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Figure 5.5 Gear structures developed from a 10% volume Ag SU-8 CPC. Image shows the gear 
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3
, 40 J/cm

3
, 60 J/cm

3
, 80 J/cm

3
 

and 100 J/cm
3 

on the different areas. X-ray radiation at 20 J/cm
3
 was inadequate to crosslink the CPC. 

All images shown here were taken after a 1 h developing process. Additional 15 min was required to 

fully develop CPCs that received 80 J/cm
3
 and 100 J/cm

3
. An optimal range for crosslinking a 10% 

volume Ag SU-8 was around 30 J/cm
3
 and 60 J/cm

3 
for a development time of 1 h…………………128 
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Abstract 

The need for rapid, portable and high-throughput systems in proteomics is now prevalent 

because of demands for generating new protein-based disease biomarkers. However, 2-D protein 

profile patterns are lending themselves as potential diagnostic tools for biomarker discovery. It is 

difficult to identify protein biomarkers which are low abundant in the presence of highly abundant 

proteins, especially in complex biological samples like serum. Protein profiles from 2-D separation of 

the protein content of cells or body fluids, which are unique to certain physiological or pathological 

states, are currently available on internet databases. In this work, we demonstrate the ability to separate 

a complex biological sample using low cost, disposable, polymer-based microchips suitable for a 

multidimensional techniques that employed sodium dodecyl sulfate micro-capillary gel electrophoresis 

(SDS µ-CGE) in the 1st dimension and micellar electrokinetic capillary chromatography (MEKC) or 

microemulsion electrokinetic capillary chromatography (MEEKC) in the 2nd dimension. The peak 

capacity generated by this microchip technique was about 3-fold greater compared to conventional 2-D 

separation methods and the complete separation time was 60X faster. To minimize electroosmotic flow 

effects, we dynamically coated the channels with methylhydroxyethyl cellulose. Proteins were detected 

by laser-induced fluorescence following their labeling with dyes. To mitigate challenges posed by 

labeling the proteins, we investigated the use of a label-free technique that relied upon conductivity 

measurements. Preliminary data are presented on the fabrication of on-chip electrodes using a 

conductive SU-8 polymer via lithography. 
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1 Integrated Multifunctional Microfluidics for Automated Proteome Analyses 

1.1   Proteins and Their Roles in Cell Functioning  

1.1.1 Proteins and Their Synthesis 

Proteins are biopolymers that have a variety of important functions, including transport of small 

molecules to and from the cells, maintaining the structure of the cells, immune response, catalyze 

numerous biological processes – just to mention a few. They are composed of amino acids, whose 

sequences are coded by genes. Proteins are diverse and complex. For instance, millions of different 

proteins are present in humans [1] and the functions of many are yet to be determined. Sometimes, 

proteins only function when working in concert or as complex with other proteins or some other 

biomolecule such as a lipid, carbohydrate or nucleic acid.  

The synthesis of proteins is a two step process that begins with deoxyribonucleic acid (DNA) 

being transcribed into a messenger ribonucleic acid (mRNA). During transcription, RNA polymerase 

first synthesizes an mRNA using a single stranded DNA (ssDNA) as template within the cell‟s 

nucleus. The mRNA, endowed with a mobility system, migrates to the cytoplasm where only the 

coding mRNA sequence is recognized in groups of three nucleotides together called a codon. The 

second step is the translation process, which begins when the ribosome binds to the mRNA at the start 

codon (adenine, uracine, guanine; AUG), which is recognized by the initiator transfer RNA (tRNA). 

The tRNA is responsible for transferring particular amino acids based on the codon onto a peptide 

chain until the protein sequence is realized. After the process of translation, proteins can further 

undergo post-translational modifications, which involve altering the structure of the protein, such as 

deamidation [2], altering the protein structure, such as the creation of disulfide bonds [3], the addition 

of functional groups such as acylation [4], or even the addition of a peptide or another protein [5]. 

1.1.2 Protein Structure, Localization and Function                                                       

To carry out their functions in biological systems, proteins must maintain a specific structure. 
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They can fold into various conformations, which are held in place by both covalent and noncovalent 

bonds, such as disulfide bridges and hydrogen bonds, respectively. For instance, certain cell membrane 

proteins that aid in the transport of ions or metabolites form a cylindrical channel to facilitate transport 

of molecules to and/or from the cytoplasm and the extracellular environment. Channel proteins form 

an aqueous pore that passively allows the passage of specific molecules when they are opened [6].  

The localization of a protein can also determine the protein‟s function. Proteins possess highly 

specialized functions depending on their localization within the organism or within the cell [6]. 

Therefore, we would expect for membrane proteins, as an example, to have roles different from 

cytosolic proteins. In the same vein, different membrane proteins would have different functions. For 

example, myelin membrane proteins comprise only 18% of the membrane mass because the main role 

of the membrane is electrical insulation, whereas mitochondrial membrane proteins comprise 75% of 

the membrane composition because that membrane is actively involved in metabolism and energy 

production [7]. Certain cellular proteins are involved in host-pathogen interaction processes because 

these types of interactions result in protein expression changes within both the host and the pathogen 

[8]. For example, in response to viral infections, the IFN-induced double-stranded PKR protein, the 

mammalian serine-threonine kinase, phosphorylates the elF2alpha translation initiation factor, which in 

turn halts the translation of both the cellular and viral mRNA thus inhibiting the replication of the virus 

[9].  

The serum protein catalogue is very comprehensive, diverse and large with >10
7
 different 

proteins [1]. There are various sources of proteins in the human serum. Classical proteins, such as 

albumin produced by the liver, are specifically produced to carry out various functions in the blood 

tissue. Tissue leakages, which are indeed targeted as protein markers, are secreted from both normal 

and diseased cells and interleukins function as patrol antibodies aiding in immune system response. It 

is virtually impossible to discuss all protein functions within the serum matrix because they are so 
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numerous, but as an example, the albumin protein maintains the colloidal osmotic pressure of the 

blood, hence they are highly abundant and account for about 55% of the total human serum proteome. 

They are also important in transporting ions, molecules, and drugs from one site to another using the 

blood as a carrier fluid [10]. 

1.2 The Study of Proteins  

1.2.1 The Proteome and Proteomics  

The word “proteome” was first used in 1994 at the Two-dimensional Electrophoresis (2-DE) 

meeting in Siena to imply the total protein complement in a cell, tissue or body fluid at a given time 

[11]. It is possible to elucidate the entire proteome of an organism, but this task becomes more 

daunting and extremely challenging as the study goes from looking at a unicellular organism, such as 

E. coli, to a complex organism such as the human species. For instance, the proteome for E. coli K12 

W110 strain [12], whose genome has been sequenced with a total of 4,226 proteins predicted for the 

entire proteome [13], is less than half what is expected within one average human cell [14, 15]. 

Proteomics is the study of the entire repertoire of proteins in a given organism, whereas the proteome 

is a catalogue of the proteins in a specific organism that are coded by the genome. Proteomics is 

concerned with the determination of structures, expressions, interactions, and functions, which 

includes activities and roles and localizations of proteins in an organism. The original definition of the 

proteome views the proteome as the protein complement of the genome, thereby not accounting for the 

numerous post-translational modifications and the ever-changing state of proteins [16, 17]. Proteomics 

can therefore be defined as the comprehensive analysis, including the determination of structure, 

modifications, expression levels, localization and protein-protein interactions, within a given organism, 

tissue, cell, or biological fluid at a specified time. This definition is congruent with that offered by 

Schramm et al. [18], where the authors defined proteomics as a “functional analysis of the full set of 

proteins by high-throughput technologies in a given system,” which suggests that proteomics goes 
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beyond protein identification and that protein analysis requires advanced technologies, such as high-

throughput processing techniques. Based on the foregoing, proteomics therefore attempts to tackle 

three main areas of interest, namely; (1) protein expression; (2) protein structure; and (3) protein 

function. Most of the discoveries and studies on proteins have centered on protein expression because 

it is approachable at a general level, whereas protein structure and function are far from being 

understood at a systemic level [19].  

1.2.2 Challenges in Proteomics 

 Because higher biological functions are not performed by the genome but by the varying 

population of proteins, proteomics has thus become an important tool for the scientist. Proteomics is 

paramount in drug discovery because most drugs inhibit or alter the function of particular proteins. 

Unfortunately, proteomics is fraught with numerous challenges that impede its goals. The challenges 

can be categorized under; (a) the nature of the sample; (b) inadequacy of available techniques; and (c) 

data analysis. 

1.2.2.1 The Nature of Sample  

The complexity of a proteome is simply overwhelming. For example, the human genome is 

composed of only about 3×10
4
 genes [20, 21] compared to >10

7
 different protein constituents 

estimated for the human serum proteome. Furthermore, proteins are very diverse; proteins sizes can 

range from a few tens of amino acids (e.g., toxins) to several MDa (e.g., human titin is composed of 

26, 926 amino acids); pI range is as wide as 3 to 11; and proteins can be hydrophilic or extremely 

hydrophobic to the point where they are almost irrecoverable from aqueous media [22]. Membrane 

proteins, for example, are very hydrophobic proteins and are difficult to analyze. The complexity of the 

human serum proteome is further compounded by the large dynamic range of ~10
10

 with albumins 

making up nearly 55% by weight, even though the dynamic range of proteins within a cell spans six 

orders of magnitude [1]. Many proteins abound in a given proteome due to gene and protein splicing, 
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post-translational modifications and other processes that alter the mature, gene-coded protein. To 

further buttress the point about the challenge posed by the sample complexity, let us assume that a 

protein has just one copy within a cell and that about 10 fmol of a peptide generated from the 

proteolytic digestion of a protein is needed to produce a mass spectrum for fingerprinting, then 

approximately 6 x 10
10

 cells or approximately 600 g of tissue are required for the analysis [23].  

1.2.2.2 Inadequacy of Available Techniques 

 Considering all of the “omics,” including genomics, transcriptomics and even metabolomics, 

proteomics is the most challenging. In proteomics, technology drives biology and not necessarily vice 

versa because as new technologies emerge, scientists find applications for them in proteomics just as 

the advent of the mass spectrometer opened new doors and championed the field of protein analysis 

[19]. Proteomics attempts to determine simultaneously the identities and quantities of proteins; 

meanwhile data obtained from experimental trials may not correspond to expected results based upon 

developed standards and controls [24].  

Furthermore, proteomics is posed with a level of complexity that has never been attempted 

before. Unfortunately, typical analytical tools can quantitatively analyze less than fifty analytes, which 

pales compared to the complex mixture of proteins present in one sample [24]. Sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS PAGE), affording a dynamic range of 10
2
 – 10

4 
and a limit-

of-dection (LOD)_ molar concentration of 10
-6

 M can routinely resolve ~2,000 spots per gel, which is 

well below the >10,550,000 proteins present in a serum proteome. Moreover, it requires well-trained 

personnel, it is time consuming and it has limited automation potential [25].  

Mass spectrometry on the other hand provides better LOD (~10
-15

 mole for peptides) and high 

specificity, but it also has a limited dynamic range [26]. Furthermore, there is no amplification 

technique in proteomics such as PCR in genomics, therefore, proteins must be analyzed in their native 

concentrations. 
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1.2.2.3 Data Analysis 

 The number of measurable parameters is enormous in proteomics, but the number of biological 

and methodological replicates has not increased, and due to the limited number of test subjects, 

problems pertaining to statistics and bias are prevalent in proteomics [24]. Bias in protein data analysis 

is so pervasive that it is viewed as a threat to the validity of protein biomarkers for cancer diagnostics 

where results have been disputed or not reproduced [27, 28]. This issue is apparent when dealing with 

large data sets, such as those presented in proteomic analyses. It is inherently easier to find a 

correlation irrespective of real cause and effect due to false positive probably outnumbering true 

positives [24]. According to Lay et al. [24], “the failure of many proteomic studies probably correlates 

with the failure to consider the analytical need to define quality standards, including method validation 

and standardization.” Unfortunately, due to lack of quality standards across the board, it is difficult to 

compare results generated from various laboratories.   

1.3 Approaches to Protein Analysis 

Ideally, a proteomic platform should quantitatively analyze the entire proteome in a high-

throughput fashion and at high sensitivity [29]. Two approaches to protein identification are 

recognized, namely bottom-up and top-down strategies. In the former, typically, a protein mixture is 

separated; resolved or separated proteins are enzymatically broken into peptides before the peptides are 

fed into a mass spectrometer for mass analyses. This strategy is also called the “gel approach” because 

it heavily relies on the use of two-dimensional (2-D) IEF/SDS PAGE to separate the proteins prior to 

proteolytic digestion of the proteins after excising the protein spots from the gel. In the latter, the intact 

protein mixture is directly subjected a proteolytic digestion without protein separation followed by 

separation of the peptides with the isolated peptides submitted for mass analysis. A variation of the 

top-down approach is called “shotgun proteomics” or multidimensional protein identification 

technology (MudPIT) because it is typically based upon early digestion of a protein mixture followed 
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by a multidimensional chromatographic separation of the peptides coupled to a mass spectrometer for 

peptide mass determination. The only difference is that in shotgun proteomics, a non-separated protein 

mixture instead of an isolated individual protein is digested.  

1.3.1 Top-down and Shotgun Strategies 

In the top-down or shotgun strategy, an individual protein or a protein mixture, respectively, is 

digested thereby generating peptides, which are more uniform and easier to analyze compared to a 

complex protein sample that contains a mixture of very small, very large, very hydrophobic and very 

acidic/basic proteins. These extreme properties tend to yield poor 2-D IEF/SDS PAGE results [19]. In 

terms of ionization source, electrospray ionization (ESI) is commonly used for top-down or shotgun 

strategies, especially because liquid chromatography (LC), used in the separation of the peptides, 

couples naturally to ESI due to the ability of continuous sample infusion into the ES ion source [30]. 

However, this continuous infusion of sample only tends to overwhelm the mass spectrometer and as 

such more complex peptide mass spectra are generated. Suffice it to say that, the top-down and 

bottom-up strategies are complementary to each other in terms of proteomic coverage [19].  

1.3.2 Bottom-up Strategy 

There are several advantages for using the bottom-up strategy. Firstly, proteins can be 

visualized immediately after SDS PAGE separation (i.e., before protein digestion). Therefore, the 

researcher can gain information lost when employing a top-down proteomic strategy, such as post-

translational modifications. Secondly, because a gel separation is required, protein profiles of the 

sample can be generated. Thirdly, purifying the proteins via 2-D IEF/SDS PAGE reduces the 

complexity of the sample so that ideally only one resolved protein spot is digested at a time, which 

means that fewer peptides are fed into the MS resulting in simple peptide mass spectra compared to the 

MS spectra obtained from a shotgun analysis. However, the entire process is time consuming, 

laborious and limited to automation.  
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To minimize these disadvantages, scientists have looked towards using microchip-based 

proteomic analysis [31]. Microchip-based proteomics strategies have appeared in the literature. Li et 

al. [32] identified proteins from membrane-bound protein extracts of Haemophilus influenzae by first 

separating the membrane proteome fraction by a 1-D SDS PAGE, and tryptic digesting excised protein 

spots and finally introducing the peptides into an integrated microchip capillary electrophoresis 

(CE)/nanoelectrospray system. The authors reported a concentration LOD of 3.2 – 43.5 nM for 

different peptides and a migration time and peak area reproducibility (i.e., RSD) of 3.1% and 6-13%, 

respectively. The mass analyzer was a quadrupole time-of-flight (Q-TOF) MS system. Mellors et al. 

[33] reported a microchip CE device that performed electrospray MS directly from the corner of a 

glass chip without the need for an external tip. The CE-MS analysis of peptides and proteins using this 

device resulted in efficiencies of over 2×10
5
 theoretical plates (or 10

6
 plates/m). Also, Musyimi et al. 

[34] developed a poly (methyl methacrylate), PMMA, CE chip that directly coupled to a rotating ball 

for a MALDI-TOF MS analysis of protein digests. While it is easier to couple CE to ESI [35], MALDI 

offered the advantage of higher tolerance to impurities in the protein sample.  

1.4 Principles of Microchip Proteomics  

Besides the well-established technologies, such as 2-D IEF/SDS PAGE used in the analysis of 

proteomes, new tools are evolving for analyzing proteins that are based on the use of microfluidics [36, 

37]. The term “microfluidics” refers to analytical tools where fluids can be driven in microstructured 

channels and reservoirs. The first successful marriage between microchip technology and chemistry is 

certainly to be found in the field of genomics, where two types of devices are now included in the 

chemist/biologist toolbox, namely microarrays and CE microchips. The concept of a microarray, 

simultaneously introduced by several teams [38-41], relies on the parallelization of hundreds to 

thousands of recognition reactions with immobilized probes.  Microarrays found their most successful 

application in genomics, because a binding reaction directly gives sequence information. DNA surface 
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chemistry allows either on-chip synthesis of short oligonucleotides or post-synthesis immobilization of 

PCR products.  The other successful alliance of microchip technology was the development of CE 

microchips for DNA sizing [42]. In this case, the success does not rely solely on parallelization, but on 

separation efficiency due to micro-dimensions, integration of sample preparation, labeling, gel loading, 

and detection [43, 44]. From these examples, it should be noted that key success factors for 

microfluidics are the high degree of parallelization they offer for several similar functions on the same 

chip due to micrometer dimensions and integration of different functions [45]. While genomics has 

been the primary driver for micro-analytical tools developments, new efforts are now being forged to 

provide valuable microfluidic systems for the analysis of proteomes. 

1.4.1 Why Microsystems? 

 

There are several advantages toward using microsystems for proteomic analysis. Firstly, the 

microsystems require small sample volumes. Secondly, high surface-to-volume ratios as afforded by 

miniaturized platforms are preferable for protein extraction where the analyte-wall interaction is 

required, especially for analyte extraction onto a solid support. Thirdly, short analysis times can be 

achieved due to reduced length scales, which reduces analyte diffusion and thus, more efficient 

separations. Also, improved mass transport is advantageous for protein extraction or protein digestion 

purposes. 

1.4.2 The Proteomic Processing Pipeline  

The most basic task of proteomics is the detection and identification of proteins from a 

biological sample. One approach, as mentioned above, for this analysis follows the bottom-up strategy, 

which begins with the separation of proteins by 2-D IEF/SDS PAGE according to isoelectric point and 

molecular weight after protein extraction/preparation of the proteins from cells or biological fluids, 

followed by fragmentation of the proteins excised from the gel and mass analysis typically by matrix-

assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Identification 
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of proteins can be achieved by comparing the mass/charge-ratios of these peptides to respective 

databases [22]. The proteomic workflow is broadly comprised of sample preparation, protein 

separation, protein digestion and identification of proteins by MS analysis.  

1.4.2.1 Protein Preparation 

Sample preparation entails extracting the proteins of interest from the biological matrix as well 

as ridding the sample of salts and other impurities. Sample preparation could involve, but not limited 

to, cell lysis and protein extraction, pre-concentration, denaturing, and labeling. Proteins are commonly 

extracted on-chip from the biological matrix by solid-phase extraction techniques. Other methods 

include liquid-liquid extraction and microdialysis [22]. When dealing with intact cells, unlike serum, 

protein extraction is preceded by cell lysis. Li and Harrison [46] were they first to report on-chip cell 

lysis accomplished by a combination of a chemical method using SDS and electrokinetic cell 

movement. Since then, other on-chip lysis methods have surfaced in the literature including 

mechanical [47], thermal [48], ultrasonic [49], and electroporetic cell lysis [50, 51].  

In solid-phase extraction, analytes are retained on a stationary phase by hydrophobic, 

electrostatic and/or affinity interactions. For example, Kutter et al. [52] modified a glass surface to 

create a C18 phase, which was used to extract neutral dyes. They estimated the gain in concentration 

due to the enrichment to be 80-fold and the elution of the isolated material could occur in less than 4 

min. Besides on-chip wall modification, integrating polymeric membranes or monoliths are other ways 

to produce high surface-area solid-phase extraction phases, which can be done on-chip. Simply 

modifying the surface can only result in a surface-to-volume ratio area of 230 – 781 mm
-1

 [53] 

compared to 1500 mm
-1

 that is obtainable from polymeric membranes, such as polyvinylidene 

difluoride (PVDF), which could be placed at the inlet of a polymeric nanospray for protein desalting 

prior to ESI-MS [54]. Recently, Yang et al. [55] reported a PMMA microdevice with monolithic 

columns on which antibodies were immobilized to selectively purify fluorescently tagged amino acids 
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from a mixture containing green fluorescent protein (GFP). A 20-fold enrichment and 91% recovery 

were achieved for the labeled amino acids.  

1.4.2.2 Protein Separation 

Protein separation involves reducing the complexity of the protein mixture by sorting them into 

smaller purified protein compartments. The goal is to obtain individual protein plugs or spots, so that 

each protein can be easily identified without interference from another protein. Separating a complex 

protein mixture into individual proteins is usually impractical, especially when dealing with a complex 

proteome that contains numerous proteins. The conventional method of 2-D separation involves a 

charge-based separation where proteins are separated based on their isoelectric points followed by a 

size-based separation, where proteins are separated according to their molecular weight. This method 

has the advantage of routinely resolving up to 2,000 proteins with reports of up to 5,000 [56, 57] and 

10,000 when large sized gels are used [58]. But the process is time consuming, laborious and not very 

reproducible [59, 60].  

Microchip separations on the other hand offer fast analysis time, require minimal sample 

volumes, and can be automated; therefore, using a microchip platform that offers a high peak capacity 

is a forward looking approach. Numerous groups have reported different microchip 2-D systems for 

protein separations [61]. Microchip 2-D strategies have been developed to generate high peak 

capacities of 2,600 and 2,880, which are some of the highest peak capacities recently reported for 

microchip protein separation [62, 63]. In the former, Osiri et al. [62] profiled proteins in mammalian 

serum sample using a PMMA 2-D microchip employing SDS µ-CGE and MEKC in the first and 

second dimension, respectively; whereas in the former, Yang and co-workers [63] reported a 2-D 

IEF/PAGE separation of E. coli protein lysate also on a PMMA  microchip. 

1.4.2.3 Protein Digestion         

 According to the proteomic processing pipeline, following protein separation is the breaking 
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down of the individual proteins into peptides prior to mass analysis of the peptides. Traditionally, 

proteins are excised from the gel and proteolytically digested in a trypsin solution. In microdevices, 

researchers have taken various approaches. Wang et al. [64] incorporated commercially-available 

trypsin-coated microparticles into microchannels to digest a 3 µL sample of model proteins that were 

hydrodynamically pumped through the channel within 6 min. Jin et al. [65] also digested model 

proteins using trypsin-coated microparticles, but electrokinetically injected the proteins into the 

digestion bed. Lee et al. [66] reported a trypsin immobilized solid-phase bioreactor within a PMMA 

channel without any embedded microparticles. Model proteins were pressure-driven through the 

bioreactor and the reaction time for digesting cytochrome c was within 24 s. To increase the trypsin 

concentration and the reaction time, groups have attempted to improve the surface area for trypsin 

immobilization by incorporating silane-based sol-gel [67], tetramethoxysilane hydrogel [68], or by 

immobilizing trypsin on monoliths developed on glass [69]. Krenkova and Foret [70] extensively 

reviewed various microdevices on which enzymatic reactors were developed.  

1.4.2.4 Peptide Separation and Mass Spectrometry Analysis 

In order to identify the digested protein, the resulting peptides must be fed into a mass 

spectrometer. Great progress has been made towards interfacing some type of 1-D microchip 

separation to a mass spectrometer via a microchip ionization-based interface, especially ESI and 

MALDI. In many instances, the peptides are first separated prior to mass analysis. For example, 

Musyimi et al. [34] electrophoretically separated cyctochrome c digests on PMMA microchips coupled 

to online MALDI-MS using a rotating ball inlet. Work involving interfacing micro-separations to MS 

has received great attention and has spawned research efforts across many laboratories resulting in 

numerous publications [31]. This aspect of proteomics is worth mentioning, but is beyond the scope of 

this dissertation. For information regarding interfacing microchips to MS, the reader is referred to a 

recent review article [31]. 
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1.4.3 The Need for Integrated Microsystems for Protein Analysis 

According to Freeman J. Dyson, “new directions in science are launched by new tools, much 

more often than by new concepts [71].” This statement is clearly in agreement with the contributions 

of microchip technology to proteomics because microchip technology was initially developed for 

genomics [38-41], particularly, in the area microarray, but also found great use in CE [42] and now 

proteomics. The integration of various processes, such as sample preparation, labeling, gel loading, and 

detection [43, 44] for DNA analysis soon became tractable. By integrating various devices into a single 

chip, dead volumes are minimized and total analysis time is reduced. Furthermore, the goal of 

integrating proteomic processes onto a chip is to make the technology available to the non-trained user 

by providing high levels of process automation, especially in clinical settings where the user simply 

needs to input the sample into the system and then get a readout after a short period of time. As 

discussed earlier, various units corresponding to the proteomic processing pipelines are currently used 

in isolation. However, several groups have attempted to integrate two or three processing units onto 

one microfluidic platform, but integrating all of the processing units onto one chip for a full proteomic 

analysis is a goal that has not been realized to date.  

1.5 Integrated Microfluidic Systems for Protein Analysis 

1.5.1 An Ideal Integrated Microfluidic System and Its Components  

For the analysis of complex protein samples, which uses non-miniaturized integrated systems, 

the analysis time is typically several days, the sample volume lies in the µL- mL range and the transfer 

of the sample from one step of the protocol to the next is a source of material loss and contamination. 

In this context, it is advantageous to work with a miniaturized and integrated system, because this 

allows for reduction of the material consumption and analysis time as well as eliminating most sample 

handling issues. These advantages have been highlighted and reviewed by a number of groups and 

authors [36,72, 73].  
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Figure 1.1 shows a schematic of the ideal integrated multifunctional microchip for protein 

analysis, which consists of several processing units, including a sample preparation unit that ideally 

should include cell lysis and protein extraction parts (I), a 2-D microchip electrophoresis unit (II), 

solid-phase proteolytic reactors (III), and a microchip peptide separation unit (IV) with an interface to 

MS [74, 75]. 

Not only is integration of all the proteomic steps a goal to be realized within the research 

community, it is also required for personalized medicine where the user simply inputs the sample and 

expects a readout [76]. However, there has been no report of a fully integrated multifunctional 

microfluidic platform for automated protein analysis that follows the outlined proteomic process 

pipeline. In the next paragraphs, we survey major works that have been performed to achieve the 

ultimate goal of having a fully integrated microsystem for protein analysis and proteomics. 

 

Figure 1.1 Schematic layout of an ideal integrated microchip for full protein analysis.  The system 

should consist of a cell lysis/solid phase extraction unit, 2-D electrophoresis separation unit, solid-

phase proteolytic reactors, a microchip peptide separation unit, and an on-line interface to MS, for 

example using a rotating ball or other interface (see text for details).  
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Numerous articles and reviews on MS interfaces to microchip protein digestion or peptide 

separation abound in the literature. We consider efforts in which more than one proteomic unit 

performing a single processing step was combined with another in a single system. We describe, to 

best of our knowledge, all of the principal works on developing integrated systems for protein analysis 

and proteomics. In this review, processes such as on-chip cell lysis, protein extraction, pre-

concentration, protein denaturation and/or labeling are included as part of the sample preparation. We 

considered platform wherein any two or more protein processing devices were combined as being a 

system and these could have been integrated to an interface for direct mass analysis via MS. Our 

discussions are primarily focused on the integration of various processing steps prior to MS analysis 

and we compiled the integrated devices with their various components in Table 1. For example, a 

protein digestion device that may have been interfaced to a mass spectrometer so was not included in 

this review. In the same vein, if for example two separate systems comprised of two devices each, and 

one of the two systems was interfaced with MS and the other was not, both systems were considered in 

this review and placed under the category of integrated systems with two devices. 

1.5.2 A Survey of Integrated Microfluidic Systems  

1.5.2.1 Integrated Systems with Two Devices 

Foote and co-workers [77] developed a microfabricated device with the ability to 

electrophoretically concentrate fluorescently labeled proteins prior to a separation unit (see Figure 1.2). 

They were able to concentrate proteins using a porous silica membrane between adjacent 

microchannels that allowed for the passage of buffer ions, but excluded larger migrating molecules. 

Concentrated proteins were then injected into a separation column for analysis.   

Pre-concentration factors of ~600-fold were achieved using this on-chip format, which was followed 

by SDS µ-CGE separation of the proteins. Using this microfluidic chip, fluorescently labeled 

ovalbumin was detected at initial concentrations as low as 100 fM by using a combination of field- 
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-amplified injection and pre-concentration at a membrane prior to microchip CE (µ-CE). 

 

Figure 1.2 (A) Schematic of microchip layout used for preconcentration.  (B) Microscopic image 

of preconcentrator-injector channels. (C) Schematic cross section through injector and preconcentrator 

channels (Reproduced from Analytical Chemistry 77, 2005, 57-63).  

In work performed by Yue et al. [78], an integrated glass microfluidic for proteomics, which 

directly coupled proteolysis with affinity selection, was described (see  

Figure 1.3). Initial results with standard phosphorpeptide fragments from β-casein in peptide mixtures 

showed selective capture of the phosphorylated fragments using immobilized metal affinity 

chromatography (IMAC) beads packed into a microchannel.   

 

Figure 1.3 Diagram of the integrated trypsin digestion and affinity capture process along with a 

picture of the actual microdevice (Reproduced from Analytica Chimica Acta 564, 2006,  

116-122). 
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Complete selectivity was seen with angiotensin, with capture of only the phosphorylated forms.  

 Peterson et al. [79] reported a microfluidic device with a dual function containing both a solid 

phase extractor and an enzymatic microreactor (see Figure 1.4). This device was fabricated from a 25 

mm long porous poly (butyl methacrylate-co-ethylene dimethacrylate) monolith prepared within a 50 

µm i.d. capillary. This capillary with a pulled 9 – 12 µm needle tip was used as a nanoelectrospray 

emitter coupling the device to ESI MS.  Photografting with irradiation through a mask was then used to 

selectively functionalize a 20 mm long portion of the monolith, introducing reactive poly (2-vinyl-4,4-

dimethylazlactone) chains to enable the subsequent attachment of trypsin, thereby creating an 

enzymatic microreactor with high proteolytic activity. The other 5 mm of unmodified hydrophobic 

monolith served as a micro-solid phase extractor. To test system functionality, different volumes of a 

myoglobin solution ranging from 2 to 20 µL were loaded into the device, and a sequence coverage of 

~80% was achieved for the highest loading. The sequence coverage of a protein is the percentage of 

the protein‟s amino acid sequence that is detected relative to complete protein‟s amino acid sequence. 

 

Figure 1.4 Schematic and fluorescence microscopic image of the monolithic dual-function device 

used for the digestion-SPE isolation for the analysis of labeled proteins and the capture of fluorescent 

peptides (Reproduced from Analytical Chemistry 75, 2003, 5328-5335). 

An integrated poly (dimethylsiloxane), PDMS, microchip for SPE and CE followed by 

ESI/TOF MS has been developed and evaluated by Dahlin and co-workers [80]. The microchip (see 
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Figure 1.5) was fabricated in a novel one-step procedure where mixed PDMS was cast over steel wires 

in a mold. The removed wires defined 50 µm cylindrical channels.  Fused-silica capillaries were then 

successfully inserted into the structure in a tight fit connection.  The inner walls of the inserted fused-

silica capillaries and the PDMS microchip channels were modified with a positively charged polymer, 

Poly E-323.  In this approach, the chip was fabricated in a two-level cross design.  The channel at the 

lower level was packed with 5 µm hyper-cross-linked polystyrene beads acting as a SPE medium used 

for desalting.  The upper level channel acted as a CE channel and ended in an integrated emitter tip 

coated with conducting graphite powder to facilitate the electrical contact for ESI. To evaluate the 

microchip, six-peptide mixtures were dissolved in physiological salt solution, injected, desalted, 

separated, and sprayed into a MS for analysis with a limit-of-detection in the femtomole regime. 

 

Figure 1.5 (A) Schematic of a PDMS microchip device.  Channel A: sample inlet; channel B: CE, 

channel; C: waste channel. (B) Schematic showing the instrumental setup and the connection of the 

microchip to the ESI/TOF MS (Reproduced from Analytical Chemistry, 77, 2005, 5356-5363). 

In a similar effort to combine preconcentration with electrophoretic separations,  

Fortier et al. [81] investigated the analytical performances of a fabricated microfluidic device, which 

included an enrichment column, a reversed phase separation channel, and a nanoelectrospray emitter 
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embedded together in polyimide layers (see Figure 1.6).  This configuration minimized transfer lines 

and connections and reduced post-column peak broadening and dead volumes.  The compact 

microchip was interfaced to both ion trap and TOF MS, and its analytical potentials were evaluated in 

the context of proteomic applications. Sensitivity measurements were performed on a dilution series of 

protein digests spiked into rat plasma samples and provided a detection limit of 1 – 5 fmol.   

 

Figure 1.6 Microchip system interfaced to an ion trap MS.  The chip was placed on an articulated 

manifold, which was comprised of a valve rotor with a clamping mechanism ensuring proper port 

alignment and sealing.  A two-way translation stage provided easy positioning of the device in front of 

the sampling orifice when the manifold was inserted into the MS inlet.  The inset shows a close up 

view of the chip device with the precolumn, separation channel, and nanospray tip (Reproduced from 

Analytical Chemistry, 77, 2005, 1631-1640).  

 In another study, Gao and co-workers [82] developed an integrated microchip for rapid and 

sensitive protein identification by on-line protein digestion and analysis of the digested proteins using 

ESI MS or transient capillary isotachophoresis/CZE with MS.  A miniaturized membrane reactor was 

constructed by fabricating a PDMS microchip and coupling the microfluidic to a poly (vinylidene 

fluoride) porous membrane with adsorbed trypsin (see Figure 1.7), which produced a large surface 

area-to-volume ratio by the porous membrane media with adsorbed trypsin to provide ultrahigh 

catalytic turnover.  The residence time of protein analytes inside the trypsin-adsorbed membrane, the 

reaction temperature, and the protein concentration controlled the extent of protein digestion.  
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Figure 1.7 (A) Schematic of a membrane reactor assembly.  (B) Schematic of the setup for 

performing ESI MS analysis of peptide mixtures from a trypsin membrane reactor (Reproduced form 

Analytical Chemistry, 73, 2001, 2648-2655). 

 

A microfluidic device was also described by Wang and co-workers [64] in which an 

electrospray interface to MS was integrated with a CE channel, an injector and a protein digestion bed 

situated on a monolithic substrate (see Figure 1.8).  To perform analysis, an 800 µm wide, 150 µm 

deep and 15 mm long channel served as a reactor bed for trypsin, which was immobilized on 40 – 60 

µm diameter beads.  Separation was performed in channels feeding into a capillary attached to the chip 

with a low dead volume coupler.  Then, sample including melittin, cytochrome c and bovine serum 

albumin (BSA), was pumped through the reactor bed at flow rates between 0.5 and 60 µL/min and the 

application of the device for rapid digestion, separation and identification of proteins was 

demonstrated.  A flow rate of 1 or 0.5 µL/min was found to be adequate for complete digestion of 

cytochrome C or BSA, corresponding to a digestion time of 3 – 6 min at room temperature.   
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Figure 1.8 Schematic of an integrated enzyme reaction bed and CE microchip.  Top and side views 

show a blow up of the packed trypsin bead (Reproduced from Rapid Communications in Mass 

Spectrometry, 14, 2000, 1377-1383). 

 

 Hardouin et al. [83] reported a nano-HPLC-Chip-MS device that integrated a sample 

enrichment column, a nanoscale C18 reverse-phase separation column and a nanoelectrospray tip. The 

chip, which was obtained from Agilent Technologies, Santa Clara, CA, USA, was automatically 

loaded and positioned into an MS nanospray chamber and resulted in reproducible retention times of 

protein digests. To enhance protein identification, the method combined m/z data generated from the 

MS with highly reproducible peptide retention times (RT) from the nano-LC. Based on 24 relative 

standard devations (RSDs) associated with retention times of different tryptic ions of the 

CLIC1_HUMAN protein an average RT RSD of 1.2% was calculated. Proteins were separated and 

digested off chip prior to the nano-HPLC-Chip-MS analysis using conventional 2-D SDS PAGE, 

protein spot excision from the 2-D gels post separation and digestion of protein spots with trypsin. The 

nano-HPLC-Chip-MS technique was able to analyze and detect as low as 10 fmol of BSA digest. 

   Sedgwick et al. [84] described a polydimethylsiloxane (PDMS) microfluidic device that was 

capable of isolating single A431 human epithelial carcinoma cells, electroporating the cells and lysing 

single cells. The cells expressed a green fluorescent protein-labeled β-actin, which allowed for the 

visualization and monitoring of the cell‟s cytoskeleton by confocal fluorescence microscopy during 
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trapping and electroporation of the cells. Electroporation was carried out using dielectrophoresis (DEP) 

by applying an electric field across a pair of 10 µm spaced saw-tooth gold microelectrodes that were 

perpendicular to the channels. The schematic representation of this device is shown in Figure 1.9. The 

back-end of the device‟s column was loaded with streptavidin-coated latex 10 µm microspheres, which 

were previously incubated with biotinylated anti-β-actin antibody for 1 h.  The bead bed was used to 

capture the actins after cell lysis.  

 

Figure 1.9 Schematic representation showing the saw-tooth gold electrodes (on a glass slide) 

positioned with the PDMS microchannels, and the bead bed for protein capture created by trapping 

microsphere with three approximately 25 µm PDMS pillars. Simple microchannels of depth 

approximately 50 µm and width approximately 100 µm were used, with two inlets (one for the cell 

suspension and one for introducing the micro-spheres and/or a buffer for flushing through the system) 

and a single outlet (Reproduced from Journal of The Royal Society Interface, 5, 2008, S123-S130).  

 

Long et al. [85] coupled a pre-concentration SPE device to microchip electrophoresis (chip 

SPE-CE) in an integrated multilayer PDMS device separated with a nanoporous thin membrane 

interconnect that prevented solution leakage. The SPE, carried out in the upper unit, could be 

performed either by pressure or electroosmosis. The representation of the system is shown in Figure 

1.10. The SPE device was made by loading the upper channel with a suspension of C18-coated 10 µm 

silica beads. Sample was delivered to the bead bed from R1 to R2 (see Figure 1.10) followed by 
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washing with 20/80 (v/v) acetonitrile-borate buffer and then elution of concentrated analytes from the 

SPE column with 60/40 (v/v) acetonitrile-borate buffer. To introduce an injection plug into the lower 

CE device, a 2 s pulse voltage was applied between R2 and R4. CE detection was monitored by laser-

induced fluorescence (LIF). Although the system was tested with a dye-labeled ephedrine solution, its 

application can be extended to proteins as well. Similar systems in the sense of integrating a pre-

concentrator to a separation device have been reported as well [55, 86-90].  

 
 

Figure 1.10 (a) Layout of the integrated SPE-CE multilayer device consisting of a small piece of 

nanoporous membrane sandwiched between the upper (continuous line) and lower (broken line) PDMS 

layers. (b) Photograph of the multilayer device. (c) and (d) Micrograph and schematic diagram of the 

packed µ-SPE column between two shallow weirs (Reproduced from Lab Chip 2007, 7, 1819-1824). 

 

1.5.2.2 Integrated Systems with Three Devices  

Gottschlich et al. [91] developed a microfluidic device that integrated enzymatic reactions, 

electrophoretic separation of the reactants from the products and  

post-separation labeling of the proteins and peptides prior to fluorescence detection was accomplished 

(see Figure 1.11). A tryptic digestion of oxidized insulin β-chain was performed in 15 min under 

stopped flow conditions in a heated channel serving as the reactor and the separation was completed in 

60 s. Localized thermal control of the reaction channel was achieved using a resistive heating element.  

The separated reaction products were then labeled with naphthalene-2,3-dicarboxaldehyde 

(NDA) and detected by fluorescence detection.   
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Figure 1.11 (A) Cross-sectional view of a microchip, heating element, and thermocouples. (B) 

Diagram of the microchip used for on-chip proteolytic reactions, separations and postcolumn labeling 

for generating fluorescent moieties. The fluid reservoirs are: (1) substrate, (2) enzyme, (3) buffer, (4) 

sample waste, (5) NDA, and (6) waste (Reproduced from Journal of Chromatography B, Biomedical 

Sciences and Applications, 745, 2000, 243-249). 

A PDMS microfluidic device has been reported by Dodge and co-workers [92] that combined 

on-line protein electrophoretic separation, selection, and digestion of a protein of interest for 

identification by MS (see Figure 1.12).  The microfluidic system included eight integrated valves and 

one micropump dedicated to control of flow operations.  To evaluate the system performance, 

myoglobin was successfully isolated from BSA, then selected using integrated valves and digested in a 

rotary micromixer. Proteolytic peptides were recovered from the micromixer for protein identification.  

Total analysis from sample injection to protein identification was performed within 30 min, with 

sample volumes in the range of tens of nanoliters.   
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Figure 1.12 Drawing of an integrated PDMS microfluidic device.  It was comprised of four 

modules: an injection/separation module in which pumping was entirely supported by electroosmotics; 

a protein trapping module; a circular micromixer where pumping was mechanically achieved; and an 

enzyme reaction module.  Fluidic channels are in red, actuation channels are in blue-green.  Valve 

actuation channels were filled with water in order to avoid air entering the fluidic channels through the 

PDMS membranes.  Integrated valves are numbered from 1 to 6 (Reproduced from The Analyst, 131, 

2006, 1122-1128). 

 

 An integrated microfabricated system composed of a proteolytic reactor and chromatographic 

column with direct interface to ESI-MS was reported by Carlier et al. [93].  The system is represented 

in Figure 1.13 and was fabricated from SU-8 and used to perform protein digestion, sample 

purification, salt removal, and chromatography followed by MS analysis. The chromatographic end of 

the chip was terminated with a nano-ESI interface. The digestion module was composed of tryspin 

covalently attached to a monolithic polymer, which was also used to prepare a hydrophobic stationary 

phase for the desalting or separation of peptides prior to MS analysis. Monoliths were made in situ by 

photo-polymerizing ethylene dimethacrylate (EDMA) monomers in the presence of lauryl 

methacrylate (LMA) or butyl methacrylate (BMA) crosslinkers. 
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Figure 1.13 Top: Schematic representation of the SU-8 based microfluidic system which includes 

and enzymatic micro-reactor, a chromatographic device and an integrated ionization emitter tip. 

Bottom: Scanning electron microscopy photograph of a section of a monolithic phase prepared from 

LMA/EDMA. (Reproduced from Journal of Chromatography, 1071, 2005, 213-222).  

 

Huh et al. [94] developed an integrated microfluidic system as shown in Figure 1.14, which 

was used to first successfully disrupt cells by mixing at an optimized speed of 500 rpm for 10 min. 

Mixing was made possible by embedding a microdisk in the microchamber and applying an external 

rotating magnetic. Elution buffer was then introduced into the chamber to shuttle the lysed sample into 

a fritless solid-phase extraction (SPE) device that was made by in situ photo-polymerizing ethylene 

glycol dimethacrylate (EGDMA) and acrylamide (AAm) monomer solutions. Most cellular debris and 

negatively charged proteins from a recombinant gold binding peptide (GBP)-fusion E. coli were bound 

to the SPE surface allowing for up to 60% of the total proteome to be shuttled to a detection device 

where GBP-fusion proteins were electrochemically detected using three gold electrodes integrated in 

the microchannels or gold microarrays. 
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Figure 1.14 Integrated microfluidic system for on-chip analysis of biomolecules. (A) Schematic 

representation of the fully integrated microfluic system showing the sample mixing zone for disruption 

of cells, the sample purification zone with SPE, and the gold microcircle patterned analysis zone for 

detection infectious pathogens. Reservoirs in the mixing chamber were labeled as SI, EB, and LS for 

sample inlet, elution buffer, and lysis solution, respectively. Detection reservoirs were labled as RS, 

CS, and WP for reaction sample, control sample, and waste port, respectively. (B) Chemical structure 

of Teflon AF 1600 used for the hydrophobic film valve (V2). (C) The AAm functionalized SPE was 

packed by in situ polymerization. (D) Gold microarray for the detection of infectious viral disease. (E) 

Photograph of the integrated system coupled with a magnetic stirrer. The cylinder-type micropillar for 

packing SPE is for removing debris (V3). Device dimension are 10.0 (width) x 18.0 (length) x 5 

(height) mm. (Reproduced from Electrophoresis, 29, 2008, 2960-2969).  

 

 Li et al. [95-97] developed a variety of integrated systems amenable to the rapid analysis of 

trace tryptic protein digests with the most recently reported system shown in Figure 1.15 [95]. The 

system was endowed with an autosampler, which introduced peptides first to the pre-concetration 

device of the system. The pre-concentration device was composed of c-myc-specific antibodies 

immobilized protein G-Sepharose beads packed into a large channel (2.4 µL) of the chip. The bead-

based bed enabled an affinity selection of targeted antigenic peptides (20 ng/mL spiked in human 

plasma) prior to electrophoretic separation and subsequent MS quadruple/time-of-flight (Q TOF) MS 

analysis. A throughput of up to 12 samples/h and on-chip detection limit of ~5 nM (or 25 fmol) were 

reported. However, peptide samples were generated off-chip as tryptic digests of isolated protein spots 

from 2-D IEF/SDS PAGE of protein extracts of human prostatic cancer cells (LNCaP). 
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Figure 1.15 Schematic representation of the auto-sampler chip-CE-time-of-flight interface. (a) 

microfluidic device comprising a large flow channel (800 um wide, 150 um deep, and 22 mm long) 

located between wells C and D and packed with C18 reverse phase. Sample plugs (typically 8-10 µL) 

are introduced from the auto-sampler to well C via a capillary transfer line. Wells A, B, and E 

correspond to waste, separation buffer (0.2% aqueous HCOOH), and internal standard (1 µg/mL 

angiotensin I in separation buffer), respectively. (b) Sequential steps involving sample clean-up, 

desorption, injection, and separation (Reproduced from Molecular & Cellular Proteomics, 1, 2002, 

157-168).  

 

1.5.2.3 Integrated Systems with Four or More Devices 

Srivastava et al. [98] recently reported an integrated quartz-based microfluidic platform termed 

the phosphoFlow Chip (pFC) (see Figure 1.16), which was used to monitor internal responses of the 

RAW 264.7 murine macrophage by profiling only phosphorylated proteins. Using fluorescence 

microscopy, real-time observation of cell phenotype was plausible prior to flow cytometry. The 

approach involved cell introduction, infection of the cells, phosphor-epitope staining, fluorescence 

imaging and flow cytometry. The system consisted of two fluidically isolated spiral incubation 

chambers for the simultaneous execution of both assays with adherent cells and the control with non-

adherent cells. The system‟s capacity was reported to be ~2000 cells per assay and 350 nL of fluid 
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volume. The technique was capable of monitoring early signaling events that took less than 30 min for 

sample preparation and analysis [98].  

   

Figure 1.16 Top panel: pFC device for phosphor-profiling of adherent cells. Device operation 

proceeds from top to bottom. The two wide spirals (1 and 2) for simultaneous infection and control 

assay. (a) Macrophage cells are introduced into the pFC via pressure-driven flow, (b) incubation 

chambers (wide spirals, only one of the two is shown) where the automated pFC phosphorylation assay 

proceeds as (1) cell culture and infection, (2) phosphor-profiling (fixation, permeabilization, and 

staining with phosphor-specific antibodies), (c) imaging, and (d) flow cytometry. Scale bars: 2 mm 

(chip image), 100 um (a,d), 200 um (b), and 10 um (c). Bottom panel: Detailed step-by-step operation 

of the pFC platform, from loading cells to end-point detection by flow cytometry. Red arrows indicate 

the direction of flow, highlighted wells indicate external fluid valve to that inlet well is open (all others 

being closed), channels in dark gray support continuous flow while regions in light gray contain 

stagnant flow (Reproduced from Analytical Chemistry, 81, 2009, 3261-3269).  

 

Stachowiak et al. [99] coupled an automated sample preparation (ASP) system to a chip gel 

electrophoresis protein profiling (CGE-PP) system to execute an autonomous microfluidic sample 

preparation and detection of aerosolized bacterial cells and spores based on protein profiling. The 

combined system, which was field deployable, was capable of differentiating between bacterial 

organisms. It operated by collecting aerosol samples using a collector, pre-concentrating the 
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organisms, thermo-chemically lysing the bacterial cells or spores, subjecting the resulting proteins to 

size exclusion chromatography prior to fluorescently labeling the proteins with dyes and finally 

separating the labeled proteins using gel electrophoresis to generate a protein profile. The entire task 

was completed in approximately 10 min with a sensitivity of 16 agent-containing particles per liter of 

air for B. subtilis spores. By profiling the proteins of pathogenic organisms, the technique can detect 

any pathogen unlike in PCR-based or immunoassay-based techniques where the pathogen‟s sequence 

primers or monoclonal antibodies, respectively, must be available. Figure 1.17 shows the schematic 

representation of the ASP system. 

 
 

Figure 1.17 Schematic representation of the automated sample preparation system. Arrows indicate 

the flow direction. Blue lines and arrows represent the path taken by incoming sample from the aerosol 

collector before preconcentration. Red lines and arrows represent the path taken by sample after 

concentration by the filter. Port symbols represent position valves. Fluidic connections between ports 

perpendicular to each other are made and broken as the valve actuates. Ports parallel to one another are 

never connected (Reproduced from Analytical Chemistry, 79, 2007, 5763-5770).  

 

Ethier et al. [100] assembled a reactor by coupling a 200 µm inner diameter capillary tubing 

into an inline micro-filter frit and then packing the capillary with strong cation exchange (SCX) beads, 

such that proteins were bound to the beads at low pH and digested at high pH where trypsin enzyme 

was activated. Buffers and slurry beads were pressure filled using nitrogen (see Figure 1.18). The 

system was dubbed “the proteomic reactor” and could rapidly extract proteins from cells, pre-

concentrate, reduce, alkylate, and digest proteins. With an interstitial volume of ~50 nL, the pre-

concentration range was between 20 to 2000-fold for material input volumes between 1-100 µL.  
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Figure 1.18 Left: Schematic representation of the proteomic reactor. Pressurized nitrogen was used 

to push the liquid into the reactor. The protein and trypsin are bound to the SCX material. Middle: 

Trypsin is activated by adjusting the pH to 8. The flow was stopped to let the digestion proceed 

without losing peptides. Right: Peptides were eluted by using an ammonium bicarbonate solution. 

(Reproduced from Journal of Proteome Research, 5, 2006, 2754-2759). 

 

1.6 Concluding Remarks 

 

 To date, there is still no fully integrated multi-functional microfluidic system for automated 

protein analysis. The microchip system reported by Ethier et al. [100] in our opinion is one of the most 

comprehensive systems. It appears that it may be more feasible to implement the top-down approach 

on an integrated microchip platform compared to implementing the bottom-up approach owing to the 

fact that all proteins in the protein mixture are digested at once in one proteolytic step for the top-down 

approach. On the other hand, the bottom-up approach requires the digestion of individual proteins that 

have been separated previously, suggesting that proteins would have to be serially injected into the 

proteolytic reactor to be digested or the integrated microchip would have to possess several reactors so 

that one protein is digested in one reactor. If the former is implemented, then there would be an issue 

of cross contamination of peptides. However, for the latter is to be implemented, the question of how 

many reactors to be incorporated into the chip becomes an issue as there are a multitude of proteins 

that could result from the separation of a complex proteome.  

 Most integrated protein analysis systems reported thus far are comprised of only two devices as 

shown in Table 1. There are challenges facing the development of fully integrated systems for protein 

analysis. Different devices may require different buffer conditions; therefore, isolation of the various  
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Table 1.1 Integrated Microfluidic Systems for Protein Analysis with two or more protein 

processing devices combined prior to MS interface 

 

Devices or Units 

Combined 

 

 

Chip 

 

Sample Analyzed 

 

 

Efficiency/Comments 

 

Ref. 

 

TWO PROCESSES OR DEVICES COMBINED 

 

Porous silica pre-

concentration unit and µ-

CGE separation 

Glass Mixture of up to 7 

purified proteins 

Pre-concentration factors of 

~600 fold 

[77] 

 

Proteolytic reactor and 

IMAC affinity unit for 

peptide enrichment 

Glass Model proteins 

were analyzed 

individually 

Capture bias on IMAC; 

system required further 

optimization due to non-

specific binding 

[78] 

Monolithic based SPE and 

proteolytic reactor 

Glass Myoglobin Sequence coverage of 

~80% achieved for  20 uL 

of myoglobin (19 pmol/uL) 

 

[79] 

polystyrene beads for SPE 

desalting and  a CE unit 

with ESI-interface 

PDMS Six-peptide 

mixtures dissolved 

in physiological 

salt solution 

LOD is in the femtomole 

regime 

[80] 

SPE enrichment column 

and a reversed phase 

separation channel with a 

nanoelectrospray emitter 

Glass protein digests 

spiked into rat 

plasma samples 

LOD of 1 – 5 fmol. 

 

[81] 

Protein digestion unit made 

of a trypsin adsorbed poly 

(vinylidene fluoride) porous 

membrane and transient 

capillary 

isotachophoresis/CZE with 

ESI-MS interface 

PDMS Three model 

proteins 

A plug of 300 nL of 

cytochrome c solution (10 

µg/mL) was analyzed 

 

 

[82] 

A monolithic protein 

digestion bed and CE unit 

interfaced with an ESI-MS 

Glass Three model 

proteins 

3 – 6 min to complete 

digestion cytochrome c or 

BSA 

[64] 

Enrichment column and 

nanoscale C18 reversed 

phase separation column 

interfaced with ESI- tip 

Glass Peptides resulting 

from proteins 

digested off-chip 

Highly reproducible 

retention times from the 

nano-LC and 10 fmol of 

BSA digest was detected 

[83] 

Cell lyses and protein 

capture and visualization 

PDMS green fluorescent 

protein-labeled β-

actin 

Capture bed was decorated 

with anti-β-actin antibody 

[84] 

C18-coated silica bed SPE 

unit and CE unit 

 

PDMS dye-labeled 

ephedrine protein 

CE detection was 

monitored by laser induced 

fluorescence 

[85] 
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Table 1.1 Continued  

 

Devices or Units 

Combined 

 

 

Chip 

 

Sample Analyzed 

 

Efficiency/Comments 

 

Ref. 

 

 

THREE PROCESSES OR DEVICES COMBINED 

 

Proteolytic reactor, peptide 

separation, and post-column 

labeling  

Glass Oxidized insulin β-

chain 

Tryptic digestion in 15 min, 

and peptide separation in 

~60 s 

[91] 

Protein separation, 

mechanical protein 

trapping/selection, and 

proteolytic digestion 

PDMS Myoglobin and 

BSA 

Device included 8 valves 

and a micropump. Total 

analysis was under 30 min 

nanoliter sample volume 

[92] 

Proteolytic reactor, 

desalting bed made of a 

hydrophobic monolithic 

stationary phase, and a 

chromatographic unit with 

ESI interface 

SU-8 Cytochrome c 800 fmol cytochrome c 

digest was separated by 

nano-LC coupled to ESI-

MS 

[93]   

Cell lysis, SPE unit, and a 

microarray 

PDMS  E. coli cell lysate Up to 60% of the total 

proteome were shuttled to 

microarray unit 

[94] 

SPE unit, salt removal unit, 

and a separation unit with 

nano-spray. 

Glass antigenic peptides 

spiked in human 

plasma  

Device provided a HTP of 

12 samples/h and LOD of 

~5 nM (or 25 fmol) 

[95-97] 

 

FOUR OR MORE PROCESSES OR DEVICES COMBINED 

 

Cell culture, cell infection, 

phosphor-epitope staining,  

cell imaging, and flow 

cytometry 

Quartz Phosphorylated 

proteins from 

maurine cell lysate 

~2000 cells per assay can 

be analyzed and 350 nL of 

fluid volume 

[98] 

Pre-concentration of 

bacterial cells, thermo-

chemical lysis, size 

exclusion chromatography 

of proteins prior, 

fluorescent labeling the 

proteins, and µ-CGE 

Glass Bacterial cell 

lysates 

Field deployable chip with 

total analysis time ~10 min 

and a LOD of 16 agent-

containing particles per liter 

of air for B. subtilis spores. 

[99] 

Cell lysis, protein 

extraction, 

preconcentration, sample 

clean-up, protein 

modification 

(reduction/alkylation), and 

protein digestion 

Glass Mouse testicular 

cell lysate 

As little as 300 cells can be 

used 

[100] 
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processing steps becomes important. For example, the separation buffer conditions required to 

optimally separate proteins prior to protein digestion may be completely different. The integrated chip 

presented by Yue et al. [78] required different pH buffer solutions for trypsin digestion and IMAC 

enrichment. Thus, when proteins were flowed through the trypsin beads to the IMAC beads, 4% acetic 

acid was pumped through a side inlet to the IMAC microchannel at the same time to adjust the pH of 

the digested protein solution from pH 8.0 to pH 4–5. In their work, Peterson et al. [79] used 

acetonitrile to release accumulated proteins from a SPE bed that was directly coupled to a proteolytic 

digestion reactor and reported a high protein recovery. However, the use of pure organic solvent to 

release the proteins would be impractical where a separation step followed the extraction step because 

pure organic solvents may not be compatible with the subsequent chromatographic process, which the 

authors anticipated to incorporate in their future designs.  

There is also the issue of incomplete digestion or prolonged digestion times due to the limited 

amount of immobilized trypsin. One way to alleviate the problem is to provide high surface area to 

immobilize trypsin and this can be achieved by replacing large diameter beads onto which trypsin has 

been attached with smaller diameter particles or by immobilization of the trypsin onto a sol–gel matrix 

that is formed within the channel [78]. Furthermore, there is the issue of cross-contamination between 

peptide ions within the reactor. To minimize the issue of cross-contamination, a 10-min Tris-buffer 

flush may be required between each protein digestion [78]. Unfortunately, flushing the reactor after 

each proteolytic digestion may not be amenable for a complete top-down protein analysis where each 

separated protein would be sequentially injected from an up-stream separation into the bioreactor.  

Pre-concentrating protein samples after extraction and before separation in an integrated system 

for a total proteomic analysis is very important – enough material is needed downstream during protein 

digestion and subsequently for peptide mass analysis. One way, to improve the concentration factor is 

by pre-concentrating the sample directly in the separation injector so that all of the concentrated 
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sample can be then injected into the separation channel for analysis [77]. However, peak distortions 

and loss of resolution during μ-CE can be observed following long pre-concentration times [77]. 

Finally, the issue of dead volumes develop when capillary connections and other junctions, such as 

fluid inlets, outlets and microdialysis junctions are used, which can degrade separation performance, 

introduce sample carryover or sample loss. For example, Gao and co-workers [82] estimated ~4 µL for 

the void volumes associated with their miniaturized trypsin membrane reactor.  

Fabricating a practical integrated chip for acomplete protein analysis is possible. To begin with, 

the ruggedness and stability of the trypsin reactor has been shown to be impressive. Trypsin has been 

shown to maintain its activity for at least two weeks when a bioreactor was properly stored at 4 
o
C 

when not in use [78]. This aspect of an integrated system is delicate as it is the only device decorated 

with degradable biomaterials. But, to achieve a complete protein analysis on chip in the near future, a 

combination of both the top-down and bottom-up approaches (dubbed the top-bottom “combo” 

approach) may be called for. The modified processing pipeline would be as follows: (1) Cell lysis and 

protein extraction; (2) protein separation, where due to the high complexity of the proteome, the 

separated protein plugs are a mixture of proteins instead of individual proteins as required by the top-

down approach; (3) digestion of the protein mixture digestion just like in the bottom-up approach 

where the non-separated proteins are digested apriori; and (4) peptide separation and introduction into 

the mass spectrometer. So, if we were to implement the top-down combo approach on a mammalian 

cell proteome, which contains ~10,000 proteins per cell [20] using our proposed ideal integrated 

microchip shown in Figure 1, we would first separate the 10,000 proteins after cell lysis and extraction 

by a SDS µ-CGE/MEKC [101] (Unit II). For the sake of argument, let us assume that we were able to 

resolve ~2,500 proteins using this technique [62]. This means that each protein band would contain 

about four different proteins on average. To ensure that there would be enough trypsin to digest the 

four different proteins, the solid-phase micro-reactors (Unit III) would be endowed with nanopillars 
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[102] to increase the surface area prior to the attachment of trypsin. Considering that the tryptic 

digestion of cytochrome c (104 amino acids) results in ~10 peptides [34], the average protein 

containing about 360 amino acids is expected to generate roughly 35 peptides (for top-down approach) 

or 140 peptides for four proteins (for the top-bottom approach). There has not been any report where 

microchip 2-D separations were coupled to ESI or MALDI MS. For the separation unit shown in 

Figure 1, an average protein peak volume of ~10 pL [101] is expected, but in order to make the 

microchip 2-D separation coupled to ESI or MALDI MS a reality, MS interfaces must be optimized for 

small sample volumes; for example, MALDI deposition with small deposited spot sizes for a higher 

local concentration [31]. In addition, having sufficient signal to noise ratio (SNR) is needed for the 

mass spectral readout as well. About 1.4×10
-15

 mole is expected from the 10 pL protein peak volume 

[101] considering an average concentration of 3 nM [101] for an individual protein and an average 

protein molecular mass of 46 kDa. 
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2 Surface Modification of PMMA Microchips for Separations* 

 

2.1 Introduction  

The increasing need for high-speed separations that offer excellent performance for the analysis 

of biomolecular material for applications that require processing of large amounts of material, as in 

genome sequencing, has lead to a surge in conducting separations using microchip electrophoresis 

platforms. The attractiveness of this separation platform includes: High efficiencies on par with 

capillary separations; fast analysis times due to the smaller footprint; the ability to integrate sample 

pre-processing steps onto the separation using a single monolithic device; and smaller load volumes 

[1].  Other advantages include reduced effects from biased injections as well as the potential portability 

of such devices when integrated with the peripheral components of the system, such as power supplies 

and detectors. Since their introduction, several groups have performed optimization studies for 

microchip electrophoresis devices focusing on the sieving matrices, channel dimensions, and various 

other electrophoretic conditions [2-5]. A number of different electrophoretic separation analyses of 

biomolecules such as proteins, amino acids, PCR products, short oligonucleotides, DNA restriction 

fragments, and DNA sequencing ladders have been performed using a multitude of microfluidic 

devices [6, 7].   

 For the analysis of many biomolecules, the surface characteristics of the substrate material 

employed for the separation must be taken into careful consideration, because the surface-to-volume 

ratio is high indicating that solute-wall interactions can affect performance and for electrophoretic 

separations, the chemical composition of the wall affects the electroosmostic flow (EOF). The 

performance of glass-based devices can be easily predicted and controlled due to the well studied 

characteristics of their surfaces including the effects different end groups (i.e. Si-O-Si-C vs. Si-C) have 

on covalent coatings [8-10].   

*Reprinted with permission from the Electrophoresis journal. 
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Electroosmotic properties of various covalent, adsorbing and dynamic coatings as well as the 

regeneration processes required for multiple usages of glass or fused silica substrates have also been 

investigated [11].  As such, many of the modification procedures optimized for capillary tubes are 

transferable to glass-based microdevices. Employing polymer substrates as microfluidic devices has 

several advantages over glass-based substrates such as the wide choice of manufacturing techniques 

for their fabrication, minimized manufacturing constraints when producing high aspect-ratio 

microstructures, and the cost efficiency for mass production [12]. Given the variety of polymers 

available for device fabrication, many polymer-based devices have been used in their native form with 

varying degrees of success for microseparations [13-15]. Yet, regardless of the type of polymer 

employed, concerns with the material properties arise, which can hinder efficient separations, 

specifically analyte-substrate interactions and inconsistencies with the EOF properties [16, 17].   

Groups have recently begun investigating modification procedures to stabilize and alter the 

EOF properties of various elastomers and thermoplastics, showing that covalent and dynamic coatings 

as well as ultraviolet grafting procedures provide means to modify the surface for separations [18-21].  

Locascio and co-workers demonstrated the use of excimer laser ablation to modify the surface 

chemistry of various polymers to obtain specific EOF properties [22, 23].  In patent applications 

described by Amigo and McCormick of ACLARA Biosciences (5,935,401 and 6,056,860), the authors 

provided examples of using interpenetrating monomers or polymers into the substrate that had been 

machined and could be further elaborated for EOF suppression or preventing non-specific adsorption. 

In their examples, dimethylacrylamide (DMA) was allowed to penetrate PMMA substrates from which 

linear polyacrylamides could be grafted.  Alternatively, absorbed coatings have been used for 

polycarbonate (PC), poly(methyl methacrylate) (PMMA), polystyrene (PS), and polymer-PDMS 

hybrid chips to stabilize the EOF for biomolecular separations [24]. However, one of the major 

drawbacks when developing modification chemistries is that the procedure employed 
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for one particular type of polymer may not necessarily transfer to another substrate with the same 

degree of success [16].  

 In the case of PMMA, research groups have been successful in separating a multitude of 

biomolecules including proteins, peptides, and double-stranded DNA using this material [25-28].  

Although many publications have demonstrated the analysis of short oligonucleotides and double-

stranded DNA fragments using PMMA devices in their native state, surface modifications have been 

incorporated to enhance the separation through stabilizing or altering the EOF. Muck et al. varied the 

EOF by fabricating PMMA devices through a UV-initiated polymerization, whereby improvements in 

target ion and neurotransmitter separations were demonstrated [29]. Galloway and co-workers were 

able to separate DNA and PCR products with a C-18 stationary phase immobilized onto an amine-

modified PMMA device [30].  Dang and co-workers have reported that PMMA produced highly 

irreproducible separations of oligosaccharides when used in its native state, but exhibited an improved 

performance after incorporating various dynamic coatings [31].   

Proteins are known to be notoriously hydrophobic and to adsorb to channel surfaces as a result; 

therefore, oligonucleotides are better suited as test samples to monitor electrophoretic performance in 

separation channels. In fact, attempt to separate single stranded DNA (ssDNA) fragments has been 

conducted in an unmodified PMMA microdevice [32]. Although PMMA proved to be a suitable 

substrate for fluorescence detection due to its low autofluorescence level, resolution between 

fragments with single base-pair differences required for DNA sequencing, which was attributed to 

potential analyte/wall interactions as indicated by peak tailing in the electropherograms and/or an 

inhomogeneous EOF. Locascio and co-workers demonstrated that the fabrication method employed, in 

this case hot-embossing, can produce hot-spots of functional groups, distorting the plug-like flow 

associated with most electrically-driven systems [33]. Later work in our group successfully 

demonstrated the separation of ssDNA fragments using similar dye-labeling chemistry and detection 
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methods employing a glass-based microdevice [34], suggesting that some modification to the surface 

would be necessary before PMMA could be routinely used for separation of ssDNA fragments for 

DNA sequencing. Shi and Anderson have reported the use of a polymeric microdevice for the 

separation of ssDNA fragments and successfully achieved single base-pair resolution using a 

polyolefin device coated with poly-dimethylacrylamide/diethylacrylamide [35].  The authors attributed 

their ability to achieve single base resolution primarily to their matrix selection, a 4% w/v of 5.5 MDa 

LPA; however, they did not investigate the significance of their coating material and whether the same 

resolution was achievable using the native polyolefin.  The coating employed in this study required 

~36 hours for preparation [36].  Data was shown for three consecutive separations of short-tandem 

repeats and suggested significant variations in migration times between the first and third runs when 

operated with a single coating.   

 In this work, we present a simple modification procedure to covalently coat PMMA 

microchannels to produce higher efficiency separations compared to the native material through 

reduction of analyte/wall interactions and suppression of the EOF. Based on modification procedures 

previously outlined in our group [37, 38], PMMA surfaces were aminated through exposure to either 

UV modification or lithiated diamine prior to surface coating with a linear polyacrylamide. The LPA 

was able to polymerize through acrylamide anchors covalently attached to the amine surfaces. 

Stepwise characterization of the modified surfaces was performed by measuring the EOFs and contact 

angles.  An LIF system was then employed to detect near-IR dye-labeled ssDNA fragments in the 

modified PMMA channels; the results of which were compared to those obtained in native PMMA. 

2.2       Materials and Methods 

2.2.1    Chip Fabrication and Electrophoresis 

            We have reported a method for the fabrication of microchip electrophoresis devices from a  

nickel master using micro-replication methods [30]. The technique utilizes X-ray or UV lithography 
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to develop a mold master with electroplated nickel microstructures (LiGA). This nickel master is later 

used for the production of microdevices by hot embossing polymer substrates.  For the embossing 

process, a PHI Precision Press model number TS-21-H-C(4A)-5 (City of Industry, CA) was used. This 

process consisted of heating a PMMA wafer (GE Polymershapes, Metairie, LA) to 155 C and pressing 

against the metal master using 1000 lbs of pressure for 3 min. The embossed device consisted of an 11 

cm long serpentine channel (effective length = 9.5 cm) incorporating two opposite turns with a double 

T injector 500 m long and 0.5 cm side-arm channels (see Figure 2.1).  The channel dimensions were 

25 m wide and 120 m deep. Reservoirs were created by drilling 1 mm holes into the 3 mm thick 

PMMA wafers. A finished device was prepared by thermally annealing a thin PMMA cover slip (0.5 

mm) to a clean device by securing the assembled polymer pieces between two glass plates and heating 

to 107 C for 12 min in a convection oven. 

 A linear polyacrylamide (LPA) sieving matrix was prepared from high-viscosity-average 

molecular mass powder (~6 MDa) (Polysciences Inc., Warrington, PA) dissolved in 1X TTE (50 mM 

Tris/50 mM TAPS/2 mM EDTA) buffer with 7 M urea for electrophoretic separation of DNA 

fragments. The 4% (w/v) LPA was replaced between each run from the anodic end of the separation 

channel. The electrophoresis buffer, consisting of 1X TTE buffer, was also changed after each run. The 

matrix was pre-electrophoresed for 3 min at 200 V/cm through the separation channel with sample and 

waste reservoirs floating. DNA samples were loaded by applying 230 V/cm across the injection 

channel for 120 s with the anodic and cathodic buffer reservoirs floating. Electrophoretic separations 

were run at 130 V/cm; sample leakage into the injection cross was prevented by applying pull-back 

voltages of 250 and 180 V/cm to the sample and waste reservoirs, respectively. The microdevice was 

heated to 50 C by a Kapton flexible heater (Omega Engineering Inc., Stamford, CT) mounted to the  

cover slip of the microchip with a pressure sensitive adhesive; the temperature was monitored via a 

self-adhesive thermocouple (Omega Engineering Inc., Stamford, CT).   
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Figure 2.1 Illustration of topographical layout for the PMMA microchip.  The separation 

microchannel was 11 cm in length with channel dimensions of 25 m in width and 120 m in depth. 

The solid rectangular structures were included into the device to aid in the thermal annealing of the 

PMMA cover slip to the microchip. Reservoirs were formed from 1 mm holes mechanically drilled 

through the 5 mm thick chip; A = sample, B= waste, C = buffer, D = anode / detection. The microchip 

used a “double T” injector with the distance between the side channels being 500 m and a total 

injection volume of ~1.5 nL 

 

2.2.2    Channel Surface Modification   

 The functional scaffold from which the LPA coating was built was produced either chemically 

or photo-chemically. The following procedures were used to modify PMMA microchannel surfaces. 

For the chemical method, the surface of the channels were aminated following a protocol outlined by 

Henry and co-workers [37]. This involved preparation of a N-lithiodiaminoethane solution from a 

reaction of 6 mmol dry ethylenediamine (Aldrich, Milwaukee, WI) with 1 mmol n-butyllithium (2.0 M 

in cyclohexane, Aldrich). The channels were filled with the lithiated diamine solution and allowed to 

incubate for 2-5 min before flushing and drying the channel under a stream of nitrogen (see Figure 

2.2A). In the photochemical method, the channels were aminated by first irradiating pristine PMMA 

with a UV light source (15 mW/cm
2
, 254 nm; ABM Series 60 exposure system, San Jose, CA) for 20 
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min, rinsing with 10% v/v isopropyl alcohol, and drying under a flow of N2. After thermal annealing of 

a cover slip to the microdevice, the channel was filled with a buffered solution (100 mM phosphate, 

pH 7.0) containing N-(3-dimethylaminopropyl)-N-ethylcarbodiimide (EDC) (Sigma, St. Louis, MO) 

and 0.58 mmol dry ethylenediamine for at least 40 min (Figure 2.2B). 

 Following either amination process, the following steps were carried out (see Figure 2.2C). To 

provide an anchor for grafting the LPA layer, methyl acrylic acid was covalently attached to the 

aminated PMMA surface by exposing the amine-modified channels to a solution of 50 mM [0.8% 

(w/v)] EDC and 0.5 M [4.2% (v/v)] methacrylic acid for 30 min. To passivate the surface, the channels 

were flushed and filled with a degassed solution of 4% (w/v) acrylamide containing 0.01% (v/v) 

N,N,N‟,N‟-tetramethylethylenediamine (TEMED) and 0.01% (w/v) ammonium persulfate (Sigma). 

This was allowed to polymerize in the channel for at least 4 h after which the channels were rinsed 

with water and dried. 

2.2.3    Electroosomotic Flow Measurements 

 The EOF measurements were carried out in the microchannels described above using a method 

employed by Zare and co-workers [39].  Microchannels were filled entirely with a buffer of low ionic 

strength at an appropriate pH. In this case, the buffer was 0.5X TTE (pH = 7.4), which was selected to 

minimize changes in the EOF from the run conditions that were used for the DNA separations. Pt 

electrodes were placed into two reservoirs at opposite ends of the microchannel. An electric field was 

applied between the electrodes using a Spellman high voltage power supply (CZ1000R, Plainview, 

NY) and a baseline current was established. Upon stabilization, one reservoir was emptied and filled 

with a 1X TTE buffer (pH = 7.4). Pt electrodes were placed into the two reservoirs containing the high 

and low ionic strength buffers and an electric field was applied operated at a field strength of 150 

V/cm. A strip-chart recorder (Kipp and Zonen Inc., Bohemia, NY) plotted changes in the current and it 

was monitored until the current reached a plateau. The time to reach this point was used to calculate 
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the linear velocity (cm/s). The linear velocity was then divided by the applied electric field to produce 

the electroosmotic mobility [cm
2
 / (V s)]; the EOF was averaged over five consecutive runs. 

2.2.4    Contact Angle Measurements 

 Sessile drop water contact angle measurements were conducted with a VCA 2000 Contact 

Angle System (VCA, Billerica, MA). A single drop of 18 M •cm water, (~2 L) was placed onto the 

polymer surface via a syringe, at which time the right and left contact angles were immediately 

measured. The contact angle values were calculated using the manufacturer‟s software. Each value 

reported represents an average of 5 drops of water in several locations on the investigated polymer 

surface.  

2.2.5    Instrumentation 

 We obtained fluorescence intensity data using an in-house constructed near-IR laser-induced 

fluorescence system shown in Figure 2.3. The excitation source consisted of a 780 nm diode laser 

(Thorlabs model LT024MD/MF, Newton, NJ) powered by a custom built power supply with tunable 

output power. The laser was filtered by a bandpass filter (CWL = 780 nm, Omega Optical, Brattleboro, 

VT) before being directed through a dichroic mirror to a reflective mirror (>99% reflectance) after 

which the light was focused onto the channel using a 40x microscope objective (Nikon, Natick, MA). 

To position the microdevice with respect to the laser beam, an X-Y-Z translational stage (Newport, 

Irvine, CA) was utilized. The resulting emission was then collected through an objective, routed again 

through the dichroic mirror and filtered through a longpass filter (CWL = 800 nm, Omega Optical, 

Brattleboro, VT) and a bandpass filter (CWL = 820 nm, Omega Optical, Brattleboro, VT). The filtered 

fluorescence emission was ultimately focused onto a single photon avalanche diode (SPAD, PicoQuant 

model SPCM 200B, Berlin, Germany). The LIF signal was acquired on a personal computer equipped 

with an I/O connector board (National Instruments model CB-68LP, Austin, TX) and a pulse converter 

(IBH model TB-01, Glasgow, UK). Data acquisition software was written in LabView. 
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2.2.6    Sample Preparation 

 

 The labeling dye, IRD800 (Li-COR Biotechnology, Lincoln, NE), was used in these 

experiments; the dye possessed absorption and emission wavelengths of 780 and 810 nm, respectively. 

The acid form of the dye was converted to a succinimidyl ester prior to covalently linking it to the 5‟ 

end of an M13 forward (-29) sequencing primer (17mer) through a C6 amino linker; the dye-labeled 

primer was purified by reverse-phase HPLC. Primer samples were concentrated from lyophilized 

product in distilled water and later diluted in the appropriate buffer for sample analysis. 

2.3       Results and Discussion 

2.3.1    Manipulation of Electroosmotic Flow in PMMA Microdevices  

 Previously reported procedures for modifying PMMA substrates have provided a basis for 

covalently attaching a polymer coating onto the wall of PMMA to stabilize or suppress the EOF and 

minimize potential analyte/wall interactions. One method (see Figure 2.2A) relies upon reaction of the 

methyl ester functional groups in the PMMA backbone with N-lithioethylenediamine to produce an 

amide linkage and creating an NH2-terminated PMMA surface, which has a surface coverage of ~5 

nmol cm
-2

 [37]. EOF measurements obtained for pristine and NH2-terminated PMMA were found to be 

2.95 (±0.95) x 10
-4

 cm
2
/V·s and -1.46 (±0.14) x 10

-4
 cm

2
/V·s, respectively, agreeing with previously 

obtained measurements [37]. The negative value on the EOF for the amine-terminated surface 

indicates that the EOF is reversed in direction (cathode to anode). The EOF measurements for this and 

each subsequent modification step are summarized in Table 2.1.   

Alternatively, the PMMA was functionalized with terminal amine groups through UV 

activation and subsequent reaction with ethylenediamine (see Figure 2.2B). Exposing PMMA to UV 

light produces a carboxylate group from the methyl esters found on native PMMA due to a photo-

induced oxidation reaction. The reader is referred to Table 2.1 for a side by side comparison of EOF 

measurements for both UV activated PMMA surfaces and the chemically activated PMMA surfaces.  
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Figure 2.2 Scheme showing the modification procedures used to terminate PMMA surfaces with 

amine functional groups by (A) reaction with a lithiated diamine solution or (B) exposure to UV 

radiation proceeded by EDC coupling of ethylenediamine to the carboxylated surface. (C) Surface 

modification scheme for grafting PMMA surfaces with LPA.  The amine-terminated PMMA is first 

reacted with methacrylic acid in the presence of EDC to covalently bind it to the surface.  These 

groups then serve as a scaffold for subsequent polymerization of acrylamide after initiation with APS 

and TEMED. 
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Figure 2.2 Continued  
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Figure 2.3 Schematic diagram of the near-IR laser-induced fluorescence system, which provided 

an excitation wavelength of 780 nm 

 

Reacting the carboxyl groups with ethylenediamine in the presence of EDC produces an amine-

terminated surface. In this method, the number of amine sites is governed by the dose of UV light, 

which has been shown to produce carboxylic acids with a surface coverage of ~1.3 nmol cm
-2

 [41]. 

EOF measurements for these amine-terminated surfaces were -1.34 (±0.21) x 10
-4

 cm
2
/V·s, agreeing 

with that obtained for aminated PMMA produced via activation with the lithiated diamine.   
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Table 2.1 Electroosmotic flow (EOF) values for PMMA and PMMA modified with an LPA layer 

attached via a chemical or photochemical procedure. These measurements were conducted on three 

different PMMA chips containing the indicated surface coating and therefore, the standard deviations 

shown represent inter-chip variability in the EOF. 

 

Terminating Groups 
EOF (cm

2
/Vs) 

(Chemical) 

EOF (cm
2
/Vs) 

(Photochemical) 

Pristine (unmodified) PMMA 2.95 ± 0.95 x 10
-4 __________ 

UV-activated PMMA __________ 4.43 ± 0.58 x 10
-4 

Amine-terminated PMMA - 1.46 ± 0.14 x 10
-4 

- 1.34 ± 0.21 x 10
-4 

Methyl acrylamide-terminated PMMA 1.41 ± 0.16 x 10
-4 

1.49 ± 0.11 x 10
-4 

LPA-coated PMMA 3.36 ± 0.13 x 10
-5 

3.27 ± 0.15 x 10
-5 

 

 Both amine-terminated surfaces were subsequently reacted with ~50 mM methacrylic acid.  In 

the presence of an excess of EDC [N-(3-Dimethylaminopropyl)-N‟-ethylcarbodiimide], the carboxyl 

groups of methacrylic acid react with the amine groups at the PMMA surface to form an amide bond. 

Following this modification, the EOF reversed in direction compared to the amine-terminated surface, 

with a value of 1.41 (±0.16) x 10
-4

 cm
2
/V·s and 1.49 (±0.11) x 10

-4
 cm

2
/V·s for the chemical and 

photochemical modifications, respectively. The resulting methacrylamide terminal groups at the 

surface serve as a scaffold for the next reaction.  

Finally, polymerization of a 4% (v/v) acrylamide solution was initiated through the addition of 

TEMED and 10% APS and allowed to incubate within the methacrylamide-modified microchannels. 

The radical polymerization process formed covalent bonds between the methacrylamide groups at the 

channel surface and the acrylamide in solution. The incubation time was extended to ensure proper 

chain formation for coating the channel wall in its entirety to allow maximum EOF suppression. The 

LPA-coating reduced the EOF to 3.36 (±0.13) x 10
-5

 cm
2
/V·s and 3.27 (±0.15) x 10

-5
 cm

2
/V·s for the 

chemical and photochemical methods, respectively. However, we noticed that these EOF values were 

stable for extended periods of time and large number of electrophoretic runs (> 20), indicating the 
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stability of the underlying linkage chemistry. While the EOF values reported above are still about an 

order of magnitude larger than LPA-coated capillaries [42], after storage of these microchips in buffer 

(pH ~8) for > 3 weeks, no significant changes in the EOF were observed. The stability of these 

coatings are comparable to that observed for a Si-C linkage in a capillary, which showed an EOF of 

5.21 x 10
-6

 cm
2
/V·s [42] after 30 days of storage in pH=8 buffer compared to a Si-O-Si-C linkage, 

which produced an EOF of 1.04 x 10
-4

 cm
2
/V·s after the same storage conditions. 

In order to determine the stability of the LPA layer grafted to the functionalized PMMA 

surface, the EOF was monitored as a function of electrophoresis run number when the device was 

electrophoresed (15 min run time at E = 150 V/cm) with the running buffer (no sieving gel) used for 

the ssDNA separations (1X TTE, pH = 8.0 with 7 M urea). The results indicated that the EOF 

remained constant over > 20 runs with a value that was determined to be 3.2 x 10
-4

 cm
2
 V

-1
 s

-1
 for run 1 

and 3.6 x 10
-4

 cm
2
 V

-1
 s

-1
 for run 20. These results indicate the stability of the LPA coating on the 

PMMA surface using the linkage chemistry adopted herein when operated under relatively high field 

strengths. 

2.3.2 Contact Angle of Modified Surfaces  

 During the modification steps, sessile drop water contact angle measurements were taken on 

the native and modified PMMA as a simple monitor of the changes induced on the surface as a result 

of the modification procedures. The contact angles changed from 69 ± 2° for pristine PMMA to 32 ± 

3° after termination with amine groups, agreeing with values reported in the literature [37]. For the 

UV-modified PMMA surfaces, the contact angle was 51 ± 2° after rinsing with ddH2O and changed to 

36 ± 4° after modification with the diamine. The value of the UV-modified PMMA differs from those 

reported previously (i.e., 24°); however, those results were obtained prior to rinsing the surface with 

IPA to remove low molecular weight polymers formed during the photochemical modification [41]. 

The value of the methacrylamide-terminated PMMA surfaces increased to 80 ± 3° and 82 ± 2° for both 
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the chemical and photochemical methods, respectively. In either case, after polymerization forming the 

linear polyacrylamide onto these surfaces, the contact angle decreased to 41 ± 3°. In all instances, there 

were no differences observed for the left and right advancing contact angle measurements.   

2.3.3 Performance of the Modified PMMA Microdevice  

 To determine what effects coating the PMMA channel had on the electrophoretic separation of 

single-stranded DNA (ssDNA) using an LPA sieving matrix (4%), analyte migration time and the 

efficiency (plates per meter) obtained for electrophoretic runs on native and PMMA-modified surfaces 

were monitored. As a model, an IRD800-labeled oligonucleotide (17mer) was used. One of the earlier 

problems encountered when using pristine PMMA for electrophoresis of ssDNA was that variances in 

the EOF were significant, contributing to increased run-to-run variability in terms of analyte mobility. 

For evaluation, 20 sequential runs were completed in both pristine and LPA-coated PMMA (chemical 

and photochemical) devices.  As seen in Figure 2.4, the pristine channel resulted in an average 

migration time of 258 (±14) s when averaged over the 20 runs. The average plate numbers generated 

over these 20 runs was 3.76 x 10
5
 plates/m, comparable to results reported earlier [32].   

 In comparison, the migration time observed for the 17mer using the LPA-coated PMMA 

devices resulted in more stable results over the entire 20 runs. The chemically modified devices gave 

an average migration time of 227 (±8) s, indicating not only faster migration of the dye-labeled 

oligonucleotides compared to pristine PMMA due in part to a lower EOF, but also a much lower 

standard deviation between runs. The plate numbers generated for the separations in the coated devices 

were 1.15 x 10
6
 plates/m, comparable in magnitude to those obtained in fused silica capillaries 

possessing an LPA-coating [43]. For the microdevices coated with LPA through an UV-initiated 

modification, the average migration time was 225 (±6) s over the 20 runs, comparable to those 

obtained with the device coated through the chemical method, and the average efficiency was 9.74 x 

10
5
 plates/m.   
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Inspection of the data shown in Figure 2.4 indicates that the migration times for the pristine 

device showed incremental decreases until after the 10
th

 run, in which the migration times remained 

fairly constant with a value similar to those obtained for the LPA-coated devices.  When incorporating 

LPA as a coating material in silica capillaries, it is common to see degradation of the coating after 

multiple runs due to hydrolysis at the surface assisted by the application of a high electric field [44, 

45]. However, we do not believe that the observed trends in the migration times for the LPA-coated 

devices was suggestive of coating degradation because the migration times remained rather constant 

for all 20 runs. Rather, we suspect that passive adsorption of the sieving matrix, LPA, onto the native 

PMMA walls resulted in reductions in the EOF to a level approaching that of the LPA-coated devices 

indicating that the LPA matrix exhibits some potential to dynamically coat PMMA surfaces [45]. 

Interestingly, the changes in plate numbers for both the pristine and LPA-coated devices closely 

resembled the changes in the migration times (see Figure 4), but in an inverse fashion. The plate 

numbers for the LPA-coated devices were rather constant over the 20 runs; for the pristine device, the 

plate numbers were low in the early runs and showed incremental increases until after the 10
th

 run in 

which it remained fairly constant with a value somewhat similar to that observed for the migration 

times. 

Furthermore, former graduate student from the Soper research group, Dr. Shawn Llopis, using 

the LPA-coated PMMA chips, was able to obtain single base resolution of ssDNA that otherwise co-

migrated in unmodified PMMA chips. This DNA sequencing work is briefly described below. In 

previous attempts to separate ssDNAs in a PMMA microdevice, it was not possible to achieve single 

base resolution as required for DNA sequencing [32]. We suspected that changes in the surface charge 

density on the walls of pristine PMMA due to either analyte adsorption or inhomogeneities in the 

surface charged groups contributed to low plate number generation. When separating DNA fragments 

containing  single base-pair differences as required for sequencing, the effect of eddy migration 
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 resulting from residual zeta-potential discontinuities can be significant, degrading resolution [44]. 

Figure 2.4 Electrophoretic analyses of IRD800-labeled oligonucleotides (17mer) electrophoresed 

at 115 V/cm in both pristine PMMA and LPA-coated PMMA microchips and their effects on 

migration times (A) and plate numbers (B) for 20 runs on the same devices. 

 

By passivating the PMMA surfaces with LPA, the EOF within the channels was significantly 

reduced (see Table 2.1) suggesting that peak dispersion due to differences in the EOF would be 

reduced [21]. To benchmark the performance characteristics of this coating procedure, Dr. Llopis 

compared separations of IRD800-labeled T-tracts, prepared using dye-primer chemistry and Sanger 

cycle sequencing, in 4% LPA using both pristine and LPA-passivated PMMA microchannels. 

Using a modified procedure of that outlined for the Amersham 7-deaza primer cycle 

sequencing kit she prepared Sanger sequencing reactions using an M13mp18 single-stranded DNA 

template [40]. Thermal cycling was carried out in a Genius series 96-well thermal cycler (Techne Inc., 

Minneapolis, MN) using the following thermal cycling conditions (40 cycles): (i) 92 C for 2 s; (ii) 55 

C for 30 s; (iii) 72 C for 60 s, followed by a final extension step at 72 C for 7 min.  Prior to use, 

excess salts, enzymes, dNTPs and ddNTPs were removed from the sample by a solid-phase reversible 
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immobilization (SPRI) technique incorporating CleanSEQ
TM

 magnetic particles (Agencourt, Beverly, 

MA).   

  Under optimized conditions, ssDNA fragments were electrokinetically injected into the 

separation channel of a pristine PMMA device and separated at 115 V/cm in a 4% LPA matrix (50° C). 

This run yielded plate numbers of 3.39 x 10
5
 plates/m for base 122 and resolution values of 0.24 

between bases 102 and 104 and 0.47 between bases 364 and 370 (data not shown).  However, 

fragments with single base-pair differences co-migrated. In comparison, the same fragments were 

loaded onto a channel coated with LPA (chemical) and the T-terminated ladder was electrophoresed 

using conditions similar to those used for the pristine PMMA. For this separation, an efficiency of 3.91 

x 10
5
 plates/m for base 122 was calculated and the resolution values of 0.37 between bases 102 and 

104 and 0.64 between bases 364 and 370. Also, it was observed in that electropherogram (not shown) 

that single base resolution with resolution values of 0.18 and 0.21, were observed for specific bases 

199, 200 and 208, 209, respectively. This evolution was realized when an LPA modified PMMA chip 

was used.  

 While the results are promising, there are several reasons why we are still limited in 

consistently achieving electrophoretic separations with single base resolution for this device and 

coating procedure. During our optimization studies, we focused predominantly on using a reduction in 

the EOF as our primary metric for evaluating performance enhancement. There are other factors that 

are important as well for optimizing the electrophoretic performance required for sequencing, such as 

the physical and chemical nature of the coating material. For example, the thickness of the polymer 

coating may play an integral role in determining electrophoretic performance in terms of plate 

numbers. It has been noted that when the polymer coating becomes too thick, molecules may partition 

into and out of the coating resulting in reduced electrophoretic performance [46]. In striving for 

maximum reductions in the EOF using our coating procedure, we may have polymerized the LPA 
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layer past its optimal range. The nature of the sieving matrix also plays an integral role in determining 

resolution, especially for microchips that use short separation columns. Matrices that offer high 

selectivity can improve electrophoretic resolution and higher selectivity capabilities, such as the newly 

developed “nanogels” [47, 48].   

2.4       Conclusions  

 To fully realize the potential of polymer microfluidic devices for routine high throughput 

separation applications, the reliability of the devices must be improved in terms of their walls‟ 

chemical composition. To this end, a novel procedure was discussed that can covalently anchor an 

LPA coating to the PMMA wall to stabilize and suppress the EOF of PMMA as well as reduce 

potential solute-wall interactions. It was found that PMMA devices modified using UV or chemically 

grafted LPAs to the PMMA substrate demonstrated reliable performance. In the case of the UV 

activation method, a simple 15 min exposure with broadband UV radiation followed by a coupling 

reaction with methacrylic acid and a subsequent LPA polymerization step was required to produce the 

coating. Using the coatings described herein, better electrophoretic performances were demonstrated 

for LPA-coated PMMA chips in cases where the pristine device could not. In Chapters 3 and 4 we 

considered dynamic coatings using methyl hydroxyethyl cellulose (MHEC) for suppressing EOF and 

improving the separation performance during separations. 
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3        Generating High Peak Capacity 2-D Maps of Complex Proteomes Using Microchip  

          Electrophoresis* 

 

3.1 Introduction  

There are many applications which require the ability to track protein expression for a large 

panel of markers in a given proteome such as that required for the discovery of new biomarkers that 

can be used for the diagnosis and/or prognosis of diseases [1]. A common method for large-scale 

protein analysis involves the use of two-dimensional electrophoresis, which commonly employs an 

isoelectric focusing (IEF) dimension, which separates the proteins based upon their isoelectric point 

(pI), followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), which sorts 

proteins through differences in their molecular weights. To determine the identity of the various 

proteins comprising these 2-D maps, the spots can be subjected to high resolution MS/MS analysis 

directly (top-down proteomics) or digested via proteolytic enzymes followed by MS analysis (bottom-

up proteomics) [2]. High-resolution 2-D gel electrophoresis is not restricted to discovery-based 

projects, but can also be used for generating fingerprints for determining phenotypes from certain 

biological samples [3-6].  

A biological sample that holds great promise for clinical diagnostics is blood serum, which is 

the soluble component of blood following clotting. While the exact number of unique protein 

components comprising different serum proteomes is difficult to ascertain due to the vast number of 

sources of proteins to this biological fluid as well as the large number of post-translational 

modifications and splice variants they can undergo, it has been estimated that the human serum 

proteome can contain >10,550,000 different protein constituents [7]. The complexity is compounded 

by the large dynamic range; nearly 10
9 

to 10
10

 with albumins making up nearly 55% by weight. Serum 

proteins can originate from necrotic or apoptotic cells, active secretion or leakage from intact cells or  

tissues, endogenous proteins such as immunoglobulins that have active functions in the serum, or 

*Reprinted with permission from the Electrophoresis journal. 



66 

 

foreign proteins produced by infectious organisms. Several different serum-based proteomic projects 

have been undertaken in a variety of organisms, such as human [8], mouse [9] and horse [10].   

The wide range of protein components that can potentially exist in complex biological samples, 

such as mammalian serum, makes it difficult to analyze these types of materials using one-dimensional 

(1-D) separations due to the limited peak capacity afforded by these separation platforms. While 

interesting advancements have been reported using 1-D SDS-PAGE [11], the total number of proteins 

contained in the serum proteome alone demands peak capacities well beyond that achievable by 1-D 

formats.  

Giddings recognized that the combination of two different separation techniques can provide a 

significantly higher peak capacity, P, than the individual 1-D mechanisms as long as the dimensions 

comprising the multi-dimensional separation are orthogonal [12]. If the separation mechanisms of the 

multi-dimensional separation are orthogonal, the number of resolved components is given by the 

product of the peak capacity contained within the individual separation dimensions [13]. For example, 

using 2-D electrophoresis consisting of IEF and SDS-PAGE, 3,700 spots were identified from the 

human serum proteome following cleanup using affinity chromatography or size exclusion 

chromatography to remove the highly abundant albumin proteins [8]. 

While IEF/SDS-PAGE continues to be the workhorse for many proteomic projects, it does have 

some shortcomings [14]. IEF/SDS-PAGE is a laborious and time-consuming process involving 

extensive gel pouring and pH gradient formation as well as long operational times (~24 h) to generate 

the required 2-D map. In addition, following the separation, protein bands require staining for 

visualization and subsequent band extraction from the gel for follow-up identification purposes, which 

can result in sample loss [15, 16]. Also, conventional IEF/SDS-PAGE tends to exclude important 

membrane proteins by the IEF buffers due to their poor solubility in these buffering systems [17, 18]. 

Furthermore, the staining and visualization techniques associated with IEF/SDS-PAGE show poor 
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mass detection limits; important regulatory proteins, which are typically low in abundance, are often 

not detected during analysis [19]. Finally, IEF is not compatible with covalent fluorescence labeling 

that can improve the limit of detection for low abundant proteins [20, 21].   

Because of the shortcomings associated with 2-D IEF/SDS-PAGE, several groups have 

demonstrated the utility of capillary-based 2-D separations. For the analysis of real protein samples, 

researchers have used capillary sieving electrophoresis coupled to micellar electrokinetic capillary 

chromatography [3, 22, 23], size-exclusion liquid chromatography and reversed-phase liquid 

chromatography [24] or nano-reverse phase liquid chromatography coupled to strong cation-exchange 

chromatography [25].   

While the capillary-based multi-dimensional separation reports have demonstrated success in 

reducing electrophoresis development time and eliminate such tasks as gel pouring, increasing 

demands on proteomic studies have necessitated the need to further reduce electrophoresis 

development times, generate higher throughput by performing multiple separations in parallel, process 

smaller samples and integrate front-end processing to the 2-D separation. These demands have 

spawned the area of microchip electrophoresis (µ-CE), which is viewed as attractive alternative to their 

capillary counterparts.    

Recently, several groups have reported on µ-CE 2-D separations for the analysis of model 

proteins using IEF and capillary zone electrophoresis (CZE) as the separation mechanisms [26, 27] or 

IEF coupled to capillary gel electrophoresis (CGE) [28-31]. We have recently reported on a polymer-

based microchip made in PMMA for the 2-D separation of 10 model proteins labeled with AlexaFluor 

633, which contained an isothiocyanate group appropriate for labeling the proteins‟ primary amine 

groups [32]. In that study, SDS-PAGE (Leff = 30 mm) was used in the first dimension and micellar 

capillary electrophoresis (MEKC, Leff = 10 mm) was used in the second dimension. Because a high 

degree of retention correlation between dimensions can reduce a 2-D separation to what is, in fact, a 1-
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D separation [33], the information content of any multi-dimensional system is the sum of the mean 

information content of each individual dimension minus the cross-information [34]. Therefore, 

evaluating cross-information through a quantitative analysis is important for gauging the utility of a 

particular multi-dimensional separation [33]. Calculations were employed to quantitatively determine 

the degree of orthogonality between the SDS-PAGE and MEKC separation dimensions, which was 

found to be 77%, generating a peak capacity of ~1,000 in a 12 min development time [32].   

Unfortunately, many of the µ-CE examples to-date has focused primarily on demonstrating 

proof-of-concept of the multi-dimensional separation using model systems, which have limited the 

number of components analyzed with the constituents present in similar concentrations, both of which 

do not represent “true” biological samples. To address this issue, Mathies and co-workers [35] recently 

reported a microchip differential gel electrophoretic (DIGE) separation in which E. coli proteins were 

separated by coupling an IEF dimension with parallel DIGE channels. Unfortunately, the authors did 

not report the peak capacity of their system, but stated the absence of SDS in the second dimension 

limited the orthogonality of the 2-D separation.  

The peak capacity using a microchip configured in a 2-D separation format has been reported 

by Ramsey‟s group [36]. In that work, the 2-D separation was obtained for tryptic digests of bovine 

serum albumin.  Also, Jikun Liu et al. [37] has reported a 2-D microchip system combining IEF and 

parallel SDS gel electrophoresis in which proteins from an E. coli cell lysate were analyzed. As a 

measure of reproducibility, the authors calculated the average relative standard deviation (RSD) in 

peak migration times for 11 selected peaks and found this reproducibility metric to be 4.1%. 

 In this work, we report the use of a polymer-based microchip for 2-D profiling of fetal calf 

serum (FCS) proteins within 30 min with exquisite peak capacities using SDS µ-CGE in the first 

dimension and µ-MEKC in the second dimension. Our readout strategy relied upon the use of laser-

induced fluorescence (LIF), which was accomplished by labeling the FCS proteins covalently with a 
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thiol-reactive AlexaFluor 633 dye prior to the µ-CE 2-D separation. The SDS µ-CGE was performed 

using Leff = 60 mm while the µ-MEKC separation utilized Leff = 50 mm. We validated and compared 

our µ-CE separation results of the FCS proteins to conventional 2-D IEF/SDS-PAGE using the 

appropriate separation performance metrics.  

3.2 Materials and Methods 

3.2.1 Chip Fabrication 

PMMA was selected as the µ-CE substrate because of its suitable physiochemical properties for 

this application, such as minimal non-specific adsorption artifacts and low levels of autofluorescence, 

improving the detection limits for ultra-sensitive fluorescence detection [38]. Microchips were made 

according to procedures described previously [39]. Briefly, microstructures were micromilled into a 

brass plate (0.25” thick alloy 353 engravers brass, McMaster-Carr, Atlanta, GA, USA) using a Kern 

MMP 2522 micromilling machine (KERN Mikro-und Feinwerktechnik GmbH & Co., Germany). Once 

fabricated, the mold master produced PMMA replicates using hot-embossing.  

Hot-embossing required heating the molding tool to 160
o
C and pressed into the PMMA plate 

with a pressure of 1,100 psi for ~410 s using a PHI Precision Press (PHI-Tulip, City of Industry, CA, 

USA). Following embossing, the PMMA substrate was cooled to room temperature and removed from 

the molding die. The embossed PMMA substrate was cleaned with 50% isopropanol in ultrapure 

water.  Finally, a PMMA cover plate (0.125 mm) was thermal fusion bonded to the substrate by 

heating in a temperature programmable furnace to 107
o
C, slightly above the Tg of PMMA. Figure 

3.1A shows a topographical layout of the microchip used in this work.   

All channels were 50 µm deep and 20 µm wide. Buffer, sample or waste containment reservoirs 

are shown in Figure 3.1A where letters A to F in the figure represent 1.5 mm diameter solution 

reservoirs on the PMMA microchip. 
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3.2.2 LIF Detection, Power Supply and Data Analysis  

Fluorescence detection was accomplished using an in-house constructed LIF system.  A 

schematic diagram of this detection system is shown in Figure 3.1B. Details of the detector operation 

and ancillary components are reported elsewhere [38]. Programmed high-voltages were applied to the 

solution reservoirs (A to F, see Figure 3.1A) of the microchip with six independently-controlled high-

voltage power supplies. The software for LIF data acquisition and control of the power supplies was 

created using LabVIEW (National Instruments, Austin, TX, USA). Raw 2-D electropherograms were 

converted to 2-D images and then to three-dimensional (3-D) landscape representations (see Results 

and Discussion) by dividing the LIF signals from successive runs for each MEKC cycle and plotting 

the electropherogram at the corresponding cycle on the SDS µ-CGE axis. This procedure was 

performed using ImageJ software (National Institute of Health, Bethesda, MD, USA).   

3.2.3 Depleting High Abundant Albumin Content from Sample  

Prior to fluorescence labeling and the 2-D gel separations, a SwellGell Blue albumin removal 

kit (Pierce, Rockford, IL, USA) was used to remove the albumins from the serum sample. Briefly, a 

SwellGell disc was placed in a mini-spin column and hydrated for 20 s with a total of 380 µL of 

ultrapure water followed by vortexing for 2 s.  After removing the hydration water by centrifugation, 

the spin column was placed in a 2 mL collection tube and loaded with 100 µL of the FCS sample (36 

mg/mL) and centrifuged at 12,000x for 1 min.  Based on the observation that ~55% of serum is 

albumin [7, 9, 10], we determined that 1.98 mg of albumin was removed for every 100 µL of FCS 

sample processed.  

3.2.4 Protein Florescence Labeling       

The proteins contained in the albumin-cleared FCS samples (Invitrogen, Carlsbad, CA, USA) 

were covalently labeled with AlexaFluor 633 (excitation/emission = 633/652 nm) thiol reactive dye  
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Figure 3.1 (A) Topography of the 2-D microchip used for these studies. The channels were 50 µm 

deep and 20 µm wide in all cases. The 1
st
 and 2

nd
 dimension channels were 7 cm (filled with gel 

media) and 6 cm (filled with MEKC buffer), respectively, in terms of their total column lengths.  The 

effective column lengths for the 1
st
 and 2

nd
 dimensions were 6 cm and 5 cm, respectively. (B) Diagram 

of the in-house constructed LIF system used for the µ-CE separation. The system was configured in an 

epi-illumination format and was equipped with 40x microscope objective (NA = 0.65) used to focus 

the laser excitation radiation into the microseparation channel. An x-y-z micro-translational stage (not 

shown) was used to position the chip above the objective.  A He-Ne laser served as the excitation 

source and a 633 nm band-pass filter was used to filter the excitation wavelength prior to launching 

into the microchip. The fluorescence emission was collected by the same objective, passed through the 

dichroic filter and spectrally filtered using a 653 nm band-pass filter with the photons transduced using 

a photomultiplier tube.  
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(Invitrogen) following the manufacturer‟s guidelines.  Briefly, proteins containing cystine residues 

were first reduced to cysteines by adding tris-(2-carboxyethyl) phosphine (TCEP) to the FCS sample. 

Cysteines were then reacted with the AlexaFluor 633 dye in an approximate 1:10 molar ratio, 

respectively, for approximately 2 h after which the excess dye was selectively removed by running the 

derivatized sample through a 3 kDa filtration column (Millipore Corp., Billerica, MA, USA).  

AlexaFluor-conjugated cystine/cysteine containing proteins from the FCS sample were then diluted in 

the µ-CE run buffer in a 1:5 volume ratio (FCS sample:run buffer) and heated to 95°C for 5 min.  Prior 

to use in the microchip, all solutions were filtered with a 0.2 µm Nylon-66 membrane syringe filter 

(Cole-Parmer Instrument Co., Vernon Hills, IL, USA) except for protein solutions, which were 

centrifuged (5 min, ~6,000 rpm) to remove any particulates.  

3.2.5 Microchip 2-D Electrophoretic Separations      

Prior to the electrophoretic separation, a solution of 5 mg/mL of methyl hydroxyethyl cellulose 

(MHEC) was dissolved in 1X PBS (pH = 7.2, Sigma-Aldrich, St. Louis, MO, USA) and was flushed 

through the fluidic channels through reservoir A (see Figure 3.1A) while applying vacuum to reservoir 

F. Prior to the µ-CE 2-D separation, the first dimension channel (see Figure 3.1A) was filled with a 

seiving matrix, which consisted of a SDS 14-200 linear polyacrylamide gel (Beckman Coulter Inc., 

Fullerton, CA, USA) containing 0.05% w/v MHEC. The gel filling was monitored using brightfield 

microscopy to make sure the gel was allowed to fill the chip exactly at the interaction of the 1
st
 and 2

nd
 

dimensions. The second dimension channel was then filled with the MEKC buffer, which was 

composed of 12 mM Tris-HCl containing 0.4% w/v SDS and 0.05% w/v MHEC (pH = 8.5). Reservoir 

A was then emptied and subsequently filled with 2 µL of the FCS sample containing the labeled 

proteins. The sample was injected into the sampling channel (see A-B, Figure 3.1A) at 200 V/cm while 

B was poised at a positive voltage. The 2
nd

 dimension separations were programmed to start after 10 s 

electrophoresis run time in the 1
st
 dimension (SDS µ-CGE). The SDS µ-CGE separation was carried 
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out at 300 V/cm using Leff = 60 mm (see C-D channel, Figure 3.1A). Each 2
nd

 dimension MEKC cycle 

consisted of a 10 s run (MEKC development time) operated at a field strength of 400 V/cm, which was 

found to be a sufficient time to assure that all of the components injected into the 2
nd

 dimension 

reached the LIF detection zone (Leff = 50 mm). Sample eluting from the 1
st
 dimension was injected into 

the 2
nd

 dimension following a 1 s run period in the 1
st
 dimension.  During the MEKC run cycle, the 

applied field in the 1
st
 dimension was ceased, parking the components in the 1

st
 dimension during the 

2
nd

 dimension run.   

3.2.6 Protein 2-D Slab Gel Separation Using IEF/PAGE and Protein Staining 

An immobilized pH gradient (IPG) buffer (pH 3.0 to 10.0) was immobilized onto a 24 cm IEF 

strip (Immobiline dry strip, pH 3.0 to 10.0 non-linear gradient). The IPG buffer and Immobiline strip 

as well as dithiothreitol (DTT), bromophenol blue, Ettan IPGphor and Ettan
 
DALTtwelve 2-D 

electrophoresis reagents were all purchased from Amersham Pharmacia Biotech (Piscataway, NJ, 

USA) and the Dodeca
 
silver stain kit, SDS, 3-([3-Cholamidopropyl]-dimethyl-ammonio-1-propane-

sulfonate (CHAPS), ammonium persulfate, urea, and N,N,N
9
,N

9
, -tetramethyl-ethylenediamine 

(TEMED) were purchased from Bio-Rad (Hercules, CA, USA).   

FCS protein contents were determined by the Bradford method [40] to determine the amount of 

proteins used for the IEF/SDS-PAGE 2-D separations. The FCS proteins were mixed with 10 μl of 

lysis buffer composed of 8 M urea, 4% CHAPS, 40 mM DTT, and 2% w/v IPG buffer. The 24 cm 

Immobiline dry strip containing the FCS proteins was rehydrated overnight in a 450 μl rehydration 

solution composed of 8 M urea, 2% CHAPS, 20 mM DTT, Bromophenol and 0.5% IPG buffer. IEF 

was then performed sequentially (20°C) for 1 h at 500 V, 1 h at 1 kV, and 8 h and 20 min at 8 kV for a 

total run time of 10 h and 20 min using an Ettan IPGphor Instrument (GE Healthcare, Piscataway, NJ, 

USA). The focused strip was first equilibrated for 15 min in a 7 ml SDS equilibration buffer composed 

of 50 mM Tris-HCl, pH 8.8, 6 M urea, 30% w/v glycerol, 2% w/v SDS, and 0.002% w/v bromophenol 
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blue with 1% w/v DTT. This step was followed by a second equilibration for 15 min in 7 ml of a SDS 

equilibration buffer containing 2.5% w/v Iodoacetamide.  After equilibration, IPG gel strips were 

embedded in a 0.5% agarose solution (Amresco, Solon, OH, USA) at the top of the SDS-

polyacrylamide gel. 

The SDS-polyacrylamide gel (12.5%) was prepared in a 1.5 mm gel cassette purchased from 

Amersham. The gel was 235 mm wide, 190 mm long and 1.5 mm thick. The 2
nd

 dimension SDS-

PAGE was conducted (20°C) at a constant voltage of 110 V on the Ettan DALTtwelve System, which 

required ~15 h development time. Proteins contained within the SDS-PAGE gel were then stained with 

a Dodeca silver stain kit (Bio-Rad) for spot visualization and all stained gels were scanned using an 

UMAX PowerLook II scanner (UMAX data systems, City, Taiwan).   

3.2.7 Software Analysis of Data  

To obtain a 2-D image of the microchip electrophoresis data, a text file of a typical raw 2-D run 

formatted into a 2-D matrix was input into ImageJ. The matrix was constructed such that each column 

represented one MEKC cycle. The 2-D image obtained from ImageJ comprised of a total available area 

of 60,000 pixel
2
 (200 × 300 pixel). The 2-D image map from IEF/SDS-PAGE was adjusted to a total 

area of 60,000 pixel
2
 to match that of the microchip. Images were then converted into binary formats 

prior to the determination of the average size of each spot in the 2-D map using ImageJ.  

3.3 Results and Discussion  

3.3.1 Column Lengths for Generating High Peak Capacities (P) 

To increase P for the analysis of complex samples such as the FCS proteome compared to our 

previously reported 2-D µ-CE system [32], we used a 60 mm long effective separation length for the 

first (SDS µ-CGE) dimension and increased the effective column length to 50 mm in the 2
nd

 (MEKC) 

dimension.  Because P α Leff, we reasoned that an increase in the total 2-D column length from 4 cm to 

11 cm (175% increase in the effective column length) would result in P ≥2,750 compared to our 
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previously reported P of ~1,000. This column length increase comes at the expense of a longer 

electrophoretic development time, but more effectively accommodates the higher number of proteins 

expected in the FCS sample compared to the 10-model protein set used in our previous report [32].  

3.3.2  Representation of the FCS Proteome Using Thiol-Labeling Dyes Only 

 Cysteine is unique amongst the 20 amino acids in that it contains a highly reactive sulf-hydryl 

group that can be oxidized to form intramolecular disulfide linkages (i.e., cystine). A relatively low 

occurrence of cysteine has been reported in proteins comprising the proteome of several organisms, 

with the occurrence level dependent upon the complexity of the organism [41]. For example, human 

and mouse proteins possess a level of occurrence of cysteine residues estimated to be ~2.26% [41]. 

According to the SwissProt data bank, proteins comprising many proteomes including many 

mammalian proteomes contain on average 360 amino acids per protein (49.2 kDa, assuming an amino 

acid average molecular weight of 136.7 Da). Therefore, approximately 8.1 cysteine residues would be 

found in the “average” protein comprising the FCS sample, which would be available for labeling 

using the maleimide functional group appended to the fluorescent moiety. The question remains; are 

some proteins not represented in the 2-D profile because they do not contain a cysteine residue? 

Statistically, this may occur for proteins with amino acid compositions below approximately 45 amino 

acid residues. 

3.3.3 Effects of Dye-Labeling on the Electrophoreteic Mobility of the Proteins 

Because the proteins are pre-labeled with AlexaFluor 633, which is an anion (net -2 charge), 

mobility shifts of the proteins may be expected based on the addition of charge and friction resulting 

from the added mass of the dye(s) with the perturbation dependent upon the extent of labeling.  

However, this perturbation is expected to be small due to the relatively large size of the SDS/protein 

complexes compared to the dye molecules and the large amount of negative charge carried by the 
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SDS/protein complexes. For example, a 49.2 KDa average molecular weight protein (360 amino acid 

residues) would carry a load of ~242 SDS molecules per protein assuming 1.4 g of SDS per gram of 

protein. Therefore, labeling of 8.1 cysteine residues per average protein would add approximately 6% 

charge to this complex when the solution pH is near the proteins‟ pI.  Because the electrophoresis is 

performed in reverse polarity, the additional negative charge added by the dye(s) would increase its 

electrophoretic mobility, which would be compensated by the mass of dye(s) conjugated to the protein 

resulting in reductions in the electrophoretic mobility. AlexaFluor 633 has a molecular weight of 

~1,300 Da; for 8 dyes per average protein, a mass increase of ~10,400 Da would occur, which is a 21% 

increase.  For a globular protein, the molecular weight (MW) dependence on the frictional component 

to the electrophoretic mobility is approximately (MW)
1/3

, therefore, this reduction in the mobility is 

2.8%, close to the 6% increase in charge noted above.   

3.3.4 1-D µ-CGE of FCS Using SDS-PAGE 

We were first interested in analyzing the peak capacity for a 1-D µ-CGE separation of the FCS 

proteins using Leff = 60 mm. The results of this analysis are depicted in Figure 2. As can be seen from 

this electropherogram, approximately 24 bands could be observed with varying degrees of resolution 

and widths due to potential peak overlap arising from proteins with similar molecular weights. From 

this data (see bands marked with an asterisk in Figure 3.2), the average peak width was estimated to be 

5.2 ±3.2 s, producing a plate number of 1.5 x 10
3
. From these values and a separation window of 147 s 

(defined by the migration time difference between the last and first migrating components), we 

estimated a peak capacity for this 1-D separation of 28. Clearly, this is well below the necessary level 

required to analyze a sample as complex as that anticipated for a mammalian serum proteome.  

3.3.5  2-D SDS-PAGE/MEKC Separations 

 

 In our 2-D electrophoresis separations, SDS-PAGE was used as the first dimension and MEKC  

as the second dimension. SDS forms complexes with proteins, which are subsequently electrophoresed 
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Figure 3.2. SDS µ-CGE 1-D separation of a FCS protein mixture.  The protein sample, which was 

labeled with the thiol-specific fluorescent dye, AlexaFluor 633, was placed into reservoir A of the 

microchip (see Figure 1A) and electrokinetically injected into the separation channel at 200 V/cm. The 

1-D SDS µ-CGE was performed at E = 300 V/cm.  The total separation length was 7 cm with an 

effective length of 6 cm.   

 

through a sieving matrix allowing for the separation of species primarily based on differences in their 

MWs. MEKC uses micelles as a pseudo-stationary phase with separation based on selective 

partitioning of solutes to these micelles.  In our case, we are using SDS micelles as the pseudo-

stationary phase, which provides an attractive interface to SDS-PAGE due to the fact that both 

dimensions use SDS. We have previously demonstrated that SDS-MEKC is highly orthogonal to SDS 

µ-CGE, making it an elegant format for producing high peak capacities for multi-dimensional 

electrophoretic analysis of intact proteins [32]. The degree of orthogonality between the SDS-PAGE 

and MEKC dimensions was evaluated using changes in migration order and migration times between a 

set of 10 model proteins. A plot of the normalized migration time for a SDS-PAGE 1-D separation 
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versus that of the SDS MEKC 1-D separation produced a scatter plot with minimal data points 

occurring on a diagonal (slope = 1.0, intercept = 0.0) providing an orthogonality value between these 2 

separation mechanisms of 77%.  

 In the present 2-D format, electrophoretic zones are “parked” in the first dimension while the 

second dimension is affected in a serial fashion. Therefore, issues with zonal dispersion due to 

longitudinal diffusion should be considered since it can significantly impact the peak capacity of the 2-

D separation. This was accomplished by calculating the height equivalent to a theoretical plate for 

longitudinal diffusion only (HD) of the 1-D SDS µ-CGE dimension and comparing that value to HTOT 

secured from the complete 2-D separation. A representative diffusion coefficient for proteins in a 

sieving matrix as used herein was taken as ~10
-8

 cm
2
 s

-1
, which is the measured diffusion coefficient of 

cytochrome C in polyacrylamides [42],  resulting in HD = 5.9 × 10
-6

 cm (HD = 2Dt/L; t = time; L = 

column length, cm). The number of plates for a typical band migrating from the 2-D separation (see 

Figure 3.3) was 6.2 × 10
5
, resulting in HTOT = 1.8 x 10

-5
 cm. Therefore, the diffusional component to 

HTOT was calculated to be approximately 33%.   

For 159 10 s MEKC cycles, which represents the parking time (1,590 s), and a total separation 

time of 1,759 s, the percent contribution of diffusional spreading during the parking phases of the 2-D 

separation to HD is roughly 90% or 5.3 × 10
-6

 cm. Clearly, reductions in the development time for the 

MEKC cycles can reduce HD resulting from the parking phases of the separation, producing higher 

peak capacities. Interestingly, the diffusion coefficient for cytochrome C in free solution has been 

reported to be ~10
-6

 cm
2
 s

-1
 [42], two-orders of magnitude higher than that in the viscous 

polyacrylamide sieving matrix.  Therefore, using MEKC in the 1
st
 dimension, where parking is 

required to allow development in the 2
nd

 dimension would be inadvisable due to significant 

degradations in peak capacity arising from larger values of HD compared to the SDS-PAGE dimension. 

The average peak width determined above from the SDS-PAGE dimension was then used to select the 
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appropriate sampling time into the second dimension, which was set at 1 s. Therefore, each peak was 

estimated to be sampled approximately 5 times upon transfer from the 1
st
 dimension into the 2

nd
 

dimension. This over-sampling was necessary to obtain accurate 2-D profiles by minimizing band 

aliasing artifacts [26, 43]. In order to exhaustively sample all components migrating from the 1
st
 

dimension into the 2
nd

 dimension, 159 MEKC cycles were required with each cycle run for 10 s (E = 

400 V/cm).  In addition, a 10 s run time was imposed on the 1
st
 dimension prior to running sequential 

MEKC separations. Using these sampling and run times as well as the injection times (1 s) for 

sampling from the 1
st
 dimension into the 2

nd
 dimension, the development time for the full 2-D 

separation was estimated to be 1,759 s (29.3 min).   

Given the dimensions of the microfluidic channels used herein, we calculated an injection 

volume of ~20 pL into the 2
nd

 dimension. To calculate the transfer efficiency of material from the 1
st
 

dimension into the 2
nd

 dimension, we used the column length in the 1
st
 dimension, the average 

migration time for the components in the 1
st
 dimension (see Figure 3.2) and the field strengths used for 

the 1
st
 dimension separation as well as the electrophoresis time (1 s). 

Based upon these considerations, we estimated a transfer efficiency of ~5%. To improve this 

transfer efficiency a lower field strength would need to be employed in the 1
st
 dimension, but this 

comes at the expense of a longer electrophoresis development time. However, in spite of this transfer 

efficiency, the SNR provided by the laser-induced fluorescence system was sufficient for generating 

adequate profiles for moderately expressed proteins. A typical 2-D image of the FCS protein 

separation and the corresponding 3-D landscape image are shown in Figure 3A. The images secured 

from Figure 3A were imported into ImageJ for analysis. From the input data to ImageJ, the average 

size of each protein spot for the µ-CE run was determined to be 23 (±1.4) pixel
2
, which yielded a peak 

capacity for this 2-D separation of 2,600 (±149). As noted previously, the anticipated peak capacity 
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was ~2,750 based on the extended column length used herein, which agrees favorably with the 

experimental value observed. 

  A       B 

 

 
 

Figure 3.3. (A) SDS µ-CGE/µ-MEKC 2-D separation of a FCS protein mixture. The protein sample 

was placed into reservoir A (see Figure 1A) and electrokinetically injected into the separation channel 

at 200 V/cm. The 2-D SDS µ-CGE × MEKC were performed at 300 V/cm and 400 V/cm, respectively. 

A 10 s separation time was utilized in the first dimension prior to performing the serial 10 s MEKC 

cycles. A total of 159 MEKC cycles was used with a 1 s transfer time from the 1
st
 to 2

nd
 dimension. 

The bottom panel shows a 2-D image of the microchip FCS map, while the top panel shows a 3-D 

landscape of the FCS protein map. (B) 2-D image of a conventional IEF/2-D PAGE separation of the 

FCS protein sample (bottom panel) and the corresponding 3-D landscape proteins (top panel). 

Separation conditions are provided in the Experimental section.  
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3.3.6 Reproducibility of the 2-D Separations  

Unfortunately, polymer microchips are susceptible to poor migration time reproducibility due 

in part to EOF variations [44]. In chapter 2, we discussed the importance of coating polymers surfaces 

prior to separations to suppress EOF and minimize migration time variability from run to run; 

therefore, PMMA channels were covalently modified by grafting linear polyacrylamides onto their 

surfaces. To suppress the EOF in the present case, MHEC (0.05% w/v) was simply added into the run 

buffer used for our protein separations. EOF in PMMA channels with buffer containing MHEC (0.05% 

w/v) as a dynamic coating agent has been measured to be around 1.20 ± 0.07 x 10
-5

 cm
2
/Vs  [32], 

which is comparable to 3.36 ± 0.13 x 10
-5 

cm
2
/Vs for LPA-modified PMMA reported in chapter 2. As 

an indicator of the reproducibility of our separations, we calculated the average migration times for the 

four most intense peaks taken from the raw 2-D electropherograms collected for three different 

microchip separations. The average protein migration times were 166 s (RSD = 11.3%), 976 s (RSD = 

2.8%), 1,303 s (RSD = 3.9%) and 1,467 s (RSD = 1.2%) giving an average RSD value of 4.8%, 

comparable to what has recently been reported for microchip-based 2-D separations using IEF and 

SDS-PAGE [37].  

To further demonstrate the reproducibility of the full 2-D profile shown in Figure 3.3A, a 

second FCS sample was run using a different PMMA microchip.  Figure 3.4 shows the resulting 2-D 

protein profile using similar separation conditions as described in Figure 3.3. Comparison of Figures 

3.3A and 3.4 demonstrate good reproducibility of this 2-D separation assay.  

3.3.7 Two-dimensional Slab Gel Separation of FCS Proteins 

 

In order to make a comparison of the peak capacity for the microchip 2-D separation to that of 

a macro-scale version employing IEF/SDS-PAGE, we subjected the FCS sample to IEF/2-D PAGE. 

The FCS sample was processed in the same fashion as that used for the 2-D µ-CE case, except that 

proteins were not labeled with the AlexaFluor 633 dye prior to the electrophoresis.  
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Figure 3.4 A 2-D protein profile of an FCS sample using similar conditions as those described in 

Figure 3A (left: 2-D image; right: 3-D landscape of proteins).  

 

Protein visualization was accomplished by post-staining using a Ag-stain following the 

electrophoresis. A 2-D image of the stained gel is shown in Figure 3B.  The image of the stained-gel 

was then subjected to ImageJ analysis. Using an input of 60,000 pixel
2
 (200 x 300), the average spot 

size was determined to be 83.6 pixel
2
, producing a peak capacity of 717, nearly 3-fold lower than that 

obtained for the 2-D µ-CE case. Depending on the complexity of the sample and the detection protocol 

employed, IEF/PAGE can produce ~2,000 protein spots per gel [45]. Our peak capacity number in the 

present case was only 717 due primarily to the inability to visualize low abundant proteins using the 

Ag staining employed here and the fact that some serum albumins were loaded onto the gel masking 

some the lower intensity bands.    

A remarkable attribute of the 2-D µ-CE example is that it produced a peak capacity of 2,660 in 

29.3 min, whereas only a peak capacity of 717 was generated for the standard gel, but required ~30 h 
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to complete.  Therefore, the 2-D µ-CE produced protein spot generation rates of 88.7 min
-1

, while the 

IEF/SDS-PAGE format possessed a spot production rate of only 0.4 min
-1

, resulting in an approximate 

222-fold increase in the protein spot production rate. 

3.4 Conclusions 

Separations on microchip platforms are garnering appeal for the analysis of complex biological 

samples because they can easily lend themselves to performance characteristics that rival their macro-

scale counterparts using a much shorter operational time, generating data production rates that are 

impressive. In addition, these formats, due to their small footprint and lithographic fabrication 

techniques, will permit the development of multi-channel formats that can significantly improve the 

production rate of data. For example, if the 2-D format employed herein could be run in a 96-channel 

format in parallel, the protein spot production rate would be 8, 515 min
-1

, an approximately 21,288-

fold increase compared to conventional IEF/SDS-PAGE. 

In the current report, we demonstrated the ability to generate peak capacities of 2,600 (±149) 

for a biological serum sample using an 11 cm effective separation length in both dimensions. If we 

increased the effective separation channel length 4-fold (i.e., 40 cm for both dimensions combined), 

the peak capacity of this 2-D format could potentially exceed 10,000 components. While this peak 

capacity is still far below the total number of protein components typically found in a serum proteome, 

isolating sub-populations of common protein types, such as glycosolated, phosphorylated protein 

types, could make this peak capacity tractable for exhaustive analysis of this complex sample.  In 

addition, while we did not demonstrate the ability to interface this 2-D separation platform to mass 

spectrometry (MS) for discovery-based applications, interfacing of microchips to a variety of MS 

techniques have been demonstrated [46-50].  In addition, the integration of sample preparation steps to 

the chip platform prior to the 2-D separation will provide an autonomous system for discovery or 

diagnostic-based proteomic projects. 
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4 Ultra-fast 2-Dimensional Microchip Electrophoresis Using SDS µ-CGE and 

Microemulsion Electrokinetic Chromatography for Protein Profiling 

 

4.1 Introduction  

Two-dimensional (2-D) separations are the workhorse of the process flow pathway in 

proteomics and in most cases, 2-D separations consist of isoelectric focusing (IEF) in the first 

dimension and polyacrylamide gel electrophoresis (PAGE) in the second dimension on conventional 

slab gels. Unfortunately, this technique does not lend itself to full process automation, can be very 

labor intensive, is time consuming and has difficulties in sorting highly hydrophobic proteins, such as 

membrane proteins [1]. For these reasons, microchip 2-D separation techniques have been developed 

as alternatives to conventional slab gel techniques because they offer high separation efficiencies due 

to effective heat dissipation, minimal sample consumption due to smaller footprints and fast analysis 

times due to shorter column lengths, and the ability to use higher electric field strengths.  

Microchip 2-D separations are tractable not only because they can provide automation 

capabilities and rapid separations with high resolving power, but also can produce viable interfaces 

between the separation dimensions to minimize unswept volumes between separation dimensions 

preserving plate numbers. Herr and co-workers [2] coupled IEF and capillary zone electrophoresis 

(CZE) in which three model proteins were separated resulting in a peak capacity of ~1,300 that was 

achieved within 5 min. Li and co-workers [3] integrated IEF with parallel sodium dodecyl sulfate 

micro-capillary gel electrophoresis (SDS µ-CGE) for a comprehensive 2-D separation of five model 

proteins and generated a peak capacity of ~1,700 in 10 min. Chen and co-workers [4] described a 

microfabricated 2-D IEF-PAGE prototype, in which three model proteins were separated in 1.5 min, 

but the peak capacity of this system was not reported. Emrich and co-workers generated protein 

profiles from a complex, cellular mixture of E. coli proteins using a 2-D differential gel electrophoretic 

technique (DIGE) with the second-dimension separation completed within 1 h [5]. Also, Yang and co-

workers recently reported a 2-D IEF/PAGE separation of whole cell E. coli protein lysate with an 
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estimated peak capacity of 2,880 that was obtained within 12  min [6] and provided a spot production 

rate of 240 min
-1

.  

All of the aforementioned examples of microchip 2-D utilized IEF in the first dimension. 

Unfortunately, IEF requires an equilibration step prior to the focusing step [6], which further increases 

the overall development times of the entire 2-D separation. Furthermore, IEF is not compatible with 

highly hydrophobic proteins as these are not compatible with the aqueous IEF buffer [1]. To avoid 

some of the drawbacks associated with IEF [1], alternative techniques can be used such as CZE [7-10] 

or micellar electrokinetic chromatography (MEKC) [10-13].  

Ramsey and co-workers separated peptides with a 2-D microchip system that combined open-

channel electrochromatography (OCEC) with CZE [9] in which they reported a peak capacity of 150  

that was obtained in 13 min. The same group also combined MEKC with CZE [10, 11] and reported a 

peak capacity of 1000 that was obtained in 10 min [11] and a peak capacity of 4,200 that was obtained 

in 15 min [10]. For microchip protein separations, Soper and co-workers coupled SDS µ-CGE and 

MEKC and reported peak capacities of 1,000 and 2,600 in less than 12 min and 30 min for ten model 

proteins [13] and serum proteins [1], respectively.  

Microemulsion electrokinetic chromatography (MEEKC), though similar to MEKC, has 

emerged as an attractive alternative to traditional MEKC. Since its introduction by Watarai [14] in 

1991 for the separation of fluorescent aromatic compounds, MEEKC has been widely applied for the 

separation of various analytes [15-17] including proteins [15, 18]. In MEEKC, the separation medium 

is a microemulsion, a transparent solution consisting of an oil (e.g., n-heptane), a surfactant (e.g., 

SDS), a co-surfactant (e.g., n-butanol), and water. The structure of oil in a water emulsion is similar to 

that of micelles in MEKC except that the microemulsion has an oil droplet as a core [18].  Figure 4.1 

depicts the formation of micelles in aqueous buffer and its utilization in the second dimensional phase 

of a microchip 2-D SDS µ-CGE and MEKC protein separation. 
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Figure 4.1 (A) Depiction of micelle formation in aqueous buffer and its utilization in the second 

dimensional phase of a microchip 2-D SDS µ-CGE and MEKC protein separation. SDS micelles form 

in buffer above the SDS critical micellar concentration (0.24% w/v). The aggregate number for SDS is 

about 62 molecules forming a core diameter of ~17Å. In a reverse polarity mode (detection is anodic), 

SDS micelles migrate towards the anode due to their ionized sulfate group, which are negatively 

charge whereas the direction of EOF is towards the cathode. Separation in the MEKC is according the 

partition coefficient of proteins within the micelles and the aqueous phase and according to the charge 

to mass ratio of proteins when they are in the aqueous medium. More hydrophobic domains within a 

protein result in stronger hydrophobic character and more hydrophobic proteins tend to interact more 

with the micellar core. On the other hand, anionic proteins
a
 experiences columbic repulsion, and may 

not even interact with the micelles. This is especially true when their entire hydrophobic domains are 

masked by SDS (see rods that are gold only or gold/blue without any black color). These proteins are 

separated based on their electrophoretic mobility in the aqueous medium with the proteins possessing 

the highest charge-to-mass ratio migrating the fastest. Overall, the migration of proteins is in the order 

of 1-6 with protein 1 migrating the fastest and protein 6 migrating the slowest. (B) Depiction of 

microemulsion formation in aqueous buffer and its utilization in the second dimensional phase of a 

microchip 2-D SDS µ-CGE and MEEKC protein separation. In MEEKC, SDS surfactants impart a net 

negative charge to the oil emulsions and the co-surfactant (n-butanol) reduces the surface tension 

between the oil and the aqueous phase resulting to a miscible oil/water system. The hydrophobic core 

diameter for the microemulsion is ~100Å. Separation in the MEEKC phase is similar to that of the 

MEKC, except that separation and partitioning of larger proteins is more possible.  a = anionic 

proteins acquire their charge in two ways: (1.) because the pH conditions for the separation is above 

their pKa and (2.) because SDS imparts a negative charge on the proteins during sample prep and 

during the first dimension separation.  
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In MEEKC, SDS surfactants impart a net negative charge to the microemulsions, whereas the 

co-surfactant reduces the surface tension between the oil and the aqueous phase resulting to a miscible 

oil/water system. Recent reports indicate that better separation efficiencies can be obtained using 

MEEKC compared to MEKC [18-25]. Due to their highly non-polar core, polar compounds typically 

remain in the aqueous electrolyte solution rather than partitioning into the microemulsion droplets. 

Therefore, it is expected that an anionic protein will experience columbic repulsion as it approaches the 

negatively charged droplet, but unmasked neutral or hydrophobic domains of proteins would strongly 

associate with the microemulsion droplets (Figure 4.1). Cationic species with pKa values higher than 

the pH of the microemulsion solvent can form ion-pairs (IPs) with the anionic SDS surfactant layer on 

the emulsion surface. This interaction may be so strong that the species adsorb onto the microemulsion 

droplets [26]. Overall, analytes will interact with the emulsion droplets according to their partition 

coefficient. In a recent report [27], MEEKC was shown to result in better separation resolution (Rs) 

than MEKC for the analysis of the hydrophobic compound, bisphenol-A-diglycidyl ether and its 

derivatives under suppressed electroosmostic flow (EOF) operation. The authors showed that the 

improvement in Rs was due to a reduced retention factor (k) in MEEKC and not necessarily because of 

greater selectivity.  

Despite the availability of experimental evidence demonstrating the utility of MEEKC 

compared MEKC in particular cases [28], it is surprising that MEEKC has not been used as a 

separation dimension in a multi-dimensional separation platform. In this work, we report a 2-D 

separation of a complex protein mixture, which combined SDS µ-CGE with MEEKC with the 

separation performed in a poly(methyl methacrylate), PMMA, microchip. Fluorescently-labeled E. coli 

proteins were profiled by this 2-D approach with the results compared to a comparable 2-D separation 

using SDS µ-CGE × MEKC. To achieve ultra-fast separations, short column lengths (effective length 

= 10 mm) were used for both dimensions. 
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4.2. Methods and Materials 

4.2.1 Microchip Fabrication 

 The mold insert for embossing the PMMA chips was fabricated by high precision micromilling 

[29]. The mold insert was used to produce PMMA chips via hot embossing, which consisted of a PHI 

Precision Press model TS-21-H-C (4A)-5 (City of Industry, CA) that was used to replicate the 

microstructures into PMMA (MSC, Melville, NY) [30]. The embossed channels were 15 µm wide and 

30 µm deep with effective separation lengths of 10 mm for both the SDS µ-CGE and MEEKC 

dimensions (C-D and E-F channels, respectively, see Figure 4.2). The injection channel (A-B, Figure  

 

Figure 4.2 Photograph of the micro-electrophoresis chip used for the 2-D separations. The chip 

was fabricated in PMMA via hot-embossing from a lithographically prepared stainless steel molding 

tool. The channel width in all cases was 15 µm with a channel depth of ~30 µm. The solution 

reservoirs were; (A) sample reservoir; (B) sample waste reservoir; (C) SDS µ-CGE buffer reservoir; 

(D) SDS µ-CGE buffer waste reservoir; (E) MEKC or MEEKC buffer reservoir; (F) MEKC or 

MEEKC buffer waste reservoir. All reservoirs were mechanically drilled into the embossed substrate 

and were 2 mm in diameter. Platinum wires were used to apply high voltages to the reservoirs. For the 

SDS µ-CGE dimension, the injection and effective separation lengths were each 10 mm. The total 

separation channel length for a complete 2-D was 20 mm (i.e., 10 mm for both the 1
st
 and 2

nd
 

dimensions). d1 represents the LIF detection position for the 2-D separations. 
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4.2) was also 10 mm in length. The final device was assembled by thermal fusion bonding the molded 

piece to a 125-µm thick PMMA cover slip at 107°C in a convection oven for 15 min [30]. 

4.2.2 Laser-induced Fluorescence (LIF) Detection, Power Supply and Data Analysis 

Fluorescence detection and data collection was accomplished using an in-house constructed 

LIF system and in-house written software. Details have been reported elsewhere [30]. Programmed 

high-voltage was applied to the reservoirs of the microchip with six independently controlled power 

supplies [30].  

The software for data acquisition and control of the power supply was created using LabVIEW. 

Dye-labeled protein samples were first electrokinetically injected into the injection cross (A-B, Figure 

4.2) by applying a positive potential at waste reservoir (B) while grounding the sample reservoir (A). 

Data were collected continuously from the start of the initial SDS µ-CGE after the injection step. SDS 

µ-CGE was initiated by applying a positive potential at the waste reservoir (D) and grounding reservoir 

C. In this particular case, proteins were sampled into the second dimension from the onset of the first 

dimension; therefore, proteins were allowed to separate in the second dimension after a 1 s 

electrophoretic run in the first dimension by applying a positive potential to reservoir E while 

grounding D. This 1 s separation in the first dimension transferred proteins into the second dimension 

for further separation. LIF was monitored on E-F at 10 mm (d1) from the intersection of C-D and E-F 

(see Figure 4.2).  

The 2-D protein landscapes were generated using ImageJ 1.34s software (National Institutes of 

Health, Bethesda, MD) by dividing the LIF temporal signals from each µ-MEEKC or µ-MEKC cycle 

and plotting the corresponding cycle with respect to the SDS µ-CGE axis [1, 13]. This process 

generated sets of 2-D separation data for the SDS µ-CGE × µ-MEEKC and SDS µ-CGE × µ-MEKC. 

We subsequently performed a student‟s t-test on the landscapes to determine statistical differences in 

the microchip 2-D techniques.       
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4.2.3 Emulsion Preparation, Protein Labeling and Purification 

Solutions of heptanes (>99%), 1-butanol (>99%) and SDS powder were purchased from Sigma 

(St. Louis, MO). The separation buffer was prepared from 1.5 M Tris-HCl (Bio-Rad, Hercules, CA). 

Deionized water (18 MΩ) was obtained from an ultra-pure water system (Millipore, Milford, MA). 

Suitable amounts of heptane, 1-butanol and SDS powder were added to 12 mM Tris-HCl buffer at pH 

8.5 to prepare the microemulsions for the MEEKC separation according to procedures reported in the 

literature [14, 31]. The solution was mixed by ultrasonification in a water bath for 30 min after which 

the solution was left to stand for 1 h at room temperature. The solution was filtered through a 0.2 µm 

Nylon-66 membrane syringe filter (Cole-Parmer Instrument Co., Vernon, IL) prior to use. It was 

important to ultrasonicate the solution adequately because the solution became turbid during standing 

at room temperature when the mixing step was insufficient [31]. However, when the preparation was 

done in the appropriate manner, the solution maintained a transparent appearance for several months at 

room temperature [32].  

 Soluble proteins were extracted from E. coli K12 (Bio-Rad) and were labeled with thiol 

reactive Alexa Fluor 633 dyes (Invitrogen, Carlsbad, CA) following the manufacturer‟s guidelines [1] 

after which the labeled proteins were purified using a gel filtration column (Millipore Corp., Billerica, 

MA). A total protein concentration determined by UV spectroscopy of ~40 nM was used for the 

separations. Samples were prepared in a buffer system composed of 12 mM Tris-HCl containing 0.1% 

w/v SDS at pH 8.5. 

4.2.4 Electrophoretic Run Conditions 

PMMA microfluidic devices were rinsed prior to each electrophoretic run with a solution of 2 

mg/mL of methyl hydroxyethyl cellulose, MHEC (Fluka BioChemika, Switzerland), dissolved in 1X 

PBS buffer (pH 7.2) for electroosmotic flow (EOF) suppression [13]. All electrophoretic separations 

were carried out at ambient temperature in reverse mode (detection end anodic) for both SDS µ-CGE 
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and the MEEKC or MEKC dimensions. The SDS µ-CGE was performed using a seiving matrix 

consisting of SDS 14-200 (Beckman Coulter Inc., Fullerton, CA) mixed with 0.05% w/v MHEC. 

MEKC was conducted using 12 mM Tris-HCl containing 0.4% w/v SDS at pH 8.5 whereas MEEKC 

utilized 12 mM SDS, 8 mM heptane, 90 mM 1-butanol in 12 mM Tris-HCl and also 0.4% w/v SDS 

(pH 8.5). As a dynamic surface coating agent, MHEC at 0.05% w/v was added to both the MEKC and 

MEEKC separation buffers [13]. 

For the injection/separation scheme, 2-D separations were performed in channels A-B, C-D and 

E-F serving as injection, first dimension SDS µ-CGE and second dimension MEKC or MEEKC 

channels, respectively, and setting the LIF detection position at point d1 (see Figure 4.2). Gel or run 

buffers were pressure filled into the channels after which reservoir A was replaced with the protein 

mixture while the rest of the reservoirs were filled with the running buffer. A 20 s clean up step was 

initially accomplished by applying +0.20 kV to reservoir A and grounding the other reservoirs (B - F, 

see Figure 4.1). Injection into the A-B channel was initiated by grounding the voltage to the sample 

reservoir (A, Figure 4.1) and applying a positive voltage (0.25 kV) to the waste reservoir (B, Figure 

4.1) to fill the cross channel (points C - F were floated during injection). Following injection, a high 

positive voltage was switched to point D and point C was grounded (Figure 4.2). Then, pull back 

voltages (~10% of applied voltage to point D) were applied to the sample and waste reservoirs (A and 

B, see Figure 4.1). The electric field (E) used for SDS µ-CGE and the MEKC or MEEKC separations 

were 350 V/cm and 400 V/cm, respectively.  

The 2-D separation was started by switching the high voltage applied to reservoir D (see Figure 

4.1) to +0.70 kV and grounding reservoir C for 1 s. This allowed the lowest molecular weight proteins 

to reach the end of the first dimension. Reservoirs A and B were kept at +0.07 kV while reservoirs E 

and F were floated during the initial 1 s run. After that, point E was grounded and point F was set to 

+0.80 kV for 10 s allowing for the MEKC or MEEKC separation of the transferred proteins to occur. 
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Subsequently, 1 s SDS µ-CGE runs/injections from the first dimension into the second dimension and 

a subsequent 10 s MEKC or MEEKC separations were iteratively executed for nineteen more cycles 

making the total number of MEEKC or MEKC cycles equal to 20.  During each MEKC or MEEKC 

cycle, effluents from the SDS µ-CGE dimension were parked by floating reservoirs C and D. MEKC 

or MEEKC separations were paused for 1 s after each 10 s MEKC or MEEKC separation by floating 

reservoirs E and F during which the SDS µ-CGE dimension was again run at E = 350 V/cm for that 1 s 

time, which resulted in the movement of proteins through the SDS µ-CGE dimension. This movement 

in channel C-D provided a new sample plug into the second dimension. In this serially implemented 2-

D separation, the transfer/separation cycles were repeated until the entire separation was completed.  

4.3 Results and Discussions  

4.3.1 Representation of Proteins 

Tremendous progress has been made towards understanding the E. coli proteome since 

O‟Farrell published a 2-D IEF-PAGE analysis of the E. coli proteome in 1975 [34]. The protein sample 

used herein was a soluble extract from E. coli K12 W110, whose genome has been sequenced with a 

total of 4,226 proteins predicted for its proteome (www.ncbi.nlm.nih.gov). Considering that cytosolic 

proteins constitute 61.46% of the E. coli proteome [33], the cytosolic protein content was estimated to 

be 2,597. But since only those soluble proteins containing thiol groups were selectively labeled, it was 

important to ascertain the sub-population of cysteine containing proteins. We estimated that 

approximately 2,078 (80% of the cytosolic proteome) proteins contain at least one cysteine amino acid 

residue [35].  

In the cytoplasm, cytosolic cysteines are often maintained in the thiol form by glutaredoxin and 

thioredoxin enzymes [35]. Nonetheless, cystines  are still present because 6% of the entire E. coli K12 

proteome contains disulfide linkages [36]; therefore, it was necessary to reduce the proteins prior to 

analysis (see section 4.2). Based on a 1.1% likelihood for the occurrence of cysteines on average in the  

http://www.ncbi.nlm.nih.gov/
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E. coli proteome [35], which consists of 340 amino acids [37], we deduced that between 3 - 4 sites 

were available for thiol labeling in each protein.  

4.3.2 Start Time for Sampling into the Second Dimension 

In our previous 2-D report [1], the second dimension was initiated close to the migration time 

of the first protein peak produced from the first SDS µ-CGE dimension, which amounted to a run time 

in the first dimension of 10 s.  In the present work, we started the second dimension after 1 s of 

electrophoretic run time due to the shorter column length used herein compared to our previous reports 

and the fact that  the E. coli proteome contains proteins with as low as 10 amino acid residues [37] 

(~1,367 Da). The short migration time (MT) of this relatively small protein can be verified using 

Equation 4.1 [13] to be less than 1 s. The migration time of the largest protein (~970 amino acids [37]) 

was also ascertained with equation 4.1 to be 105.19 s, but Equation 4.1 was generated for a 1-D SDS 

µ-CGE microchip device with a 40 mm total channel length and 30 mm effective length [13].    

 

log (MW)  = 1.59 × 10
-2

MT + 3.45                        (4.1)  

where MW is the protein molecular weight and MT is the migration time.  

In the present case, the microchip‟s total (L) and effective (l) lengths for the first dimension were 20 

mm and 10 mm, respectively; therefore, the MT for the largest protein was estimated to be 17.53 s 

using Equation 4.2 [38] for the present microchip.  

 

MT/MT1 = lL/l1L1                           (4.2)  

 

where MT1 is the estimated migration time (105.19 s) of the largest protein based on the previous chip 

[13], which possessed a 40 mm total length (L1) and a 30 mm effective length (l1).  

By initiating the second dimension separation after a 1 s separation time in the first dimension, 

the need to perform a 1-D SDS µ-CGE to determine the migration time of the first peak in the first 
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dimension was negated. Eliminating 1-D SDS µ-CGE separations and starting the second dimension 

almost at the onset of the separation effectively reduced the total analysis time. Furthermore, the net 

negative charge (-2) of the dye appended to each protein should lower the migration time because the 

separation was performed in reverse polarity (detector end anodic). Conversely, the mass of the dye 

(~1,300 Da) should increase the MT. Nonetheless, the net mobility shift introduced by the dye on the 

protein was negligible [1] (Also see section 3.3.3). 

4.3.3 Height Equivalent of a Theoretical Plate 

A 1 s separation time in the first dimension and a 10 s separation time in the MEKC or 

MEEKC second dimension were implemented for a total cycle number of 20. This resulted in a total 

development of 220 s (11 s × 20). The total number of cycles provided an electrophoresis development 

time in the first dimension of  20 s, which provided sufficient time to sample every E. coli protein 

(including large proteins, see section 4.3.2) into the second dimension. The contributions to band 

broadening during these separations are shown in Equation 4.3 for the total plate height (HTOT);  

 

HTOT = HD + Hinj
 
+ Hoth         (4.3)    where 

HD, Hinj, and Hoth are contributions to the plate height from longitudinal diffusion, injection plug 

length, and other factors, respectively.   

The height equivalent to a theoretical plate for longitudinal diffusion only (HD) of the 1-D SDS 

µ-CGE dimension was calculated and compared to that value to HTOT secured from the complete 2-D 

separation. A representative diffusion coefficient for proteins in a sieving matrix as used herein was 

taken as ~10
-8

 cm
2
 s

-1
, which is the measured diffusion coefficient of cytochrome C in polyacrylamides 

[39], resulting in HD = 4.4 × 10
-6

 cm (HD = 2Dt/L; t = time; L = column length, cm). The number of 

plates for a typical band migrating from the 2-D separation was 2.6 × 10
5
 (see Figure 4.3), resulting in 

HTOT = 7.7 × 10
-6

 cm (HTOT = L/N; L = total effective length for 2-D separation, i.e., 20 mm). 
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Therefore, the diffusional component to HTOT was calculated to be approximately 57%. For 20 10 s 

MEKC cycles, which represents the parking time (200 s), and a total separation time of 220 s, the 

percent contribution of diffusional spreading during the parking phases of the 2-D separation to HD is 

roughly 91% or 4.0 × 10
-6

 cm. 

Because shorter separation channels were used, we were also interested in ascertaining the 

contributions to the total HTOT from injection or extra column variances. The injection volume (Vinj) of 

45 pL for the present chip was significantly less than the total column volume (VTOT) of 15 nL. Vinj = L 

× W × D = 30 µm × 30 µm × 50 µm; where L, W, and D are the length, width and depth of the 

injection plug, respectively, and VTOT = L × W × D = 10 mm × 30 µm × 50 µm; where  L, W, and D 

are the length, width, and depth of the effective separation channel, respectively). Also, Hinj was found 

to be less than 1% of HTOT or 3.8 × 10
-7

 cm (Hinj = linj
2
/12l; linj = length of injection plug (30 µm). 

Given an injection volume of 45 pL and a total protein concentration of ~40 nM for E. coli proteins, a 

total mass amount of ~8.3 × 10
-14

 g was analyzed. The average protein Mw was taken to be 46 kDa 

considering an average size of 340 amino acids per protein [37] and an average amino acid Mw of 

136.7 Da.  

While we were able to demonstrate ultra-fast separations and also negate the need to perform a 

1-D separation of the protein sample, we however lost information pertaining to how many times one 

protein peak was sampled from the first dimension into the second dimension.  

4.3.4 SDS µ-CGE × MEEKC 

SDS gel electrophoresis has proven to be a valuable separation platform for proteome analyses 

due to the ability to sort the protein components on the basis of their molecular weights [40-42]. In 

addition, when the gel formulation is properly selected, SDS gel electrophoresis can provide efficient 

separations over relatively short column lengths [43]. Here, we focused on coupling SDS µ-CGE to a 

MEEKC dimension to perform 2-D separations of intact proteins using short separation lengths to 
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generate high protein spot production rates. Separation of compounds in MEEKC is based upon both a 

partitioning process between the microemulsion droplets and the water phase as well as differences in 

their electrophoretic mobilities [44, 45]. Manipulation of the microemulsion phase can influence the 

separation performance [20, 22, 31, 44-47]. Ionized macromolecules, such as proteins, possess very 

low affinity for the anionic surface phase of emulsion droplets [26].  

The separation of large molecules can potentially be more feasible in MEEKC than MEKC 

because they can better partition into the core phase of the microemulsion droplet compared to 

micelles, which are typically used for MEKC and have a much smaller hydrophobic core [26] 

(hydrophobic core radius ~17 Å for SDS micelles [48]). On the other hand, the size of the MEEKC 

droplet core is up to 100 Å; hence, a higher solubilization capacity are possessed by emulsion droplets, 

which is further enhanced due to the “softness” of the hydrophobic oil making it more penetrable 

compared to a micellar surface [28]. The end result is that large, hydrophobic proteins that would 

normally not partition well into a micelle core may partition into the oil phase of a droplet. 

Furthermore, MEEKC can provide an increased rate of mass transfer and a wider migration range due 

to the increased core size [28]. By analyzing data obtained from profiling fluorescent dye labeled E. 

coli proteins using 2-D SDS µ-CGE × MEEKC with ImageJ processing, a protein 2-D contour map 

with a corresponding protein landscape profile was obtained (see Figure 4.3) with an average (n = 3) 

peak capacity of 481 ±18, which was obtained by dividing the total pixel area in the image of 90,000 

pixels by an average spot size of 187 ±7 pixels.  Also, a typical 2-D image provided a total number of 

spots of 103 ± 12. The results were compared to results from a similar separation that was carried out 

with a microchip 2-D SDS µ-CGE × MEKC (see section 4.3.6).  

4.3.5 Orthogonality of SDS µ-CGE × MEEKC 

We have previously shown MEKC to be orthogonal to SDS gel separation [13].  Though 

similar, MEEKC results in better resolution compared to MEKC [18]. For this reason, we cannot 
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assume that the two separation techniques have similar separation mechanisms. Therefore, we needed 

to determine the orthogonality between the SDS gel and MEEKC dimensions in order to assure that the 

2-D separation operates properly. To determine orthogonality [13] between the SDS µ-CGE and 

MEEKC dimensions, we divided the 2-D image obtained from a typical SDS µ-CGE and MEEKC 

separation as shown in Figure 4.3 into 100 equal bins (i.e., 10 × 10 bin matrix) as an approximation of 

the 103 protein spots that was counted using the ImageJ software (see section 4.3.4; also see Figure 

4.3). 

 

Figure 4.3   Left: 2-D contour image for the microchip 2-D SDS µ-CGE × MEEKC profile of a 

protein mixture isolated from E. coli. Fluorescently-labeled E. coli proteins were placed into reservoir 

A of the chip (see Figure 4.1) and electrokinetically injected into the separation channel at 200 V/cm. 

The 2-D SDS µ-CGE and MEEKC electrophoresis dimensions were performed at 350 V/cm and 400 

V/cm, respectively. A 1 s separation time in the first dimension was allowed prior to performing a set 

of serial 10 s MEEKC runs. A total of 20 MEEKC cycles was used with a 1 s transfer time from the 

first into the second dimension. Right: Corresponding 3-D landscape image for the microchip 2-D SDS 

µ-CGE × MEEKC contour image shown on the left. The most intense peaks in the 2-D trace have been 

arbitrarily assigned letters R, S and T with T being the most intense peak followed by R and then S.  
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The total number of bins should be equal to number of protein spots generated by the 2-D 

technique [13]. Forty seven of the bins were determined to be unoccupied and by using Equation 4.5 

an orthogonality of 67 (±4) % (n = 3) was calculated.  

 

O = (∑bins - √Pmax)/0.63 Pmax             (4.5)  

where ∑bins = number of bins in the 2-D image containing protein spots and Pmax = the sum of all bins.                          

 4.3.6 SDS µ-CGE × MEEKC vs. SDS µ-CGE × MEKC 

In the SDS µ-CGE × MEEKC and SDS µ-CGE × MEKC 2-D separations conducted herein, 

identical sample, electric fields, buffer pH, injection times, cycle numbers and total separation times 

were employed except that the second dimension emulsion buffer in the former was replaced with a 

micellar buffer for the latter. A protein 2-D image with a corresponding profile was also generated for 

SDS µ-CGE × MEKC (Figure 4.4).  An average (n = 3) peak capacity of 332 ±17 was calculated from 

a total pixel area of 90,000 pixels and an average spot size of 271 ±13 pixels.  

We performed a simple student‟s t-test on the various separation metrics to determine if there 

were statistical differences between the two techniques in terms of these metrics. We observed a 45% 

increase (p < 0.0005) in peak capacity by switching the buffers from a micellar phase to one containing 

oil emulsions in the second dimension and the total time to generate a full 2-D profile was only 220 s 

for both SDS µ-CGE × MEEKC mode and SDS µ-CGE × MEKC mode. A production rate of 91 

spots/min
 
was associated with the microchip SDS µ-CGE × MEKC mode, which was less than 131 

spots/min
 
associated with the same microchip that utilized MEEKC as the second dimension instead of 

MEKC. The number of spots generated by the microchip 2-D, which employed oil emulsion, was 

140% (p = 0.005) more compared to the microchip 2-D separation using micelles (103 ± 12 versus 43 

± 6 spots). We attribute this significant improvement in spot generation and peak capacity to the better 

plate numbers provided by the emulsion-based buffer. 
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Figure 4.4 Left: 2-D contour image for the microchip 2-D SDS µ-CGE × MEKC separation of a 

protein mixture isolated from E. coli. The fluorescently-labeled E. coli protein sample was placed into 

reservoir A (see Figure 4.1) and electrokinetically injected into the separation channel at 200 V/cm. 

The run conditions were identical to those listed in Figure 4.3. Right: Corresponding 3-D landscape 

image for the microchip 2-D SDS µ-CGE × MEKC contour image shown on the left. The most intense 

peaks in the 2-D trace have been arbitrarily assigned letters R, S and T with T being the most intense 

peak followed by R and then S.  

 

About 2,077 proteins of the E. coli protein sample contain at least one cysteine amino acid (see 

section 4.3.1), but we only were able to produce 103 spots using SDS µ-CGE × MEEKC (see Figure 

4.3), which is well below the expected number of proteins associated with this proteome. We attribute 

this observation to several facts including: (i) the low expression levels of certain proteins in the 

proteome making them difficult to detect above baseline;  (ii) the fact that strong RNA binding 

proteins may have been eliminated during the sample preparation protocol in an effort to remove 

nucleic acids [49]; (iii) the low occurrence of cysteine (0.19%) in some higher abundant ribosomal 

proteins [35] may have resulted in some proteins going undetected due to insufficient labeling and (iv) 
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the limited peak capacity to resolve every protein spot. A summary of the separation conditions and 

results of both microchip 2-D techniques are presented in Table 4.1. 

4.3.7 Reproducibility of the 2-D Separations 

Oil emulsions are known to generate high EOFs, especially in borate buffer [50], and the EOF 

(2.95 ±0.95 × 10
-4

 cm
2
/Vs) in pristine PMMA chips can vary from chip-to-chip (~32% RSD) [51]. The 

variability in the EOF can result in variations in peak migration times. In order to reduce the EOF  

Table 4.1.  Summary of microchip 2-D separation results.  The standard deviations were 

obtained for n = 3 experiments for each microchip 2-D method.  
2-D Separation: 

SDS µ-CGE with 

Number of spots 

generated 

Plate 

Number (N) 

2-D Peak 

Capacity 

2-D Separation 

Time (s) 

Production Rate 

(spots/min) 

MEKC 43± 6 2.8 × 10
4
 332 ± 17 220 91 

MEEKC 103 ± 12 4.6 × 10
4
  481 ± 18 220 131  

 

the chip walls were dynamically coated by adding MHEC to the running buffer, which has been shown 

to be effective in suppressing the EOF in PMMA microchips [13]. To evaluate reproducibility, we 

measured the migration times for the three most intense peaks from three different chip separations. 

The calculated average migration times for these bands using the 2-D SDS µ-CGE × MEEKC 

separation were found to be 15 s (RSD 3.9%), 58 s (RSD 14.1%) and 112 s (RSD 7.5%) for protein 

peaks R, S, and T, respectively, with an average RSD value of 8.5%, which is comparable to 

previously reported values of 4.8% for SDS µ-CGE × MEKC [1] and 4.1% for microchip IEF × SDS 

CGE [52].  

4.3.8 System Efficacy and Improvement in Peak Capacity  

A peak capacity of ~500 was expected for a 20 mm effective length chip based on the total 

separation length and our previous results [13]. However, the 2-D SDS µ-CGE × MEEKC and the 2-D 

SDS µ-CGE × MEKC yielded peak capacities of 481 ±18 and 332 ±17, respectively, below the 

anticipated peak capacity based on the effective column length. Better peak capacity was achieved for 
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the SDS µ-CGE × MEEKC because of higher N value compared to the SDS µ-CGE × MEKC 

technique.  N = 4.6 × 10
4
 for SDS µ-CGE × MEEKC (or N/m =  2.3 × 10

7
; Leff = 20 mm) and N = 2.8 

× 10
4
 for SDS µ-CGE × MEKC (or N/m =  1.4 × 10

7
; Leff = 20 mm), compared to 6.2 × 10

5 
(or N/m = 

5.6 × 10
6
; Leff = 110 mm) that was previously reported [13]. The gel used for this set of experiments 

was a linear polymer that forms a dynamic polymer network by entanglement, which serves as s 

sieving matrix during electrophoresis. To increase peak capacity while maintaining shorter separation 

channels, a crosslinked polymer instead of linear polymer could be used in the first SDS µ-CGE 

dimension. Solute diffusion is less in crosslinked polymers than in uncrosslinked polymers due to 

reduced convective phenomenon in the case of the former compared to the latter. This ultimately leads 

to less band broadening and hence higher plate number because of minimized longitudinal spreading 

since the diffusion of proteins within crosslinked gels would be lower compared to linear gels.  

4.3.9 Proteins Presented in the 2-D Profiles 

The E. coli has been the subject of several studies and as a result, a large amount of information 

on its proteome can be found in the literature. Ishihama and co-workers [33] have carried out a protein 

abundance profiling of the E. coli cytosol in which the authors assigned various characteristics 

including average length (number of amino acids) and hydrophobicity (in the Kyte-Doolittle scale) to 

high and low abundant proteins present in E. coli K12 MC4100. The Kyte-Doolittle scale is used to 

assign hydrophobic regions in proteins wherein more positive values are designated to be more 

hydrophobic.  

Unlike the mammalian serum proteome where a single protein (albumin) is the most abundant 

protein accounting for ~55% of the total protein mass of serum [1], multiple proteins are highly 

abundant in the E. coli proteome. Up to 21% percent of the E. coli protein mass content are ribosomal 

in nature and consists of ~54 different proteins present in equal abundance (one copy per ribosome) 

plus two that are present as dimers making a total of 56 proteins [49]. Furthermore, highly abundant E. 
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coli proteins have been found to be shorter in length and less hydrophobic than low abundant proteins 

with average lengths and hydrophobicities of 309 amino acids/-0.25 (Kyte-Doolittle scale) and 386 

amino acids/-0.20, respectively [33] (see section 4.2.3). It is our opinion that the intense peaks 

observed in the microchip 2-D profiles (see section 4.3.7) may contain high abundant ribosomal 

proteins in E. coli on the 2-D profiles since these proteins are highly expressed in E. coli. 

During electrophoresis, proteins with shorter lengths are expected to migrate faster in the first 

dimension where the separation operates based on protein size differences. Less hydrophobic proteins 

are expected to interact less with the microemulsions because they would generally possess lower 

partition coefficients and would therefore spend more time in the aqueous phase where they would 

migrate according to their electrophoretic mobilities. Considering that high abundant proteins present 

in E. coil possess an average length of 309 amino acids [33], we calculated the migration time, in the 

first dimension, of a 309 amino acid using Equations 4.1 and 4.2 to be ~12 s. This means that on the 

average that high abundant proteins are expected to be sampled into the second dimension after 

migrating ~12 s in the first dimension.  

Interestingly, the migration order of the most intense peaks in the SDS µ-CGE × MEKC trace 

(see Figure 4.4) was different from what was observed for SDS µ-CGE × MEEKC (see Figure 4.3). In 

the case of SDS µ-CGE × MEKC and relative to SDS µ-CGE × MEEKC, protein peak R migrated 

around 72 s, followed by protein peak T (112 s), and lastly by protein peak S, which migrated at 124 s. 

In other words, the order of migration changed from R, S, and T for SDS µ-CGE × MEEKC to R, T, 

and S for SDS µ-CGE × MEKC. This is not surprising because changes in migration order is 

commonly observed when analytes are separated in MEEKC compared to MEKC [19, 53]. It is 

possible that peaks R, S and T and any other peaks on the profiles for that matter are composed of 

multiple proteins which were not resolved due limited peak capacity. Accurate identification of peaks 

on the profile can be accurately obtained by MS, and as discussed in Chapter 1, MS analysis can be 
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coupled to a separation unit, such as the one presented here, but this is beyond the scope of this 

chapter. 

4.4 Conclusions 

We have developed a 2-D platform that provides relatively high spot production rates and 

reasonable peak capacities in spite of the fact that short separation lengths were employed (10 mm in 

each dimension of this 2-D system). An average peak capacity of 481 was obtained by coupling 

MEEKC to SDS µ-CGE requiring only a 220 s development time. The 2-D separation using MEEKC 

coupled to SDS µ-CGE had the advantage of generating a higher peak capacity compared to MEKC 

coupled to SDS µ-CGE. Generation of a higher peak capacity was attributed to better plate numbers 

afforded by the MEEKC phase. Furthermore, better resolution was obtained in the case of SDS µ-CGE 

× MEEKC compared to SDS µ-CGE × MEKC due to favorable selectivity and better partitioning of 

protein into oil droplets. However, in order to achieve ultra-fast separations, short column lengths with 

effective lengths of 10 mm were used for both dimensions. Many applications require ultra-fast 

analysis, such as in pharmaceutical formulations, in monitoring short-lived bio-chemical events and in 

performing high throughput studies. The peak capacity of this present system can be improved by 

using crosslinked polymer gels in the first SDS µ-CGE dimension instead of linear polymer gels while 

maintaining the short columns that is required for ultra-fast separations. Because of the difficulty in 

filling highly viscous crosslinked gels within the microchannels, photo-polymerization of crosslink 

gels in the first dimension of polymer chips appears to be a better alternative.   

While fluorescently labeling the proteins by targeting only the thiol groups within the proteins 

provided an exquisite detection scheme, appending dyes onto protein bio-molecules can be laborious 

and time consuming. Also, impurities can be introduced into the sample during the labeling process, 

and the dyes constituted an additional cost to the analytical process. To mitigate some of the 

drawbacks associated with fluorescent labeling, we are developing a label-free detection scheme as an 
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alternative. To this end, we are fabricating 2-D separation devices with integrated on-chip electrodes 

both at the end of the first and second dimensions to enable us perform a heart-cutting transfer of 

protein plugs from the first (output) dimension into second dimension. Not only does this conductivity-

based heart-cutting method allow us to perform a label-free protein analysis, it also gives us better 

control with the transfer of protein bands from the first dimension into the second - a fraction of a 

protein peak migrating at the end of the first dimension can be transferred into the second dimension in 

a controlled fashion using the electrode sensors at the end of the first dimension. This capability allows 

us to keep the sampling efficiency high. Furthermore, this new approach will effectively alleviate the 

issue of over sampling that plagues our current technique [1, 13], in which a single band from the first 

dimension was injected into the second band multiple times. 
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5 Cyclic Olefin Copolymer Microfabricated Chip with Integrated SU-8 Electrodes 

 

5.1 Introduction  

Many biological applications require the biological analyte to be labeled with some sort of dye 

for fluorescence detection or visualization. In flow cytometry, cells are often labeled with fluorescent 

dyes attached to antibodies that target integral membrane proteins (antigens) found on particular cells 

for their visualization and/or detection as well. In proteomics and genomics, proteins and 

deoxyribonucleic acids (DNAs) are in most cases appended with labels, such as fluorescent dyes or 

electrophores, so that they can be monitored by fluorescence or electrochemistry, respectively, for their 

analysis due to the fact that in many cases, ultra-sensitive analysis is required and the intrinsic 

fluorescence or electrochemical properties of these targets is not adequate for high sensitivity 

detection. This was demonstrated in Chapter 2 for DNAs and Chapters 3 and 4 for proteins. While 

covalent labeling of targets provides exquisite detection limits and sensitivity, the use of labels has its 

demerits, namely, preparing and appending the labels onto the target biomolecules or cells, which can 

be laborious and time consuming, the inability to label targets at low concentrations, impurities that 

can be introduced into the sample during the labeling process, the labels can be expensive and can add 

bias to the analytical process due to the selective labeling of only a subset of the entire sample 

population.  

To mitigate some of the drawbacks associated with labeling, conductivity detection has been 

considered as an alternative due to the fact that it is a universal detection protocol and can potentially 

detect any target. A sensitive label-free conductivity readout modality has been  developed by several 

different research groups [1] to detect various analytes, such as inorganic anions and oxalate in 

atmospheric aerosol [2], salts such as NaCl and KCl [3], bio-molecules, including amino acids, 

proteins and DNA fragments [4], and cells, such as circulating tumor cells (CTC) from whole blood 

[5]. In the case of the biomolecular and cell applications, cylindrical platinum (Pt) wires were 
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integrated with a poly (methyl methacrylate), PMMA, microfluidic device. The diameters of the Pt 

wires were 127 µm and 75 µm for the detection of biomolecules and CTCs, whereas the electrode gaps 

were 20 µm and 50 µm, respectively. The authors reported a mass detection limit of 3.4 amol [4] for 

amino acids and demonstrated the conductivity system‟s capability to detect a single CTC [5] from a 

whole blood sample. The performance of this type of detection scheme is governed by equation 5.1; 

G = (λ+ + λ-) C / 1000K        (5.1) 

where G is the conductivity signal in S (siemens), λ+ and λ- are the limiting ionic conductances of 

cations and anions in S cm
2 

equiv
-1

; C is the concentration in M, and K is the cell constant (K = L/A); 

where L is the distance between the electrode pair and A the area of the electrodes. A high conductance 

buffer would generate high background conductivity, therefore, a buffer with a very low conductivity 

is preferred as this would improve the analyte limit-of-detection (LOD). Also, smaller electrode pair 

spacings and larger electrode areas translate into better detection limits of the system according to 

Equation 5.1. An advantage of utilizing this detection scheme is the inherent fact that conductivity 

detectors are not mass sensitive, but concentration sensitive [6], therefore, electrodes can be scaled 

down in size making it amenable for the fabrication of miniaturized devices without sacrificing 

detection limits.  

Pt wires possess rigid sizes and shapes, which cannot be easily manipulated. In fact, in previous 

reports using Pt wires as conductivity sensors, the electrodes were inserted into the device by hand 

making it problematic to fabricate high density arrays of conductivity sensors for multi-channel chips 

and also, it become problematic to reduce the electrode gap and electrode size to improve detection 

limits. This limitation places enormous challenges on the fabrication of devices with integrated 

electrodes as sensors. For example, in order to be adequately sensitive, it was demonstrated that 

electrode pair spacing and diameters should be comparable to the diameter of the cell of interest to be 

detected [5]. This suggests that in order to detect E. coli cells for example, which are ~2 µm long and 
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~0.5 µm in diameter, Pt wires and electrode spacing comparable to the dimension of the E. coli cells 

should be used. This, in practice is not feasible considering the size and brittleness of Pt electrodes [5].  

In a recent report [7], side-wall vertical electrodes in which lateral and uniform electrical fields 

that generated magneto-hydrodynamic forces were used to control the movement of cells within 

microchannels, where non-uniform electric fields generated dielectrophoretic forces that were used to 

focus micro-beads. In that work, 30 to 40 µm high Au electrodes were electroplated onto a UV cross-

linked SU-8 platform. While the authors demonstrated a number of applications of these microdevices 

including cell sorting, pumping, sensing, and separations, the device fabrication process involved 

several steps (at least eight) with the fabricated device comprising three (top, middle and bottom) 

layers of SU-8 material, which formed the enclosed microchannels [7]. Furthermore, using pure 

metals, such as Pt or Au for making disposable biochips for clinical applications where cross-

contamination is an issue is not realistic due to the high cost of these noble metals. 

Conductive polymer composites (CPCs) can be considered viable alternatives for making 

integrated electrodes compared to metal wires or electroplated metals because of their robustness and 

low-cost. CPCs are formulated with a photo-sensitive polymer matrix, making them appropriate for 

photo-patterning electrodes with controllable depths and exquisite spatial resolution. With this 

approach, fabricating electrodes that are only a few micrometers in height and/or gap is plausible and 

by using high energy radiation, such as X-rays, fabricating electrodes with high aspect ratios is 

attainable as well [8]. Moreover, lithography lends itself to a high throughput fabrication process of 

polymer-based electrodes, especially in high density arrays of sensors comprised of electrode pairs.  

CPCs are different from conductive polymers (CP), such as polyaniline. While CPCs are a 

mixture of two phases – a conductive phase (usually some metal filler) and a nonconductive polymer 

phase, CPs are composed of only one phase – a polymer that is inherently conductive or a polymer that 

has been chemically modified to make it conductive. The conductivity of CPs results from the inherent 
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chemical state of the polymer, whereas polymers can be made into CPCs by infusing a conducting 

phase into the polymer matrix. Conventional polymers like polyethylenes are insulators because their 

valence electrons are in a sp
3
 state unlike conjugated polymers where there is a decoupled electron in 

the pz orbital, which is responsible for the electrical property observed in CPs. Ultimately, conductivity 

in these polymers is due to the motion of charge defects within the conjugated polymer framework. 

Conductivities of CPs can be altered by varying the substituent on the CP [9] or by doping [10]. In as 

much as CPs possess impressive electrical conductivities (up to ~10
3
 S/cm for doped polyacetylene for 

example) [10]  they are generally not photo-sensitive, therefore, they cannot be patterned into 

electrodes on-chip via lithography. CPCs, on the other hand, are a blend of a photo-sensitive insulating 

polymer, such as SU-8, and highly conductive fillers, such as silver nanoparticles, making them photo-

sensitve and electrically conductive only when the load of the metal particles exceeds the percolation 

threshold. For silver nanoparticles in SU-8, the percolation threshold was 6% by volume Ag load, 

which corresponds to a conductivity measurement of approximately 10
2
 S/m [13].  

PMMA is a common polymer resist, especially used for X-ray lithography [11]. It is a positive 

tone resist, which means that the polymer backbone is broken upon exposure to X-ray radiation 

changing the polymer‟s molecular weight and making the exposed polymer more soluble in a 

particular solvent, whereas the non-exposed polymer is not soluble in that solvent. There are also 

negative tone resists, such as the epoxy-based SU-8 resist, which are seventy times more sensitive to 

X-ray radiation compared to PMMA and can thus be used to pattern ultra-high aspect ratio 

microstructures [11]. This also means that SU-8 can be processed faster than PMMA – an important 

aspect for the fabrication process considering that longer times are needed to generate high energy X-

ray radiation from synchrotron facilities. SU-8 is photo-sensitive due to the addition of triaryl 

sulfonium salt and sulfonium hexflorate, which are used as photo-acid generators in a solution of 

epoxy-based molecules with solvents consisting of either gamma-butyloracton or cyclopentanone.  
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Different metals have been used as fillers in epoxy resins to develop new CPCs including Ni 

[12], Al [13], Cu [13], Zn [13], and Ag [14]. To make a photo-responsive CPC, fullerene filler has 

been formulated with a polyimide matrix [15]. Also, in a report by Jiguel et al., insulating photo-

sensitive SU-8 was formulated with Ag nanoparticles to produce a photo-responsive Ag/SU-8 CPC 

[13]. The average agglomerate size of Ag particles is ~1.5 µm with individual Ag particles in the size 

range of nanometers. The authors demonstrated a UV (365 nm) cured depth of ~20 µm for a 6% 

volume Ag/SU-8 CPC and less than 10 µm for a 10% volume Ag load. The cure depth reduced 

markedly as the percent Ag load was increased. Conversely, there was a direct relationship between 

percent Ag load and the conductivity of the CPC [16] after the percolation threshold of 6% volume Ag 

in SU-8 was used. As the silver load was increased, there was a corresponding increase in the electrical 

conductivity. The conductivity increased from 10
2
 S/m for a 6% volume Ag load to about 10

6
 S/m for 

a 36% volume Ag load in SU-8 CPC [16]. The CPCs were crosslinked on a glass substrate by exposing 

the CPC from the bottom of the substrate (backside illumination) because glass has a high (100%) UV 

transmittance. The authors also stated that backside illumination was necessary for the CPC to adhere 

strongly to the glass substrate [16, 17]. The use of the glass substrate was convenient because it was 

compatible with the SU-8 developer that was used to develop the patterned structures.  

CPCs formulated with Ag as a filler are attractive because Ag possesses a high conductivity 

(>10
6
 S/m) and Ag nanoparticles have low absorption at an irradiation wavelength of 365 nm 

compared to other metals [16]. The 365 nm wavelength is typically used to crosslink the negative tone 

SU-8 resist. For example, 10% Ag nanoflakes have been mixed with negative tone polyimide to 

develop a CPC with an electrical conductivity of 10
4
 S/cm [18]. Also, Ag powder dispersed in 

poly(dimethyl siloxane), PDMS, pre-polymer has been used as a photo-resist with the addition of a 

curing agent [19]. However, the reflectance of Ag particles can also affect the crosslinking of the CPC 

by preventing radiation from reaching through the entire composite layer. In most of the literature 
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discussed so far, UV radiation was used to crosslink the CPC, but soft X-ray radiation can also be 

employed to crosslink native SU-8 to generate ultra-high aspect ratio (up to 80) structures [8]. 

In this work, we evaluated different polymers as potential substrates for the molding of fluidic 

networks that were compatible with the developing stages for producing integrated CPC electrodes. 

We investigated the use of X-rays for patterning Ag/SU-8 on different polymer substrates. The use of a 

photo-sensitive CPC for fabricating electrodes on polymer chips for conductivity analysis will be 

demonstrated in this report. As a proof of concept, we measured the conductivity responses of the Ag 

SU-8 electrodes to different NaCl ionic strengths.  

5.2 Methods and Materials  

5.2.1 Apparatus 

PMMA, Polycarbonate (PC) and three different grades of COC were evaluated as potential lab-

on-a-chip polymers upon which Ag/SU-8 electrodes could be generated. PMMA and PC plates (4” x 

4”) were cut from 5 mm thick sheets purchased from Goodfellow Corp. (Oakdale, PA, USA) whereas 

2” thick COC plates with similar dimensions were cut from COC sheets purchased from Topas 

Advanced Polymer, Inc. (Florence, KY, USA). COC grades 6013S-04, 5013S-04 and 8007X10 were 

investigated. According to the manufacturer, 8007X10 is a “pure” form of COC without any additives 

and has a glass transition temperature (Tg) of 78 
o
C while the 6013S-04 or the 5013S-04 grades have 

the same additive package except that the latter was made to have a lower molecular weight giving it a 

higher melt index than the former. However, COC 5013S-04 (Tg = 134 
o
C) is more brittle than 6013S-

04 (Tg = 138 
o
C), although, the 5013S-04 grade has a slightly higher light transmittance (~0.5%).  

Note that all grades of COC are not compatible with non-polar organic and aromatic solvents, but will 

tolerate polar organic solvents.  

 Ag/SU-8 CPC resist was exposed to X-ray radiation using an X-ray beam line (XRLM1 

beamline, Port 2A) at the Center for Advanced Microstructures and Devices (CAMD, Louisiana State 
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University, Baton Rouge, LA). The XRLM1 beamline was equipped with a DEX2 scanner (Jenoptik, 

Jena, Germany). To determine if UV radiation was sufficient to crosslink the CPCs, CPCs were 

exposed to UV light using a UV exposure station that was equipped with an aligner, a vacuum chuck 

to hold a 4” diameter substrate, a 1000 Watt Hg (Xe) lamp (220 – 450 nm) and a digital timer. 

5.2.2 Samples and Reagents 

Ten percent volume and 20% volume Ag/SU-8 composites were obtained from Gersteltec Sarl 

(Pully, Switzerland). The formulation and characterization of both composites resulted in electrical 

conductivities around 10
4
 and 10

5
 S/m after crosslinking [16]. SU-8 developer, propylene glycol 

mono-methyl ether acetate (PGMEA), was obtained from MicroChem (Newton, MA) and NaCl was 

purchased from Sigma-Aldrich (St. Louis, MO). All solutions were prepared in 18 MΩ nanopure water 

that was obtained from an ultra-pure water system (Millipore, Milford, MA). 

5.2.3 X-ray Mask and Radiation 

Synchrotron accelerators produce a high energy electron beam, whose path can be altered by a 

bending magnet associated with the XRLM1 beamline (see Figure 5.1). The bending magnet alters the 

motion of the electron beam causing them to lose kinetic energy and to generate light at many 

wavelengths due to this loss of kinetic energy. The emission is a continuous spectrum of wavelengths 

(infrared to hard X-rays). At the XRLM1 beamline, the electron emission spectrum was passed through 

a 100 µm thick Be filter followed by another Be filter that was 120 µm in thickness so that all 

wavelengths are absorbed except the X-rays. The electron energy was 1.3 GeV. The distance from the 

X-ray source to the sample (i.e., mask and Ag/SU-8 on polymer) was poised at 10.35 m with a 

plausible horizontal exposure plane of 104 mm.  

The pattern on the X-ray mask was transferred onto the resist because the X-ray mask was 

composed of a “blank”, which is a material that functions as a high bandpass filter that allowed the 
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transmission of X-ray radiation and an absorber, which absorbed X-ray radiation thereby preventing 

the radiation from reaching the CPC. Since SU-8 is a negative tone resist, the unexposed portions were 

washed away during the developing stage. The “blank” was composed of a 150 µm thick graphite layer 

on top of which was a 45 µm gold absorber that was electroplated onto the graphite. Six identical fields 

were contained within the mask (4” diameter), which allowed testing six different radiation doses in 

one run during the X-ray dose optimization. A photograph of the X-ray mask is shown in Figure 5.1. 

 

 

 
  

Figure 5.1 Top, left: Sample exposure end of the XRLM1 X-ray beamline located at CAMD, LSU, 

Baton Rouge. White spectrum was passed through two Be filters. The beamline electron energy was at 

1.3 GeV. The distance from the radiation source to the sample (mask and Ag SU-8 on COC) was 10.35 

m. Top, right: X-ray mask composed of 45 µm Au X-ray absorber (gold color) electroplated on 150 

µm thick graphite (grey color). The mask has six identical fields on a 4” diameter circle (see text for 

detail). Bottom, right: A picture AUTO-CAD drawing revealing details of the structures on of the 

mask. Bottom, left: Developed Ag SU-8 structures showing an expanded view of the comb structures 

in the mask.  
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5.2.4 Fabricating Polymer-based Electrodes on a Polymer Substrate  

Properties such as the glass transition temperature (Tg), resistance to SU-8 developer, and 

resistance to degradation upon exposure to X-ray radiation were considered in the polymer substrate 

containing the fluidic network selection process. To determine polymer resilience against the 

developer, pieces of PMMA, PC and two different COC grades (6013S-04 and 5013S-04) were 

immersed in the PGMEA developer for 5 min, 10 min, 30 min and 60 min followed by visual 

observation and inspection using a microscope. COC grade 8007X10 with a Tg of 78 
o
C was not tested 

as it already failed to meet the high temperature requirement of 120 
o
C needed for the CPC electrode 

processing downstream (see Section 5.3.1 for further explanation). The Ag/SU-8 CPC was spread onto 

the substrate by using a spatula instead of spin-coating to avoid redistribution and sedimentation of the 

Ag powder [16]. In order to obtain a 50 µm tall CPC, 50 µm thick shims were placed on the top of the 

two sides of the polymer substrate to facilitate the application of the desired thickness. A surface 

profiler was used to confirm the thickness of the applied CPC.  

5.2.5 X-ray Exposure and Development of Composite  

After applying the CPC on the substrate to the desired thickness, it was pre-baked overnight in 

a convection oven at 65 
o
C to evaporate the solvents within the SU-8 resin and then the temperature 

was increased to 95 
o
C for 5 h. This was followed by a direct (front side) X-ray illumination (0.4 nm – 

0.8 nm) of the CPC through the gold mask at the XRLM1 beamline (see Figure 5.1). This exposure 

began to slowly crosslink the irradiated portions of the CPC. A post-bake at 95 
o
C for 10 min was 

necessary to complete the crosslinking process. The crosslinked CPC became inert and stable against 

degradation in the presence of the SU-8 developer. Crosslinked CPCs on the polymer substrate were 

immersed in the PGMEA developer for 1 h to remove the unexposed CPC resist and then rinsed with 

isopropyl alcohol (IPA). Developed CPC structures were heated to 120 
o
C for 90 min in a convection 

oven to enhance the conductivity property because conductivities around 10
3 

S/m and 10
4 

S/m 
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have been reported for a 10% volume Ag/SU-8 with and without heat treatment, respectively [16].  

5.2.6 Chip Assembly and Conductivity Response 

Microstructures were micromilled into a mold master made from brass, which was then used to 

replicate the fluidic structures onto the polymer substrates [20].  Figure 5.2 shows a flow chart 

depicting the process pathway that was followed to fabricate the chips with integrated Ag/SU-8 

electrodes.  

The fluidic network consisted of a simple channel with electrode guides as shown in Figure 5.3. 

Channel depth and width were both 50 µm. The total channel length was 6 cm and the electrode guide 

was located about 1 cm from the inlet reservoir. The electrode guides were 50 µm high and 450 µm 

wide. As a proof of concept, a microchip was fabricated in which the Ag/SU-8 CPC was first 

crosslinked within the electrode guides of the chip by flood exposing the CPC with X-ray radiation. X-

ray radiation was selected at 60 J/cm
3 

as this was found not to adversely affect or degrade the polymer 

substrate, therefore, not affecting downstream processing, such as cover slip annealing to the substrate.  

A 50 µm milling bit was then used to mill a gap in the crosslinked CPCs within the fluidic 

channel followed by rinsing with nanopure water and thermal annealing with a polymer cover slip 

slightly below the polymer Tg. Then, a 15-cm long capillary with a 250 µm outside and 150 µm inner 

diameter was connected to the inlet reservoir of the microchip using epoxy glue. Solutions of different 

NaCl concentrations were pumped through the channel using a syringe pump and the conductivity was 

monitored using an in-house constructed conductivity system [5].  

5.3 Results and Discussion  

5.3.1 Selection of Polymer 

It is common practice in lithography to spin coat, crosslink and develop polymer resists, such 

as SU-8, on glass substrates or silicon wafers because glass and silicon are robust materials that can 

withstand high temperatures and importantly, do not degrade in the presence of the developers. In 
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addition, glass substrates allow nearly 100% light transmission, which favors backside exposure of the 

resist [16]. However, there are numerous benefits associated with polymer microfluidic devices [20-

26], especially in the area of biomolecular or cell analysis, and therefore, we set out to select a polymer 

substrate that was compatible with the process of lithography, and thus has a high transmission to the 

patterning radiation, has a high Tg and is compatible with the developers used for the CPC while 

meeting the requirements as a candidate for bioanalysis. 

 

Figure 5.2 Flow chart depicting process pathways that were followed that resulted in the test 

biochip reported herein stemming from the goal of fabricating disposable biochips with integrated 

electrodes. Fluidic networks were stamped into the polymers using a mold insert and hot embossing. A 

formulation 10% Ag volume SU-8 CPC was integrated on the chip as electrodes as shown in Figure 

5.3. The CPC was crosslinked on the chip using X-ray radiation. 
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Figure 5.3 (A) Schematic of how Ag SU-8 CPC was embedded within the electrode guide within a 

COC chip demonstrating the concept of fabricating polymer-based electrodes on polymer substrates. 

(1.) COC chip with fluidic network and electrode guide. (2.) 10% Ag SU-8 CPC was applied within 

the electrode guides. (3.) The CPC was flood exposed to X-ray radiation at 60 J/cm
3
. (4.) A 50 µm 

milling bit was used to mill off about 450 µm long (width of the electrode guide) or any crosslinked 

CPC within the fluidic channel so that (5.), which shows a fluidic channel with orthogonal electrodes 

resulted. (6.) After rinsing with nanopure water, a COC cover slip was thermally annealed to the 

substrate at around 132 - 134
o
C.  (B) Left: Actual image of 10% Ag vol. SU-8 CPC electrode 

embedded in a COC chip as illustrated in Figure 5.3A taken with a fluorescence microscope. Right: 

Photograph of COC chip with integrated CPC electrode. A 15-cm long capillary (A) was connected to 

the inlet reservoir of the microchip using epoxy glue (B). NaCl solutions were pumped through the 

capillary into the microchannel so that the traversed the electrodes (C) whose expanded view are 

shown in Figure 5.3B (left). Copper cylinders (D) were use to make contact between the µ-CPC 

electrodes and the macro world. Alligator clips terminating the ends of electrical wires (E) emanating 

from the conductivity detector system was used to make contact with the copper connectors. 
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PMMA has been adopted in both research labs and in clinical settings for biomolecular separations and 

cell analysis, and has proven to be an attractive polymer, in part, because several surface chemistries 

that allow for its modification have been established and it is highly machinable and moldable [27, 28]. 

PC, on the other hand, has a higher Tg (150 
o
C) compared to PMMA (Tg = 107 

o
C), a characteristic 

that favors our current application, and just like PMMA, surface modification chemistries for PC have 

also been well established [28]. Unfortunately, the integrity of both PMMA and PC polymers were 

compromised in the presence of the SU-8 developer as shown in Figure 5.4.  

 

Figure 5.4 Photograph showing the compatibility with PGMEA developer solvent of the various 

polymers whose backbone structures are also shown. A photograph of each polymer was taken after 

immersing the polymer for 0 min, 30 s, 5 min, 10 min and 60 min in the solvent. Top and bottom 

COCs are the Topas grades 6013S-04 and 5013S-04, respectively. 
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COCs are a new set of copolymers whose components can be varied to tune their 

physicochemical properties. Topas
R 

COC is a product of ethylene (n) and norbornene (m) as shown in 

Figure 5.4. A small amount (0.1 - 0.4%) of tetrakis[methylene(3,5-di-tert-butyl-

4hydroxyhydrocinnamate)]methane is often added as a stabilizer. COC 8007X10 does not contain any 

stabilizer and has nearly 100% light transmittance. In general, COCs possess qualities such as surface 

tunability, low autofluorescence, good adhesion to metal sensors, good UV transmittance, high 

chemical and temperature resilience and high impact strength. These qualities make them superior to 

PC or PMMA [29], therefore, they have been adopted for a variety of bioanalysis applications using 

microfluidics [30-35]. Because a heat treatment at 120 
o
C for 90 min was required to improve the 

conductivity of the CPC [16], we selected COC 5013S-04 (Tg = 134 
o
C) with a Tg that is higher than 

120 
o
C. Furthermore, COC 5013S-04 and 6013S-04 were observed to be compatible with the PGMEA 

developer. Figure 5.4 shows the resiliency of selected polymers upon immersion in the PGMEA 

developer over a period of time. Based on the developer compatibility studies, COC was selected as 

the substrate for the Ag/SU-8 CPC electrodes. 

5.3.2 Optimization of X-ray Dose 

We were first interested in determining the X-ray dose required to crosslink SU-8 resist that 

contained no Ag particles. Ag/SU-8 CPCs were then exposed to 20 J/cm
3
, 30 J/cm

3
, 40 J/cm

3
, 60 

J/cm
3
, 80 J/cm

3
 and 100 J/cm

3
 of X-ray radiation. For a 10% volume Ag/SU-8, we observed that 20 

J/cm
3
 was not sufficient to crosslink the entire CPC; some structures did not adhere to the COC 

surface, rather they lifted off the COC substrate during the developing stage (see Figure 5.5). Radiation 

at 20 J/cm
3
 did not reach the bottom of the CPC from the front side for a 50 μm thick resist layer. 

When the CPCs were exposed to high dose ranges of 80 J/cm
3
 and 100 J/cm

3
, we observed that 

portions of unexposed CPC portions remained attached to the COC substrate even after a 1 h 

developing step.  



127 

 

We found the optimal range for crosslinking a 10% volume Ag/SU-8 was found to be 30 J/cm
3
 

to 60 J/cm
3 

(see Figure 5.5) for a 1 h development time. SU-8 composites with higher Ag loads have 

been shown to possess greater electrical conductivity compared to a 10% volume Ag/SU-8 CPC [17]. 

For this reason, a 20% volume Ag/SU-8 was subjected to similar X-ray radiation and development 

processes. Similarly, lower radiation doses were found not to be sufficient to penetrate the CPC layer 

because the radiation was absorbed by the Ag particles (see Figure 5.6), whereas for higher doses, we 

observed that unexposed sections remained attached to the COC substrate even after a 2 h developing 

process.  

5.3.3 Effects of Silver Particles on the Crosslinking of the CPC 

In previous reports, Ag/SU-8 was crosslinked via UV lithography at 365 nm [16, 17]. At this 

wavelength, the reflectance of Ag is near zero. Despite the favorable reflectance of Ag at this 

wavelength, the authors could only achieve a crosslinked depth of 5 µm or less for a 10% Ag/SU-8 

CPC. We found that UV radiation at 365 nm at doses of 900 mJ/cm
2
, 1500 mJ/cm

2 
and 3000 mJ/cm

2
 

did not provide sufficient energy to crosslink the entire depth of a 50 µm Ag/SU-8 material in the 

present case - the CPC structures lifted off the COC support during the developing process within 10 

min in the developer. This corroborates with the fact that UV radiation did not penetrate deeper than 

~5 µm into the CPC. Since UV radiation can crosslink up to a 1000 µm thick native SU-8 (i.e., epoxy 

matrix without any metal filler) [36, 37], we concluded that UV photons were greatly absorbed or 

scattered by Ag particles in the CPC, thereby limiting the achievable cure depth. X-ray radiation can 

also be absorbed by Ag particles. When this happens, the radiation penetrates the inner core of the 

atoms thus exciting bound electrons. Absorption by Ag atoms occurs when the X-ray photon energy 

matches the energy required to promote an electron from a lower state (bound electrons) to a higher 

state. The likelihood of Ag particles absorbing X-ray photons increases as the Ag load in the CPC 

increases.  
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Figure 5.5 Gear structures developed from a 10% vol. Ag SU-8 CPC. Image shows the gear 

structures (50 µm tall) on different areas of a COC substrate after the developing process prior to 

which the CPC had received X-ray radiation doses of 20 J/cm
3
, 30 J/cm

3
, 40 J/cm

3
, 60 J/cm

3
, 80 J/cm

3
 

and 100 J/cm
3 

on the different areas. X-ray radiation at 20 J/cm
3
 was inadequate to crosslink the CPC. 

All images shown here were taken after a 1 h developing process. Additional 15 min was required to 

fully develop CPCs that received 80 J/cm
3
 and 100 J/cm

3
. An optimal range for crosslinking a 10% 

vol. Ag SU-8 was around 30 J/cm
3
 and 60 J/cm

3 
for a development time of 1 h. 

 

Absorption of X-ray photons by the Ag particles in the CPC translates to less radiation to 

crosslink the SU-8 resist of the CPC, but if the energy is high enough, the radiation can penetrate 

through the Ag particles reaching the underlying SU-8 resist. Lower energies (higher wavelength) were 

highly absorbed by the Ag particles thereby preventing the SU-8 resist to be fully crosslinked resulting 

in a weak adherence between the CPC and the COC substrate (see Figures 5.5 and 5.6). Similar to the  
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Figure 5.6  Comb structures developed from a 20% vol. Ag SU-8 CPC. Image shows the structures 

(50 µm tall) on different areas of a COC substrate after the developing process prior to which the CPC 

had received radiation doses of 20 J/cm
3
, 30 J/cm

3
, 40 J/cm

3
, 60 J/cm

3
, 80 J/cm

3
 and 100 J/cm

3 
on the 

different areas. X-ray radiation at 20 J/cm
3
 and 30 J/cm

3 
were inadequate to crosslink the CPC from the 

front side. Because of additional Ag particles compared to the 10% vol. CPC, some radiation were 

reflected to unexposed SU-8 causing some degree of crosslinking to occur in unexposed areas, which 

resulted in poor quality structures. 

 

case of the 10% volume Ag/SU-8, 20 J/cm
3
 was not sufficient to crosslink a 20% volume of the 

Ag/SU-8. We also found that 30 J/cm
3
 was insufficient for crosslinking a 20% volume Ag/SU-8 

because the additional Ag load absorbed the radiation (see Figure 5.6). However, we attribute the poor 

quality structures generated with 20% volume Ag/SU-8 for the dose at 40 J/cm
3 

or higher due to the 

reflectance of Ag arising from additional Ag particles. We reasoned that additional Ag particles 
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reflected the radiation to unexposed SU-8 causing some degree of crosslinking to occur in those 

unexposed areas. Figure 5.7 is a scanning electron microscope (SEM) image of fully developed 

structures composed of a 10% volume Ag/SU-8 on a COC substrate. The image showed 50 µm tall 

comb structures that had been crosslinked using X-ray radiation at 60 J/cm
3
 and developed in a 

PGMEA solvent for 1 h.  

 
 

Figure 5.7 Scanning Electron Microscope (SEM) image of a segment of fully developed structures 

composed of a 10% vol. Ag SU-8 on a COC substrate. The image shows 50 µm tall comb structures. 

The CPC was crosslinked using X-ray radiation at 60 J/cm
3
 and developed in a PGMEA solvent for 1 

h. Arrow shows a dent that resulted during handling indicating that the free-standing CPC structures 

should be dealt with care. 

 

5.3.4 Conductivity Response of SU-8 Electrodes 

To demonstrate the feasibility of the fabricated device with the integrated on-chip Ag/SU-8 

electrode described in section 5.2.6, we hydro-dynamically pumped different concentrations of NaCl 

solutions prepared in nanopure water (0.1 mM, 1 mM, 2.5 mM, 5 mM and 10 mM) through the chip 

(see Figure 5.3). We then monitored the conductivity responses and observed that different ionic 

strengths resulted in different conductivities as shown in a plot of NaCl concentration (mM) versus 

response in volts (V) in which a linear correlation was found to be 0.9934 (see Figure 5.8). The plot 
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shows that the voltage decreased linearly as the NaCl concentration in the solution was increased. 

Increased NaCl concentration increased the solutions conductivity, which means a decrease in the 

resistance within the detection area. Since a fixed AC current was supplied through the detection area 

by the conductivity system, the voltage drop across the detection area was found to reduce in 

accordance to ohm‟s law (V = IR; V = voltage, I = current and R = resistance). The on-chip Ag SU-8 

electrodes were orthogonal to the fluidic channel as shown in Figure 5.3 and were connected to the 

conductivity detector system, which was essentially an AC current source. The wire connectors 

extending out of the detector system were terminated with alligator clips, which were used to connect 

Cu metals (~2 mm diameter, ~15 mm tall) that were in turn made contact with the CPC electrodes. The 

Cu metals were inserted in ~2 mm holes that were drilled through the CPC electrodes after the chip 

assembly process and were glued in place using conductive epoxy.  

The detector system measured changes in the solution‟s conductivity across the detection area 

situation between the electrodes. In deed, the conductivity detector system performs two tasks, (i) it 

supplies AC current across the detection area and (ii) it measures current at the end of a bipolar pulse. 

The current is in turn converted into voltage by a voltage converter and that voltage corresponds to a 

conductance. The conductivity detector circuit was endowed with a synthetic inductor and a gyrator, 

which were in parallel to the double layer capacitance, Cd and stray (or parasitic) capacitance, Cs. This 

configuration eliminated the adverse effects of the Cs thereby improving the overall sensitivity of the 

detector system. The detector system provided an AC current of ±5 µA at ~ 40 kHz to avoid charge 

build up at the electrode surfaces due to Cd [4].  

Given an electrode cross-sectional area (A) of 22,500 µm
2
 (50 µm high x 450 µm wide) and a 

spacing (L) of 50 µm for the present work, we calculated the electrode cell constant, K (L/A) of 0.0022 

µm
-1

. McWhorter and Soper [38] in a similar detection scheme, employed Pt wire electrodes (360 µm 

diameter) that were integrated in capillary channels, reported a concentration limit of detection (LOD) 
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Figure 5.8  Plot of NaCl concentration (mM) against background conductivity responses (V). NaCl 

solutions prepared in nanopure water. Responses were obtained by continuously pumping the NaCl 

solutions through the fuidic channels so that the solutions traversed the CPC electrodes. The responses 

were recorded using a conductivity detector system, which provided an AC current of ±5 µA at ~ 40 

kHz. Different NaCl concentrations on the X-axis (0.1 mM, 1mM, 2.5 mM, 5 mM and 10 mM) educe 

corresponding conductivities on the Y-axis. The Y-axis is in volts, which is inversely related to 

conductivity. 

 

of 34.6 µg/L or 4.6 x 10
-1

 µM (K = 0.0006 µm
-1

, electrode spacing = 60 µm) for KCl in a ddH2O 

carrier solution. In the present case, the concentration LOD was found to be 0.134 mM using the 

average signal (4.89 V) plus three times the standard deviation (0.0214 V, n = 10) of a blank signal. 

We attribute the favorable LOD to lower K values reported here compared to the author‟s previous K 

value.  
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5.4 Conclusions 

 A new approach for fabricating on-chip electrodes was investigated and a microchip with the 

integrated electrode was tested. The electrode fabrication relied upon the photo-patterning of a CPC, 

such as a blend of Ag nanoparticles and negative-tone SU-8 photoresist using X-ray lithography. The 

electrodes were patterned on COC substrates, which were found to be compatible with the electrode 

fabrication process. A CPC with a 10% volume Ag load in SU-8 was used to fabricate the electrodes 

by crosslinking the CPC using an optimal X-ray dose of 60 J/cm
3
 and developing the structures in a 

PGMEA developer for 1 h. Twenty percent volume Ag/SU-8 resulted in poor quality structures 

because additional Ag particles reflected the radiation to neighboring unexposed SU-8 essentially 

crosslinking some of the unexposed SU-8. For both 10% and 20% volume Ag load, structures were 

found not to adhere to the substrates because Ag particles absorbed the radiation. Radiation absorption 

of this sort prevented the CPC from crosslinking and typically occurred at lower doses. Front side (or 

direct) illumination was used for all radiation exposures. Using a conductivity detector system, 

conductivities of NaCl solutions with varying concentrations was monitored and a LOD of 1.34 x 10
-1

 

mM for this scheme was calculated. 
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6 Summary and On-going Developments  

6.1     Summary 

Many groups have attempted to integrate various proteomic processing steps onto a single chip 

to build autonomously-operating system, but the ultimate goal of integrating a multitude of proteomic 

analysis units into one system for complete and automated multifunctional operation has not been 

realized to-date. As discussed in Chapter 1, our approach is to design, build and evaluate the 

performance of an integrated proteomic analysis system that consists of the following processing 

devices; a cell lysis unit, protein extraction unit, 2-D separation unit, protein digestion unit, and peptide 

separation unit prior to online coupling of the integrated chip to a mass spectrometer. Amongst these 

units, multidimensional protein separation is regarded as the workhorse of many proteomic projects; 

therefore, careful attention must be paid toward the development and implementation of 

multidimensional microelectrophoresis platforms whether as an independent proteomic unit or as an 

integral part of a multifunctional system. To fully realize the potential of polymer microfluidic devices 

for routine separation applications, the reliability of the devices must be improved in terms of their 

walls‟ chemical composition. To this end, we developed a procedure to covalently anchor an LPA 

coating to the PMMA wall to stabilize and suppress the EOF of PMMA as well as reduce potential 

solute-wall interactions. However, we also found that dynamically coating PMMA surfaces with 

MHEC produced similar EOF values that were observed in covalently LPA-modified PMMA. 

We demonstrated the ability to generate peak capacities around 2,600 (±149) within 30 min for 

a biological serum protein sample using a microchip separation platform, whose effective separation 

length was 11 cm. While this peak capacity is still far below the total number of protein components 

typically found in a serum proteome, isolating sub-populations of common protein types, such as 

glycosylated or phosphorylated protein types, could make this peak capacity tractable for exhaustive 

analysis of complex protein samples, like the serum proteome. In order to perform ultra-fast 
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separations, we utilized a 2-D platform that provided relatively high spot production rates and 

reasonable peak capacities in spite of the fact that short separation lengths (effective length = 2 cm) 

were employed (10 mm in each dimension of this 2-D system). An average peak capacity of 481 (±18) 

was obtained by coupling MEEKC to SDS µ-CGE requiring only a 220 s development time. This 

particular 2-D separation format has the advantage of generating a higher peak capacity over the more 

traditional MEKC coupled to SDS µ-CGE due to better plate numbers afforded by the MEEKC phase 

compared to MEKC. In addition, interfacing the 2-D separation platforms discussed in Chapters 3 or 4 

to a mass spectrometer as well as integrating sample preparation steps to the chip platforms prior to the 

2-D separation will provide an autonomous system for discovery or diagnostic-based proteomic 

projects. To avoid issues associated with dye labeling, such as the availability of thiol groups in 

proteins, 2-D chips can be integrated with on-chip electrodes for label free analyses via conductivity 

sensing.  

With the ultimate goal of performing a label free proteomic analysis in mind, we investigated a 

new approach for fabricating on-chip electrodes to provide the ability to carefully control the inter-

electrode gap and to build electrodes that matched the output channel dimensions to keep the sampling 

efficiency high. The electrode fabrication relied upon the photo-patterning of CPC, such as a blend of 

Ag nanoparticles and the negative-tone SU-8 photoresist using X-ray lithography. The electrodes were 

patterned on COC substrates, which were found to be compatible with electrode fabrication process. A 

CPC composed of a 10% volume Ag load in SU-8 polymer resist was used to fabricate the electrodes 

by crosslinking them using an X-ray dose of 60 J/cm
3
 and developing the resulting structures in a 

PGMEA developer solvent for 1 h. The CPC was directly exposed to X-ray radiation from the front 

side (i.e., direct illumination). On-chip electrodes that were fabricated using this X-ray technique were 

tested for their responsiveness to changes in background conductivities. A conductivity detector 

system was used to monitor background conductivities of NaCl buffers with varying salt 
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concentrations, and a LOD of 1.34 x 10
-1

 mM was determined for this set-up. This method appears, in 

comparison to other lab-on-a-chip techniques for fabricating electrodes, to be cost efficient, less 

laborious, and amenable for a high-throughput fabrication of multiple electrodes. 

6.2      On-going Developments 

6.2.1   Background 

In Chapters 3 and 4, we dealt with the separation of proteins from biological serum samples 

and E. coli lysates, respectively. Because these proteins reside in more or less aqueous environments, 

proteins from these sources tend to be less hydrophobic and as such easier to solubilize in aqueous 

media prior to and/or during separation. But a class of proteins, membrane proteins, is terribly difficult 

to handle during analysis. These proteins are associated with the membrane of cells and are known to 

perform several functions including, cell boundary, signal transduction, ion and metabolite transport, 

cell adhesion, endocytosis, etc [1]. The clinical importance of membrane proteins is evidence in the 

fact that though they are low abundant, constituting about one-third of all cellular proteins [1], over 

two-thirds of all drugs are designed to modulate their activities [1, 2]. There are two types of 

membrane proteins: (1) Integral membrane proteins; and (2) peripheral membrane proteins. As their 

name suggests, integral membrane proteins are membrane proteins that are permanently attached to the 

cell membrane, either spanning through the cell lipid bilayer or permanently penetrating the bilayer at 

least from one side. Peripheral membrane proteins on the other hand, are loosely associated with the 

cell membrane. Integral membrane proteins are often targeted during the analysis of membrane 

proteins because their non-membrane spanning domains tend to be more hydrophilic and are often 

excluded along with cytosolic proteins during membrane protein extraction processes. Because integral 

membrane proteins are resident within the lipid cell membrane, they are composed of hydrophobic 

domains, which favor their occupancy in a highly hydrophobic environment.  However, this extreme 

Hydrophobicity impedes their extraction, solubilization and separation, especially in aqueous 
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 media, for example those required during isoelectric focusing. 

As already alluded to in Chapters 3 and 4, 2-D isoelectric focusing-polyacrylamide gel 

electrophoresis (IEF-PAGE) technique [3] is inadequate for membrane protein analysis due to poor 

solubility of hydrophobic proteins in the IEF dimension. Thus, membrane proteins are considerably 

underrepresented in 2-D gel patterns [1]. Our approach toward 2-D protein separations is cognizant of 

the hydrophobic environmental needs of membrane proteins. With the first dimension of our novel 

separation platform employing SDS µ-CGE and the second dimension utilizing SDS micellar 

electrokinetic chromatography (MEKC) [3, 4], the issue of membrane protein solubility within the 

separation buffers is less of a concern compared to IEF buffers. Not only does SDS improve the 

compatibility of both dimensions, it also ensures that proteins remain denatured and solubilized 

throughout the entire separation process. As an alternative, microemulsion electrokinetic 

chromatography (MEEKC) could be used instead of MEKC [5] because microemulsions have been 

shown to possess greater solubilization capacity than micelles [5]. Sections 6.3.1 and 6.3.2 in this 

Chapter describe some of the on-going efforts in our labs to separate membrane proteins.  

We are interested in developing a microchip-based differential expression electrophoresis 

platform of membrane proteins for protein biomarker discovery and for generating unique profiles for 

membrane proteins obtained from diseased cells compared to normal cells. To tackle the problem, we 

constructed a two-color LIF system that would enable us to monitor fluorescence from two protein 

samples (i.e., diseased and normal), each labeled with dyes with different excitation and emission 

wavelengths to differentiate between the two. The two-color LIF system as well as some of the 

preliminary efforts that we have undertaken in this regard is discussed in section 6.3.1.  

We have also been interested in performing microchip-based heart-cut 2-D separations of 

membrane proteins extracted from adipose stem cells. In this case, the readout modality would rely 

upon the change in background conductivity of the buffer due to the presence of separated membrane 
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protein bands; therefore, this approach does not require any fluorescence derivatization of proteins or 

post-staining with dyes unlike the projects described in Chapters 3 and 4 and this is elaborated upon in 

Section 6.3.1 of this Chapter. This project is especially attractive because electrode sensors are placed 

at the end of the first and second dimensions. As protein bands are detected from the first demission 

via an electrode sensor, the band can be quantitatively transferred into the second dimension for further 

MEKC or MEEKC separation. By doing this, we can drastically improve the transfer efficiency of the 

migrating protein plugs from the first into the second dimension  unlike a “blinded” injection transfer 

protocol (described in Chapters 3 and 4), where only a small fraction of the protein peaks from the first 

dimension are transferred into the second dimension. In addition, using the “blinded” injection process 

described in Chapters 3 and 4 were plagued with over sampling issues, in which a single band from the 

first dimension was injected into the second band multiple times. The heart-cutting method that will be 

employed using conductivity detection at the end of the first and second dimensions will effectively 

alleviate this over sampling condition.   

6.2.2 Microchip Differential Two-dimensional Membrane Protein Expression Profiling using a 

Two-color Laser Induced Fluorescence System  

 

6.2.2.1 Materials and Methods 

6.2.2.1.1 Chip Fabrication 

PMMA was selected as the µ-CE substrate because of its suitable physiochemical properties for 

this application, such as minimal non-specific adsorption artifacts and low levels of autofluorescence 

to improve the detection limits for ultra-sensitive fluorescence detection [5]. A PMMA cover plate 

(0.125 mm) was thermally fusion bonded to the substrate by heating in a temperature programmable 

furnace to 107
o
C, slightly above the Tg of PMMA. Figure 6.1 shows a topographical layout of the 

microchip used for this work.  Channels were 100 µm deep and 25 µm wide. The 2-D chip platform 

and separation protocol used in this case was similar to the one described in Section 3.2.1 of Chapter 3. 



141 

 

6.2.2.1.2 Two-color LIF System, Power Supply and Data Analysis  

To detect dye-labeled membrane proteins, we have constructed an in-house two-color LIF 

system.  A schematic diagram of this detection system is shown in Figure 6.2. Programmed high-

voltages could be applied to the solution reservoirs (A to F, see Figure 6.1) of the microchip with six 

independently-controlled high-voltage power supplies. The software for LIF data acquisition and 

control of the power supplies was created using LabVIEW (National Instruments, Austin, TX). Raw 2-

D electropherograms could be converted to 2-D images and then to three-dimensional (3-D) landscape 

representations by dividing the LIF signals from successive runs for each MEKC or MEEKC cycle and 

plotting the electropherogram at the corresponding cycle on the SDS µ-CGE axis. This procedure can 

be performed using ImageJ software (National Institute of Health, Bethesda, MD).   

The LIF system was configured in an epi-illumination format. Two excitation sources 

positioned orthogonal to each other consisted of a 532 nm laser diode (L1) positioned on the top 

(Module SLL-532-DT020-LM, OEM Laser Systems, Inc., East Lansing, MI) and a 633 nm laser diode, 

L2 (56DIB142/P1, Melles Griot, CO) positioned on the side. Both diodes were separately powered by 

a custom-built power supply with tunable output power. The lasers were filtered by the appropriate 

laser bandpass filters, F1 (CWL = 532 nm; part # XL08) and F2 (CWL = 633 nm; part # XL12) from 

Omega Optical, Brattleboro, VT, and directed onto a dichroic mirror (DF.1; XF2018; Omega Optical) 

so that L1 was reflected 45
o
 by DF.1 while L2 was allowed to transmit through DF.1 after which both 

wavelengths were passed through another dichroic mirror (DF.2; XF2055; Omega Optical) that 

reflected both excitation wavelengths into a microscope objective (40x, NA = 0.65; Nikon, Natick, 

MA) and into the fluidic channel. An X-Y-Z translational stage (Newport, Irvine, CA) was used to 

position the microdevice with respect to the laser beams. The resulting emissions were then collected 

through the same objective and routed through another dichroic mirror (DF.3; DMLP605; Thorlabs). 

Emission from L1 was reflected by DF.3 and filtered through a longpass filter (CWL = 550 nm;  
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Figure 6.1  (I) Topography of the 2-D microchip, which was drawn using AutoCAD software. The 

channels were 100 µm deep and 25 µm wide in all cases. The 1
st
 and 2

nd
 dimension channels were 4 

cm (filled with gel media) and 5.5 cm (filled with MEKC buffer), respectively, in terms of their total 

column lengths.  The effective column lengths for the 1
st
 and 2

nd
 dimensions were 3 cm and 1.5 cm, 

respectively. (II) Inset showing an off-set injection cross for sample loading with X = 150 µm. (III) 

Inset showing the 1
st
 dimension detection point (d1) at the end of the 35.25 mm (i.e., 30.25 mm 

effective length) column. The vertical column is the 1
st
 dimension channel spanning from C to D. Top 

horizontal channel is an electrode pair channel guide, whose application is discussed in Section 6.3.2 

because the same chip would be used later for a 2-D separation with conductivity readout (see Section 

6.3.2). Lower horizontal channel is a section of E-F intersecting with C-D. (IV) Inset showing the 2
nd

 

dimension detection point (d2, at effective length = 15 mm). Horizontal column is a section of the 2
nd

 

dimension channel stemming from E to F. Left vertical channel is an electrode pair channel guide, 

whose application is also discussed in section 6.3.2.   

 

3RD550LP; Omega Optical) and a bandpass filter (CWL = 570±10 nm; XB99 570BP10; Omega 

Optical) whereas emission from L2 transmitted
 
through DF.3 and filtered through a longpass filter 

(CWL = 650 nm; part # 3RD650LP; Omega Optical) and a bandpass filter (CWL = 670 ±10 nm; 

XB114 670BP10; Omega Optical).  
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Figure 6.2  LIF system configured in an epi-illumination format. Two independent excitation 

sources consisted of a 532 nm (L1) solid-state YAG laser and a 633 nm (L2) diode laser. Laser 

radiation was filtered by bandpass filters, F1 and F2. The excitation sources were directed to an 

objective by first directing them through a dichroic mirror (DF.1), which reflected L1 and transmitted 

L2. The objective focused the lasers into the micro-separation channel. Resulting emissions were 

routed through the same objective and then through another dichroic mirror (DF.3), which directed 

emission from L1 through a set of filters and transmitted emission from L2 onto a mirror that in turn 

reflected the emission through another set of filters. The filtered fluorescence emissions were 

separately focused onto two independent single photon avalanche diodes.  The LIF signal was acquired 

on a personal computer equipped with an I/O connector board (National Instruments model CB-68LP, 

Austin, TX) and a pulse converter (IBH model TB-01, Glasgow, UK). Data acquisition software was 

written in LabView.  

 

Finally, the filtered fluorescence emission from L1 (Em1) and L2 (Em2) were focused onto two 

independent single photon avalanche diodes (SPADs; PicoQuant model SPCM 200B, Berlin, 

Germany). The LIF signals were acquired on a personal computer equipped with an I/O connector 
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board (National Instruments model CB-68LP, Austin, TX) and a pulse converter (IBH model TB-01, 

Glasgow, UK). Data acquisition software was written in LabView.  

6.2.2.1.3 Extraction of Membrane Proteins from Human Cell Lines 

Human breast (normal) epithelial cells (184A1; part # CRL-8798) and human breast 

adenocarcinoma (MCF7; part # HTB-22) were obtained from ATCC, Manassas, VA and were 

separately lysed following a protocol adapted from Pierce and using their Mem-PER Eukaryotic 

Membrane Protein Extraction Kit (part # 89826; Pierce, Rockford, IL). Briefly, ~2.8 x 10
6
 cells of 

normal breast cells and ~5.6 x 10
6
 cells of MCF7 cells were rinsed in 0.85 mL and 1.7 mL of 1x PBS 

buffer and centrifuged at 850 x g for 2 min. The supernatants were discarded and to the pellets, 5 µL 

(normal) and 10 µL (cancer) of protease inhibitor (part # 1860932; Thermo Scientific, Rockford, IL) 

plus 75 µL (normal) and 150 µL (cancer) of lysis buffer (Reagent A)  were added, homogenized by 

pipetted and incubated for 10 min at room temperature with occasional vortexing. A solubilizing 

solution comprised of a mixture of Reagent C and B in the ratio of 2:1 were quickly added in the 

amounts of 225 µL (normal) and 450 µL (cancer) before the lysed cells were placed on ice. Reagent B 

is a proprietary detergent while reagent A is a dilution buffer. The tubes were centrifuged at 10,000 x g 

for 3 min at 4 
o
C after which the supernatant was transferred to new tubes and incubated for 30 min in 

a GC convection oven at 37
o
C. The membrane fraction (bottom layer) of each sample was separated 

from the hydrophilic fraction (top phase) by centrifugation at 10,000 x g for 2 min at room 

temperature. The top layer, the hydrophilic phase, was quickly, but carefully removed using a pipette.  

6.2.2.1.4 Membrane Protein Fluorescence Labeling       

Because we used thiol reactive dyes to label the proteins, we first reduced the protein disulfide 

bonds to free thiols using TCEP. A 0.35 M TCEP stock solution was prepared by adding 12 mM Tris-

HCl buffer (pH 7) to 100 mg TCEP to a total volume of 1 mL. Reduction of protein samples was done 
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by adding ~28.6 µL from the TCEP stock solution to each protein sample and making up each solution 

to 1 mL using the 12 mM Tris-HCl buffer so that a TCEP final concentration of 10 mM was used. The 

reaction was incubated in ice for 1 h with occasional vortexing.  Conjugation of dye molecules to 

proteins was carried out by adding at a molar ratio of 1:10 (dye:protein), ~22 µL of DyLight 649 

(Excitation/emission = 646/674 nm; product # 46615; Thermo Scientific) to the MCF7 membrane 

protein sample. The dye solution was prepared by dissolving 1 mg of the dye in 100 µL of DMF. A 

similar reaction was also carried out for the membrane proteins from the normal cells, except that 

DyLight 549 (Excitation/emission = 593/618 nm; product # 46607; Thermo Scientific) was used 

instead. Excess dyes were removed by dialyzing each protein sample using the Pierce Slide-A-Lyzer 

dialysis kit (part # 66380), whose membrane is made of cellulose with a 10 KDa cut off. Membrane 

protein concentrations were determined to be ~0.3 mg/mL and 0.013 mg/mL for MCF7 and normal 

cell line membrane proteins, respectively. 

6.2.2.1.5 Microchip 2-D Electrophoretic Separations      

Two-dimensional electrophoretic separations are performed with a microchip whose 

topography is shown in Figure 6.1. All channels are rinsed with a solution of 5 mg/mL of methyl 

hydroxyethyl cellulose (MHEC) dissolved in 1x PBS (pH = 7.2, Sigma-Aldrich, St. Louis, MO, USA). 

Prior to the µ-CE 2-D separation, the first dimension channel is filled with a seiving matrix consisting 

of a SDS 14-200 linear polyacrylamide gel (Beckman Coulter Inc., Fullerton, CA, USA) containing 

0.05% w/v MHEC, while the second dimension channel is filled with the MEKC or MEEKC buffer 

(see Chapter 4). MCF7 membrane proteins are injected into the chip injection cross (i.e., X in II of 

Figure 6.1) and proteins in the plug (150 µm) separated along channel C-D in a 1-D membrane protein 

separation format (i.e., while monitoring fluorescence at d1). Based on the 1-D electropherogram, we 

can carry out a 2-D separation of the membrane proteins following the strategy discussed in Chapter 3 

in which co-migrating proteins reaching the end of the first dimension are “blindly” injected into the 
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second dimension for further separation. Profiles generated from the 2-D separation of the MCF7 

membrane proteins can be compared to profiles generated from a 2-D separation of the membrane 

proteins isolated from the normal breast cell line. Furthermore, comparing these two unique profiles 

could lead to the identification of potential membrane protein biomarkers. A rigorous analysis can be 

made by separating the two protein samples in one run. This is possible because the two protein 

samples are labeled with dyes with different excitation wavelengths whose emissions are processed by 

two independent SPAD detectors (see Figure 6.2) and the display from the detectors appear on separate 

windows on the monitor as shown in Figure 6.3. 

6.2.3 Heart-cut Two-dimensional Separation of Adult Stem Cell Membrane Proteins Using 

Polymer Microchip Integrated with Contact Conductivity Detection 

 

6.2.3.1 Materials and Methods 

 

6.2.3.1.1 Chip Fabrication 

 

Because the readout modality for this particular separation project would rely upon the change 

in background conductivity, we proceeded to fabricate a PMMA chip with integrated platinum 

electrodes. The topography of the chip is the same as the one already described in Figure 6.1. Platinum 

electrodes (part # 357367-180MG; Sigma Aldrich), 100 µm in diameter, were cut into ~5 mm long 

pieces and manually placed in electrode guide channels (see Figure 6.1). An electrode pair is placed at 

the end of each dimension such that the spacing between the electrodes would be 25 µm (equal to the 

channel width).  

The effective length, which is the distance from the injection cross to the electrode sensors in 

the first dimension, is 30 mm while the distance from the intersection of C-D and E-F is 15 mm. After 

ensuring that the electrodes are in the guides, a 125 µm thick cover slip can be thermally annealed onto 

the substrate with the embedded electrodes set at 107 
o
C in a GC oven. Cylindrical copper connectors 

can be used to make contact with the Pt electrodes so that electrical wires are emanating from the 

conductivity system (see Section 6.3.2.1.2) and terminated with alligator clips used to make contact
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 with the copper contacts.  

 

Figure 6.3  Window display for the two-color LIF detection system shown in Figure 6.2. Top 

display is associated with emission from DyLight 549 (Excitation/emission = 593/618 nm) while the 

bottom display is associated with emission from DyLight 649 (Excitation/emission = 646/674 nm). 

 

6.2.3.1.2 Conductivity System and Electronics 

The proposed conductivity system shown in Figure 6.4 is basically an AC current source. The 

detector system monitors changes in the solution‟s conductivity across the detection area between the 

electrodes. The conductivity detector circuit consists of a synthetic inductor and a gyrator, which are 

made in parallel to any double layer capacitance, Cd and stray (or parasitic) capacitance, Cs. This 

configuration eliminates any adverse effects of Cs thereby improving the overall sensitivity of the 
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detector system. The detector system supplies an AC current of ±5 µA at ~ 40 kHz to avoid charge 

build up at the electrode surfaces due to Cd [6].  

 

Figure 6.4  Conductivity System Set-up. Monitors changes in the solution‟s conductivity across the 

detection area between the electrodes. The system supplies an AC current of ±5 µA at ~ 40 kHz to 

avoid charge build up at the electrode surfaces due to Cd.  This system is capable of monitoring events 

at the first dimension (CHAN 1) and second dimension (CHAN 2).  

 

The system is endowed with a sensitive detection circuit designed to be responsive to small 

conductivity changes within the buffer. Previous attempts at measuring these changes utilizing the 

bipolar conductivity technique [7] produced poor results, particularly when the channel width was 

increased to 50 µm. The commonly used bipolar conductivity method makes use of the fact that the 

time constant of Cd in Figure 6.5, is much larger than Cp. Thus, the parasitic capacitance is fully 

charged before the double layer, and therefore has little effect on the current sensed by the amplifier. 

This current is now dependent mostly on the conductivity, Gs of the solution. However, the sensitivity 

of this arrangement is limited and for a small change in conductivity on the order of 1%, the output of 

the amplifier with a bipolar voltage of ±500 mV will only be ±5 mV. Such small signals can easily be 
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obscured by background noise. This problem is compounded if the buffer‟s conductivity is so high that 

further increases in amplifier gain can result in saturation or at least, reduced dynamic range. 

For these reasons, a different approach was taken. Referring to Figure 6.5, the following 

method was developed. First, to reduce the effect of parasitic capacitance, Cp, due to wiring and 

electrode configuration, a synthetic inductor, L, of 132 mH was designed using a Gyrator circuit. 

Gyrators, for a given bandwidth, allow the creation of high quality factor (Q) inductors from RC 

components. The inductance generated was placed in parallel with the capacitance Cp, and the sine 

frequency varied to locate the resonance peak of the voltage across L and Cp. Once this resonance 

point is found (using the freq adjust knob), the voltage across the sample cell could be directly 

sensitive to changes in Gs. The equation for the impedance of the equivalent circuit consisting of the 

sample cell in parallel with the inductor is a third order polynomial. This makes the analytical 

determination of impedance difficult, but for a typical circuit values near resonance, the absolute value 

of the impedance; | Z | ≈ 1/Gs. The sine wave generator produces a waveform that could be adjusted 

from 0 to ±1 V in amplitude and 25 – 50 kHz in frequency.  

A target frequency of 40 kHz was chosen to minimize the impedance due to Cd and hold the 

inductance to a reasonable value. This signal was fed to a transconductance amplifier, G1, which 

converted the voltage sinusoid to a current. The gain of G1 is 10 µA/volt. A current source was needed 

to drive the sample cell because a voltage source, with its low output impedance, would spoil the 

circuit‟s Q. For our experiments, the current was set to ±5 μA. The required resonance frequency could 

be approximated by the standard parallel resonance equation, f = 1/2π (LCp)
 1/2

. The voltage across the 

sample cell was fed to an Analog Devices AD630 synchronous modulator – demodulator that was 

configured as a phase sensitive detector. The AD630‟s reference input was driven from the phase 

delayed sine wave oscillator output. This phase adjustment was needed to compensate for phase lags in 

the detected sample voltage. This voltage is then fed to a low pass filter with a cutoff frequency of 180 
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Figure 6.5. Schematic of the Conductivity Detection Electronics. Changes in background 

conductivity due to Go is registered in the circuit as voltage change (sample voltage), which is filtered 

through a lowpass filter after comparing with the background reference. The signal is ultimately, 

amplified prior to user visualizing the signal on the computer monitor. 

 

Hz. The filter produced an average DC signal that was sent to a differencing amplifier, A1. The 

difference amp nulled the output to 0 V while measuring the buffer alone. Thus, the high gain 

amplifier, A2, could amplify small changes in solution conductivity without saturating the voltage 

produced by the buffer itself. A National Instruments PCI6071E, 12 bit A/D acquisition card was used 

to convert the analog signal to 12 bit data. 

6.2.3.1.3 Heart-cut 2-D Separation of Membrane Proteins  

In a heart-cut transfer protocol securing a 1-D electropherogram of the membrane protein 

separation prior to a 2-D separation would not be necessary because the technique calls for material 

from the first dimension to be transferred into the second as they migrate towards the end of the first 
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dimension. In Chapters 3, 4 and 6 (Section 6.2.2), a 1-D separation was required primarily to 

determine when the first peak was expected at the end of the first dimension. In those separations, 

which employed “blinded” injection of material from the first dimension into the second dimension, 

one peak may be sampled multiple times into the second dimension, and the transfer efficiency can 

deteriorate as well. Also, prolonged development times are apparent with the blinded injection 

protocol. In our heart-cut protocol, electrode sensors are placed around the end of the first dimension 

and as a protein plug transverses the electrode sensors, the signal generated by the plug above baseline 

(or background buffer) would, after a preset time, initiate protein movement from the first dimension 

into the second dimension.  
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