water was filtered using a 0.02 micron Anatop filter 

(Whatman). For co-incubation experiments, Aβ was dissolved (as above) to yield 100 µM -500 

µM solutions; inhibitor peptides were dissolved in water to yield solutions with concentrations 

ranging from 100 µM-500 µM.  Working stock solutions were then diluted 10-fold and 

incubated at 37 °C over various time intervals.  CD spectra were the average of three scans made 

at 1 nm intervals acquired from 260 nm to 190 nm (UV absorbance range) recorded at 25 °C.  

The spectrum of PBS buffer (10x) diluted in water was used as the background subtraction in all 

experiments.   

4.2.5 SCANNING FORCE MICROSCOPY 

All measurements were performed using the Nanoscope III Multimode SFM (tapping 

mode).  Samples were adsorbed on atomically flat hydrophilic mica. Cleavage and exposure of 

interior mica planes (which are atomically flat over large areas and ideal for SFM imaging) was 

achieved by placing a razor blade in the middle of the sheet edge layers of a 1 cm2 mica and 

separating the layers by gripping one side with a pair of tweezers.  A sample aliquot of 5 µL was 

then placed on the freshly exposed mica and allowed to remain for 25 min, unless otherwise 

noted.  After a 25 min adsorption step in most cases, the sample/substrate was rinsed with 400 
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µL of deionized water followed by tilting the substrate and placing its edge on a Kimwipe to 

wick away the water. The mica samples were then placed sample-exposed face up on a 15 mm 

metal specimen disc. When ready for imaging, each specimen disc was placed on top of the 

piezoelectric scanner of the SPM instrument and imaged using SFM tapping mode.  Samples not 

immediately imaged were stored in semiconductor wafer containers under an ordinary lab 

ambient environment.  

4.2.6 TRANSMISSION ELECTRON MICROSCOPY 

Samples for TEM analysis were prepared by inverting the carbon-supported Cu coated 

grid on a 5 µL droplet of sample for approximately 30 sec. Excess solvent was wicked away and 

the grid was rinsed by inverting the deposited Cu grid on a 5 µL droplet of water for 

approximately 5-10 sec.  The grid was stained with 2% uranyl acetate in 0.05 M HCl by 

inverting the Cu grid on a 5 µL droplet of filtered 2% uranyl acetate for 5-10 sec.  The prepared 

grids were then placed in JEOL 100 CX transmission electron microscope at an electron 

acceleration voltage of 80 kV for imaging. 

4.2.7 FLUORESCENCE MEASUREMENTS 

Fluorescence spectroscopy was measured using a Fluostar Spectometer with Fluostar 

operating software with an excitation filter at 450 nm and an emission filter at 480 nm.  

Thioflavin-T (ThT) was dissolved in 10 molar excess of PBS (500 mM 1.5M NaCl, pH 7.4) to 

acquire a 10 molar excess stock solution (100 µM) of dye. 90 µL of peptide sample stock 

(peptide sample in buffer diluted with water) was diluted with 10 µL of dye stock solution to 

prepare fluorescence spectroscopy working solutions [25 µM Aβ or 25 µM Aβ/peptide mitigator 

(1:1 mol ratio) in PBS (50 mM 150 mM NaCl, pH 7.4) with 10 µM of ThT].  Αβ and Aβ/peptide 

mitigator solutions were diluted as previously described in section 4.2.4 Circular Dichroism 

Measurements and were allowed to incubate in a 96 well-plate for various time intervals.  
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4.2.8 NEURONAL CELL CULTURE 

Primary rat cortical neuronal cells isolated from micro-surgically dissected regions of 

Sprague/Dawley or Fischer 344 rat were purchased form Genlantis (N200200).  Tissue culture 

treated CoStar 96 well-plates were coated with poly-D-lysine (50 µg/mL) and neuronal cells 

were plated at a density of 2 x 104 cells/100 µL (per well) in Neurobasal medium (Invitrogen 

211103) containing NGF-B27 supplement (Genlantis N200200) with 0.5 mM glutamine.22  

Cultures were allowed to differeniate for 4-5 days in a humidified incubator at 37 °C, 5% CO2 

before assaying with Aβ and Aβ/peptide mitigator solutions at various concentrations and time 

intervals.  

4.2.9 CELL CULTURE (PC-12 CELLS) 

PC-12 cells were grown in collagen-coated tissue culture plates in medium containing 

81% RPMI Media 1640, 10% horse serum, 5% fetal bovine serum, 1% amino acid, 1% non-

essential amino acids, 1% vitamins, 1% glutamine, with Primocin (200 µL/100 mL of media).  

Cultures were allowed to proliferate in a humidified incubator 37 °C, 5% CO2 for 3-5 days.   

Cells were harvested from plates and re-suspended in collagen-coated 96 well-plates at a density 

of 5 x 104 cells/100 µL (per well).  Plates were incubated at 37 °C for 24 h to allow for cell 

adhesion. 

4.2.10 CELL VIABILITY ASSAYS 

Mitochondrial function was evaluated via cell mediated reduction of 3-(4,5-

dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT).23-26  Aβ fibril solutions were 

prepared by incubating Αβ for 1 week at 37 °C in PBS diluted in RPMI-supplemented cell 

culture media yielding final peptide concentrations of 5 µM-50 µM.  Cells were co-incubated in 

100 µL of freshly prepared RPMI-supplemented cell culture media or Neurobasal media 
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containing B27 NGF (0.5 mM glutamine) with fibril solutions at various concentrations (5 µM-

50 µM) and time intervals (2 h-24 h) in a humidified incubator 37 °C, 5% CO2.  Following 

concentration- and/or time-dependent incubations, 15 µL of MTT stock solution was added to 

each well and allowed to incubate for 4 h.  After 4 h, 100 µl of solubilizing solution, 50% DMF 

and 20% SDS at pH 4.7, was added to each well and allowed to incubate for 1 h followed by UV 

absorbance reading at 590 nm.            

Cellular viability of neuronal cortical cells was measured fluorescently using a dye 

indicator resazurin.  Mitochondrial function could also be evaluated via cell mediated reduction 

of the indicator dye. Viable cells have the ability to reduce resazurin to resofurin, which is highly 

fluorescent at 560 nm/ 590 nm (ex/em; CellTiter-Blue).  Aβ fibril solutions were prepared as 

previously described above.  Cells were incubated in 100 µL of freshly prepared Neurobasal 

media containing B27-NGF (0.5 mM glutamine) with fibril solutions at various concentrations (5 

µM-50 µM) and time intervals (2 h-24 h) in a humidified incubator 37 °C, 5% CO2.  Following 

concentration- and/or time-dependent incubations, 20 µL of resazurin dye was added to each 

well and allowed to incubate for 4 h.  After 4 h, fluorescence intensity was recorded, excitation at 

570 nm and emission at 615 nm.            

4.3 RESULTS AND DISCUSSION 

4.3.1 SYNTHESIS OF AGGREGATION MITIGATORS 

The most common approaches for the synthesis of the ααAAs have been the Strecker or 

Bucherer-Bergs synthetic routes.   Dpg was synthesized via the Bucherer-Bergs synthetic route 

(Chapter 2 section 2.2.1) from a diketone precursor forming a hydantion that underwent 

hydrolysis to form an unprotected amino acid product that was N-terminally Fmoc-protected.  

Although this method was convenient for linear side-chains, synthesis of the more bulky and 
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sterically hindered side-chains via this route was problematic.  Hydrolysis of the larger side-

chain hydantoins to free amino acid is relatively impossible.  For this reason, the use of more 

reactive glycine anion equivalents was explored.27, 28 Ethyl nitroacetate was found to be a very 

useful synthon for the preparation of bulky amino acids.   Diisobutylglycine (Dibg) was 

synthesized via a Pd-catalyzed diallylation of ethyl nitroacetate,28 while dibenzylglycine (Dbg) 

was synthesized from the treatment of ethyl nitroacetate with DIEA followed by addition of an 

activated alkyl halide.27   Following formation of the nitrosubstituted complex in both syntheses, 

both were reduced via hydrogenation over Raney Ni followed by hydrolysis and N-terminal 

Fmoc protection.   

Difficulties associated with the incorporation of sterically hindered Cα,α-disubstituted 

amino acids into peptide sequences by standard amino acid coupling methods resulted in the 

exploration of alternative routes for synthesizing peptides containing these bulky amino acids. 

The synthesis of the “AMY” peptides used methods previously reported.27-29 Incorporation of 

Dpg into the AMY-1 peptide sequence was facile using PyAOP at 50 °C.   Unfortunately, 

incorporation of the more sterically hindered Dibg or Dbg to the N-terminus of unhindered 

amino acids proved to be more difficult.  Fu investigated a series of coupling and activation 

strategies to access amide bond formation efficiencies and determined that more nonpolar 

solvent in the presence of uronium or phosphonium salt-activation improved coupling of 

ααAAs, Dibg and Dbg respectively, to peptide chains.    One additional problem that existed in 

the addition of ααAA into peptide chains was N-acylation of the ααAA.  Carbodiimide-

mediated symmetrical anhydrides in nonpolar solvents proved to be more efficient at acylating 

the N-terminal residues. 

AMY-2, AMY-3, and AMY-4 (Table 4.1) were synthesized using protocols similar to 

that of AMY-1.  One major difference between AMY-1 and AMY-2 was a method of anchoring        
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Table 4.1. Peptide Mitigators of Amyloid-β protein.  Primary sequence, purification, and 
characterization. 

Peptide Sequence 

Calculated 

[M+H]+ 

Observed MALDI-

MS 

tR 

(min) 

Peptide 

content  

AMY-1 KUVZFJK6 1708.37 1709.54 22.95 51% 

AMY-2 K7UVZFJ 1708.42 1709.72 12.51 45% 

AMY-3 KUVZFJ 939.64 939.41 20.32 n/a 

AMY-4 KUVZFJK 1067.74 1069.97 n/a n/a 

*HC-K6 KLVFFK6 1420.24 1420.64 13.65 67% 

HC-B3 KBVBFBK6 1415.90 1414.68 15.53 65% 

*NMHC K(MeL)V(MeF)F(MeA)E 894.36 896.85 22.88 66% 

* Denotes peptides previously reported in literature used as control experiments.  HC-K6 is the peptide initially 
introduced by Murphy (Figure 4.1) and the NMHC peptide was initially described by Meredith (Figure 4.1). Refer to 
Appendix B for HPLC chromatograms and MALDI-MS spectra. 
 

ααAA Dpg to the solid support was necessary.   Fu et al.28 reported that proper and efficient 

anchoring of the ααAA to the solid support was a critical step in peptide synthesis and was 

necessary for the prevention of deletion sequences which could complicate purification and 

overall peptide yields.  Preformed mixed anhydrides from bis(2-oxo-3-oxazolidinyl)phosphinic 

chloride (BOP-Cl) and Fmoc-ααAA-OH reacted together was effective at anchoring the 

sterically hindered amino acids to the solid support.  Table 4.1 lists the primary sequence of 

peptide mitigators of Aβ, where B=Aib, J=Dpg, U=Dibg, Z=Dbg, and Me=N-methylated.   Also 

described is the purification and characterization using HPLC, MALDI-MS, and AAA.  Peptides 

AMY-3 and AMY-4 were not used for any assays.  AMY-3 was extremely hydrophobic and was 

not soluble in aqueous buffers, therefore excluded from all experiments.  The purification of 

AMY-4 was problematic as a result of poor coupling yields.  A major problem with AMY-4 was 

the deletion of Dpg from the peptide chain.    The AMY-4 peptide   did   not   have  homogeneity 

> 95% as determined by analytical HPLC; therefore, it was excluded from further experimental 

assays.  A double coupling procedure at elevated temperatures for the incorporation of Aib (HC-
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B3) and N-methylated amino acids (NMHC) was used because previous protocols determined 

that this method of coupling afforded efficient peptide bond formation.  

4.3.2 CONFORMATIONAL STUDIES OF PEPTIDE MITIGATORS 

 Initial CD studies of each peptide analog in the absence of Aβ (Figure 4.2) was 

performed to determine their aggregation behavior.  The interaction of Aβ with the peptide 

analogs will be discussed later in Chapter 4 section 4.3.3.  It was speculated that the peptide 

analogs would bind and interact with Aβ through β-sheet assemblies, but this premise relied on 

each peptide analog interacting with Aβ via the hydrophobic core, KLVFF, and the peptide 

analogs not folding into sheet-like conformations themselves.  The CD spectra of AMY-1 and 

AMY-2 peptides were characteristic of predominately random coil conformations (RC), as 

indicated by a large negative band near 192 nm.  The large positive band near 200 nm and 215 

nm is due to the aromatic contributions from Dbg.30-34 HC-K6 and HC-B3 peptides also exhibited 

unstructured random coiled conformations (Figure 4.2), while the NMHC peptide exhibited a 

signature curve characteristic of a β-sheet conformation. The unusual red-shifted CD spectra  

(minimum at 227 nm instead of normal 220 nm for β-sheets) could be attributed to differences in 

electronic transitions due to N-methylated amino acids.  The concentration study of all peptide 

migitators suggest that they displayed minimal aggregation at concentrations studied.  AMY-1 

and AMY-2 concentration dependent CD studies all exhibited isodochroitic points, but the 

absence of a conformational transition from random coil to β-sheet suggested these peptides lack 

a multi-step misfolding transition.  The systematic concentration dependent decrease in random 

coil signal at wavelengths ranging from 192 nm to 200 nm with increasing concentration for 

each peptide occurred due to increased salt content (TFA salt from HPLC purification) in each 

peptide sample which distorts the CD signal at the lower wavelengths. Data derived from the  
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Figure 4.2.  Concentration studies (25 µM-500 µM peptide) (A) AMY-1,  (B) AMY-2.  
Temperature analysis (50 µM peptide, 5-55 °C) of (C) AMY-1, (D) AMY-2.  All CD spectra 
were taken in 50 mM PBS (150 mM NaCl); pH 7.4. Molar Ellipticity -[θ ] units: deg cm2 dmol-1. 
(Figure 4.2 cont’d.) 

A. C.

B. D.
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Concentration studies (100 µM-1 mM peptide) (E) HC-B3,  (F) HC-K6, and (G) NMHC.  
Temperature analysis (50 µM peptide, 5-55 °C) of (H) HC-B3, (I)  HC-K6, and (J) NMHC.  All 
CD spectra were taken in 50 mM PBS (150 mM NaCl); pH 7.4.  Molar Ellipticity- [θ ] units:  
deg cm2 dmol-1. 
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thermal analysis of AMY-1, AMY-2, and NMHC peptides showed that each had superimposible  

CD bands at varying temperatures suggesting no thermal denaturation or unfolding of the peptide 

analogs from 5 °C to 55 °C.  Although the HC-K6 and HC-B3 CD curves do not overlay, their 

secondary structures, at varying concentrations and temperatures, are consistent with one 

another.  There was a systematic decrease in random coil signal at wavelengths ranging from 192 

nm to 200 nm in both aggregation and thermal analysis as both the concentration and 

temperature increased.  A clear isodichroitic point exists, but the absence of a conformational 

transition from the unstructured RC conformation to one that is more ordered suggests both 

peptides did not undergo a multi-step misfolding/unfolding process from a >10-fold 

concentration range and from low to elevated temperatures respectively.   

4.3.3 PEPTIDE MITIGATORS AND THEIR INTERACTION WITH Aβ1-40.  

A significant problem associated with biophysical studies of synthetic Aβ is the time-

dependent aggregation of Aβ in aqueous solution.35  Polymorphism associated with subtle 

variations in Aβ fibril growth has lead to many inconsistencies in interpreting experimental 

results.36, 37  Several factors such as peptide concentration, pH, ionic strength, amino acid 

primary sequence, and solvent systems have been found to affect in vitro studies of Aβ fibril 

formation.  Controlling the initial aggregated state of the peptide is generally a challenge as 

synthetic Aβ is difficult to dissolve directly into physiological buffers.38 The existence of pre-

seeded material in commercially available Aβ from different manufacturers results in various 

initial aggregation states. Different lot batches produced by the same company also vary; 

therefore, obtaining monomeric starting solutions has been a main focus of a number of research 

laboratories as to ensure reliable and reproducible results.  It is essential to understand the 

earliest phases of Aβ aggregation, including prenucleation and nucleation. Elucidating the 
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activity of protofibrillars and fibrils is essential for the development of therapies needed to 

interfere with neurotoxicity. To better study the early stages of aggregation, many groups follow 

protocols that involve the pre-dissolution of Aβ in organic solvents39 such as: trifluoroacetic acid 

(TFA),35 2,2,2-trifluoroethanol (TFE),40, 41 dimethyl sulfoxide (DMSO),42, 43 and 1,1,1,3,3,5 

hexafluoroisopropanol (HFIP),44, 45 followed by dilution in aqueous buffer systems. Pre-

dissolution using organic solvents is widely used due to their ability to dissolve pre-seeded 

material, promote α-helical conformations, and overcome solubility issues in physiological 

buffers. A modified protocol where Aβ was dissolved in organic solvents TFA and HFIP 

followed by dissolution in KOH and centrifugation to remove aggregated material was utilized to 

ensure monomeric stock solutions.  Stock solutions were then diluted in PBS at various 

concentrations (5 µM-50 µM) to obtain working solutions.  Using this protocol, monomeric 

starting solutions were assayed and monitored to study the effects of peptide anologs on 

Aβ aggregation.    

The AMY-1 peptide (oligolysine unit on the C-terminus) greatly alters the progression of 

the β-sheet secondary structure associated with the Aβ protein.  It was observed (Figure 4.3 A) 

after several days in aqueous buffer that Aβ protein, in the absence of peptide mitigator, has a 

conformational transition from random coil to β-sheet. This is followed by concomitant 

formation of approximately 4-7 nm-high protofibrils,42, 43, 46, 47 as observed by scanning force 

microscopy (SFM; Figure 4.3 C). This is typical of the pattern that is observed where Aβ protein 

forms small oligomeric aggregates, then protofibrils that progress to mature fibrils (Figure 4.3 C 

displays one larger fibril among a plethora of protofibrils). Monomeric material is largely 

unstructured as evident by the random coil conformations illustrated by time zero solution 

(Figure 4.3 A purple curve) and mature fibrils (7-10 nm height; microns in length) contain 
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assemblies that have β-sheet conformations (Figure 4.3 A black and red curve) and are present in 

solutions incubated for 8 days while shaking (Figure 4.3 C). In contrast, equimolar mixtures of 

AMY-1 and Aβ lead to a complex and unusual CD curve that appears to become more β-sheet 

like as time progressed (Figure 4.3 B). Samples containing equimolar concentrations of AMY-1 

and Aβ do not exhibit any protofibrillar material when examined with ex situ SFM after 8 days.  

All that is observed is a layer of protein adsorption onto the mica substrate (Figure 4.3 D).   

Dynamic light scattering suggests that the AMY-1/Aβ mixture contains particles ranging from 

100-300 nm in size.48 Typically, Aβ protein will form protofibrils that progress to fibrils, but in 

numerous experiments, AMY-1 significantly alters the pathway of Aβ assembly.  Mixtures of 

AMY-1 and Aβ do not exhibit fibrillization or gellation after months at room temperature 

(Figure 4.4). TEM images of Aβ stored at room temperature for 4.5 months display large 

branched fibrillar structures (≥ 10 µm; Figure 4.4 A).  SFM of this sample showed that the 

remaining material was composed of small fibrillar structures (Figure 4.4 B). More important, a 

sample of equimolar AMY-1 and Aβ stored at room temperature for 4.5 months show no sign of 

precipitate; TEM (Figure 4.4 C) and SFM images (Figure 4.4 D) display no signs of fibril 

formation and point only to the presence of globular, non-fibrillic protein aggregates. Even at 

sub-stoichiometric concentrations of AMY-1 (5 µM AMY-1: 50 µM Aβ) very little fibrillization 

of Aβ was found (Figure 4.4, E and F) for the same time period.  AMY-2 (oligolysine unit on the 

N-terminus) behaves very differently than AMY-1.  Mixtures of Aβ and AMY-2 solutions result 

in rapid (< 10 min) turbidity of the sample, which precludes CD analysis due to sample 

opaqueness.  Microscopy studies of Αβ/AMY-2 (1:1 mole ratios) display large non-fibrillar 

aggregates on the order of ~1 µm (Figure 4.3 E) similar to H1 (KKKKKKGGQKLVFFAEDVG) 

peptide reported by Ghanta.4 
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Figure 4.3.  Aggregation of Aβ 1-40 mitigated by ααAA-based inhibitors.  All incubations were 
performed in PBS (0.05 M NaH2PO4, 0.150 M NaCl, pH 7.4) and 37 °C.  (A) CD of Aβ (50 µM) 
for t = 0-8 days; (B) CD of Aβ (50 µM) co-incubated with AMY-1 (50 µM) for t = 0-8 days; 10 
µm x 10 µm ex situ tapping mode SFM images acquired on mica of (C) Aβ (50 µM) after 8 
days, (D) Aβ (50 µM) and AMY-1 (50 µM) after 8 days, and (E) Aβ (50 µM) and AMY-2 (50 
µM) for 1.5 h at 37 °C. [θ ] units:  deg cm2 dmol-1. 
 

 

Figure 4.4.  Effect of AMY-1 on Aβ1-40 aggregation at varying inhibitor concentrations. A, C, 
and E are TEM images; B, D, and F are SFM images. Aβ   (50 µM) incubated for 4.5 months at 
25 °C in PBS; (A) and (B) Aβ  alone; (C) and (D) with 50 µM AMY-1; (E) and (F) with 5 µM 
AMY-1.  SFM images are 10 µm × 10 µm scans. 
 

A C E

B D F
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Small natural peptides, based on the hydrophobic core of Aβ,  delay but do not stop 

imminent Aβ self-assembly and fibrillogenesis,2, 3, 8, 9, 49 but the latter results suggest a very 

different mechanism for altering aggregation using AMY-1 than other peptide-based mitigators.  

Protein aggregates are stabilized suggesting that the aggregated states are trapped.  This 

“trapness” could be a battle between conformations stabilized by intermolecular and 

intramolecular interactions.50 What is the mechanism of the AMY inhibitors? We do know that 

AMY-1 and AMY-2 are very stable and do not aggregate in solution.  In the presence of Aβ, one 

possibility is that the AMY-peptides are acting as non-specific cosurfactants that solubulize 

Aβ protein.51  In this vein, surface activity analyses of the peptide mitigators were performed. 

The peptide AMY peptide mitigators do not show micellar-like activity up to millimolar (mM)  

concentrations, and they do not have significant surface activity at concentrations studied (50- 

100 µM).52  The very different behavior of AMY-1 and AMY-2, which have the hydrophilic 

Lys tail on different termini, suggest some directionality to their interaction with Aβ.  One way 

to rationalize this is to suggest a micelle with a hydrophobic core and a charged surface 

displaying the hydrophilic groups of Aβ and the Lys tails of AMY-1.  AMY-2 may have the 

same directional interaction with Aβ, but displays the hydrophilic Lys tails to the inside of the 

micelle perhaps forming a bicelle or liposome-like structure that grows more quickly.  An 

alternate hypothesis is that AMY-1 disrupts the propagation of intermolecular interactions 

necessary for the self-assembly of the hydrophobic C-terminal portion of Aβ.53   Interfering with 

the propagation of favorable interactions that mediate the folding propensity of Aβ along with 

having one face capped due to ααAA steric contributions has the potential to reduce the 

formation of larger oligomer assemblies, thus producing smaller aggregate particles. The AMY-

2/Aβ solutions do not proceed to mature fibrils because aggregation is capped due to ααAAs 
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steric contributions. However, AMY-2 disrupts only the hydrophilic N-terminal assembly of Aβ, 

which has less of an impact on aggregation.54 As a result, AMY-2 leaves the C-terminus of Aβ 

accessible for nucleation that potentially leads to larger particle formation.  

4.3.3.1 AMBIGUITY IN THIOFLAVIN-T FLUORESCENCE ASSAYS 

Thioflavin-T (ThT) is a cationic benzothiazole dye that undergoes changes in its spectral 

properties as it binds to amyloid fibrils.55-59 ThT is usually assayed at concentrations (10-100 

µM) above its cmc (~4 µΜ); therefore, it forms micelles that bind to hydrophobic 

pockets/patches of Aβ fibrils and enhances the fluorescent signal as fibril growth occurs.60 

Preliminary studies using amylin protein (type-II diabeties Islet fibrils) were unsuccessful at 

binding ThT as the protein showed no increase in fluorescence signal as time progressed. The 

cationic dye was able to bind aggregates of Aβ protein (preliminary studies by Aucoin and 

Etienne) suggesting that ThT fluorescence is Aβ specific. Thus, ThT fluorescence assays were 

used to monitor Aβ fibril formation in conjunction with CD spectroscopy and TEM.   

ThT results (Figure 4.5) were inconsistent with CD and TEM data.  Under normal 

physiological conditions, Aβ has a lag-phase observed in fluorescence spectroscopy (emissions 

at 482 nm) due to the presence of monomeric material.  As Aβ protein monomer self-associates 

and aggregate to form protofibrils and fibrils, an increase in ThT fluorescence is normally 

observed.  However, CD analysis of aggregated Aβ solutions show β-sheet secondary structures 

and TEM images displayed protofibrils and fibril material while ThT fluorescence indicated the 

presence of a lag-phase.   HC-K6, was used as a peptide control and displayed characteristics 

consistent with literature. 5, 6, 61  CD analysis of HC-K6 alone (Figure 4.2 F and I) showed that 

this peptide mitigator adopts a random coiled conformation.  There were minimal differences in 

the CD spectra of HC-K6 compared to a 1:1 molar mixtures of Aβ/HC-K6 solutions at short term 
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incubations (0-72 hrs), but slight conformational changes occurred following 72 hrs.  This 

change was attributed to the morphology changes that occurred in solution (formation of mature 

fibrils).  The particle size distribution of aggregate material of Aβ and Aβ/HC-K6 solutions (1:1) 

was monitored using DLS.48  Aβ/HC-K6 solutions increased the growth kinetics associated with 

fibril formation and formed fibrils with distinguishable morphologies which was also consistent 

with literature reports.   Pallitto,6 reported that HC-K6 caused little or no reduction in ThT 

fluorescence signal; however, the fluorescence data presented in this dissertation is not consistent 

their findings. The HC-K6 peptide (Figure 4.5 turquoise triangle) dramatically reduces 

fibrillogenesis for a prolonged period of time while fibrils were present in Aβ/HC-K6 solutions at 

approximately 72 h (determined using TEM). 

 NMHC was also used as a control peptide.  Its CD spectrum was predominately 

β-sheet and the peptide was highly soluble in aqueous solution.  These results were consistent 

with the reported literature.8, 9 In contrast to reported ThT results, NMHC was ineffective at 

halting fibril formation at concentrations assayed (1:1-10:1 mole ratios of mitigator:Aβ; 

conclusions determined by TEM images).  Gordon et al. reported that this peptide was 

ineffective at reducing fibril formation at low Aβ:inhibitor ratios (<1:4), however, our ThT 

results indicate that at 1:1 mole ratio, a lag-phase (indicative of reduction in Aβ fibril formation 

compared to Aβ alone, Figure 4.5 black square-Aβ, green triangle- NMHC/Aβ solution) 

occurred for 82 h followed by rapid fibril formation. We were unable to reproduce the 

disassembly of pre-formed fibrils reported by Gordon at concentrations reported in literature.  

Differences in initial dissolution protocols of Aβ could contribute to the ambiguity associated 

with interpreting experimental results of control peptides.  

Levine reports one important characteristic of this cationic dye is that it does not bind to  
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Figure 4.5 Thioflavin-T fluorescence assay measuring fibril growth of Aβ in the presence of 
peptide mitigators.  Working solution contain 50 µM Aβ/peptide mitigator (1:1 mole ratio) in 50 
mM PBS 150 mM NaCl (pH 7.4) using 10 µM ThT dissolved in PBS.  Samples were heated 
continuously at 37°C and shaken 15 sec every 30 min in a 96 well-plate. 

 
 

amorphous aggregates or monomer material, but does bind to protofibril material.58  However, 

ThT fluorescence is not an effective experimental assay for monitoring fibril growth or 

disassembly because we and others62 have shown that ThT is capable of binding amorphous 

aggregates as well as protofibrillar and fibrillar materials. It was expected that AMY-1 would 

reduce fibril formation due to the facial capping model of β-sheets.  Although SFM images 

(Figure 4.4 B) supported this hypothesis with the absence of fibrillic material, ThT fluorescence 

of Aβ/AMY-1 solutions (Figure 4.5 red circle) had an initial reduction in fibril formation, but 

displayed increased fluorescence intensity compared to Aβ alone after approximately 60 h.  The 

fast growth was initially thought to be a direct link with Aβ fibril formation but CD analysis 
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(Figure 4.3)  and  TEM  (Figure 4.4)  images  of  the  AMY-1  (1:1)  solution   show  amorphous  

aggregates that contain β-sheet secondary structures.  Upon dissolution with Aβ, AMY-2 

rapidly aggregates forming large globular aggregates that were capable of binding ThT.  From 

preliminary CD and TEM studies, it was expected that AMY-2 would behave in a manner 

forming large hydrophobic aggregates whose aggregation kinetics would be faster than Aβ itself.  

AMY-2/Aβ solutions did form aggregates exceedingly faster than Aβ and exhibited enhanced 

fluorescence signals suggestive of rapid self-assembly and aggregate growth.  SFM and TEM 

images of Aβ/AMY-2 solutions displayed the presence of large aggregate material after 60 h 

incubation and no sign of fibril formation.  Thus it is hypothesized that ThT binding is not 

morphologically specific rather is driven by hydrophobic interactions and ionic interactions 

necessary to stabilize the ThT micelle binding to Aβ substructures.     

4.3.4 Aβ CYTOTOXICITY 
 

AD is characterized by the presence of extracellular deposits known as senile plaques.  

Senile plaques are localized to the cerebral cortex and/or hippocampus regions of the brain and 

have been associated with neurodegeneracy because affected regions of the brain are mostly 

responsible for increased brain functions including sensation, voluntary muscle movement, 

thought, reasoning, and memory function.  These proteinacious plaques consist mostly of Aβ 

protein and have been implicated as a direct link between neuronal dysfunction and cell death. It 

is seemingly difficult to study Aβ aggregation in vivo; therefore, scientists have modeled Aβ 

aggregation using synthetic peptide forms of the neurotoxin to elucidate its mechanism and mode 

of action.  More recently, in vitro and in vivo studies suggest that soluble intermediates 

(protofibrils) not mature fibrils are the cytotoxic species responsible for cell apoptosis and 

neurodegeneracy.3, 63-68  Walsh and Selkoe69 related neurodegeneracy and cytotoxicity to soluble 

oligomers stating that these intermediates mediate learning and memory and there is a direct link 
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to cytotoxicity and neurodegeneracy.   In APP transgenic mice, protofibrillar materials 

contributed to neurotoxicity and progressive learning defects as well as declines in synaptic 

transmission.  As Aβ aggregates forming diffusible plaques that build up on neuronal cells, 

neuronal impulse signals cannot be transmitted via axons and dendrites, thus activating 

microglail cells for a protective inflammatory response leading to synaptic dysfunction and cell 

apoptosis. 70, 71    

Although there are a myriad of proposed mechanisms by which Aβ protofibrils contribute 

to cytotoxicity in AD, the most explored method is cell apoptosis as a result of oxidative stress.72, 

73  It has been speculated that Aβ fibrils promote oxidative injuries that lead to cell apoptosis.74 

Cellular apoptosis can be localized to mitochondria dysfunction (change in structure and 

function).  Typically a decrease in mitochondrial membrane potential is an early indicator of 

apoptosis.   This apoptotic response, reduction in membrane potential, is also characterized by 

release of cystolic cytochrome c via reduction of cytochrome oxidase activating a cascade of 

events leading oxidative stress.73, 75 Oxidative stress results from an imbalance between free 

radicals and antioxidants where a one electron dioxygen reduction occurs producing a reactive 

oxygen species (ROS) such as hydroxyl radicals (OH·), superoxide anions (O2
-), and hydrogen 

peroxide (H2O2).72, 76  During oxidative phosphorylation, (ATP production in mitochondria) an 

unpaired set of electrons are produced.  These electrons interact with molecular oxygen, O2, 

generating the superoxide anion O2
-.  The superoxide anion is detoxified with superoxide 

dismutase producing H2O2 that is either reduced to water (H2O) or in the presence of free 

transition metals, forms the more reactive hydroxyl radicals (OH·).  Generation of free radicals 

leads to lipid peroxidation and cell damage.73, 77-79   

Antibodies have offered promising results in reducing the cytotoxic effects of oligomers 

both in vitro and in vivo, but studies have been limited to murine antibodies which are similar yet 
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different from human antibodies.63, 69, 80-85  It is quite difficult to produce human antibodies 

against human tissue. For this reason, the use of peptidomimetics offers a more practical and less 

futile approach towards the discovery of pharmalogical targets of AD. 

Ghanta4 synthesized four peptides based on the hydrophobic core of Aβ (R1, R2, H1, 

H2) that contained a recognition element and a disrupting element and studied their ability to 

reduce Aβ toxicity in vitro using PC-12 cells. Peptides R1 (VFFAEDVG) and H2 

(GQKLVFFAEDVGGaKKKKKK) did not readily aggregate and precipitate out of solution as 

H1 (KKKKKKGGQKLVFFAEDVG). They were also soluble in PBS, in contrast to R2 

(LKVFFAEDVG); therefore, they were the only two peptides used to measure cytotoxicity.  H2 

and R1 were nontoxic to the PC-12 cell line, but in the presence of aged Aβ (fibrils imaged using 

TEM), H2 reduced toxicity at a two fold excess of mitigator peptide to Aβ.  R1 was ineffective at 

reducing toxicity.  One interesting feature of the hybrid peptide H2 was it did not decrease 

fibrillization as previous mention in section 4.3.3, rather it increased the rate of Aβ fibril 

formation forming nontoxic fibrils.  The group further developed their synthetic design and 

synthesized more potent peptide mitigators by shortening the length of the peptide chain 

(reducing hydrophobicity) while maintaining the disrupting groups at either the N or C-terminus 

of the peptide chain. They found that peptide variants contain a disrupting element considerably 

decreased cytotoxicity as compared to their native counterparts (no disrupting group).6  Hybrid 

peptides 16-20-K6 and 16-20-E6 were surprisingly potent Aβ fibril inhibitory compounds at 

extremely low doses, 1:100 and 1:1000 respectively (peptide mitigator:Aβ), being reported as 

some of most potent peptide mitigators to date.5  Soto designed a β-sheet breaker peptide, iAβ5 

(LPFFD), related to the hydrophobic core of Aβ that considerably inhibited Aβ fibril formation 

in vitro and in vivo for both neurotoxic isoforms of Aβ.1-3 Using this same peptide, with a slight 
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modification to protect it against proteolytic degredation- iAβ5p (acetyl-LPFFD-amide), Chacon 

et. al65 significantly increased spatial learning acquitions and reduce cognitive impairment and 

cerebral damage in transgenic mice. iAβ5p also blocked activation of astrocytes from becoming 

hypertropic glial cells (inflammatory responsive cells) in response to Aβ.    

The ability of AMY peptide mitigators to reduce toxicity of Aβ fibril solutions in vitro 

using PC-12 cells was investigated.  This cell line was of particular interest because of their 

synthesis, uptake, and storage of neurotransmittors. The PC-12 cell line is one that highly 

proliferates.  Because the growth kinetics of these cells is not well known, an initial experiment 

to determine the rate of proliferation over 24 h was performed.   It was imperative that reduction 

in metabolic activity was a result of Aβ fibril treatment and not cell apoptosis via environmental 

competition and that measured neuronal cell survival was a result of AMY peptides inhibitory 

activity and not cell nuclei growth.  Initial studies assayed cells with a plating density of 0 

cells/well-50,000 cell/well.  Cells allowed to adhere for 24 h had no significant difference in 

metabolic activity compared to cells that we allowed to adhere for 8-12 h.  As a result, the 

optimal cell plating density was 50,000 cells/well.   At this level, cell apoptosis was trivial. 50 

µM Aβ solutions were used to measure cytotoxicity in order to maintain a consistent molar 

concentration of aggregated material and to better compare and interpret Aβ toxicity data with 

results from other physical techniques previously used. Aggregated Aβ fibril samples, incubated 

for 7 days at 37 °C, were allowed to co-incubate with PC-12 cells for 0 h -24 h (Figure 4.6).  Cell 

viability data, from time dependent cell co-incubation with Aβ, revealed that 24 h was the 

optimal exposure time aggregated Aβ solutions would be allowed to interact with PC-12 cells 

while measuring metabolic activity. 
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AMY-1 has a protective mechanism reducing cytotoxicity in vitro >90% only in the 

presence of aggregated Aβ solutions. While equimolar solutions of aggregated Aβ/AMY-1 (10-

50 µM) were nontoxic to PC-12 cells, AMY-2/Aβ solutions (1:1) reduced cell viability of PC-12 

cells 85-90% at identical concentrations.  AMY-1 and AMY-2 alone both reduced cell viability 

(~40% and 100% respectively) at a concentration of 50 µM as compared to an untreated cell 

control.  This suggests that at high concentrations, AMY-1 inhibitory capacity is significantly 

reduced and AMY-2 is lethal. HC-K6, NMHC, and HC-B3 peptides did not significantly reduce 

the  cellular  viability  of  PC-12  cells.    Similar  nontoxic  effects  were  observed  in equimolar 

 

Figure 4.6.  MTT viability assay of PC-12 cells co-incubated with aggregated Aβ solutions.  Aβ 
was incubated at a monomer concentration of 50 µM for 7 days at 37 °C while agitated 
continuously. 
 

in equimolar mixtures of each peptide mitigator with aggregated Aβ solutions at varying 

concentrations (10-50 µM). 

The PC-12 metabolic reduction assay has a number of problems including high 

concentrations and volumes of Aβ required to achieve toxicity and the PC-12 cell-line is an 

undifferentitated cell-line. A common problem observed in control experiments was aggregated 
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Aβ solutions were capable of inducing a cytotoxic response.  However, in toxicity experiments 

where AMY peptide mitigators were assayed, aggregated Aβ fibril solutions were unsuccessful 

at producing a cytotoxic response in cell cultures.   PC-12 cells are fairly homogenous, yet they 

are disadvantageous when measuring cytotoxicity because they are a rapidly proliferating cell 

line that is more resistant to Aβ than primary neurons.   

Primary cells, although they may have mixed populations of neurons, are more closely 

related to in vivo neurons and are differentiated where synaptic signals can be transmitted.   

More recently, primary cortical neurons purchased from Genlantis (N200200) have been utilized.  

Cortical neuronal cells were isolated from 18-day-old embryonic Spargue/Dawley or Fischer 344 

rat brains and cultured in poly-D-lysine coated 96 well-plates.  Many research groups employ the 

use of DMEM supplemented media.46, 86 In contrast, our cells were differentiated in B27-

supplemented Neurobasal (0.5 mM glutamine), which increases long-term cell viability.22 

Aggregated Aβ and Aβ/AMY-1 (1:1) solutions were allowed to incubate as described by Sato et 

al. 87 with final peptide concentrations of 5.5 µM and samples were exposed to neuronal cultures 

for 24 h.  Preliminary neurotoxicity results suggest that Aβ alone reduced cell viability 43% (% 

of neuronal survival following treatment) as compared to the control (cells with no peptide 

treatment).   Aβ/AMY-1 aggregated samples reduced cell viability 50 %.  Fibrils were present in 

the Aβ sample while the Aβ/AMY-1 sample (1:1) had no signs of fibrils, only the presence of 

peptide aggregates (imaged by TEM).  Ambiguity lies in the veracity of the cortical neuronal 

assays.  Time and concentration-dependent exposure of aggregated Aβ samples to cells have yet 

to be determined for primary neuron cultures. 

In vivo studies, collaboration with Dr. David Morgan from the University of South 

Flordia, of APP transgenic mice offer promising results towards the inhibitory affect of the 
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AMY-1 peptide mitigator.  Figure 4.7 illustrates the increase in Aβ plaque deposition seven days 

after an intrahippocampus administration of peptide mitigator (1/3 nmole) on the contralateral 

hippocampus (panel A, C, E) and ipsilateral hippocampus (panels B, D, F) brain regions.  The 

increase in plaque deposition was suggestive of NMHC inability to reduce Αβ plaque deposition 

thus inducing plaque deposition (Figure 4.5 panels C and D).  In contrast, AMY-1 (Figure 4.7 

panels E and F) was able to considerably reduce plaque deposition as compared to the Aβ control 

in PBS (Figure 4.7 panels A and B).   A similar trend was seen in a Thioflavine-S (ThS) stain of 

identical hippocampal regions of the brain with identical incubation times (Figure 4.8).  Amyloid 

deposits are large extracellular deposits that damage surrounding tissue, as a result, ThS stains 

amyloid apple green under a fluorescence microscope.  Figure 4.8 panels A and B are Aβ control 

peptide in PBS, panels C and D are of NMHC, and panels E and F contain AMY-1.  Panels C 

and D show increased levels of amyloid formation as seen with of the abundance of localized 

apple green fluorescence indicative of amyloid deposits.  However, AMY-1 showed a reduction 

in Aβ amyloid formation as indicated by the absence of the apple green subsection.  

Unfortunately, preliminary in vivo results (data not shown) do agree with PC-12 cellular in vitro 

data suggesting that at high concentrations, AMY-1 induces microglial activity causing a 

decrease in cellular viability. 

4.4 CONCLUSION 
 

The design of peptide mitigators of Aβ fibrillogenesis builds on the premise that peptides 

containing the hydrophopic core of Aβ can interact with the corresponding residues of Aβ via 

self-recognition and disrupt the self-assembly of Aβ into protofibrils and fibrils.4, 6, 88 In 

conclusion, a novel ααAA-containing peptide-based approach to mitigate the aggregation of the 

Aβ protein preventing the formation of mature fibrils has been developed.  Studies show that  
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Figure 4.7. Total Aβ load following intrahippocampus administration of NMHC and AMY1.  
Panels A, C and E show total Aβ immunostaining in the contralateral hippocampal regions; 
Panels B, D and F show ipsilateral hippocampal regions. Panels A and B show PBS control 
group; Panels C and D show NMHC (1/3 nmole) and panels E and F show AMY1 group (1/3 
nmole). Scale bar =120 µm. Panel G shows quantification of total Aβ immunohistochemistry in 
the hippocampus as the ratio of injected side (right) to uninjected side (left). Data are presented 
as mean±sem, ∗P< 0.05 compare to PBS control group. Sample size is 8-10 per group. 

G 
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Figure 4.8. Thioflavine-S staining of NMHC and AMY-1 in APP transgenic mice. Panels A, C 
and E show total Aβ immunostaining in the contralateral  hippocampal regions; Panels B, D and 
F show ipsilateral hippocampal regions. Panels A and B show PBS control group; Panels C and 
D show NMHC (1/3 nmole) and panels E and F show AMY1 group (1/3 nmole). Scale bar =120 
µm. Panel G shows the ratio of thiosflavine-S staining of injected side (right) to uninjected side 
(left) in the hippocampus of APP transgenic mice. Data are presented as mean±sem, ∗P< 0.05 
compare to PBS control group. Sample size is 8-10 per group. 
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Figure 4.9. Alternate pathway to Aβ aggregation derived from ααAA based peptide mitigators. 

 
peptides with alternating L-amino acids and ααAAs incorporated into the hydrophobic core of 

Aβ dramatically alters aggregation behavior.  Spectroscopic studies suggest that these novel 

peptides interact through the formation of β-sheet assemblies, but the mechanism and duration of 

fibril inhibition is unique relative to other peptide and non-peptide based inhibitors.  A plausible 

mechanistic pathway explaining fibril inhibition is that the peptide mitigators could interact at 

the aggregate state and intercalate the Aβ globular aggregate disrupting the formation of mature 

fibrils by encapsulating the aggregate precursors (Figure 4.9) and producing an off-pathway 

mechanism.  Further characterization of the AMY/Aβ aggregate size, structure, and stability as 

well as in vitro and in vivo toxicity assays are underway. 
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CHAPTER 5.   

SUMMARY  

5.1 DISCUSSION 

 Most protein conformational diseases occur as a result of protein misfolding, and a 

common pathological feature among these diseases is the formation of fibrillar deposits that 

contain β-sheet secondary structures.1-4 Understanding specific interactions that stabilize β-sheet 

secondary structures is paramount for the development of medicinal strategies that could prevent 

the progression of these diseases.   In this vein, the study of β-sheet structures serves as a basis 

for elucidating protein folding and misfolding mechanisms. Peptides with ordered conformations 

are good models to study secondary structure and folding propensities because they can provide 

fundamental characteristics of native proteins.5 This dissertation has focused on the design, 

synthesis, and structural analysis of conformationally-constrained peptides containing Cα,α-

disubstituted amino acids.  ααAAs are excellent structural elements that are capable of 

stabilizing β-sheet motifs and mitigating protein aggregation.   

 Chapter 2 of the dissertation focuses on investigating the formation and stability of β-

sheets using β-hairpin peptide models. Within chapter 2, the importance of ααAAs as design 

elements in both strand portions and the turn region of β-hairpin peptides was explored. Stable 

turn motifs are pre-requisites for the formation and stability of β-hairpins and are important well-

defined linking segments that connect prefabricated secondary structure modules.6  Also, 

nucleation of specific turn types gives detailed structural information about side-chain 

interactions between adjoining β-strands.7-12  CD and NMR analysis revealed that incorporation 

of Aib-Gly and Aib-DAla turn sequences into the i+1 and i+2 positions of a β-turn resulted in 

the formation of β-hairpins that nucleate type-I' β-turns. Substitution of the Aib turn inducers 
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with more bulky and branched, Dpg-Gly and Dibg-Gly  turn sequences, ultimately resulted in the 

formation of less ordered β-sheets (CD analysis). The difference in the CD spectra for the more 

bulky ααAAs is suggestive of the nucleation of a different type of β-turn. 

 Side-chain interactions, and electrostatic and hydrophobic interactions strongly regulate 

β-sheet stability.  To access the effects of ααAAs on β-sheet or β-strand stability, Dpg and Dibg, 

were incorporated into position-3 of a model β-hairpin model first introduced by Gellman.13  

These particular amino acid residues are highly hydrophobic and were hypothesized to induce β-

sheet formation.  [U3]-ΩDPG formed a highly ordered β-sheet, while the Dpg-containing 

peptides (Dpg located in the β-strand region and in the i+1 position of a β-turn) formed less 

ordered β-sheet structures.  CD and NMR analysis have shown that although Dibg is an excellent 

inducer of sheet formation relative to its position in β-strands, this bulky ααAA has less of an 

impact on β-sheet formation when located in the i+1 residue of β-hairpins.    These results are in 

agreement with previous work performed in the Hammer laboratory that suggests ααAAs 

contribution to secondary structure is sequence-dependent (local primary structure).  To date, this 

is one of the first studies that explains the context-dependent nature of ααAAs on 

conformational preferences in an aqueous buffer.  Other studies have introduced this idea, but 

relied heavily on crystallographic data14, 15 and organic solvents.16, 17  Future conformational 

studies will explore the use of more bulky ααAAs, such as dibenzylglycine (Dbzg), incorporated 

into β-turns and their effects on β-sheet motifs.  Also, the stereochemistry of the i+2 amino acid 

residue will be investigated.  Chiral ααAAs will be incorporated into specific regions of the β-

strand portion and in the turn region of model β-hairpin peptides and evaluated to determine their 

contribution to β-sheet secondary structures.  The use of bulky ααAAs are expected to promote 
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extended peptide conformations and could offer vital information in the design of de novo 

peptides for biologically active molecules.  

Chapter 3 introduces Alzheimer’s disease (AD).18, 19 A hallmark feature of AD is the 

presence of senile plaques mostly consisting of the Aβ protein.   Abnormal processing of APP 

leads to neurotoxic isoforms of Aβ.  Initially, fibrils of Aβ were thought to be directly related to 

neurodegeneracy, but more recently, protofibrillar aggregates of Aβ1-40 and Aβ1-42 isoforms have 

been associated with cytotoxicity.   The goal for this project was to mitigate protein aggregation 

of monomeric Aβ, thereby preventing the formation of mature fibrils. Peptide analogs aimed at 

mitigating Aβ aggregation and reducing cytotoxicity were developed.  Chapter 4 describes the 

design, synthesis, physical characterization, and in vitro cell studies of peptide analogs and their 

interaction with Aβ. 

The Aβ fibril structure is aligned in a parallel β-sheet orientation and is stabilized by 

intrastrand/interstrand hydrogen bonding and interstrand side-chain interactions (hydrophobic 

and electrostatic interactions).  A common approach toward mitigating Aβ protein aggregation is 

through “β-sheet” breaker peptides. The AMY peptide mitigators have been designed based on a 

specific hydrophobic region of Aβ primary sequence (region 16-22, the hydrophobic core, 

KLFVVAE), and their design incorporates ααAAs at alternating positions within this sequence. 

AMY/Aβ solutions prevent fibril formation for both short- and long-term incubation periods and 

globular assemblies are produced as observed through microscopy studies. CD studies indicated 

that the AMY peptides interact with Aβ by forming β-sheet secondary structures that further 

assemble to form the globular aggregates observed.  The formation of the globular aggregates 

occur because the AMY peptides block one face of LWAβ  from hydrogen-bonding to another 

moiety of Aβ, thus preventing the formation of higher order aggregate material.   Although the 
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AMY peptides are excellent candidates for peptide-based in vitro therapeutics agents, they must 

be modified if they are to be used as pharmacological agents.  Currently, the focus of this project 

is to improve the bioavailability of the AMY peptide mitigators.  The AMY-mitigators are 

largely hydrophobic and have a large molecular weight. Molecules that are largely lipophilic, 

uncharged, and have low molecular weights are easily transported across the blood brain barrier 

(BBB).20 Variants of the AMY-1 peptide mitigator are being developed with reduced  

hydrophobicity, molecular weight, and charge (Table 5.1). The β-sheet blocker mechanism is 

being maintained while accessing the requirement of each ααAA in the peptide modifications.  

Once the peptide modifications are optimized, the newly synthesized AMY peptide variants will 

be further altered to increase proteolytic stability. 

 

Table 5.1.   Primary sequence of AMY-peptide mitigators under investigation. 

PEPTIDE SEQUENCE (N→C) 
PEPTIDE  

1 2 3 4 5 6 7 

AMY-1 Lys1 Dibg Val Dbzg Phe Dpg Lys6 

AMY-5 Lys1 Leu Val Dbzg Phe Dpg Lys6 

AMY-6 Lys1 Dibg Val Phe Phe Dpg Lys6 

AMY-7 Lys1 Dibg Val Dbzg Phe Ala Lys6 

AMY-8 Lys1 Dibg Val Dbzg Phe --- Lys6 

AMY-9 Lys1 Dibg Val Dbzg Phe --- Lys4 

AMY-10 Lys1 Dibg Val Dbzg Phe --- Lys2 

*The proposed peptide mitigator design is devised based on the AMY-1 peptide.  AMY-1 
was effective at preventing fibril formation in vitro and reducing plaque deposition in vivo 
at stoichiometric and substiochiometric concentrations thus taking the fibrillogenesis 
process off-pathway producing globular aggregates.   
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Additionally, the biological activity of peptide mitigators and AMY-X/Aβ will be 

evaluated.  AMY- peptide mitigators that exhibit similar inhibitory properties as AMY-1 will be 

used to measure their affect on the metabolic activity of differentiated SH-SY5Y neuroblastoma 

cells.   Currently AMY-1 reduces cytotoxicity in vitro and decreases plaque deposition in vivo.  

A more detailed in vivo investigation into to efficacy of the peptide mitigator on both the 

hippocampal and cortical regions of the brain are underway.  
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 APPENDIX A 
NMR SPECTRA 
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A-1.  1H NMR of 5,5-Dipropylhydantion (1) in DMSO 
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A-2.  1H NMR of 2,2-Dipropylgylcine (2) in DMSO 
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A-3.  1H NMR of Nα(9-Fluorenlymethoxycarbonyl)-2-,2-Dipropylglycine (3) in DMSO 
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APPENDIX B 
HPLC AND MALDI-MS DATA  

 
Linear gradients of 0.1% aqueous TFA in H2O (v/v) (Buffer A) and 0.1% TFA in CH3CN (v/v) 
(Buffer B) were utilized in all HPLC.  MALDI-MS peptide samples were crystallized using CCA 
matrix.  
  

 
 
B-1.  HPLC chromatogram of crude [J3]-ΩDPG 
 

 

 
  
B-2.  MALDI-MS of [J3]-ΩDPG 
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 B-3.  HPLC chromatogram of crude AMY-1 and MALDI-MS data 

AMY-1

1731.4 [ M + Na]+ 



 110

 
 
 
 
 
 
 
 
 
 
 
 
 
 
B-4.  HPLC chromatogram of crude AMY-2 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
B-5.  MALDI-MS of AMY-2 
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B-6.  HPLC chromatogram of crude AMY-3 
 

 
 

 
B-7.  MALDI-MS of AMY-3 
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B-8.  HPLC chromatogram of crude AMY-4 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
B-9.  MALDI-MS of AMY-4 
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B-10.  HPLC chromatogram of crude HC-K6 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
B-11.  MALDI-MS of HC-K6 
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B-12.  HPLC chromatogram of crude HC-B3 
 

 
B-13.  MALDI-MS of HC-B3 
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B-14.  HPLC chromatogram of crude NMHC 
 

 
 
B-15.  MALDI-MS of NMHC 
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B-16.  MALDI-MS of ΩDPG 
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B-17.  HPLC chromatogram of crude ΩAG  
 

  
 
B-18.  MALDI-MS of ΩAG 
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B-19.  MALDI-MS of ΩJG 
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B-20.  MALDI-MS of ΩBDA 
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B-21.  MALDI-MS of ΩBG 
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APPENDIX C 
CIRCULAR DICHROISM DATA 

 

 
 
 
 
C-1.  CD spectrum of equimolar mixture of Aβ/AMY-2 for t=0-8 days; taken in 50 mM PBS 
(150 mM NaCl); pH 7.4.  Molar Ellipticity- [θ ] units:  deg cm2 dmol-1. 
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C-2.  CD spectrum of equimolar mixture of Aβ/HC-K6 for t=0-12 days; taken in 50 mM PBS 
(150 mM NaCl); pH 7.4.  Molar Ellipticity- [θ ] units:  deg cm2 dmol-1. 
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APPENDIX D 
MICROSCOPY 

 
D-1.  SFM image of AMY-2/Aβ (1:1; 50 µM).  Samples were incubated in PBS (50 mM 150 
mM NaCl, pH 7.4) at 37 °C for 1.5 hours then remained at room temperature under N2 
atmosphere for 1 week. Sample imaged by Dr. Jed P. Aucoin. 
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D-2.  TEM image of AMY-2/Aβ (1:1; 50 µM).  Sample was incubated in PBS (50 mM 150 mM 
NaCl, pH 7.4) at 37 °C for 48 hours.  
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D-3.  TEM image of HC-K6/Aβ (1:1; 50 µM).  Sample was incubated in PBS (50 mM 150 mM 
NaCl, pH 7.4) at 37 °C for 72 hours while agitating continuously.  

5 µm
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D-4.  TEM image of NMHC/Aβ (1:1; 50 µM).  Sample was incubated in PBS (50 mM 150 mM 
NaCl, pH 7.4) at 37 °C for 72 hours while agitated continuously.  
 

5 µm
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APPENDIX E 
LETTERS OF PERMISSION 
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