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ABSTRACT 

 Glycoproteins have long been identified to have a profound association with human 

pathological processes, and they are much sought after as potential biomarkers to aid in the early 

diagnosis and clinical prognosis of cancers and diseases.  There is currently high demand for 

high-throughput and low–limit–of–detection techniques that can afford profiling of the 

glycoproteome.  Micro-total analysis systems (TAS) based on microfluidics have the potential 

to fulfill these requirements, but in order to reduce the complexity of the protein pool, the TAS 

devices must contain a pre-isolation and enrichment component.   

The research project undertaken here involved derivatization of microfluidic surfaces 

with ligands to allow for capture and isolation of glycoproteins in solution.  It is envisioned that a 

microfluidic device operating in a serial affinity mode can be fabricated whereby a large set of 

glycoproteins are captured by a global capture element, followed by further fractionation of the 

previously captured glycoprotein pool into unique glycoproteins by capture elements specific to 

each unique protein.  To that end, the research here involved (1) modification of poly(methyl 

methacrylate) surfaces with a boronic acid derivative as the global glycoprotein receptor and  

(2) investigation of a surface-amenable synthetic route for the creation of a thermoresponsive 

scaffold with immobilized lectin, as the specific glycoprotein receptor, and its complementary 

eluting sugar.  Creation of these surfaces is the first step toward realizing a TAS for 

glycoprotein analysis.   

The novel boronic acid derivative 4-[(2-aminoethyl)carbamoyl]phenylboronic acid was 

immobilized on carboxymethyl dextran surfaces, and its protein interaction analysis was 

investigated by surface plasmon resonance spectroscopy.  Poly(methyl methacrylate) 

microfluidic surfaces were then functionalized with the novel boronic acid derivative to yield a 



xvii 

 

first-generation global capture modality.  Glycoprotein binding to and elution from the global 

capture surface was afforded using glycine- and Tris-binding buffer systems and borate-eluting 

buffer systems, respectively, with the aid of Tween 20.  A thermoresponsive terpolymer poly(N-

isopropylacrylamide–lactose–RCA120), with the lectin Ricinus communis agglutinin (RCA120) as 

the specific capture element, was successfully prepared by surface-amenable synthetic protocols.  

The synthetic strategy proposed in this work can be easily adapted in the creation of microfluidic 

devices that can afford the capture of specific glycoproteins.  



1 

 

CHAPTER 1 

INTRODUCTION 

1.1 Research Goals and Aims 

 

 The goal of this research is the creation of microfluidic surfaces that possess glycoprotein 

receptors for applications in glycoproteome profiling and screening.  In particular, receptor-

modified surfaces capable of isolating a large set of glycoproteins and another surface that allows 

for the fractionation of the previously captured set of glycoproteins into a specific glycoprotein 

component are to be prepared to realize an affinity system that can operate in a serial fashion (i.e. 

general isolation to specific isolation).  

 The association of glycoproteins with human physiological and pathological processes 

has generated a lot of interest and has been the subject of much research on structure-function 

relationships.  In fact, a number of current clinically-important biomarkers are glycoproteins,
1-5

 

and there is reason to believe that more glycoproteins have yet to be identified as biomarkers, but 

that will require the aid of developing technologies.  Profiling of the whole glycoproteome 

remains a challenge because of the inherent microheterogeneity of glycoproteins and their 

existence in minute quantities in biological specimens.  When glycoproteins are differentiated in 

response to diseases or cancer, this not only increases the heterogeneity of the pool but also 

further decreases the quantity that can be detected.  A pre-isolation or enrichment methodology 

is almost exclusively required in all glycoprotein analysis.  Owing to the reasons given above, a 

high demand is placed on high-throughput systems, especially because identification of a viable 

biomarker requires profiling of biological specimens from a large population of human subjects 

in order to improve bias against sample-to-sample variations.  The rationale for developing 

systems that can afford a general to specific glycoprotein affinity, in a serial processing mode, is 
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two-fold in nature.  First, the general to specific modality basically constitutes a fractionation 

method.  Fractionation of glycoproteins/glycopeptides is a necessary step in order to obtain pure 

glycoproteins/glycopeptides that result from differentiation in response to pathological processes.  

This rationale stems from the fact that the glycoprotein pool is very heterogeneous.  This serial 

processing approach is not uncommon in glycoprotein analysis.  Cummings and Kornfeld
6
 

introduced the very first serial affinity approach (as serial lectin affinity chromatography, S–

LAC) for glycoprotein fractionation.  Since then, a lot of investigators have employed S–LAC to 

obtain glycoprotein subsets, with each subset containing a glycoprotein with a unique glycan 

feature.
7-10

    Processing by S–LAC normally begins with a lectin that exhibits broad sugar 

specificity followed by lectins with narrow sugar specificity.  However, as Yang and Hancock
11

 

adequately puts it, even the broadest specificity lectins available do not sufficiently capture all 

glycoproteins.  Hence, they introduced the concept of multi-lectin affinity chromatography (i.e. 

multiple lectins in one column) in order to increase the range of glycoproteins captured.  This is 

highly desirable because any attempt in glycoprotein analysis that fails to include even a single 

component glycoprotein is necessarily inadequate.  Without an efficient initial global capture 

methodology, information from other glycoproteins is most likely to be lost in the process of the 

fractionation.  It is therefore desirable to create devices or selection methods that first provide a 

global capture of all the glycoproteins, followed by a more specific selection method (capture) to 

isolate a unique glycoprotein.  In this way, a global capture would initially give a good 

representation of the glycoproteome.  Although M–LAC proved to be successful in capturing a 

wider range of glycoproteins, it requires several lectins combined to effect the desired capability.  

This is not attractive in the standpoint of cost effectivity.  Therefore, another global capture 

element should be sought; boronic acids are good candidates for this. 
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A viable argument is why not simply use a narrow specificity lectin since the thrust in 

isolation methodologies is to single out a particular disease- or cancer-related glycoprotein from 

a heterogeneous protein pool.  This brings about the second rationale in employing a general to 

specific glycoprotein affinity approach.  The approach envisioned herein actually attempts, not 

only to include all glycoproteins from a protein pool before fractionation, but to reduce the 

complexity of the protein pool using the general capture methodology.  Glycoproteins make up 

within 10% of the protein pool
11

 and the quantity of cancer- and disease-differentiated 

glycoproteins is further reduced to within 1%.
12

   If high abundance proteins are not removed, 

ionization of the low abundance glycoproteins is reduced during mass spectrometric (MS) 

analysis;
11,13

 mass spectrometry is often the method of choice when interrogating glycoproteins 

because of its structure elucidation capability.  The masking of glycoprotein by the high 

abundance proteins results in the non-identification of low abundance glycoproteins.  It is 

therefore customary to employ broad sugar specificity lectins or protein depletion methods prior 

to fractionation or MS analysis to reduce the complexity of the protein pool and subsequently 

allow identification of glycoproteins.  Depletion methods in glycoprotein capture function by 

allowing the high abundance proteins to adsorb on depletion matrices, leaving other proteins, 

glycoproteins included, unbound.
11,14

    However, depletion strategies are not very efficient, as 

they do not capture all non-glycosylated proteins. 

The first aim of this research was to fabricate a boronic acid-derivatized microfluidic 

surface for applications in the capture, enrichment, and release of large sets of glycoproteins.  

Boronic acids form heterocyclic diester bonds with 1,2- or 1,3-cis diols
15

 that are prominent 

features in all glycoproteins; use of properly-designed boronic acid capture elements should 

afford a global analysis of the glycoproteome.  Inherent to the aim of the research was the 



4 

 

evaluation of the interactions between glycosylated and non-glycosylated proteins alike with a 

unique  boronicacid-derivatized  surface.  For  this purpose, 4-[(2-aminoethyl)carbamoyl]phenyl- 

boronic acid, AECPBA, was immobilized on carboxymethyl dextran (CM5) sensor surfaces, 

thereafter called AECPBA–CM5, and protein interaction studies were carried out using surface 

plasmon resonance spectroscopy (SPR) to monitor protein-boronic acid interactions.  The 

binding and elution of a model glycosylated protein was examined to determine the appropriate 

buffer systems that afford adsorption and desorption.  Different glycosylated and non-

glycosylated proteins were evaluated in order to identify the factors that influence the adsorption 

of proteins on boronic acids and the underlying substrate.  The nature of non-specific adsorption 

and how to minimize it was also addressed.  After the conclusion of that study, poly(methyl 

methacrylate), a polymeric substrate established for the fabrication of  microanalytical devices, 

was surface-functionalized with the same boronic acid derivative, thereafter called AECPBA–

PMMA, with the hope of translating the outcomes obtained from the surface plasmon resonance 

spectroscopy (SPR) study to a surface that is chemically and structurally different from the CM5 

surface.  The properties of the AECPBA–PMMA surface were investigated by X-ray 

photoelectron spectroscopy (XPS), UV-vis absorption spectroscopy, and contact angle 

goniometry.  The ability and selectivity of the AECPBA–PMMA surface to capture 

glycoproteins and subsequently release them were examined by XPS measurements using model 

glycosylated and non-glycosylated proteins.   

 The second aim of this research was to develop a system that would be capable of 

capturing/releasing specific glycoproteins.  In particular, a synthetic strategy was proposed to 

create a thermoresponsive terpolymer that bears both pendant lectin (i.e. ligand or glycoprotein 

receptor) and its corresponding complementary eluting sugar for applications in the microfluidic-
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based capture, enrichment, and elution of more specific glycoproteins (i.e. glycoproteins 

possessing unique glycan features).  Lectins belong to a protein class that contains binding 

epitopes for specific oligosaccharide moieties.  Consequently, elution of bound glycoproteins 

from a lectin affinity enrichment format is afforded by the same specific sugars.  It should be 

immediately noted that unlike the conventional lectin affinity chromatography wherein the 

eluting sugar is introduced through the mobile phase, the eluting sugar in the terpolymer format 

is also immobilized on the same thermoresponsive polymer scaffold along with the lectin.  

Adsorption and desorption of glycoprotein analytes are envisioned to be facilitated by the 

expansion and collapse of the terpolymer as a consequence of the coil-to-globule transition of the 

thermoresponsive polymer support in response to temperature.
16

  This is an attractive affinity 

system because eluates would be free from small interfering eluent molecules, thereby allowing 

for direct introduction to a mass spectrometer.  It is envisioned that a microfluidic surface could 

be modified with this terpolymer; hence, the synthetic route developed here in solution possesses 

surface-amenable synthetic protocols.  The components of the precursor terpolymer were 

investigated and atom transfer radical polymerization synthesis was employed.  In particular, the 

combinations N-isopropylacrylamide (NIPAAM)–X–tert-butyl acrylate (tBA) where X is either 

N-acryloxysuccinimide (NAS) or glycidyl methacrylate (GMA) were examined.  The subsequent 

attachment of the lectin Ricinus communis agglutinin (RCA120) and its corresponding eluting 

sugar lactose were performed in a multi-step sequence fashion using biologically-relevant 

reactions. 

 Ultimately, fabricated microfluidic surfaces or devices are going to be integrated into a 

serial fashion such that an affinity system that operates by first non-selectively capturing and 

enriching a large subset of glycoproteins from a protein pool (boronic acid surface/device) then 
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followed by the isolation and enrichment of a unique glycoprotein (lectin–NIPAAM–sugar 

surface/device) is obtained, similar to serial lectin affinity methodologies. 

1.2 Glycoproteins and Their Roles in Human Physiology and Pathology 

1.2.1 What Are Glycoproteins? 

 Glycosylation of proteins is a topic that has attracted much attention over the years due to 

the unique properties that the oligosaccharide chains impart to the overall function of the 

proteins.  In general, proteins are decorated with glycan chains via co- and post-translational 

modification processes.  Glycoproteins are perhaps the most complex biomolecules in existence, 

because their biosynthetic pathway allows for the creation of structurally-diverse variants of 

glycoproteins.  The glycosylation of the protein is not coded by DNA.   Instead, the glycan 

chains are initiated, elongated, and terminated in the Golgi apparatus (GA) through the 

sequential action of glycosidases and glycosyltransferases.
17-18

  The transfer of the 

oligosaccharide chain to the protein then occurs en bloc and occurs primarily in the rough 

endoplasmic reticulum (ER).
19

  This is the natural biosynthetic pathway for N-glycosylated 

proteins.  However, a stepwise addition of monosaccharide units to proteins occurs to yield 

another broad class of glycoproteins called O-glycosylated proteins; this glycosylation process 

still occurs in the GA and ER.
20

  This information, along with the increasing evidence for 

relationships between aberrant protein glycosylation and diseases, has made glycosyltransferases 

the targets of carbohydrate-based therapeutics through enzyme inhibition actions.
18

 

 Glycoproteins make up half of all naturally-occurring proteins known to date.
5,21-22

  

Based on the increasing number of glycosylated biomarkers discovered each year and the 

advances in high-throughput systems used to do so, this fraction of the protein population is sure 

to grow.  However, glycoproteins exist in minute quantities in physiological specimens.  They 
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exist within 10% (w/w) of circulating serum proteins,
11

 and is further reduced to <1% for 

glycoproteins that resulted from differentiation with respect to cancers and diseases.
12

 

In general, the glycan chains consist of mannose (Man), galactose (Gal),  

N-acetylneuraminic acid (NANA, a.k.a. sialic acid,), fucose (Fuc), and N-acetylglucoseamine 

(GlcNAc) or N-acetylgalactoseamine (GalNAc).  These monosaccharides are linked together in 

different: (1) combinations—although a concensus is often found for N-linked glycans, vide 

supra; (2) linkages of the glycosidic bonds—typically designated as 1→2 or 1→4 or 1→6; and 

(3) anomeric configuration of linked monosaccharide units (α or β).  They can exist as linear 

chains or branched chains, with the latter often appearing as bi-, tri-, and tetrantennary structures.  

There are 2 broad categories of glycosylation that are commonly found in human glycoproteins, 

namely, N-glycosylation and O-glycosylation.  N-glycosylation is well understood and is the 

subject of much research on glycoproteomics.  This is partly because N-glycosylation is common 

in glycoproteins found in serum, the latter being a biological fluid that is easily sampled by non-

invasive procedures and one that contains a myriad of information.  In addition, the availability 

of known enzymes (such as PNGase F) that allows cleavage of N-glycans from the protein 

makes the resulting free glycans accessible for identification by chromatography and mass 

spectrometric techniques.   

N-glycosylated proteins have glycans that are linked to the asparagine residue in the 

protein in the consensus sequence Asn–Xxx–Ser/Thr/Cys (where Xxx is any amino acid except 

proline) via the N-acetylglucosamine glycan residue.  All N-glycans share a common conserved 

chitobiose structure that consists of N-GlcNAc and Man residues.  Three general types of  

N-glycosylation exist, and the type depends on the nature of the monosaccharide residues that 

extend from the core—high mannose, complex, or hybrid.  With high mannose N-glycosylation, 
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additional mannose residues are present.  Hybrid type glycosylation consists of N-GlcNAc and 

galactose extending from the core, while complex types are essentially hybrid types with sialic 

acid and/or fucose residues included in the structure.  A survey of N-glycosylated proteins 

reveals that the glycans are extremely chemically similar in composition; however, the 

variability in the linkages, the anomeric configuration of linked monosaccharides, the 

presence/absence of even one residue (especially fucose), and the branching all lead to extreme 

diversity in glycan structure.  In addition, the number of glycosylation sites is variable for every 

glycoprotein.   

Subtle differences in the glycan chains of a particular glycoprotein lead to variants of the 

glycoprotein (glycoforms) that are functionally different from one another.  These are general 

characteristics that occur even with O-glycosylated proteins.  Ribonuclease B (RNAse B) is a 

well-characterized glycoprotein of the high mannose type.  Its single glycosylation occurs at Asn 

60 and consists of at least nine glycoforms whereby the N-glycans are known by NMR and MS 

studies to be composed of 5, 6, 7, 8, and 9 mannose residues occurring in relative proportions of 

57%, 31%, 4%, 7%, and 1%, respectively.
23-24

  Human transferrin’s two major N-glycosylation 

sites (Asn 432 and Asn 630)
25-26

 fall under the complex type
27

 and were shown to consist of 

several glycoforms.
26

  Chicken ovalbumin, the very first protein that showed definitive evidence 

of glycosylation
28

 has a single N-glycosylation site at Asn 293 that exists with 13 different 

glycan chains (glycoforms) that are primarily of the high mannose and hybrid types.
29

   

O-glycosylation of proteins is less understood, likely owing to the difficulties associated 

with the identification and isolation of intact glycans that are required for a successful profiling 

and site mapping.  Unlike N-glycans that can be cleaved and obtained intact by known  

N-glycosidases, there is no known corresponding glycosidase for cleavage of O-linked glycans.  
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It is rather unfortunate that O-glycosylation has received little attention over the years, as 

proteins modified with O-glycans are also candidates for disease
30

 and cancer biomarker 

discovery.
31-32

  The most common type of O-glycosylation is of the ―mucin-type‖.
20,30,33-34

  As 

the name suggests, these are found in mucus secretions and are considered to be the principal 

components of mucus.  The O-glycans comprise ~ 50% of the dry weight of mucins;
20,30

 the 

large carbohydrate component is largely responsible for the gelatinous texture of mucus.  

Structurally, O-glycans are linked through an N-acetylgalactosamine residue to serine and 

threonine in the protein.
33

  The glycan is further elaborated in a linear or branched fashion with 

typical monosaccharides such as Gal, GlcNAc, and NANA.  Unlike N-glycosylation, there is no 

common core and consensus sequence to which O-glycans are attached.  However, mucins are 

rich in proline, threonine, and/or serine sequences (PTS region) and it is these sites where  

O-glycans are normally localized.
30

   

O-glycosylation is also found in extracellular glycoproteins and follows the same linkage 

and monosaccharide composition as the ―mucin-types‖.  They can occur along with N-

glycosylations in a glycoprotein, underlining the extreme diversity that is often encountered with 

glycoproteins.  Fetuin from bovine fetal serum contains both N- and O-glycan chains.  This 

glycoprotein has six glycosylation sites divided equally between both glycosylation types.  The 

N-glycans are of the triantennary complex type, while the O-glycans typically exhibit the glycan 

sequence Ser/Thr→GalNAc→Gal→NANA, with occasional linkage of NANA to GalNAc.
27,35

   

O-glycosylated proteins also include those that that are linked to the proteins via  

an N-Acetylglucosamine residue.  They typically comprise nuclear and cytoplasmic proteins and 

are generally not elaborated beyond the GlcNAc residue.  A recent review detailing the 

approaches in the study of O-GlcNAc is given by Wang and Hart.
36
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1.2.2 Roles and Functions of Glycoproteins 

Glycosylation imparts structural, protective, and stabilizing functions in living cells.  

Glycoproteins are involved in diverse biological mechanisms, such as protein folding, cell-cell 

recognition, protein-cell interactions, signal transduction, immunity, intra- and intercellular 

trafficking, and cell adhesion and differentiation.
37

  Perhaps the greatest interest in glycoproteins 

stems from their correlation in human pathological processes.  It has long been recognized that 

glycosylation of cell surface proteins is significantly altered during disease initiation and 

progression, cancer development, and metastases.
38-40

   

Because changes in glycosylation patterns are a reflection of the activity—either 

upregulated or downregulated—of the corresponding glycosyltransferases, these enzymes are 

becoming targets for carbohydrate-assisted therapy.  Therefore, identification of the changes in 

the glycosylation profiles of proteins is a necessary step toward identification of the target 

glycosyltransferases.  Several examples of aberrant glycosylation in diseases and cancer are 

illustrated below; the reader is directed to reviews
18,32,38,41

 for more comprehensive information. 

Perhaps the most well-known glycosylated tumor marker is the prostate-specific antigen 

(PSA), which consequently is the marker that is used clinically in the diagnosis of prostate 

carcinoma (PCa).  Increased levels of PSA, a 28.4 kDa glycoprotein that contains a single  

N-glycosylation at Asn 45, is associated with PCa.  However, false positives make it difficult to 

definitively assign high levels of PSA to PCa because other prostatic occurrences such as benign 

prostate hyperplasia (BPH) can also exhibit high PSA levels.  Therefore, investigations of 

glycosylation patterns are currently of great interest in the hope of providing better specificity to 

PSA as a tumor marker.
1-2

  Comparison of the PSA obtained from human seminal plasma 

(designated as the normal sample), PCa sera from patients, and LNCaP cell line (human prostate 
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adenocarcinoma cell line) was performed using lectin detection, immunosorbent assay, and 2-

dimensional gel electrophoresis.
1-2

  The general observation was that the glycans of the PSA 

from the seminal plasma and the PCa sera were quite similar to each other compared to the 

LNCaP cell line.  A few differences were observed though between the seminal plasma and the 

PCa and included decreased fucosylation, as well as α2,3 sialylation and the absence of terminal 

GalNAc for the latter.  However, the opposite was observed for the glycans obtained from the 

PSA protein isolated from the LNCaP cell line; this conflicting outcome may be attributable to 

differences in PSA expression from one person to another or masking of PCa-related PSA with 

normal tissue-shed PSA.  In view of this, more effort needs to be put forth in order for 

glycosylation in PSA to be a clinically-viable marker.  However, with the advances in high-

throughput systems, this goal should soon be met.   

Breast cancer is the most common cancer in women of all races 

(http://progressreport.cancer.gov/appendices_incidence-mortality.asp).  Alterations in protein 

glycosylation patterns are reported, including, but not limited to, increased β1,6-branched N-

linked oligosaccharides, increased sialylation, and upregulation of the mucin protein MUC1.
3
  

Pawelek and co-workers
42

 demonstrated by immunohistochemical techniques with tissue 

microarrays using the lectin leukocytic phytohemagglutinin (LPHA) that metastatic tumor tissues 

of breast cancer patients has greater abundance of β1,6-branched N-linked oligosaccharides 

compared to their primary tumor counterpart, suggesting that the alteration in the glycosylation is 

a poor prognosis of metastatic potential.  However, there is much debate over this glycosylation 

change as an indicator of metastases because other literature failed to find the same association.
3
  

Instead, Dwek and co-workers
3
 observed that monosialylated oligosaccharides, such as HPAgly-

1, were found overexpressed in the MCF7 breast cancer cell line of patients who developed 
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metastases; an immunohistochemical methodology based on the lectin HPA from the Roman 

snail Helix pomatia and 2-dimensional gel electrophoresis were used to identify the glycoprotein 

with overexpressed HPAgly-1.
3
  Both of these studies demonstrate the utility of lectins as a 

valuable tool in biomarker discovery. 

Serum CA125 is a glycoprotein tumor marker that is routinely used in the clinical 

diagnosis of ovarian cancer.  However, the ability to detect cancer at its later stage using this 

marker demands that other ovarian tumor markers be sought to facilitate earlier prognosis.  It 

was found in profiling studies of glycans from whole serum that a good indicator of ovarian 

cancer is the simultaneous doubling of occurrence for sialyl lewis x and core fucosylated 

agalactosylated biantennary glycans.  Studies to identify the glycoproteins containing these 

glycans led to the discovery of tumor-derived haptoglobulin β-chain, α1-acid glycoprotein, and 

α1-antichymotrypsin as proteins with altered glycosylation.
4
 

In hepatocellular carcinoma that has developed from hepatitis B virus (HBV) and/or 

hepatitis C virus (HCV) infections, increased fucosylation levels were determined from analysis 

of total sera.  Combination of lectin extraction, electrophoresis, and matrix-assisted laser 

desorption/ionization mass spectrometry (MALDI-MS) allowed for the identification of 

glycoproteins with hyperfucosylation.
43

  Changes in the glycosylation of human serum IgG was 

also found in rheumatoid arthritis patients.  Particularly, site-specific glycosylations revealed 

different extents of glycosylation occuring at all sites and an increase in bisecting GlcNAc and 

core fucose in the Fab fragment.
44

  

Glycosylation also plays a pivotal role in virus infection and contributes significantly to 

virus pathogenecity and tropism.  Of great interest are the 20 N-linked glycosylations that are 

prevalent on human immunodeficiency virus (HIV-1) gp120 glycoprotein and its contribution to 
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the binding of the HIV virus to its receptor CD4.
45

  It was found that the N-linked glycosylation 

participates in the binding by conferring the proper native conformation of the CD4 binding 

pocket rather than facilitating direct interaction of the virus to the receptor, such as in lectin–

glycoprotein interactions.  Hidden in this conclusion, and perhaps the more interesting 

information obtained from the study, is the fact that deglycosylation of the HIV-1 gp120 did not 

alter its avidity for CD4 binding, thus indicating that once the epitope binding site is properly 

folded—by allowing the conformation to mature following glycosylation of gp120—the  

N-linked glycans are unlikely participants in the interaction.  

 These examples clearly illustrate that glycoproteins can make for excellent biomarkers, 

with it being demonstrated that PSA and CA125 are currently used in clinical diagnostic tools.  It 

is also evident that owing to the large sets of glycans in their corresponding glycoproteins that 

need to be accurately profiled—variations in human-to-human samples included—there is the 

need for powerful techniques that can provide high selectivity in a high-throughput fashion. 

1.3 Overview of the Different Macroscale Methods of Glycoprotein/Glycopeptide 

Isolation, Enrichment, and Identification 
 

Physiological fluids often contain minute quantities of glycoproteins, and taken that 

differential glycosylation occurs during pathogenesis, physiological fluids should contain even 

smaller quantities of pathologically-related glycoproteins with increased heterogeneity.  In 

addition, the wide range of protein concentrations in serum or plasma spans 7–10 orders of 

magnitude,
46

 and glycoproteins are often masked by highly-abundant proteins, such as serum 

albumins (55%).
47

  These characteristics put high demands on approaches that can reduce the 

complexity of the protein pool and impart high selectivity and resolving power.  This section will 

address the commonly practiced macroscale methodologies that are encountered in 

glycoprotein/glycopeptide isolation and enrichment. 
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1.3.1 Lectin Affinity 

 

The vast majority of glycoprotein enrichment strategies rely on methods utilizing lectin 

affinity.  This is perhaps a consequence of the fact that lectins are inexpensive, ubiquitous (i.e. 

their sources include animals, plants, and microorganisms), and well-characterized in terms of 

their specificities, although the last point is probably debatable—its characterization could also 

have been driven by the need for them.  As illustrated in the previous section, lectin affinity 

chromatography is a very valuable tool in the identification of potential biomarkers from 

biological specimens.  The discovery of lectins was made by Stillmark
48

 in 1888 upon a chance 

encounter of a hemagglutinating activity of his castor bean extract (ricin).  Lectins (from the 

Latin-derived word ―legere‖ meaning ―to select‖) are often defined in the literature as 

carbohydrate-binding proteins of non-immune origin capable of agglutinating cells or 

precipitating glycoconjugates.
49

  However, Van Damme and co-authors
50

 find this definition 

restrictive, as they do not include all lectins (e.g. some have carbohydrate-binding properties but 

do not exhibit agglutination activity).  In particular, they have defined plant lectins as plant 

proteins that contain at least one non-catalytic epitope that exhibits reversible binding to a 

specific mono- or oligosaccharide.  Currently, lectins are classified according to 7 saccharide-

binding specificities (mannose-, mannose/maltose-, mannose/glucose-, GlcNAc/(GlcNac)n-, 

Gal/GalNAc-, fucose-, and sialic acid-binding lectins) but a broader classification groups them 

according to the number of saccharide binding domains (merolectins or hololectins) and whether 

or not there exists in the same lectin another domain that participates in biological activity 

independent of the activity of the saccharide-binding domain (chimerolectins or superlectins).
50

   

Hundreds of lectins are known as evidenced by the listing in the book Lectins
49

 and the 

Handbook of Plant Lectins.
50

  They are available commercially, and several vendors such as 
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Sigma, Vector Laboratories, Galab Technologies, Amersham Pharmacia, and Pierce offer 

unconjugated and conjugated lectins (agarose-bound, biotinylated, and fluorescently-labeled), 

lectin antibodies, and pre-made columns and kits.  Typically, lectins are generally categorized as 

having specific or relatively broad saccharide specificities.  This categorization is rather 

subjective and relies mostly on the commonness or uniqueness of the mono- or oligosaccharide 

structures and the intricate details featured in the glycans.   A lectin that perhaps best illustrates 

very narrow (high) specificity is the Macckia amurensis lectin (MAL) that recognizes the 

terminal sialic acid residue that is linked α2→3 to galactose residues but not sialic acid linked 

α2→6 to galactose.
8
  Alternatively, by having relatively broad saccharide specificity, the lectin 

recognizes a saccharide moiety that is common to many glycans.  The most common ones of this 

category are concanavalin A (Con A) and wheat germ agglutinin (WGA) that have specificities 

towards D-mannose and GlcNac residues, two quite common residues in N-glycans.  These two 

lectins are often employed to isolate a large set of glycoproteins
51-53

 that purportedly provide a 

good representation of the glycoprotein pool.  However, while it is possible to isolate a large set of 

glycoproteins using lectins with relatively broad saccharide specificities, inherent variations in the 

structure of the sugars bound to the protein have not allowed for isolation of all components of a given 

glycoprotein pool based on each lectin.
51

   

To this end, enrichment of glycoproteins from physiological specimens is often 

performed by serial lectin affinity (S–LAC, lectin columns connected in series)
6-10

 or multi-lectin 

affinity chromatography (M–LAC, multiple lectins in the same column).
11,46,54-55

  Both methods 

employ several lectins of varying structural selectivity to target different populations of 

glycoprotein; hence, a more complete capture is realized.    Hancock and co-workers
11,54

 were 

the pioneers of M–LAC, and they employed three broad specificity lectins, Con A, WGA, and 
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jacalin (specific for GalNAc residues in O-glycans).  In their work, they observed that indeed 

each lectin captured a subset of serum glycoproteome and some overlap in the lectin specificity 

(i.e. some glycoproteins captured by one lectin were also captured by another lectin); these 

outcomes highlight the fact that complete capture of glycoproteins cannot be achieved even with 

broad specificity lectins.  The specificity and efficiency of the M–LAC was demonstrated when 

human serum was subjected to M–LAC.
11

  The majority of the glycoproteins were found 

enriched in the bound fraction compared to the flow-through fraction (unbound).  It can be said 

that although enrichment was observed, it was not 100% efficient.  The selectivity was moderate, 

as a small amount of albumin was found in the bound fraction based on SDS–PAGE results.  

However, when a depletion step was performed on a plasma sample (i.e. underwent removal of 

high-abundance serum proteins) prior to M–LAC, the number of identified glycoproteins by 

mass spectrometry increased significantly, perhaps due to increased ionization of glycoproteins 

resulting from the absence of high-abundance proteins, such as albumin.
54

  In general, M–LAC is 

perhaps more efficient and practical than S–LAC because it requires less sample handling.  

Perhaps S–LAC is more appropriate in cases where a general to specific isolation is deemed 

necessary.   

Lectins are often utilized as immobilized materials on chromatographic support matrixes 

including, but not limited to, agarose, cellulose, silica, polymer beads, and monoliths.
56-57

  The 

immobilization strategies depend highly on the type of matrix, and the lectin attachment is 

usually accomplished following matrix activation.
57

  Lectin-affinity electrophoresis, on the other 

hand, is less common than the chromatographic techniques, but it has also proven useful in terms 

of qualitative assessment of changes in glycosylation of serum proteins.  When serum from 

patients suffering from alcoholism were subjected to Con A– and Datura stramonium lectin 
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(DSL)–affinity electrophoresis, the serum proteins isolated were found to be lacking in terminal 

sialic acids and N-glycans.
58

  Estimations of binding constant were also performed using lectin 

affinity electrophoresis.
59

 

1.3.2 Enrichment by Hydrazide Chemistry 

 Zhang et al.
60

 introduced a quantitative glycoproteome profiling that involved chemical 

manipulation of the glycoproteins by hydrazide chemistry.  The ―top down‖ approach involves 

the following sequence of steps: (1) periodate oxidation of cis-diol groups in the glycoprotein 

into aldehydes; (2) coupling of the aldehydes generated on the glycoproteins to a hydrazide-

immobilized solid support; (3) removal/collection of non-glycosylated proteins by simple 

washing; (4) proteolysis of the glycoproteins into glycopeptides by trypsin while on the solid 

support; (5) removal/collection of tryptic peptides; (6) release of tryptic glycopeptides by the 

endoglycosidase PNGase F, or isotopic labeling of glycopeptides prior to tryptic release; and (7) 

analysis of tryptic glycopeptides by high-performance liquid chromatography and mass 

spectrometric techniques.  Their initial results on human serum profiling identified 145 unique 

peptides that mapped to 57 unique proteins, while an isotope-coded affinity-tagged (ICAT) 

reagent method only identified 72 unique peptides that mapped to 23 unique proteins.
60

  The 

outcomes from the study by Zhang demonstrated an increased efficiency for the hydrazide 

chemistry method; this is because the hydrazide route does not suffer from the presence of high-

abundance proteins.  When an LNCaP membrane fraction (human prostate adenocarcinoma cell 

line) was subjected to the hydrazide method, 104 unique peptides that mapped to 64 unique 

proteins  were   identified  and   contained  the  N-glycosylation   consensus  motif;  these  results 

highlight the selectivity of the method to N-glycosylations.   
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The same group later extended—or modified—the hydrazide method by first performing 

the tryptic digestion of the glycoproteins prior to oxidation of the cis-diol groups.  This ―bottom 

up‖ approach allowed for glycopeptide enrichment of over 90% of glycopeptides in serum.
61

  

Depletion of the abundant plasma and serum proteins was accomplished by the method and 

allowed the identification of low-abundance glycoproteins.
62

  This method was successfully 

adapted by Hood et al.
63

 for the comprehensive profiling of the microsomal fractions of the 

cisplatin-resistant ovarian cancer cell line IGROV-1/CP; a 91% selectivity for the N-linked 

consensus sequence was achieved.  The authors
63

 claimed increased sensitivity with minimized 

sample loss compared to the protocol from Zhang et al.
60,62

  In the latter’s work,
60,62

 a solid-

phase extraction step was employed to remove excess periodate following the oxidation reaction 

and before subjecting the tryptic products to hydrazide resin; the SPE step is a potential route for 

sample loss.  Hood and co-workers
63

 eliminated this step by instead quenching the periodate 

followed by subjecting the tryptic products to hydrazide chemistry.  As a result, a three-fold 

increase in the number of identified proteins was realized compared to the method of Zhang et 

al. in the analysis of similar samples.   

Improved sequence coverage was achieved by Chen et al.
64

 when they integrated 

multiple enzyme digestion to the hydrazide enrichment protocol.  By using three proteases of 

broad and complementary specificity—trypsin, pepsin, and thermolysin—939 N-glycosylation 

sites were identified, as opposed to 622 resulting from a shotgun approach (i.e. using trypsin 

alone) of human liver tissue.  They argued that the use of trypsin alone results in missed tryptic 

cleavages—a prevalent occurrence in glycoprotein digestion due to steric hindrance posed by the 

glycans—and yields proteins that are outside the mass detection range typical for MS/MS 
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techniques (800–3500 Da).  Hence, peptides outside the range are not likely detected, as they 

illustrated. 

 It is clear that hydrazide enrichment can target N-glycosylations with high selectivity and 

increased sensitivity.  In addition, the potential of this method to determine the N-glycosylation 

site (or the lack thereof) is of tremendous importance, especially for diseases manifested by 

deficiencies in N-glycosylation (type 1 congenital disorders of glycosylation).
65-66

 However, 

glycan information is lost in the process, because it remains attached to the solid support.  This 

has a negative impact on biomarker discovery because differential glycosylation (i.e. changes in 

the glycan composition and structure) and its correlation with disease and cancer development, 

and metastatic potential, cannot be probed properly. 

1.3.3 Hydrophilic Interaction Liquid Chromatography (HILIC) 

 Hydrophilic interaction liquid chromatography relies heavily on the interactions between 

a hydrophilic stationary phase and polar analytes, with the latter’s subsequent elution by use of a 

relatively hydrophobic binary eluent.  Where the line is drawn between HILIC and normal-phase 

chromatography (NPC) is somewhat unclear.  However, Alpert’s definition that the mechanism 

of HILIC is based on the partitioning of analyte between the water-rich layer of the stationary 

phase and the bulk eluent, as opposed to the NPC adsorption-based mechanism, is gaining 

acceptance and seems to be an accurate definition as seen in the literature.
67

  Another important 

qualifier for HILIC is that water is the strongly eluting solvent.
67

   

A variety of stationary phases is employed in HILIC and includes bare silica, 

aminopropyl-bonded silica, amide silica, polymer-based amino packing, poly(succinimide)-

bonded silica and derivatives, cyano silica, cyanopropyl silica, diol silica, cyclodextrin-based 

columns, sulfonated SDVB, and more recently, sulfoalkylbetaine silica.
67-72

  The emergence of 
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these different stationary phases is a consequence of the advantages that each brings—compared 

to the others—to the HILIC format and the separation.  For example, polymer-based amino 

packings have greater stability compared to bare silica and aminopropyl-bonded silica, while 

amide silica prevents irreversible chemisorptions encountered in amino-based materials.  

Poly(succinimide)-bonded silica is capable of being further derivatized thereby increasing the 

potential of HILIC to cover different analyte types.  Diol silica corrects for the cumbersome 

adsorption properties of bare silica.  Cyclodextrin-based columns—with a high density of 

hydroxyl groups—increases the hydrophilic character of the stationary phase, and the 

sulfoalkylbetaine silica provides water-retaining properties and significantly less ionic retention 

than bare or amino-coated silica.
67-68

  Hägglund and co-workers
69

 packed GE-Loader tips with 

the neutral, zwitterionic HILIC material sulfobetaine-bound resin, thereafter referred to as ZIC–

HILIC.  Together with a Con A (lectin) pre-enrichment and endoglycosidase digestion, ZIC–

HILIC bound glycopeptides were eluted with 99.5% H2O, 0.5% formic acid.  Analysis of human 

plasma using this method identified 62 glycosylation sites that mapped to 37 unique 

glycoproteins, indicating the effectiveness of ZIC–HILIC for glycopeptide enrichment.  

However, the authors admittedly used the lectin column as an initial glycoprotein enrichment 

step prior to ZIC–HILIC to decrease the complexity of the glycopeptide pool.  Nevertheless, they 

were able to successfully identify even the glycopeptides from less abundant glycoproteins.   

Using ZIC–HILIC in the absence of a lectin pre-treatment, Picariello et al.
70

 

demonstrated that while they were able to identify the N-glycoproteins and the glycan sites of the 

glycoproteins responsible for the antiviral and antimicrobial properties of human milk and even 

some weakly expressed glycoproteins such as breast tumor novel factor 1 and RING finger 

protein 134, their results raised some specificity issues.  They observed that non-glycosylated 
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peptides bearing the amino acid sequence –EEE– or –EDE– were enriched in the ZIC–HILIC, 

along with non-glycosylated peptides from caseins, serum albumin, and lactoferrin of which 

sequences were not provided.   

In a communication by Takegawa et al.,
71

 the power of ZIC–HILIC in selectively 

resolving isomeric N-glycopeptides and recognizing structural differences among sialylated N-

glycan isomers and neutral N-glycans was illustrated with tryptic glycopeptides and 2-

aminopyridine–derivatized N-glycans of α-1 acid glycoprotein.  For example, differential 

retention was achieved for N-glycopeptides having the same glycan structure but differing in the 

peptide that carries them.  The retention of N-glycans with and without sialic acids can be finely 

tuned by electrolyte concentration, thereby resolving structurally-analogous N-glycans.  A 

similar observation was provided by Wuhrer et al.
72

 in their analysis of model glycoproteins 

using a nanoscale amide-80 column.  They found that the retention of identical glycopeptide 

moieties having different N-glycan structures depended on the size of the glycan.  They also 

observed that variation in peptide moieties changed the retention time of the glycopeptides, even 

though they all contain the same glycosylation.   

Collectively, the results from Takegawa et al. and Wuhrer et al. point to the general 

conclusion that the interaction of glycopeptides and N-glycans with the stationary phase is 

mediated by hydrogen bonding, a mechanism that is not specific to glycopeptides as illustrated 

by the work of Cao et al.
73

  In their analysis of secreted proteins of human hepatocellular 

carcinoma cells, they employed both hydrophilic interaction—or affinity as they referred to it— 

liquid chromatography (HA) and hydrazide chemistry method (HC) in the enrichment of  

N-glycopeptides.
73

  A complementarity in terms of the number of glycosylation sites identified 

by a combination of both methods was observed, such that a more global enrichment of 



22 

 

glycopeptides was realized.  Out of the 300 non-redundant glycosylation sites, there was only a 

41% (124) overlap, while 12% (35) and 47% (141) were uniquely identified by HC and HA, 

respectively.  The important outcomes of this study are two-fold: (1) HA proves to be more 

global in terms of its enrichment capability owing to the larger number of glycosylation sites it 

identified compared to HC; and (2) HC is a more specific enrichment protocol with a 93% 

specificity (based on the ratio of the number of N-glycopeptide versus total number of tryptic 

peptides), while HA has 51% specificity.  This result highlights the lack of specificity of HA 

primarily because its enrichment mechanism is based on hydrogen bonding that is not exclusive 

to glycans. 

 In general, hydrophilic interaction liquid chromatography has the power to resolve 

structurally-similar N-glycopeptides and N-glycans and identify N-glycosylation sites upon MS 

investigation.  Although it can deplete high-abundance glycopeptides, it suffers from low 

specificity, as demonstrated by the works presented above. 

1.3.4 Size-Exclusion Chromatography 

 A survey by Alvarez-Manzanilla and co-workers
74

 of the in-silico tryptic peptides of all 

the human protein sequences in the National Center for Biotechnology Information (NCBI) 

database revealed that over 90% of the peptides have masses below 2000 Da.  They hypothesized 

that because the mass of the smallest N-glycan is over 1200 Da, N-glycopeptides would have 

masses that are well above the non-glycosylated peptides.  Hence, they proposed that enrichment 

and separation of N-glycopeptides can be performed by size-exclusion chromatography.  

Analysis of the radiolabeled glycopeptides from Chinese hamster ovary cells revealed that 87% 

of the N-glycopeptides eluted first between the 17- and 22-min mark during the 40-min run.  The 

enrichment capability of the method was illustrated with the tryptic digest of a mixture of the 
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model glycoproteins bovine thyroglobulin and human transferrin, where the number of identified 

glycopeptides increased substantially from four to twelve before and after SEC enrichment.  

Similarly, when the method was applied in the analysis of glycopeptides from human serum, 

they were able to identify low-abundance glycoproteins that were not observed in the absence of 

the SEC enrichment method.  Although the authors presented some compelling results, the 

method has not been substantially investigated since its introduction.  A survey of the literature 

results in just one study that referenced the work of Alvarez-Manzanilla and co-workers.
75

  The 

investigation conducted by Jia et al.
75

 involved an ultrafiltration method based on molecular 

weight cut-off technology.  The tryptic peptide digests were introduced in a Microcon YM-3 

centrifugal filter device with a nominal molecular weight cut-off of 3000 Da.  The supposition is 

that core-fucosylated N-glycopeptides are preferentially-enriched, thereby composing the 

retentate, based on the larger molecular masses of N-glycopeptides.  When a mixture of four 

glycoproteins was subjected to the enrichment method followed by mass spectrometric 

techniques, only seven out of the expected eight glycopeptides were identified in the retentate, 

one glycopeptide more than an un-enriched sample.  The filtrate (i.e. it should contain low 

molecular weight peptides) unsurprisingly contained glycopeptides, albeit at decreased peak 

intensity in the mass spectrum than without enrichment.  The studies conducted by these two 

research groups clearly provide evidence of enrichment of glycopeptides that enabled detection 

of even low-abundance glycoproteins.  However, it was also illustrated that losses of 

glycopeptides are apparent, most likely the small fragment ones. 

1.3.5 Enrichment by Boronic Acids 

 The characteristic of phenylboronic acids to form reversible complexes with diol-

containing materials, such as sugars, has led to numerous  developments for eventual  application 
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in areas such as sensor technology,
76-81

 drug delivery,
82

 and affinity chromatography.
83-84

  

Current knowledge on the mechanism of the diol-boronic acid interaction is based on the 

equilibrium formation of a heterocylic diester from 1,2- or 1,3-diol groups and a tetrahedral 

boronate ion (Scheme 1.1);
15

  this equilibrium is a function of the ionization constant Ka of the 

boronic acid moiety.  Thus, the coordination of diol species is commonly performed at a pH that 

results in conversion of the trigonal planar boronic acid species into the tetrahedral boronate ion.  

Although it is generally accepted that the boronate ion is the active binding species, Ishihara and 

co-workers
85

 are of the opinion that the neutral planar boronic acid has comparable or even 

higher reactivity toward diols than the boronate ion, regardless of solution pH.  Because boronic 

acids recognize diol groups, they are expected to discrimate diol-containing materials from non-

diol-containing ones; thus it has a more general specificity.  Apart from the primary diol-

boronate interaction, secondary interactions such as electrostatic, hydrophobic, hydrogen 

bonding, and coordination are known to participate in the recognition mechanism.
84

  A variety of 

boronic acid-containing materials can be found both in the literature or obtained from 

commercial sources.  Several suppliers provide them as 3-aminophenylboronic acid immobilized 

on polyacrylamide spherical gel beads (the Affi-gel from Biorad and the immobilized boronic 

acid gel from Pierce), on agarose beads (from Sigma or the Aminophenyl Boronate A6XL from 

 

Scheme 1.1  Boronic acid equilibrium 
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ProMetic Biosciences), on acrylic beads (from Sigma), on poly(methacrylate) beads (the TSKgel 

Boronate-5PW from Tosoh Bioscience), or as poly(methyl methacrylate)-bound boronic acid 

(the boric acid gel from Aldrich).  Non-commercial preparations with 3-aminophenylboronic 

acid as recognition and/or enrichment element are found on silica beads,
13,86

 silica capillaries,
87

 

magnetic particles,
88-90

 polymer beads,
91-92

 glassy carbon electrodes,
93

 gold electrodes,
94

 and 

gold
76-77,81,95

 and glass surfaces.
96

 

Xu et al.
13

 prepared a novel boronic acid-modified mesoporous silica (bead-like) which 

features high surface area and large accessible three-dimensional porosity.  The ordered 

mesoporous silica decorated with a large surface density of silanol groups was efficiently utilized 

to attach 3-aminophenylboronic acid–derivatized 3-glycidyloxypropyltrimethoxysilane via a 

condensation reaction.  The merits of this novel material included a much shorter loading time 

(i.e. time to reach complete saturation) in the order of a few minutes, 15 min to be exact, 

compared to conventional methods, a consequence of increased mass transfer.  The enrichment 

of glycopeptides on this material can be conveniently implemented by non-trained personnel 

because its bead-like nature allows for easy separation of the glycopeptide-enriched material 

from the mixture by centrifugation.  The high specificity for glycopeptide binding was 

demonstrated by the absence of glycosylated peptides from a mixture of model glycoproteins in 

the supernatant.  In addition, the presence of non-glycosylated peptides from BSA did not affect 

the specificity of the material for horseradish peroxidase, albeit the recovery was slightly 

compromised.  More importantly, the limit of detection of glycopeptides was improved by two 

orders of magnitude.   

A recent improvement in the utility of boronic acid is its integration into MALDI plates 

for direct determination of glycoproteins by MS.  Xu et al.
97

 and Lee et al.
89

 both demonstrated 
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direct identification of glycopeptides/glycoproteins by MALDI-MS while enriched on the 

boronic acid–gold-coated Si wafer and magnetic beads, respectively. No elution was required, 

and sample handling was minimal, thereby resulting in reduced losses of enriched glycopeptides 

and glycoproteins. When Sparbier et al.
90

 compared the enrichment capability of four magnetic 

beads each modified with the lectins Con A, Lens culinaris agglutinin, WGA, and boronic acid, 

the largest number of unique glycoproteins were identified from the boronic acid beads, a likely 

outcome because boronic acids are less restrictive in terms of their specificity. 

1.4 Microfluidic Device-based Analysis of Glycoproteins and Glycopeptides 

 

The whole idea of downscaling or miniaturization of analytical processes is to impart 

improvement in the analytical performance.
98

  Consequently, a quadratic decrease in 

equilibration time, which reduces the time-scale of the process, is realized.  More importantly, 

better separation is achieved because the separation efficiency per unit time (i.e. number of 

theoretical plates per unit time) is inversely related to the square of the capillary diameter.
99

  

Recently, microscale and microchip devices are employed for glycoprotein/glycopeptide 

analysis.  Because of their inherent heterogeneity and the complexity of the biological fluid in 

which they are found, their analysis is challenging.  In addition, the demand for high-throughput 

analysis is growing because of the immense potential of glycoproteins as biomarkers. Therefore, 

glycoprotein analysis will greatly benefit from the features offered by microscale and 

miniaturized methods. 

1.4.1 Literature Review of Microscale and Nanoscale Methods for Analysis of 

Glycoproteins and Glycopeptides 
 

 A  lectin  microcolumn (5-cm long × 500 m or 1 mm i.d.)  packed with either Con A- or  

Sambucus nigra-derivatized  silica was  prepared by Madera et al.
100

  and  integrated  into a  high 
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performance affinity chromatography/MS system.  Using model glycoproteins, a shorter analysis 

time was achieved using the silica-based column compared to a sepharose-based material under 

identical conditions.  The Con A microcolumn was observed to be selective toward RNAse B, as 

addition of BSA to the mixture prior the analysis did not diminish the capacity of the 

microcolumn to bind RNAse B.  In addition, efficient capture of RNAse B and and its 

subsequent elution was also observed.  The presence of other peptides normally suppresses the 

ionization of weakly-ionized glycopeptides; hence, a pre-enrichment is often required prior to 

MS analysis.  By using the on-line lectin microcolumn prior to MS, peak intensities of low-

abundance N-glycopeptides from bovine fetuin were found to be ~20-fold higher than in the 

absence of the on-line lectin preconcentration.  

 Monoliths, particularly polymer monoliths, are gaining increasing attention as matrices 

for separation systems, because they can provide fast mass transfer, high loading capacity, high 

flow rates, and an in situ preparation with controllable surface properties.  These are features 

from which micro- or nanoscale separations can greatly benefit.  In fact, a number of literature 

reports use monoliths in microscale formats as an on-line or off-line preconcentration  

platform
101-102

 and also as nanoelectrospray emitters.
103

  Feng and co-workers
101

 fabricated a 

nanoscale Con A chelating monolithic capillary (10 cm × 200 m i.d.) by immobilizing Con A 

on an iminodiacetic acid-derivatized poly(glycidyl methacrylate-co-ethylene dimethacrylate) or 

[poly(GMA-co-EDMA)] through chelation by Cu
2+

.  One attractive feature of this format is that 

elution of bound glycoproteins can result with either the conventional sugar-based elution buffer 

or an ammoniated water eluent wherein Con A co-elutes with the glycoprotein; the latter allows 

for direct analysis of eluate by MS.  Comparison of the number of identified N-glycoproteins 

from urine samples of normal or bladder cancer patients, with either the nanoscale Con A 
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chelating lectin affinity or conventional Con A lectin affinity chromatography columns, revealed 

that there is at least three-fold more glycoproteins identified with the former using the same 

initial sample loading of 10 g.  In addition, the reproducibility (i.e. percentage of commonly 

identified proteins of replicate samples) is higher for the monolithic format (61%) compared to 

that for the conventional format (25%), for urine samples from bladder cancer patients.   

 These preconcentration monolithic columns can be further utilized as nanoelectrospray 

emitters for MS analysis.  Bedair and Oleschuk
103

 fabricated a monolithic [poly(GMA-co-

EDMA)] capillary column (10 cm × 75 m i.d.) with immobilized Con A and initially used the 

column for off-line preconcentration of 20-L tryptic digests from RNAse B.  Subsequently, the 

column was mounted to a mass spectrometer, and the tryptic glycopeptides were then eluted and 

directly infused into the nano-electrospray mass spectrometer.  The resulting enrichment of 

glycopeptides allowed the detection of the five glycoforms of RNAse B, as opposed to an 

inability to detect the glycopeptides using a direct infusion of the tryptic digest without 

preconcentration.  These results provide evidence for the value of integrating microfluidic 

devices to nano-ESI MS, which will most likely revolutionize glycoproteomic studies. 

Potter et al.
102

 demonstrated that boronate affinity monoliths allow separation of 

ribonucleosides from 2-deoxyribonucleosides using a micro-liquid chromatography separation.  

The capillary column (33 cm × 100 m i.d.) was initially modified with a poly(glycidyl 

methacrylate-co-ethyleneglycol dimethacrylate)  or  [poly(GMA-co-EDMA)].  p-hydroxyphenyl- 

boronic acid was then subsequently attached to the oxirane rings of the polymer to yield an 8-cm 

modified surface.  However, the analytical merits of the micro-liquid chromatography method in 

their study were not addressed.  Nevertheless, the authors hope to integrate their boronic acid 
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micro-affinity system into microfluidic devices to create a micro-total analytical system (TAS) 

for glycoconjugates. 

1.4.2 Microanalytical Devices 

 

 Any advancement in glycoanalysis would aid in clinical diagnostics and therapeutics 

where applications can be realized toward point-of-care testing that is becoming increasingly 

important for the early and cost-effective detection of cancers and diseases.  An area that is 

helping advance efforts to achieve these goals is that focused on biomicroelectromechanical 

sytems (bioMEMS)—or micrototal analysis systems (TAS), lab-on-a-chip, or microanalytical 

devices—a rapidly growing field introduced about 18 years ago through the pioneering work of 

Harrison and Manz.
104-106

  In general, these miniaturized devices are designed as integrated 

systems that address sample preparation and pretreatment, and analyte separation, detection, and 

analysis; thus, they are touted as being capable of performing complex analyses in a single 

device, thereby drastically reducing processing times (i.e. from sample preparation to data 

analysis) and human-associated errors.  The active elements are typically microns in size, and the 

device is no more than several inches in dimension.  These systems hold the promise of minimal 

sample and reagent consumption, fast analysis time, portable format, component integration and 

automation, multiplexing, and economically-sound devices.  These are precisely the advantages 

that are required if glycoprotein analysis is to advance at a level where physiological fluids can 

be easily processed.  To date, applications of TAS are widespread which includes drug 

delivery, protein and DNA separation and analysis, immunoassays, pharmaceutical analysis, 

forensics, and environmental monitoring.
105,107-108

   

Plastics or polymers, such as poly(methyl methacrylate) (PMMA), poly(dimethyl 

siloxane) (PDMS), polystyrene (PS), and polycarbonate (PC), are established substrates for the 
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fabrication of microanalytical devices, and they offer several advantages over their silica, glass 

or quartz counterparts that have led to their gain in popularity.
99,109-113

  A few of the notable 

advantages that can be translated into superior qualities and capabilities for microanalytical 

devices include the capability to produce both typical-dimension and high-aspect-ratio 

microstructures (HARMS) from relatively inexpensive materials, the use of a variety of 

micromachining methods that are relatively easy to implement using polymers as the fabrication 

substrate because of their low glass transition temperatures (Tg) and physical/optical 

properties.
105,113-114

   

Perhaps one of the initially-encountered major disadvantages of polymeric substrates 

during the early days of their use as substrates for fabricating microanalysis devices—that made 

them somewhat inferior to glass—was the lack of established surface chemical modification 

routes for tailoring the properties of the polymer devices.  Unlike glass for which silane-based 

derivatization methods were well-established, many polymeric substrates lacked (and some still 

do lack) the functional handle to accommodate various ligands on their surfaces that are suitable 

for a variety of applications.   

However, polymeric substrates have seen a boost in the area of chemical modification 

over the years.  For PMMA in particular, carboxylic acids were introduced by UV irradiation
111

 

and oxygen plasma treatment.
110

  Amine-terminated surfaces were prepared by aminolysis 

reactions.
112,115

  PMMA sheets with integrated and exposed glycidyl methacrylate groups 

(PGMAMMA) were prepared by thermally-induced, free-radical polymerization, and further 

elaboration of the reactive glycidyl groups was performed via amination.
116

   

Since the introduction of atom transfer radical polymerization (ATRP) by the 

independent investigations of Matyjaszewski
117

 and Sawamoto,
118

 the field of microfluidics has 
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seen great benefits from it.  ATRP is a controlled free-radical polymerization that is catalyzed by 

transition metal complexes.  Matyjaszewski and co-worker’s ATRP protocol involved Cu as the 

catalyst; the protocol that is in widespread implementation nowadays.  In fact as of 2008, he has 

published over 500 papers on the topic of ATRP with those works being cited over 30,000 times, 

making him one of the most-highly cited researchers in the field of chemistry.  The popularity of 

ATRP versus conventional free-radical polymerization is mainly associated with the uniform 

polymer chain length (i.e. narrow molecular weight distribution) obtained in high yield (i.e. high 

grafting density) as a consequence of the equilibrium between dormant and actively propagating 

species.  The implementation is simple and can tolerate a wide variety of monomers, and 

polymerization is fast (i.e. minutes) and can be performed at room temperature and in aqueous 

media.  More importantly, polymerization can be made to be surface confined, thus eliminating 

non-specific adsorptions of solution-formed polymers just as in AIBN-based free radical 

polymerization; this greatly reduces the steps in modifying the surfaces.   

Wirth and co-workers
119

 passivated the surface of a PDMS channel with 

poly(acrylamide) through surface-initiated ATRP (SI–ATRP).  The high grafting density of 

polyacrylamide allowed the baseline electrophoretic separation of a mixture of lysozyme and 

cytochrome C in under 35 sec due to the elimination of reversible and irreversible hydrophobic 

interactions of the proteins toward the surface.  Lee et al.
110

 ATRP-grafted poly(ethylene glycol) 

(PEG) on PMMA channel which resulted in substantial reduction of electroosmotic flow and 

non-specific adsorptions.  Later on, they fabricated a microfluidic device from poly(glycidyl 

methacrylate-co-methyl acrylate) sheet
116

 to which poly(ethylene glycol) was grafted by SI–

ATRP.
116,120

  These works demonstrate the applicability of ATRP in the modification of 

polymeric microfluidic substrates.  
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1.4.3 Literature Review on Microfluidic Device-based Analysis of Glycoproteins and 

Glycopeptides 

  

 Mao et al.
121

 are perhaps the very first individuals who invoked microdevice-based 

separation of glycopeptides.  Using a commercially available Micralyne standard simple glass 

cross device with a 1.0-cm injection channel and 8.5-cm separation channel with a dimension of 

50 m × 20 m, the separation of the tryptic digests of chicken ovalbumin and turkey ovalbumin 

were accomplished by microdevice zone electrophoresis in 10 min.  Importantly, the peak 

capacity obtained in the microdevice electrophoresis format was similar to that from capillary 

electrochromatography and HPLC. 

The same group
122

 fabricated a miniaturized format of lectin affinity chromatography that 

integrated a lectin affinity monolith column into a microchannel (70 m × 20 m) of a glass 

microfluidic device.  Along with the chromatography channel, the microfluidic device contained 

the running buffer, eluent buffer, sample, sample waste, washing, and waste reservoirs.  The 

monolith (500 m of the channel length) was prepared in situ in the microchannel by UV 

polymerization of glycidyl methacrylate and ethylene dimethacrylate, to which the lectin Pisum 

sativum agglutinin was immobilized via reaction between the epoxy groups in the monolith and 

the ε-amino groups in the lectin.  By electrokinetic driving force, glycoforms from chicken 

ovalbumin, chicken ovomucoid, and turkey ovalbumin were separated into several fractions (e.g. 

non-bound, weakly-bound, and strongly-bound) which reflected the affinity specificity of the 

glycoforms toward Pisum sativum agglutinin.  Other notable merits of this lectin affinity 

microfluidic device include significant reduction in analysis time compared to conventional 

lectin affinity chromatography (i.e. 400 s compared to 4 h), small sample volume (~98 pL that 

translates into < 300 pg glycoprotein injected), and resistance to non-specific adsorption as 



33 

 

demonstrated by the absence of human serum albumin binding.  They later fabricated a 

microfluidic device with a nanoelectrospray interface for glycopeptide separation by microfluidic 

device/MS system.
123

  The analysis of the tryptic glycoforms from RNAse B was performed on a 

3-aminopropyltriethoxysilane–derivatized glass microchannel followed by subsequent 

identification of the eluted compounds with quadrupole ion trap mass spectrometer.  A review on 

microdevice hyphenation to MS for glycoproteomic investigation is provided by Bindila and 

Peter-Katilinic.
124

 

 The work of Bynum et al.
125

 is also worthy of attention even though its main focus is the 

purification and separation of released N-glycans from glycosylated recombinant monoclonal 

antibodies.  A three-layer integrated microfluidic liquid chromatography-mass spectrometry (LC-

MS) device was fabricated by utilizing three devices that were fixed on an Agilent HPLC-chip 

cube MS.  The workflow on this microfluidic device involves glycan cleavage on the first device 

(top) that is packed with PNGase F-immobilized silica beads, followed by capture of 

deglycosylated proteins on the second device (middle) that is packed with reversed-phase C8 

beads, and finally enrichment and separation of N-glycans on the third device (bottom) with a 

column packed with porous graphitized carbon.  The eluted N-glycans were directly sprayed 

through the nanoelectrospray tip into the time-of-flight mass spectrometer.  The performance of 

this automated and integrated system was demonstrated with Chinese hamster ovary cell-derived 

monoclonal antibody A1 and Ab2 and mouse NS0 cell-derived Ab3, wherein the analysis was 

completed in only 10 min, as opposed to hours to days using the traditional methodologies.  In 

addition, due to the fast deglycosylation step (~3 s), β-glycosylamines (that immediately undergo 

conversion to the free-reducing end forms) were measurable.  Another feature of this integrated 

device  is  the  ability  to  rapidly  analyze intact and  deglycosylated  antibodies by  changing the 
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device configuration (e.g. removal of the third, bottom, device).  These outcomes demonstrate 

how glycoprotein analysis benefits from integration into microfluidic devices. 
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CHAPTER 2 
 

ASSESSMENT OF GLYCOPROTEIN INTERACTIONS WITH  

4-[(2-AMINOETHYL)CARBAMOYL]PHENYLBORONIC ACID SURFACES USING 

SURFACE PLASMON RESONANCE SPECTROSCOPY* 
 

2.1 Introduction 
 

Glycosylation renders particular functions that are reflected in most of the physico-

chemical and biological properties of proteins.  Some of the key roles in which glycosylated 

proteins participate include cellular recognition, protein folding, and protein trafficking.
1
  On the 

other hand, aberrant glycosylations—as manifested by changes in glycosylation levels and 

alterations in glycan structures—have been associated with the development and progression of 

cancer and other diseases.
2-3

  As a result, glycosylated proteins have been the subject of many 

research efforts targeting the elucidation of structure-function relationships. 

The characteristic of phenylboronic acids to form reversible complexes with diol-

containing materials, such as sugars, has led to numerous developments for eventual application 

in areas such as sensor technology,
3-8

 drug delivery,
9
 and affinity chromatography.

10-11
  Current 

knowledge on the mechanism of the diol-boronic acid interaction is based on the equilibrium 

formation of a heterocylic diester from 1,2- or 1,3-diol groups and a tetrahedral boronate ion 

(Scheme 2.1);
12

  this equilibrium is a function of the ionization constant Ka of the boronic acid 

moiety.  Thus, the coordination of diol species is commonly performed at a pH that results in 

conversion of the trigonal planar boronic acid species into the tetrahedral boronate ion.  Although 

it is generally accepted that the boronate ion is the active binding species, Ishihara and co-

workers
13

 are of the opinion that the neutral planar boronic acid has comparable or even higher 

reactivity toward diols than the boronate ion, regardless of solution pH. 

*Reproduced with permission from Jennifer Macalindong De Guzman, Steven A. Soper, and 

Robin L. McCarley. Anal. Chem. 2010, 82, 8970-8977. Copyright 2010 American Chemical 

Society. 
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Scheme 2.1. Depiction of phenylboronic acid–sugar equilibrium for  

4-[(2-aminoethyl)carbamoyl]phenylboronic acid, AECPBA. 

The  ability  to  select,  from a  diverse protein population,  a given subset of  glycosylated 

proteins (enrichment) using surface-attached capture agents is of great importance in the 

systematic identification and quantification of disease-related biomarkers obtained from tissues 

and circulating cells.
1,14

  Although interaction analysis between surface-attached boronic acid 

derivatives and simple saccharides (non-protein-containing) is quite common in the literature,
6,15-

17
 it is surprising to find from an exhaustive survey of the literature that reports on the interaction 

analysis of surface-immobilized boronic acids with solution-phase proteins—glycosylated and 

non-glycosylated alike—are limited, at best.
3-5,18-19 

  In two of the extent studies, investigations 

were performed on colloidal gold possessing a polymer brush of 3-acrylamidophenylboronic acid 

for determination of glycoprotein presence.
4-5

  However, the limited number and variety of 

proteins used did not allow for a thorough probing of protein properties that might have an 

impact on the feasibility of the Au colloid system in the development of sensors for analysis of 

glycoproteins.  In two other studies, single glycoprotein binding (glycated hemoglobin
3
 and 

glycosylated albumin
18

) on alkanethiol/Au surfaces was investigated, but the elution 

(regeneration) of the surfaces was not addressed.  In the only other study of which I am aware, 

electrochemical methods were used to study the affinity interactions between electropolymerized 
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boronic acid films on electrodes and a select group of glycoproteins having limited glycan 

variety.
19

  Thus, it would be of great benefit to develop surface immobilization chemistries for 

attachment of a diverse collection of phenylboronic acids and gain knowledge regarding their 

ability to capture and release different and closely-related glycosylated proteins under a variety of 

solution conditions.  

This chapter reports on the evaluation of glycoprotein–surface-attached boronic acid 

interactions by surface plasmon resonance spectroscopy (SPR).  To the best of my knowledge, 

this is the first time that a boronic acid derivative has been successfully immobilized onto SPR 

sensor surfaces and then subsequently used to study the interactions between surface boronic 

acids and solution-phase glycoproteins.  It is shown that SPR can be used to readily follow 

interactions between surface boronic acids and glycoproteins without complex and laborious 

surface preparation.  In particular, the novel boronic acid derivative 4-[(2-

aminoethyl)carbamoyl]phenylboronic acid, AECPBA, is immobilized on carboxymethyl dextran 

hydrogels using carbodiimide coupling, Scheme 2.2, and is subsequently employed as the capture 

element in an SPR device, Scheme 2.1.  AECPBA is chosen because a soluble polymer bearing 

this boronic acid derivative exhibits increased sensitivity to glucose binding under physiological 

conditions, and the pKa of the boronic acid/boronate pair of AECPBA is lower than other 

phenylboronic acids, making it attractive for capture of proteins in biological milieu.
9
  In the 

work here, a variety of glycosylated and non-glycosylated proteins having various properties was 

investigated to provide insight into the nature of the interaction between the boronic acid-

modified sensor surface and the proteins.  Furthermore, the use of immobilized AECPBA as a 

reversible capture-and-release agent is demonstrated by the quantitative elution of glycoproteins 
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from AECPBA surfaces by borate buffer. Secondary interactions are also discussed in the context 

of non-specific adsorption to the carboxymethyl dextran matrix and the boronic acid ligand.   

2.2 Experimental Section 

2.2.1 Materials   

AECPBA was prepared as previously reported.
9
  CM5 sensor chips (carboxymethyl 

dextran on Au) were obtained from Biacore (Uppsala, Sweden).  Avidin, ExtrAvidin, fetuin, 

asialofetuin, RNAse A, RNase B, and human transferrin were purchased from Sigma and were 

used as received.  Other chemicals obtained from Sigma (St. Louis, MO) include 1-ethyl-3-[3-

dimethylaminopropyl]carbodiimide hydrochloride (EDC), 2-(N-morpholino)ethanesulfonic acid 

(MES), tris(hydroxymethyl)aminomethane (Tris), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 

acid (HEPES), EDTA, glycine, Tween-20, and ethanolamine.  N-hydroxysuccinimide (NHS) was 

obtained from Pierce Biotechnology (Rockford, IL).  Boric acid was obtained from EM Science 

(Gibbstown, NJ).  NaOH and NaCl were purchased from Fisher Scientific.  HCl was obtained 

from VWR (West Chester, PA).  All solutions were prepared in Nanopure water (Barnstead, >18 

MΩ·cm).  pH 7.40 HBS-EP consisted of 0.01 M HEPES, 0.15 M NaCl, 3.0 × 10
3

 M EDTA, and 

0.0050% (v/v) Tween-20.  All buffers and reagents used were degassed and filtered prior to use 

in SPR experiments.   

2.2.2 Potentiometric Titration   

To determine the pKa of AECPBA, 1.5 × 10
2

 g of AECPBA was dissolved in 20.00 mL 

of 0.010 N NaOH.  To this solution was added 0.50-mL portions of the titrant (0.010 N HCl 

containing 0.150 M NaCl) and the pH at each interval was determined using a calibrated glass 

pH electrode (Denver Instrument).  A pKa value of 8.0 was found using this method. 
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2.2.3 Surface Plasmon Resonance Measurements   

Investigations of the interaction of select proteins with AECPBA- and hydroxyl-

terminated control surfaces were performed with a Biacore X SPR instrument (Uppsala, 

Sweden).  To prepare the sensor surface, the commercially-available CM5 sensor surface 

(Biacore) was functionalized with AECPBA either by direct EDC coupling or through EDC/NHS 

activation, Scheme 2.2.  For direct EDC coupling, 65 L of a mixture composed of 0.010 M 

AECPBA and 0.20 M EDC prepared in pH 6.00, 0.025 M MES was injected at a flow rate of 2 

L min
1

 after achieving baseline with the same buffer.  The unreacted, NHS-activated carboxyl 

groups were capped by injecting 65 L of pH 8.50, 1.0 M aqueous ethanolamine, at a flow rate of 

10 L min
1

.  For the sensor surface modification via EDC/NHS activation, pH 7.40 HBS-EP 

was used as the running buffer.  The surface was activated by injecting 70 L of a freshly 

prepared  mixture consisting  of  0.070  M  NHS  and 0.20 M EDC at a flow  rate of 10 L min
1

.   

 

 

 

Scheme 2.2.  Preparation of the AECPBA-functionalized carboxymethyl dextran (CM5) on Au 

sensor surface. 
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At the same flow rate, several 70 L-injections of 0.020 M AECPBA prepared in pH 8.50, 0.10 

M borate were performed.  Finally, the remaining activated esters on the surface were deactivated 

by injecting 40 L of pH 8.50, 1.0 M ethanolamine.  To examine the binding of select proteins, 

either 0.050 M Tris buffer or 0.050 M glycine buffer (pH 8.00 and 9.00) containing 0.15 M NaCl 

were used as running and sample buffers.  Protein solutions were passed over the AECPBA-

functionalized surfaces at defined concentrations and flow rates.  Values reported for the amount 

of protein bound are the average ± one standard deviation from replicate measurements.  The 

AECPBA surface was regenerated following each protein injection with either single or multiple 

injections of pH 10.00, 0.10 M borate-buffer containing 0.30 M NaCl or a short pulse of 0.050 M 

NaOH at 10 L min
1

. 

2.3 Results and Discussion 

2.3.1 Preparation of the AECPBA (Boronic Acid) Sensor Surface   

The covalent attachment of AECPBA as followed by SPR, is shown in Figure 2.1.  

Activation of the carboxymethyl dextran surface was achieved through injections of EDC and 

NHS solutions, thereby transforming the carboxylic acid groups into NHS-activated esters.  

Alternatively, the carboxymethyl dextran surface can be activated directly by the use of EDC 

only (Figure 2.2).  Subsequently, solutions of AECPBA in pH 8.50 borate buffer were passed 

over the surface several times (4 of 70 L of 0.025 M AECPBA) to maximize the degree of 

AECPBA attachment.  Removal of any non-covalently bound AECPBA and capping of any 

remaining NHS esters (formation of amide-linked, hydroxyl-terminated regions) was carried out 

using a solution of ethanolamine.  SPR measures the resonance angle at which a minimum of 

reflected light occurs as a result of a change in the refractive index of the medium near a thin film 

of the metal (Au in this case)—for example, during analyte adsorption.  This change in angle is 
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reported in Resonance Units (RU) such that a change of 0.1° is equivalent to 1000 RU.
20

  The 

change in SPR response, measured in Resonance Units (RU), for the AECPBA surface was 1200, 

while hydroxyl-terminated control surfaces resulted in a change of 300 RU.  Thus, it can be 

concluded that the SPR response (~1200 RU) is the result of covalent attachment of AECPBA, a 

small molecule, throughout the 200-nm thick carboxymethyl dextran hydrogel matrix.  Although 

two methods were used to create the AECPBA surfaces, the difference in their performance (in 

terms of protein binding) was not directly compared and evaluated.  Eventhough this is the case, 

any observations that were compared against each other were obtained under identical conditions 

(e.g. surface is obtained from one method only).  Although it is desirable to determine the surface 

density of immobilized AECPBA ligand, this is not possible using the SPR response values.  The 

published conversion factor of 10 RU = 1.0 ng·cm
2

 used for proteins
20-21

 should not be 

employed, because the refractive index of small molecules can be significantly different from 

that of proteins.
22

   

2.3.2 Model Glycosylated Protein Binding on and Subsequent Elution from AECPBA 

Surfaces   

 

Initial investigation of the binding capabilities of the AECPBA sensor surface was 

performed by flowing a solution of the model protein avidin in pH 9.00 glycine-buffered saline.  

Avidin is a 68 kDa tetrameric protein that consists of four identical subunits and contains 10% 

glycosylation.
23

  Each subunit contains one glycosylation site at Asn 17;
24-25

 glycans at this site 

have been shown by NMR to be heterogeneous in both composition and structure.
26

  Evidence 

from that study
26

 suggests that high mannose and hybrid types make up the oligosaccharide 

composition, with the latter hybrid type terminated with N-acetylglucosamine and/or galactose. 

In Figure 2.3 is shown the SPR  response for the  AECPBA surface  upon exposure to the 

glycoprotein  avidin.  The  observed  interaction  beginning  at roughly 250 s on  the  time  axis is 
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Figure 2.1. SPR sensorgrams from the preparation of AECPBA (left) and hydroxyl-terminated 

control (right) surfaces.  In each case, the carboxymethyl dextran surfaces were first treated with 

pH 7.40 HBS-EP (0.010 M HEPES, 0.15 M NaCl, 3.0 × 10
3

 M EDTA, 0.0050% v/v Tween-20), 

then 70 L of 0.070 M NHS/0.20 M EDC was injected, followed by a minimum of 4 injections 

of 70 L of 0.025 M AECPBA in pH 8.50 borate buffer for the AECPBA surface or 70 L of pH 

8.50 borate buffer followed by 40 L of 1.0 M ethanolamine (pH 8.50) for the hydroxyl-

terminated control surface.  Capping of any remaining NHS sites on the AECPBA surface was 

achieved by injecting 40 L of pH 8.50, 1.0 M ethanolamine.   
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Figure 2.2. SPR sensograms during the preparation of AECPBA- (solid line) and hydroxyl-

terminated control (dash-dot line) surfaces.  In each case, the carboxymethyl dextran surfaces 

were first equilibrated with pH 6.00, 0.025 M MES buffer, followed by injection of a 65 L 

solution of 0.20 M EDC/0.010 M AECPBA in pH 6.00 MES buffer for the AECPBA surface and 

65 L of 0.20 M EDC in pH 6.00 MES buffer for the hydroxyl-terminated control surface.  

Capping of any remaining carboxyl-activated sites was achieved using 65 L of pH 8.50, 1.0 M 

ethanolamine solution.  The AECPBA surface and hydroxyl-terminated control surface yielded 

an SPR response of 1200 RU and 1000 RU, respectively. 
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presumed to result from the specific weak covalent interaction between the active tetrahedral 

boronate ion and the sugar residues in the glycoprotein, Scheme 2.1.  Although it is tempting to 

report the association/dissociation constants, the unknown stoichiometry of binding between 

avidin and AECPBA would render such values suspect.
27

  However, the amount of surface-

bound avidin at [avidin]solution = 5.16 × 10
−6

 M can be determined.  Based on the difference in RU 

responses of avidin prior to and after its injection, we calculate that roughly 13.1 ± 0.4 ng·cm
2

 

of avidin is bound to the AECPBA surface, a value that is ~3% of a close-packed avidin 

monolayer.
28

  This value did not change upon increasing the number of EDC/NHS or AECPBA 

injections.  The obtained value of 13.1 ± 0.4 ng·cm
2

 of avidin was calculated using the 

established conversion factor of 10 RU = 1.0 ng·cm
2 

for proteins from the average SPR response 

of ~130 RU.  The response is measured between the baseline and the RU level after subtraction 

of the contribution of the bulk refractive index (as caused by any refractive index change due to 

some differences in the sample and running buffer used).  Assuming a Langmuir adsorption 

process with a close-packed avidin monolayer (440 ng·cm
2

),
28

 and using a typical boronic acid-

glycoprotein association constant, such as that found for 3-acrylamidophenylboronic acid‒avidin 

complexation (Kassoc = 5.05 × 10
−3

 M),
4
 the expected amount of avidin bound to the AECPBA 

surface with [avidin]solution = 5.16 × 10
−6

 M is calculated to be 11.2 ng·cm
2

, in good agreement 

with the observed 13.1 ± 0.4 ng·cm
2

 value.  The limit of detection was not determined in this 

case.  It should be noted that this would be highly dependent upon several factors such as the 

molecular weight of the analyte, the ligand surface coverage, and the thermodynamic properties 

elicited by the interaction.  However, a similar instrument—Biacore 1000—is reported to detect 

as low as less than 1% complete monolayer of protein bound.
28

 Based on this, the monolayer 

coverage I obtained is derived from the weak interaction of avidin with the boronic acid groups. 
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Figure 2.3. Representative SPR sensorgram for avidin binding on and elution from the AECPBA 

surface.  The binding experiment was performed with 20 L of 5.16 × 10
6

 M avidin in pH 9.00 

glycine-buffered saline (0.050 M glycine, 0.15 M NaCl) at a flowrate of 2 L min
–1

, while the 

elution (regeneration) experiment was performed with 65 L of pH 10.00 borate-buffered saline 

(0.10 M borate, 0.30 M NaCl) at a flowrate of 10 L min
–1

.  The flowrate during the buffer run is 

kept at 2 L min
–1

. 
 
The AECPBA surface was prepared through direct EDC coupling. 

   

The covalent interaction between boronate and sugar is a reversible process, and 

dissociation of the sugar-boronate complex is usually facilitated using an acidic buffer
29

 or a 

competing molecule, such as sorbitol.
30

  However, experiments revealed that an appreciably low 

pH (e.g. ≤ pH 2.00, data not shown) was required to yield effective elution, but with use of such a 

low pH eluent, SPR responses were found to be inconsistent in-between binding experiments.  I 

attribute this to AECPBA ligand loss from the sensor surface during use of the highly acidic 

eluent (amide hydrolysis).  Similar outcomes have been observed for boronic acids attached via 

amides on chromatographic supports.
29

  In the case of sorbitol, its ability to displace diols from 

the diol-boronate complex is based on its strong interaction with boronate ions.
31

  Thus, use of 

sorbitol as an eluent is inappropriate in SPR analyses, because sorbitol binding to the boronate 

surface would result in misleading interpretation of the SPR baseline following regeneration with 

sorbitol (inability to establish pre-protein-exposure baseline).  In general, sorbitol is a powerful 
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and appropriate eluting agent for select boronic acid sensing systems like those based on 

electrochemical sensing
32

 wherein the baseline response is not affected by sorbitol binding on the 

electrode surface; however, sorbitol should be avoided as an eluent for boronic acid sensing 

applications possessing a transduction mechanism based on surface mass change, such as SPR 

and microbalance methods.
17

  

I turned to borate as an eluent
33

 for the AECPBA-bound glycoprotein avidin (regeneration 

of the AECPBA surface/release of captured avidin), as the borate acts as a competing molecule 

for covalent bond formation with the sugar chains of the glycoprotein, resulting in glycoprotein 

elution from the AECPBA surface.  As shown in Figure 2.3, use of pH 10.00 borate-buffered 

saline resulted in the apparent complete removal of avidin after the dissociation phase of the 

experiment (at ~1300 s), as noted by the experimentally observed identical SPR reading before 

avidin injection (RU = 2) and after borate regeneration of the AECPBA surface (RU = 2).  In 

addition, the AECBPBA surfaces could be treated numerous times (12 times, the maximum 

attempted) without any measurable impact on the ability of the boronic acid surfaces to bind 

avidin in subsequent association experiments.  In other experiments, multiple injections of borate 

or a short pulse of NaOH solution
34-35

 effected regeneration (vide infra).  Overall, these outcomes 

demonstrate the capacity of the AECPBA surface to effectively bind glycoprotein analyte and the 

ability of borate to act as a mild and simple eluent for AECPBA-bound glycoprotein, thereby 

providing an avenue for comparative analysis of the binding of chemically distinct glycoproteins 

to AECPBA surfaces.  

2.3.3 Impact of Glycosylated Protein Nature on Binding to AECPBA Surfaces  

The relative affinity, measured as surface protein concentration, of several glycosylated 

proteins examined on the AECPBA surface prepared through the EDC/NHS activation method is 
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summarized in Table 2.1.  The proteins are appropriately chosen so as to exhibit variation in 

molecular weights, degree of glycosylation, composition of heteroglycan chain and isoelectric 

points (pI),
36-40

 to facilitate the determination of the nature of glycoprotein interaction with 

surface boronic acids.  In general, the amount of glycosylated protein bound to the AECPBA 

surface is significantly greater than for the hydroxyl-terminated control surface.  There is no 

observable general trend in the amount of protein bound with the pI, molecular weight, or degree 

of glycosylation for this set of proteins.  Regeneration (i.e. removal of bound proteins and 

subsequent achievement of virtually identical baseline before protein injection and after 

regeneration) was routinely observed on the AECPBA- and hydroxyl-terminated control surfaces 

for this set of proteins. 

Interestingly, a striking difference in SPR response was observed for fetuin and its 

desialylated analogue, asialofetuin.  The amount of bound fetuin was found to be significantly 

lower compared to asialofetuin (~25%, Table 2.1), indicating that the binding constant for 

asialofetuin, Kassoc, on the AECPBA surface is significantly higher.  Structurally, the only 

difference between the two proteins is the presence of the terminal N-acetylneuraminic acid 

(a.k.a. sialic acid) group in the six glycan chains of fetuin.
36

  In a recent investigation of a 

colloidal gold-carrying, boronic acid polymer brush, the assumption was made that the higher 

Kassoc observed for ovalbumin compared to avidin was a result of the larger population of 

hydroxyl groups presented by the mannose-rich ovalbumin over the N-acetylglucosamine–rich 

avidin.
4
  If the same case were to hold for fetuin and asialofetuin, the higher number of sugar 

constituents in fetuin (terminated with six sialic acid residues) should result in binding of more 

fetuin versus asialofetuin on the AECPBA surface; the converse is observed.  We propose that 

the more sugar-rich fetuin (compared to asialofetuin) does not behave similarly to ovalbumin for 
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the following reasons: 1) not all hydroxyl groups will be available to participate in complex 

formation because some hydroxyl groups are involved in glycosidic linkages between  saccharide  

units;
 
2) not all hydroxyl groups are oriented in the synperiplanar formation that is a requisite for 

boronate complexation;
41

 and 3) steric hindrance
42

 in the underlying sugars of the glycan chains 

will preclude binding.  It was in fact demonstrated by 
11

B NMR that the complexation of borates 

to galactomannan is only through the galactose units attached to and ―hanging from‖ the mannan 

polymer backbone.
43

   Evidence from that study
43

 does not suggest any complexation of borate 

with  the mannose units that  are glycosidically-linked  together  to make  up  the  oligosaccharide 

Table 2.1.  Comparison of the amount of proteins bound on the AECPBA surface and the 

hydroxyl-terminated (ethanolamine-capped) control surface. 
 

 protein properties  amount protein bound (× 10
2
 

fmol·cm
2

) 

protein  

[pI] 

molecular 

weight 

(kDa) 

 

glycosylated? 

 

degree of 

glycosylation 

AECPBA 

surface 

hydroxyl-terminated 

control surface 

fetuin  

[3.3] 

 

48.4 

 

yes 

 

22% 4.6 2.6 

asialofetuin 

[5.2] 

 

˂48.4 

 

yes 

 

14% 16 6.0 

transferrin 

[5.6] 

 

76‒81 

 

yes 

 

6% 5.4 2.6 

RNAse B 

[9.4] 

 

14.7 

 

yes 

 

9% 17 4.1 

RNAse A 

[9.4] 

 

13.7 

 

no 

Not 

applicable 14 4.1 

 Protein concentrations (× 10
4

 M) flowed over the AECPBA surfaces were: fetuin, 3.88; 

asialofetuin, 4.27; transferrin, 4.03; RNAse B, 4.19; and RNAse A, 3.97.  60 L of protein 

solution (pH 8.00 glycine-buffered saline) was injected at 15 L min
1

.  The AECPBA surface 

was prepared through EDC/NHS activation.  Regeneration was performed with pH 10.00, 0.10 

M borate-buffered saline or 0.050 M NaOH solution.  The values obtained are within 5% 

experimental error.  Information on molecular weight, pI, and degree of glycosylation are 

provided in references 36-40. 
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backbone.  Therefore, based on this, the degree of complex formation is not necessarily 

dependent on the number of sugar constituents of the glycan chains (% glycosylation) present in 

the glycoprotein. 

With this knowledge in hand, the results with fetuin, asialofetuin, and human transferrin 

suggest that the identity of the sugar terminus plays a key role in determining the extent of 

binding of glycoproteins to the AECPBA surface.   The six oligosaccharide chains of fetuin are 

terminated with N-acetylneuraminic acid units (sialic acid), while asialofetuin is essentially fetuin 

with its oligosaccharide chains terminated with galactose units (resulting from the desialylation 

procedure used to make it).  Although it might be tempting to state that the lower observed 

AECPBA binding of fetuin is due to the negative charge of the N-acetylneuraminic acid residue 

(electrostatic repulsion by the boronate ion), this is not necessarily the case.  Detailed 

investigations of N-acetylneuraminic acid binding to boronic/boronate systems revealed that N-

acetylneuraminic acid binds more strongly at acidic to neutral pH, contrary to the generally 

accepted binding of neutral sugars at alkaline pHs.
42

  It was rationalized that, unlike neutral 

sugars wherein strong complex formation with boronic acid systems occurs with the tetrahedral 

boronate ion to create a tetrahedral-formed complex, N-acetylneuraminic acid complexation with 

boronic acids results from interactions between the glycerin moiety of N-acetylneuraminic acid 

and the uncharged trigonal boronic acid, resulting in a trigonal complex.  The observed increased 

stability of this trigonal complex at acidic to neutral pH is derived from the intramolecular BO 

or BN interaction created with the neighboring N-acetyl group.  Because the boronic acid 

derivative used here has a pKa of 8.0, and the binding was performed at pH 8.00, complex 

formation between fetuin and the boronic acid system through the glycerin group is unstable.  

This is because the larger proportion of tetrahedral boronate ion existing in solution results in 
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tetrahedral-formed complex between the boronate ion and the glycerin moiety without the 

stabilization from the BO or BN interaction, giving way to a weaker binding.  This weaker 

interaction translates into a decreased amount of bound fetuin.   

Importantly, we have observed that the amount of human transferrin bound to the 

AECPBA surface is roughly the same as for fetuin, further suggesting that the degree of 

glycoprotein binding to the boronic acid surface is heavily influenced by the identity of the 

terminal sugar of the glycan chains of the glycoprotein.  Human transferrin has only two glycan 

chains, both of which are terminated with N-acetylneuraminic (sialic) acid,
37,44

 as is the case for 

the glycan chains of fetuin.  In addition, both transferrin and fetuin have galactose units 

immediately before the sialic acid terminus; the final five sugars of their terminal sequences are 

N-acetylneuraminic acidgalactoseN-acetylglucosamine mannose mannose.
44-46

  From 

Table 2.1, it can be observed that the amount of fetuin and transferrin bound on the AECPBA 

surface is the same within experimental error (~5 × 10
2
 fmol·cm

2
).  This similarity in the 

amount of these two proteins bound on the AECPBA surface is striking, as there is a large 

difference in their degree of glycosylation (fetuin, 22%; transferrin, 6%) and molecular weight 

(fetuin, 48 kDa; transferrin, ~76 kDa).  Thus, these results strongly support the hypothesis that 

the identity of the sugar terminus plays a key role in determining the extent of binding of 

glycoproteins to the AECPBA surface.  These observations with fetuin, asialofetuin, and 

transferrin will be important during the design of systems for the enrichment of glycoproteins 

from a diverse protein pool. 

2.3.4 Non-specific Protein Adsorption on Carboxymethyl Dextran Surfaces   

It is interesting to note that SPR responses are evident on the hydroxyl-terminated control 

surface after glycoprotein solutions were presented to it, albeit the responses are significantly 
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lower than that found on the AECPBA surface for each protein.  This hydroxyl-terminated 

control surface possesses ethanolamine-capped carboxylic acid groups that should result in 

diminished non-specific binding of proteins.
47

  I attribute the observed SPR response to non-

specific adsorption of proteins on the carboxymethyl dextran surface, similar to what has been 

observed for some proteins in a previous study.
28

  Thus, it is hypothesized that the observed 

protein adsorption on the hydroxyl-terminated control surface is electrostatic in nature and may 

likely be due to the interaction between regions of underivatized surface carboxylic acids and a 

given protein, as dictated by protein isoelectric point (pI).  Alternatively, it can be argued for 

proteins whose pIs render them negatively charged during the association phase of the 

experiment, such as fetuin (pI = 3.3) and asialofetuin (pI = 5.2), hydrogen-bonding to the dextran 

matrix
48

 is a possible explanation of the observed non-specific adsorption.  No matter the cause 

of the non-specific interactions, it is clear that interaction of the glycoproteins with the AECPBA 

surface is due to a combination of the specific boronate-sugar complexation and non-specific 

adsorption to the underlying dextran hydrogel matrix.  Based on the higher SPR response on the 

boronic acid surface, the specific complexation reaction of glycoproteins on the boronic acid 

surface is dominant. 

2.3.5 Glycosylated and Non-glycosylated Protein Binding on AECPBA Surfaces   
 

To determine the specificity of the boronic acid ligand for binding glycosylated proteins 

versus their non- or deglycosylated counterparts, the non-glycosylated protein RNAse A and 

deglycosylated ExtrAvidin were investigated and compared to RNAse B (glycosylated) and 

avidin (glycosylated).  Parallel comparison of RNAse A (non-glycosylated) and RNAse B 

(glycosylated) is appropriate given that the two ribonucleases are identical in protein structure 

and only distinguishable at Asn 34, where a high-mannose-oligosaccharide–containing chain 
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resides in RNAse B but not in RNAse A.
39,49

  In the ideal scenario, any difference between the 

two in terms of interaction with the boronic acid ligand should be attributable to the 

presence/absence of the heteroglycan chain at Asn 34.  Upon inspection of Table 2.1, it is found 

that RNAse A has a considerable degree of interaction with the AECPBA surface, although the 

amount of RNAse B (glycosylated) binding is 21% greater.  Interestingly, the level of interaction 

of the non-glycosylated RNAse A is even greater than some of the other glycosylated proteins 

studied.  This observation can be rationalized by considering the molecular structure of the 

AECPBA derivative.  This structure can be associated with secondary interactions such as 

hydrophobic, coulombic, coordination, and hydrogen bonding.
11

  Therefore, interaction with any 

material possessing boronic acids is not necessarily limited to the specific boronate/cis-diol ester 

formation.  Conceivably, the properties of the proteins are expected to exert a significant role in 

the overall interaction process.  In the case of the non-glycosylated RNAse A, its interaction with 

negatively-charged surfaces is well documented in the literature;
40,50

 this interaction is facilitated 

by the presence of a positively-charged protein domain that is known to be situated along the 

longest axis of the RNAse A molecule, thereby affording a large surface area with positive 

potential.  The pI of RNAse A is 9.4,
40

 and at the binding pH of 8.00 used here, the protein 

contains a net positive charge, while the boronic acid surface possesses negative charges from the 

active boronate ion species.  It is then reasonable to say that coulombic interaction accounts very 

well for the high level of SPR response of RNAse A despite it not being glycosylated.  As for 

RNAse B, it can be deduced that both specific and non-specific interactions contribute to the 

binding observed on the boronic acid surface.  It can then be said that these secondary 

interactions should be capable of providing additional selectivity if they occur in concert with the 
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primary specific interaction, but they become detrimental when they favor non-specific 

adsorption of non-glycosylated analytes, such as is observed with RNAse A. 

Another comparative analysis was performed with a glycosylated protein and its 

deglycosylated variant, namely, avidin and ExtrAvidin, on the AECPBA surface prepared from 

direct EDC coupling.  As shown in the representative sensorgrams in Figure 2.4A, the SPR 

response for avidin is statistically higher (by ~4-fold) compared to that for ExtrAvidin on the 

AECPBA surface, with a calculated 9.8 ± 0.5 ng·cm
2 

avidin bound and 2.6 ± 0.6 ng·cm
2

 

ExtrAvidin bound using tris(hydroxymethyl)aminomethane, Tris, buffer.  This difference can be 

viewed as a consequence of the interaction between the heteroglycan chain in avidin and the 

boronate groups on the sensor surface.  In addition, similar to the observation made with RNAse 

A (non-glycosylated), ExtrAvidin is found to bind to both boronic acid and hydroxyl-terminated 

control surfaces with the glycine buffer system used (Figure 2.4B).  Importantly, when the buffer 

was changed to the Tris buffer system, the SPR response for ExtrAvidin was lower than for the 

glycine buffer case when using the same AECPBA surface (compare Figures 2.4B and 2.4C).  

Note also with the use of Tris that the SPR response for ExtrAvidin is identical on boronic acid 

and control surfaces (Figure 2.4C), possibly indicating that non-specific interaction of 

ExtrAvidin with the carboxymethyl dextran matrix is the sole contributing interaction.  It is also 

possible that the purported single-carbohydrate residue (N-acetylglucosamine) of deglycosylated 

avidin (e.g. ExtrAvidin) per protein subunit causes some of the interaction on the AECPBA 

surface.
51-54

   

Typically, it is discouraged to employ buffer systems (e.g. Tris) that can participate in 

coordination or esterification reactions with the boronate group,
11

 as this can prove detrimental to 

sugar  binding.  However, Mattiasson  and co-workers  demonstrated  that  Tris can  suppress  the 
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Figure 2.4. Representative SPR sensorgrams during the binding of glycosylated protein avidin 

and the deglycosylated protein ExtrAvidin. (A) Avidin (5.29 × 10
6

 M) versus ExtrAvidin (5.09 

× 10
6

 M) in pH 9.00 Tris-buffered saline on the AECPBA surface; (B) ExtrAvidin in pH 9.00 

glycine-buffered saline and (C) ExtrAvidin in pH 9.00 Tris-buffered saline (right) on AECPBA 

(solid line) and hydroxyl-terminated control (dash-dot line) surfaces. ExtrAvidin concentrations 

were 4.94 × 10
6

 M and 5.09 × 10
6

 M in pH 9.00 glycine-buffered saline and pH 9.00 Tris-

buffered saline. Protein binding was performed using 20 L at 2 L min
–1

. The running buffer 

was kept at a flowrate of 2 L min
–1

. The AECPBA surface was prepared through direct EDC 

coupling.  
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interaction of the non-glycosylated protein chymotrypsin with boronate ions.
31,55-56

  They 

postulated that Tris has an affinity for the boronate ion that is intermediate to that of sugar diol 

groups (stronger) and amino acid residues (weaker); thus, Tris acts as a molecular shielder.  In 

other words, Tris, by forming a tridentate complex with the boronate ions, essentially protects the 

boronates from interacting with amino acid residues of the non-glycosylated proteins but can be 

competitively displaced by the sugar in the glycoprotein so as to allow glycoprotein binding.   

In this work, a similar phenomenon of decreased non-glycosylated protein interaction 

when glycine buffer was replaced with Tris was observed, even though the structures of 

ExtrAvidin and chymotrypsin are quite different.  It can be surmised that the interaction of 

ExtrAvidin on the boronic acid surface involves coordination reactions and this interaction is in 

general likely to occur with any non-glycosylated protein; this should be diminished through use 

of Tris, as demonstrated here.  However, one might suspect that the use of Tris will drastically 

affect the sensitivity or the responsivity of the surface for glycoprotein binding.  As the results 

suggest, only a mere 30% reduction in the amount of avidin binding is observed.  This is likely a 

consequence of competitive boronic acid binding of Tris versus the sugar chain in avidin.  

However, as is evident in Figure 2.4A, the larger SPR response of avidin compared to 

ExtrAvidin indicates that better specificity is achieved by using Tris buffer.   

Outcomes from the systematic comparison between RNAse A and B and avidin and 

ExtrAvidin made here thus strongly suggest that the selectivity of boronic acids can be 

diminished by non-specific secondary interactions.  In general, it is inferred that for boronic acid 

systems to be entirely discriminatory against non-glycosylated proteins, secondary interactions 

must be taken into consideration and should facilitate in determining experimental conditions 

that can increase the selectivity of boronic acid systems for glycoprotein analysis.  In the work 
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herein, a change in buffer system is found to have a profound impact on the selectivity of the 

boronic acid capture system.  

2.4 Conclusions 

Interaction analysis between glycoproteins and the boronic acid derivative,  

AECPBA, was evaluated using AECPBA-derivatized carboxymethyl dextran-coated gold 

substrates by surface plasmon resonance spectroscopy.  Glycoprotein binding to the boronic acid 

surface was determined to be a function of the terminal saccharide moiety, information that is 

potentially useful in the design of surface-capture protein concentration devices and for studies 

on boronic acid interactions with glycoproteins on cell surfaces.  Importantly, glycoproteins that 

are bound to the AECPBA surfaces can be removed readily using borate buffer at moderately 

elevated pH.  The selectivity of immobilized boronic acids can be affected by non-specific 

secondary interactions, but these secondary interactions can be identified and decreased, thereby 

allowing for increased glycoprotein separation capability of boronic acid systems on surfaces. 

2.5 References 

 

(1) Tian, Y.; Zhang, H. Glycoproteomics and clinical applications. Proteomics: Clin. Appl. 

2010, 4, 124-132. 

 

(2) Orntoft, T. F.; Vestergaard, E. M. Clinical aspects of altered glycosylation of 

glycoproteins in cancer. Electrophoresis 1999, 20, 362-371. 

 

(3) Liu, J. T.; Chen, L. Y.; Shih, M. C.; Chang, Y.; Chen, W. Y. The investigation of 

recognition interaction between phenylboronate monolayer and glycated hemoglobin 

using surface plasmon resonance. Anal. Biochem. 2008, 375, 90-96. 

 

(4) Kitano, H.; Anraku, Y.; Shinohara, H. Sensing capabilities of colloidal gold monolayer 

modified with a phenylboronic acid-carrying polymer brush. Biomacromolecules 2006, 7, 

1065-1071. 

 

(5) Anraku, Y.; Takahashi, Y.; Kitano, H.; Hakari, M. Recognition of sugars on surface-

bound cap-shaped gold particles modified with a polymer brush. Colloids Surf., B 2007, 

57, 61-68. 



66 

 

(6) Soh, N.; Sonezaki, M.; Imato, T. Modification of a thin gold film with boronic acid 

membrane and its application to a saccharide sensor based on surface plasmon resonance. 

Electroanalysis 2003, 15, 1281-1290. 

 

(7) Gabai, R.; Sallacan, N.; Chegel, V.; Bourenko, T.; Katz, E.; Willner, I. Characterization 

of the swelling of acrylamidophenylboronic acid-acrylamide hydrogels upon interaction 

with glucose by faradaic impedance spectroscopy, chronopotentiometry, quartz-crystal 

microbalance (QCM), and surface plasmon resonance (SPR) experiments. J. Phys. Chem. 

B 2001, 105, 8196-8202. 

 

(8) Chen, H. X.; Lee, M.; Lee, J.; Kim, J. H.; Gal, Y. S.; Hwang, Y. H.; An, W. G.; Koh, K. 

Formation and characterization of self-assembled phenylboronic acid derivative 

monolayers toward developing monosaccharide sensing-interface. Sensors 2007, 7, 1480-

1495. 

 

(9) Matsumoto, A.; Ikeda, S.; Harada, A.; Kataoka, K. Glucose-responsive polymer bearing a 

novel phenylborate derivative as a glucose-sensing moiety operating at physiological pH 

conditions. Biomacromolecules 2003, 4, 1410-1416. 

 

(10) Singhal, R. P.; Desilva, S. S. M. Boronate affinity-chromatography. Adv. Chromatogr. 

1992, 31, 293-335. 

 

(11) Liu, X.-C. Boronic acids as ligands for affinity chromatography. Chin. J. Chromatogr. 

2006, 24, 73-80. 

 

(12) Lorand, J. P.; Edwards, J. O. Polyol complexes and structure of the benzeneboronate ion. 

J. Org. Chem. 1959, 24, 769-774. 

 

(13) Iwatsuki, S.; Nakajima, S.; Inamo, M.; Takagi, H. D.; Ishihara, K. Which is reactive in 

alkaline solution, boronate ion or boronic acid? Kinetic evidence for reactive trigonal 

boronic acid in an alkaline solution. Inorg. Chem. 2007, 46, 354-356. 

 

(14) Lijuang, Z.; Haojie, L.; Pengyuan, Y. Specific enrichment methods for glycoproteome 

research. Anal. Bioanal. Chem. 2010, 396, 199-203. 

 

(15) Lee, M.; Kim, T. I.; Kim, K. H.; Kim, J. H.; Choi, M. S.; Choi, H. J.; Koh, K. Formation 

of a self-assembled phenylboronic acid monolayer and its application toward developing 

a surface plasmon resonance-based monosaccharide sensor. Anal. Biochem. 2002, 310, 

163-170. 

 

(16) Takahashi, S.; Anzai, J.-I. Phenylboronic acid monolayer-modified electrodes sensitive to 

sugars. Langmuir 2005, 21, 5102-5107. 

 

(17) Pribyl, J.; Skládal, P. Quartz crystal biosensor for detection of sugars and glycated 

hemoglobin. Anal. Chim. Acta 2005, 530, 75-84. 



67 

 

(18) Fujii, E.; Shimizu, K.; Kurokawa, Y.; Endo, A.; Sasaki, S.; Kurihara, K.; Citterio, D.; 

Yamazaki, H.; Suzuki, K. Determination of glycosylated albumin using surface plasmon 

resonance sensor. Bunseki Kagaku 2003, 52, 311-317. 

 
(19) Liu, S. Q.; Bakovic, L.; Chen, A. C. Specific binding of glycoproteins with poly(aniline 

boronic acid) thin film. J. Electroanal. Chem. 2006, 591, 210-216. 

 

(20) Wilson, W. D. Analyzing biomolecular interactions. Science 2002, 295, 2103-2105. 

 

(21) Stenberg, E.; Persson, B.; Roos, H.; Urbaniczky, C. Quantitative determination of surface 

concentration of protein with surface plasmon resonance using radiolabeled proteins. J. 

Colloid Interface Sci. 1991, 143, 513-526. 

 
(22) Davis, T. M.; Wilson, W. D. Determination of the refractive index increments of small 

molecules for correction of surface plasmon resonance data. Anal. Biochem. 2000, 284, 

348-353. 

 

(23) Green, N. M.; Anfinsen, C., Jr.; Edsall, J.; Richards, F. Avidin. In Advances in protein 

chemistry; Academic Press: New York, 1975; Vol. 29, p 85-133. 

 

(24) Delange, R. J. Egg white avidin. 1. Amino acid composition-sequence of amino-terminal 

and carboxyl-terminal cyanogen bromide peptides. J. Biol. Chem. 1970, 245, 907-916. 

 

(25) Huang, T. S.; Delange, R. J. Egg white avidin. 2. Isolation, composition, and amino acid 

sequences of tryptic peptides. J. Biol. Chem. 1971, 246, 686-697. 

 

(26) Bruch, R. C.; White, H. B. Compositional and structural heterogeneity of avidin 

glycopeptides. Biochemistry 1982, 21, 5334-5341. 

 

(27) van der Merwe, P. A.; Barclay, A. N. Analysis of cell-adhesion molecule interactions 

using surface plasmon resonance. Curr. Opin. Immunol. 1996, 8, 257-261. 

 
(28) Lahiri, J.; Isaacs, L.; Tien, J.; Whitesides, G. M. A strategy for the generation of surfaces 

presenting ligands for studies of binding based on an active ester as a common reactive 

intermediate: A surface plasmon resonance study. Anal. Chem. 1999, 71, 777-790. 

 

(29) Koyama, T.; Terauchi, K. Synthesis and application of boronic acid-immobilized porous 

polymer particles: A novel packing for high-performance liquid affinity chromatography. 

J. Chromatogr. B 1996, 679, 31-40. 

 
(30) Bouriotis, V.; Galpin, I. J.; Dean, P. D. G. Applications of immobilized phenylboronic 

acids as supports for group-specific ligands in the affinity-chromatography of enzymes. J. 

Chromatogr. 1981, 210, 267-278. 

 



68 

 

(31) Li, Y.; Larsson, E. L.; Jungvid, H.; Galaev, I. Y.; Mattiasson, B. Shielding of protein-

boronate interactions during boronate chromatography of neoglycoproteins. J. 

Chromatogr. A 2001, 909, 137-145. 

 

(32) Zhang, X. T.; Wu, Y. F.; Tu, Y. F.; Liu, S. Q. A reusable electrochemical immunosensor 

for carcinoembryonic antigen via molecular recognition of glycoprotein antibody by 

phenylboronic acid self-assembly layer on gold. Analyst 2008, 133, 485-492. 

 

(33) Maestas, R. R.; Prieto, J. R.; Kuehn, G. D.; Hageman, J. H. Polyacrylamide-boronate 

beads saturated with biomolecules - new general support for affinity-chromatography of 

enzymes. J. Chromatogr. 1980, 189, 225-231. 

 

(34) Zou, Y.; Broughton, D. L.; Bicker, K. L.; Thompson, P. R.; Lavigne, J. J. Peptide borono 

lectins (PBLs): A new tool for glycomics and cancer diagnostics. ChemBioChem 2007, 8, 

2048-2051. 

 

(35) Biacore sensor surface handbook; Biacore: Uppsala, 2003. 

 

(36) Spiro, R. G. Studies on fetuin, a glycoprotein of fetal serum. 1. Isolation, chemical 

composition, and physicochemical properties. J. Biol. Chem. 1960, 235, 2860-2869. 

 

(37) Seligman, P. A.; Schleicher, R. B.; Allen, R. H. Isolation and characterization of the 

transferrin receptor from human-placenta. J. Biol. Chem. 1979, 254, 9943-9946. 

 

(38) Hovanessian, A. G.; Awdeh, Z. L. Gel isoelectric focusing of human-serum transferrin. 

Eur. J. Biochem. 1976, 68, 333-338. 

 

(39) Plummer, T. H., Jr.; Hirs, C. H. W. The isolation of ribonuclease B, a glycoprotein, from 

bovine pancreatic juice. J. Biol. Chem. 1963, 238, 1396-1401. 

 

(40) Shang, W.; Nuffer, J. H.; Dordick, J. S.; Siegel, R. W. Unfolding of ribonuclease A on 

silica nanoparticle surfaces. Nano Lett. 2007, 7, 1991-1995. 

 

(41) Nicholls, M. P.; Paul, P. K. C. Structures of carbohydrate-boronic acid complexes 

determined by NMR and molecular modelling in aqueous alkaline media. Org. Biomol. 

Chem. 2004, 2, 1434-1441. 

 

(42) Otsuka, H.; Uchimura, E.; Koshino, H.; Okano, T.; Kataoka, K. Anomalous binding 

profile of phenylboronic acid with N-acetylneuraminic acid (Neu5Ac) in aqueous solution 

with varying pH. J. Am. Chem. Soc. 2003, 125, 3493-3502. 

 

(43) Pezron, E.; Ricard, A.; Lafuma, F.; Audebert, R. Reversible gel formation induced by ion 

complexation. 1. Borax-galactomannan interactions. Macromolecules 1988, 21, 1121-

1125. 



69 

 

(44) Satomi, Y.; Shimonishi, Y.; Hase, T.; Takao, T. Site-specific carbohydrate profiling of 

human transferrin by nano-flow liquid chromatography/electrospray ionization mass 

spectrometry. Rapid Commun. Mass Spectrom. 2004, 18, 2983-2988. 

 

(45) Nilsson, B.; Norden, N. E.; Svensson, S. Structural studies on the carbohydrate portion of 

fetuin. J. Biol. Chem. 1979, 254, 4545-4553. 

 

(46) Irimura, T.; Nicolson, G. L. Carbohydrate-chain analysis by lectin binding to mixtures of 

glycoproteins, separated by polyacrylamide slab-gel electrophoresis, with in situ chemical 

modifications. Carbohydr. Res. 1983, 115, 209-220. 

 

(47) Bolivar, J. G.; Soper, S. A.; McCarley, R. L. Nitroavidin as a ligand for the surface 

capture and release of biotinylated proteins. Anal. Chem. 2008, 80, 9336-9342. 

 

(48) Martwiset, S.; Koh, A. E.; Chen, W. Nonfouling characteristics of dextran-containing 

surfaces. Langmuir 2006, 22, 8192-8196. 

 

(49) Plummer, T. H., Jr. Glycoproteins of bovine pancreatic juice. Isolation of ribonucleases C 

and D. J. Biol. Chem. 1968, 243, 5961-5966. 

 

(50) Lee, C. S.; Belfort, G. Changing activity of ribonuclease A during adsorption: A 

molecular explanation. Proc. Nat. Acad. Sci. U.S.A. 1989, 86, 8392-8396. 

 

(51) Livnah, O.; Bayer, E. A.; Wilchek, M.; Sussman, J. L. 3-dimensional structures of avidin 

and the avidin-biotin complex. Proc. Nat. Acad. Sci. U.S.A. 1993, 90, 5076-5080. 

 

(52) Bayer, E. A.; Livnah, O.; Sussman, J. L.; Wilchek, M. The cryptic sugar residue of 

deglycosylated avidin. Glycoconjugate J. 1993, 10, 276-277. 

 

(53) Bayer, E. A.; Demeester, F.; Kulik, T.; Wilchek, M. Preparation of deglycosylated egg-

white avidin. Appl. Biochem. Biotechnol. 1995, 53, 1-9. 

 

(54) Hiller, Y.; Gershoni, J. M.; Bayer, E. A.; Wilchek, M. Biotin binding to avidin. 

Oligosaccharide side chain not required for ligand association. Biochem. J. 1987, 248, 

167-171. 

 

(55) Li, Y.; Larsson, E.; Jungvid, H.; Galaev, I.; Mattiasson, B. Separation of neoglycoproteins 

with different degrees of glycosylation by boronate chromatography. Chromatographia 

2001, 54, 213-217. 

 

(56) Li, Y.; Larsson, E. L.; Jungvid, H.; Galaev, I. Y.; Mattiasson, B. Affinity chromatography 

of neoglycoproteins. Bioseparation 2000, 9, 315-323. 

 

 



70 

 

CHAPTER 3 

PREPARATION, CHARACTERIZATION, AND EVALUATION OF  

4-[(2-AMINOETHYL)CARBAMOYL]PHENYLBORONIC ACID–POLY(METHYL 

METHACRYLATE) SURFACES FOR GLYCOPROTEIN CAPTURE AND RELEASE 

 

3.1   Introduction 

Glycosylation of proteins has been identified as perhaps the most ubiquitous post-

translational modification process that is involved in the human physiology and pathology 

known to date.  In fact, roughly 50% of naturally-occuring proteins—albeit in minute 

quantities—have been identified as being glycosylated.
1-2

  This fraction is likely an 

underestimate because a growing number of cancer and disease biomarkers are being found to be 

glycosylated.
2-4

  In view of this, much effort is currently dedicated toward developing strategies 

and methodologies whose aim is the identification, isolation, and structural determination—in 

terms of sugar composition and glycosylation site—of glycoproteins,
1,5

 especially in the context 

of establishing differences between normal and abnormally-expressed proteins.   

Any advancement in glycoprotein analysis would aid in clinical diagnostics and 

therapeutics where applications can be realized toward point-of-care testing, an area that is 

becoming increasingly important for the early and cost-effective detection of cancer and other 

diseases.  Advancing this burgeoning area of analysis is the implementation of 

biomicroelectromechanical sytems (bioMEMS)—or micrototal analysis systems (TAS), lab-on-

a-chip, or microfluidic devices—that were initially reported over a decade ago.
6-8

  These systems 

hold the promise of improved analytical performance, minimal sample and reagent consumption, 

fast analysis time, portable format, component integration and automation, multiplexing, and 

economically-sound devices.  These are precisely the advantages that are required if glycoprotein 

analysis is to advance to a level where physiological fluids can be easily processed.   
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Perhaps one of the biggest challenges being faced by glycoprotein analyses is the need 

for sensitive methods of analysis with low limits of target detection because glycoproteins exist 

in minute quantities in most clinical samples; for example, Yang and Hancock found that 10% 

(w/w) of human serum proteins were glycosylated,
9
 while Whelan et al.

10
 cited that disease-

related proteins in serum amounts to 1% (i.e. 99% make up the highly abundant normal serum 

proteins).  To this end, microfluidic-based glycoprotein analysis has begun to be investigated.
5,11-

14
  For example, a lectin affinity chromatograph in microfluidic format was able to achieve the 

separation of different glycoforms of egg white glycoproteins, which required pg amounts of 

glycoprotein samples.
12

  Further improvement in sensitivity should be easily addressed by the 

coupling of microfluidics with mass spectrometry.
5
    

 Another major challenge in glycoprotein analysis is the inherent microheterogeneity of 

glycoproteins in a protein pool.  Glycoproteins exist in glycoforms, different glycosylated 

variants of a particular glycoprotein.  For example, chicken ovalbumin contains in its 

modification (glycosylation) site at Asn 293, 13 different glycans (sugar chains) that comprise 

the glycoforms of chicken ovalbumin.   

Because of the aforementioned challenges in glycoprotein analyses, such analyses require 

proper protein isolation, separation, and preconcentration modalities prior to downstream protein 

processing/identification, such as by MS analysis.  To achieve the first step of proper protein 

isolation, capture of all glycosylated proteins in a sample is necessary.  Attempts to do so 

commonly include affinity-based isolation (concentration) techniques.
2,15

  Lectins are often times 

used in these affinity capture methods, because they are proteins of non-immune origin that have 

a specificity toward a particular sugar residue in the glycoprotein.  However, small structural 
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differences, such as in the case of glycoforms, may preclude isolation of other glycoproteins that 

may be of interest.   

Therefore, the first step to any glycoprotein analysis should be the isolation of all 

glycoprotein components so to obtain more ―global‖ information about the protein sample.  Such 

an isolation strategy will require use of a capture agent/receptor that recognizes the general sugar 

motif of the various glycoproteins possible; a class of receptors that can perhaps fulfill this 

requirement is that based on boronic acids.  As illustrated in various literature reports
16

 and the 

previous chapter (Chapter 2), boronic acid derivatives exhibit general specificity toward 

glycoproteins, as they only discriminate between diol (1,2- or 1,3-)–containing versus non-diol–

containing materials.   

A variety of boronic acid-containing materials that may be appropriate for glycoprotein 

capture/isolation exist, both in the literature or as obtained from commercial sources.  Several 

suppliers provide them as 3-aminophenylboronic acid covalently immobilized on polyacrylamide 

spherical gel beads (Affi-gel from Biorad and immobilized boronic acid gel from Pierce), on 

agarose beads (from Sigma or the Aminophenyl Boronate A6XL from ProMetic Biosciences), on 

acrylic beads (from Sigma), on polymethacrylate beads (TSKgel Boronate-5PW from Tosoh 

Bioscience), or as poly(methyl methacrylate)-bound boronic acid (the boric acid gel from 

Aldrich).  Non-commercial preparations with 3-aminophenylboronic acid as the recognition 

element have been made on silica beads,
17-18

 silica capillaries,
19

 magnetic particles,
20-21

 polymer 

beads,
22-23

 glassy carbon electrodes,
24

 gold electrodes,
25

 and gold
26-29

 and glass surfaces.
30

  

Magnetic glyco-capturing beads with immobilized boronic acid (Bruker Daltonic GMBH, 

Germany) afforded the largest number of glycoproteins captured from human serum compared to 

the beads with immobilized lectins (of broad sugar specificity);
20

 this indicates that boronic acid 
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is a more global capture element than most commonly used lectins.  Xu et al.
18

 was able to 

demonstrate that glycopeptides from tryptic digest of a mixture of four glycoproteins were all 

isolated with the use of boronic acid-functionalized mesoporous silica; no glycopeptides were 

observed in the flow-through fraction (i.e. unbound fraction).  This suggests 100% efficiency of 

glycopeptide binding to boronic acid materials. 

While miniaturized lectin affinity chromatography has been explored in the literature,
12

 a 

miniaturized system containing a boronic acid as the sensing element has not.  Plastics or 

polymers—such as poly(methyl methacrylate) (PMMA), poly(dimethyl siloxane) (PDMS), 

polystyrene (PS), and polycarbonate (PC)—are established substrates for the fabrication of 

microanalytical devices and offer several advantages over their glass, SiO2, or quartz 

counterparts, perhaps leading to their gain in popularity.
31-36

  A few of the notable advantages 

that can be translated into superior qualities and capabilities for low-glass-transition temperature 

(Tg)
7,36-37

 polymer-based microanalytical devices include capabilities to produce high-aspect-

ratio microstructures (HARMS) using relatively inexpensive materials and a variety of 

micromachining methods that are easy to implement.   

Perhaps one of the initial major disadvantages of using polymeric substrates for 

fabrication of microfluidic devices—that made them somewhat inferior to glass—was their inert 

nature towards surface chemical modification.  Unlike glass for which silane-based 

derivatization methods are well-established, many polymeric substrates lack the functional 

handle to accommodate various ligands on its surface that are suitable for a variety of 

applications.  However, polymeric substrates have seen a boost in the area of chemical 

modification over the years.  For PMMA in particular, carboxylic acids were introduced by UV 

irradiation
33

 and oxygen plasma treatment.
32

  Amine-terminated surfaces were prepared by 
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aminolysis reactions.
34,38

  PMMA sheets with integrated and exposed glycidyl methacrylate 

groups (PGMAMMA) were prepared by thermally-induced, free-radical polymerization, and 

further elaboration of the reactive glycidyl groups was performed via amination.
39

 

 To date, no boronic acid derivatives have been immobilized on the surface of polymeric 

microfluidic devices and subsequently used as possible capture elements.  Because of the surface 

modification chemistries available and the widespread use of PMMA in the construction of 

microfluidic devices, I have investigated the immobilization of an amino-boronic acid derivative 

on PMMA surfaces. This chapter presents the preparation of4-[(2-aminoethyl)carbamoyl]phenyl- 

boronic acid-functionalized PMMA, AECPBA–PMMA, surfaces through simple carbodiimide 

coupling on carboxylic acid-terminated PMMA, and its subsequent surface characterization by 

X-ray photoelectron spectroscopy (XPS), carminic acid method, and contact angle titration.  

Initial modification of the surface to yield carboxylic acid groups was accomplished using UV 

irradiation; a protocol that is reliable, convenient and easy to perform.  Preparation of this 

boronic acid-modified PMMA surface was the first step toward developing microfluidic 

enrichment and sepration channels for glycoproteins.  Protein (glycosylated and non-

glycosylated) adsorption on and desorption from the AECPBA–PMMA surface was examined.  

Non-specific adsorption of proteins—by hydrophobic interactions—on the surface was 

addressed during the binding and elution process. 

3.2   Experimental Section 

3.2.1   Materials   

AECPBA was prepared as previously reported.
40

  Poly(methyl methacrylate), PMMA, 

sheets (0.50-mm thickness, impact-modified) were obtained from Goodfellow (Huntington, 

England).  Avidin, BSA, fetuin, asialofetuin, human transferrin, and cytochrome C were obtained 



75 

 

from Sigma.  1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC, Sigma),  

2-(N-morpholino)ethanesulfonic acid (MES, Sigma, 99%), 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES, Sigma), 4-carboxyphenylboronic acid (CPBA, Aldrich), 

carmine dye (Acros, high purity), tris(hydroxymethyl)aminomethane (Tris, Sigma), glycine 

(Sigma, 99%), Tween 20 (Fluka), boric acid (EM Sciences), isopropanol (EMD, HPLC grade), 

and sulfuric acid (Fisher, ACS grade) were used as received.  All solutions were prepared in 

Nanopure water (Barnstead, >18 MΩ·cm). 

3.2.2 Preparation of AECPBA–PMMA Surface 

Poly(methyl methacrylate), PMMA, pieces (3 × 1 × 0.05 cm) were cleaned by sonication 

in 25% isopropanol (IPA), rinsed with nanopure water, and dried with house N2.  Both faces of 

the PMMA were exposed to UV light for 30 minutes each, cooled to room temperature, and 

placed in small capped vials.  The home-built UV light source is made of a low-pressure mercury 

lamp with an emission spectrum from 240 to 425 nm where the strongest intensity band is 

centered at 254 nm.  To each vial was added 2.00 × 10
–3

 g of 4-[(2-

aminoethyl)carbamoyl]phenylboronic acid, AECPBA, and immediately followed by 2.00 mL of 

5.0 × 10
–4

 M EDC in pH 5.00, 0.0250 M MES buffer.  The final mixture contained the PMMA 

piece, 5.00 × 10
–3

 M AECPBA, and 5.0 × 10
–4

 M EDC.  The samples were shaken at room 

temperature for 20 h.  The solution was removed, and the PMMA pieces were shaken with 1.00 

mL of pH 8.50, 0.050 M ethanolamine solution for 30 min to cap any remaining activated 

carboxylic acid groups.  The PMMA pieces were removed, rinsed with MES buffer and 

nanopure water, and dried with house N2.  In cases where small sample sizes were needed, the 

AECPBA–PMMA pieces were cut to the desired size with scissors.  
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3.2.3 Surface Concentration of AECPBA Using the Carminic Acid Method   

The carmine solution was prepared by dissolving 0.09200 g of carmine dye in 

concentrated sulfuric acid to make 100.00 mL dye solution.  Note:  Dissolution of carmine dye in 

concentrated sulfuric acid is exothermic.  Small volume increments of concentrated sulfuric acid 

were added to the dye with swirling.  The boric acid standard solutions were prepared in 

nanopure water and the 4-carboxyphenylboronic acid (CPBA) standard solutions were prepared 

in DMSO.  The AECPBA–PMMA pieces were placed in soda lime test tubes and exposed to 

2.00 mL of concentrated sulfuric acid for 1 min to dissolve the surface of the AECPBA–PMMA.  

The AECPBA–PMMA pieces were taken out, and to the resulting solutions a drop of 

concentrated hydrochloric acid were added while on ice bath to remove any nitrates present.  

5.00 mL of concentrated sulfuric acid was added in small volume increments with occasional 

shaking.  After the solution cooled to room temperature, 5.00 mL of the carmine dye solution 

was added and the tubes were capped and inverted several times to become homogeneous.  The 

solutions were allowed to stand for 1 h in the dark for color development.  The same procedure 

was performed for the standard solutions.  The absorbances of the solutions were determined at 

606 nm in a quartz cuvette using a Cary 50 UV-vis spectrophotometer. 

3.2.4 Contact Angle Titration of AECPBA–PMMA Surfaces   

Sessile-drop contact angle measurements were performed with a VCA goniometer.   

~2 L drops of buffered solutions were placed on the AECPBA–PMMA surface using the 

automated syringe and the contact angle was determined using the software provided.  A few 

seconds was allowed to let the droplet equilibrate on the surface.  The contact angle for each 

surface and pH were measured at several locations on the surface.  A new surface was used each 

time the pH of the solution was changed. 
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3.2.5 Binding of Glycosylated and Non-glycosylated Proteins on the AECPBA–PMMA 

Surface and Their Subsequent Elution 

 

To 1 × 1 cm pieces of AECPBA–PMMA in a small vial was added 1.00 mL of solutions 

of proteins (glycosylated and non-glycosylated) prepared in pH 8.00, 0.050 M glycine buffer 

with 0.150 M NaCl and 0.05% (v/v) Tween 20 (GBST).  The mixture was shaken at room 

temperature for 1 h.  The AECPBA–PMMA pieces were removed and rinsed with the same 

glycine buffer and then nanopure water, dried with house N2, and left overnight under high 

vacuum.  For experiments where elution was performed, after the AECPBA–PMMA piece was 

removed, it was shaken at room temperature in 2.00 mL of pH 10.00, 0.10 M borate with 0.30 M 

NaCl and 0.005% (v/v) Tween 20 for 2 to 4 times for 10 min each time.  The AECPBA–PMMA 

was rinsed with nanopure water, dried with house N2, and left overnight under high vacuum. 

3.2.6 Analysis by X-ray Photoelectron Spectroscopy (XPS)  

The surfaces prepared were investigated using a Kratos AXIS 165 X-ray Photoelectron 

spectrometer.  The samples were positioned on the sample holder using a double-sided adhesive 

Cu tape.  X-ray sources used were either the monochromatic Al Kα (1486.6 eV) or the non-

monochromatic Mg Kα (1253.6 eV).  Each resulting survey (0–1200 eV) and high-resolution 

scans (eV range is element-dependent) were averages of at least two scans of each at defined 

pass energies.  Spectra were collected at a photoelectron take-off angle of 90°.  In all cases, the 

charge neutralizer was turned on to eliminate any charge effects on the non-conducting samples.  

The pressure of the anaysis chamber was maintained at 10
–9

 torr.  Determination of atomic 

concentrations or elemental compositions was accomplished using the software provided by the 

manufacturer. 
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3.3 Background Information 

3.3.1  Preparation of the AECPBA–PMMA Surface  

The boronic acid derivative, 4-[(2-aminoethyl)carbamoyl]phenylboronic acid 

(AECPBA), used here was prepared according to the literature
40

 and as decribed in Chapter 2.  

This boronic acid derivative is attractive as it offers a terminal amine functionality that can be 

utilized for surface attachment.  In addition, the pKa of the boronic acid is low (pKa = 8.0), and 

this allows for the binding of diol groups at or near physiological pH.  This low pKa is 

advantageous, as the commonly used 3-aminophenylboronic acid has a pKa of 8.88.  Surface 

modification of the PMMA is essential in order to provide a functional handle to which 

subsequent surface modifications may be performed.  For PMMA, carboxylic acid groups can be 

formed by direct UV exposure in an oxygen-rich environment.  The PMMA surface was exposed 

to UV radiation with a maximum exposure time of 30 min.  The formation of surface carboxylic 

acid was verified by contact angle measurements and the values found are consistent with the 

literature.
33

  Following the creation of carboxylic acid-terminated PMMA (CT–PMMA), 

AECPBA was introduced on the surface via aqueous carbodiimide coupling.   

3.3.2 X-ray Photoelectron Spectroscopy (XPS)  

Most of the results presented here are obtained from XPS analysis and therefore this 

section is devoted to some background information about XPS.  Since the development by Kai 

Siegbahn (Uppsala, Sweden) of what was then called Electron Spectroscopy for Chemical 

Analysis (ESCA),
41

 currently formally known as X-ray Photoelectron Spectroscopy (XPS), the 

technique has become an essential tool for surface analyses.  XPS operates by the photoelectric 

effect whereby X-ray light, upon interacting with a surface, transfers energy to the core level 

electrons thereby causing photoemission.  The ejected photoelectron has an associated energy 
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(binding energy, EB) that is characteristic of the element and its atomic orbital.  The binding 

energy is defined as EB = hν – EK – W, where hν is the X-ray energy, EK is the kinetic energy of 

the photoelectron, and W is the spectrometer work function. The atom relaxes by having a lower 

energy electron occupy the hole created in the higher energy orbital with subsequent ejection of a 

low energy electron (Auger electron) or X-ray fluorescence.  The surface sensitivity of XPS 

arises from the short distance that the photoelectrons can traverse the solid before suffering from 

energy loss through inelastic scattering (inelastic mean free pathlength or IMFP, λ) even though 

the X-ray penetration depth is 10
2
‒10

3
 nm.  This sampling depth is therefore defined as d = 3λ.   

XPS can provide both qualitative and quantitative information.  Because binding energy 

is an intrinsic property of the atom, XPS can yield elemental composition of the surface.  In 

addition, the binding energy of a given element is influenced by its chemical environment; 

therefore, chemical shifts arise which depends on the chemical state of the atom.  Atomic 

concentration can be determined from peak area or intensity calculations.  The intensity of the 

photoelectron peak is given by I = JρσΚλ where J is the photon flux, ρ is the concentration of 

atom or ion in the solid surface, σ is the cross-section for photoelectron emission, Κ is the 

instrumental factors, and λ is the IMFP.  The atomic concentration of a particular element (A) is 

then calculated by A% = [(IA/FA)/Σ (I/F)]×100 where F is the sensitivity factor that is a function 

of σ, Κ, and λ.   

A typical spectrometer contains an X-ray source, a monochromator, an electron energy 

analyzer, and a detector.  The system is operated under ultra-high vacuum (UHV) because of 

surface sensitivity.  The X-ray source consists of an Al or Mg anode that is capable of producing 

1486.6 eV (Al Kα) and 1253.6 eV (Mg Kα) photon energy upon bombardment of the anode by 

high energy electrons from a thermal source.  A monochomator is often used for Al Kα sources 
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and is made of crystalline quartz; a narrow X-ray line is selected via interference effects.  The 

resulting X-ray photoelectron spectrum from a monochromatized source has a lower background, 

free of X-ray satellite peaks and bremsstrahlung continuum, and has narrower XPS peaks.  The 

electron energy analyser often used is a hemispherical sector analyser (HSA), an analyser that 

consists of an outer and inner hemisphere which separates photoelectrons according to energy 

(i.e. a larger radius is traversed by high energy photoelectrons and a smaller radius is traversed 

by low energy photoelectrons).  At the end of the analyser, several channel detectors (electron 

multiplier) collect the photoelectrons. 

3.4 Results and Discussion 

3.4.1 Characterization of the AECPBA–PMMA Surface   

The accumulation of boronic acid species on the surface of the PMMA was followed by 

XPS.  In Figure 3.1 are shown B 1s and N 1s spectra for carboxyl-terminated PMMA  

(CT–PMMA) surfaces that were exposed to EDC and/or AECPBA.  The peak observed at 190 

eV and the large signal at 399 eV for the CT–PMMA exposed to EDC and AECPBA are 

characteristic of boron and nitrogen, respectively, and indicates the presence of AECPBA on the 

surface.  When the B 1s and the N 1s regions were examined for the CT–PMMA exposed to 

EDC or AECPBA alone (controls), there was no observable peak at 190 eV but there is an 

exceedingly low amount of nitrogen signal at 399 eV.  In addition, CT–PMMA exposed to EDC 

and 4-carboxyphenylboronic acid did not lead to observation of a peak at 190 eV (data not 

shown); 4-carboxyphenylboronic acid is carboxylic acid-terminated, therefore it will not attach 

to the CT–PMMA surface by the carbodiimide coupling reaction.  Taken together, these results 

indicate that the observed B 1s and N 1s signals for the CT–PMMA exposed to EDC and 

AECPBA  is  a  result of  covalent  attachment  of  AECPBA to  the PMMA surface via an amide 
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Figure 3.1.  Representative X-ray photoelectron spectra in the B 1s and N 1s regions for CT–

PMMA surfaces that were exposed to the carboxylic acid-activating agent EDC and/or the 

boronic acid derivative AECPBA. 

bond.  However, it should be noted that the characteristic B 1s peak observed here may not be 

due to the trigonal boronic acid or tetrahedral boronate ion.  Several reports on SAMS of boronic 

acid on Au pointed to the formation of boronic anhydrides under UHV conditions (during XPS 

data acquisition).
42-43

  Therefore, the observed chemical shift of boron obtained here may be due 

to the anhydride form.  Regardless of what occurs in UHV, the boronic acids on the PMMA 
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surface should have the trigonal/tetrahedral form under ambient conditions that is necessary for 

diol binding, as boronic anhydrides are unstable under these conditions.
42-43

   

In order to increase the surface boronic acid density, the number of carboxylic acid sites 

on the CT–PMMA can be increased.  It can be hypothesized that the greater the number of ligand 

attachment sites available, the higher would be the number of ligands that can be attached to the 

surface, under the assumption that the efficiency of reaction is constant regardless of surface 

functional group density.  It was found that the carboxylic acid concentration on the PMMA 

surface increases with UV irradiation time.
33

  Therefore, the PMMA was exposed to UV 

radiation at various times and then covalent coupling of AECPBA via EDC coupling was carried 

out.  The experimental conditions were kept constant throughout; the only difference is the 

length of UV irradiation time.  As shown in Figure 3.2, the B 1s and N 1s peaks characteristic of 

the AECPBA on the PMMA surface increases with UV irradiation time.  Atomic concentrations 

in Table 3.1 demonstrate that the boron and nitrogen content increases with the length of 

exposure of the PMMA surface to UV radiation, an indication that the number of AECPBA 

molecules on the surface increased as the number of surface carboxylic acid groups increased. 

Due to the inherently low signals obtained for B 1s —the intensity of XPS transitions decreases 

with atomic number—all elemental scans were performed at 160 eV pass energy from which the 

atomic concentrations were calculated.  The UV irradiation time was limited to a maximum of 30 

min as the surface concentration of carboxylic acid does not increase significantly beyond a 30-

min exposure;
33

 therefore, the amount of AECPBA on the surface is not expected to increase 

significantly beyond the 30-minute UV exposure, unless a different modification protocol were 

to be employed.   
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Figure 3.2.  Representative X-ray photoelectron spectra in the B 1s and N 1s regions for 

AECPBA–modified PMMA surfaces as a function of the initial UV exposure time. 

 

The surface concentration of AECPBA was determined with a colorimetric method that 

used the carmine method.
44-45

  The presence of boron is verified by a color change from bright 

red to blue and can be followed spectrophotometrically.  Using this method, the AECPBA 
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surface concentration was calculated to be 1.52 ± 0.39 nmol cm
–2

 from an initial 30-min UV 

exposure time.  In contrast, a close-packed monolayer of thioaliphatic acid–3-

aminophenylboronic acid conjugate SAM on Au gave rise to a 0.33 nmol cm
–2

 surface 

coverage.
26-27

  Currently, the rationale for this greater-than-monolayer coverage is not known.  

However, it should be noted that the value determined here is calculated without correction for 

surface roughness of the AECPBA–PMMA surface.  In the absence of a topographical image of 

the AECPBA–PMMA surface, a corrected surface coverage cannot be accurately determined.  

However, if the same rough surface of a CT–PMMA
33

 is adopted following AECPBA 

attachment, the surface coverage is expected to be lower than 1.52 nmol cm
–2

.  Using the 

roughness correction factor (R) value previously determined for PMMA exposed to UV light for 

30 min,
33

 the surface coverage after correction for surface roughness is 1.42 ± 0.37.  This value 

is still greater-than-monolayer coverage in comparison with the 0.33 nmol cm
–2

 surface coverage 

obtained for thioaliphatic acid–3-aminophenylboronic acid conjugate SAM on Au.  However, 

with the type of AECPBA used here (boron is para to the organic ―tail‖ compared to meta for the 

3-aminophenylboronic acid in the SAM above), the molecular cross-sections on the surface of 

AECPBA and the thioaliphatic acid–3-aminophenylboronic acid conjugate SAM is not likely to 

be identical.
46

  Hence, the 0.33 nmol cm
–2

 coverage for the latter may not be the same for a 

close-packed monolayer of AECPBA, and comparing the two values may be inappropriate.  

Regardless, this surface coverage should be the maximum attainable given that the CT–PMMA 

initially used has a surface coverage that was maximum with the UV modification protocol 

adapted.  However, this does not indicate the degree of organization of the boronic acid 

derivatives on the surface.  It is likely though that the molecules are arranged in a disordered 

fashion such that some patches of PMMA are exposed (vide infra). 
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Table 3.1.  XPS quantification of the elemental composition of AECPBA–PMMA surfaces as a 

function of time of exposure of pristine PMMA to UV light that created the carboxylic acid 

groups that were used for the covalent attachment of AECPBA.  The reported values are the 

average of 3 replicates with ± one standard deviation. 

UV modification 

time (min) 

Atomic Concentration (%) 

C 1s O 1s N 1s B 1s 

1 79.01 ± 1.47 20.43 ± 1.58 0.47 ± 0.06 0.08 ± 0.09 

10 76.16 ± 0.27 23.18 ± 0.39 0.56 ± 0.12 0.10 ± 0.02 

30 71.28 ± 4.90 26.74 ± 4.51 1.68 ± 0.36 0.29 ± 0.04 

 

In order to assess the surface properties of modified solids, contact angle goniometry is a 

convenient and versatile tool that provides information about the wettability of the surface (i.e. 

hydrophilicity or hydrophobicity of the surface).  Upon contact of a surface with a contacting 

liquid, the contact angle at the gas-liquid-solid interface provides a measure of the interaction of 

the surface with the liquid, namely a polar or an apolar interaction.  In general, hydrophilic and 

hydrophobic surfaces are characterized by a water contact angle of 0–30° and 70–90°, 

respectively.  A surface with intermediate polarity would exhibit a contact angle between 30° 

and 70°.   

Another important aspect of contact angle measurements is the capability to determine 

the acid-base behavior of surfaces that possess ionizable groups.
47-51

  This technique, often 

referred to as contact angle titration, relies on the changes in hydrophilicity of the surface as a 

consequence of the ionization of the functional groups, and it forms the basis for determining 

thermodynamic properties such as surface pKa.    
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 The experiment was conducted by measuring the contact angle on freshly-prepared 

surfaces using buffered solutions of varying pH as the contact liquid.  The contact angle was 

calculated using the software provided by the manufacturer.  In addition, multiple measurements 

of contact angle were performed at different locations on freshly-prepared surfaces at each pH.     

The AECPBA–PMMA, that was prepared following a 30-min UV exposure, results in a contact 

angle titration curve that shows consistently high contact angle at pH values ≤ 6, and then a rapid 

decrease in contact angle followed by contact angle values that progressively decreased with pH.  

This break in the curve is assumed to represent the region where the pKa of the surface lies, as 

the buffering capacity of the contact liquid should be adequate (0.050 M) so as to prevent any 

buffering effects by the surface ionizable groups.  Thus, the dramatic change in the contact angle 

as pH is changed (Figure 3.3) suggests a change in the hydrophilicity of the surface due to 

ionization of groups on the surface.  The pKa of AECPBA in solution was experimentally 

determined in this work to be 8.0; therefore, the break in the curve and the subsequent decrease 

in contact angle can be regarded as a result of the transformation of the boronic acid derivative 

from a neutral trigonal boronic acid species to a charged tetrahedral boronate ion as a result of 

hydroxyl group introduction.
52

  However, it should be noted that CT–PMMA (from a 30-min UV 

exposure) that was exposed to EDC only gave an almost identical titration curve except that it 

exhibited a more hydrophilic surface (lower contact angle) compared to the AECPBA–PMMA at 

almost all pH values examined.  Both AECPBA–PMMA and EDC-exposed CT–PMMA are 

found to be less hydrophilic than the initial CT–PMMA.  It is likely that the increase in contact 

angle of the EDC-exposed CT–PMMA at low pH values is a consequence of increased surface 

roughness due to the removal of low molecular weight polymers from the surface
33

 after it is 

subjected  to  the e xperimental  protocol (e.g. shaking, washing etc.).  It  is  also evident that this 
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Figure 3.3.  Sessile water drop contact angle titration of variously-treated PMMA surfaces: 

black squares–untreated PMMA; blue triangles–exposure to UV light for 30 min; green 

triangles–modified by exposure to UV radiation for 30 min (CT–PMMA) and subsequently 

reacted with the boronic acid derivative AECPBA via carbodiimide coupling; and red circles– 

modified by exposure to UV radiation for 10 min (CT–PMMA) and subsequently reacted with 

the boronic acid derivative AECPBA.  Contact angles were determined using 2 L of aqueous 

buffer solutions.  Each point in the measurement is the average of 4–6 drops of contact liquid on 

fresh surfaces with ± one standard deviation being reported as the error. 

EDC-exposed CT–PMMA surface has exposed carboxylic acid groups even after exposure to 

EDC, a possible outcome because  the  EDC-activated carboxylic acid  groups are  susceptible to 

hydrolysis in the absence of a nucleophile (i.e. the EDC-exposed CT–PMMA was not exposed to 

ethanolamine.
53

  On the other hand, this surface can be distinguished from the AECPBA–PMMA 

surface because the latter exhibits a more hydrophobic surface (higher contact angle), consistent 

with the presence of aromatic rings on the AECPBA–PMMA surface.  In general, the decrease in 

the contact angle for the AECPBA–PMMA surface can be attributed to the transformation of the 

AECPBA from boronic acid to boronate species and the ionization of any unreacted carboxylic 

acid groups.  The surfaces probed for the contact angle titration experiment were not passivated 

with any capping reagent such as ethanolamine, therefore, any unreacted carboxylic acid would 
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be exposed to the contact liquid.  Nevertheless, the AECPBA–PMMA surface is shown to 

exhibit acid-base behavior that is consistent with a surface possessing exposed ionizable groups 

that have the characteristics of a boronic acid with a pKa similar to that of the AECPBA.  An 

AECPBA–PMMA surface prepared from PMMA exposed to UV light for 10 min also exhibits a 

difference in hydrophilicity with pH, although it is not as significant as the AECPBA–PMMA 

from PMMA exposed to UV light for 30 min; this observation is consistent with a surface having 

a lower surface density of ionizable groups.  In contrast, a pristine PMMA surface (i.e. the 

surface did not undergo modification by UV) had contact angles that were virtually constant (~ 

83°) throughout the pH range studied.  If there are any carboxylic acid groups that exist due to 

the manufacturing process or during storage,
33

 the lack of a break in the contact angle-pH curve 

indicates that the carboxylic acid concentration is not sufficient to cause a sufficient enough 

change in the hydrophilicity of the surface resulting from the ionization process. 

3.4.2 XPS Evaluation of Protein Binding to and Elution from AECPBA–PMMA Surfaces 

Initial investigation of the capability of the AECPBA–PMMA surface to recognize and 

bind glycoproteins from solution, as well as demonstrate selectivity against non-glycosylated 

proteins, was conducted using avidin (glycosylated) and BSA (non-glycosylated), respectively.  

Avidin is a 68 kDa glycosylated protein containing four N-linked glycosylation sites that 

primarily consist of high mannose and hybrid-type oligosaccharide chains.
54-57

  BSA is a 66 kDa 

protein that occurs naturally as non-glycosylated.  This protein is also documented in the 

literature for its non-specific adsorption to surfaces.
32,58-60

  Tris was used as the sample binding 

buffer according to its reported shielding effect that minimizes non-specific adsorption (via 

amino acid–boronic acid/boronate interaction) of non-glycosylated proteins (see Chapter 2).  

Figure 3.4 illustrates the adsorption of proteins on the AECPBA–PMMA surface as examined by 
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XPS.  Because the N 1s core level signal is predominant in proteins but only occurs to a small 

extent on the AECPBA–PMMA surface—due to the amide nitrogen from attached AECPBA—it 

was chosen as the element to indicate the presence/absence of surface-adsorbed proteins.  In 

comparison to an AECPBA–PMMA surface that was exposed to the binding buffer Tris 

(control),  the  significantly  higher  N 1s  signal of  the  surface  following its  exposure to avidin 
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Figure 3.4.  Representative X-ray photoelectron survey spectra for the AECPBA-modified 

PMMA surfaces after exposure to the glycoprotein avidin, non-glycosylated protein BSA, and 

pH 8.00 Tris-buffered saline.  Protein solutions were prepared in pH 8.00, 0.050 M Tris with 

0.50 M NaCl.  Survey scans were obtained at 40 eV pass energy. 
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suggests that  the  protein  was  bound to it.  On the other hand, a similar surface exposed to only 

BSA shows a smaller N 1s signal, although significant when compared to the control.  Based on 

the difference in the N 1s signal, it is clear that there is preferential adsorption of the 

glycosylated avidin on the AECPBA–PMMA surface compared to the non-glycosylated BSA, an 

indication that the boronic acid–sugar interaction is dominant.  Comparing the N 1s signal is 

valid here, as the proteins used have almost identical molecular weight indicating that they have 

more or less similar nitrogen content.  Regarding the nature of the non-specific adsorption of 

BSA to the AECPBA-PMMA surface, it is likely attributed to hydrophobic interactions with any 

exposed underivatized PMMA region—BSA is known to adsorb on hydrophobic surfaces such 

as PMMA
58-59

—or with the phenyl ring of the boronic acid derivative.
61

   

 Attempts to remove (i.e. elute) the bound avidin from the surface started with the use of 

the most common eluting agent employed in boronic acid chromatography; a low pH buffer with 

a pH below the pKa of the boronic acid derivative.  This takes advantage of the boronic 

acid/boronate equilibria where conversion to the neutral trigonal boronic acid species—any diol-

boronic acid interaction with the neutral species is unstable due to fast hydrolysis—is 

accomplished at a pH below the pKa of the boronic acid.  As shown in Figure 3.5, X-ray 

photoelectron survey spectra of AECPBA–PMMA surfaces that were exposed to avidin and 

subsequently exposed to a pH 5 eluting buffer did not result in a change in the N 1s signal (see 

the inset in Figure 3.5), suggesting that removal of bound avidin did not occur.  This observation 

is consistent with that found on the AECPBA–CM5 sensor surface in Chapter 2.  It would, 

therefore, be argued that electrostatic interaction is operative in this scenario, an interaction that 

is documented as one of the secondary interactions that is established (prevalent) in boronic acid 

systems,
61

 which is why elution did not take place.  It is of no question that this electrostatic 
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interaction is concomitantly occurring during the binding of avidin on the AECPBA–PMMA 

surface, as discussed previously for observations with the AECPBA–CM5 surface (Chapter 2).  

However, under the mechanism of elution that is offered by a low pH buffer (pH 5 in this case), 

there should not be a significant amount of ionized boronic acid present.  Hence, electrostatic 

interactions would not occur during the eluting step with avidin, because its pI of 10–10.5 would 

render it net positively charged at pH 5.  Therefore, a different mechanism of adsorption that 

resists the elution of bound avidin from the boronic acid surface must be operational (vide infra).  

A second attempt at elution was performed using pH 10 borate-buffered saline.  From 

observations with the AECPBA–CM5 surface in Chapter 2, this eluting agent was successful in 

removing bound glycoproteins from that surface.  However, Figure 3.6 illustrates that only 20% 

of bound avidin was removed from the surface.   
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Figure 3.5.  Representative X-ray photoelectron survey spectra showing the binding of the 

glycosylated protein avidin and its subsequent elution attempt using pH 5.00, 0.050 M acetate 

buffer.  Binding of avidin was performed in pH 8.00, 0.050 M Tris with 0.50 M NaCl.  Survey 

scans were obtained at 40 eV pass energy.  Inset shows the XPS quantification value obtained for 

N 1s. 

%N 1s = 4.47 ± 0.08 %N 1s = 4.59 ± 0.07 
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Figure 3.6.  Representative X-ray photoelectron survey spectra showing the binding of the 

glycosylated protein avidin and its subsequent elution attempt using pH 10.00, 0.050 M borate 

with 0.30 M NaCl.  Binding of avidin was performed in pH 9.00, 0.050 M Tris with 0.150 M 

NaCl.  Survey scans were obtained at 40 eV pass energy.  Inset shows the XPS quantification 

value obtained for N 1s. 

These observations merited further investigation regarding the nature of adsorption of 

avidin on the AECPBA–PMMA surface even after exposure to eluting agents.  It was later 

found, through a control experiment, that avidin exhibits non-specific adsorption to both CT–

PMMA and even to hydroxyl-terminated PMMA (i.e. carboxylic acid groups on the PMMA was 

capped with ethanolamine by carbodiimide coupling) (Figure 3.7).  Based on this outcome, the 

inability to elute the majority of bound avidin on the AECPBA–PMMA surface can be attributed 

to its adsorption to the underlying PMMA substrate.  Although electrostatic attraction may 

account for the adsorption of avidin to CT–PMMA, this does not explain the observed adsorption 

to the hydroxyl-terminated PMMA, unless a substantial amount of the activated carboxylic acid 

groups are not accessible during the ethanolamine capping step, which would result in formation 

of carboxylic acid sites.   

 

% N 1s = 4.47 ± 0.08 % N 1s = 4.59 ± 0.07 

% N 1s  

6.54 ± 0.09 

% N 1s  

5.35 ± 0.66 
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Figure 3.7  Representative X-ray photoelectron survey spectra showing the binding of the 

glycosylated protein avidin on carboxylic acid-terminated PMMA (CT–PMMA) and hydroxyl-

terminated PMMA.  Binding of avidin was performed in pH 8.00, 0.050 M Tris with 0.150 M 

NaCl.  Survey scans were obtained at 40 eV pass energy.  Inset shows the quantification value 

obtained for N 1s. 

 

One possible scenario to explain the resistance of avidin elution from the AECPBA–

PMMA surface is a hydrophobic interaction between the avidin and the AECPBA–PMMA 

surface.  To test this hypothesis on the AECPBA–PMMA surface, the non-ionic surfactant 

Tween 20 was added to the pH 10 borate-buffered saline eluting agent.  PMMA surfaces are 

known to be notorious with respect to hydrophobic interactions with proteins due to the 

somewhat hydrophobic nature of the surface.
32,60,62

  In fact, significant efforts have been 

dedicated to address this issue of non-specific adsorption.  Both dynamic coating
62-65

 and surface 

grafting
32,60

 methods have been used, and they have provided significant improvement in 

suppressing non-specific adsorption by passivating the PMMA surface with neutral hydrophilic 

residues.  Dynamic coating is perhaps the most widely employed method because of its 

simplicity and the ease by which it is performed.  Dynamic coating additives that have been 

successfully used to reduce/eliminate non-specific adsorption to the PMMA surface include 



94 

 

cellulose derivatives (e.g. methyl cellulose, hydroxypropylmethyl cellulose, and hydroxyethyl 

cellulose),
62-63,65

 neutral polymers (e.g. poly(ethylene oxide) and poly(vinyl pyrrolidone)),
64

 and 

non-ionic detergents (e.g. Tween 20).
65

  Tween 20 was chosen herein to be investigated first 

because of its availability. 

Without Tween 20, the quantity of eluted avidin amounted to 20%, while with Tween 20, 

it amounted to 26%.  Although only a small difference is afforded by the addition of Tween 20, 

there is no doubt that Tween 20 facilitates in the suppression of non-specific adsorption to the 

AECPBA–PMMA surface, as will be shown later using other proteins.  The observation made 

with Tween 20 thus indicates that there are non-derivatized hydrophobic PMMA regions even 

after capping of the AECPBA–PMMA surface with ethanolamine, such that even if borate was 

effective in breaking the diol–boronate interaction, hydrophobic interaction between the protein 

and the PMMA surface keeps the protein from being removed from the surface.  This result 

arguably contradicts that surface coverage found, which is greater-than-a-monolayer coverage, 

for the AECPBA–PMMA surface.  However, this may support the hypothesis that the AECPBA 

exists on the surface in a disordered fashion which allows patches or regions of PMMA to be 

exposed to the proteins. 

In Figure 3.8 are shown the results for studies of protein binding to AECPBA–PMMA 

surfaces and their attempted elution as a function of protein category with respect to 

glycosylation (glycosylated and non-glycosylated) for several proteins.  Assessment of protein 

binding on the AECPBA–PMMA surfaces was made using the N 1s XPS signal near 400 eV; to 

more readily track differences resulting from elution treatments, the recorded signals were 

normalized to an AECPBA–PMMA surface exposed to buffer solution not containing any 

protein.  It should  be noted  that Tween 20  was  added  to the  binding buffer so  as to  provide a  
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Figure 3.8.  Representative high-resolution XPS N 1s scans of AECPBA–PMMA surfaces after 

exposure to glycosylated (asialofetuin, human transferrin, and fetuin) and non-glycosylated 

proteins (BSA and cytochrome C) and subsequent attempted elution of bound proteins by 

washing of the surfaces using a pH 10 borate-buffered saline solution containing Tween 20. 

Spectra were collected using a pass energy of 20 eV.  Inset is the reference-normalized N 1s 

signal for the various proteins, before and after attempted elution with borate buffer. 

― after binding 

― after elution 

― reference 
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dynamic coating that should prevent non-specific binding events.  For all proteins examined 

here, whether glycosylated or non-glycosylated, there was no evidence of non-specific 

adsorption on CT–PMMA surfaces based on the lack of any measureable N 1s signal from these 

surfaces after exposure to the proteins in the presence of Tween 20; X-ray photoelectron spectra 

are given in Figure 3.9 for representative glycosylated and non-glycosylated proteins.  Therefore, 

any binding to the AECPBA–PMMA surface by the glycoproteins can be attributed to the 

specific diol–boronate interaction, as well as any secondary interactions with the 

boronic/boronate ligand, as discussed in Chapter 2 (e.g. electrostatic, hydrogen bonding, 

hydrophobic, and coordination reactions).   

Based on the significantly higher N 1s signal observed in Figure 3.8 for AECPBA–

PMMA surfaces exposed to solutions of asialofetuin (a desialylated analogue of fetuin) versus 

the N 1s signal for AECPBA–PMMA surfaces not exposed to the protein, the asialofetuin is 

present.  Subsequent regeneration of the surface (protein elution) was effected with the pH 10 

borate-buffered saline containing Tween 20.  It is quite important to note the near identical 

values for the N 1s signal of the eluted/regenerated asialofetuin-AECPBA–PMMA and reference 

AECPBA–PMMA surface, as this outcome strongly indicates that the initially bound asialofetuin 

was removed from the surface.  A similar outcome is observed for AECPBA–PMMA surfaces 

exposed to the glycoprotein human transferrin.  However, fetuin is not totally removed from the 

surface (~50%) upon attempted elution with the borate buffer.  It is currently unclear why fetuin 

is not removed during this process, because asialofetuin—which is fetuin that has been 

desialylated by an enzymatic process and differs from fetuin by only the terminal sialic acid 

sugar residue—is removed from the AECPBA–PMMA surface following the same elution 

protocol.   
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Figure 3.9  Representative X-ray photoelectron survey spectra showing the adsorption of human 

transferrin (glycosylated) and cytochrome C (non-glycosylated) on CT–PMMA surfaces in the 

presence/absence of Tween 20.   

 

It is noteworthy that there is a similarity in the degree of binding of asialofetuin, fetuin, 

and human transferrin on the AECPBA–PMMA surface and on the AECPBA–CM5 surface 

described in Chapter 2.  Asialofetuin, a glycoprotein whose glycan chains are terminated with 

galactose units, binds to a greater extent compared to fetuin and human transferrin, both of which 

have glycan chains terminated with N-acetylneuraminic acid (a.k.a. sialic acid).  The results here 

firmly supports the conclusions made from SPR investigations that the interaction of boronic 

acids with glycoproteins is largely based on the type of sugar terminus (see Chapter 2).  When 

non-glycosylated proteins were exposed to the AECPBA–PMMA surface, both the BSA and 

cytochrome C did not exhibit any adsorption to the surface, judging from the virtually identical 

N 1s signal of these surfaces compared to a reference surface, see Figure 3.8 inset.  This can be 

taken as further evidence that Tween 20 was effective in suppressing non-specific protein 

adsorption on underivatized PMMA surfaces. In general, addition of Tween 20, acting as a 

dynamic coating, on the AECPBA-PMMA surface improves the selectivity of the surface with 
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respect to hydrophobic interactions of non-glycosylated proteins with hydrophobic regions on 

the PMMA surface.  

3.5 Conclusions 

 The preparation of a boronic acid-derivatized PMMA microfluidic surface, AECPBA–

PMMA, was investigated for the first time.  Characterization by XPS, UV-vis absorption 

measurements, and contact angle titration has demonstrated the covalent attachment of AECPBA 

on UV-modified PMMA surfaces through simple carbodiimide coupling.  The binding—using 

glycine- and tris-buffered saline—and elution, using borate-buffered saline, of glycoproteins 

were accomplished with the aid of Tween 20, as a dynamic coating, which suppressed the 

hydrophobic interactions between the proteins and exposed underivatized regions of PMMA.  

Non-specific adsorption of non-glycosylated proteins was not apparent under the binding buffer 

system employed.  The results presented here demonstrates the capacity of the AECPBA–

PMMA surface to capture glycoproteins from solution, and the ability of said capture surfaces to 

have their surface contents efficiently eluted at a later time; these outcomes bode well for use of 

these and similar surfaces in microfluidic devices for protein capture, release and identification. 
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CHAPTER 4 

ATRP-DERIVED THERMORESPONSIVE TERPOLYMERS ORTHOGONALLY 

DERIVATIZED WITH A LECTIN AND ITS COMPLEMENTARY BINDING SUGAR 

 

4.1 Introduction 

Engineering macromolecules to give well-defined composition, a high degree of 

functionality, and complex architectures to suit specific applications requires the development of 

powerful and diverse strategies for polymer synthesis.  It is not surprising that polymer synthesis 

techniques based on living/controlled free radical polymerization (LFRP) in tandem with click 

chemistry have received particular attention, owing to the benefits associated with high fidelity, 

simple, and efficient reactions.
1-11

  Although it is attractive to directly copolymerize groups to 

increase synthetic throughput, even the advances made by LFRP in terms of enabling monomer 

functionality tolerance has, in general, not allowed for a broad range of moieties to be directly 

introduced via copolymerization.  Hence, post-polymerization modification
5
 is still an attractive 

strategy to create complex functional materials.  The success of post-polymerization strategies 

still relies heavily on the availability of synthetic polymers that possess functionalizable side 

groups that can be efficiently converted so as to endow the polymer with new functionalities that 

are key to formation of complex functional materials with desired characteristics.  It would seem 

that this is counterproductive due to the number of reaction steps that must be carried out to 

obtain the final material, but several researchers have capitalized on either simultaneous or 

cascade reactions to limit the synthetic route for the creation of multiply-functionalized 

materials.
2-3

  In fact, it can also be argued that having a precursor polymer is economical and 

practical because a library of materials
3,12

 can be prepared without the need to optimize the 

reaction conditions to create each resulting material, such as would be in the case with direct 

copolymerization. 
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Much of polymer synthesis is directed at biological applications (e.g. medicine and 

biotechnology).
12

 For polymers to be extremely viable for such, they must behave as both a 

sensor and an actuator (i.e. one that identifies and acts on a particular stimulus).  Thus, synthetic 

polymers usually possess stimuli-responsive functionalities that are sensitive to changes in pH, 

light, temperature, reducing agents, or a combination thereof.
2,13-15

  Poly(N-isopropyl-

acrylamide), in particular, has been at the forefront of synthetic investigations, owing to its 

temperature-responsive nature that is characterized by a phase transition that occurs at near 

physiological temperature (i.e. lower critical solution temperature, LCST = 32 °C) in aqueous 

medium.
16

  At this temperature, microscopically, poly(N-isopropylacrylamide) exhibits a coil-to-

globule transition that manifests itself as a phase change at the macroscopic scale.
17

  This 

phenomenon has been exploited for potential applications in separations,
14,18

 drug delivery,
19

 and 

diagnostics.
20

 

The fusion of thermoresponsive character and the capability for modification of multiple 

functionalities in a single polymer is very attractive in the preparation of diverse, multi-

functional ―smart‖ materials.  A synthetic strategy/route for the modification of a 

thermoresponsive terpolymer is presented.  It is also demonstrated that glycidyl methacrylate and 

tert-butyl acrylate can be efficiently copolymerized with N-isopropylacrylamide by atom transfer 

radical polymerization (ATRP) and each functionality can be subsequently modified with 

biologically relevant molecules, namely a lectin protein and its complementary eluting sugar, in 

a stepwise fashion.  The synthetic route presented here is amenable for adaptation in the 

fabrication of microfluidic surfaces/devices that operates by capturing and releasing a unique set 

of glycoprotein without the need for externally-added eluting agents. 
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4.2 Experimental Section 

4.2.1 Materials   

N-isopropylacrylamide (NIPAAM, 97%, Aldrich) was purified by recrystallization from  

n-hexane twice.  N-acryloxysuccinimide (NAS, 99%, Acros) was recrystallized twice using 2:1 

(v/v) hexane/ethyl acetate.  Tert-butyl acrylate (tBA, 99%, Acros) was passed through an 

inhibitor remover column (Aldrich), followed by reduced pressure distillation, to remove the 

monomethyl ether hydroquinone (MEHQ) inhibitor.  Glycidyl methacrylate (GMA, 97%, Fluka) 

was passed through the inhibitor remover column twice to remove MEHQ.  All monomers were 

stored at 4 °C immediately after their purification.  1,4,8,11-tetramethyl-1,4,8,11-

tetraazacyclotetradecane (Me4cyclam, 98%, Aldrich), CuBr (99.998%, Alfa-Aesar), ethyl 2-

bromopropionate (EBP, 99%, Acros), 1,3,5-trimethylbenzene (TMB, 98%, Aldrich), 

propargylamine (98%, Aldrich), 1-azido-1-deoxy-β-D-lactopyranoside (97%, Aldrich), N,N-

diisopropylethylamine (DIPEA, 99.5+%, Acros), trifluoroacetic acid (TFA, 98%, Alfa Aesar), N-

(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC, Sigma), N-

hydroxysuccinimide (NHS, Sigma), Ricinus communis agglutinin (RCA120, Sigma), D-lactose 

monohydrate (Sigma), anhydrous dimethylformamide (DMF, Acros), dichloromethane (DCM, 

stabilized, Mallinckrodt Chemicals), anhydrous diethyl ether (stabilized, ACS grade, 

Mallinckrodt Chemicals), anhydrous ethanol (Pharmco-Aaper), neutral alumina (80–200 mesh, 

Fisher), Dowex Marathon MSC hydrogen form ion exchange resin (20–50 mesh, Sigma-

Aldrich), Spectra/Por Float-A-Lyzer G2 (100-500 Da MWCO, Spectrum Laboratories Inc.), and 

Whatman Anotop disposable syringe filters (0.2 m, Fisher Scientific) were used as received.  

Buffer solutions were prepared in Nanopure water (> 18 MΩ·cm, Barnstead).  CuBr(PPh3)3 was 

prepared according to the literature.
21
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4.2.2 ATRP Synthesis of Poly(N-isopropylacrylamide–co–N-acryloxysuccinimide–co–tert-

butyl acrylate)—Poly(NIPAAM–NAS–tBA)   
 

All liquid reagents were degassed by bubbling ultra-high-purity (UHP) Ar through them 

immediately prior to use.  Degassed syringes were used when introducing liquid reagents and 

removing aliquots.  N-isopropylacrylamide (NIPAAM), N-acryloxysuccinimide (NAS), and tert-

butyl acrylate (tBA) were varied in terms of their composition in the polymerization mixture 

while maintaining a total monomer composition of 0.01 mol.  The monomer feed ratio is given in 

Table 4.1.  Typically, a dry 3-neck round bottom flask connected to a vacuum and Ar source 

(Schlenk line) was charged with NIPAAM, NAS, and Me4cyclam (27.40 mg, 1.100 × 10
4

 mol).  

The flask was deoxygenated with three vacuum-Ar cycles.  CuBr (15.80 mg, 1.100 × 10
4

 mol) 

was introduced under Ar protection, followed by two vacuum-Ar cycles.  DMF (4.50 mL) was 

added and the reaction mixture was stirred to allow complex formation of the catalyst.  To the 

flask was added tBA, followed by TMB (0.50 mL, internal standard).  The reaction was initiated 

by the addition of ethyl 2-bromopropionate, EBP, (130.00 L, 1.0000 × 10
3

 mol; or 13.00 L, 

1.000 × 10
4

 mol), and the reaction mixture was stirred at room temperature under slight positive 

Ar pressure.  For monomer conversion measurements made by 
1
H NMR, an initial sample was 

obtained before addition of EBP, and subsequent samples were obtained at predetermined times.  

After 24 h, the reaction mixture was opened to the atmosphere to quench the reaction.  The 

cloudy blue mixture originally in DMF was precipitated in anhydrous diethyl ether, redissolved 

in DCM, and precipitated again in anhydrous diethyl ether.  The resulting blue solid was 

redissolved in DCM and passed through a short neutral alumina column three times to remove 

the catalyst, then the solution was concentrated, and the polymer was precipitated by addition of 

the concentrated solution to anhydrous diethyl ether.  
1
H NMR (400 MHz, DMSO-d6):  (ppm) = 
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1.04 (s, 6H, 2×CH3(NIPAAM)); 1.37 (s, 9H, 3×CH3(tert-butyl)); 1.25-2.20 (m, CH2CHbackbone); 2.83 (s, 

4H, 2×CH2(NAS)); 3.83 (s, 1H, CHNIPAAM); 6.90-7.70 (b, 1H, NHNIPAAM). 

4.2.3 ATRP Synthesis of Poly(N-isopropylacrylamide–co–glycidyl methacrylate–co–tert-

butyl acrylate)—Poly(NIPAAM–GMA–tBA)   
 

The synthesis and isolation of poly(NIPAAM–GMA–tBA) follows the synthetic 

procedure above, with GMA introduced into the reaction mixture following the addition of 

TMB.  This is to ensure that the catalyst complex has already formed to avoid the reaction 

between the free amine and the oxirane ring.  
1
H NMR (400 MHz, CDCl3):  (ppm) =  0.90 (s, 

3H, CH3(GMA backbone)); 1.14 (s, 6H, 2×CH3(NIPAAM)); 1.42 (s, 9H, 3×CH3, tert-butyl); 1.50-2.30 (m, 

CH2CH(backbone)); 2.73 and 2.88 (2H, CH2(oxirane ring)); 3.33 (1H, CH(oxirane ring)); 3.84 (s, 1H of 

CH2(GMA)); 4.00 (b, 1H, CH(NIPAAM)); 4.25 (s, 1H of CH2(GMA)); 5.70-7.10 (b, 1H, NH(NIPAAM)). 

4.2.4 Functionalization of Epoxy Groups of Poly(NIPAAM-GMA-tBA) with 

Propargylamine—Poly(NIPAAM–ppg–tBA)   

 

Poly(NIPAAM–GMA–tBA), 500.00 mg, was added to a dry 2-neck round bottom flask.  

Following purging with Ar gas, degassed anhydrous ethanol (5.00 mL) and propargylamine 

(96.00 L, 1.500 × 10
3

 mol) were added.  The solution was stirred at 30 °C for 47 h under slight 

positive Ar pressure.  Ethanol was removed by rotary evaporation.  The resulting off white 

polymer was isolated following repeated redissolution (in DCM)-precipitation (in anhydrous 

diethyl ether) cycles, and finally solvent removal under high vacuum.  
1
H NMR (400 MHz, 

CDCl3):  (ppm) = 0.90 (s, 3H, CH3,GMA backbone); 1.14 (s, 6H, 2×CH3,NIPAAM); 1.42 (s, 9H, 

3×CH3, tert-butyl); 1.50-2.20 (m, CH2CHbackbone); 2.27 (s, 1H, CHterminal alkyne); 2.82 (s, 2H, OH-CH-

CH2-NH); 3.47 (s, 2H, NH-CH2-C); 4.00 (b, 4H, CHNIPAAM, O-CH2-CH-OH ); 4.80-5.40 (b, 1H, 

OH); 5.75-7.25 (b, 1H, NHNIPAAM). 
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4.2.5 Click Reaction Between Poly(NIPAAM–ppg–tBA) and 1-Azido-1-deoxy-β-D-

lactopyranoside—Poly(NIPAAM–lac–tBA)   
 

The procedure for the click reaction was adapted from the literature
3
 with slight 

modifications.  A solution containing poly(NIPAAM–ppg–tBA) (100.00 mg), 1-azido-1-deoxy-

β-D-lactopyranoside (56.00 mg, 1.500 × 10
4

 mol), degassed anhydrous DMF (5.00 mL), and 

degassed DIPEA (13.00 L, 7.500 × 10
5

 mol) in a round bottom flask was purged with Ar.  

CuBr(PPh3)3 (29.00 mg, 3.000× 10
5

 mol) was added and the reaction was carried out at 50 °C 

for 40 h under Ar protection.  Dowex Marathon hydrogen ion exchange resin was then added, 

and the solution was stirred overnight at room temperature.  The resin was removed, the resulting 

solution was concentrated, and then the polymer precipitated in diethyl ether.  The solid obtained 

was washed with THF and recovered following centrifugation and high vacuum removal of 

solvent. 

4.2.6 Deprotection of Poly(NIPAAM–lac–tBA)—Poly(NIPAAM–lac–Aac)   

To 100.00 mg of poly(NIPAAM–lac–tBA), trifluoroacetic acid (2.50 mL) was added at 0 

°C.  The reaction mixture was stirred for 2 h at 0 °C and then 4 h at room temperature under 

positive Ar pressure.  The resulting orange-pink solution was concentrated and the polymer then 

precipitated by addition of the solution to anhydrous diethyl ether.  The polymer was isolated by 

centrifugation and the polymer was washed with anhydrous diethyl ether two times.  Following a 

high-vacuum drying step, the resulting orange-pink powder was dissolved in 0.10 M NaHCO3, 

filtered with a 0.2-m Whatman Anotop syringe filter, and then dialyzed (Spectra/Por Float-A-

Lyzer G2 with CE membrane, MWCO = 100-500 Da) extensively against Nanopure water.  The 

dialyzed solution was freeze-dried to give a white powder, thereafter named poly(NIPAAM–lac–

Aac). 
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4.2.7 Conjugation of RCA120 to Poly(NIPAAM–lac–Aac)—Poly(NIPAAM–lac–RCA120)   

Using an ice bath to control the temperature, a solution of poly(NIPAAM–lac–Aac) 

(11.00 mg) in pH 7.26, 0.10 M phosphate buffer was added quickly to a solution containing 

RCA120 (1.00 mg, 8.30 × 10
9

 mol) and D-lactose (6.10 mg, 1.70 × 10
8

 mol) in the same buffer.  

EDC (19.10 mg, 10.00 × 10
5

 mol) and NHS (1.70 mg, 1.50 × 10
5

 mol) were immediately 

added, and the solution was allowed to stir for 4 h (using the ice bath) and then at room 

temperature for another 22 h.  The resulting solution was dialyzed using Nanopure water with a 

Microcon YM-50 (Nominal molecular weight limit = 50,000 Da) centrifugal filter device 

(Millipore). 

4.2.8 Measurements  

Monomer conversion data (1,3,5-trimethylbenzene as internal standard) and polymer 

characterization were obtained from 
1
H NMR spectra.  A Bruker AV-400 (400 MHz) 

spectrometer was used, and samples were dissolved in either DMSO-d6 or CDCl3.  Molecular 

weights and distribution data were collected from an Agilent 1200 Series System (Agilent 1200 

Series degasser, Isocratic Pump, Autosampler, and Column Heater) equipped with three 

Phenogel 5 m, 300 × 7.8 mm columns (100 Å, 1000 Å and Linear(2)) connected in series.  A 

Wyatt EOS Multi-Angle Light Scattering (MALS) with a GaAs 25 mW laser at  = 690 nm and 

a Wyatt rEX Differential Refractive Index detector with a 690 nm light source were the detectors 

used.  Sample preparation and GPC separation were performed using DMF with added 0.10 M 

LiBr.  Column and detector temperatures were kept constant at 50 °C and 25 °C, respectively.  

Molecular weight and polydispersity data were obtained using monodisperse polystyrene 

standards (590–1472000 g mol
−1

 MW).  Polymer cloud point (CP), the temperature where 

transmittance is reduced by 50%, was determined from turbidimetry measurements using the 



111 

 

following protocol.  The change in optical transmittance of a 1% aqueous solution of the polymer 

in a cuvette positioned in a thermostated holder was monitored as a function of increasing 

temperature.  Data was acquired using a HP 8453 UV-vis Chemstation at 500 nm wavelength.  

For analysis of the product from the conjugation reaction, SDS–PAGE gel electrophoresis was 

performed.  The samples were dissolved in Laemmli buffer (Biorad) under non-reducing 

conditions and loaded onto 4–15% precast polyacrylamide gels (Biorad).  Electrophoresis was 

run in 1 Tris/glycine/SDS buffer using a Biorad PowerPac Basic power supply.  Staining and 

destaining procedures were based on the protocol for SimplyBlue SafeStain (Invitrogen). 

4.3 Results and Discussion 

4.3.1 ATRP Synthesis of Poly(NIPAAM–NAS–tBA)   

The polymerization by ATRP of N-isopropylacrylamide (NIPAAM), N-

acryloxysuccinimide (NAS), and tert-butyl acrylate (tBA) in an attempt to yield a 

thermoresponsive polymer was initially investigated in DMF solvent using the CuBr/Me4cyclam 

catalytic system shown in Scheme 4.1.  Because NIPAAM is envisioned in this work to be the 

monomer of highest proportion in the terpolymer so as to yield a polymer with significant 

thermoresponsive behavior in aqueous systems, the choice for the catalyst and solvent systems 

was largely dependent on the success of the ATRP of NIPAAM.  Independent investigations by 

Matyjaszewski
22

 and Brittain
23

 on the ATRP of acrylamides and methacrylamides revealed high 

monomer conversion in relatively short times with Me4cyclam-based systems in polar solvents, 

albeit with uncontrolled polymerization of monomer.  The loss of control over the ATRP 

reaction was attributed largely to slow deactivation of radical chain ends.  Although both authors 

offered several reasons to support the claim, they agreed that complexation of the Cu salts to the 

amide of the propagating chains contributes to the uncontrolled polymerization they observed.  
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Several other literature reports also describe the synthesis of poly(NIPAAM) by ATRP, with 

good control over the polymerization using CuCl/Me6TREN catalytic system, but required the 

synthesis and use of Me6TREN ligand.
4,24-25

  Previous work by Balamurugan et al.
26

 on surface-

initiated ATRP of NIPAAM made use of the Me4cyclam-based catalytic system, and they 

obtained polymer brush surfaces that exhibited thermoresponsive behavior.  This successful 

formation of surface-immobilized responsive polymers bodes well for future work in the 

development of responsive polymer surfaces possessing poly(NIPAAM) and other polymeric 

functionalities.  On the basis of that study
26

 and those of Matyjaszewski and Brittain,
22-23

 

CuBr/Me4cyclam was selected as the catalyst of choice for the work herein.    

 In order to generate a multifunctional thermoresponsive polymer that is based on 

NIPAAM and is capable of being subsequently modified, direct polymerization of NIPAAM 

with orthogonally functionalizable monomers is required.  A review of functional monomers that 

are amenable to direct polymerization led us to choose initially N-acryloxysuccinimide (NAS) 

and tert-butyl acrylate (tBA).
5
  In particular, NAS and tBA were chosen as comonomers because 

of their potential reactivity toward amines, with the latter requiring a deprotection step.  If 

successful, such a choice would result in a polymer with sufficient orthogonality in its post-

polymerization modification chemistries so that independent attachment of various 

functionalities can be readily achieved.  In addition, both monomers have been successfully 

homo- or copolymerized under various ATRP conditions.
2,7,27-33

  This strategy of having dual 

functionality should allow for predefined composition of the terpolymer such that each group can 

be modified independently of each other, thereby resulting in a polymer of controlled 

composition.  Also, by creating a precursor polymer having individually addressable functional 

group types (orthogonality), the potential is great for generating a library of complex polymers 
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that exhibits structure-property relationships that otherwise cannot be prepared by extant 

methods. 

Scheme 4.1. Synthesis of thermoresponsive terpolymers and their subsequent post-

polymerization functionalization.
a
 

 

 

 

a
Reagents and conditions: a. CuBr/1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane, 

ethyl-2-bromopropionate, DMF, 1,3,5-trimethylbenzene (internal standard), room temp.; b. 

propargylamine, ethanol, 30 °C; c. 1-azido-1-deoxy-β-D-lactopyranoside, Cu(PPh3)3Br, DIPEA, 

DMF, 50 °C; d. TFA, 0 °C to room temp.; e. Ricinus communis agglutinin (RCA120), EDC/NHS, 

H2O, room temp.
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Successful formation of the terpolymer from N-acryloxysuccinimide (NAS), tert-butyl 

acrylate (tBA), and N-isopropylacrylamide (NIPAAM) using ATRP was indicated upon 

inspection of 
1
H NMR spectra obtained in DMSO-d6, Figure 4.1.  Proton resonances for the 

isopropyl group of NIPAAM occur at 1.04 and 3.83 ppm, while presence of the amide proton is 

evidenced as a broad peak in the vicinity of 6.90–7.70 ppm.  The transition associated with the 

three methyl groups of the tert-butyl moiety of the tBA is found at 1.37 ppm, and that for the 

methylenes of the succinimide ring of NAS is centered at 2.83 ppm.  Furthermore, NAS and tBA 

groups are successfully incorporated into the polymer in higher amounts with increases in the 

monomer feed fraction of NAS and tBA, as evidenced by increases in the relative area of the 

corresponding proton peaks d and e, respectively (Figure 4.1 and Table 4.1).  Inspection of the 

gel-permeation chromatography, GPC, traces of the terpolymers obtained with DMF solvent 

with added 0.10 M LiBr (Figure 4.2) leads to observation of an asymmetric elution profile with 

significant distribution of low molecular weight polymer eluting at a later time, suggesting 

premature chain termination during the polymerization.  This fact, in conjunction with the high 

polydispersity values observed (Table 4.1), strongly indicates lack of control in the 

polymerization; controlled polymerization should result in a characteristically low polydispersity 

values (Mw/Mn < 1.1) and symmetric elution profiles  in the GPC chromatogram, among other 

things.
34

   

It was found that the amount of monomer conversion during the polymerization was 

highly sensitive to increasing amounts of NAS and tBA.  The homopolymerization of NIPAAM 

proceeded at a relatively fast rate at room temperature, as noted by the observed 85% 

consumption of monomer within 15 min.  However, polymerizations that employed equimolar 

amounts of NAS and tBA in increasing proportion versus NIPAAM resulted in a significant 



115 

 

decrease in NIPAAM conversion.  At a valueof 90:5:5 (NIPAAM:NAS:tBA), the conversion of 

NIPAAM monomer was found to be only 8% (Table 4.1).  A reduction of this magnitude for 

monomer conversion caused by addition of a small amount of functional monomers is 

unfavorable from the standpoint of practicality and efficiency.  Furthermore, this route will not 

allow for the creation of materials with a desired terpolymer composition and molecular weight, 

nor can be created elaborate and orthogonally functionalized polymer architectures.   

 

Figure 4.1. 
1
H NMR (DMSO-d6) of poly(NIPAAM–NAS–tBA) prepared using different 

monomer feed ratios. 
a
Monomer:Initiator = 100:1; all others prepared using a Monomer:Initiator 

= 100:10. 

 

Because tBA has been successfully polymerized under Me4cyclam-initiated ATRP,
35

 the 

attention is drawn to NAS as the comonomer that is responsible for the low conversion obtained 

in the polymerizations.  In fact, Savariar and Thayumanavan
27

 reported that copolymerization of 

NIPAAM and the N-hydroxysuccinimide ester of methacrylic acid with CuCl/Me6TREN or 

CuBr/PMDETA catalysts resulted in poor yields (10–24%).  Although they offered no 
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Table 4.1.  Properties of terpolymers resulting from polymerization of NIPAAM and tBA with NAS or GMA (Y). 

% monomer 

feed ratio
a

 

comonomer 

Y % composition
b
 time (h) % conv

c
 Mn,theo

d
 Mn,GPC

e
 Mw/Mn CP (°C)

f
 

100:0:0 - 100:0:0 0.25 85 1140 88700 1.74 29.5 

98:1:1 NAS 94:1:5 24 77 1065 57300 1.37 27.4 

95:2.5:2.5 NAS 88:4:8 24 18 450 56900 1.42 24.3 

90:5:5 NAS 79:10:11 24 8 410 64200 1.41 16.5 

90:5:5
g
 NAS 70:18:12 24 12 2890 43500 1.25 n.d.

h 

91:8:1
g
 GMA 80:16:4 24 81 9790 61000 1.57 17.9 

90:5:5
g
 GMA 81:10:9 24 93 11000 94700 1.61 19.6 

a
NIPAAM:Y:tBA.  [Mt]0/[Cu]0/[L]0/[I]0 = 100/1/1/10.  

b
Percentage of each monomer in the terpolymer was calculated from 

1
H NMR 

integration; for example, % NIPAAM = (HNIPAAM,1.04ppm/6) / [(HNIPAAM,1.04ppm/6) + (HNAS,2.83 ppm/4) + (HtBA,1.36 ppm/9)], where 

HNIPAAM,1.04ppm is the integrated signal intensity of the NIPAAM transition at 1.04 ppm.  
c
 % conv = {1 – [(HNIPAAM/HTMB)t / 

(HNIPAAM/HTMB)t=0]}  × 100, where HNIPAAM is the integrated signal intensity of the 1 vinyl proton of NIPAAM at 5.45 ppm and HTMB 

is the integrated signal intensity of the aromatic proton resonance of the internal standard at 6.66 ppm.  % conv was measured using 

NIPAAM only, because it is the monomer that has significant intensity in the NMR spectra.  
d
Mn,theo = {Σ([M]o × MW × conv)i / 

[EBP]} + MWEBP.  The Mn,theo was calculated based on the % conv values and the assumption that both NAS and tBA give 100% 

conversion.  
e
Mn,GPC was obtained using monodisperse polystyrene standards in DMF with 0.1 M LiBr.  

f
Cloud point (CP) is defined 

as the temperature at which Tnorm decreased by 50% with  Tnorm = [(T−Tmin)/(Tmax−Tmin)].  CPs from independent scans for each 

polymer sample varied by at most 0.3 °C.  
g
[Mt]0/[Cu]0/[L]0/[I]0 = 100/1/1/1.  

h
Not determined due to insufficient amount of material. 

 

 

 

 



117 

 

explanation for their observations, it is evident that the commonality between the work herein 

and theirs is the presence of an N-hydroxysuccinimide ester of an acrylic acid.  At this point, it is 

not clear the role that NAS plays in termination of the polymerization reaction.  However, it was 

observed that as the amount of NAS and tBA was increased, the faster was the rate at which the 

color of the polymerization reaction mixture changed from light green to dark blue after addition 

of initiator.  Based on this qualitative observation, it is clear that CuBr2 (blue) is formed more 

readily in the presence of NAS, and in turn its presence would be expected to yield a high 

concentration of radicals capable of causing efficient termination of the polymerization reaction 

at an early stage.  This lack of control in the polymerization is also reflected by the pronounced 

asymmetric elution profile observed in the gel-permeation chromatograms of the terpolymers, 

Figure 4.2.  An alternative explanation is the Cu catalyst became inactivated by NAS 

coordination to the Cu salts,
30

 in a manner similar to catalyst inactivation during acrylamide 

polymerization, as described by Matyjaszewski and Brittain.
22-23

  However, such a proposed 

complexation/deactivation path is not in accord with the successful polymerization of the N-

hydroxysuccinimide ester of methacrylic acid or NAS using a bipyridine-based catalytic 

system
29-31,36

 and not in Me4cyclam-based ATRP.  No matter the precise nature of the events, 

NAS is suspected as the main cause for the low monomer conversion that is caused by 

termination of the polymerization process.  Though successful polymerization of the N-

hydroxysuccinimide ester of methacrylic acid and NAS was accomplished with substituted and 

unsubstituted bipyridine-based catalyst systems, the use of this class of ligand results in 

inefficient polymerization of acrylamides;
22,24

 therefore no attempt was made to perform the 

ATRP procedure using bipyridine-based catalysts. 
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Figure 4.2. GPC traces of poly(NIPAAM–NAS–tBA) (DMF with added 0.1 M LiBr) prepared 

using different monomer feed ratios.  
a
Monomer:Initiator = 100:1; all others prepared using a 

Monomer:Initiator = 100:10. 

 

4.3.2 ATRP Synthesis of Poly(NIPAAM–GMA–tBA)  

With the issue regarding the low monomer conversion that was encountered in the ATRP 

polymerization of NIPAAM, NAS, and tBA, I sought to replace NAS with another monomer that 

can be integrated into the polymer and more importantly, one possessing a chemical functionality 

that can be readily modified.  Among the various commercially-available functional monomers, 

glycidyl methacrylate (GMA) is very attractive due to its pendant oxirane ring that can undergo 

ring opening reactions with a range of nucleophiles, such as amines, thiols, azides, and acids.
10,37

  

The fact that it reacts with a wide variety of functional groups adds versatility to any subsequent 

post-polymerization modification routes.  Successful homopolymerization and copolymerization 

of GMA by ATRP is well-documented in the literature,
10,38-39

  with controlled polymerization 

being achieved with a variety of ligand systems, including bipyridine derivatives and 

multidentate amines.  Although it was unknown if polymerization of GMA with the Me4cyclam-

based system would be successful given the lack of literature precedent, it was still the initial 

catalyst of choice owing to reasons described above.  The polymerization of NIPAAM and tBA 
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with GMA was carried out according to the same ATRP conditions described for 

poly(NIPAAM–NAS–tBA), with a slight modification.  GMA was introduced after the catalyst 

complex had formed, so as to avoid the reaction between the free amine (uncomplexed ligand) 

and the oxirane ring that may result in a branched or cross-linked terpolymer. 

In Figure 4.3 is shown the 
1
H NMR data for the resulting terpolymer of NIPAAM–

GMA–tBA.  Aside from the characteristic NIPAAM and tBA peaks, the oxirane ring gives rise 

to proton resonances at 3.33 ppm and at 2.88 and 2.73 ppm.  The latter two signals come about 

because the associated protons have different chemical environments.  The resonances from the 

protons of the methylene side chain have distinct chemical environments and are observed at 

4.41 ppm and 3.84 ppm, with the latter being slightly convoluted with the methynyl proton of 

NIPAAM. 

 

Figure 4.3. 
1
H NMR (CDCl3) of poly(NIPAAM–GMA–tBA) prepared using two different 

monomer feed ratios.   

 

Perhaps the most striking result revealed by replacing NAS with GMA in the 

polymerization is monomer conversion is significantly improved with GMA under the same 

monomer feed composition and ATRP conditions, i.e. 93% conversion with GMA versus 12% 

conversion with NAS (Table 4.1).  This result clearly strengthens the hypothesis that NAS is 
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responsible for the low monomer conversion discussed above.  Although a slight decrease in 

monomer conversion was found upon increasing the GMA feed from 5% to 8%, the resulting 

81% monomer conversion achieved is impossible with NAS under the ATRP conditions 

employed.  Clearly, the use of GMA, under the ATRP conditions employed herein, results in a 

more efficient polymerization with NIPAAM and tBA, which in turn allows for the possibility of 

tailoring the composition of the terpolymer.  The GMA and tBA contents of the terpolymers are 

found to be at least twice of that expected based on the monomer feed ratios, an outcome that is 

likely caused by some differences in the reactivities of the NIPAAM, GMA, and tBA monomers 

under the conditions used here.   

The gel-permeation chromatograms for poly(NIPAAM–GMA–tBA) exhibit an 

asymmetric elution profile (Figure 4.4), similar to those obtained for the terpolymer containing 

NAS, once again suggesting uncontrolled polymerization.  This is also supported by the large 

polydispersity of the resulting terpolymers (Table 4.1).  However, the reasons for the lack of 

control of the polymerization observed here are most likely different from those of the NAS 

terpolymer, where the polymerization with NAS resulted in low monomer conversion.  It should 

be noted that high monomer conversions are still achievable even with uncontrolled 

polymerization.
22-23

  Perhaps the lack of polymerization control is associated with slow 

deactivation of propagating radicals, similar to that observed with ATRP of acrylamides under 

the CuBr/Me4cyclam catalytic system.
22-23

  As shown in Table 4.1, the GPC-determined 

molecular weights, Mn,GPC, for poly(NIPAAM–GMA–tBA) are higher than those for 

poly(NIPAAM–NAS–tBA) and are even comparable to that of NIPAAM homopolymer.  Such a 

similarity in Mn values points to the possibility that the high monomer conversion values 

obtained during the formation of poly(NIPAAM–GMA–tBA) translates to longer polymer 
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chains; the length is longer for the GMA-containing terpolymers compared to the NAS-

containing terpolymers under the same ATRP conditions.  However, this speculation is 

predicated on GPC-determined molecular weights with polystyrene standards; the relationship 

between hydrodynamic volume and molecular weight may be quite different for the terpolymers 

versus the polystyrene standards. 

4.3.3 Functionalization of Epoxy Groups of Poly(NIPAAM–GMA–tBA) with 

Propargylamine—Poly(NIPAAM–ppg–tBA)  

 

To demonstrate the versatility of the terpolymer with regard to orthogonal post-

polymerization modifications, the chemical transformation of the oxirane ring of the GMA units 

was investigated.   Although the oxirane ring can be utilized in a one-step reaction to add a 

desired final moiety, another route was targeted that would allow for further elaboration of the 

resulting chemical modification at the oxirane sites.  Thus, the oxirane units was chosen to be 

modified with ―clickable‖ groups so as to generate a terpolymer with reactive sites that are 

highly specific with respect to chemical reactivity and allow for further increases in creation of 

more complex polymer architectures.  Click chemistry, a term popularized by Sharpless,
11,40

 

refers to chemical transformations that offer simple reaction conditions and method of product 

isolation, broad scope, stoichiometric yields, high selectivity, and generate benign by-products.  

The Cu(I)-catalyzed variant
11,40-42

 of the Huisgen
43

 1,3-dipolar cycloaddition reaction between 

azides and alkynes has met this stringent criteria, gaining increasing interest with practitioners of 

various fields since its inception.   

The choice for the alkyne necessary for click chemical modification of the terpolymer is 

the propargyl moiety.  NIPAAM polymers with pendant propargyl groups have been synthesized 

both by conventional free radical polymerization
44

 and ATRP.
45

  However, the route proposed 

here in Scheme 4.1 is a more practical way of synthesizing alkyne-containing polymers because 
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direct ATRP of propargyl-containing monomers requires an organosilyl-protected monomer that 

has to be synthesized, and there is a subsequent deprotection step to yield a polymer with 

accessible alkyne groups.
3,45-46

  This protection of the monomer is necessary so as to prevent 

complexation of the propargyl group with the Cu catalyst during ATRP
47

 as well as any possible 

cross-linking that results from addition reactions of propargyl radicals that form.
3
  Another 

approach is the preparation of azide-containing polymers.
10,48

  However, the direct ATRP of 

azido-monomers is complicated by the synthesis and purification of the monomer.
48

  The ring-

opening reaction of GMA-containing polymer with sodium azide results in an efficient 

incorporation  of azide moieties.
10

 However, propargyl-derivatized sugars is not as well-

documented as azido-functionalized sugars;
49

 an important consideration for the next task at 

hand. 
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Figure 4.4.  GPC traces of poly(NIPAAM-GMA-tBA) (DMF with added 0.1 M LiBr) prepared 

using two different monomer feed ratios.  

 

For addition of the propargyl group to the terpolymer, poly(NIPAAM80–GMA16–tBA4) 

was selected as a testbed case; the subscripts denote the 
1
H NMR-determined % monomer 

content of the terpolymer.  In Figure 4.5 (upper trace) is shown the 
1
H NMR (in CDCl3) 

spectrum after derivatization of the pendant GMA groups with propargylamine via a mild ring-
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opening reaction to yield poly(NIPAAM–ppg–tBA).  Completion of the oxirane ring-opening 

reaction is supported by the absence of the 
1
H resonances associated with the intact oxirane ring 

and the presence of new 
1
H signals assigned to the proton resonances of the terminal alkyne 

hydrogen at 2.27 ppm, the methylene protons adjacent to the amine at 2.85 ppm, the methylene 

protons of the nearby alkyne at 3.48 ppm, and protons from the methylene group at the 

neighboring ester and the methyne adjacent to the hydroxyl group that collectively overlap with 

the methyne peak of NIPAAM at 4.00 ppm; see Figure 4.6 for the detailed assignments.  A 

broad, almost indistinguishable peak, centered at 5.00 ppm, is thought to be due to the secondary 

alcohol generated from ring opening.  The propargyl units of the poly(NIPAAM–ppg–tBA) can 

then be further elaborated with biologically important materials. 

 
Figure 4.5.  Comparison of the 

1
H NMR spectra (CDCl3) for the propargylamine-modified 

terpolymer, poly(NIPAAM–ppg–tBA), synthesized from poly(NIPAAM–GMA–tBA) as per 

Scheme 4.1.   

 

4.3.4 Click Reaction Between poly(NIPAAM–ppg–tBA) and 1-Azido-1-deoxy-β-D-

lactopyranoside—Poly(NIPAAM–lac–tBA)  
 

To demonstrate the utility of poly(NIPAAM–ppg–tBA) toward modifications and create 

biologically-relevant materials, the terpolymer was modified with a lectin protein and its 

complementary binding sugar for potential application in temperature-facilitated affinity 

chromatography, a system that was introduced by Yamanaka, Okano and coworkers.
18

  Ricinus 

communis agglutinin (RCA120) and its binding sugar lactose were chosen as model partners 
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because of their commercial availability and the lectin’s well-known specificity to galactose-

containing materials.
50-51

  This system, upon integration into microfluidic devices, can then serve 

to capture and isolate glycoproteins bearing a specific sugar moiety (galactose in this case).  

Strategically, the structure of the poly(NIPAAM–ppg–tBA) is such that the two pendant 

functional groups (propargyl and tert-butyl groups) can be modified sequentially and 

independent of each other without side reactions/cross reactions.  In addition, having multiple 

pendant functionalities of predefined composition should also provide better control over the 

composition of the individual components in the resulting polymer after the modifications are 

performed, a task that is difficult to achieve when only one functionality is available for use to 

append two or more substituents. 

 

Figure 4.6. 
1
H NMR (CDCl3) of poly(NIPAAM–ppg–tBA). 

Synthetically, for modifications of the poly(NIPAAM–ppg–tBA), the propargyl groups 

were modified first via click chemistry to avoid any side reactions that might occur with the 

unmodified propargyl moiety if acid deprotection of the tert-butyl ester groups were to be 

performed first.  This route was selected because the tert-butyl ester groups of the 

poly(NIPAAM–ppg–tBA) should be inert under conditions that are often used for click 



125 

 

chemistry.  Hence, the first step towards modification of the terpolymer with the biologically-

relevant molecules selected is to utilize the propargyl groups to accommodate multiple copies of 

the binding sugar along the thermoresponsive terpolymer backbone.  Although the lectin protein 

could have been attached through the propargyl groups in the first step, the sugar was chosen due 

to the commercial availability of azide-modifed sugars and because sugars are not likely to be 

extremely affected by the reaction conditions of the acid deprotection that is to follow.  In 

addition, if lectins will be utilized for click chemistry, another step would be required to afford 

the protein with azide functionalities.  

Neoglycopolymers have been successfully prepared by click chemistry in both aqueous 

and organic environments using propargyl-functionalized polymers.
3,9,46,49

  The click method 

employed here is based on the approach of Hawker and coworkers,
3
 with slight modifications.  

In their development of an orthogonal functionalization method of vinyl polymers, CuBr(PPh3)3 

and DIPEA were used as the catalyst and the base, respectively, in THF solvent.  However, the 

azide-functionalized lactopyranoside used herein was not sufficiently soluble in THF; after 

screening various solvents, DMF was chosen.  As shown in Figure 4.7, 
1
H NMR analysis led to 

observation of the unique resonance of the triazole hydrogen signal at 8.15 ppm (designated as h 

in Figure 4.7).  The modification is also verified by the increase in the cloud point, CP, vide 

infra.  Importantly, the tert-butyl groups were unaffected by the click chemistry conditions, as 

evidenced by inspection of the 
1
H NMR spectrum.  

4.3.5 Deprotection of poly(NIPAAM–lac–tBA) by TFA—Poly(NIPAAM–lac–Aac)   

In order to generate the carboxylic acid functionality necessary for further modification, 

hydrolysis of the tert-butyl ester groups of the poly(NIPAAM–lac–tBA) was performed with 

neat TFA at room temperature.  This reaction is widely known to convert a variety of tert-butyl 
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ester groups to their corresponding carboxylic acid counterparts.  However, with the excess TFA 

used, trifluoroacetylation of the hydroxyl groups in the terpolymer
52-53

 (e.g. from the ring 

opening reaction and from pendant lactose) is a potential side reaction.  But, such esters are 

unstable and are rapidly cleaved in the presence of water to reveal the hydroxyl groups.
53-54

  

Therefore, extensive dialysis in NaHCO3 solution was performed as part of the purification 

procedure.  After 6 h reaction with TFA and subsequent workup, the 
1
H NMR spectrum of the 

poly(NIPAAM–lac–Aac) revealed the lack of the proton signal for the  

tert-butyl resonance at 1.37 ppm (Figure 4.8), an observation that is consistent with that reported 

by Matyjaszewski for ATRP-prepared poly(tert-butyl acrylates).
32

   

 

Figure 4.7. 
1
H NMR (DMSO-d6) of poly(NIPAAM–lac–tBA). 

4.3.6 Conjugation of RCA120 with Poly(NIPAAM–lac–Aac)—Poly(NIPAAM–lac–RCA120) 

 

Covalent linking of Ricinus communis agglutinin, RCA120, to the free carboxylic acid 

groups of the poly(NIPAAM–lac–Aac) was achieved by aqueous carbodiimide coupling that 

employed EDC and NHS.  As is typically the case for such coupling reactions of proteins,
55

 the 

presumed actor in the reaction is the lysine group of the protein (lectin).  Because the long-term 

application of the poly(NIPAAM–lac–RCA120) materials is for affinity chromatography 
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purifications of glycosylated proteins, it is necessary to keep the lectin binding site accessible.  

Therefore, free lactose was added to the reaction mixture to prevent polymer attachment to the 

RCA120 at locations on the RCA120 lectin that are near or at its sugar binding site. 

 

Figure 4.8. 
1
H NMR (DMSO-d6) of poly(NIPAAM–lac–tBA) before and after removal of the 

tert-butyl protecting groups. 

 

Following desalting procedures, the poly(NIPAAM–lac–RCA120) was subjected to SDS–

PAGE analysis, Figure 4.9.  SDS–PAGE results obtained under non-reducing conditions reveal 

that the RCA120 was conjugated to the activated terpolymer based on the following observations:  

(1) quite evident is an intense band near the gel loading well (see arrow) in lane 3 and a diffuse 

band emanating away from the intense band.  These two observations support the presence of 

high-molecular-weight materials that are assigned to the conjugated product; (2) there is no free 

RCA120 apparent in lane 3 (terpolymer-RCA120 conjugate), as judged by comparison to lane 2 for 

RCA120 loaded on the gel at roughly half the concentration of that loaded in lane 3.  This lack of 

free RCA120 indicates its complete reaction with the EDC/NHS-activated poly(NIPAAM–lac–

Aac); (3) upon inspection of the control experiment in lane 4, for a mixture of RCA120 and 

unactivated poly(NIPAAM–lac–Aac), the RCA120 band is clearly observable.  The presence of 

free RCA120 in this control experiment indicates that there is no significant binding of free 

RCA120 to the unactivated poly(NIPAAM–lac–Aac); this strongly suggests that RCA120 is 
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covalently attached to the terpolymer chains after the conjugation reaction, thereby verifying the 

results in lane 3.  Thus, it can be concluded that the RCA120 was successfully conjugated to the 

activated poly(NIPAAM–lac–Aac) via amide functionalities to yield the desired poly(NIPAAM–

lac–RCA120).  It should be noted that although RCA120 has a nominal molecular weight of 120 

kDa, its protein band here appears at significantly higher molecular weight which is due to the 

fact that the SDS–PAGE was run in non-reducing conditions (i.e. no β-mercaptoethanol) 

resulting in a different migration rate compared to a totally linear protein.  It can be ascertained, 

however, that the bands observed are indeed from RCA120 because under reducing conditions 

(i.e. with β-mercaptoethanol), the 4 subunits of the same RCA120 solution appeared between 32 

and 38 kDa of the molecular weight standards (data not shown), in good agreement with 

published results. 

 

Figure 4.9.  SDS–PAGE of poly(NIPAAM–lac–RCA120).  Lane 1: protein molecular weight 

standards.  Lane 2: RCA120 (0.5 g).  Lane 3: crude conjugate mixture (1 g total RCA120 and 10 

g poly(NIPAAM–lac–Aac); free or conjugated).  Lane 4: control — mixture of terpolymer and 

RCA120 (1 g RCA120 and 10 g poly(NIPAAM–lac–Aac).   

 

At this time, the data in hand will not allow for assignment of the stoichiometry of the 

RCA120 and terpolymer in the conjugate.  The rationale for this is two-fold in nature.  First, 
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RCA120 possesses several lysine groups that possibly can be attached to the poly(NIPAAM–lac–

Aac).
56

  Second, the molecular weight of the poly(NIPAAM–lac–Aac) is not accurately known.  

Regardless, the goal of developing and implementing a synthetic strategy for creating a 

terpolymer bearing propargyl and tert-butyl groups that can be independently modified was 

achieved.  This is demonstrated for the specific case of lactose and RCA120 being appended to 

the polymer, and it is clear that the rich chemistries available with the propargyl and tert-butyl 

groups hold much potential for the creation of other complex dual functionality polymers.  The 

pertinent question at hand and that which I now turn my attention is that regarding retention of 

thermoresponsivity in the terpolymer as a function of derivatization step.  

4.3.7 Thermal Response of Poly(NIPAAM) and Poly(NIPAAM–NAS–tBA) 

A unique property of thermoresponsive polymers that is quite important in polymer 

physics and solution dynamics, and has been exploited in numerous applications, is the coil-to-

globule transition that occurs at the lower critical solution temperature (LCST), where a 

reversible phase separation is observed.
17,57-58

  This critical temperature is characteristic of the 

particular polymer and provides additional information such as chain length
25,59

 and 

composition;
60-61

 that is, the chain length and composition of the polymer impact the LCST.  For 

poly(N-isopropylacrylamide), the LCST is near 32 °C in aqueous media.
16

  The solubility of 

poly(NIPAAM) below its LCST is attributed to hydrogen bonding between amide groups and the 

surrounding water molecules.  As the solution temperature approaches the polymer LCST, 

hydrogen bonding weakens and hydrophobic interactions between isopropyl groups become 

dominant due to the release of structured water around the isopropyl groups.
60

   

In general, the polymers prepared from NIPAAM, NAS, and tBA elicited 

thermoresponsive behavior.  The homopolymer of NIPAAM afforded a cloud point (CP) 
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temperature that was consistently around 29.5 °C.  As the NAS, tBA, and GMA content of the 

terpolymer was increased, the cloud point temperature decreased accordingly (Table 4.1).  This 

is a likely outcome because incorporation of relatively hydrophobic comonomers tends to 

decrease the phase transition temperature due to perturbation of the overall 

hydrophilic/hydrophobic balance of the polymer.
60-61

   

It is interesting to note that the cloud point temperature recorded for the NIPAAM 

homopolymer prepared here is at least two degrees lower than that of poly(NIPAAM) in the 

literature.
16

  To ensure that the manner of solution preparation for cloud point temperature 

studies and any fluctuations of the temperature-sensing device are not responsible for this 

observation, a solution of commercial poly(NIPAAM) was prepared and investigated side by 

side with the ATRP-prepared poly(NIPAAM).  The cloud point temperature obtained for 

commercial poly(NIPAAM) is 32.8 °C (data not shown), a value that lies in the typical range and 

is three degrees higher than obtained for the poly(NIPAAM) by ATRP.   

Based on the experimental outcomes and those from others in the literature, it is proposed 

that the lower-than-expected cloud point temperature of the ATRP-derived PNIPAAM obtained 

herein is likely influenced by the chain length and the mildly hydrophobic nature of the ethyl 

propionate and bromine end groups.  Recently, Stöver and co-workers
25,59

 elucidated the 

relationship between cloud point temperature and molecular weight of poly(NIPAAM) prepared 

by ATRP, taking into consideration any effects posed by the end groups (i.e. from the initiator 

used during the polymerization).  In their studies, it was found that for polymers with low 

dispersities of molecular weight, the phase transition temperature dramatically decreased with 

increasing molecular weight, with the sensitivity of the decrease being largely dependent on the 

identity (type) of end groups.  To the best of my knowledge, Stöver’s study is the only report in 
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the literature that discusses the dependence of cloud point temperature with molecular weight of 

ATRP-prepared poly(NIPAAM).  However, this literature is not applicable to aid in 

understanding the lower-than-expected cloud point temperature observed in this work, for 

several reasons.  First, it is evident from the GPC data (Figure 4.2 and Table 4.1) that the 

poly(NIPAAM) prepared herein is polydisperse.  A basic premise of the study conducted by 

Stöver and co-workers was elimination of ambiguity concerning the molecular weight effects 

from conventionally-prepared poly(NIPAAM) samples because of their polydispersity.  

Secondly, Stöver and co-workers employed chloro initiators while a bromo initator (as ethyl 2-

bromopropionate) was utilized in the work herein.  It has been previously reported that end 

groups have a profound effect on the cloud points of poly(NIPAAM)
25,61

 because the high 

mobility of the end group is apparently responsible for the initiation of the phase separation.
61

  

However, as investigations from Stöver and co-workers were focused on polymer end groups 

that were obtained from chloro-based initiators, the magnitude of the effect of bromine as an end 

group cannot be deduced.  Thirdly, the molecular weight of the PNIPAAM prepared herein is not 

accurately known.  The Mn values obtained from GPC experiments and displayed in Table 4.1 

should only be used to reveal trends because the hydrodynamic volume of poly(NIPAAM) 

homopolymer and terpolymers may not be identical to that of the polystyrene standards used or 

the polymer chains could have aggregated during the GPC experiment, like those observed in 

THF-based GPC.
62-63

  If the argument of Stöver and co-workers would be assumed valid herein, 

the low cloud point temperature obtained in the work herein for poly(NIPAAM) would be 

characteristic of high molecular weight samples with ethylpropionate and bromine as end groups.  

There is compelling evidence that the molecular weight is higher than the predicted (theoretical 

Mn) because NMR analysis led to observation of a substantial amount of unreacted initiator after 
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the polymerization reaction was stopped (data not shown), indicating that initiation was not 

100% efficient.  Thus, a lesser number of initiation sites would result in longer polymer chains.  

However, in the absence of an absolutely known MW, any claim cannot be made with regard to 

the basis of the unexpected low cloud point temperature of ATRP-prepared poly(NIPAAM) 

observed in this work.  For now, it is sufficient to say that the cloud point temperature of the 

poly(NIPAAM) obtained herein is likely influenced by the chain length and the mildly 

hydrophobic nature of the ethyl propionate and bromine end groups.   

4.3.8 Thermal Response of Terpolymers—Orthogonally Derivatized Poly(NIPAAM–

GMA–tBA) Materials 

 

A comparison of the transmittance versus temperature curves for the poly(NIPAAM–

GMA–tBA) as a function of state of chemical modification is shown in Figure 4.10.  Upon 

examination of the response for each macromolecule in detail, it is found that  

poly(NIPAAM–GMA–tBA) has the lowest phase transition temperature due to the presence of 

relatively hydrophobic glycidyl and tert-butyl groups.  Conversion of the glycidyl group to yield 

a terpolymer containing propargyl groups, poly(NIPAAM–ppg–tBA), results in the presence of 

hydroxyl groups that are hydrophilic, and as expected, a shift toward higher phase transition 

temperature is noted.  After click reaction of the propargyl groups in poly(NIPAAM–ppg–tBA) 

with lactose to give poly(NIPAAM–lac–tBA), an aqueous solution of this polymer exhibited a 

very slow decrease in transmittance at the temperature range studied, with no distinct transition 

noted; a 50% decrease in transmittance was not reached even at ~70 °C, although slight 

cloudiness was visible by eye.  This observation is understandable, as the presence of the highly 

hydrophilic lactose groups is expected to perturb dramatically the hydrophilic/hydrophobic 

balance of the terpolymer.  A significantly high phase transition temperature is thus expected for 
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the poly(NIPAAM–lac–tBA), similar to those previously observed with thermoresponsive 

glycopolymers.
64-65

   

Interestingly, the presence of acrylic acid side chains in poly(NIPAAM–lac–Aac) that 

result from removal of the tert-butyl groups in poly(NIPAAM–lac–tBA) leads to a large change 

in the thermal response.  From the curve generated from a solution of poly(NIPAAM–lac–Aac), 

the decrease in transmittance is observed earlier and is more pronounced than for the 

poly(NIPAAM–lac–tBA), i.e. cloud point temperature is lower.  The lower transition 

temperature of the poly(NIPAAM–lac–Aac) points to a scenario wherein the terpolymer is now 

less hydrophilic than its predecessor terpolymer, poly(NIPAAM–lac–tBA).  This seems 

counterintuitive as conversion from tert-butyl groups to acrylic acid groups should result in 

increased hydrophilicity of the terpolymer, thereby raising its phase transition temperature, 

similar to what is generally observed for random copolymers of NIPAAM with acrylic acid or 

hydrophilic monomers.
60,64-67

  It is posited that the more hydrophobic nature of the terpolymer 

poly(NIPAAM–lac–Aac), as noted by the lower CP value, can be rationalized as a result of 

decreased hydrogen bonding interaction between polar groups (–CONH– from NIPAAM, –OH 

from lactose, and –COOH⁄–COO
–
 from acrylic acid) and water because of favorable inter- and 

intramolecular hydrogen bonding of the polar groups.  This is a very likely scenario because 

polysaccharides and poly(carboxylic acids) are known to form interpolymer complexes through 

hydrogen bonding.
68

  It is possible that the close proximity of the lactose –OH groups and the 

carboxylic acid groups along the terpolymer chain makes it favorable to form hydrogen bonds.  

This would decrease the overall hydrophilicity of the terpolymer as a result of decreased 

interaction between the terpolymer and water leading to a decreased CP value.  When the pH of 

the solution was made acidic (pH 2.77), the change in transmittance of the solution was observed 



134 

 

at a lower temperature (data not shown) compared to the terpolymer at pH 7.38.  This reinforces 

the hypothesis, because interpolymer complex formation should become more favorable as the 

number of –COOH groups increases.  An alternative explanation for the lower cloud point 

temperature of the poly(NIPAAM–lac–Aac) is the creation of a hydrophobic environment after 

possible ester formation between the –OH groups of lactose and the –COO
–
 of acrylic acid, 

similar to esterification reactions of polyhydroxy compounds with trifluoroacetates
52-54

 or 

dextran with bioactive carboxylic acid.
69

  However, in the absence of a catalyst, the ester 

formation is very unlikely to occur.   
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Figure 4.10. Thermoresponsive behavior of the terpolymers in aqueous solution (1% w/v) as 

judged by transmittance measurements at 500 nm.   

 

Upon conjugation of poly(NIPAAM–lac–Aac) to RCA120, the conjugation product, 

poly(NIPAAM–lac–RCA120), possesses a temperature response curve that indicates a lower 

cloud point temperature, but one that is much more complex in nature than that of 

poly(NIPAAM–lac–Aac).  Many research studies on protein–poly(NIPAAM) conjugates 
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prepared either by single-point terminal grafting
70-71

 or multi-point random grafting
55,72

 have 

reported phase transition temperatures that are about the same as the homopolymer 

poly(NIPAAM).  However, it should be noted that the conjugates have been composed primarily 

of poly(NIPAAM) and protein.  The conjugate that is prepared herein involves a more 

complicated system in that the two terpolymer groups, namely RCA120 and lactose, are binding 

partners.  Therefore, the lower CP observed here for poly(NIPAAM–lac–RCA120) is likely a 

consequence of the interaction of lactose and RCA120, both of which are attached to the 

terpolymer.  A highly reproducible two-step decrease in transmittance is observed, pointing to 

two different processes.  At present it is not clear what is the origin of these transitions.   

Nevertheless, the poly(NIPAAM–lac–RCA120) exhibits thermoresponsive behavior that is key in 

the long-term use of this dual-functionalized material as a capture agent for glycosylated 

(galactose-modified) proteins. 

4.4 Conclusions 

 

A terpolymer consisting of N-isopropylacrylamide, glycidyl methacrylate, and tert-butyl 

acrylate was synthesized with high monomer yields by atom transfer radical polymerization 

employing a CuBr/Me4cyclam catalytic system, namely, poly(NIPAAM–GMA–tBA).  In 

contrast, low monomer conversion was observed when N-acryloxysuccinimide was used as 

comonomer instead of glycidyl methacrylate.  Importantly, the poly(NIPAAM–GMA–tBA) 

exhibits thermoresponsive behavior, and its possession of two functional groups with the unique 

ability to be further elaborated in an orthogonal manner allows for versatile post-polymerization 

modifications.  This terpolymer was easily transformed into a propargyl-containing terpolymer 

that is capable of participating in click reactions.  To demonstrate its high capacity to contain 

multiple groups along the backbone, this terpolymer was modified in a multi-step fashion to 
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yield a terpolymer possessing two distinct biologically-important materials, namely a lectin 

(RCA120) and a sugar (lactose).  The resulting polymer conjugate, poly(NIPAAM–lac–RCA120), 

exhibits thermoresponsive behavior.  The synthetic strategy proposed here is general in nature 

and is relevant for the preparation of multi-functional ―smart‖ microfluidic surfaces and devices 

that would allow capture and release of unique set of glycoproteins. 
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CHAPTER 5 

CONCLUSIONS AND OUTLOOK 

5.1 Summary 

 The main goal of the research is the modification of microfluidic surfaces with 

glycoprotein receptors, namely boronic acid and lectin, for glycoprotein analysis.  The 

interaction analyses between a select group of solution-phase glycoproteins and a unique boronic 

acid capture surface was demonstrated by surface plasmon resonance spectroscopy (SPR).  The 

boronic acid derivative, 4-[(2-aminoethyl)carbamoyl]phenylboronic acid, AECPBA, was 

synthesized and then immobilized on carboxymethyl dextran surfaces using simple coupling 

methods.  From SPR spectroscopy responses, it was found that model glycoproteins interact 

strongly with the AECPBA surface and subsequently can be readily released from the AECPBA 

surface using borate buffer.  A striking difference between the glycoproteins fetuin and 

asialofetuin (desialylated fetuin), in terms of glycoprotein binding to the AECPBA surface, 

indicated that the interaction of glycoproteins with the immobilized AECPBA is dictated by the 

terminal saccharide of the heteroglycan chain.  Surprisingly, secondary interactions of 

glycosylated and non-glycosylated proteins with the carboxymethyl dextran hydrogel matrix 

were observed.  Importantly, it was demonstrated that use of tris(hydroxymethyl)aminomethane 

buffer allows for decreased secondary interactions of non-glycosylated proteins on the 

AECPBA/dextran surface, as noted with the model protein ExtrAvidin. 

 After having demonstrated the capability of AECPBA immobilized on a surface to bind 

glycoproteins and subsequently be regenerated, AECPBA was used to modify poly(methyl 

methacrylate), PMMA, surfaces.  This is relevant to the future fabrication of microanalytical 

devices that afford a global capture of glycoproteins prior to further fractionation by glycoprotein 
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subtype.  AECPBA was covalently attached to carboxylic acid-terminated PMMA surfaces by 

carbodiimide coupling.  Analysis of the surface by X-ray photoelectron spectroscopy revealed 

increasing amounts of surface-immobilized AECPBA with increasing carboxylic acid surface 

coverage on the PMMA.  Greater-than-monolayer coverage of AECPBA was obtained for 

surfaces that had the highest carboxylic acid coverage examined.  A continuous decrease in the 

contact angle of the surface at pH > 6, upon inspection by contact angle titration method, is 

consistent with a surface containing boronic acid (ionizable) groups.  The binding—using 

glycine- and tris-buffered saline—and elution—using borate-buffered saline—of glycoproteins 

were accomplished with the aid of Tween 20, as a dynamic coating agent, which suppressed the 

hydrophobic interactions between the proteins and exposed underivatized regions of PMMA.  

Non-glycosylated proteins did not exhibit non-specific adsorption under the binding buffer 

system employed.   

A synthetic strategy for efficient incorporation of multiple functionalities, namely Ricinus 

communis agglutinin lectin (RCA120) and its complementary sugar lactose, into a polymer 

backbone that exhibits temperature-responsive behavior in aqueous media was presented.  This 

synthetic strategy is relevant for developing microfluidic glycoprotein separation methods that 

do not require the use of externally added eluting agent.  In particular, the use of Ricinus 

communis agglutinin as the glycoprotein receptor would allow the capture and enrichment of 

unique glycoproteins.  A terpolymer, initially consisting of N-isopropylacrylamide and the 

functionalizable monomers N-acryloxysuccinimide and tert-butyl acrylate, was synthesized by 

atom transfer radical polymerization (ATRP) using the CuBr/Me4cyclam catalytic system.  The 

resulting thermoresponsive terpolymers exhibited a decrease in phase transition temperature with 

increased amount of N-acryloxysuccinimide and tert-butyl acrylate in the terpolymer.  However, 
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polymerization of the three monomers was inefficient, and a dramatic decrease in monomer 

conversion was noted when the N-acryloxysuccinimide and tert-butyl acrylate monomer feed 

was increased.  A significant improvement in monomer conversion was observed when glycidyl 

methacrylate was polymerized with N-isopropylacrylamide and tert-butyl acrylate, revealing a 

93% conversion, as opposed to a 12% conversion with N-acryloxysuccinimide as the 

comonomer under identical ATRP conditions.  The oxirane ring of the glycidyl methacrylate 

units of the terpolymer was further elaborated by propargylamine under mild conditions so as to 

contain individually-addressable ―clickable‖ units in the terpolymer chain.  To demonstrate its 

feasibility for post-polymerization modification, the propargyl groups and the tert-butyl groups 

were selectively and sequentially modified so as to yield a terpolymer possessing two different 

types of biologically-relevant moieties.  An azide-functionalized sugar, 1-azido-1-deoxy-β-D-

lactopyranoside (―azido-lactose‖), was attached through the propargyl groups via click 

chemistry, with CuBr(PPh3)3 as the catalyst.  The carboxylic acid functionalities of the 

terpolymer were revealed by tert-butyl group hydrolysis.  Aqueous carbodiimide coupling was 

then subsequently used for attachment of a lectin protein, Ricinus communis agglutinin, that has 

a high binding specificity for lactose.  The thermoresponsive property of the terpolymer through 

the course of the synthetic route was preserved, as demonstrated by turbidimetry experiments.  

5.2 Conclusions 

 The results presented here demonstrate the capacity of AECPBA-derivatized 

carboxymethyl dextran and poly(methyl methacrylate) surfaces to capture glycoproteins from 

solution, and the ability of said capture surfaces to have their surface contents efficiently eluted 

at a later time; these outcomes bode well for use of these and similar surfaces in microfluidic 

devices for global capture, release and identification of glycoproteins. 
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The terpolymer poly(N-isopropylacrylamide–lactose–RCA120) was successfully prepared 

by a combination of atom transfer radical polymerization (ATRP), click chemistry, and 

biologically-relevant post-polymerization modification reactions.  This terpolymer exhibited 

thermoresponsive behavior where binding and elution of glycoprotein analytes can be facilitated 

by temperature manipulation and one that does not require introduction of eluting agents through 

the mobile phase, an important feature that allows direct integration of microfluidic devices to 

mass spectrometry.  Because the synthetic route proposed here possesses surface-amenable 

synthetic protocols, this can be easily adapted in the fabrication of microfluidic devices to 

capture and isolate a unique glycoprotein from a large set of previously captured glycoproteins. 

5.3 Outlook 

 Glycoprotein analysis seems to be lagging behind other classes of biomolecules in terms 

of opportunities for their high-throughput analysis and detection, as is evident from the limited 

publications in this area.
1
  It is therefore highly desirable to fabricate a TAS that can enable the 

identification of glycosylation sites, composition of glycans, and even quantification; the 

information from such analyses would benefit the biomedical field in the discovery of 

biomarkers and in aiding diagnosis and therapy.  Owing to the heterogeneity of the glycoprotein 

pool that is embedded in very complex biological fluids, a TAS necessarily requires some kind 

of preconcentration modality to reduce sample complexity and facilitate in the identification of a 

glycoprotein that manifests aberrant glycosylation.   

In the future, the receptor-modified poly(methyl methacrylate) surfaces are envisioned to 

be integrated into a TAS for glycoprotein screening.  In particular, a serial affinity approach is 

anticipated for glycoprotein screening.  As a proof-of-concept, two microfluidic devices/chips 

will be fabricated with the channels modified with the boronic acid derivative AECPBA and the 
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poly(NIPAAM–lac–RCA120), respectively.  In order to function for serial glycoprotein 

processing, the two devices/chips can be arranged side-by-side with the chips integrated via 

removable interconnecting tubes, similar to the concept from thinXXS Microtechnology 

(www.thinXXS.com).  Alternatively, they can be integrated via vertical stacking with flow-

through holes to allow the transfer/flow of fluid from the top device (boronic acid) to the bottom 

device [poly(NIPAAM–lac–RCA120)].
2-4

  This will require a much sophisticated system that will 

involve valve assemblies, rotors, and stators similar to the work of Yin and co-workers
2
 and 

Bynum and co-workers.
3
  The poly(NIPAAM–lac–RCA120) device will be integrated to a heating 

device (e.g. film heaters containing resistive heater lines)
5
 to provide a means to manipulate the 

temperature in the channel.  The flow of fluid will be facilitated by hydrodynamic pumping.  For 

the serial processing approach via the side-to-side chip arrangement, the workflow will be as 

follows: (1) the sample containing non-glycosylated and glycosylated proteins will be introduced 

into the boronic acid device to capture and preconcentrate the glycoproteins; the unbound non-

glycosylated proteins will be collected as waste.  (2) The boronic acid device will be connected 

to the poly(NIPAAM–lac–RCA120) device using interconnecting tubes.  (3)  The bound fraction 

will be eluted from the boronic acid channel and then pass through the poly(NIPAAM–lac–

RCA120) channel whereby galactose-containing glycoproteins are captured; the rest of the 

glycoprotein pool remains intact and will be collected for further fractionation (if desired).  This 

device will be maintained at a temperature below the LCST of the poly(NIPAAM–lac–RCA120).  

(4) The temperature in the channel will be increased to that above the LCST, while maintaining 

buffer flow, to elute the bound glycoproteins.   
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