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Abstract 
 
 This work was done in order to deepen our molecular level understanding of how soil 

organic matter (SOM) is assembled in a whole soil and to provide further insight on the effect of 

SOM assembly on the uptake and release of hydrophobic organic compounds. Various 

techniques, including ultraviolet absorbance, fluorescence, and total carbon analysis, 

demonstrate that hydration/solvation of SOM is kinetically controlled. Initial wetting of a soil 

releases the hydrophobic moieties that are located at the outer surface of SOM, and longer 

wetting times exfoliate more hydrophobic quinone type moieties that are present in the middle 

layer, which in turn exposes the previously protected hydrophilic moieties. 

 The results of 2-Dimensional 1H-13C Heteronuclear (HETCOR) NMR affords for the first 

time direct molecular level insight into the molecular assembly of SOM in a whole soil. The 

application of Lee-Goldberg and Ramped CP techniques in the 1H-13C HETCOR NMR 

experiments enabled the observation of intramolecular and intermolecular connectivities within 

the SOM. As a result, a model of SOM assemblage in its native matrix is forwarded: the first 

domain consists of alkyl moieties that are spatially isolated; and the second domain consists of 

aromatic moieties that are strongly associated with O-alkyl moieties over 0.4 nm and up to 0.8 

nm distances, probed in this study. It is envisioned that this SOM assembly affects the uptake 

and release of HOCs. 

 Sorption of HOCs to a soil also show at least two stages: a region of fast uptake and a 

second region where sorption is generally slow. Flutolanil showed the highest sorption, followed 

by norflurazon and then acifluorfen in all soils investigated. The sorption of norflurazon, 

described in terms of organic carbon-normalized Freundlich sorption capacity (KFOC), indicates 

that it is predominantly sorbed to organic matter. On the other hand, KFOC of flutolanil or 

acifluorfen not only is due to organic matter, but is also affected by sand and clay content, 



 xiv 

because KFOC was greatest in Mandeville soil, followed by Pahokee Peat and then Elliot soil. 

Finally, it was demonstrated that sorption KFOCs were generally higher on a dry soil compared to 

a wet soil, with few exceptions, especially on the less organic-rich, high silt containing Elliot 

soil. 
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Chapter 1 
 

Introduction 
 

1.1 The Interdependency of Land, Food and Population 
 

In a span of five decades, the global population has more than doubled, from ~3 billion in 

1959 to ~6.7 billion in 2007 (UNEP, 2007). As a result, there has been a continual shrinkage of 

land area per person, which on a global scale, decreased from 7.91 to 5.15 and then to 2.02 

hectares per capita from year 1900 to 1950 and 2005, respectively (UNEP, 2007). This relentless 

increase in human population is accompanied by an ever-escalating demand of food, water, 

materials, and energy, which have more than doubled. These demands are met by an alarming 

amount of pressures applied to Earth’s ecosystems, which at present are overdrafted by 30%, 

relative to its biocapacity (WWF, 2008). Among the Earth’s ecosystems, soil is under the 

greatest amount of pressure (section 1.2 to 1.4), resulting from efforts to increase food 

production from a decreased amount of land per capita. To understand why this exists, one must 

appreciate the significance of soil in sustaining life. A healthy soil ecosystem in providing vital 

services to humanity, a) supports primary productivity and cycling of nutrients such as C, N, S, 

P; b) provides food, freshwater, raw materials, and fuel; c) regulates water purification, flood and 

climate; d) stores genetic pools; e) functions as habitat; and f) offers cultural heritages (aesthetic, 

recreational, educational) (MA, 2005; WWF, 2008; Sposito, 2008; Cook, 2009). Thus, it is 

appropriate to regard soil as an “elixir” of life. In 2050, the population is predicted to be ~9 

billion; by then, two planet Earths will be needed to sustain our needs if current demands, trends 

and practices are continued (WWF, 2008). Thus, there is urgency in safeguarding our existing 

resources and starting to use them in a sustainable manner. 

1.2 Land-use Changes 
 

Much of our food supply is drawn from soil. At present, humanity relies heavily on soil  
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for protein production and will continue to be so, since overfishing has resulted in a limited 

supply of commercial fish stocks worldwide for the foreseeable future (U.S. Commission on 

Ocean Policy, 2004; WWF, 2008). Thus, land-use changes are apparent. A large proportion of 

our planet’s land surface has been converted into agricultural lands. It has been reported that 

about 24% of our planet’s land mass is currently utilized for croplands (MA, 2005), and as much 

as ~40% for combined cultivation and grazing, which is also now comparable to the area 

occupied by forests (Foley et al., 2005; UNEP, 2007). The result of less land being available for 

cultivation also results from industrial as well as urban development (e.g., land for housing, 

industrial, and commercial buildings, roads). Moreover, recent land-use changes include such 

destructive practices as clearing tropical forests for biofuel cultivation (Verwer et al., 2008). 

Recently, agricultural lands are used more intensively than in the past. Over the last 20 

years, yields per hectare of cultivated land have increased from 1.8 to 2.5 tonnes (FAOSTAT, 

2006; WWF, 2008). Excessive farming leads to a faster depletion rate of soil carbon from soil 

surface. For example, in a simulation study by Donigian et al. (1994), about 47% of soil organic 

carbon was depleted in the top 20 cm of soil depth of central U.S. soils having been subjected to 

40 years of cultivation. Since carbon makes up ~50% of soil organic matter (SOM); this 

alarming percentage implies that SOM is being used much faster than it is being produced (SOM 

may take centuries to form). Only upon minimization of tillage operations and application of 

good soil management practices will a soil’s carbon content be replenished, at which time the 

soil can recover from the damaging effects of minimal SOM content (Donigian et al., 1994; 

Clapp et al., 2005). 

SOM and its associations with inorganic soil phases (i.e., clays, minerals) promote 

aggregation, which creates a good soil structure, which in turn permits water infiltration, 

aeration, and stabilization of soil structure (Stevenson, 1994). A good soil structure is essential in 



  3 

minimizing carbon loss from erosion and runoff.  It is not surprising, therefore, that on a global 

land map showing the intensity of soil degradation, the soils experiencing the most severe 

deterioration are also most highly cultivated (MA, 2005). The domino effect of land degradation 

results in nutrient depletion, soil erosion, salinity, and diminishing soil water content, which 

ultimately leads to desertification. The consequences of land degradation can be severe; a decline 

in soil productivity leads to food insecurity, pollution, both of which are exacerbated due to 

climate change.  

1.3 Climate Change 

The relationship between soil and particularly SOM and climate change has received 

increasing global attention. Although not fully understood, SOM plays an important role in 

climate change, because it serves both as a carbon source and carbon sink. In addition, SOM 

mitigates the effects of climate change, such as flooding and droughts due to extreme rainfall 

patterns. SOM has the ability to retain water up to twenty times its weight (Stevenson, 1994). 

The Earth’s soil surface ranks second to oceans as the largest repository of carbon, 

storing about 2-3  1015 kg of carbon in dead and living biomass, about half of which is 

accounted for by humic acids (Trumper et al., 2009; Clapp et al., 2005; Tabatabai and Sparks, 

2005). Soil is, however, the largest dynamic repository of carbon and affects carbon cycling 

processes, such as production and emission of carbon dioxide (CO2) and methane (CH4) 

greenhouse gases (GHG). 

The composition of the atmosphere influences the Earth’s climate. Since GHG absorb 

infrared radiation, an increased concentration of GHG in the Earth’s atmosphere is linked to a 

global increase in temperature, which consequently affects rainfall patterns (Schwedt, 2001; 

IPCC, 2007). Among the primary GHG (CO2, CH4, N2O, O3, H2O, and chlorofluorocarbons, 

carbon dioxide and methane rank first and second with respect to the heavy concentration in the 
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Earth’s atmosphere. In addition, methane is 21 times more potent GHG than carbon dioxide. 

Thus, human activities and or processes that lead to exceedingly high emissions of these two 

main GHG are of great concern. Annual GHG emissions are estimated to be 10 billion tonnes 

(10 GT), 15% of which comes from land-use changes, while the majority is attributed to fossil 

fuel use and production (Trumper et al., 2009; Canadell et al., 2007). Land use conversion often 

entails a lowering of carbon from soils and increased GHG emissions to the atmosphere, 

especially CO2 and CH4, as a result of forest clearing of and soil mechanical tillage (Jenkinson, 

1990; Mann, 1986; Houghton, 1995). In addition, grazing animals greatly increase GHG 

emissions through belching of CH4 gas (Trumper et al., 2009). 

At the beginning of the industrial revolution (1750s), the atmospheric CO2 concentration 

was approximately 250 ppm (Schwedt, 2001). Since then, levels have risen to ~330 ppm and 

~350 ppm in 1975 and 1990, respectively (IPCC, 2007). This increase in CO2 content in the 

atmosphere has led to about 0.3 - 0.6 °C increase in global temperature in recent years (Schwedt, 

2001). At present, GHG are estimated to be at the level of 430 ppm carbon dioxide equivalent 

(CO2e) (IPPC, 2007; Cowie et al., 2007). It is predicted that in the year 2050, the global 

temperature rise may be as high as to 7.5 °C, if current trends and practices are continued 

(Schwedt, 2001). In order to limit a global increase in temperature to a conservative 2 - 2.4 °C, in 

order to keep the planet from the most detrimental effects of climate change, the GHG in the 

atmosphere should not exceed 490 ppm CO2e (IPPC, 2007; Trumper et al., 2009). 

With the urgency of this problem, a concerted effort is warranted from the people and the 

government in order to stabilize or even reduce GHG concentration in the atmosphere. Initial 

efforts in this regard were presented under the terms of the Kyoto Protocol to the United Nations 

Framework Convention on Climate Change (Conference of the Parties, 1997). The need to 

manage, safeguard, and restore carbon in terrestrial biomes such as forests, agricultural soils, and 
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drylands through land management systems, has also been widely been recognized (Conference 

of the Parties, 1997; Nabuurs et al., 1999; WWF, 2008; Trumper et al., 2009). Agricultural soils 

and drylands offer the largest potential for restoring high amounts of carbon lost from soils, 

because it is less likely to have reached its carbon saturation (Tabatabai and Sparks 2005; 

Trumper et al., 2009; Johnson, 1995; Johnson and Kern; 1991). Therefore, a better understanding 

of soil SOM chemical make-up and its associations with the soil mineral phase, as well as the 

effects of interplay between these two phases in regard to soil aggregate properties such as 

carbon stabilization in soils, is of crucial importance. 

1.4 Agricultural Chemical Dependence 

The widespread use of agricultural chemicals, such as fertilizers and pesticides, was 

necessitated by the need to feed the growing population. The application of such chemicals 

significantly contributed to increases in yield per hectare of land, as the land area available for 

cultivation dwindled. Mineral forms of nitrogen and phosphorus fertilizers were extensively 

applied to supplement the soil nutrient content. This form of fertilizer easily find the way to 

surface waters, due to agricultural runoffs, in turn causing eutrophication or algal blooms that 

often result in fish kills in surface waters (i.e., streams, rivers, lakes, fishponds) (Connell and 

Miller, 1984). 

A pesticide, on the other hand, is a chemical substance that controls, mitigates or 

eradicates pests. Conventional pesticides are classified, based on the types of organism on which 

they act, such as herbicides (weeds), insecticides (insects), fungicides (fungae), and other 

pesticides. Aside from impacting target organisms and non-target organisms via direct or indirect 

routes, pesticides also carry the potential to pollute aquatic systems, such as surface waters, 

through agricultural erosion and runoff, as well as seepage into groundwater. Once the 

groundwater is contaminated with persistent pollutants, its natural recovery will be hindered by 
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its extremely slow movement and a long residence time of ~200 - 1000 years or even longer 

(Dunnivant and Anders, 2006). Moreover, clean-up efforts may be limited by accessibility, the 

difficulty of which increases with groundwater depth. Contamination of water with agricultural 

chemicals, such as pesticides, has been shown to cause adverse effects on aquatic organisms, 

which may be manifested by the decreased motility and fertility, and increased mortality of such 

organisms (Cagauan, 1995: Berenzen et al., 2005; Matthews, 2006). Wildlife may also be 

affected, when feeding on a contaminated food source or drinking from contaminated water 

systems (Douthwaite and Tingle, 1994; Carson, 1962; Elliot et al., 2001; Newton, 1998). In 

addition, pesticides may not only reach the target species, but may also affect non-target 

organisms, which ultimately affects biodiversity. Humans are also at risk from the detrimental 

effects of pesticides, mainly through intake of contaminated water and food. Also of concern is 

the emerging potential of some pesticides to act as endocrine disrupters (e.g., dichlorodiphenyl 

trichloroethane, atrazine, 2.4-D, trifluralin) (Bridges and Bridges, 2004). Furthermore, other 

health effects related to exposure of humans to pesticides include: developmental toxicity, 

teratogenicity, pregnancy loss, neurologic effects, and disorders on cognitive abilities (Boxall et 

al., 2009; Dolk and Vrijheid, 2003; Donald et al., 2007; Fawell and Nieuwenhuijsen, 2003; 

Goldman and Koduru, 2000; Joffe, 2003; Stillerman et al., 2008). 

The use of chlorinated pesticides started in the 1940s. Initially, dichlorodiphenyl 

trichloroethane was primarily introduced to control disease-carrying and disease-transmitting 

insects such as mosquitoes. The use of dichlorodiphenyl trichloroethane and other chlorinated 

pesticides intensified in the 1950s and 1960s as these pesticides were further used agriculturally 

(Gilliom et al., 2006). In the period of 1965 to 1980, the use of pesticides increased nearly 

linearly. In 1980 to 1995, however, there was a decline in pesticide use, mainly due to the 

banning of polychlorinated pesticides such as dichlorodiphenyl trichloroethane (Gilliom et al., 
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2006). In fact, the book Silent Spring, written by Rachel Carson, raised public concern regarding 

the adverse effects of pesticides such as dichlorodiphenyl trichloroethane in the environment, 

especially in wildlife (Carson, 1962). Dichlorodiphenyl trichloroethane and some other 

organochlorine pesticides are highly stable, which means they are not easily degraded by 

photochemical processes and/or by microorganisms in the soil. They also exhibit very high 

persistence in soils, and sediment, for decades and even longer periods of time. In addition, these 

compounds have a high potential for bioaccumulation, which indicates that the levels of these 

compounds are higher at the top of the food chain (Connell and Miller, 1984; Newton, 1998; 

Matthews, 2006; Guo et al., 2007). In a pesticide residue analysis of dichlorodiphenyl 

trichloroethane concentrations along the food chain located in a Long Island salt marsh, 

Woodwell et al. (1967) reported the following levels: a) water: 5 × 10-5 ppm; b) plankton: 4.02 × 

10-2 ppm; c) silverside minnow: 2.3 × 10-1 ppm; d) pickerel: 1.33 ppm; and e) fish eating duck: 

22.5 ppm. Bioaccumulation has also been reported in Lake Michigan 

(www.pollutionissues.com/Re-Sy/Soil-Pollution.html). Indeed, dichlorodiphenyl trichloroethane 

and other pesticides were found to be persistent in the environment with a strong tendency to 

bioaccumulate and thus become toxic to aquatic and wildlife (Gilliom et al., 2006; Schwedt, 

2001). 

Between 1992 to 2001, active ingredients of conventional pesticides of about 1 billion lbs 

were used annually in the United States, while worldwide use was estimated at 5 billion lbs in 

2001 (Gilliom, et al., 2006; Donaldson et al., 2002; Kiely et al., 2004). Recent reports by the 

USGS show that the pesticides widely used in the U.S. for agricultural and non-agricultural 

purposes are also those that are frequently detected in streams and groundwater. In 2001, 76% of 

the total pesticides used nationwide were for agricultural purposes; of this percentage, herbicides 

accounted for greater than 50% (Kiely et al., 2004). In addition, more than half of the agricultural 

http://www.pollutionissues.com/Re-Sy/Soil-Pollution.html�
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pesticides were used for three major crops: corn, soybean, and cotton. In a 1991–2001 study, the 

herbicides norflurazon, trifluralin, and atrazine were detected, totaling about 5%, 12%, and 80% 

in U.S. streams (Gilliom et al., 2006). Moreover in 1992, a six year monitoring study on 90  

pesticides in twenty U.S. “major hydrologic basins” evidenced contamination with one or more 

of those pesticides at 48.4% of the 2485 groundwater sites analyzed, with concentrations 

generally not exceeding 1µg L-1 (Barbash et al., 1999). 

1.5 Functions of SOM 

In relation to food production in order to meet the escalating demands of an ever growing 

human population, it is apparent that soil/SOM plays a major, centralized role as summarized in 

Figure 1.1 (Trumper et al., 2009; Lal, 2004). 

 

                                                 Figure 1.1 Importance of SOM 

The potential of soil components (clay/minerals, SOM) to sequester pollutants such as 

pesticides represents one of the many benefits of soil, which reduces contamination of aquatic 

systems. In other words, soil-pollutant interaction influences contaminant bioavailability, which 

SOM 
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in turn dictates fate and persistence of these contaminants in the environment. The consequences 

of climate change, such as change in rainfall patterns, ultimately causes flooding or drought in 

some areas, thus causing a compounding effect on pollutant re-distribution (Boxall et al., 2009). 

Increasing the frequency and intensity of precipitation has been known to exacerbate surface 

water pollution by run-off and soil erosion. On the other hand, soils exposed to very dry 

conditions over longer periods will result in increased migration of hydrophobic moieties at the 

soil surface (Boxall et al., 2009). However, there is a lack of studies on the effect of such soil 

hydration conditions in the sorption and desorption of pesticides in soils. 

This void in knowledge lays the foundations for the work presented in this thesis.  

Chapters 3 and 4 of this thesis elucidate SOM chemical make-up and molecular assemblage, 

while Chapters 5 and 6 provide an understanding of how the SOM chemical makeup and 

assemblage influences subsequent functions, especially in regard to sorption and desorption of 

pesticides at different soil hydration levels. 

 Soil organic matter characterizations do not provide definite chemical structures for its 

chemical make-up due to its inherent complexity and polydisperse nature. In a whole soil, SOM 

can also be adsorbed or associated with the minerals, further complicating meaningful 

characterizations. However, due to the crucial role of SOM, further studies aimed at 

understanding its structure and properties are needed. Of particular interest in this study, is the 

role of SOM in sorption of hydrophobic organic compounds. The functional group composition 

of soil organic matter, as well as the nature and dynamics of SOM as a function of interactions 

with the mineral and aqueous interface in a soil is of concern, as it affects the wetting behavior of 

soil and the uptake and release of pollutants. 

 The recent view of natural organic matter, including that of SOM, is the assembly of 

heterogeneous molecules, held together by weak molecular forces, also known as 
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“supermolecular assemblage” (Conte and Piccolo, 1999; Piccolo, 2002; Simpson et al., 2001; 

Sutton and Sposito, 2005). Studies in this regard made use of NOM isolated fractions of aquatic 

origin, as well as soil humic and fulvic acids (Rausa et al., 1991; Conte and Piccolo, 1999; 

Piccolo et al., 2001; Piccolo, 2002; Piccolo et al., 2002). However, this may not represent true 

SOM assemblage in a whole soil because of the nature of isolation and fractionation process of 

SOM, which includes removal of metals/cations and very small associated molecules, such as 

protein-like materials (http://ihss.gatech.edu/ihss2/), that are otherwise important in SOM 

assembly. Thus, the results from SOM isolated parts may not be translated directly to the 

behavior of a whole SOM in the soil matrix. The ramifications of the aforementioned difference 

have been indicated as it was found that the sorption hydrophobic organic compounds varied 

between whole soils and humic fractions (Salloum et al., 2002; Wang and Xing, 2005; Cook, 

2009). 

 Because organic matter in soil consists of both hydrophilic and hydrophobic moieties, it 

is also envisioned that hydration will affect conformational changes in the three-dimensional 

structure of these assemblies, as dictated by energy minimization principles (Weshaw, 1993; 

Engebretson and von Wandruszka, 1994; Wershaw, 2004). Chapter 2 presents a more 

comprehensive review of the fundamental principles underlying SOM assemblage and its 

association with and sorption of organic pollutants, especially pesticides.  In the presence of 

water, it is envisioned that hydrophilic moieties would wish to situate near water, while the 

hydrophobic moieties would favor to be located farther away from water, forming micelle-like 

structures (Maurice and Namjesnik-Dejanovic, 1999; Kerner et al., 2003; von Wandruszka and 

Engebretson, 2001; Engebretson and von Wandruszka, 1999; Martin-Neto et al., 2001; Ferreira 

et al., 2001; Wershaw, 1993). Thus, in addition to affecting soil organic matter assembly, 

hydration and solvation will consequently affect association of pollutants with SOM. A couple of 

http://ihss.gatech.edu/ihss2/�
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studies have strongly indicated such effects, for example, the wetting kinetics of a whole soil 

demonstrated  at least two components, a fast and slow component (Todoruk et al., 2003), and 

the use of water and dimethyl sulfoxide show differences in the mobilities of SOM moieties 

(Simpson et al.,2001). Moreover, the uptake of hydrophobic organic compound has been shown 

to be influenced by soil hydration and/or solvation (Belliveau et al., 2000; Gamble et al., 2000; 

Borisover et al., 2001; Borisover and Graber, 2002; Altfelder et al., 1999).  

Hence, this study focuses on the role of SOM on the uptake and release of hydrophobic 

organic compounds, to augment what has been known in the literature, and to decrease 

knowledge gaps. There are two main objectives of this study. The first objective is to gain 

molecular level insight of SOM assembly in a whole soil, rather than a fractionated SOM. This 

involved two parts of the study. In the first part of the study (Chapter 3), our hypothesis was that 

hydration and/or solvation of a whole organic soil will give insights on how SOM is assembled 

in its native matrix. The approach was the use of whole organic soil, contacted with water or 

aqueous mobile phase with mM concentration of solvents that are capable of disrupting weak 

intermolecular forces. The released (exfoliated) SOM in the supernatant were characterized by 

ultraviolet absorbance, fluorescence, total organic carbon, and attenuated total reflectance 

Fourier-transform infrared spectroscopy. Whole exfoliated soil was analyzed by solid 13C cross 

polarization magic angle spinning NMR. The use of a suite of spectroscopic techniques was 

necessitated by the complexity of the SOM both in solution and in its native matrix. In addition, 

the use of different techniques was expected to complement each other to provide a better 

understanding of the results. The findings showed that weak molecular interactions were 

involved in SOM and its assemblage within a whole soil, but a molecular level understanding 

was still missing. The second part of the study (Chapter 4) was aimed to further elucidate SOM 

assemblage down to a molecular level with the use of advanced two-dimensional NMR 
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technique. Our hypothesis to this effect was that advanced 2D-1H-13C heteronuclear NMR 

spectroscopy would allow the interrogation of molecular assemblage within an in situ soil 

organic matter. The approach used Lee-Goldberg and Hartmann Hahn cross polarization in 

combination with different cross polarization contact times. The use of LG as cross polarization 

method is due to the fact that it suppresses 1H-1H homonuclear dipolar coupling, which in turn 

does not allow spin diffusion to occur. This enables one to see through bond correlations; hence 

intramolecular connectivities only (Brus et al, 2002). On the other hand, Hartmann Hahn Ramp-

cross polarization method allows spin diffusion. This means that through bond and through space 

(or intra- and intermolecular), connectivities can be detected (Brus et al., 2002; Hartmann Hahn, 

1962). 

Based on the results from the two-dimensional heteronuclear NMR study, a model has 

been proposed that soil hydration affects the assembly of SOM, as well as the uptake and 

subsequent release of SOM. Hence, the second objective in this body of work is to investigate 

this effect, and so the hypothesis was that soil solvation would affect the uptake of HOC. This 

was studied using both sorption-desorption experiments on three different soils (Pahokee Peat, 

Mandeville and Elliot) of varying organic carbon and mineral content, three different aromatic 

pesticides (Acifluorfen, Norflurazon and Flutolanil) of varying hydrophobicities, and three 

different hydration conditions that included dry, 1 day prewetted, and 5 day prewetted soils.  On 

a whole, the sorption findings were in very good agreement with the model derived from the 

NMR data, however, there were some deviations. 

In order to further investigate why deviations were shown in the sorption behavior of 

Elliot soil in regards to the proposed SOM-hydration assembly model, kinetics data, which have 

been predetermined prior to sorption-desorption studies, were used. The hypothesis was that 

sorption kinetics of hydrophobic compounds had at least two rate components as soil wetting 
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occurs in at least two stages. The approach taken involved fitting the sorption kinetics data, using 

two-site non-equilibrium model and derived kinetic parameters, such as rate of kinetic desorption 

from the slow sites, sorption distribution coefficients and fraction of instantaneous sorption. 

On aggregate, the work presented here is the first systematic study of the assemblage of 

SOM within a whole soil, followed by providing a link between this assemblage insight and the 

role of hydration on pesticide sorption within a whole soil. By taking a systematic approach, this 

study shows that molecular level data obtained from advanced solid state methods, can be linked 

to macroscopic observables, and hence, provide the promise of future molecular level 

characterization of “in situ” SOM.   
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Chapter 2 

Review of Related Literature 

2.1 Importance of Sorption – Desorption Studies 

Sorption is a general term used to describe adsorption, absorption, and association of a 

sorbate to a sorbent. It involves a chemical (i.e., sorbate) exchange between the fluid phase and 

the sorption site (i.e., sorbent) of the solid phase (Pignatello, 2009). When sorption occurs at the 

outer layer of solids, it is called adsorption, whereas when association occurs inside a three 

dimensional matrix of the sorbent, it is referred to as absorption (Schwarzenbach et al., 2003). 

The open and dynamic nature of soil allows continual fluxes of chemicals; hence, sorption is 

extremely important as a constant process in soils. 

 One of the many benefits of soil is the ability of its components (i.e., clay/minerals, soil 

organic matter) to sorb pollutants such as metals, radionuclides, and organic compounds. It has 

been widely recognized that soil organic matter is the dominant component for sorption of 

unionized hydrophobic organic contaminants (HOCs), such as polyaromatic hydrocarbons, 

pesticides, nitroaromatic explosives, and recently to pharmaceutical compounds (Kile et al., 

1995). This in turn, influences the bioavailability, fate, and transport. With pesticides, sorption 

process also affects the bioefficacy. Thus, sorption-desorption studies are integral in estimating 

or modeling soil and water systems contamination, pollutant risk assessment, and remediation 

designs. Once contaminated, a soil is more difficult to remediate as compared to air and water 

(Van–Camp et al., 2004). Hence, retention mechanisms in soils must be elucidated in order to 

carry out efficient remediation strategies. Moreover, as part of integrated efforts to pursue 

sustainability, inevitably including soil management and recovery, a better understanding of 

sorption processes is an urgent need, even down to the molecular level.  

 



  21 

2.2 The Soil Components 

Soil is a mixture of inorganic materials, dissolved gases, water solution, and organic 

components (i.e., living and dead biomass), exhibiting both macroscopic and microscopic 

heterogeneity. The solid portion represents ~50% of the whole soil, which consists of ~45% 

inorganic and ~5% organic components, respectively (Schwedt, 2001; Brady, 1996). Exceptions 

are highly organic soils, wherein an organic content accounts for greater than 50% of the solid 

phase such as peat lands, as well as wetland areas such as swamps, bogs, and marshes (Sposito, 

2008; Brady, 1996). The liquid and gaseous phases contribute ~20–30% each of soil composition 

(Schwedt, 2001). Overall soil composition also varies by geographic location, age, and depth 

(Elsas et al., 2007). 

2.2.1 Soil Air  

 Soil air is a mixture of gases, similar to that found in the atmosphere, but its composition 

in soil is variable, due to biological activity and diffusion processes in soil (Ehrlich, 2002). For 

example, the atmosphere contains about 20.9% O2 and 0.03% CO2 in 1 L dry air, while aerobic 

soils consists of ~18–20.5% O2 and ~0.3–3% CO2 in the same volume of dry air (Sposito, 2008; 

McRae, 1988). 

2.2.2 Soil Water 

 Soil water is regarded as a dynamic solution because it contains dissolved solids (e.g., 

ions, nutrients) and dissolved gases. Thus, water is essential in the existence of soil life as it 

transports and translocates nutrients to plants and soil microflora and micfrofauna (Elsas et al., 

2007). In addition, the aqueous soil phase is mainly responsible for pollutant mobility within a 

soil column. 

 The unique properties of water, due to a hydrogen-bonding capability, greatly influence 

water retention and redistribution within soils. For instance, water molecules adhere to soil solid 
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surfaces, such as minerals and SOM. The edges of minerals and surface of organic matter bear 

negative charges; thus, water molecules are attracted to these surfaces through ion-dipole 

interaction (Sposito, 2008; Dunnivant and Anders, 2006). This rather strong interaction holds 

water molecules rigidly on the surfaces, thereby creating a thin film of water molecules (~1.7 x 

10-3 % of particle diameter) referred to as hygroscopic water (Ehrlich, 2002). This type of water 

does not solidify and is never labile as a liquid; hence this water is unavailable for plant use 

(Ehrlich, 2002). In a water saturated soil atmosphere, hygroscopic water is surrounded by 

another layer of water molecules, held cohesively by intermolecular forces of attraction. This 

water, called capillary water, moves from one particle to another and is a readily available water 

resource in soils (Ehrlich, 2002). When water is in excess of the optimum capacity of soil, 

gravitational water surrounds capillary water. This type of water usually fills the bigger soil pore 

spaces and moves downward by gravity or hydrostatic pressure (Erlich, 2002; Elsas, 2007). This 

physico-chemical distribution of water in soil serves as a hydration buffer such that it mitigates 

consequences of severely dry or flooded soil conditions. When water drains or dries from the 

soil, the order descends from bigger pores to smaller pores. However, during wetting, that order 

may not be the case. Hence, drying and wetting processes may be irreversible or slowly 

reversible and will have a varying effect on pollutant sorption at different hydration conditions. 

2.2.3 Inorganic Component 

 The inorganic solid matter in soil mainly comes from weathered parent rock material and 

partly from soil deposition processes. They are classified, based on their particle size, as: 1) sand 

grains 50–2000 µm; 2) silt 2–50 µm; and clay fraction < 2µm (Elsas et al., 2007; Brady, 1996). 

These minerals are mainly composed of silicon and oxygen bond, thus forming silicates, with 

mostly a definite chemical composition and structure (Dixon and Schulze, 2002). Sand grains 

and silt consist of primary silicate minerals (e.g., mica, silica, quartz) while clay fraction in soils 
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mostly represent advanced stages of primary silicate weathering (Sposito, 2008). 

Primary minerals, such as metal oxides and oxyhydroxide type minerals (e.g., quartz 

(SiO2), gibbsite (Al(OH)3), goethite (α-FeOOH)), possess charges on the surface, resulting from 

pH dependent proton transfer reactions of surface O2- and OH- sites in aqueous solutions 

(Schwarzenbach et al., 2003). Furthermore, clays exhibit permanent, as well as variable, negative 

charges that confer sites of interaction for ionic molecules. The edges of clays (e.g., aluminum 

oxides) possess negative charges that vary with respect to pH and ionic strength as in 

aforementioned primary minerals (Gillman, 1984; Talibudeen, 1981). Clay minerals are 

alternating layers of tetrahedral sheet (i.e., silicon is covalently bonded with four oxygens) and 

octahedral sheet (i.e., Al3+ is bonded to O2- or OH- ions in octahedral arrangement) (Dunnivant 

and Anders, 2006; Sposito, 2008). As an example, montmorillonite is a 2:1 type clay mineral 

containing two tetrahedral sheets and one octahedral sheet, with a chemical structure of MO–

7Al2O3–22SiO2–nH2O, where M is either sodium or calcium (Dunnivant and Anders, 2006). 

Kaolinite, on the other hand, is a simple 1:1 combination with a structure of Al2O3–2SiO2–nH2O 

(where n= 0 or 2) (Evangelou and Phillips, 2005). The permanent negative charge in clays rises 

from “isomorphic substitution”, whereby lower charge cations (e.g., Mg2+, Al3+) replace higher 

charge cations (e.g., Al3+ and Si4+, respectively) during clay formation (Sposito, 2008). Kaolinite 

does not undergo this type of isomorphic substitution, unlike other clay minerals. The amount of 

these negative charges in minerals/clays is related to the cation exchange capacity (Sposito 1984; 

McBride, 1989). The presence of permanent negative charges can therefore promote adsorption 

of cationic pollutants through complexation and cation exchange (Dunnivant and Anders, 2006). 

On the other hand, anionic organic pollutants are less likely to be sorbed on mineral surfaces, due 

to charge repulsion and therefore may complex with surrounding cations. As a result, possible 

HOC sorption mechanisms in mineral surface may include the following: 1) complexation, 
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especially of organocations; 2) H-bonding, whereby a lone pair in oxygen acts as proton 

acceptor; 3) n–π where n refers to the nonbonding electrons in oxygen, as electron donors to 

electron deficient aromatic pi systems; and 4) cation–π where aromatic π serve as electron 

donors. These interactions will further be discussed under section 2.5. 

The crystal packing of clay minerals may also confer a varying degree of clay swelling or 

expandability. Kaolinite is a non-expandable type of clay (Sposito, 2008). Montmorillonite is a 

common example of a swelling type of clay, whereby individual layers are rigidly held, but 

adjacent 2:1 layers may be loosely held together, depending on the chemicals or ions that are 

present in the interstitial area (i.e., the space between adjacent 2:1 layers). Water also serves to 

expand this interstitial area, as it commonly hydrates the ions in this space. Illite exhibits 

medium expandability, but swelling type clays provide a greater surface area for diffusion and 

binding of HOCs (Dunnivant and Anders, 2006). 

2.2.4 Soil Organic Matter 

 The dead biomass in soil, of which ~ 99% comes from plant litter, is subjected into biotic 

and abiotic decomposition mainly by the microorganisms in soil (Stevenson, 1994). The 

resulting material is called soil organic matter (SOM), which consists of low molecular weight 

compounds and loosely held biomolecules (Sposito, 2008). SOM can be classified into non-

humic substances and humic substances. Humic substances are dark-colored, highly recalcitrant 

mixture of organic compounds; these are further defined operationally, based on their separation 

into components by pH governed aqueous solubilities. Humic acids are insoluble in pH < 2, and 

soluble at all other pH, but fulvic acids are soluble at all pH. Humin is the aqueous, insoluble 

fraction. The traditional approach to isolation of humic substances from aquatic or terrestrial 

samples based on their solubilities in acidic or basic pH, is provided by IHSS 

(http://ihss.gatech.edu/ihss2/) and the overall procedure is subsequently presented here. A pre-

http://ihss.gatech.edu/ihss2/�


  25 

weighed, air-dried soil, which was previously freed from plant materials and sieved to a 2.0 mm 

mesh sieve, is added with 1 M HCl to achieve a pH value of about 1–2 at room temperature. 

Then the solution volume is adjusted with 0.1 M HCl to reach a desired solution to soil ratio of 

10 mL solution per 1 g of dry soil sample. The mixture is then shaken at 1 hr, after which, the 

supernatant is separated from the solids through centrifugation or decantation. The supernatant 

contains the acid-soluble humic fraction, known as fulvic acids (FA). This FA extract 1 is saved 

for subsequent XAD-8 treatment. 

 Next, the soil residue remaining after centrifugation is added with 1 M NaOH until a 

neutral pH (pH=7.0) is reached. Addition of 0.1 M NaOH is necessary, until a 10 mL : 1 g 

solution to soil is attained. This step and the subsequent base extraction must be done in an inert 

atmosphere, through the use of an inert gas such as N2, so that any chemical reactions of mainly 

ester hydrolysis may be prevented. The extraction is carried for a minimum of 4 hrs in the 

presence of N2, as previously mentioned. After the sample suspension is allowed to settle 

overnight, supernatant is separated through a centrifugation step. Subsequent to this step, the 

supernatant is acidified to pH=1.0 with the addition of 6 M HCl, and then allowed to settle 

overnight (12–16 hrs). The precipitate that settles from the supernatant is humic acid, and the 

supernatant contains the FA extract 2. After centrifugation, the FA is saved for XAD-8 

treatment, and the HA is collected for further purification processes. 

 The humic acid is redissolved in a minimum amount of 0.1 M KOH, in the presence of 

N2 gas. Solid KCl is added to achieve a final concentration of 0.3 M [K+]. After centrifugation to 

eliminate undissolved solids, the resulting clear supernatant is added with 6 M HCl, then allowed 

to settle overnight to reprecipitate the humic acid. The precipitate collected after centrifugation is 

suspended with 0.1 M HCl/0.3 M HF solution in a plastic container, in order to keep the metal 

ions dissolved into the solution. The suspension is shaken overnight. This HCl/HF treatment is 
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repeated until the ash content in HA is < 1%. The HA is then dialized against distilled water in 

order to remove most of the Cl- ions from the HCl treatment. The resulting HA is then freeze 

dried. The FA supernatants 1 and 2 are each passed separately through an XAD-8 resin, 

composed of methyl methacrylate ester, followed by distilled H2O rinses (0.65 column volume) 

and back-elution of adsorbed FA with 1 column volume of 0.1 M NaOH, and followed by 

distilled water rinses using 2–3 column volumes. The eluate is acidified to pH 1.0 with 6 M HCl, 

and added with HF solution to attain a 0.3 M HF in solution. Eluates 1 (from FA extract 1) and 

Eluate 2 (from FA extract 2) are then combined, and passed once again in an XAD-8 resin (resin 

volume in the glass column should be ~1/5 of sample volume). Subsequent steps of water rinse 

and NaOH back elution are repeated as indicated above for FA. However this time, after rinsing 

the column with 2 column volumes of distilled water, the eluate is passed through a H+ saturated 

(the concentration of H+ is 3x the mole of Na+ in solution) cation exchange resin. The H+ 

saturated FA is then freeze dried (http://ihss.gatech.edu/ihss2/). 

 After fractionation based on solubility differences, the chemical properties of natural 

organic matter, including soil organic matter, are often characterized by a suite of spectroscopic 

methods. The first and one of the most necessary measurements is elemental analysis, especially 

the determination of carbon, hydrogen, and nitrogen. The amount of carbon is often reported as 

total organic carbon, which is the fraction remaining after inorganic carbon (i.e., carbonates) was 

subtracted from the total carbon. Rice and MacCarthy (1991) compiled and subsequently 

evaluated statistically the elemental analysis data of worldwide humic substances from aquatic or 

terrestrial origins. Given below is the mean ( ) elemental values (in g per 100 g humic substance 

sample) and their corresponding relative standard deviation shown in parentheses. 

It was further shown by detailed, statistical analysis results that humic acids had more 

carbon and nitrogen than fulvic acids. Fulvic acids exhibits more oxygen content; thus, humic 

http://ihss.gatech.edu/ihss2/�
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acids demonstrate lower H/C and O/C molar ratios, which suggests that these acids have less 

polar and more aromatic characteristics (Rice and MacCarthy, 1991; Sposito, 2008). From such 

elemental results, total organic matter content has been approximated as ~2 times (1.72–2) the 

total organic carbon content. 

Table 2.1 Average amount (g in 100 g) of main elements in soil humic substances worldwidea 

Humic substance C H N O 
  RSD  RSD  RSD  RSD 

Humic acid 55.4 (6.97) 4.8 (20.8) 3.6 (36.1) 36.0 (10.3) 

Fulvic acid 45.3 (11.9) 5.0 (20.0) 2.6 (50.0) 46.2 (11.3) 
a (Rice and MacCarthy, 1991) 
 
 The UV analysis of humic substances typically exhibit a broad and featureless spectra, 

owing to the presence of multiple types of chromophores in the structure. Absorbance at 254 nm 

is commonly used to approximate dissolved NOM concentration. Furthermore, specific UV 

absorbance (SUVA) at 254 or 280 nm, utilized to roughly estimate aromatic content of humic 

substances, shows that SUVA 254/280 correlates well with aromatic carbon content, based on 

13C NMR, 1H NMR and FTIR data (Kalbitz et al., 1999; Chin et al., 1994; McKnight et al., 1997; 

Weishaar et al., 2003). SUVA is defined as absorbance at a specific wavelength, divided by 

dissolved organic carbon concentration. 

 Previous studies aimed at estimating the molecular weight distributions of humic 

substances were performed using high performance size exclusion chromatography. With size 

exclusion chromatography, larger molecules elute first, hence exhibiting a faster retention time 

(Leenheer and Croué, 2003). A soil humic acid and a coal-derived humic acid were demonstrated 

to have apparent weight-average molecular weight (Mw) of ~79 kDa and ~130 kDa respectively 

(Rausa et al., 1991). Much lower Mw of approximately 17–57 kDa were reported for humic 

acids, and ~10 kDa for fulvic acids, which further resulted in decreased Mw, after µm to mM 

addition of compounds, known to disrupt hydrophobic/hydrogen-bonding forces (Piccolo et al., 
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2001; Piccolo, 2002; Piccolo et al., 2002; Conte and Piccolo, 1999). The latter investigation 

contended for the polymeric view of NOM and postulated that NOM are made of weak 

associations of low molecular weight (≤ 2kDa) molecules. 

 Fluoresence, a nondestructive technique, is also widely used to characterize NOM being 

more sensitive than UV analysis. Humification index based methods (HIXs) were utilized to 

estimate the degree of humification of NOM. Humification is defined as the process whereby 

small organic molecules are transformed into a higher molecular weight organic matter, having a 

higher proportion of conjugated π systems and aromatic compounds (Ohno, 2002; Miano and 

Senesi, 1992). HIX is often calculated as a ratio of emission in longer wavelengths to shorter 

wavelengths; and a higher HIX implies a more humified material (Schaumann et al., 2000; Cory 

and McKnight, 2005; Del Vecchio and Blough, 2004; Kalbitz et al., 1999; Miano and Senesi, 

1992).  Emission scan, synchronous, and excitation-emission matrix fluorescence techniques 

yield very similar insights with respect to the fluorophores present in NOM. Two major 

fluorophores are often found in NOM and are attributed to protein-like and humic-like molecules 

(Cook et al., 2009; Leenheer and Croué, 2003; Coble et al., 1990; Coble, 1996; Chen et al., 2003; 

Stedmon et al., 2003; Ariese et al., 2004). From these studies, amino acid (tyrosine/tryptophan), 

similar to fluorescence, exhibits characteristic excitation and emission wavelengths at 

approximately 240 to 325 nm and 300 to 400 nm, respectively. Humic-like fluorescence may 

arise from quinone-like moieties, based on their degree of conjugation: 1) quinone A moieties 

contain less conjugated humic materials and show emission at ~375 to 475 nm upon excitation at 

~240–325 nm; and 2) quinone B moieties consist of more conjugated humic materials, having an 

emission at ~450 to 550 nm and an excitation wavelength at ~250 to 370 nm (Cook et al., 2009). 

Significant amounts of quinone-like fluorescence features, especially the quinone B type, 

indicates a more humified NOM, and is consistent with 13C NMR data (Cook et al., 2009). 
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 The Fourier Transform Infrared Spectroscopy (FTIR) provides mainly a qualitative 

functional group characterization of NOM in solution or solid form. The IR spectra of SOM 

typically exhibit a broad profile with main absorption features in the following regions (cm-1): 1) 

3400–3300: OH stretch arising from hydrogen-bonded groups; 2) 2940–2900: CH stretch in 

aliphatics (CH2, CH3); 3) ~1720: C=O stretch in carboxyls and ketones; 4) ~1610: C=C vibration 

in aromatics and hydrogen-bonded C=O stretch; and 5) 1280–1200: C–O stretch and OH in bend 

carboxyl group (Stevenson, 1994; Stevenson and Goh, 1971). A quantitative FTIR determination 

of humic substances was reported by Davis et al. (1999), via the use of an internal standard 

KSCN. Organic matter composition of a whole soil has also been derived by measuring 

separately the IR spectra of a whole, unmodified soil that has been subjected to pyrolysis to 

remove all organic components (Cox et al., 1999). 

Mass spectrometry has also been applied in the determination of apparent molecular 

weight distributions and in the elucidation of the structural composition of NOM. The electron 

spray ionization Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry analysis 

of FA has been shown to produce an extremely complex spectra, having broad fragmentation 

peaks in the range of m/z ~500–3000, as well as number-average molecular weights of 1.7–1.9 

KDa, which increase in the following order: aquatic<soil<peat<lignite (Brown and Rice, 2000). 

Proceeding studies demonstrated highly resolved spectra, especially at molecular weight less 

than 1 KDa, supporting previous finds that NOM contains significant amounts of lignocellulosic 

materials, with increased amounts of larger molecular weight and with more reduced, as well as 

more condensed forms of these materials upon diagenetic alteration (Kujawinski et al., 2002; 

Stenson et al., 2002). However, this technique is limited, especially in the analysis of high 

molecular weights (>1 KDa) compounds due to the following: 1) insufficient ionization; and 2) 

fragmentation to low molecular weight compounds during the electron spray ionization process, 
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which renders an mass spectrometry analysis of these high molecular weights compounds rather 

difficult (Reemtsma and These, 2003). 

NMRs have been extensively used to characterize the molecular group distribution of 

NOM. An 1H NMR analysis of NOM often yields poorly resolved spectra, due to the 

polydisperse nature of NOM and to small spread of 1H chemical shift, while the use of liquid 

state 13C NMR involves long acquisition times, coupled with a difficulty in obtaining accurate 

quantitation (Cook and Langford, 1998; Cook et al., 1996). A solid state 13C NMR is the 

preferred method, which usually involves the use of a cross-polarization (CP) technique, because 

of advantages this method has; 1) virtually no sample preparation, except for homogenization 

and the use of a dry sample; 2) is non-invasive; 3) has a faster acquisition time compared to the 

liquid state 13C NMR; and 4) accurate quantitation is possible (Cook and Langford, 1998; 1999; 

Cook et al., 1996; Cook, 2004). Specifically, 13C Ramp-CP at high magnetic fields, together with 

a fast sample rotation process was implemented in the analysis of humic substances, due to great 

enhancement in the signal-to-noise ratio and resolution (Dria et al., 2002; Cook and Langford, 

1998; 1999; Cook et al., 1996). Ramp-CP analyses demonstrated that FA consists of the 

following: 1) a high amount of polar moieties that are attributed to carbohydrates; 2) a significant 

amount of unsubstituted aromatics; and 3) large aliphatic moieties (Cook and Langford, 1998; 

Cook et al., 1996). In contrast, HA is comprised of a high proportion of large aliphatic groups 

and substituted aromatic moieties, consistent with the literature finding that FA contains more 

polar functionalities, while HA is more reduced and more aromatic in nature (Cook and 

Langford, 1998; 1999; Cook et al., 1996). In addition, two-dimensional solid state 1H-13C 

HETCOR NMRs were employed in the analysis of peat humic acid, yielding the following 

insights: 1) the presence of nonpolar alkyl moieties; 2) a great proportion of aromatic groups 

containing covalently-bonded methoxyl groups, indicative of lignin materials; and 3) a close 
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 proximity between O-alkyl moieties (possibly carbohydrates) and aromatic groups (Mao et al., 

2001). 

 In contrast with inorganic components of soil which are easily identifiable due to its 

definite composition, SOM characterizations do not provide definite chemical structures for its 

chemical make-up, due to an inherent complexity. In a whole soil, SOM can also be adsorbed or 

associated with the minerals, further compounding an already complex molecular 

characterization (Cook, 2009). However, due to the vast importance of SOM, as discussed in 

Chapter 1, further understanding of its structure and properties are warranted. Elucidation of 

chemical make-up, as well as an assemblage of SOM in whole soils, explored further in Chapters 

3 and 4 tends to suggest an influence on sorption of pollutants. Whole soils were used in this 

study, because physico-chemical properties of isolated fractions of soil SOM may not equal that 

of a native soil state. This reflects significant implications to pollutant sorption studies, found to 

vary when humic fractions are used in comparison to whole soils (Salloum et al., 2001; Wang 

and Xing, 2005; Cook, 2009). 

2.3 The Use of Trifluorinated Aromatic Pesticides as Sorbates 

The banning of the dichlorodiphenyl trichloroethane use and some other polychlorinated 

compounds in early 1970s due to toxicity, persistence, and bioaccumulation tendencies, led to a 

plethora of sorption research, centered on hydrophobic chlorinated and brominated compounds. 

Subsequently, efforts to produce agricultural chemicals, as well as compounds of commercial 

importance that are less toxic than polychlorinated ones, have been on the rise. One outcome is 

the increase in use and production of synthetic fluorinated organic compounds. Fluorine atoms 

have unique properties that impart biological effectivity to its organic forms. The Van der Waals 

size of fluorine is 1.47 Ao, which is smallest among halogens, but of similar size to that of 

oxygen (i.e., 1.52 Ao), thus it can satisfy steric requirements on biological activity sites (Smart, 
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1994; Leroux et al., 2008). Having the highest electronegativity among the halogens, its carbon-

fluorine bond has also the strongest polarity and highest bond energy compared to other carbon-

halogen bonds (Key et al., 1997; McMillen, 1982; Solomons, 1980). This minimizes its oxidative 

metabolism, imparting greater stability and lipophilicity, especially in the CF3 form (Leroux et 

al., 2008). 

 Aromatic fluorinated compounds are used in a wide array of applications, such as 

pesticides and pharmaceuticals (Elliot, 1994; Mazzola et al., 1984; Rao, 1994). Mixtures of 

aromatic fluorinated compounds also enter the environment as industrial waste products. Hence, 

organofluorine compounds have become ubiquitous xenobiotics in the environment. In 1980–

1994, the number of organofluorine agricultural chemicals has reached ~9% of all agricultural 

chemicals (ACs), and its rate of production exceeded that of non-fluorinated agricultural 

chemicals (Cartwright, 1994). Although single and multiple fluorine groups attached to 

aromatics are prevalent, trifluorinated pesticides were used in this study for the following 

reasons: 1) the heavily used ACs are trifluoromethyl substituted aromatics (i.e., Ar–CF3 where 

Ar is aromatic); and 2) the CF3 group is better suited for future solid 19F NMR studies.  

In 2002 alone, herbicides trifluralin, norflurazon, and acifluorfen were used at a rate of 

9.0, 1.2, and 0.4 million lbs active ingredient (Tomlin, 1997; Gianessi and Reigner, 2002). 

Further, about half of these organofluorine chemicals are used as herbicides. It is known that the 

CF3 group is highly resistant to defluorination. For example, trifluralin, the most commonly 

applied herbicide found in corn, cotton, soybean, and wheat crops, was reported to have 

transformation products that do not involve degradation of the Ar–CF3 group. Due to wide use 

and persistence, it is thus not surprising that occurrence of CF3 substituted aromatics (e.g., 

trifluralin, norflurazon) have been detected in U.S. streams and groundwaters (Gilliom et al., 

2006; Senseman et al., 1997a; Senseman et al., 1997b). Hence, this work focuses on sorption of 
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three pesticides containing aromatic –CF3 group and other functionalities (Figure 2.1). These 

fluorinated pesticides differ in molecular size, solubility and polarity. One of the goals of this 

study will be to understand how these properties affect their sorption. 

    

 

 
Figure 2.1 Chemical structures of acifluorfen, flutolanil and norflurazon (top to bottom) 

Norflurazon is a pre-emergence herbicide, applied primarily on orchards and cotton 

farms. Its mode of action on weeds is through inhibition of carotenoid biosynthesis (Ahrens, 

1994; Morillo, et al., 2004). Acifluorfen on the other hand, is a post-emergence herbicide 
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(Ahrens, 1994; USEPA, 1989). Both pesticides are likely carcinogens: persistent, mobile, and 

slightly toxic to aquatic organisms. Acifluorfen is also a suspected endocrine disruptor (Tomlin, 

1997; Gianessi and Reigner, 2002). The first application of flutolanil was as a fungicide in Japan 

to eradicate rice sheath blight, caused by Rhizoctonia solani (Araki and Yabutani, 1993). Later 

uses included bulb farming and turf in golf courses (Okamura et al., 1999). In the U.S., flutolanil 

has recently been approved for use in peanuts, rice and potato farms (www.dec.state.ny.us). It is 

also persistent and mobile, but exhibits a low toxicity to aquatic organisms, compared to 

norflurazon and acifluorfen (Okamura et al., 1999). 

2.4 Choice of Sorbents 

The physico-chemical properties of the sorbate (e.g., size, KOW, solubility, structure) and 

of the sorbent (e.g., SOM, mineral composition) as well as other environmental factors (e.g., 

microbiological components, rainfall patterns, soil hydration condition) are well known factors 

affecting the sorption-desorption behavior of hydrophobic organic chemicals. The sorbents or 

soils used here are Pahokee Peat, which has the highest organic matter content, followed by 

Mandeville (Bayou Castine) and Elliot soils. Mandeville and Elliot soils have appreciable 

organic and mineral contents, which make them suitable representations of agricultural soils. 

Pahokee Peat and Elliot soil are both standards from International Humic Substances Society 

(IHSS); the availability of these reference soils allows reproduction and/or continuation of this 

type of studies by other investigators. Pahokee Peat was also chosen because of the following 

reasons: 1) it has a similar organic carbon content to the soil used in the SOM molecular 

assemblage study; and 2) because it is almost purely organic matter (~90%), allowing us to 

evaluate the contribution of SOM to sorption. Mandeville soil was obtained locally from a 

wetland. At present, this type of soil is converted to cultivated land. More importantly, in 

Louisiana, wetlands are used in the final stages of waste water treatment facilities, in order to 
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further reduce nutrient and pollutant concentrations into allowable limits, prior to effluent 

discharge into nearby surface waters (Verhoeven and Meuleman, 1999). Thus, this type of soils 

plays an important role in HOC contaminant sorption and transport. Elliot soil is a typical 

agricultural soil, because of its organic matter content. Yet Elliot soil cannot be fully 

representative of mineral content, since it contains no montmorillinite. 

2.5 Important Forces of Attraction for HOC Sorption  

 Pollutants containing aromatic structures are ubiquitous in the environment (e.g., 

polyaromatic hydrocarbons, Agricultural chemicals). The pesticides acifluorfen, flutolanil, and 

norflurazon in this sorption-desorption study contain two, six-membered, aromatic rings. A 

molecular level of understanding in how these aromatic rings influence mechanism of sorption 

to soils and sediments becomes crucially important since it affects both fate and transport in soil 

sorption. Sorption of HOCs in soil predominantly comes by physisorption. Physisorption of 

sorbates to soils are primarily non-covalent in nature. This includes Van der Waals forces, 

hydrogen-bonding, and quadrupolar interactions. Termed intermolecular forces of attraction, 

these are generally weaker in strength, compared to covalent attractions (Pignatello, 2009; 

Schwarzenbach et al., 2003).  

2.5.1 London Van der Waals Forces 

 Nonpolar molecules (e.g., CO2, benzene) can have a slightly non-uniform distribution of 

charges at any instant, due to the continuous movement of electrons (Solomons, 1980). This 

creates “temporary” or induced dipoles. In comparison, when there is an unequal sharing of 

bonding electrons within an organic molecule due to electronegativity differences, charge 

separation occurs, thus creating “permanent” dipoles (Brown, 1975). 

 The intermolecular forces of attraction between two permanent dipoles (“Keesom”), 

between two induced dipoles (London dispersion), and between temporary and permanent 



  36 

dipoles (Debye), are collectively called London Van der Waals forces (Pignatello, 2009; 

Israelachvili, 1992). The magnitude of London Van der Waals forces are related to the 

separation distance, geometry, and molecular properties of involved structures (i.e., dipole 

moment, polarizability, electrostatic potential, and planarity) (Pignatello, 2009; Schwarzenbach 

et al., 2003). When either the sorbate (organic molecule) or the sorbent (clay, mineral, SOM) 

bear a charge, these intermolecular forces of attraction are called either a “charge-dipole” or a 

“charge-induced” dipole. The strength of this type of intermolecular forces of attraction is once 

again affected by separation distance to the fourth power, as well as to the magnitude of the 

charge (Pignatello, 2009; Israelachivili, 1992). The strength of this type of intermolecular forces 

of attraction is typically less than 6 kcal mol-1. When both the sorbate and sorbent are attracted 

due to opposite charges (i.e., charge-charge), coulombic forces significantly contribute to the 

strength. However, London Van der Waals forces may also act simultaneously and possibly, in 

various combinations with other types of intermolecular forces of attraction. 

2.5.2 Hydrogen Bonding 

 Hydrogen-bond (H-bond) intermolecular forces of attraction is characterized by a strong 

dipole-dipole attraction between a proton donor (D) and proton acceptor (:A), as represented 

below (Solomons, 1980; Gilli et al., 2009; Brown, 1975). 

 

 

Examples of proton donors are highly electronegative atoms F, N, O, S as well as carbon. Proton 

acceptors are those that carry lone pairs or nonbonding electron pairs such as N, P, O, S, and Se, 

or those having multiple π-bonds (Vinograduv and Linnel, 1971; Gilli et al., 2009). 

 Gilli et al. (2009) classified H-bonding into six types called “chemical Leitmotifs” as 

follows: ordinary hydrogen-bond, double charge assisted hydrogen-bond, negative or positive 

D - H  :A 
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charge assisted hydrogen-bond, resonance assisted hydrogen-bond and polarization assisted 

hydrogen-bond. Aforementioned hydrogen-bonds have dissociation energies that may range 

from very weak to strong. For example, homonuclear hydrogen-bonds (i.e., D=A), were 

reported to have ~2–42 kcalmol-1 energies (Brown, 1975; Schwarzenbach et al., 2003). 

Polarization assisted hydrogen-bond is commonly manifested by multiple H-bonds in hydroxyl 

groups contained in water, alcohol, and phenol molecules, the strength of which is higher that 

that of ordinary hydrogen-bond. Resonance assisted hydrogen bond involves proton acceptors 

and proton donors that have “short and polarizable” conjugated π-systems (Gilli and Gilli, 2000; 

Gilli, et al., 2000). A few examples are carboxylic acid dimers and diketone enols. 

 Gilli et al. (2009) devised an accepted method called the “pka slide rule” to determine the 

relative strength of H-bonds. It is essentially a chart that arranges the proton donors on one side 

and proton acceptors on the other side, with their corresponding pka values in water. The 

strengths of the H-bond between donor and acceptor is maximum when their pkas match (i.e., 

Δpka = 0). Stated another way, the strength of the H-bond increases as the Δpka between donor-

acceptor pair decreases (Gilli et al., 2009). The hypothesized reliability of H-bond energy 

approximation, based on this pka slide rule, was verified by crystallographic structural database 

(CSD) searches on the geometry of ~10,000 H-bonds as well as searches of enthalpic energy, 

associated with gas phase dissociation, from the NIST database (Gilli et al., 2009). Only 

ordinary hydrogen-bonds and charge assisted hydrogen-bonds may be described by proton 

transfer equilibria to a varying extent. Hence, availability of their pka’s becomes useful in 

predicting H-bond strengths. Ordinary hydrogen-bonds represent the weakest form of H-bonds, 

while double charge assisted hydrogen-bonds usually range from strong to very strong in 

magnitude. Although weak H-bonds are electrostatic in nature, stronger H-bonds may have both 

electrostatic and covalent characters (Gilli and Gilli, 2000; Gilli, et al., 2000). 
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 SOM contains a mix of different moieties such as aliphatic acids, carbohydrates, amino 

acids, and tannin and lignin types, as well as other forms of heterocyclic and polyaromatic 

functionalities (Hayes and Clapp, 2001; Schnitzer, 1991). It is thus expected that sorption of 

pollutants due to H-bonding would involve mainly N, O, and S donor and acceptor types 

(Pignatello, 2009). The acidity of N, O containing organic compounds is given as: carboxylic 

acids > phenols > alcohols, amides > aniline > amine. In addition, the presence of a nitro group 

or halogen in a molecule increases its acidity. Maximum H-bond interaction provided by this 

type of organic donors and acceptors is situated at pka interval 0 ≤ pka ≤ 14 due to pka matching 

at this interval (Gilli et al., 2009). Moreover, H-bonds involving O and N donor-acceptor groups 

may have energies from ~1.4–16 kcal mol-1, due to highly ordered geometries (Gilli et al., 

2009). Table 2.2 summarizes the H-bond and their expected strengths, relevant to the 

interactions of pesticides used in this research and the SOM. 

Table 2.2 Some relevant H-bonds for this studya  
H acceptor /H donor Aniline Azines Azoles Amines, Diamines 
Phenol medium very strong strong Strong 
Carboxylic acid medium very strong strong to very strong strong to very strong 

aGilli et al., 2009  

 In addition, amide donor groups may have a medium strength H-bond with amide 

acceptor groups. An example of strong double charge assisted hydrogen-bond was suggested 

between pyridine and pentachlorophenol (Gilli et al., 2009). The presence of amino groups in 

SOM may help explain the persistence of chlorophenol in contaminated sites in the U.S. that 

contain chlorinated wastes. Therefore, understanding the contribution of possible retention 

mechanisms, such as H-bond, would be beneficial in designing effective remediation strategies. 

 The π–H type H-bonds, where π is pi bonds in alkenes or aromatics will be introduced 

under aromatic or π-type interactions. H-bonds are also exhibited by acidic proton donors O, N, 

S, and halogen containing alkyl compounds. The latter is usually weaker in strength, compared 
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to H-bond between water molecules (Silverstein et al., 2000; Pignatello, 2009). 

2.5.3 Quadrupolar interactions 

Aromatic ring structures may be nonpolar, polar, or may have both polar and non polar 

characters due to the type of aromatic heterocycles and the effect of substituent groups. This 

implies that these aromatic ring structures exhibit different degrees of hydrophobicity; so one 

possible mechanism of sorption is through weak London Van der Waals forces. In addition, 

stronger forces of interaction to sorption sites have long been implicated in regard to aromatic-

containing organic compounds, including various types of π-aromatic interactions. 

 As with any other organic molecules, aromatic compounds have molecular quadrupole 

moments. The dipole moment with a unit of measurement expressed in Debye or Cm in SI units 

describes the degree of polarization of the organic molecule as a separation of charges by a unit 

distance (Williams, 1993). In comparison, the molecular electric quadrupole moment is regarded 

as a better depiction of the charge distribution per unit area of a molecule, with an SI unit of 

Cm2. To illustrate the difference between the two, CO2 molecules are traditionally thought to 

have a dipole moment equal to zero debye, whereas its quadrupolar moment was measured to be 

–15 x 10-40 Cm2 (Williams, 1993). The classical approach to quantify a quadrupole moment in 

molecules is similar to that used for dipole measurements, is accomplished by passing an 

electric field through the molecule, whereby the resulting orientation of charges is measured 

with respect to a particular axis in a molecule (Buckingham, 1970; Williams, 1993).  

 The quadrupole moments of benzene and hexafluorobenzene are ~(–)30 x 10-40 Cm2 and 

~(+)30 x 10-40 Cm2, with respect to the C6 rotational axis (Williams, 1993; Vrbancich and 

Ritchie, 1980). This means that polarized π electrons are located above and below of the 

benzene ring, while the positive end is oriented perpendicular to it (i.e. C–H sigma bond), thus 

making benzene a potential π electron donor or simply called π donor (Figure 2.2a). On the 
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Figure 2.2 Quadrupolar moment of benzene (a) and hexafluorobenzene (b) 

contrary, the presence of strongly electronegative fluorine atoms in hexafluorobenzene results in 

a quadrupole moment that is similar in magnitude, but opposite in sign to that of benzene 

(Figure 2.2b). This is due to the electron withdrawing capability of fluorine, thereby making the 

face of the ring more positive; hence, hexafluorobenzene is a π acceptor. This electric 

quadrupole in aromatic molecules contributes to their π-donor and π-acceptor properties, which 

have been suggested to be largely responsible for important aromatic interactions as follows: 1) 

base pair stacking in DNA helix; 2) binding of drugs into DNA; 3) crystal structures of 

aromatics 4) protein conformation; 5) host quest interactions; 6) porphyrin stacking and 7) 

chromatographic separations (Hunter and Sanders, 1990; Hunter et al., 2001; Janiak, 2000, 

Meyer et al., 2003). 

 The above examples of aromatic π interactions do not involve transfer of electrons, hence 

they are called π–π electron donor acceptor interactions, rather than π–π* or charge transfer 

interactions (Williams, 1993; Hunter and Sanders, 1990). These aromatic intermolecular forces 

of attraction results in a conformation that allows maximum electrostatic overlap, while 

minimizing the repulsive component. Examples of these are face to face or “stacked”, offset 

stacked, and “herringbone” or T-shaped as shown in Figure 2.4 (Hunter and Sanders, 1990). The 

δ+ 

δ- 

δ- 

δ- 

δ+
 

δ- 

δ- 

δ- 

(a) (b) 

δ- 
 

δ- 

δ+ 

δ+
 

δ+
 

δ+
 

δ+
 

δ+
 



  41 

offset stacked orientation is implicated for the twist in the DNA helix.  

Over the past decade, the importance of this π–electron donor acceptor was increasingly 

utilized to explain various behaviors in sorption of aromatic and π systems in the terrestrial 

environment (Zhu et al., 2004). Keiluweit and Kleber (2009) summarized the different types of 

π interactions that affect not only molecular sorption behavior of aromatic pollutant or SOM in 

minerals, but also SOM as well as black carbon components in soils and sediments. This may 

account for adsorption of SOM with minerals including associations within itself. This will be 

important in efforts to elucidate mechanisms of preservation and recalcitrance of SOM in soil 

and sediments, eventually helping in the mitigation measures of climate change. 

 The 13C NMR spectra of SOM has been shown to contain appreciable aromatic moieties 

from 20–60% of total carbon (Schnitzer, 1991; Mao et al., 2000, Simpson et al., 2001). This is 

due to aromatic containing moieties in SOM, such as lignins, tannins, and black carbon, as well 

as their degradation products. Therefore, π–π electron donor acceptor interactions are perceived 

to be relevant for the sorption of polar and or nonpolar aromatic compounds with π donor and π 

acceptor systems. For such π–π interactions, the strength are mainly dominated by quadrupolar 

and dispersion (i.e. Van der Waals forces) energy contributions as given below: 

Etotal = Equadrupolar + Edispersion 

Dispersion energy would once again depend on the extent of π-overlap to the sixth power (i.e., 

EVdW α 1/rij
6), where rij is the separation distance between atoms i and j, located in two different 

molecules (Hunter and Sanders, 1990). 

 It should be noted that the observed lowest energy arrangement of aromatic π 

interactions, allows the quadrupolar interaction to be a π–σ type of electrostatic interaction, 

rather than π–π attractive forces. Van der Waals forces, mainly dispersion as well as solvophobic 

effects add to the strengths of the interaction. Aromatic quadrupolar π systems can have sorption 
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energies from ~1–40 kcal mol-1, which may be comparable in strengths with H-bond, and 

sometimes stronger (Keiluweit and Kleber, 2009). The presence of polar or nonpolar substituents 

in aromatic rings influence the magnitude and sign of their quadrupole moments through 

inductive and resonance effect (Pignatello, 2009). Electron withdrawing substituents (i.e., 

halogens, –NO2, and –COO) draw the electron density toward itself and away from the face of 

the ring thus increasing the π-acceptor potential of the aromatic ring (Solomons, 1980). Electron 

donating atoms or moieties (i.e., alkyl, alkoxy, hydroxyl, oxy, phenyl, amino) shifts electron 

density toward the plane of the ring, thereby increasing its π-donor capability (Brown, 1975). 

Aside from π–π interactions, aromatic molecules with π donor and/or π acceptor 

capabilities can also exhibit other type of binding mechanisms such as: a) cation–π; b) n–π; c) H–

π; and d) polar π. The non-covalent attraction between the face of the ring of the electron rich 

aromatic π system (donor) and positively charged metallic or organic ions (acceptors), is referred 

to as cation–π (Wijnja et al., 2004; Pignatello, 2009; Keiluweit and Kleber, 2009). In soils, cation 

acceptors can be found on the mineral phase, recalling that minerals contain different types of 

coordinating cations (e.g., Si4+, Al3+, Mg2+). The magnitude of cation–π binding is enhanced by 

the presence of electron-donating groups on the ring, as well as the size of aromatic systems 

(Keiluweit and Kleber, 2009; Pignatello, 2009). In addition, cation type and hydration also 

affects its strength, whereby higher binding energies would be expected for weakly hydrated 

cations (e.g., K+, Na+, NH4
+), more so than corresponding strongly hydrated cations (e.g., Ca2+, 

Al3+, Mg2+). Xu et al. (2005) reported that up to ~8 kcal mol-1 can result from cation–π 

interaction, even when the cation is hydrated by three water molecules. Hence, it is expected that 

the dry conditions favor cation–π interactions more than water-saturated conditions. Indeed, Qu 

et al. (2008) showed that sorption affinity of polyaromatic hydrocarbon is higher on minerals 

with weakly hydrated cations. 



  43 

The interaction of lone pairs to aromatic π acceptors is called n–π. Siloxane surfaces in 

minerals are therefore suggested to have a potential for n–π interactions, due to nonbonding 

electrons in oxygen. This type of π interactions was hypothesized as one with probable sorption 

mechanisms of nitroaromatic explosives to mineral surfaces, aside from cation–π and 

hydrophobic forces (Gorb et al., 2000). Similar to cation–π interactions, the strength is also 

affected by the type of exchangeable cations and hydration. The presence of hydrophobic 

nanosites in clays can also enhance the magnitude of such π forces on these mineral surfaces. 

The hydrogen on free silanol groups on silica surfaces of minerals may also interact with 

aromatic π donors especially in dry conditions. The associated binding strength may be as high 

as the energy involved in a benzene-water complex, which is ~1.8 kcal mol-1 (Keiluweit and 

Kleber, 2009). 

 The presence of amino, as well as ionized weakly acidic groups such as carboxylic and 

phenolic in SOM (Cook et al., 2003), may also allow specific interactions with aromatic π donors 

and acceptors. The binding of the positive end of organocation with a π donor is categorized as 

cation–π. Qu et al. (2008) suggested that cation–π interactions contribute to sorption of 

polyaromatic hydrocarbon on alkylammonium modified montmorillonite, rather than H-bonding. 

Modeling studies of complexation energies between ammonium and tetraalkylammonium with π 

donor benzene, yielded to ~10 and 18 kcal mol-1, respectively (Lee et al., 1995; Aschi et al., 

2002). Similar to n–π interactions in mineral phases, the nonbonding electrons in oxygen from 

ionized carboxylic, phenolic, and hydroxyl groups in SOM (Talibuden, 1981; Tabatabai and 

Sparks, 2005), offer a potential attraction with π acceptors such as nitroaromatic carbon 

pollutants (Qu et al., 2008; Keiluweit and Kleber, 2009). In addition, H–π interactions are also 

plausible for aromatic π donors and hydrogen in SOM moieties such as amino, amide, and thiols 

(Keiluweit and Kleber, 2009), and are considered to be weak H-bonds. The strengths of amino 
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 H–π and amide H–π interactions have been reported to be ~1.5 kcal mol-1 and 4 kcal mol-1, 

respectively (Tsuzuki et al., 2000). 

Since anthropogenic aromatic contaminants are widespread, plus the fact that SOM 

contains appreciable amounts of aromatic moieties, it is important to consider and/or evaluate 

contributions of aromatic–π interactions in relation to their sorption affinities. The pesticides in 

this study contain functionalities with a potential for the abovementioned intermolecular forces 

of attraction, including Van der Waals forces, H-bonding, and aromatic π interactions. These 

intermolecular forces of attraction act simultaneously, yet some forces may be predominant, 

based on the overall molecular properties, as well as the properties of sorption sites. Thus, this 

sorption-desorption study will determine the effect of molecular properties such as size, 

hydrophobicity, and electrostatic potential (generated from modeling studies), as well as the 

effect of different functionalities in sorption affinities.  

2.5.4 Possible Retention Mechanisms for Pesticides in This Study 

 All three pesticides used in this study are capable of H-bonding. Norflurazon has azine 

(─N=) and amino functionalities that may H-bond with phenolic and carboxylic moieties of 

SOM, with strong to very strong binding energies expected. Furthermore, the carbonyl group 

will have very weak to weak H-bond tendencies with N–H type moieties in SOM. Acifluorfen 

contains a nitro (NO2) group and a pH dependent ionizable carboxylic (COOH) substituent. The 

nitro group can form a very weak H-bond with N–H groups of SOM. On the other hand, the nitro 

group enhances the acidity of the Ar–COOH group. The unionized form of this carboxylic group 

may exhibit a strong to very strong H-bond with azine, azole, and amine moieties in SOM. 

However, the pka of COOH is ~3.5; thus, at soil pH values, it exists mainly in the unprotonated 

form, which is less likely to be sorbed on negative surfaces of minerals. Further, the pka of 

COOH also has an ether group, where two aromatic rings are joined to oxygen. The latter confers 
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a very weak to weak H-bonding with proton donor nitrogen moieties in the SOM. Flutolanil 

contains amide or ether functional groups. The amide group is suggested to have medium H-

bonding with other amide moieties. However, the ether will be expected to have a very weak to 

weak H-bond contribution with amino groups of SOM. It is also expected that the trifluorinated 

and chlorine groups in all of these pesticides will exhibit some form of H-bonding.  

As each of these pesticides contain two 6-membered aromatic rings, quadrupolar 

interactions also are highly probable. Taking into account the effect of substituents, flutolanil has 

π-donor ring in which the π-donor strength is enhanced by the presence of –OR and –NH groups. 

The rest of the pesticide aromatic rings are potential π-acceptors. The hydrophobicity of the 

molecule also contributes to its retention, and the expected contribution to Van der Waals forces 

would be Flutolanil>Norflurazon>Acifluorfen. 

2.6 Introducing Freundlich Isotherm 

 Sorption desorption studies are performed by equilibrating a fixed amount of sorbent with 

varying concentrations of sorbate. Appropriate sorption isotherms are then used to model the 

amount of pollutant sorbed in the sorbent as a function of equilibrium concentration in solution 

(for aqueous sorption). The Freundlich Equation 2.1 given below, is widely used to describe 

sorption-desorption in soils.  

S= KFCe
N       (2.1) 

 where:  S = amount sorbed in a soil (mg kg-1) 

 Ce = equilibrium concentration (mg L-1) 

 KF = Freundlich sorption coefficient (mg kg-1)/(mg L-1)N 

  N = nonlinearity of the isotherm 

The log transformation of Equation 2.1 yields Equation 2.2 below, which is a linear equation of 

the type  y = mx + b where m is the slope (N), b is the intercept (log KF), and log C is the 
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independent variable x. 

log S = log KF + N log C     (2.2) 

Two main reasons for this use are based on the assumptions using Freundlich, which are: 1) a 

presence of heterogeneous surface (i.e., different energies) as sorption sites; and 2) it does not 

assume monolayer coverage only, valid assumptions for soils (Adamson, 1982). Neither of 

which can be assumed for more classic treatment, such as the Langmuir isotherm. 

 SOM has been widely recognized as the most important component in hydrophobic 

contaminant sorption (Chiou et al., 1983; 1998). Here, hydrophobic means low solubility in 

water. It has also been suggested that HOCs are less likely to sorb on minerals because water 

strongly competes with HOC on these sites (Chiou and Shoup, 1985; Chefetz et al., 2000). Thus, 

the sorption coefficient K is often normalized with respect to organic carbon or organic matter 

content, yielding a relatively constant distribution coefficient (KOC, KOM). However, this is not 

always the case. Variation in KOC values are often attributed to the following: 1) a type of carbon 

that composes the SOM; 2) the extent of diagenetic alteration; 3) the presence of different 

sorption domains; 4) the presence of black carbon; and 5) a hydration condition. All of these will 

be discussed below in relation to deviations from the partitioning type of sorption (i.e., 

nonlinearity, hysteresis). 

2.7 Effect of Hydration on Sorption 

Water is known to be capable of hydrogen-bonding and ion-dipole interactions with 

mineral surfaces (Sposito, 2008; Schwarzenbach et al., 2003). The presence of positive and 

negative charges on a mineral surface is highly attractive to ion-dipole interactions with water. In 

addition, free –OH groups on metal hydroxy minerals will hydrogen-bond with water. Hence, 

water strongly competes for these sites, resulting in a great reduction regarding sorption of 

organic pollutants to mineral surfaces (Chiou and Shoup, 1985; Chefetz et al., 2000). With 



  47 

respect to expandable type of clays, water swells the interstitial layers, possibly allowing greater 

room for pollutants as a result. 

 Hydration also affects SOM sorption properties since SOM has a high water holding 

capacity and can retain water up to four times its weight (Sposito, 2008). Nonpolar compounds 

benzene and trichloroethylene displayed a sorption suppression of ~50% in water-saturated peat 

soil, when compared with its dry state (Rutherford and Chiou, 1992). In contrast, polar organic 

compounds (e.g., phenol, nitrophenol, benzyl alcohol) that are capable of specific interactions 

with SOM such as hydrogen-bonding, experienced enhanced sorption from an aqueous solution 

when compared with a hexadecane amended (i.e., dry) Pahokee Peat (Graber et al., 2007; 

Borisover and Graber, 2002a; Borisover and Graber, 2002b). However, sorption of other polar 

compounds, such as nitrobenzene and acetophenone, are unaffected (Borisover and Graber, 

2002b). The significant increases in sorption were observed at intermediate water activities, 

peaking at 0.7-0.8 water activities (Graber et al., 2007). A similar behavior was exhibited by 

pyridine sorption in the presence of acetonitrile. When the effect of hydration on sorption was 

evaluated on a whole peat soil with isolated fractions, some differences were presented. 

Nitrophenol had a more enhanced sorption on Peat soil than its humin fraction, while the reverse 

is true for benzyl alcohol. In addition, greater nonlinearity was shown for Peat soil sorption 

isotherm (Borisover and Graber, 2004). 

 A recent study on the sorption properties of an extensive number and a diverse set of 

anionic organic compounds to a dry versus up to a 98% relative humidic state humic acid 

showed differences dependent on the polarity of the organic compound. Non-polar compounds 

show reduction in sorption when the HA hydration condition is greater that its subsaturation 

level, whereas bipolar compounds (i.e., compounds with electron donor and electron acceptor 

properties) such as polar aromatic compounds displayed assisted sorption in water saturated 
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levels (Niederer et al., 2006; Niederer and Goss, 2007). These findings are in keeping with 

previous studies. 

 One explanation for the abovementioned phenomenon is that the hydration state of SOM 

tends to influence its flexibility and conformation arrangement. It is proposed that an initially dry 

SOM is capable of noncovalent forces, such as hydrogen-bonding with its polar moieties (e.g., –

COOH, phenolic), metal-ion complexation, and conformational rearrangements; this results in an 

intimate and highly cross-linked polar contacts (Rutherford and Chiou, 1992; Graber et al., 2007; 

Schaumann and LeBoeuf, 2005). In the dry state, it is then envisioned that SOM structure is 

more rigid, with a high probability of reduced sizes of internal voids or pores. Subsequent 

opening of these pores will require a high energy and kinetically-controlled disruption of 

abovementioned cohesive forces that hold the crosslinks together (Schaumann and LeBoeuf, 

2005; Todoruk et al., 2003). Hence, diffusion of sorbates to sorption sites is restricted. Hydration 

of SOM to greater than 12% moisture content can effect SOM conformational rearrangement. As 

water penetrates and solvates these polar links, mainly by hydrogen bonding, this will result in a 

more open and flexible or “swelled” SOM (Schaumann and LeBoeuf, 2005). This in turn, creates 

new sorption sites. However, nonpolar organic solutes still experience a decrease in sorption in 

hydrated conditions, because water is thought to effectively compete for sorption sites. In 

contrast, bipolar compounds experience enhanced sorption, because they are also capable of 

strong noncovalent interactions with the hydrated SOM (Rutherford and Chiou, 1992). However, 

when water content is much greater than its saturation level, water molecules once again show 

competition for sorption sites, even for bipolar compounds (Graber et al., 2007). 

 Few studies have been carried out in regard to the effect of hydration on pesticide 

sorption. Sorption isotherm of chlortoluron is higher in an initially dry soil of ~1% organic 

carbon content, compared to a field moist soil; however, sorption has been suggested to be 
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reversible when the air-dried soil is rewetted at or near its equilibrium (Altfelder et al., 1999). 

Desorption of diuron and terbuthylazine (after subsequent drying of up to three times) resulted in 

a factor of 2.7 and 3.5 increase in sorption respectively, which was attributed to reduced 

pesticide diffusivity, because SOM converts to a more shrunken state upon successive drying 

cycles (Lennartz and Louchart, 2007). 

The implications of soil hydration are significant from the standpoint of agricultural 

chemical activity, climate change effects, and environmental pollution. A reduced sorption to 

soil means greater pesticide bioavailability for target organisms. However, as more pesticides 

become bioavailable, the potential for surface and subsurface contaminant transport to aquatic 

systems also become high. On the other hand, an enhanced sorption to soil may mean a delayed 

release of pollutants in the future, corresponding to a greater amount of pesticide that must be 

applied in order to achieve its target bioefficacy. Climate change may result in changes in rainfall 

patterns, which in turn may result in droughts or flooding in other areas. Prolonged periods of 

dry soil conditions facilitate the migration of hydrophobic moieties on the SOM surface, which 

in turn affects organic pollutant redistribution (Boxall et al., 2009). Thus, it is expected that the 

soil hydration state will influence sorption and desorption of pollutants. 

Thus, this work seeks to decrease knowledge gaps in the following areas: 1) a molecular 

level understanding of SOM assembly in its native matrix; and 2) the influences of the soil 

hydration level, sorbate polarity, and structure; as well as soil organic matter content and 

mineral/clay content on the uptake and release of HOCs. 

2.8 References 
 
Adamson, A.W. Physical Chemistry of Surfaces, 4th ed. John Wiley & Sons, New York. 1982, 
664. 
 
Ahrens, W. H.  Norflurazon. In Herbicide Handbook, 7th ed. Weed Science Society of America: 
Champaign, IL. 1994, 218-220. 
 



  50 

Altfelder, S.; Streck, T.; Richter, J. Effect of air-drying on sorption kinetics of the herbicide 
chlortoluron in soil. J. Environ. Qual. 1999, 28, 1154-1161. 
 
Araki, F.; Yabutani, K. Development of systemic fungicide flutolanil. Journal of Pesticide 
Science. 1993, 18, 69-77. 
 
Ariese, F.; van Assema, S.; Gooijer, C.; Bruccoleri, A. G.; Langford, C. H. Comparison of 
Laurenian fluvic acid luminescence with that of the hydroquinone/quinone model system: 
Evidence from low temperature studies and EPR spectroscopy. Aquat. Sci. 2004, 66, 86-94. 
 
Aschi, M.; Mazza, F.; Di Nola, A. Cation-pi interactions between ammonium ion and aromatic 
rings: an energy decomposition study. J. Mol. Struct. 2002, 587, 177–188. 
 
Borisover, M.; Graber, E. R. Hydration of natural organic matter: effect on sorption of organic 
compounds by humin and humic acid fractions vs. original peat material. Environ. Sci. Technol. 
2004, 38, 4120-4129. 
 
Borisover, M.; Graber, E. R. Relationship between strength of organic sorbate interactions in 
NOM and hydration effect on sorption. Environ. Sci. Technol. 2002, 36, 4570-4577. 
 
Borisover, M.; Graber, E. R. Simplified link solvation model (LSM) for sorption in natural 
organic matter. Langmuir. 2002, 18, 4775-4782. 
 
Boxall, A. B. A.; Hardy, A.; Beulke, S.; Boucard, T.; Burgin, L.; Falloon, P. D.; Haygarth, P. M.; 
Hutchinson, T.; Kovats, S.; Leonardi, G.; Levy, L. S.; Nichols, G.; Parsons, S. A.; Potts, L.; 
Stone, D.; Topp, E.; Turley, D. B.; Walsh, K.; Wellington, E. M. H.; Williams, R. J. Impacts of 
Climate Change on Indirect Human Exposure to Pathogens and Chemicals from Agriculture. 
Environ. Health Pers. 2009, 117. 
 
Brady, N. C. The Nature and Properties of Soils. Prentice Hall: New Jersey. 1996. 
 
Brown, R. F. Organic Chemistry. Wadsworth Publishing Company, Inc.: California. 1975, 105-
117. 
 
Brown, T.L; Rice, J.A. Effect of experimental parameters on the ESI FT-ICR mass spectrum of 
fulvic acid. Anal. Chem. 2000, 72, 384-390. 
 
Buckingham, A. D. Electric Moments of Molecules. In Physical Chemistry. An Advanced 
Treatise: Evrine, H.; Henderson, D.; Yost, W. (Eds.) Academic Press: New York. 1970, 4, 349-
386. 
 
Cartwright, P.  Recent Developments in Fluorine-Containing Agrochemicals. In Organofluorine 
chemistry: Principles and commercial applications; Banks, R. E.; Smart, B. E.; Tatlow, J. C., Ed. 
Plenum Press: New York. 1994, 237-257. 
 
Chefetz, B.; Deshmukh, A. P.; Hatcher, P. G.; Guthrie, E. A. Pyrene Sorption by Natural Organic 
Matter. Environ. Sci. Technol. 2000, 34, 2925-2930. 
 



  51 

Chen, W.; Westerhoff, P.; Leenheer, J. A.; Booksh, K. Fluorescence excitation-emission matrix 
regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 2003, 
37, 5701-5710. 
 
Chin Y.-P., Aiken G. R., and O'Loughlin E. Molecular weight, polydispersity and spectroscopic 
properties of aquatic humic substances. Environ. Sci. Technol. 1994, 28, 1853-1858. 
 
Chiou, C. T.; Porter, P. E.; Schmedding, D. W. Partition equilibriums of nonionic organic 
compounds between soil organic matter and water. Environ. Sci. Technol. 1983, 17, 227-231. 
 
Chiou, C. T.; Shoup, T. D. Soil sorption of organic vapors and effects of humidity on sorptive 
mechanisms and capacity. Environ. Sci. Technol. 1985, 19, 1196-1200. 
 
Chiou, C. T.; McGroddy, S. E.; Kile, D. E. Partition Characteristics of Polycyclic Aromatic 
Hydrocarbons on Soils and Sediments. Environ. Sci. Technol. 1998, 32(2), 264-269. 
 
Coble, P. G. Characterization of marine and terrestrial DOM in seawater using excitation-
emission matrix spectroscopy. Mar. Chem. 1996, 51, 325-346. 
 
Coble, P. G.; Green, S. A.; Blough, N. V.; Gagosian, R. B. Characterization of dissolved organic 
matter in the Black Sea by fluorescence spectroscopy. Nature. 1990, 348, 432-435. 
 
Conte, P.; Piccolo, A. Conformational arrangement of dissolved humic substances. Influence of 
solution composition on association of humic molecules. Environ. Sci.Technol. 1999, 33, 1682-
1690. 
 
Cook, R. L. Coupling NMR to NOM. Anal Bional. Chem. 2004, 378, 1484-1503. 
 
Cook, R. L. NMR Application in Environmental Research of Anthropogenic Compounds. In: 
IUPAC series on biophysico-chemical processes in environmental systems, volume 3 Biophysico 
– chemical processes of Anthropogenic Organic Compounds in Environmental Systems. Xing, 
B.; Senesi, N.; Huang, P. M. (eds). 2009. 
 
Cook, R. L.; Langford, C. H.; Yamdagni, R.; Preston , C. M. A modified cross 
polarization magic angle spinning 13C NMR procedure for the study of humic materials. 
Anal. Chem. 1996, 68, 3979-3986. 
 
Cook, R. L.; Langford, C. H. Structural characterization of a fulvic and a humic 
acid using solid-state ramp-CP-MAS 13C nuclear magnetic resonance. Environ. Sci. 
Technol. 1998, 32, 719-725. 

Cook, R. L.; Langford, C. H. A Biogeopolymeric View of Humic Substances with Application to 
Paramagnetic Metal Effects on 13C NMR, in Understanding Humic Substances.  Advanced 
Methods, Properties and Applications. 1999, 31-48. 



  52 

Cook, R. L.; Langford, C. H. Ramped Amplitude Cross Polarization Magic Angle Spinning 
NMR (Ramp-CP-MAS-NMR): A Technique for Quantitative Study of the Composition of Solid 
State Polymers.  Polymer News. 1999, 24, 6-15. 

Cook, R. L.; McIntyre, D. D.; Langford, C. H.; Vogel, H. J. A comprehensive heteronuclear and 
multidimensional NMR study of Laurentian fulvic acid. Environ. Sci. Technol. 2003, 37, 3935-
3944. 
 
Cory, R. M.; McKnight, D. M. Fluorescence spectroscopy reveals ubiquitous presence of 
oxidized and reduced quinones in dissolved organic matter. Environ. Sci. Technol. 2005, 39, 
8142-8149. 
 
Cox, R. J.; Peterson, H. L.; Young, J.; Cusik, C.; Espinoza, E. O. The forensic analysis of soil 
organic by FTIR. Forens. Sci. Int. 2000, 108, 107-116. 
 
Davis, W. M.; Erickson, C. L.; Johnston, C. T.; Delfino, J. J.; Porter, J. E. Quantitative Fourier 
Transform Infrared spectroscopic investigation of humic substance functional group 
composition. Chemosphere. 1999, 38, 2913-2928. 

 
Del Vecchio, R.; Blough, N. On the origin of the optical properties of humic substances. 
Environ. Sci. Technol. 2004, 38, 3885-3891. 
 
Dixon, J. B.; Schulze, D. G. Soil Mineralogy with Environmental Applications. Soil Science 
Society of America, Madison, Wisconsin. 2002. 
 
Dria, K. J.; Sachleben, J. R.; Hatcher, P. G. Solid-State Carbon-13 Nuclear Magnetic Resonance 
of Humic Acids at High Magnetic Field Strengths. J. Environ. Qual. 2002, 31, 393-401. 
 
Dunnivant, F. M.; Anders, E. A Basic Introduction to Pollutant Fate and Transport: An 
Integrated approach with Chemistry, Modelling, Risk Assessment and Environmental 
Legislation. John Wiley and Sons, Inc. New Jersey. 2006, 232. 
 
Ehrlich, H. L. Geomicrobiology, 4th ed. pp. 53 – 56. Marcel Dekker Inc. New York, 
U.S.A. 2002. 
 
Elliot, A. J. In Fluorinated Pharmaceuticals In Organofluorine chemistry: Principles and 
commercial applications; Banks, R. E.; Smart, B. E.; Tatlow, J. C., Ed.; Plenum Press: New 
York, 1994; 145-157. 
 
Elsas, J. D. V.; Jansson, J. K.; Trevors, Jack T. Modern Soil Microbiology. CRC Press: Boca 
Raton, FL, 2007. 

 
Evangelou, V. P.; Phillips, R. E. Cation exchange in soils. In Chemical Processes in Soils; 
Tabatahai, M. A., Sparks, D. L., Ed.; Soil Science Society of America Inc. 2005; 343-410. 
 
Gianessi, L.; Reigner, N. Pesticide use in U.S. crop production. Croplife foundation 
(www.foundation.org). 2002. 



  53 

 
Gilli, G.; Gilli, P. Towards a unified hydrogen-bond theory. J. Mol. Struct. 2000, 552, 1-15. 

Gilli, P.; Bertolasi, V.; Ferretti, V.; Gilli, G. Evidence for Intramolecular N-H...O Resonance – 
Assisted Hydrogen Bonding in β – Enaminones and Related Heterodienes. A combined Crystal – 
Structural, IR and NMR Spectroscopic and Quantum – Mechanical  Investigation. J. Am. Chem. 
Soc. 2000, 122, 10405-10417. 
 
Gilli, P.; Pretto, L.; Bertolasi, V.; Gilli, G. Predicting hydrogen-bond strengths from acid-base 
molecular properties. The pKa slide rule: Toward the solution of a long-lasting problem. 
Accounts of Chemical Research. 2009, 42, 33-44. 
 
Gilliom, R. J.; Barbash, J. E.; Crawford, C. G.; Hamiton, P. A.; Martin, J. D.; Nakagaki, N.; 
Nowell, L. H.; Scott, J. C.; Stackelberg, P. E.; Thelin, G. P., Wolock, D. M. The Quality of Our 
Nation’s Waters. Pesticides in the Nation’s Streams and Groundwater, 1992-2001. National 
Water-Quality Assessment Program. 2006. 
 
Gillman, G.P. Using variable charge characteristics to understand the exchangeable cation status 
of oxic soils. Australian Journal of Soil Research. 1984, 22, 71-80. 
 
Gorb, L.; Gu, J.; Leszczynska, D.; Leszczynski, J. The interaction of nitrobenzene with the 
hydrate basal surface of montmorillonite: an ab initio study. Phys. Chem. Chem. Phys. 2000,  
2(21), 5007–5012. 
 
Graber, E. R.; Tsechansky, L.; Borisover, M. Hydration-assisted sorption of a probe organic 
compound at different peat hydration levels: the Link solvation model. Environ. Sci. Technol. 
2007, 41, 547-554. 
 
Hayes, M. H. B.; Clapp, C. E. Humic Substances: Considerations of Compositions, Aspects of 
Structure, and Environmental Influences. Soil Sci. 2001, 166, 727-737. 
 
http://ihss.gatech.edu/ihss2/ 
 
Hunter, C. A.; Sanders, J. K. M. The Nature of π–π Interactions. J. Am. Chem. Soc. 1990, 112, 
5525-5534. 
 
Hunter, C. A.; Lawson, K.; Perkins, J.; Urch, C. Aromatic Interactions. J. Chem. Soc. Perkin 
Trans. 2001, 2, 651-699. 
 
Israelachvili J.N. Intermolecular and surface forces, 2nd ed. Academic Press: London, New York, 
1991. 
 
Janiak, C. Acritical account on π–π stacking in metal complexes with aromatic nitrogen-
containing ligands. J. Chem. Soc. Dalton Trans. 2000, 21, 3885–3896. 
 
Kalbitz, K.; Geyer, W.; Geyer, S. Spectroscopic properties of dissolved humic substances-a 
reflection of land use history in a fen area. Biogeochemistry. 1999, 47, 219-238. 
 

http://ihss.gatech.edu/ihss2/�


  54 

Keiluweit, M.; Kleber, M. Molecular-level interactions in soils and sediments: The role of 
aromatic pi-systems. Environ. Sci. Technol. 2009, 43, 3421-3429. 
 
Key, B. D.; Howell, R. D.; Criddle, C. S. Fluorinated Organics in the Biosphere. Environ. 
Sci.Technol. 1997, 31, 2445-2454. 
 
Kile, D. E.; Chiou, C. T.; Zhou, H.; Li, H.; Xu, O. Partition of nonpolar organic pollutants from 
water to soil and sediment organic matters. Environ. Sci. Technol. 1995, 29, 1401-1406. 
 
Kujawinski, E. B.; Hatcher, P.G.; Freitas, M.A.High-resolution Fourier Transform-Ion Cyclotron 
Resonance mass spectrometry of Humic and Fulvic Acids: Improvements and Comparisons. 
Anal. Chem. 2002, 74, 413-419. 
 
Lee, J. Y.; Lee, S. J.; Choi, H. S.; Cho, S. J.; Kim, K. S.; Ha, T. K. Ab-initio study of the 
complexation of benzene with ammonium cations. Chem. Phys. Lett. 1995, 232 (1-2), 67–71. 
 
Leenheer, J. A.; Croué, J. - P. Characterizing aquatic dissolved organic matter. Environ.  Sci. 
Technol. 2003, 37(1), 18A - 25A. 
 
Lennartz, B.; Louchart, X. Effect of drying on the desorption of diuron and terbuthylazine from 
natural soils. Environ. Pol. 2007, 146, 180-187. 
 
Leroux,  F.; Dementin, S.; Burlat, B.; Cournac, L.; Volbeda, A.; Champ, S.; Martin, L.; 
Guigliarelli, B.; Bertrand, P.; Fontecilla-Camps, J.; Rousset, M.; Le´ger, C. Experimental 
approaches to kinetics of gas diffusion in hydrogenase. Proc Natl Acad Sci USA. 2008, 105, 
11188–11193.  
 
Mao, J-D.; Hu, W-G.; Schmidt-Rohr, K.; Davies, G.; Ghabbour, E.A.; Xing, B. 
Quantitative characterization of humic substances by solid-state carbon-13 nuclear magnetic 
resonance. Soil Sci. Soc. Am. J. 2000, 64, 873-884. 
 
Mao, J.; Xing, B.; Schmidt-Rohr, K. New structural information on a humic acid from two-
dimensional 1H-13C correlation solid-state magnetic resonance. Environ. Sci. Technol. 2001, 35, 
1928-1934. 
 
Mazzola, E. P.; Borsetti, A. P.; Page, S. W.; Bristol, D. W. Determination of Pesticide Residues 
in Foods by Fluorine – 19 Fourier Transform Nuclear Magnetic Resonance Spectroscopy. J 
Agric. Food Chem. 1984, 32, 1102-1103. 
 
McBride, M.B. Surface chemistry of soil minerals. In J.B. Dixon, and S.B. Weed (ed.) Minerals 
in soil environments. SSSA Book Ser. No. 1. SSSA, Madison, WI. 1989, 35-88. 
 
McKnight, D. M.; Harnish, R.; Wershaw, R. L.; Baron, J. S.; Schiff, S. Chemical characteristics 
of particulate, colloidal and dissolved organic material in Loch Vale Watershed, Rocky 
Mountain Nationa Park. Biogeochemistry. 1997, 36, 99-124. 
 
McMillen, D. F.; Golden, D. M. Hydrocarbon Bond Dissociation Energies. Annu. Rev. Phys. 
Chem. 1982, 33, 493-532. 



  55 

 
McRae, S. G. Practical pedology. Ellis Horwood Ltd.: Chichester, 1988. 
 
Meyer, E. A.; Castellano, R. K.; Diederich, F. Interactions with Aromatic Rings in Chemical and 
Biological Recognition. Angew. Chem. Int. Ed. 2003, 42(11), 1210-1250. 
 
Miano, T.; Senesi, N. Synchronous excitation fluorescence spectroscopy applied to soil humic 
substances chemistry. Sci. Total Environ. 1992, 117/118, 41-51. 
 
Morillo, E.; Undabeytia, T.; Cabrera, A.; Villaverde, J.; Maqueda, C. Effect of soil type on 
adsorption-desorption mobility and activity of the herbicide norflurazon. J. Agric. Food Chem. 
2004, 52, 884-890. 
 
Niederer, C.; Goss, K.-U. Quantum-chemical Modeling of Humic Acid/Air Equilibrium 
Partitioning of Organic Vapors. Environ. Sci. Technol. 2007, 41, 3646-3652. 
 
Niederer, C.; Goss, K.-U.; Schwarzenbach, R.P. Sorption Equilibrium of a Wide Spectrum of 
Organic Vapors in Leonardite Humic Acid:Modeling of Experimental Data. Environ. Sci 
Technol. 2006, 40, 5374-5379. 
 
Ohno, T. Fluorescence inner-filtering correction for determining the humification index of 
dissolved organic matter. Environ. Sci. Technol. 2002, 36, 742-746. 
 
Okamura, H.; Omori, M.; Luo, R.; Aoyama, I.; Liu, D. Application of short-term bioassay 
guided chemical analysis for water quality of agricultural land run-off. Sci Total Environ. 1999, 
234(1-3), 223-231. 
 
Piccolo, A. The supramolecular structure of humic substances: A novel understanding of humus 
chemistry and implications in soil science. Advances in Agronomy. 2002, 75, 57-134. 
 
Piccolo, A.; Conte, P.; Cozzolino, A.; Spaccini, R. Molecular sizes and association forces of 
humic substances in solution. In Humic Substances and Chemical Contaminants; Clapp, C. E., 
Hayes, M. H. B., Senesi, N., Bloom, P. R., Jardine, P. M., Eds.; Soil Science Society of America: 
Madison, WI. 2001, 89-118. 
 
Piccolo, A; Conte, P.; Trivellone, E.; van Lagen, B.; Buurman, P. Reduced Heterogeneity of a 
Lignite Humic Acid by Preparative HPSEC Following Interaction with an Organic Acid. 
Characterization of Size-Separates by Pyr-GC-MS And 1H-NMR Spectroscopy. Environ. Sci. 
Technol. 2002, 36 (1), 76-84. 
 
Pignatello, J. J. Interaction of Anthropogenic organic chemicals with organic matter in natural 
particles. In IUPAC series on Biophysico chemical processes in environmental systems, 
Biophysico-chemical Processes of Anthropogenic Organic Compounds in Environmental 
Systems; Xing, B.; Senesi, N.; Huang, P. M., Ed.; IUPAC-sponsored Wiley Series, 2009, 3. 
 
Qu, X.; Xiao, L.; Zhu, D. Q. Site-specific adsorption of 1,3-dinitrobenzene to bacterial surfaces: 
a mechanism of ns{pi}electron-donor-acceptor interactions. J. Environ. Qual. 2008,37, 824–829. 
 



  56 

Rao, N. S.; Baker, B. E. Textile finishes and fluorosurfactants. In Organofluorine chemistry: 
Principles and commercial applications; Banks, R. E.; Smart, B. E.; Tatlow, J. C., Ed.; Plenum 
Press: New York, 1994; 321-336. 
 
Rausa, R.; Mazzolari, E.; Calemma, V. Determination of molecular size distributions of humic 
acids by high-performance size-exclusion chromatography. J. Chromatogr. 1991, 541, 419-429. 
 
Reemtsma, T.; These, A. On-line coupling of sixe exclusion chromatography with electrospray 
ionization-tandem mass spectrometry for the analysis of aquatic fulvic and humic acids. Anal. 
Chem. 2003, 75, 1500-1507. 
 
Rice, J. A.; MacCarthy, P. Statistical evaluation of the elemental composition of humic 
substances. Org. Geochem. 1991, 17, 635-648. 

 
Rutherford, D. W.; Chiou, C. T. Effect of water saturation in soil organic matter on the partition 
of organic compounds. Environ. Sci. Technol. 1992, 26, 965-970. 
 
Salloum, M. J.; Dudas, M. J.; McGill, W. B. Variation of 1-naphthol sorption with organic 
matter fraction: the role of physical conformation. Org. Geochem. 2001, 32, 709-719. 
 
Schaumann, G. E.; Antelmann, O. Thermal characteristics of soil organic matter measured by 
DSC: A hint on a glass transition. J. Plant Nutr. Soil Sci. 2000, 163, 179-181. 
 
Schaumann, G. E.; LeBoeuf, E. J. Glass Transitions in Peat: Their Relevance and the Impact of 
Water. Environ. Sci. Technol. 2005, 39, 800-806. 
 
Schwarzenbach, R. P.; Gschwend, P. M.; Imboden, D. M. Environmental Organic Chemistry, 
second edition, Wiley-Interscience, Hoboken, New Jersey. 2003, 166. 
 
Schwedt, G. The essential guide to environmental chemistry. John Wiley & Sons Ltd.: 
Chichester, 2001. 
 
Schnitzer, M. Soil organic matter-the next 75 years. Soil Sci. 1991, 151, 41-58. 
 
Senseman, S.; Lavy, T. L.; Daniel, T. C. Monitoring groundwater for pesticides at selected 
mixing/loading sites in Arkansas. Environ. Sci. Technol. 1997, 31, 283-288. 

 
Senseman, S.; Lavy, T. L.; Mattice, J.; Gbur, E.; Skulman, B. Trace level pesticide detections in 
Arkansas surface waters. Environ. Sci. Technol. 1997, 31, 395-401. 
 
Silverstein, K. A. T.; Haymet, A. D. J.; Dill, K. A. The strength of hydrogen bonds in liquid 
water and around nonpolar solutes. Journal of the American Chemical Society. 2000,  122, 8037-
8041. 
 
Simpson, A. J.; Kingerly, W. L.; Shaw, D. R.; Spraul, M.; Humpfer, E.; Dvorstak, P. The 
application of 1H HR-MAS NMR spectroscopy for the study of structures and associations of 
organic components at the solid-aqueous interface of a whole soil. Environ. Sci. Technol. 2001, 
35, 3321-3325. 



  57 

 
Smart, B. E. In Organofluorine Chemistry: Principles and Commercial Applications. Banks, R. 
E.; Smart, B. E.; Tatlow, J. C., Ed.; Plenum Press: New York, 1994; pp. 57-88. 

 
Solomons, T. W. G. Organic Chemistry. John Wiley & Sons, Inc.: New York, 1980; pp. 76-80. 
 
Sposito, G. The Surface Chemistry of Soils. Oxford University Press: New York, 1984. 
 
Sposito, G. The Chemistry of Soils, Second Edition. Oxford University Press, New York.  2008. 

Stedmon, C. A.; Markage, S.; Bro, R. Tracing dissolved organic matter in aquatic environments 
using a new approach to fluorescence spectroscopy. Mar. Chem. 2003, 361, 249-266. 
 
Stenson, A.C.; Landing, W.M.; Marshall, A.G.; Cooper, W.T. Ionization and fragmentation of 
humic substances in Electrospray Ionization Fourier Transform-Ion Cyclotron Resonance mass 
spectrometry. Anal. Chem. 2002, 74, 4397-4409. 
 
Stevenson, F. Humus Chemistry: Genesis, composition, reactions. 1994. 
 
Stevenson, F. J; Goh, K. M. Infrared spectra of humic acids and related substances. GeoChim. 
Cosmochim. Acta. 1971, 35, 417-483. 
 
Tabatabai, M. A.; Sparks, D. L. Chemical Processes in Soils. Soil Science Society of America 
book series - no. 8 (Madison, Wis). 2005. 
 
Talibudeen, O. Cation exchange in soils. In D. J. Greenland and M. H. B. Hayes (ed.) The 
chemistry of soil processes. John Wiley & Sons, New York. 1981, p. 115–177. 
 
Todoruk, T. R.; Langford, C. H.; Kantzas, A. Pore-Scale Redistritbution of Water during 
Wetting of Air-Dried Soils As Studied by Low-Field NMR Relaxometry.  Environ. Sci. Technol. 
2003, 37, 2707-2713. 
 
Tomlin, C. D. S. The Pesticide Manual. 11th Edition. British Crop Protection Council. 1997. 
 
Tsuzuki, S.; Honda, K.; Uchimaru, T.; Mikami, M.; Tanabe, K. Origin of the attraction and 
directionality of the NH/pi interaction: Comparison with OH/pi and CH/pi interactions. 
J. Am. Chem. Soc. 2000, 122 (46), 11450–11458.  
 
Van-Camp, L.; Bujarrabal, B.; Gentile, A. R.; Jones, R. J. A.; Montanarella, L.; Okizabal, C.; 
Sevaradjou, S. K. Reports of the Technical Working Groups Established under the Thematic 
Strategy for Soil Protection. EUR. 21319 EN14, Office for Official Publications of the European 
Communities, Luxembourg. 2004. 
 
USEPA. Health and Environmental Effects Document for 4-Aminopyridine. Environmental 
Criteria and Assessment Office Office of Research and Development U.S. Environmental 
Protection Agency Cincinnati. OH 45268. EPA/600/22. 1989.  
 



  58 

Verhoeven, J. T. A.; Meuleman, A. F. M. Wetlands for wastewater treatment: Opportunities and 
limitations. Ecological Engineering. 1999, 12, 5-12. 
 
Vrbancich, J.; Ritchie, G. L. D. J. Chem. Soc., Faraday Trans. 2 1980, 76, 648-659. 
 
Vinogradov, S. N.; Linnel, R. H. Hydrogen Bonding; Van Nostrand Reinhold: New York. 1971, 
Chapter 1, pp 1-22. 
 
Wang, K.; Xing, B. Structure and sorption characteristics of adsorbed humic acid on clay 
minerals. J. Environ. Qual. 2005, 34, 342–349. 

 
Weishaar, J. L., Aiken, G. R.; Bergamaschi, B.; Fram, M. S.; Fujii, R.; Mopper, K. Evaluation of 
specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of 
dissolved organic carbon. Environ. Sci. Technol. 2003, 37(20), 4702-4708. 
 
Wijnja, H.; Pignatello, J. J.; Malekani, K. Formation of π-π complexes between phenanthrene 
and model π-accepting humic subunits. J. Environ. Qual. 2004, 33, 265-275. 
 
Williams, J. H. The Molecular Electric Quadrupole Moment and Solid-State Architecture. Acc. 
Chem. Res. 1993, 26, 593-598. 
  
www.dec.state.ny.us 
 
Xu, Y.; Shen, J.; Zhu, W.; Luo, X.; Chen, K. L.; Jiang, H. Influence of the water molecule on 
cation-π Interaction: ab initio second order Møller-Plesset perturbation theory (MP2) 
calculations. J. Phys. Chem. B 2005, 109 (12), 5945–5949. 
 
Zhu, D. Q.; Herbert, B. E.; Schlautman, M. A.; Carraway, E. R.; Hur, J. Cation-pi bonding: A 
new perspective on the sorption of polycyclic aromatic hydrocarbons to mineral surfaces.  J. 
Environ. Qual. 2004, 33 (4), 1322–1330. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.dec.state.ny.us/�


  59 

Chapter 3 
 

Effect of Hydration and Solvation on the Nature of Organic Matter Released from SOM 
 

3.1 Introduction 
 

Soil is a very complex and heterogeneous system, consisting of three phases, (e.g., solid, 

solution and gas) and living and non-living component (Sposito, 2008; Filep, 1999). Natural 

organic matter (NOM) constitutes typically a few percent (i.e., 5–10%) of the total solid phase, 

while the remaining fraction represents the mineral components. Soil organic matter (SOM), a 

class of NOM, primarily originates from degradation of plant materials, with some contribution 

from animal litter (Stevenson, 1994; Steelink, 1999). Since vascular plants are the dominant form 

of terrestrial plant inputs, degradation products of their components are the major raw material 

source for SOM. Cellulose is the main form of carbohydrates in these plants. In higher plants, 

cellulose fibers are also found to be akin to the hemicelluloses (Wershaw, 2004). Other plant 

components include lignin, plant polyesters such as cutin and suberin, plant lipids, amino acids, 

proteins and amino sugars (Wershaw, 2004). Lignin in vascular plants consists of phenyl 

propanoid, guaicyl, and syringyl propanoid moieties (Douglas, 1996; Saake et al., 1996). 

Hemicellulosic fragments may also intimately associate with lignin components, forming 

lignocelluloses through benzyl ester, benzyl ether and phenyl glycosidic linkages (Sun et al., 

2000; Donaldson, 2001). Cutins are made up of long chain (e.g., C16, C18) saturated or 

unsaturated acids (Kolattukudy, 2001), while suberin, found in barks and roots consists of 

polyaromatic and polyaliphatic domain (Kolattukudy and Espelie, 1989; Bernards, 2002). Cutin 

and suberin are also commonly associated with soluble plant lipids. Long chain hydrocarbons 

and long chain aliphatics (>C18) with alcohol, aldehyde, ketone, acid, and ester moieties are also 

possible via plant lipids (Kolattukudy and Espelie, 1989; Mariani and Wolters-Arts, 2000). In 

addition, amino acids and proteins from living organisms add to SOM (Martens and 
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Loeffelmann, 2003). Furthermore, a type of carbons called “pyrolytic carbon” comes from 

pyrolysis or burning of plant materials. Two types of pyrolytic carbon, referred to as black 

carbon/charcoal and soot or graphitic carbon are therefore ubiquitous in soils (Karapanagiotti et 

al., 2000; Schmidt et al., 1999; Skjemstad et al., 1996; 2002; Cambardella and Elliot, 1992). 

SOM synthesis involves oxidation and/or reduction of the abovementioned compounds inherent 

in plants. The main degradation pathway is through biotic processes, often facilitated by 

enzymes present in the soil, primarily from microbes. In comparison, abiotic degradation is 

thought to have a lesser contribution to the generation of SOM. Another important mechanism of 

plant decomposition is through pyrolysis, due to occasional occurrence of fires that burn plant 

materials (Wershaw, 2004).  

SOM is one of nature’s major carbon sinks; hence, it plays a key role in CO2 release and 

carbon cycling in the environment (Aiken et al., 1985; Jansen, 2004). In addition, SOM 

influences a large number of soil properties and functions, including: mobility and transport of 

soil nutrients; pH buffering; metal-binding; water retention; thermal buffering, and aggregate 

stability, all of which essentially contribute to soil fertility (Wershaw, 2004). Fertile soils are 

crucial for human survival as the vast majority of human food needs come from soil. Likewise, 

SOM is also widely recognized in sorption-desorption of hydrophobic organic contaminants as 

well as binding and release of metallic compounds and other pollutants, including radioisotopes 

(Perminova et al., 2005; Chin and Weber, 1989). Thus, SOM ultimately affects the 

bioavailability and distribution of nutrients and xenobiotics in the aquatic and terrestrial 

environments. 

A better chemical understanding of NOM, including SOM, is necessary due to its vital 

role in ecosystem as mentioned above. There have been numerous studies aimed at elucidating 

molecular structure of NOM; however, due to its complexity, until now it has been an open and 
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dynamic field of investigation.  According to a classical view, NOM is macromolecular in nature 

and is made of cross-linked monomers forming higher molecular weight molecules (Stevenson, 

1994). These macromolecules exists as long chains or coiled polyelectrolytic molecules in 

aqueous solution, in which ionizable moieties, mainly carboxyl groups, cause conformational 

changes in the structure (Rausa et al., 1991; Sutton and Sposito, 2005). Results of most sorption-

desorption studies were explained based on this model (Kan et al., 1998; Gunasekara et al., 2003; 

Chiou et al., 2000; Khalaf et al., 2003). Empirical evidence of the polymeric model is based on 

ultracentrifugation studies and diffusion measurements which yield mass weighted average of 

20–50 kDa (Swift, 1999; Cameron et al., 1972). In another approach, Rausa et al. (1991) 

determined the molecular weight distribution of four sodium exchanged humic acid (HA) by 

high performance size exclusion chromatography, using the following conditions: 1) stationary 

phase: cross-linked sulphonated polysterene-divinylbenzene copolymer; 2) mobile phase: 0.05M 

NaNO3 solution; 3) detector: UV and refractive index; and 4) standards: polysaccharides. 

Molecular weights were reported as follows: Sub-bituminous coal (130 kDa) > lignite coal (77 

kDa) ≈ leonardite HA (~79 kDa) > worm compost (49 kDa). 

  Spectroscopic based studies raise a number of issues that could not be accommodated by 

the abovementioned model. High performance size exclusion chromatography were utilized by 

Conte and Piccolo (1999) and Piccolo (2001) to study the molecular mass of two types of NOM, 

namely HA and fulvic acid (FA) in aqueous solutions. Average size distribution of HA and FA 

were determined using a mobile phase of 0.05 M NaNO3 at neutral pH (mobile phase A) and 

other solvents made up of mobile phase A amended with micromolar concentration of CH3OH, 

HCl or acetic acid. Molecular weights in terms of mass weighted average molecular weights, 

designated herewith as Mw represent size distribution.  The largest Mws were obtained when 

mobile phase A was used, with initial Mw of 17–57 kDa for HA and ~10 kDa for FA. Mws 
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gradually decreased as aqueous solutions of CH3OH, HCl and CH3COOH were used. CH3OH 

showed a ~50% reduction in Mw for HAs with more aromatic and carboxylic character. This 

finding was explained to have been caused by disruption of noncovalent forces such as Van der 

Waals forces and hydrogen-bonding thought to be responsible for humic molecule association 

into larger aggregates. However, for HCl, Mw reduction was hypothesized to have been due to 

proton transfer reactions to some of the carboxylate groups in humic substances. Subsequent to 

this, the protonated carboxylate form hydrogen-bonds that lead to the undergoing conformational 

rearrangement. Of these solvent systems, CH3COOH exhibited the greatest disaggregation effect, 

yielding a decreased Mw of up to 90%. This effect was postulated as similar to the effect of (–

CH3) in CH3OH and H+ in HCl, in addition to protonated and unprotonated forms of acetic acid, 

which may exhibit stronger H-bonding association with humic substances as compared to –OH 

group in CH3OH (Sutton and Sposito, 2005; Gilli et al., 2009). Another set of high performance 

size exclusion chromatography study of HAs using the same mobile phase A and 0.1 mM acetic 

acid amended mobile phase A yielded Mws of ~49 kDa and ~19 kDa, respectively. These 

findings were further confirmed by pyrolysis gas chromatography/mass spectrometry (Pyr–GC–

MS) analysis of isolated fractions. It was also found that, unsaturated alkyl chains as well as 

most aromatic moieties exhibit a distribution of large to intermediate Mw whereas carbohydrates 

displayed the lowest Mw. In this study, almost complete recovery (~98%) of the HA starting 

material with respect to carbon were noted and was suggested as a validation of the absence of 

adsorption effects on the stationary phase. In addition, it was also proposed that the used mobile 

phases do not alter NOM properties, as only very small changes in elemental compositions were 

observed. These findings add credence to the disruption of hydrophobic and H-bond forces that 

cause an association of HA into supermolecular assemblies.  

Simpson et al. (2001) used 2-D diffusion ordered spectroscopy with 1H chemical shifts in 
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one dimension and diffusion coefficient in another dimension to approximate molecular mass at 

two different concentrations of humic acid. In a 5 ppm solution HA had ~2.5 to 61 kDa 

molecular mass, while a 100 ppm HA exhibited molecular masses > 66 kDa. Addition of acetic 

acid resulted in components of varying mobilities and lower molecular masses (0.2–2.5 kDa), but 

with very similar spectra extracted from the proton dimension. Other mass spectrometric 

techniques such as Electron Spray Ionization and Laser-assisted Desorption Ionization, have 

shown number weighted average molecular weights (Mn) of  1–2 kDa and ~0.5 kDa respectively 

(Leenheer et al., 2001; Piccolo and Spiteller, 2003; Brown and Rice, 2000; Stenson et al., 2002). 

Differences in Mn or Mw were attributed to possible variation in fragmentation, ionization 

efficiencies and diminishing resolution of ions representing >1 kDa masses (Brown et al., 1998; 

Brown and Rice, 2000). In addition, Leenheer and Rostad (2004) observed that methylation of 

the carboxyl group of FA decreased its average Mw, which was then suggested a likely result of 

a reduction of the amount of H-bonding. 

Consequently, the current view of NOM is that it is made of “loose association of 

relatively small heterogeneous group of molecules, which are held together by weak 

hydrophobic forces” (Conte and Picollo, 1999; Simpson et al., 2001). Wershaw (1993) has long 

hypothesized a micellar model of humic substances, even when little evidence was available. He 

speculated that, because SOM is made up of degradation products of mainly plant polymers 

containing both hydrophobic and hydrophilic (e.g., –COOH) moieties, it is considered as an 

ampiphile, and so in aqueous solution, it forms aggregates, in which the hydrophilic moieties 

would wish to situate themselves on the surface layer near the vicinity of water, while the 

hydrophobic moieties located inside the hydrophobic core remain protected from the water, 

forming micellar structures similar in behavior to that of surfactants (Wershaw, 1993; 

Engebretson and von Wandruszka, 1994). It was also thought that the association of SOM to 
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minerals may be in a form of micellar bilayer, whereby the hydrophilic ends of ampiphiles are 

oriented towards the mineral phase, while their hydrophobic tails are pointed away from the 

minerals. These hydrophobic ends, in turn, are layered with the hydrophobic tails of another set 

of ampiphiles, whose hydrophobic regions are near the vicinity of water (Wershaw, 2004). What 

served as experimental evidence for this model was that compost leachate organic acids were 

immobilized on aluminum surfaces through carboxylate groups, as determined by infrared-

attenuated total reflectance linear dichroism measurements (Wershaw, 1999). Recent studies 

based on different spectroscopic techniques support this view. Atomic force microscopy and 

transmission electron microscopy studies showed no evidence of coiling or uncoiling of humic 

substances on mineral substances at different pH conditions and ionic strengths, which once 

again questions the polymer view (Maurice and Namjesnik-Dejanovic, 1999; Plaschke et al., 

1999; Namjesnik-Dejanovic and Maurice, 2001). In fact it was observed that aquatic dissolved 

organic matter fraction that resembles the properties of a soil humic substance, formed “micelle-

like colloids” within a few days (Maurice and Namjesnik-Dejanovic, 1999). These aggregates 

were also relatively unaffected by the removal of multivalent cations through ethylene diamine 

tetraacetic acid complexation, which is indicative of weak noncovalent forces being the most 

probable cause of the stabilization of these micelles (Kerner et al., 2003). In another study 

involving the use of a pyrene probe in a solution of humic substances with a divalent cation 

added, it was suggested that multivalent cations may enable aggregation of humic substances 

through cation bridging and charge neutralization, leading to the protection of pyrene within this 

hydrophobic region and an observed enhancement of fluorescence (von Wandruszka and 

Engebretson, 2001; Engebretson and von Wandruszka, 1999). However, with time, these cations 

may ultimately find their most thermodynamically favored associations within the humic 

material, and may no longer hold these aggregates together.  
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A separate fluorescence study utilizing a polarity sensitive probe 6-propionyl-2-dimethyl 

aminonaphthalene (prodan) reveal that at lower pH, this probe is within the hydrophobic region, 

and is protected from the water molecules, which once again supports the micelle formation in 

acidic solutions and disaggregation in basic solution (Nanny and Kontas, 2002). Changes in line 

width of electron spin resonance as a function of relaxation time of aromatic or aliphatic chain 

free radical probes were investigated in the presence of humic substances. It was shown that the 

initially observed fine structure diminished in the presence of humic substances at pH<5 (Martin-

Neto et al., 2001; Ferreira et al., 2001).  These findings were attributed to sequestration of free 

radical probes within the hydrophobic region of humic substances, resulting in broader 

linewidths. It was also suggested that an acidic pH favors the aggregation of hydrophobic 

moieties, while the reverse is true under basic conditions, corroborating the former findings.  

The micellar view of SOM is consistent with the supramolecular assembly. However, it 

does not take into account some of the important components of NOM. The supermolecular 

assemblage model, therefore, is an extension of the micellar model as it explicitly includes 

strongly associated bimolecules within humic substances in its context. For example, phenol-

containing hydrolysable and non-hydrolysable tannins are usually intimately associated with 

carbohydrates and proteins and are therefore important in SOM aggregation, as phenol-type 

moieties can exhibit electron donor acceptor type interactions, including aromatic–π forces 

(Wershaw, 2004; Cubberley and Iverson, 2001; Gelema, 1998). 

 The models discussed above are a result of studies involving isolated fractions of 

terrestrial or aquatic NOM. The isolation of humic substances involves the use of strong acid and 

base (i.e., 0.1 M HCl and 0.1 M NaOH) plus further purification methods, such as hydrofluoric 

acid treatment to remove metals and passing through cation exchange resins, which may result in 

the loss of some of the strongly associated biomolecules and multivalent cations that may 
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otherwise have contributed to aggregation (Wershaw, 2004; Burdon, 2001). Thus, in our study, 

the concept of supermolecular assemblage was extended to the use of unfractionated soil. This 

study involves the use of an unadulterated soil to address fundamental questions of how NOM is 

associated and stabilized in soil. If humic materials are indeed supermolecularly assembled, their 

characterization should exploit intermolecular forces that hold them together. Soil is 

polyelectrolytic in nature. Aside from ion-ion and cation–π interactions, intermolecular 

attractions in SOM can be mainly ascribed to H-bonding because the electrostatic potential of a 

molecular surface is largely positive on a hydrogen atom and negative on electron-rich atoms 

(Hunter, 2004; Zhu et al., 2003). In addition, the presence of aromatic groups in SOM may cause 

aromatic electron donor acceptor associations, π–π aromatic stacking, as well as weak hydrogen-

bonding (H–π) (Keiluweit and Kleber, 2009; Meyer et al., 2003; Hunter et al., 2001). These 

forces may contribute to the aggregation into larger molecular weight molecules. A change in 

hydration and solvation of soil is expected to affect these intermolecular forces. As a 

consequence, changes in SOM conformation (such as swelling), mobility, and aggregation in soil 

and soil-solution interfaces will be apparent (Schaumann et al., 2004; Graber and Borisover, 

2004), and consequently, sorption and desorption of organic contaminants will be greatly 

affected (Graber and Borisover, 1998; Borisover et al., 2001). 

The inherent fluorescent properties of SOM have been taken advantage of in this study by 

the choice of a range of fluorescence protocols to characterize humic substances. In addition, this 

spectroscopic technique is non-destructive. Hence, fluorescence measurements were chosen as 

one of our analysis methods in order to elucidate SOM assembly in soils. Emission and 

synchronous fluorescence are the most widely used methods for determining humification 

indexes (HIXs). Humification is a process whereby small organic molecules are transformed into 

more conjugated, highly condensed and higher molecular weight matter (Ohno, 2002; Miano and 
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Senesi, 1992). Hence, fluorescence at longer wavelengths in humic substances may be related to 

presence of high proportions of (poly)aromatics, conjugated π systems and donor acceptor 

complexes (Schaumann et al., 2000; Cory and McKnight, 2005; Del Vecchio and Blough, 2004; 

Kalbitz et al., 1999; Miano and Senesi, 1992). A higher HIX in humic materials will therefore be 

correlated to an increase in abovementioned components. A commonly used emission based HIX 

utilizes 254 nm as the excitation wavelength and records emission spectra at 280-500 nm. The 

HIX254 is then calculated as the ratio between the upper quarter in the emission peak and the 

lower quarter of the same peak, avoiding the part containing Raleigh peaks (Cannavo et al., 

2004; Sierra et al., 1994).  A slight variation in excitation wavelength of 370 nm (HIX370) was 

recently introduced by Hood and co-workers (Hood et al., 2005).  In yet another variation the 

excitation wavelength is 465 nm. The excitation energy at the latter wavelength is more resonant 

of humified groups because it excites only a select portion of the humic material. The total area 

under the emission peak represents the HIX465 (Milori et al., 2002). Alternatively, HIX may be 

determined by synchronous fluorescence. Synchronous fluorescence is accomplished by 

simultaneously scanning the excitation and emission wavelengths while keeping a constant 

wavelength offset, ∆λ (∆λ = λem − λexc) between them (Miano and Senesi, 1992; Senesi, 1990). 

The fluorescence intensity in synchronous fluorescence is presented by Lloyd (1971) as: 

Is = KCD Ex (λem-∆λ) Em (λem)                  (3.1) 

where: 

Is = synchronous fluorescence intensity 

C = fluorophore concentration 

D = sample thickness 

Ex (λem − ∆λ) = intensity distribution patterns of excitation spectrum 

Em (λem) = intensity distribution of emission spectrum 
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As can be seen in Equation 3.1, synchronous fluorescence is simultaneously influenced 

by two wavelengths, rather than only one as in conventional fluorescence. This feature increases 

selectivity. Empirical evidence suggests that selectivity is optimal when the ∆λ matches the 

difference between the emission and excitation peaks. This selectivity offers the possibility of 

differentiating between mixtures of fluorescent compounds (Lloyd, 1971).  Based on empirical 

evidence on selectivity optimization, for humic and fulvic acids, ∆λ is commonly equal to 18 

nm. Hence, this is the ∆λ used in this study for the fluorescence-based HIX18. 

The attenuated total reflectance-fourier transform infrared was utilized in the analysis of 

freeze-dried exfoliation supernatant and freeze dried exfoliated soils as it allows: a) functional 

group characterization based on their characteristic vibrational-rotational energy transitions 

during absorption of IR radiation; b) direct analysis of samples without the need to use solvents; 

and c) it is a non-destructive technique. 13C Solid Cross Polarization Magic Angle Spinning 

(CPMAS) NMR was also utilized in this study as it offers the following advantages in humic 

substances characterization: 1) molecular level elucidation is possible; 2) no solvent is needed in 

sample preparation; 3) it is a highly non-destructive technique; and 4) semi-quantitative. 

The objectives of this study are as follows: 1) to use solvents of different polarity and 

hydrogen-bonding capability to determine the nature of organic matter released from soil and 2) 

to use solvent effects as a probe to gain further insight into SOM supermolecular assemblage. 

3.2 Materials and Methods 

3.2.1 Materials and Reagents 

The model soil used throughout was Pahokee Peat II, an IHSS standard. Pre-cleaned, 

teflon-lined vials with 20 mL and 40 mL capacities were purchased from Quality Environmental 

Containers (QEC). 125 mL bottles were obtained from Acros. 18 MΩ de-ionized water used in 

all experiments was sourced from Modulab Water Systems, U.S. Filter purification system. 
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HPLC grade solvents (>99.9%) acetonitrile, acetone and methanol and water were obtained from 

Acros.  Extra dry dimethyl sulfoxide, glacial acetic acid, hydrochloric acid and sodium nitrate 

were also acquired from Acros. 

3.2.2 Exfoliation Procedure 

Aqueous solutions of 4.6 x 10-3M acetonitrile, methanol and dimethyl sulfoxide were 

prepared using neutral sodium nitrate (0.05M) as the diluent. The soil to solution ratio used was 

0.005 (w/v). Samples were placed in foil-wrapped 20 mL teflon-lined QEC vials, which were 

then shaken at 40 rpm (0.67 Hz) for 24 hours at room temperature using a horizontal shaker. 

Four replicates were prepared for all solution types. In addition, blanks containing the aqueous 

solutions (without soil) were also prepared and were later used as blanks for UV and 

fluorescence analyses. Subsequently, the samples were allowed to sit for ~1hr for the floating 

particulates to settle. Clear supernatants were then extracted from the soil samples. In the event 

of particles still being present, the supernatants were centrifuged at 2500 rpm for 25 minutes. 

Supernatants were then subjected to TOC, UV and fluorescence analyses. The 20-day samples 

were colorimetrically inspected on a daily basis. After 18 days, it was observed that the sample 

containing the water-acetonitrile binary solution developed red brownish color whereas the other 

samples had yellow color with subtle differences. 

One large batch of 4.6 x 10-3M aqueous solution of each of the following: dimethyl 

sulfoxide (PD), acetonitrile (PA), methanol (PM), acetone (PA), acetic acid (AA) and 

hydrochloric acid (HCl) were introduced into a 125 mL glass solution bottle with liner to achieve 

a 0.005 (w/v) soil to solution ratio, in order to determine the effect of longer incubation period. 

Subsequent sample treatment was the same as above. Samples were then allowed to settle in the 

dark for 45-day to allow more contact between the soil and the mobile phase. For all 1-day and 

20-day sample exfoliation supernatant, 1 mL aliquots were extracted and diluted to 50 mL with 
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HPLC water. For the 45-day, accurate volumes of 4 mL, 2 mL, 1 mL and 0.5 mL of each 

supernatant were diluted to 50 mL to check for inner filter effects. 

3.2.3 Characterization Methods 

Total organic carbon (TOC) was determined using a Shimadzu TOC-5050A with an ASI-

5000A auto sampler.  Potassium acid phthalate, was employed as the total carbon standard, while 

sodium carbonate-sodium bicarbonate was used as an inorganic carbon standard.  A new set of 

calibration curves was prepared for each set of analysis. 

UV absorbance at 280 nm was used in order to estimate the aromatic character of 

exfoliated SOM. Previous studies demonstrate positive correlation of UV absorbance at 280 nm 

with the amount of aromatics based on 13C NMR, 1H NMR and FTIR data (Kalbitz et al., 1999; 

Chen and Bada, 1994). UV-VIS analyses were performed on either an Agilent 8453 

spectroscopy system or a Cary Ultraviolet-visible using a 1.0 cm quartz cuvette as a sample 

container. All readings were blank subtracted.  

Emission and synchronous fluorescence spectra were acquired using a Spex 3 Fluorolog 

Jobin Yvon spectrofluorometer. Lamp emission peak and intensity and the Raman water peak 

and intensity were recorded prior to analysis. Samples were placed in a 1-cm quartz cuvette 

during analysis. For the lamp excitation scan, λem is set at 650 nm and λex is collected at 220–600 

nm. The Xe arc lamp used should display maximum peak at 467 ± 0.5 nm. The water Raman 

emission is collected at λex=350 nm and λem=365–450 nm. Water Raman peak must be 

positioned at 397±1 nm. Emission scans were recorded for each sample using the following sets: 

a) excitation wavelength (λex) of 254 nm, emission range (λem) of 280-500 nm, b) λex=370 nm, 

λem=380–600 nm and c) λex=465 nm, λem=475–650 nm. Additional emission measurement 

parameters are as follows: 1 scan, 0.2 s integration time, 1 nm increment, and slits were set to 4 

nm for both emission and excitation.  Synchronous fluorescence were collected using λex=290–
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550 nm and λem=308–568 respectively, thereby maintaining a constant Δλ of 18 nm. Slits were 

set to 5 nm for both the excitation and emission monochromators while the integration time was 

0.1s. A humification index was obtained by ratioing the peaks 461 and 392, and is designated as 

HIX18. Detection was signal divided by the reference (S/R). All spectra were blank corrected 

with the corresponding aqueous solution used for exfoliation. 

Freeze-dried samples of untreated Pahokee Peat, and 45-day water and acetonitrile 

exfoliated Pahokee Peat were analyzed by 13C cross polarization magic angle spinning NMR. A 

400 MHz spectrometer operating at 400.15 MHz on the proton frequency was used. During 

cross-polarization, the 1H and 13C fields were set to 67.5 kHz and 62.5 kHz respectively while 

100 kHz was used in the decoupling step.  The sample spinning frequency was 13 kHz and a 

recycle delay of 1s was used. The Ramp-CP pulse sequence with two-pulse phase modulated 

decoupling was used with a contact time of 2 msec. A total of 80k scans were collected and 

spectra were processed using 30 Hz line broadening. Spectra were analyzed based on 13C 

chemical shifts given in Table 3.2.1. In addition, attenuated total reflectance-fourier transform 

infrared spectra on the freeze dried exfoliation supernatants were collected on a Bruker Tensor 

27 equipped with a pike single bounce attenuated total reflectance cell with ZnSe crystal as 

sample container. The parameters used in the analysis were as follows: 96 sample scans; 96 

background scans; 4 cm-1 resolution; 32 phase resolution; and a zero filling factor of 8. IR 

absorption band assignments were based from Table 3.2.2. 

Spartan calculations (Version ’02, Wavefunction Inc., CA) of the solvents used were 

performed from previously energy minimized solvent molecule (using Tripos force field). The 

method for electrostatic surface potential calculation is semi-empirical PM3 using single point 

energy. 
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Table 3.2.1 Chemical shift assignments in 13C NMR spectra (Leenheer et al., 2004).  
Chemical shift (ppm) Chemical linkage Compound type 

0-55 C-H Aliphatic hydrocarbon 
40-55 C-N Amines, amides, proteins 
55-60 O-CH3 Methoxy groups in tannins and lignins 
60-90 C-O Aliphatic alcohols, ethers and esters 
90-110 O-C-O Anomeric carbon in carbohydrates, lactols 
110-165  Aromatic carbon (110-137 ppm for C-C and C-H) 
135-165 Ar-O Aromatic esters, ethers and phenols (C-O and C-N) 
140-145 Ar-SO3H Aromatic sulfonic acids 
160-190 O=C, O=C-N Carboxylic acids, esters, amides 
170-200 O=C-C=C Flavones, quinines 
190-220 O=C-C Aliphatic and aromatic ketones 

 
Table 3.2.2 Functional group assignments in FTIR (Leenheer et al., 2004; Stevenson, 1994) 

Compound class Frequencies (cm-1) and chemical linkage 

Carbohydrates 3400-3300 (O-H), 1100-1000 (C-O) 

Fulvic acid 3400-3300 (O-H), 2700-2500 (COOH), 1760 (COOR) 

1660-1630 (Ar-C=O), 1280-1150 (Ar-O, COOH) 

Aliphatic hydrocarbons 2960 (CH3), 2940 (CH2), 1460 (CH2), 1380 (CH3) 

Aromatic hydrocarbons 1500-1650 (C=C), 700-900 (Ar-H) 

Proteins 1660 (amide 1 band, N-C=O), 1540 (amide 2 band, N=C-O) 

N-acetyl amino sugars 1660 (amide 1 band, N-C=O), 1550 (amide 2 band, N=C-O), 1380 (CH3) 

Lipids 1760 (COOR), 1720 (COOH), 2960 (CH3), 2940 (CH2), 1460 (CH2), 1380 (CH3) 
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3.3 Results and Discussion 
 

Pahokee Peat, a well characterized bulk soil from International Humic Substances 

Society (IHSS), was chosen initially because of its high organic matter content (Table 3.3.1) 

making it amenable to solid NMR and attenuated total reflectance-fourier transform infrared 

analyses. More importantly, the use of a whole soil is more meaningful in translating the results 

to the natural soil environment.   

Table 3.3.1 Elemental composition of Pahokee Peat II a 
%C %H %O %N %S %P H2O Ash 

46.90 3.90 30.3 3.42 0.58 nd 6.2 12.7 

a IHSS 

Methanol, acetic acid and HCl were chosen based on Conte and Piccolo’s work (1999) 

that showed that very dilute (µM to mM) aqueous solutions of these solvents had a disruptive 

effect on humic acid and fulvic acid aggregation. In sorption-desorption experiments done by 

Graber and Borisover (2004), acetonitrile was reported to increase sorption of certain pollutants, 

hence its inclusion as one of the solvents. In addition, the solvents were chosen based on their 

polarity differences and their 100% miscibility in water. 

Visual colorimetric inspection of supernatants from the 24 hr (1-day) samples exhibited a 

light yellow color in all solutions. 20-day and 45-day exfoliation gave a differentiating color 

from transparent yellow, which was more intense than that for 1-day exfoliation, to clear 

brownish-red with acetonitrile (Figure 3.3.1). Interestingly, using acetonitrile as a mobile phase 

showed the most intense color, implying a greater amount of exfoliated (poly)aromatics and π-

conjugated systems. These colorimetric results are also suggestive of kinetically controlled 

exfoliation process. This is supported by the fact that the 1-day samples had the lowest UV 

absorbance at 280nm, which increased with longer incubation times (Figure 3.3.1, Table 3.3.2 to 

Table 3.3.4) consistent with swelling and solvation studies, which may take up to a few days.  
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Figure 3.3.1 Supernatant from exfoliation samples using different solvents. 
 
Altfelder et al. (1999) showed that soil wetting may take 14–21 days. Schaumann et al., (2000) 

also indicated the presence of a slow component during hydration kinetics of a whole soil. 

Todoruk et al. (2003) showed through low-field NMR transverse relaxation time (T2) studies that 

wetting of an air-dried soil has at least 2 stages; the first stage shows a fast kinetic uptake of 

water, which occurs at  ≤ 24 hr, and then the subsequent water uptake is a slow process, which 

may take up to 22 days to reach equilibrium.  

The kinetically controlled wetting stage was mainly attributed to diffusion in micropores. 

In this work, for the 45-day supernatants, serial dilutions were used to eliminate the possibility of 

polarity altering the optical properties of the exfoliated organic matter (Table 3.3.5). As 

expected, all fluorescence-based HIX methods were linearly related to UV absorbance at 280 nm 

and to concentration, (R2=0.94–1.0) except for HIX254, which revealed a logarithmic relationship 

with R2=0.99. Hence, a 0.02 (v/v) dilution was used in the analysis of 20-d exfoliation to 

minimize supernatants primary inner filter effects.  

At λex=254 nm, all of the different water and water-organic solvent extracts showed a 
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strong, broad emission profile with a maximum at about 450 nm (Figure 3.3.2; Figure 3.3.6). 

Emission spectra at λex of 370 nm exhibit maximum emission at ~450–500 nm (Figure 3.3.3; 

Figure 3.3.7). Similarity in emission profiles for the excitation wavelengths of 254 nm and 370 

nm suggest that the same type of fluorophores are being excited at both wavelengths. On the 

other hand, at λex of 465 nm the λmax is shifted towards longer wavelengths, with the maxima 

centered between 500–550 nm (Figure 3.3.4; Figure 3.3.11) where even more condensed and 

conjugated aromatics are efficient absorbers. The two aforementioned fluorescence features are 

associated with quinone-like moieties (Hood et al., 2005; Klapper et al., 2002) in fluvic acids. 

The first emission profile (Figure 3.3.2; Figure 3.3.6) represent quinone A moieties, which have 

characteristics wavelength of excitation, λex, at approximately 240–352 nm and emission 

wavelengths, λem, at about 375–475 nm (Cook et al., 2009). Quinone A moieties were suggested 

to have less functionalized and less conjugated structures, whose fluorescence may arise from 

quinone-like donor-acceptor complexes with energy transitions of n–π* and π–π* during 

excitation (Cook et al., 2009). The second emission profile (Figure 3.3.3; Figure 3.3.7) 

corresponds to a more functionalized and more conjugated quinone-like structures, ascribed to a 

quinone B moieties. Quinone B moieties have longer excitation wavelengths, at ~250–450 nm 

and thus, also exhibit longer emission wavelengths at ~450–550 nm, likely arising from n–π* 

energy transitions upon excitation. On the other hand, at λex of 465 nm, the emission λmax is 

shifted towards longer wavelength, at ~500–550 nm (Figure 3.3.4; 3.3.8), where highly 

conjugated and humidified aromatics are efficient absorbers.  

Synchronous fluorescence with 18 nm offset was used as this offset was empirically 

proven in the past (Kalbitz et al., 1999; Miano and Senesi, 1992) to provide the best spectral 

resolution compared with other offsets. Such synchronous scan yielded two medium broad 

peaks; one at around 392 nm and another at about 460 nm (Figures 3.3.5, 3.3.9, and 3.3.10). 
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Table 3.3.2 Summary of UV absorbance and HIX for 1-day exfoliation  
Sample UV 

absorbance at 
280 nm  

HIX Method 
HIX254 HIX370 HIX465 HIX18 

PW 0.028±0.000 7.58±0.03 0.74±0.00 6.87 x 106 
 ±1.23 x 105 

1.07±0.02 

PD  0.027±0.000 7.54±0.04 0.74±0.01 6.62 x 106 
 ±9.75 x 104 

1.05±0.01 

PA 0.028±0.000 7.88±0.04 0.75±0.01 6.68 x 106 
 ±1.19 x 105 

1.05±0.01 

PM 0.030±0.000 7.73±0.08 0.74±0.00 7.27 x 106 
 ±8.40 x 104 

1.06±0.01 

 
 
Table 3.3.3 Summary of HIX for 20-day exfoliation 

Sample UV 
absorbance at 

280 nm  

HIX Method 
HIX254 HIX370 HIX465 HIX18 

PW 0.05±0.00 
(0.42±0.00) 

8.40±0.08 
(0.96±0.01) 

0.77±0.00 
(0.69±0.00) 

1.19 x 107 
 ±3.68 x 104 

(0.46±0.00) 

1.10±0.01 
(0.82±0.01) 

PD  0.05±0.00 
(0.42±0.00) 

8.01±0.07 
(0.92±0.01) 

0.76±0.00 
(0.68±0.00) 

1.17 x 107  
± 3.04 x 104 

(0.46±0.00) 

1.12±0.00 
(0.84±0.00) 

PA 0.12±0.00 
(1.00±0.00) 

8.74±0.17 
(1.00±0.02) 

1.12±0.00 
(1.00±0.00) 

2.57 x 107 ±1.33 x 105 

(1.00±0.01) 
1.34±0.01 
(1.00±0.01) 

PM 0.07±0.00 
(0.58±0.00) 

8.46±0.10 
(0.97±0.01) 

0.78±0.00 
(0.70±0.00) 

1.42 x 107 ±1.42x 105 

(0.56±0.01) 
1.17±0.01 
(0.87±0.00) 

 
Note: ± values are mean standard error; values in parentheses are the results of normalization with respect to acetonitrile  
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Table 3.3.4 Summary of HIX for 45-day exfoliation* 
Sample UV 

absorbance 
at 280 nm  

HIX Method 
HIX254 HIX370 HIX465 HIX18 

PW 0.072 7.04 0.71 1.16 x 107 0.84 
PD  0.074 6.66 0.71 1.25 x 107 0.82 
PA 0.136 7.63 0.79 2.69 x 107 1.08 
PM 0.078 6.60 0.71 1.20 x 107 0.81 
AA 0.071 6.72 0.71 1.16 x 107 0.81 
HCl 0.070 6.82 0.71 HIX465 0.83 

*one trial only 
 
 
Table 3.3.5 Summary of HIX for 45-day exfoliation standardized with respect to SOM concentration* 

Sample HIX Method 
HIX18

a HIX254
a HIX370

a HIX465
a 

PW 0.74 7.85 0.74 4.09 x 105 
PD  0.79 7.62 0.74 7.16 x 105 

PA 0.95 8.46 0.81 3.00 x 106 

PM 0.72 7.47 0.73 2.55 x 105 

AA 0.83 7.90 0.75 3.44 x 105 

HCl 0.75 7.65 0.74 3.50 x 105 

acalculated by plotting the different dilutions namely: 0.01, 0.02, 0.04 and 0.08 (v/v) on the x-axis and HIX on the y-axis;  the y-
intercept in the linear regression is the reported standardized HIX value) 
*one trial only
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Synchronous scans yielded the following spectral features: a) strong shoulder at ~392 nm; b) a 

weak shoulder at ~440 nm; and c) intense peak centered at ~460 nm. Feature a represent quinone 

A like moieties, while feature b and c represent quinone B like moieties. Thus, synchronous 

spectra essentially showed similar spectral features when compared to collecting spectra at 

individual excitation wavelength. These peaks are consistent with previously reported fulvic and 

humic acid peaks by the abovementioned authors. Peaks with longer emission wavelength 

represent more highly conjugated aliphatic systems and highly substituted aromatics, while peaks 

at the shorter emission wavelength are representative of low molecular weight and less 

unsaturated materials. 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

Figure 3.3.2 Fluorescence at 254 nm excitation wavelength for 24 hr exfoliation 
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Figure 3.3.3 Fluorescence at 370 nm excitation wavelength for 24 hr exfoliation 

 

 

  
Figure 3.3.4 Fluorescence at 465 nm excitation wavelength for 24 hr exfoliation 
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Figure 3.3.5 Synchronous fluorescence at 18 nm Δλ for 24 hr exfoliation 

 

 

 

 

 
 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 3.3.6 Emission spectra at 254 nm excitation wavelength of 20-day supernatant 
 
 
 



81 
 

0.0E+00

1.0E+05

2.0E+05

3.0E+05

4.0E+05

5.0E+05

6.0E+05

7.0E+05

375 425 475 525 575 625

wavelength (nm)

in
te

ns
ity

 (c
ps

)

PW PD PA PM

0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2.5E+05

3.0E+05

475 525 575 625

wavelength (nm)

in
te

ns
ity

 (c
ps

)

PW PD PA PM

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3.7 Emission spectra at 370 nm excitation wavelength of 20-day supernatant 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3.8 Emission spectra at 465 nm excitation wavelength of 20-day supernatant 
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Figure 3.3.9 Synchronous fluorescence of 20-day supernatant 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

a) 
Figure 3.3.10 Synchronous fluorescence at 18 nm offset of a) 4/50 b) 2/50 c) 0.5/50 (v/v) 
supernatant: total volume of solution 
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(Figure 3.3.10 continued) 
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Only PW and PA exfoliated soils were chosen for NMR and FTIR analysis because, 

among all the solvents, acetonitrile showed a distinctly higher fluorescence while the rest were 

similar. With regards to the 13C CPMAS spectra analysis, acetonitrile and water-exfoliated 

Pahokee Peat showed similar decrease in carbon functionalities. It can be seen that hydrophilic 

moieties including alkyl and aromatic types were preferentially extracted. This is not surprising 

as the aqueous solutions used were polar in nature. The extraction of both alkyl and aromatic 

moieties are also due to the fact that these moieties are often strongly associated with hydrophilic 

moieties such as the case of plant polyesters and plant lipids, and lignocellulosic materials. If the 

ACN and water exfoliated Pahokee Peat 13C spectra are compared, it can be seen that acetonitrile 

exfoliated more aliphatic (C–H, 0–55 ppm) and for O-alkyl (60–90 ppm) moieties, such as 

aliphatic alcohols, ethers and esters (Figure 3.3.11). It can also be seen that for the ACN 

exfoliated Pahokee Peat there is a decrease in intensity in the region 90–105 ppm for dialkyl-O 

moieties in carbohydrates and around 125–140 ppm, which are attributed to aromatic C–C and 

C–H resonance. In addition, the ACN exfoliated Pahokee Peat exhibited a slight decrease in the 

135–150 ppm chemical shifts, corresponding to C–O in aromatic esters, ethers and phenols as 

well as to C–N. FITR-ATR spectra (Figure 3.3.12) of exfoliation supernatants reveal the 

following important features: a) 1000–1100 cm-1 for C-O stretch in carbohydrates; b) 1150–1300 

cm-1 for C–O stretch in Ar–O and COOH, which occurs at ~1280–1150 cm-1; c) 1300–1500 cm-1 

for C–H in aliphatics at ~1460–1450 cm-1 (CH2) and 1380 (CH3);  d) 1500–1800 cm-1
, which can 

be broken down to C=N stretching at 1590–1517 cm-1, C=C stretch in aromatics at ~1620–1600 

cm-1, C=O stretching in amide bonds and quinone at ~1600 – 1630 cm-1, C=O stretching in 

COOH and, to a lesser extent also between 1725 to 1720 cm-1; e) 2900–3000 cm-1 for aliphatics 

C–H stretch, specifically CH2 (2940 cm-1) and CH3 (2960 cm-1); f) 3000–3600 cm-1 for OH 

stretch in carbohydrates and phenols at 3400–3300 cm-1, and N–H stretch to a lesser extent 
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(Stevenson, 1994, Leenheer et al., 2004).  Thus, 13C CPMAS and FTIR reveal similar results that 

hydrophilic aliphatic and aromatic-type moieties are being released the most easily. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3.11 13C CPMAS spectra of freeze-dried soil from one month and 15-day exfoliation 
 
 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 
Figure 3.3.12 FTIR-ATR spectra of freeze-dried soils from 45-day exfoliation 

  PM 

13C Chemical Shift 
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From all the 20-day fluorescence spectra one can see that quadruplicate trials of PA 

consistently showed the highest fluorescence, followed by PM. Thus, acetonitrile as a solvent 

extracted the largest amount of fluorescent material. The fluorescence spectra are also consistent 

with more conjugated and condensed aromatic system being exfoliated by the acetonitrile 

solution (Senesi, 1990).  It should be noted that recently, it has been shown that the fluorescence 

of humic substances arises from intramolecular charge transfer interactions between electron 

donor-acceptor species, such as hydroxyl-aromatic donors and quinoid acceptors (Del Vecchio 

and Blough, 2004) and virtually all the fluorescence is due to aromatics (Valeur, 2002).  It 

should be noted that these findings are for dissolved organic materials. In any case, the 

fluorescence results above show that the acetonitrile solution exfoliates more and different 

organic matter than any of the other solutions investigated.  

Figures 3.3.13 clearly shows that Pahokee Peat amended with dilute solution of 

acetonitrile as a mobile phase consistently demonstrates the highest HIX values (relative 

standard error = 0.03 to 1.99 % for all mobile phases). Moreover, UV absorbance at 280 nm is 

directly related to HIX, which strongly indicates aromatic groups that are responsible for the 

higher HIXs.  HIX254 showed the lowest correlation because almost all molecules are excited at 

this very short excitation wavelength. In contrast, excitation at 465 nm showed the highest slope, 

meaning that there is a strong positive correlation between aromatic content (UV absorbance at 

280 nm) and HIX465. Figure 3.3.14 is transparent of PA’s clear separation from other solvent 

systems in all HIX methods employed as well as in UV measurements.  

TOC measurements after long term incubation periods (20-day and 45-day) were not 

found to be useful due to negative TOC values after blank subtraction, especially in the case of 

acetonitrile and methanol. This is an indication that some of the organic solvent molecules 

penetrated and become sorbed to the SOM moieties (i.e., associated with the solid phase). This 
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sorption appears to be essential step in the exfoliation step, especially for ACN. 

 

 
Figure 3.3.13 Summary of UV absorbance at 280 nm 

 
Figure 3.3.14 Summary of normalized HIX and UV absorbance for 20-day exfoliation 
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Solutions of H2O–CH3OH and H2O–CH3CN containing the same component ratios have 

a similar change in the solvent polarity-polarizability (Table 3.3.6). The difference between the 

two aqueous mixtures is that the H-bond donor acidity (α) of water and acetonitrile are quite 

different, whereas H2O–CH3OH has similar α values. Hence, at the dilute CH3OH concentration 

used here, there is less H2O–CH3CN solvent interaction and acetonitrile is more available for 

SOM interaction/solvation. Moreover, as can be seen in Figure 3.3.15, there is a very large 

separation of charges between the hydrogen atom (highly positive - blue) and nitrogen atom in 

acetonitrile (highly negative - red). This means that the nitrogen in acetonitrile can be an efficient 

H-bond acceptor for SOM containing acidic protons, such as carboxylics and phenolics, and 

N:/H-Cπ weak H-bonding with the aromatics. In addition, the hydrogen atoms in acetonitrile are 

known to be capable of weak hydrogen-bonding with aromatics. This does raise the question as 

to why H2O–(CH3)2SO and H2O–CH3CN having similar polarities, yield so different results 

(Table 3.3.3 and 3.3.4). In fact, dimethyl sulfoxide, as a solvent is capable of favorable 

interactions with a wide variety of functional groups (Hunter et al., 2001). Furthermore, both 

solvent systems have almost the same solubility parameter scale δ, which suggests fewer 

interactions among these solvent molecules, and hence, making them more available for 

solvating less polar solutes in SOM. However, the acetonitrile molecule is linear and has a lower 

surface volume compared to that of dimethyl sulfoxide, thus enjoys an easier access to the SOM 

moieties as well as access to larger number of voids within the SOM assembly. In so doing, 

acetonitrile causes the greatest disruptive effect on the intermolecular forces within the SOM 

through hydrophobic forces and hydrogen-bonding, where the lone pair in nitrogen acts as a 

hydrogen acceptor. Complexes of phenol and acetonitrile were calculated to be 5–7 kcal mol-1 

from DFT and MP2 calculation. Also, based on the pKa slide rule of Gilli et al. (2009), nitriles 

have potential for weak H-bonding with aliphatic and aromatic alcohols and carboxylic acids 
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with energies of 2.5 to 4.1 kcal mol-1. In addition, a 1:1 complex of acetonitrile and water with 

dissociation energy 3.75 kcal mol-1 based on computational studies (Chaban, 2004; Alia and 

Edwards, 2005) was also reported, which suggests that water may also play a cooperative effect 

with acetonitrile in the dissociation of SOM weak forces. In the presence of water, acetonitrile 

was also shown to display H-bonding with the phenolic –OH group in a cyclic fashion that 

includes n number of water molecules (n is between 1 to 3), acetonitrile and phenol, based on a 

computational study (Ahn et al., 2004). It was also suggested that a relatively stable clusters were 

formed in solution with binding energies of 8.7 to 26.5 kcal mol-1 with higher energies observed 

at n=3. In said results, both the lone pair on nitrogen and the hydrogen atom in the methyl group 

of acetonitrile were involved in the H-bonding. Thus, water may have a greater cooperative 

effect with acetonitrile in the disruption of SOM aggregates through this mechanism, and may 

explain the enhanced fluorescence in H2O–CH3CN solutions, as compared with the other 

aqueous solutions. This is consistent with our NMR results that H2O–CH3CN exfoliated soil had 

a lower intensity in the vicinity of 135-150 13C chemical shift compared to H2O exfoliation only, 

which is due to the resonance of aromatic esters, aromatic ethers and phenols. 

Table 3.3.6 Physico-chemical properties of solvents 
 
Solvent 

 

1BP (0C) 
 

2μ (debye) 
 

3δ 
 

4α 
 

5β 
 

6V (Ao3) 
 

Water 100 1.85 23.4 2.8 4.5 19 
Dimethyl 
sulfoxide 

189 3.96 12.0 0.8 8.9 78 

Acetonitrile 81.6 3.92 11.9 1.7 4.7 53 
Methanol 65 1.70 14.5 2.7 5.8 41 

1Boiling point (Weast, 1984); 2dipole moment (Weast, 1984), 3solubility parameter scale 
(Giddings, 1990; Hildebrand, 1936.); 4hydrogen donor acidity (Hunter, 2004); 5hydrogen donor 
acceptor (Hunter, 2004); 6electrostatic surface potential volume from Spartan calculations 
 

In contrast, the high electrostatic potential surface volume of dimethyl sulfoxide causes 

steric hindrance in its interactions with SOM. Furthermore, the methyl groups of methanol and 
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dimethyl sulfoxide most likely participate in hydrophobic forces instead of H-bonding because 

the localization of positive charges in their methyl group is not as high as compared to 

acetonitrile (Figure 3.3.15).  

 
 
  
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.3.15 Electrostatic potential surface of solvents modeled using Spartan version’02 
(Wavefunction Inc., CA) (Top: water, dimethyl sulfoxide Bottom: methanol, acetonitrile) 
 

Finally, water displayed much lower HIX values compared to aqueous acetonitrile. In the 

presence of only water as a mobile phase, hydrophilic groups in SOM would tend to orient 

themselves towards water molecules, while nonpolar moieties, such as aromatics, would wish to 

situate themselves away from water. In addition, there is a strong cohesive force between water 

molecules, thus more energy is needed to solvate SOM molecules, resulting in less exfoliation of 

aromatic, and hence fluorescent, moieties. 

The results from these experiments (carried out at <<1% water-miscible organic solvents) 

will allow us to better understand solvent assisted sorption-desorption of these nonpolar organic 

compounds and systems in which they are involved.  In sorption-desorption studies, completely 

water-miscible organic solvents are often used to facilitate the dissolution of organic pollutants 

in aqueous solutions. A range of <1% to 2% v/v have been reportedly used in the literature (Kan 

et al., 1998; Gunasekara et al., 2003; Kleineidam et al., 2002) and is believed to have no effect 
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on the sorption of sparingly soluble organic pollutants (Schwarzenbach et al., 2003).  However, 

there has been contrasting evidence suggesting that up to 0.72% (v/v) of acetonitrile had a 

cooperative effect on the sorption of pyridine (Graber et al., 2004). An explanation to this finding 

can be derived from the above experimental results and discussion. It is probable that acetonitrile 

is co-sorbed in SOM and its increased contact with the moieties of SOM causes changes in the 

aggregation leading to the creation of new sorption domains, and thus, strongly questions 

Graber’s assumption that at levels less than 2% (v/v) completely water-miscible organic solvents 

do not affect the sorption behavior of hydrophobic pollutants within SOM. Beyond laboratory 

studies, a large range of organic pollutants, such as agricultural chemicals (pesticides, fertilizers 

and antibiotics) are introduced in the environment by humans. More often than not, these are in 

the form of mixtures of different chemicals. Moreover, these nonpolar chemicals are dissolved in 

solvents to aid in their dissolution in water prior to application. Thus, accurate predictive 

modeling of results from sorption and desorption studies should include solvent and mixed 

contaminant (bi-solute) effects. 

Our fluorescence results showed that dilute aqueous solution of acetonitrile exfoliated 

significantly more fluorescent (conjugated and condensed aromatic) moieties than any other 

solvent systems used.  This implies that acetonitrile had the greatest disruptive effect on the 

SOM supermolecular assembly. Indeed, solvents of different polarity affect the nature and 

amount of exfoliated organic matter, depending on their polarity and H-bonding capability.  

A 1-day hydration/solvation period exfoliated the least amount of aromatic moieties, 

while longer incubation periods extracted more based on UV measurements at 280 nm. A 20- 

day period exfoliated more humified humic materials, as shown by the higher humification 

indices across the board, except for HIX465, where exfoliation solutions containing dimethyl 

sulfide or acetonitrile gave higher intensities for the 45-day exfoliation. It is also apparent that 
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the 45-day solvation period extracted more of less humidified materials because it yielded the 

lowest HIX values. Furthermore, acetonitrile consistently showed the highest HIX values for 20- 

day and 45-day contact period, which implies that, among all exfoliation solutions, it extracted 

the most conjugated and humified (poly)aromatics. 

The above observations may be explained analogous to drying and wetting processes in 

soil. The soil used in this study, primarily an SOM which came from IHSS was subjected to 

freeze drying. A freeze-dried soil has a much lesser moisture content than an air dried soil. A 

freeze-dried soil can be envisioned to have hydrophobic SOM moieties on an outer surface, and 

hydrophilic SOM moieties in the core, the latter being in a more “collapsed” state due to intra 

and intermolecular H-bonding interactions. When this soil is equilibrated in the air at ambient 

relative humidity, its moisture content is comparable to an air-dried state. Hence, some of the 

hydrophilic moieties start to migrate on the outer surface (outershell), although it can be 

envisioned that an inner shell still exists, and consists of a hydrophobic layer, surrounding the 

hydrophilic moieties inside this shell. When this air-dried soil is subjected to wetting at complete 

or more than its saturation level, these hydrophilic moieties at the outer layer are then hydrated 

and, subsequently, solubilized in the aqueous solution first. 

 As the soil is subjected to a longer period of wetting (e.g., 20-day), water penetrates into 

micropores or voids within SOM, where it interacts with SOM moieties through H-bonding. This 

results in disruption of some of the inter- and intramolecular H-bonding forces within 

hydrophilic moieties of SOM, as water effectively competes with these forces. The latter 

processes have been as akin to SOM conformational rearrangement that “reopens” or “reforms” 

the pores that have been previously collapsed from drying (Schaumann and LeBoeuf, 2005). 

Thus, hydrophilic moieties, such as fulvic acids, are then hydrated and subsequently exfoliated. 

In addition, more humidified hydrophobic entities are also slowly extracted due to a more 
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“expanded or swelled” SOM configuration, as water diffuses into the hydrophobic middle layer. 

Still longer incubation periods (45-day) will then exfoliate the hydrophilic moieties, which were 

previously protected by the hydrophobic middle layer. 
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Chapter 4 

1H-13C Heteronuclear Correlation Nuclear Magnetic Resonance of a Whole Organic Soil* 

4.1 Introduction 

 Soil is a very complex and heterogeneous system consisting of inorganic materials (e.g., 

quartz, clay), dissolved gases, water solution, living biomass, and dead biomass or soil organic 

matter (SOM) (Stevenson, 1994; Bohn et al., 2001). The living components in soil are easily 

identifiable, due to their systematic order. Characterization of inorganic components are readily 

accomplished due to their definite compositions, while SOM characterizations such as humin, 

humic acids, and fulvic acids have not yet provided definite molecular structures due to the 

inherent complexity and polydisperse natures. Detailed molecular characterizations of a whole 

soil becomes even more challenging due, to intricacies involved in the association/adsorption of 

SOM with the mineral phase. 

 SOM is the second largest repository of active carbon on the surface of the earth; hence it 

is important in biogeochemical cycling of carbon, as well as other elements. SOM also 

influences soil properties, inclusive of functions such as color, thermal buffering, pH buffering, 

metal complexation, cation-exchange, water solubility, water retention, and soil particle 

aggregate formation and stability, which are all important controlling factors of soil fertility 

(Linn et al., 1993; Stevenson, 1994; Tipping, 2002; Bohn et al., 2001; Wershaw, 2004). 

Furthermore, SOM plays a major role in sorption of xenobiotics, especially hydrophobic organic 

pollutants, and in turn affect the fate, transport, and bioavailability of these HOCs (Stevenson, 

1994; Bohn et al., 2001). Due to the vast importance of SOM, a plethora of characterizations was 

attributed in order to gain further insight of its structure, as well as a better understanding of how 

the structure affects its properties. Due to the complex nature of SOM, most characterizations 

have been carried on isolated fractions, namely humin, humic acid, and fulvic acid. These 

*Based on our work published in JEQ (Lattao et al., 2008) 
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isolated fractions, more often than not, have also undergone further purification processes, 

including cation exchange and hydrofluoric acid treatment to remove metals (Stevenson, 1994; 

Tipping, 2002); hence, these isolated fractions may not echo SOM associations as a whole. 

 The most recent view of natural organic matter (NOM), including SOM, is that it 

represents an assembly of heterogeneous groups of NOM molecular components, held together 

by weak forces (Conte and Piccolo, 1999). Investigations leading to the concept of 

supermolecular assembly of SOM were based on isolated fractions of humic substances (Piccolo 

et al., 2001; 2002; Piccolo, 2002; Simpson et al., 2001), which may have undergone major 

perturbations in terms of the associations/assembly, not to mention chemistry during the isolation 

procedure. Thus, the properties/behavior of these isolated parts and the whole SOM in an 

unadulterated soil may not parallel one another, hence correlating results from SOM parts to the 

native matrix may be limited. Evidences of the differences in behavior between a whole soil and 

its fractions are clearly demonstrated in the literature. Wetting kinetics of a whole soil exhibits a 

unique slow component that was not observed from its fractions (Todoruk et al., 2003). Sorption 

of organic compounds on a hydrated humin or humic acid, do not correspond to sorption on a 

hydrated NOM (Borisover and Graber, 2004). SOM assemblage was also suggested to influence 

its bulk properties. For example, SOM hydration/solvation may increase or decrease the sorption 

of organic compounds, depending on the strength of the solvent-NOM interaction and the 

potential of solvent to penetrate and disrupt SOM associations (Borisover and Graber, 2002a; 

Borisover et al., 2001; Borisover and Graber, 2002b; Graber and Borisover, 1998; Gamble et al., 

2000; Belliveau et al., 2000). In yet another study, solvent dependent differences in the mobility 

of major SOM components, including aromatics and aliphatic fractions, were demonstrated with 

the use of water and dimethyl sulfoxide as a swelling agent (Simpson et al., 2001). It was also 

demonstrated that organic acids from root exudates release organic matter through the disruption 
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 of hydrophobic forces (Nardi et al., 2000; Yang et al., 2001). 

 The above findings underlie the significance of probing the in situ molecular assemblage 

of SOM. In this context, in situ SOM means that SOM is still in its native matrix (i.e., whole 

unmodified soil). In this study, Ramped-Amplitude cross-polarization (Ramp-CP) and Lee-

Goldberg cross-polarization (LG-CP) techniques were utilized to obtain two dimensional 1H–13C 

Heteronuclear Correlation (HETCOR) Nuclear Magnetic Resonance (NMR) spectra of a whole 

organic soil. Cross-polarization techniques were applied in the solid state analysis of 

biomolecules, as well as natural organic matter (Cook, 2004; Cook et al., 1996), since these are 

very useful in detecting low sensitivity nuclei, such as 13C and 15N through sensitivity 

enhancement. The pulse sequence in a standard CP is shown in Figure 4.1. A π/2 (i.e., 90°) pulse 

is applied to the abundant spins (e.g., 1H) creating magnetization on these spins. During the 

“spin-lock” condition or cross-polarization, magnetization from the abundant spins are 

transferred to the rare spins (e.g., 13C). This CP is achieved when Hartmann Hahn match 

(Equation 4.1) is met. 

                    (4.1) 

where: 

,     = gyromagnetic ratio of the abundant nuclei 1H and rare nuclei 13C respectively 

,   = applied radio frequency field on the 1H and 13C respectively 

The last step involves the removal of 1H–13C heteronuclear coupling during acquisition by 

irradiating the proton resonance frequency with a strong radio frequency field. The use of CP in 

a solid state 13C NMR offers the following advantages: 1) signal enhancement to ~4x, because  

= 4; and 2) faster acquisition times, because the recycling delay (i.e., the delay between the 

pulses) is dependent upon spin-lattice T1, relaxation of the abundant 1H spins, which are much 

shorter than T1 of 13C (Cook, 2004). In addition, rapid spinning at the magic angle (θ = 54.7°) 
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reduces line-broadening effects that are primarily caused by a chemical shift anisotropy (Cook et 

al., 1996; Cook, 2004). The chemical shift anisotropy in solid state is due to different molecular 

orientations with respect to the static magnetic field and is present in aromatic, carbonyls, and 

alkene carbons, having rather large chemical shift anisotropy compared to other carbon types 

(Brown and Emsley, 2004; Cook et al., 1996). 

 In the cross-polarization step, dipole-dipole interactions occur between the same nuclei 

(i.e., homonuclear) and different nuclei (i.e., heteronuclei). The presence of homonuclear dipolar 

couplings depends on the natural abundances of the nuclei and their internuclear separation. In 

this case, the homononuclear dipolar coupling of the abundant spins, between 1H is expected to 

be significant, while homononuclear coupling for the rare spins, such as 13C, can be neglected 

(Rovnyak, 2008). This implies that the 1H–1H “spin-exchange” occurs during the application of 

the π/2 pulse as well as in the spin-locked condition (Hartmann Hahn, 1962). In a static CP 

experiment, dipolar coupling would imply a broadening of the Hartmann Hahn match; however, 

chemical shift anisotropies are also significant and would result in much greater line broadening. 

When a sample is rapidly spun at the magic angle (54.7°), chemical shift anisotropy effects, as 

well as homonuclear and heteronuclear dipolar coupling, are greatly suppressed because they 

contain a ( ) term which tends to zero at the magic angle as long as the sample is 

spun rapidly. Under a spin-lock field and at fast spinning speed, dipolar coupling is reduced by 

50%, hence spin exchange is also reduced by 50% (Brus et al., 2002). 

 It should be noted that during the CP process, proton magnetization is transferred to the 

carbon spins, and that the proton causing the polarization may come either from the same 

molecule or from a different molecule. Hence, 13C signals may depict intramolecular and 

intermolecular connectivities. In the study of molecular assemblage, there is a need to distinguish 

between the two associations. In order to obtain mainly intramolecular correlations, 1H–1H 
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dipolar interactions, resulting in spin diffusion, must be greatly reduced. Two possible ways of 

achieving this are by use of a very short CP time, or by implementing the LG-CP technique. The 

use of the first technique has the disadvantage of a limited polarization transfer to the distant, 

unprotonated carbons present in NOM samples, such as unprotonated aromatic or carboxyl 

carbons. LG-CP was used in this study, as it was proven to greatly alleviate 1H–1H dipolar 

coupling, which in turn strongly suppresses spin diffusion, thereby allowing the observation of 

only intramolecular associations.  

 

 

 

 

 

 

 

Figure 4.1 Standard cross-polarization pulse sequence 

In a Ramp-CP, either one of the channels is “varied” or ramped at the spin-lock (Figure 

4.2), thus offering the following advantages: 1) an exact Hartmann Hahn match is achieved, even 

with highly complex samples such as NOM; 2) this improves resolution, because it allows 

Hartmann Hahn for the different carbon types; present 3) this overcomes the slowing of spin 

exchange during fast sample spinning (Cook et al., 1996; Cook, 2004). Furthermore, Ramp-CP 

was also implemented because it yields both intramolecular and intermolecular correlations. The 

use of both LG-CP and Ramp-CP techniques is expected to provide direct insight into the 

molecular assembly of SOM in a whole soil; for the first time these dual techniques, will 

represent direct molecular level assembly characterization in an in situ and unmodified (except 
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for drying) SOM sample, rather than the isolated components. 

 

Figure 4.2 Ramp cross-polarization pulse sequence 

Soil and SOM fractions for NMR analysis are commonly pre-treated with hydrofluoric 

acid, in order to remove paramagnetic components, primarily Fe and Mn oxides (Keeler and 

Maciel, 2003; Skjemstad et al., 1994; Schmidt et al., 1997). These paramagnetic (i.e., containing 

unpaired electrons) centers can serve as a rapid relaxation pathway for magnetized nuclei, 

especially in the abundant spins. A shorter relaxation time for 1H leads to: 1) line broadening of 

13C resonances; and 2) less efficient magnetization transfer during the spin lock field. This can 

result in lower signal intensities of certain fractions of the carbon pool, especially those in close 

proximity to paramagnetic centers (Cook, 2004; Keeler and Maciel, 2003). Although 

hydrofluoric acid treatment yields a more quantitative depiction of the carbons in the SOM, the 

treatment has also been shown to perturb the chemical make-up of the SOM (Dai and Johnson, 

1999; Engebretson and von Wandruszka, 1999; Keeler and Maciel, 2003; Schilling and Cooper, 

2004; Schmidt and Gleixner, 2005). Removal of these metals by hydrofluoric acid treatment also 

affects the molecular assembly of SOM within the soil by perturbing certain SOM associations,  
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including hydrogen-bonds, cation bridging, and mineral-SOM associations. Therefore, the 

hydrofluoric acid treatment was deemed inappropriate for this molecular assemblage study. 

Since the sample used in this study is a highly organic soil, it is assumed that most of the 13C 

pool in the soil organic matter will be observed. Finally, the sample was freeze dried to remove 

most of its water content. This treatment was necessitated by the nature of the cross-polarization 

based technique (i.e., transfer of proton magnetization to carbon) used in this analysis. Thus, 

results for this analysis are for a non-hydrated soil. Furthermore, the sample is organic soil, and it 

is possible that the molecular assemblage information obtained in this type of soil will not fully 

represent those of mineral soils. 

4.2 Materials and Methods 

4.2.1 Soil Collection 

 The soil was collected from a brackish marsh in southeastern Louisiana (90.275120 °W, 

29.552470 °N). It is under soil taxonomy euic, hyperthermic typic haplosaprists. A total of 

twenty soil samples were obtained from 0 to 75 cm of the topsoil, with the use of a McCaully 

peat auger. Plant materials were removed and then the soil was air dried. Air dried samples were 

manually broken and passed through a 2 mm mesh sieve. 

4.2.2 Soil Characterization 

 A composite of these air-dried soil samples was then obtained for soil characterization. 

The soil bulk density, defined as the mass of air-dried soil per unit volume, was found to be 0.08 

g/cm3. The clay mineral fraction is predominantly 2:1 expandable type smectite, 

Mx[Si8]Al3.2Fe0.2Mg0.6O20(OH)4, where Mx is a monovalent (Li+, Na+, K+) interlayer cation  

(Sposito, 2008). It contains 40.35% carbon and 2.27% nitrogen (Flash EA 1112 elemental 

analyzer, Thermo Quest Italia S.p.A Italy), while its inorganic carbon content is negligible. 
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4.2.3 Sample Preparation for NMR Experiment 

 A composite, air-dried soil was freeze-dried, passed through a 125 µm size sieve, and 

further ground with a mortar and pestle to ensure a homogeneous sample. The sample was tightly 

packed in the center of a 50 µL high resolution magic angle spinning rotor (Bruker) in order to 

achieve a homogeneous radio frequency field during the NMR analysis. It should be noted that 

the soil did not undergo any chemical treatment prior to NMR analysis, in order to preserve the 

integrity of the SOM and mineral-SOM assemblage in a whole soil. 

4.2.4 Nuclear Magnetic Resonance 

 A 400 MHz spectrometer, operating at 400.15 MHz on the proton frequency, was used 

for all NMR experiments. During the cross-polarization step, the 1H and 13C fields were set to 

67.5 kHz and 62.5 kHz, respectively, while a 100 kHz 1H field was later implemented in the 

decoupling step. The sample spinning frequency was 13 kHz. Two types of cross-polarization 

methods were employed; namely, Ramp-CP and LG-CP, using different contact times (0.5, 1 and 

2 msec) and decoupling was achieved via the SPINAL64 pulse sequence (Cook et al., 1996; 

Cook and Langford, 1998; Fung et al., 2000; Khitrin and Fung, 2000). A total of 64 slices 

constituted the 2-D 1H–13C HETCOR spectra, whereby each slice was collected using 4096 scans 

and 512 data points. A frequency-switched Lee-Goldberg homonuclear decoupling pulse 

sequence was used to control the evolution of a proton signal. The resulting 13C spectra were 

processed, using 60 Hz line broadening and a zero filling factor of 2048 points. On the other 

hand, the 1H spectra processing utilized 5 Hz line broadening and 128 points zero fill. Prior to 

application for spectral collection of the soil sample, the performance of the pulse sequences 

were validated using tyrosine–HCl crystals. Chemical shift assignments for functional groups in 

the 13C and 1H dimensions are given in Table 4.1 and 4.2, respectively (Kögel-Knabner, 1997; 

Almendros et al., 2000; Lorenz et al., 2000; Keeler et al., 2006). 
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Table 4.1 13C Chemical Shift  
Chemical Shift (ppm) Functional Group 

190 – 220 Aldehyde and ketonic carbons 
160 – 190 Carboxyl, amide and ester 
160 – 110 Aromatic (137–160 ppm C–O and C–N; 110–137 C–C and C-H) 

 90 – 110 di-O-alkyl (anomeric carbons in carbohydrates; C2 carbons in 
guaiacyl and syringyl lignin structures; C6 carbon in syringyl) 

50 – 90 O -alkyl (~54 ppm methoxy; ~72 ppm with 20 ppm spread for  
C2–C6 carbons for cellulose, hemi-cellulose and similar polymeric 
carbohydrate structures) 

0 – 50 Alkyl (~20 ppm for methyl; ~30 ppm for polymethylene) 
 
Table 4.2 Proton Chemical Shift of NOMa 
Chemical Shift (ppm) Functional Group 

0.5 – 2.3 Alkyl 
3.3 – 5.5 Primary O-alkyl (HCO in carbohydrates, methoxyl in lignin) and to 

a lesser extent to protons attached to other heteroatoms 
6.5 – 8.1 Aromatic 

aPiccolo et al., 2002; Malcolm, 1990 
 
4.3 Results and Discussion 

Figure 4.3.1 shows the 1H–13C 2-D HETCOR spectra of the whole soil when LG-CP was 

used. A contact time of 0.5 msec was employed, therefore this data reveals intramolecular 

connectivities up to three bonds only (Mao et al., 2003). Further analysis of the spectra suggests 

that the alky (0-50), O-alkyl (50–110), and aromatic (110–160) moieties show no significant 

correlations with one another (i). This can be explained by the fact that the 13C chemical shifts on 

the x-axis, assigned to the alkyl, aromatic, and O-alkyl chemical groups, correlate to the same 

moieties on the 1H dimension. For example, the alkyl groups with a chemical shift of 0–50 ppm 

in the 13C dimension (x-axis), has a correlation at ~1ppm in the 1H dimension, which is also due 

to protons from alkyl groups. Hence, during cross-polarization, the protons from these alkyl 

groups polarize the carbons in the same chemical group, leading to the carbon signals in alkyl 

moieties. 
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Figure 4.3.1 1H–13C 2-D HETCOR spectra of the whole soil collected using Lee-Goldberg  
cross-polarization pulse sequence and a contact time of 0.5 msec. 
 
 On the other hand, the 13C chemical shift at ~173 ppm, assigned to carbonyl groups, has a 

corresponding 1H spectral feature on the 1H dimension, centered at ~4.3 ppm, which is due to O-

alkyl moieties (i). This implies that the protons from O-alkyl moieties polarize the carbons from 

the carbonyl groups, rendering them observable. The above observations indicate that there is no 

significant intramolecular connectivities/covalent bonding between alkyl, O-alkyl, and aromatic 

moieties, while carbonyl moieties are strongly associated with O-alkyl moieties through covalent 

bonding. These observations are consistent with the view that natural organic matter (NOM), 

including SOM, comprises an association of low molecular weight organic compounds, held 

together by weak forces. This view is a shift from that of the traditional one, where NOM is 

perceived as a long chain of polymeric molecules, consisting of various types of chemically 
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distinct moieties and exhibiting high molecular weights (Sutton and Sposito, 2005). 

      

Figure 4.3.2 1H–13C 2-D HETCOR spectra of the whole soil collected using Ramp-CP with a 
contact time of 0.5 msec. 
 

Figure 4.3.2 represents the 1H–13C 2-D HETCOR spectra acquired by using a Ramp-CP. 

The contact time was set to 0.5 msec, which allowed proton spin diffusion to occur up to ~0.4 

nm. As a result, the spectral features on the proton dimension show a wider range with respect to 

1H chemical shifts for the different chemical groups. Figure 4.3.2 exhibits similarities with LG-

CP spectra in Figure 4.3.1, but some differences are apparent as well. One difference is that there 

is a hint of connectivity between alkyl and O-alkyl moieties as shown by boxed spectral features 

denoted as (iia) and (iib), respectively. This connectivity was later confirmed in the 1-D spectra 

slices derived from 2-D data as discussed below. This pair of spectral features is necessary, 

because proton spin diffusion occurs from alkyl to O-alkyl and takes place in a reverse direction, 

as well. Another apparent difference is the presence of 1H spectral feature at ~7.5 ppm (iii); that 

is associated with carbonyl in the 13C dimension. This is a strong indication of connectivities 
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between carbonyl and aromatic moieties. The presence of an unpaired box means that proton 

spin diffusion originates from the protonated moieties and is directed towards the unprotonated 

moieties. Because of the relatively short distance (~0.4 nm) associated with this proton diffusion, 

it is plausible that this connectivity is due to H-bonding between carbonyls and phenols. 

 

      
 
Figure 4.3.3 1H–13C 2-D HETCOR spectra of the whole soil collected using Ramp-CP with a 
contact time of 1.0 msec. 
 
 Figure 4.3.3 illustrates the 2-D HETCOR data obtained with Ramp-CP at a 1 msec 

contact time. It is more information-rich, compared to Figure 4.3.2, with respect to connectivities 

between moieties, because it encompasses spin diffusion up to ~0.6 nm. The greater extent of 

spin diffusion revealed the following connectivities: 1) protonated aromatic and O-alkyl moieties 

(pair iva and ivb); 2) non-protonated aromatic and O-alkyl (v); 3) O-alkyl carbons and phenolics 

(vi); 4) carbonyls and alkyls (vii); and 5) carbonyls and O-alkyls (vii). Once again, the presence 

of a box pair (iva and ivb) signifies that spin diffusion takes place in both directions between 
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aromatic and O-alkyl moieties. The emergence of a cross peak at 1H/13C chemical shift 7/56 ppm 

corresponds to connectivities between the aromatics and the methoxy groups, and can be 

attributed to lignin (Salloum et al., 2002) structures, because lignin contains aromatic methoxy 

moieties. Box vi shows a less intense peak between O-alkyl and phenolics with 1H/13C shifts of 

3.5/153 ppm, as compared with correlations of O-alkyl with other types of aromatics (iva, ivb, 

v). This suggests that the connectivities of O-alkyl carbons with phenolics are present at a lesser 

extent, in contrast with greater connectivities between protonated O-alkyls and protonated 

aromatic moieties, as well as protonated O-alkyls and non-protonated aromatic moieties. All of 

the features in box iva to vi indicates connectivities involving lignin structures within the SOM, 

and to some extent, tannin structures. Furthermore, the carbonyl region in the 13C dimension 

shows much more developed correlations with alkyls and O-alkyl pools, with clear cross peaks at 

1.6/175, 1.9/173, 2.9/175, 4.1/173, and 4.7/175 ppm (vii). These signals can be assigned to 

connectivities within fatty acid structures. 

With a Ramp-CP at a contact time of 2 msec, proton spin diffusion spans a longer 

distance, this time up to ~0.8 nm (Figure 4.3.4). This data displays connectivity between 

aromatic and carbonyl moieties centered at 7/173 ppm. In addition, a more intense correlation 

between an alkyl group and a specific subset of nonprotonated aromatic moieties, centered at 

~130 ppm, has developed. Overall, a greater number of correlations become available at longer 

contact times (e.g., 1 msec, 2 msec), due to a longer distanced proton spin diffusion. A 2 msec 

contact time yields a very similar, yet more extensive, amount of connectivities as seen for a 

contact time of 1 msec, and shows more intense correlations. This means that at 2 msec contact 

time, the magnetization of the system is at or near equilibrium, except possibly for aliphatic 

structures. 
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Figure 4.3.4 1H–13C 2-D HETCOR spectra of the whole soil collected using Ramp-CP with a 
contact time of 2.0 msec. 
 

Figures 4.3.5 to 4.3.7 are 1-D 13C slices, taken from the proton dimension of the 2-D 1H–

13C HETCOR spectra. Each set or slice from the 1H shift coordinate represents a specific moiety, 

and the resulting spectra can essentially be viewed as 1-D 13C spectra. This was done in order to 

simplify and further elucidate the 2-D data presented earlier (Figure 4.3.1 to 4.3.4). The stacked 

1-D 13C plots contained in Figure 4.3.5 represent the slices coming from the 7.0 ppm 1H 

chemical shift. From top to bottom, the first three spectra are assigned to 0.5 msec, 1 msec and 2 

msec Ramp-CP contact times, because they were extracted from the proton dimension of 2-D 

HETCOR, obtained using Ramp-CP with contact times of 0.5 msec (Figure 4.3.2), 1 msec 

(Figure 4.3.3), and 2 msec (Figure 4.3.4) contact times, respectively. The fourth spectra in this 

figure came from 2-D HETCOR LG-CP (Figure 4.3.1) with a contact time of 0.5 msec, hence it 

is designated as LG-CP 0.5 msec. The same assignments were followed for the 1-D 13C plots of 

the succeeding four-stack spectra in Figures 4.3.6 and 4.3.7. Figure 4.3.5 reveals that increasing 
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 the contact times during Ramp-CP acquisition results in an increase in methoxy peak intensity. 

This further corroborates our hypothesis that the connectivities between methoxy and aromatic 

moieties are due to lignin structures. In addition, the use of spin diffusion in Ramp-CP allows the 

observation of O-alkyl signals which are absent in LG-CP. It was also evident that longer spin 

diffusion generally increases the intensity of these O-alkyl peaks, which implies that the proton 

magnetization that diffuses into 13C during polarization, may originate from protons farther from 

13C (Mao et al., 2001). This observation reveals that there is a close-through-space association 

between O-alkyl and aromatic moieties in the distance probed here, from ~0.4 nm to 0.8 nm, 

suggestive of H-bonding between functional groups of these two distinct moieties. In the Ramp-

CP spectra with a contact time of 2 msec, a weak correlation also develops between the 

aromatics and a specific group of alkyl moieties, with a chemical shift at ~22 ppm. 

 

        

 
Figure 4.3.5 1-D 13C spectra extracted from the 7.0 ppm 1H chemical shift of the 2-D HETCOR 
spectra (Scaling of y-axis was set to 1 for all, and offsets were done for visual aid only). 

13C Chemical shift (ppm) 
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Figure 4.3.6 shows 1-D 13C plots extracted from a 4.0 ppm 1H shift, which further 

illustrates connectivities of O-alkyl moieties. This data displays a close spatial association of O- 

alkyl with aromatic moieties, which supports previous finds in Figure 4.3.5, and is most likely 

due to presence of lignocellulosic materials. Strong associations (i.e., covalent) between 

hemicellulosic fragments and lignin structures are present in plant materials (Sun et al., 2000; 

Donaldson, 2001). In addition, the presence of lignin-carbohydrate complexes in wood were 

suggested earlier (Gerasimowicz et al., 1984; Tenkanen et al., 1999) and then were shown by 

Liitia et al. (2000) to exist in wood fiber extracts through 2-D 1H–13C HETCOR NMR with 

dipolar dephasing. The Ramp-CP spectra also display close associations between O-alkyl and 

alkyl moieties, although to a lesser extent. A weak intramolecular connectivity ( ≤ 3 bonds) is 

observed between O-alkyl and functionalized aromatics (130–160 ppm), as well as phenolic 

carbons from LG-CP spectrum. This may originate from methoxy carbons in lignin structures, 

 

 

 
Figure 4.3.6 1-D 13C spectra extracted from 4 ppm 1H shift in 2-D HETCOR data (Scaling of y-
axis was set to 1 for all, and offsets were done for visual aid only). 
 

13C Chemical shift (ppm) 
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but this is unlikely as it would require the transfer of 1H magnetization across three bonds, to 

then pass through an oxygen atom or lignin-carbohydrates linkages (Guerra et al., 2006). A more 

plausible explanation is leakage of the above discussed lignin-carbohydrates through space 

linkages, due to an imperfect proton spin diffusion by the LG-CP pulse sequence. 

 

 
Figure 4.3.7 1-D 13C spectra extracted from 0.5 ppm 1H shift in 2-D HETCOR data (Scaling of 
y-axis was set to 1 for all, and offsets were done for visual aid only). 
 

Figure 4.3.7 demonstrates further the spatial associations of alkyl moieties, since these 

13C slices were taken from a 0.5 ppm 1H shift. Alkyl moieties are in spatial proximity to O-alkyl 

moieties; however, these associations are weaker as compared to the strong associations between 

O-alkyl and aromatic moieties, as suggested from and discussed in Figures 4.3.5 and 4.3.6. It is 

also apparent that alkyl moieties are associated through space with carbonyls, especially the 

carbonyl type (~175 ppm). Alkyl carbons in SOM, most probably come from cuticular materials 

such as cutin, which consist of long chain saturated or unsaturated acids (Kolattukudy, 2001; 

Stimler et al., 2006). In addition, cuticular materials are often associated with soluble plant lipids 

(Kolattukudy and Espelie, 1989; Mariani and Wollers-Arts, 2000), and may explain the 
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connectivities which are due to fatty acid-like moieties. There is also an evolution of a very weak 

signal intensity at 130 ppm (C-C, C-H) in Ramp-CP with a contact time of 2 msec, indicating a 

weak association between alkyl and specific fractions of aromatic moieties. This is consistent 

with the results in Figure 4.3.5, where the aromatic moieties show a weak spatial association 

with alkyl groups with a chemical shift of ~22 ppm, and was also indicated in 2-D HETCOR 

(Figure 4.3.4, viii). Hence, associations between specific fractions of alkyl and aromatic moieties 

are hinted, which are likely, due to hydrophobic forces. It can be postulated that this is similar to 

that of suberized materials, which is another type of cuticular material found in barks and roots 

consisting of aliphatic and aromatic domains (Kolattukudy and Espelie, 1989; Bernards, 2002). 

However, the exact associations of aromatic and aliphatic groups in a suberized tissue are still 

unclear (Bernards and Lewis, 1998). Overall, Figure 4.3.7 indicates that alkyl moieties show 

very little association with other moieties at the spatial distance probed here, and possibly 

suggests that these are more distant from other major SOM structures. These alkyl moieties show 

similarities to cuticular and lipid fractions of plant origin. 

 2-D 1H–13C HETCOR NMR provides better resolution due to the wider spread of 1H and 

13C resonances, compared to the use of 1-D 1H or 13C solid state NMR. Thus, 2-D 1H–13C 

HETCOR NMR has the advantage of revealing information about intramolecular and 

intermolecular associations, which cannot be provided by 1-D solid-state NMR. From the results 

presented, it appears that the molecular assembly of SOM in this whole, highly organic, young 

soil consists of two main domains. One domain is comprised of O-alkyl moieties that are in close 

proximity with aromatic moieties (Figure 4.3.5 and 4.3.6). In most probability, the existence of 

these groups takes precedence from primarily lignin materials (Figure 4.3.8), with some 

contribution from tannins. Lignins in plants are often found covalently linked to carbohydrate 

structures such as cellulose and hemicelluloses through benzyl-ester, benzyl-ether, and phenyl-
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glycosidic bonds (Guerra et al., 2006; Sun et al., 2000; Donaldson, 2001), and the presence of 

lignin-carbohydrate complexes in wood has also been indicated by 1H–13C HETCOR NMR 

(Liitia et al., 2000). The close association of O-alkyl and functionalized aromatics and phenolic 

carbons may also be attributed to the presence of tannins (e.g., Figure 4.3.9). This parallels the 

work presented by Lorenz et al. (2000), that tannins can significantly contribute to forest SOM. 

 

Figure 4.3.8 Structure of lignin monomeric unit (Wershaw, 2004) 

 

Figure 4.3.9 Typical monomer unit of nonhydrolysable tannins (Wershaw, 2004; Lorenz et al., 
2000) 
 
 The other domain consists of alkyl moieties, which appear to be spatially isolated with 

the O-alkyl/aromatic domain discussed above. These isolated alkyl moieties are most likely 

derived from cuticular components and are supported by the similarity in alkyl moieties such as 
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13C spectra, presented in Figure 4.3.7 and those reported for cuticular materials (Chen et al., 

2005; Shechter et al., 2006; Stimler et al., 2006). These results are consistent with the literature 

that cuticular materials constitute a significant portion of SOM and are highly recalcitrant 

(Almendros et al., 1996; Hu et al., 2000).  

 This finding is in agreement with the previous studies that demonstrate: 1) two distinct 

peaks at the 30–33 ppm in the 13C NMR spectra; 2) the existence of crystalline and amorphous 

aliphatic domains in humic materials; 3) the transition between the condensed and amorphous 

domains as defined by a glass transition temperature and are reversible, giving clear evidence of 

purely alkyl domains; and 4) the thickness of the crystalline alkyl moieties are at least 4 nm (Hu 

et al., 2000; Chilom and Rice, 2005; Lehman et al., 2007). 

These data were acquired on a freeze-dried soil sample; hence, these represent an 

assembly of SOM in a dry sample. However, this concept of the existence of O-alkyl moieties 

that are intimately associated with aromatics, and the alkyl moieties situated at a farther distance 

from the said domain yet within the length being probed here, may be extended to an SOM 

arrangement in a hydrated soil. Simpson et al. (2001) applied 1H high resolution magic angle 

spinning (HR-MAS) on mineral soil, in order to determine what moieties become mobile when 

the soil contacted with D2O or DMSO-d6. With D2O as the swelling solvent, alkyl moieties in the 

form of fatty acids, aliphatic esters, and ethers/alcohols emerge as the dominant components in 

the solid-aqueous interface. Furthermore, the use of the more hydrophobic solvent DMSO-d6 

rendered the aromatic moieties observable, in addition to similar signals of alkyl moieties that 

were present in D2O swelling. These aromatic moieties were not water-accessible during the 

short period of hydration utilized in their study, which suggested that it may be located in a 

hydrophobic core, similar to that of micellar structures. 

The micellar model of humic substances in soils was first conceptualized by Wershaw 
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(1999, 1993) suggesting that in an aqueous solution, the SOM arrange themselves to orient 

hydrophilic moieties near the vicinal water, while the hydrophobic moieties are located inside the 

hydrophobic core and away from the aqueous interface, thereby forming aggregates called 

micellar structures (Wershaw, 1993; Engebretson et al., 1999). The concept of a supramolecular 

assembly of SOM also recognizes the importance of hydrophobic and hydrophilic associations in 

dissolved humic substances (von Wandruszka, 2000; Piccolo, 2001). Thus, a conceptual model 

emerges such that as a soil wets, the hydrophilic O-alkyl moieties would prefer to migrate on the 

outer layer of the intraparticle air/water soil interface, while the more hydrophobic lignin and 

tannin structures are protected from water in an inner hydrophobic core. This indicates that for a 

moist soil, aromatic moieties rather than be highly accessible as sorption sites for HOCs, would 

rather sorb to the alkyl domain as shown in Step 1 in Figure 4.3.10. As the soil dries, SOM once 

again undergoes conformational rearrangement; this time, the more hydrophobic moieties in the 

O-alkyl and aromatic domain are exposed on the surface, while protecting the O-alkyl moieties 

from the lack of water as demonstrated in Step 2. These hydrophobic aromatic moieties are 

expected to serve as more thermodynamically favorable sorption sites for HOCs when compared 

to the alkyl domain, especially for aromatic HOCs through π–π complexes and π–π electron 

donor acceptor associations (Keiluweit and Kleber, 2009; Wijnja et al., 2004; Zhu et al., 2004). It 

is therefore probable that the HOC migrates to the exposed aromatic moieties (Step 3); this 

preferential sorption of HOCs to the aromatic moieties would be influenced by steric hindrance, 

as well as the governing of kinetic and thermodynamic effects. As the soil undergoes another 

wetting cycle, it can be envisioned that the hydrophobic aromatic moieties would migrate back to 

reside once again in the inner core, surrounded by a hydrophilic layer of O-alkyl moieties (Step 

4). This hydrated outer layer would render the hydrophobic core inaccessible for further HOC 

sorption, and also would prevent the release of HOCs associated with the aromatic moieties; 



121 
 

hence these HOCs would remain bound with the moieties. This reveals an important 

environmental implication in regard to attainment of HOC sorption equilibrium and soil-

pesticide interactions at different soil hydration levels, since soils and sediments are exposed to 

wetting and drying cycles. 

 

Figure 4.3.10 Conceptual model of how SOM molecular assemblage at different hydration levels 
affect uptake and release of hydrophobic organic compound  
 

The soil used in this study is a highly organic soil, and the result presented above may not 

be fully applicable to mineral soils. However, this is in agreement with the results of Simpson et 

al. (2001), that aliphatic and O-alkyl moieties become mobile upon D2O swelling, while aromatic 

moieties are observable upon DMSO-d6 swelling of a mineral soil. Furthermore, the proposed 

model can explain the initially fast uptake (i.e., labile sorption) within 24 hrs of adding an 

aqueous solution containing aromatic HOC chlorothalonil, resulting in a decrease in sorption 
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beyond 24 hrs on a mineral soil. The rapid sorption would be attributed to sorption to aromatic 

moieties that were initially positioned on the outer surface of the O-alkyl/aromatic SOM domain, 

while decreased sorption upon longer wetting would be due to the unavailability of aromatic 

moieties as sorption sites, as the soil migrates back inside the core (Gamble et al., 2000). 

The presented model can also explain the increased sorption and thermodynamic 

favorability of sorption of polyaromatic hydrocarbons to a mineral and organic soil, and 

sediments, following solvent extraction of lipid (i.e., alkyl moieties) fractions from the sorbents 

(Chilom et al., 2005). The use of an organic solvent upon lipid fraction removal might have 

rendered the aromatic moieties more accessible. 
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Chapter 5 

Sorption and Desorption 

5.1 Introduction 

 Most sorption investigations in the literature have been conducted in order to elucidate 

the mechanisms involved in the retention and release of xenobiotics in environmental sorbents, 

such as soil and its components, sediments, and aquifer materials. Xenobiotics may include 

metals, radioactive materials, and biological toxins, as well as polar and non-polar organic 

compounds. This study, however, focuses on the hydrophobic organic compounds (HOCs). The 

sorptive behavior of HOCs in the terrestrial environment greatly influences 1) mobility and 

transport; 2) persistence; and 3) bioavailability and chemical reactivity. 

 Sorbate-sorbent interactions are often described by a sorption capacity or distribution 

coefficient, K, obtained from experiments. Higher K values correspond to stronger affinities of 

sorbate to sorbent. The implications of sorption capacities are vast from the standpoint of 

environmental pollution and agricultural concerns. A highly retained HOC is desirable for 

maintaining groundwater, as well as surface water quality (Lennartz and Louchart, 2007) due to 

decreased downward movement and surface runoff. In addition, bound HOCs are less 

bioavailable, thus less susceptible to degradation (Sparks, 1989; Tabatabai and Sparks, 2005; 

Ogram et al., 1985). For HOCs such as pesticides, reduced bioavailability in the soil solution 

may mean less bioefficacy on target species. Furthermore, distribution coefficients are an 

integral part of modeling and thereby predicting the fate of contaminants in the environment. As 

an illustration, the sorption coefficient K, in combination with two other physical properties of 

aquifer materials, are required in calculating the retardation factor, R 
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where n is porosity and  is the bulk density of the aquifer materials. Finally, R is part of a 

series of mathematical equations needed to model the groundwater transport of pollutants 

(Dunnivant and Anders, 2006). 

Herbicides norflurazon and acifluorfen were used at a rate of 1.2 and 0.4 million lbs as an 

active ingredient in the U.S., in 2002 (Tomlin, 1997; Gianessi and Reigner, 2002) as pre-

emergence and post-emergence herbicides, respectively; the herbicides were implemented in 

soybean and nut crops, nut trees, citrus, orchards and cotton farms (Locke et al., 1997; Sopeña et 

al., 2007). Flutolanil, on the other hand, is a fungicide used for potatoes, nuts, and rice 

(www.dec.state.ny.us). Consequently, trifluoromethyl (–CF3) substituted aromatics such as 

norflurazon have been detected in U.S. streams and groundwaters (Gilliom et al., 2006; 

Senseman, et al., 1997a; Senseman, et al., 1997b), which has been attributed to use, mobility, and 

persistent application in the environment. Hence, this work focuses on sorption of three aromatic 

pesticides with –CF3 substituent and other functionalities. These fluorinated pesticides differ in 

molecular size, solubility, and polarity; hence there is a need to understand how these properties 

affect their sorption. The abovementioned agricultural applications indicate that these chemicals 

may be applied in either a dry or a wet soil; hence, the effect of hydration state of the soil in 

sorption capacities will be evaluated. Based on the model developed in Chapter 5, our hypothesis 

is that an initially dry soil will sorb a larger amount of a hydrophobic aromatic pesticide than a 

wet soil.  In addition, the effect of organic matter content and mineral/clay composition on 

sorption will be investigated. 

Freundlich Equations 5.1 and 5.2 are widely implemented to describe sorption-desorption 

in soils, because these assumes the presence of a limited amount of sorption sites of varying 

energies (Tabatabai and Sparks, 2005). 

S= KFCe
N       (5.1) 
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log S = log KF + N log Ce     (5.2) 

 where: S = amount sorbed in a soil (mg kg-1) 

 Ce = equilibrium concentration (mg L-1) 

 KF = Freundlich sorption coefficient (mg kg-1)/ (mg L-1)N 

 N = nonlinearity of the isotherm 

 It is rather difficult to compare sorption affinities of sorbates for various sorbents if the N 

values for the isotherms are different. As a result, this study applies reduced concentrations (Cr) 

in the Freundlich equation (Carmo et al., 2000). The modified Freundlich equation, hereto 

referred as reduced Freundlich equation is given below: 

         (5.3) 

where:  KrF = reduced Freundlich coefficient 

 Cr = equilibrium concentration normalized to the aqueous solubility (SW) of the sorbate 

The isotherm is therefore plotted with Cr = Ce /SW in the x-axis and the amount sorbed on the y-

axis. It should be noted that the use of Cr does not affect the value of N. Finally, the relationship 

between Freundlich coefficient and its reduced form is given as: 

            (5.4) 

 Thus, KrF reflects the sorption coefficient when the equilibrium concentration is near 

saturation only (Carmo et al., 2000; Chiou et al., 2000; 1998). The use of KrF also simplifies the 

final units into the mass of sorbate sorbed in a given mass of sorbent (Ding et al., 2002; Chen et 

al., 1999). Soil organic matter (SOM) has been widely recognized as the most important 

component in hydrophobic contaminant sorption (Chiou et al., 1983; 1998; Chiou, 1989). It has 

also been suggested that HOCs are less likely to sorb on minerals, because water strongly 

competes with HOC for these sites (Chiou and Shoup, 1985; Chefetz et al., 2000). Thus, the 

sorption coefficient K is often normalized with respect to organic carbon or organic matter 
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content, yielding a relatively constant distribution coefficient (KOC, KOM); however, this is not 

always the case. Variation in KOC values are often attributed to 1) the type of carbon that makes 

up the SOM; 2) the extent of diagenetic alteration; 3) the presence of different sorption domains; 

4) the presence of black carbon; and 5) the hydration condition. A relatively constant  

reflects hydrophobic forces as mostly responsible for sorption. Sorption of norflurazon in soils 

has been mainly attributed to soil organic matter content (Suba and Essington, 1999; Carringer et 

al., 1994; William et al., 1997). For example,  values for norflurazon were reported to be 

456–551 L kg-1 (Suba and Essington, 1999).  

Previous studies hinted that aside from SOM, other soil properties may influence 

norflurazon sorption, such as pH and cation exchange capacity (Reddy et al., 1992), although the 

authors showed a relatively low correlation with  = 0.57 and 0.58 for pH and cation exchange 

capacity respectively, in seven different soils with  values of 116 – 229 L kg-1. Clay content 

also increased sorption of norflurazon (Hubbs and Lavy, 1990), but the type of clay was found to 

be more significant with respect to norflurazon herbicidal activity, rather than the amount of clay 

present (Lo and Merkle, 1984; Schroeder and Banks, 1986). In a study utilizing three soils, the 

presence of expandable clays such as montmorillonite and vermiculite (in addition to organic 

matter) required a higher amount of norflurazon to effectively control the weeds (Lo and Merkle, 

1984). On the other hand, results from Carringer et al. (1975) showed no affinity of norflurazon 

to Ca-montmorillonite. 

In another study, Morillo et al. (2002) showed that soil with a high amount of Fe2O3 and 

Al2O3 showed  of 691 L kg-1, which was attributed to additional sorption sites afforded by 

the high surface area amorphous oxides. The most recent and thorough investigation of 

norflurazon sorption was on 17 different soils. This study indicated that a soil organic matter 
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content significantly affects sorption with a linear equation: 

 (Morillo et al., 2004). 

 Currently, the only available  and  values for flutolanil are: 1) KOC = 418 L kg-1 

for a turf grass soil with the following characteristics: soil depth: 0–10 cm; pH: 6.8; organic 

carbon: 4.7 %C; cation exchange capacity (meq per 100g): 9.9; (Suzuki et al., 1998) and 2) KOC 

values from different soils and sediment, given in Table 5.1 below.   

Table 5.1 Flutolanil sorption (http://www.efsa.europa.eu) 

Soil type 
Organic 
Matter 
(%) 

Soil pH %  
sand 

%  
silt 

%  
clay 

Cation 
exchange 
capacity 
meq (100g)-1 

  N 

Sand 0.2 6.5 93 3 4 3.8 1.34 1340 1.16 

Clay 2.4 6.7 8 34 58 26 10.6 883 0.91 

Mississippi 
sediment 

3.9 7.5 28 38 34 21 10.3 528 0.94 

Clay loam 4.9 7.8 26 46 28 25 16.0 653 0.94 

Sandy loam 6.2 6.1 76 16 8 11 35.5 1150 0.98 

 

Finally, the sorption of acifluorfen is suggested to be affected by organic matter content, 

soil pH, and cation exchange capacity (Locke et al., 1997). Previous sorption studies concerning 

these three pesticides lack an indepth evaluation of sorption mechanism from a perspective of the 

sorbate structure, sorbent composition (organic matter and mineral/clay) and soil hydration 

condition; hence, this study will attempt to gain better understanding of these points. 

5.2 Materials and Methods 

5.2.1 Chemicals 

The following chemicals were purchased from Acros: 85% phosphoric acid, HPLC grade 

methanol, and 99% sodium azide. Anhydrous calcium chloride (96.0%) and sodium phosphate 

monobasic (99%) were obtained from Sigma-Aldrich, while HPLC grade acetonitrile was 

purchased from Mallinckrodt Chemicals. Standards used for TOC analysis involving potassium 

http://www.efsa.europa.eu/�
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hydrogen phthalate, glucose, and sodium carbonate were purchased from Acros. All the 

pesticides, i.e., norflurazon (98.6%–98.7%), acifluorfen (98.8%) and flutolanil (99.5%), were 

obtained from ChemService (West Chester, PA). A filtering device in the laboratory (Modulab 

Water Systems, United States Filter Corporation), provided 18 MΩ–cm resistivity water for all 

solution preparations. 

5.2.2 Soil Sampling 

The author of this study collected a local wetland soil from Bayou Casbtine, Mandeville, 

Louisiana (15R784949 °E, 3361530 °N) with samples of topsoil gathered from a depth of 0–10 

cm and placed in a pre-washed plastic container. In preparation, the process removed root and 

plant materials and manually broke bigger soil aggregates, allowing a portion of the soil to air 

dry, and storing the rest of the soil at 4°C until use. After air drying, soil passed through a 2 mm 

mesh sieve for homogenation. The International Humic Substance Society (IHSS) provided 

Pahokee Peat and Elliot soils for purchase. 

5.2.3 Soil Moisture and pH 

The study determined moisture content (fresh basis, air dry basis, and oven dry basis) for 

Mandeville soil, allowing a pre-weighed fresh sample to dry in the air, and recording the weights 

until we obtained a constant, air-dried weight which was subsequently, was weighed as air-dried 

soil in a pre-tared evaporating dish. It was then placed in oven (Isotemp oven, Fisher Scientific) 

at 105°C for 12 hours (Black et al., 1982). Soil pH was measured in 18 MΩ water using a pH 

meter (Accumet AB15, Fisher Scientific) pre-calibrated using buffers (Acros) of pH 4, 7, and 10. 

5.2.4 Clay Content and Cation Exchange Capacity 

The total percentage of clay as well as mineral components of Mandeville soil, was 

determined by X-ray diffraction (Bruker/Siemens D5000 automated powder X-ray 

diffractometer with Rietveld analysis software). Cation exchange capacities were measured for 
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Elliot and Mandeville soils using a protocol from Methods of Soil Analysis (Sumner and Miller, 

1996). Briefly, 5g of soil were placed in a pre-weighed 50 mL centrifuge tube, followed by an 

addition of 30 mL of 0.2 M NH4Cl. The mixture was shaken for five minutes, and the mixture 

was then centrifuged at 6000 rpm for five minutes. The supernatant was decanted into a 250 mL 

volumetric flask. The addition of 30 mL of 0.2 M NH4Cl, followed by shaking and centrifugation 

was repeated four more times. All supernatant solutions recovered after centrifugation were 

placed in the same 250 mL volumetric flask, and then filled to the mark with 0.2 M NH4Cl. This 

solution was then filtered in a Whatman filter paper and analyzed for exchangeable cations (Na+, 

K+, Ca2+, Mg2+, and Al3+). The soil was re-suspended with 30 mL of 0.04 M NH4Cl, from the 

previous step, followed again by shaking and centrifugation of the re-suspended soil. This 

process was repeated twice. All supernatants from this step were discarded. After the supernatant 

from the last centrifugation step was discarded, the centrifuge tube was weighed to determine the 

volume of solution remaining. Then 30 mL of 0.2 M KNO3 was used to re-suspend the soil, 

followed by shaking, centrifugation, and supernatant collection into a 250 mL volumetric flask. 

This last step was repeated five times. Once again, all supernatants were combined and then 

diluted to the 250 mL mark with 0.2 M KNO3. The solution was filtered using Whatman filter 

paper and analyzed for NH4
+, using Seal AQ2 Discrete Analyzer (Mequion, WI). 

5.2.5 Total Organic Carbon 

 The amount of total organic carbon in the Mandeville soil was determined with a solid 

state Shimadzu total organic carbon (TOC) analyzer (SSM-5000A), connected to a liquid 

Shimadzu TOC Analyzer (5050A). The external standards used for total carbon and inorganic 

carbon analysis were glucose and sodium carbonate, respectively.  

The TOC was calculated by subtracting inorganic carbon from total carbon. Reference 

soil samples with established total organic carbon content, such as Pahokee Peat and Elliot soil 
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 (IHSS), were used to check the solid state total carbon instrument performance. 

5.2.6 Molecular Modeling of Pesticide Structure 

Each of the pesticides (norflurazon, acifluorfen, and flutolanil) were drawn using Sybyl 

8.0 (Tripos International, St. Louis, MO), after which its geometry was minimized using the 

Tripos force field with Gasteiger-Huckel charges. The resulting structure was then used as the 

starting molecule in conducting other types of conformational searches. To determine whether 

the conformations found in each type of search were equivalent, there was an overlay of two 

molecules from different searches each time to determine the root mean square value. The root 

mean square value indicated the closeness of the structures. A root mean square value of 0.00 

implied that two conformations were exactly the same. A root mean square value of <0.02 is 

considered a good fit. The pesticide conformations that gave the best fit were the ones used as 

starting molecules in semi-empirical PM3 Spartan calculations (version ’02, Wavefunction Inc., 

CA), as well as in mapping  the electrostatic potential on the molecular surface.  

5.2.7 Determination of Wavelength of Excitation of Pesticides 

Scanning from 200–600 nm on Ultraviolet-visible Cary 50Bio, determined the maximum 

absorbance wavelength of the pesticide solutions. A 1-cm pathlength quartz UV cells were used 

in all analyses. All UV spectra then were blank subtracted.  

5.2.8 Pesticide Analysis by HPLC 

The optimum excitation wavelengths obtained from UV analysis were used as excitation 

wavelengths for Ultraviolet-Diode Array Detector detection. An 1100 series Agilent HPLC 

(Santa Clara, CA) with a quaternary pump was used to quantify the pesticides in solution 

throughout the study. A reverse phase C18 column (Zorbax Eclipse XDB, 5 µm x 4.6 mm x 150 

mm) was employed for method development and sample analysis. The optimum conditions used 

for the analysis are provided in Table 5.2. 
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The methods were validated for accuracy, precision, linearity, and sensitivity, prior to 

their extensive use. Accuracy was determined by spiking a known amount of pesticide into the 

soil solution matrix, and then calculating the % recovery after HPLC analysis (Snyder et al., 

1997).  

Table 5.2 HPLC conditions used in the analysis of pesticides 
HPLC Parameters Acifluorfen Norflurazon Flutolanil 

Mobile phase: (% v/v) 70:30 acetonitrile /pH 
=2.5 phosphate buffer 

70:30 acetonitrile 
/H2O 

70:30 acetonitrile 
/H20 

Flow rate: (mL/min) 0.6 0.6 1.0 
Sample volume: (µL) 20 20 20 
Temperature (oC) 35 25 25 
DAD detection 288/296 235 210 

Retention time (min) 3.91±0.05 3.65±0.05 3.42±0.02 
LOQ (ug L-1) 80 23 24 
% Recovery from soil 
matrix solution (accuracy) 

100.23±0.00 100.09±0.20 99.96±0.14 

  
Precision was assessed by repetitive injections of different concentrations of standards, as well as 

samples, and by determining the % coefficient of variation. Measurements were considered 

precise when the coefficient of variation was ≤ 2% for all injections. Linearity was determined 

by measuring the peak area absorbance of different concentration of pesticides. The slope, y-

intercept and R2 values were obtained using linear least squares regression. A limit of detection 

was quantified based on S/N equal to 3, while the limit of quantification was determined at S/N 

equal to 10. 

5.2.9 Determination of Soil to Solution Ratio 

The soil to solution ratio must be pre-selected before proceeding with sorption kinetics 

and sorption isotherm studies. This is usually determined by weighing different amounts of 

sorbent and then adding the same volume of fixed sorbate concentration. Sorbate is the chemical 

substance (pesticide) to be sorbed on a solid support called sorbent (soil). In this study, five 
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different weights of soil were contacted with 20 mL pesticide solution in 20 mL scintillation 

vials. The concentration of pesticide chosen was the highest concentration expected to be used in 

the sorption kinetics and sorption isotherms experiment. Samples were prepared in 

quadruplicate. The heterogeneous mixtures were then shaken in the dark, using a C24KC 

refrigerated incubator shaker (New Brunswick Scientific, Edison, NJ) at 150 rpm and 25±1°C for 

10 days. After incubation, the samples were centrifuged (Sorvall Biofuge Stratos, Asheville, NC) 

at 3000 rpm and 25°C for 15 minutes to separate the soil from the solution. Supernatant was 

pipetted into HPLC vial and analyzed by direct injection. 

The amount sorbed was then calculated as follows: 

     (5.5) 

where: 

  = amount sorbed ( ) 

  = mass of pesticide sorbed to the soil ( ) 

= initial mass of pesticide ) 

The above equation reduces to: 

     (5.6) 

where: 

= initial concentration ( ) 

= concentration in the aqueous phase at the end of incubation ( )  

 A graph was then plotted that relates the percentage of the pesticide sorbed to the amount 

of soil used. The choice of soil to solution ratio depends on the percentage sorption desired, in 

addition to the analytical methodology employed to accurately and precisely measure the 

concentration of the analyte in solution. The weight of soil used at the highest pesticide 

concentration was chosen for approximately 20-30% sorption, because at lower pesticide 

concentration, the % sorption is expected to be higher. With the HPLC methods employed, the 

accuracy and precision in the analysis of changes in solution concentration at this sorption range 



138 
 

proved to be successful. Although a 20 mg/L initial concentration was used to test the sorption of 

acifluorfen in all three sorbents, additional concentration points of 40 mg/L and 80 mg/L were 

later used in the sorption isotherm study to widen the concentration range, in order to investigate 

its effect on sorption. Thus an 80 mg/L of initial concentration was used in the kinetic study. 

However, the Elliot soil weight was not increased because of the limitation on the amount of 

Elliot soil that can be ordered from IHSS. Use of 80 mg/L in the kinetics experiments allowed < 

20% sorption of initial concentration for Elliot soil. It was suggested that precision problems 

might arise when sorption is less than 20% of initial concentration (McCall et al., 1981). 

However in this study, even with slight changes in solution concentrations, the HPLC method 

employed proved to be adequate in terms of both precision and accuracy.  

 Soil-to-solution ratio determination was conducted out for at least one soil per pesticide 

type. The amount of soil needed for the other soils was then predicted, based on the Total 

Organic Carbon content. At least two blanks, two controls, and four trials were set for each soil 

amount. 

5.2.10 Sorption Kinetics 

 All norflurazon pesticide solutions were prepared in the presence of 0.005 M CaCl2. The 

use of CaCl2 served to simulate groundwater (Xia and Pignatello, 2001; Braida et al., 2003). The 

above sorption kinetics were also performed in the presence of 100 ppm biocide sodium azide 

(NaN3) to determine the effect on sorption. A 20 mL of 16 mg/L of norflurazon solution was 

added to a pre-weighed soil sample in 20 mL scintillation vials. Accurately weighed amounts 

(±0.0030 mg) of soil used were as follows: 60 mg Pahokee Peat, 500 mg Mandeville soil and 

1500 mg Elliot soil. 

 For the 5 day and 1 day prewet samples, the soil was initially contacted with 4 mL of 

electrolyte solution, consisting of 0.005 M CaCl2 in 18 MΩ-cm of water. Four replicates were 
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prepared for each soil hydration condition. Controls containing only soil and electrolyte solutions 

were also prepared in the same manner, using the same number of replicates. The soil mixture 

was shaken for 5 days or 1day at 150 rpm and 25±1°C. After pre-hydration incubation, the 

samples were re-weighed in order to check for evaporation losses. A 16 mL of 20 mg/L 

norflurazon was then added, such that the final concentration in the pre-hydrated samples was 

also 16 mg/L. For the prewet controls, a 16 mL of electrolyte solution was added. Two blanks 

(pesticide solutions without soil) were included for each incubation period. 

Dry and prewet samples were then shaken in the dark at 25°C and 150 rpm. Sampless as 

well as blanks and controls, were removed after incubation periods of about 6, 9, 12, 15, 18, 24, 

48, 72, 120, and 240 hrs respectively. Exact incubation periods were recorded. For norflurazon, 

an incubation period of ≥ 720 hrs was included in order to assess the effects of longer contact 

time on the attainment of sorption equilibrium. After the required incubation time, the soil 

mixture was centrifuged at 3000 rpm and 25°C for 15 minutes. Supernatant solutions were 

pipetted into 2mL HPLC vials for analysis. Control supernatant samples were also analyzed 

using Ultraviolet-visible, TOC, and fluorescence excitation emission matrix. 

 All acifluorfen pesticide solutions were prepared in the presence of 0.005 M CaCl2 and 

100 ppm NaN3 biocide (Huang and Weber, 1998; Huang et al., 1998), as preliminary kinetics 

data show a degradation product after 10 days of incubation. The concentration of pesticide used 

for acifluorfen kinetics was 80 mg/L. Soil weights used were as follows: 400 mg Pahokee Peat, 

800 mg Mandeville soil, and 1500 mg Elliot soil. 

 A 1000 mg/L stock solution of flutolanil was prepared in methanol (CH3OH). A 6 mg/L 

of flutolanil solution was subsequently prepared from stock solution in < 0.1% CH3OH, 0.005 M 

CaCl2, and 100 ppm NaN3. The use of <0.1% CH3OH was necessary to dissolve the sparingly 

soluble pesticide. In the past, this concentration of CH3OH was reported to have a negligible 
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effect on sorption behavior of HOCs (Weber and Huang, 1996). Soil weights were as follows: 

100 mg Pahokee Peat, 200 mg Mandeville soil, and 500 mg Elliot soil. All sorption kinetics 

samples and controls were prepared in quadruplicate and with at least two blanks. 

5.2.11 Mass Balance by HPLC 

Norflurazon and flutolanil mass balances were determined in the absence and presence of 

sodium azide, in order to determine the percentage recovery after sorption pseudo-equilibrium, 

as well as evaluating the extent of pesticide stability. The samples were incubated as in sorption 

isotherms. After 5 days, supernatant samples were pipetted into HPLC vials for analysis, in order 

to determine the total amount of pesticide sorbed to the soil. A total of 17 mL of supernatant was 

removed and replaced with extracting solvent (30/70 water: acetonitrile). Exact masses from an 

analytical balance were also recorded. The samples added with extracting solvent were sonicated 

for 10 minutes and then allowed to stand overnight in the dark. It was then centrifuged at 3000 

rpm and 25± 1°C for 15 minutes. This time, the supernatant was once again sampled for HPLC, 

to analyze the amount desorbed or extracted. A second extraction was also accomplished by 

removing ~17 mL of the first desorption supernatant and then replacing that same amount with 

extracting solvent. 

The formula used for mass balance recovery is given below (OECD, 2000): 

       (5.7) 

The above equation can be evaluated as: 

      (5.8) 

where: 

= mass balance ( ) 

= amount of pesticide recovered ( ) 
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=initial amount of pesticide ( ) 

=volume of supernatant recovered ( ) 

= amount of pesticide in the aqueous phase at sorption equilibrium ( ) 

=total amount of pesticide extracted from the soil and sample container ( ) 

= initial pesticide concentration ( ) 

= sorption volume ( ) 

 Kinetic studies showed that acifluorfen significantly degrades in the absence of sodium 

azide, especially in Elliot soil. Thus, all subsequent studies were performed in the presence of 

sodium azide. A 30/70 phosphate buffer pH=3: acetonitrile extraction solution was also used. 

Other than these two modifications, the same procedure as that for norflurazon and flutolanil was 

used.  Mass balance recoveries in the presence of sodium azide were as follows: acifluorfen 

(94.53±1.31), norflurazon (91.34±0.10), and flutolanil (96.27±1.22). Thus, our sorption method 

is valid in the OECD method (OECD, 2000) which specifies that mass balance recoveries should 

be at least 90% in order to eliminate the possibility of degradation affecting the sorption results. 

5.2.12 Sorption 

Sorption-desorption experiments were conducted according to the batch equilibrium 

technique using the parallel method (OECD, 2000). Data set in both sorption and desorption 

isotherms consisted of 7-10 concentration points, whereby each concentration point consisted of 

four replicates and two blanks. Equilibrium concentrations spanned a range of 1 to 2 orders of 

magnitude.  

Sorption was initiated by adding different pesticide concentrations of the same volume 

(20 mL) to a constant amount of soil that was pre-determined in a soil-to-solution ratio. All 

pesticide concentrations employed were < 70% of pesticide solubility limit in water. Initial 

concentrations of 1, 2, 4, 6, 8, 10, 12, and 16 mg/L were used for norflurazon, while 1, 4, 8, 12, 
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16, 20, 40, and 80 mg/L were utilized for acifluorfen; flutolanil concentrations were 0.5, 1, 2, 3, 

4, 5, and 6 mg/L, as dictated by their aqueous solubility. All pesticide solutions were made in 

0.005 M CaCl2 and 100 ppm NaN3; <0.1% CH3OH was also added in flutolanil pesticide 

solution preparation. 

After pesticide addition, sorption incubation (25°C, 150 rpm) was implemented for all 

pesticide and soil sample combinations. Based on the sorption kinetics, an incubation time of 5 

days was chosen for both sorption and desorption isotherms, because kinetics data revealed that a 

pseudo-equilibrium is reached at that time. At the end of the sorption step, samples were 

centrifuged in order to separate the soil from the aqueous solution. An aliquot of this solution 

was carefully pipetted into 2 mL HPLC vials. All sorption samples were prepared in 

quadruplicate with at least two blanks. Each sorption/desorption isotherm experiment included 8-

12 external calibration standards, encompassing the concentration range used in the study. 

Possible losses due to headspace volatilization and or sorption to the container were assessed by 

percentage recovery calculations from blank samples (samples without soil, but using spiked soil 

matrix solution) and were found to be negligible (<<1%). 

The amount of pesticide sorbed in the soil may be represented by the equation below: 

        (5.9) 

where  = mass of pesticide sorbed to soil at equilibrium and 

 = mass of soil ( ) 

In our study, the amount of pesticide sorbed was determined by the difference between the 

concentration in solution after equilibration and initial concentration as indicated below: 

       (5.10) 

where:    = amount of pesticide sorbed ( ) 
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           = initial concentration ( )        

  = equilibrium concentration in solution ( ) 

= initial volume of solution  

  = mass of soil  

The latter equation was modeled using the Freundlich equation: 

   

Log transformation of the above equation yields a linear form: 

   

where:  

 = Freundlich sorption capacity coefficient 

N=sorption nonlinearity 

The best fit line and the parameters, as well as their corresponding standard errors for this 

linear regression, were obtained via the use of the Marquardt-Levenberg algorithm, as 

implemented in  Sigma Plot version 10 (Systat Software, Inc., CA). The Marquardt-Levenberg 

algorithm returns the values of the parameters by minimization of the least squares error between 

the actual values and predicted values of the dependent variable. Yield results were within the 

95% confidence limit. 

5.2.13 Desorption 

The desorption incubation period implemented was identical to the sorption. A volume of 

about 17 mL of sorption supernatant was removed and replaced with 0.005 M CaCl2 and 100 

ppm NaN3 electrolyte solution. Samples were then shaken in the dark for 5 days, using the same 

incubation conditions as discussed above for the sorption isotherm. Supernatant removal protocol 

was then followed to obtain a desorption supernatant for HPLC analysis. 
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In the desorption step, most of the supernatant was pipetted using a disposable glass 

pipet. The removal of supernatant was carefully performed to avoid disturbing the solids. 

Samples were also weighed using an analytical balance, in addition to applying accurate solution 

volume measurements during initial sorption and after the following steps: sorption equilibrium, 

removal of supernatant, addition of electrolyte solution to initiate desorption step, and desorption 

equilibrium, in order to account for any possible liquid/solid phase losses.  

The amount sorbed after desorption was evaluated using the formula: 

     (5.11) 

where: 

 = amount of pesticide sorbed to soil at desorption equilibrium ( ) 

 = mass of pesticide sorbed to soil at sorption equilibrium ( ) 

 =mass of pesticide desorbed from soil ( ) 

 =mass of soil (  

5.2.14 Liquid Chromatography-Mass Spectrometer 

 An Agilent 1200 series 6210 time of flight Liquid Chromatography-Mass Spectrometer 

was used to identify and confirm the presence of a degradation product of acifluorfen. The same 

LC parameters utilized in the analysis of acifluorfen samples were used for UV detection, while 

detection by mass spectrometer used time of flight with the following parameters: electron spray 

ionization as the ion source, positive scan type, 900 V charging voltage, nebulizer operating at 15 

psig, drying gas flow rate at 7.0 L/min, gas temperature at 300 °C, and a 4200 V capillary. 

5.2.15 Total Carbon of Supernatant from Control 

Supernatant from the sorption kinetic controls experiment of initially dry soil samples 

were analyzed using a Shimadzu TOC Analyzer (Model 5050A with associated ASI-5000A auto 

sampler). The amount of total carbon released from the soil samples were calculated, based on 
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the potassium acid phthalate external standard consisting of a four-point calibration. A methanol 

standard was used as an additional check for instrument performance, and 18 MΩ water was 

used as a blank sample. Each sample was injected three times with a coefficient of variation  ≤ 

2% accepted as a measurement precision. 

5.2.16 Specific UV Absorbance (SUVA) of Supernatant from Control at 280 nm 

Ultraviolet-visible data were collected on a Cary 50Bio with a xenon flash lamp on 10 

ppm TOC sorption kinetic control samples from 200 nm–600 nm. In all analyses, 1-cm 

pathlength quartz UV cells were used. All UV spectra were blank corrected with an electrolyte 

solution used to prepare samples. 

5.2.17 Fluorescence Excitation and Emission Matrix of Supernatant from Control 

Fluorescence excitation and emission matrices were also obtained on the 10 ppm TOC 

sorption kinetic control samples, utilizing a Horiba Jobin Yvon spectrofluorometer equipped 

with a Xe arc lamp. The parameters were: 1-cm pathlength quartz fluorescence cell, excitation 

from 250–450nm wavelength with 5nm increment, emission from 280–550nm wavelength with 

2.5nm increment, slits of 5nm for both excitation and emission, and a detection signal divided by 

the reference (S/R). Lamp scan and water Raman emissions were always performed prior to the 

analysis of the sample, in order to check instrument performance. 

5.3 Results and Discussion 

5.4 Sorbent and Sorbate Characterization 

The sorbents were selected based on their organic matter and clay content. Pahokee Peat 

had the highest % organic carbon, followed by Mandeville soil (Table 5.3.1). Elliot soil had the 

lowest % organic carbon. Mandeville soil was obtained from a wetland in Louisiana and is 

similar to the samples used in our 2-D NMR analysis, while Pahokee Peat and Elliot soils are 

reference standard soils from IHSS, allowing other researchers to reproduce this type of sorption 
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work. The pesticides chosen for this study have varying solubilities and octanol water partition 

coefficient KOW; hence, they have different polarities. In addition, they have carbonyl, 

amine/amido groups capable of H-bonding.  

Table 5.3.1 Properties of sorbents 
Parameter Pahokee Peat Mandeville Soil Elliot Soil 

Soil taxonomic class euic, hyperthermic, 
lithic,  Medisaprists1 

thermic, typic 
hydraquent2 

mesic, Aquic 
Argiudoll3 

Soil pedon muck1 silty clay loam2 Silt loam3 

Moisture content (%) 6.2 a 3.96±0.02 1.52 a 

pH 4.20±0.02 4.62±0.02 6.1 a 

Total organic carbon, 
OC (%) 

46.90 a 10.84±0.17 2.9 a 

Organic matter, OM 
(%) OM = 2x(%OC) 

93.8 21.68 5.8 

Mineral content (%) nd clay 31.31, sand 66.40, 
1.16% K feldspar, 
1.13% plagioclase 
(23% clay, 49.38% 
sand in a whole soil) 

clay 30.8, silt 62.3, 
sand 6.9 (28.55% 
clay, 57.74% silt 
and 6.39% sand in a 
whole soil) 

Cation Exchange 
Capacity (cmolc kg-1) 

nd 19.83 ± 0.79b 11.58±0.19 

nd not determined due to very high organic matter content      
1(http://www.ihss.gatech.edu/sources.html)     2 Trahan et al., 1990             
3(http://ssldata.ncrs.usda.gov)               a IHSS (no standard error is given) 
bConkle et al., 2009  
 
 
Table 5.3.2 Metal content of Mandeville soil 

Metals Mandeville Soil 
Totala Exchangeablea 

Al 29284.3 ± 478.6 11.6 ± 8.2 

Ca 1830.9 ± 19.5 1765.4 ± 20.6 

Fe 11072.9 ± 158.2 170.9 ± 78.4 

K  1527.5 ± 53.4 202.6 ± 20.1 

Mg 2155.2 ± 31.2 1117.1 ± 18 

Na 502.8 ± 8.8 499.6 ± 17.9 
amg kg-1 

 

 

http://www.ihss.gatech.edu/sources.html�
http://ssldata.ncrs.usda.gov/�
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Table 5.3.3 Physico-chemical properties of the sorbates 
Properties Acifluorfen Norflurazon Flutolanil 

aMW (g/mol) 361.66 303.69 323.31 
asolubility in H2O 
(mg/L) 

120 32 9 

log kow 2.31, 1.54, and 1.25 
at pH=4, 5, and 6 
respectivelyb 

2.45c 3.54±0.17d 

eSurface area (A°2) 336 277 317 
fSurface volume (A°3) 326 254 308 
gdipole (debye) 7.00 5.91 3.55 

a Ahrens, 1994   b,cAdvanced Chemistry Development (ACD/Labs), copyright ACS, 2008       

 dNakamura et al., 2001                                                         e,f,g values are from molecular modeling 
 
 
 

 
Figure 5.3.1 Soils used in the study (from left to right: Pahokee Peat, Mandeville and Elliot) 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.3.2 Chemical structure and Electrostatic potential surface of acifluorfen 
modeled using Spartan version ’02 (Wavefunction Inc., CA) 
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 Figure 5.3.3 Chemical structure and Electrostatic potential surface of norflurazon 
modeled using Spartan version ’02 (Wavefunction Inc., CA) 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.3.4 Electrostatic potential surface of flutolanil 
modeled using Spartan version ’02 (Wavefunction Inc., CA) 
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5.5 Determination of Soil to Solution Ratio 

Soil to solution ratio was investigated for at least one soil per pesticide type (Figures 

5.4.1-5.4.3). The amount needed for the other soils was then predicted, based on the total organic 

carbon content of these soils. The basis of the aforementioned estimation is that organic matter 

content is well known to correlate with sorption of HOCs (Morillo et al., 2004, Locke et al., 

1997; Daly, 1987). In addition, the sensitivity of the methods developed for pesticide analysis 

also influenced the selection of soil to solution ratios. It is generally recommended that % 

sorption should be chosen within the range of 20-80%, because a higher concentration will lower 

% sorption as a result, whereas at lower pesticide concentration, it is expected that % sorption 

will be higher (OECD, 2000). 

For all pesticides, the log amount (in mg) of Pahokee Peat is positively correlated with 

the amount sorbed in percent (R2 = 0.97 – 0.997). Mandeville soil also exhibited similar behavior 

with the pesticide tested, which is acifluorfen (R2 = 0.96). In Elliot, the amount of soil is linearly 

correlated with the amount of norflurazon (R2 = 0.995). Thus, for soils with high organic carbon 

content, it may be inferred that for a constant amount of sorbate solution, increasing the amount 

of soil results in an increase in the amount of HOC sorbed.  

        

 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.4.1 Soil to solution ratio of acifluorfen in Pahokee Peat (red) and Mandeville soil (cyan) 
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Figure 5.4.2 Soil to solution ratio of norflurazon in Pahokee Peat (red) and Elliot soil (green) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.4.3 Soil to solution ratio of flutolanil in Pahokee Peat 
 
5.6 Sorption Rate 

       Initially, sorption rates for norflurazon were evaluated using incubation times of up to 

one month (~720 hr), and complete kinetics curve are shown in Chapter 6. Figure 5.5.1 

illustrates that apparent pseudo-equilibrium was achieved within five days. Here, pseudo-

equilibrium means that the change in relative concentrations was insignificant, compared to 

longer incubation times (>5 day). Thus, for the other two pesticides, incubation times of up to 10 

days were set, later proving to be sufficient in evaluating apparent pseudo-equilibrium. For 
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flutolanil and norflurazon, apparent pseudo-equilibrium were reached at 5 days (~120 hr), and 2 

days (~48 hr) for acifluorfen. Thus, an incubation time of 5 days was used for all.  

All sorption kinetic curves are presented and discussed in detail in Chapter 6. Meanwhile, 

Figure 5.5.1 is a selected kinetics curve for the sorption of norflurazon, one of the pesticides, in 

Pahokee Peat. Three different hydration conditions were investigated as shown: an initially dry 

soil, 1 day prewetted soil prior to sorption, and 5 day prewetted soil. The study performed 

sorption kinetics in Pahokee Peat up to a minimum of 720 hr (30 days), with a constant 

norflurazon concentration; the region of pseudo-equilibrium is shown in Figure 5.5.1. It appears 

that an initially dry soil had the fastest kinetics over the initial 72 hr, as well as the highest uptake 

of norflurazon sorbed, compared to its prewetted counterpart. However, a slight plateau in the 

region of 12 hr to 20 hr is apparent, which may mean that as the soil wets, there is 

conformational rearrangement of moieties such that the more hydrophilic moieties (O-alkyl type) 

would be more available at the outer surface. Prewetted samples demonstrated a slower kinetics 

and had lower sorption during the early sorption kinetics, as well as on the latter phase of 

sorption kinetics. However, dry and wet sorption kinetics appears to converge at equilibrium. 

This implies that within the fast and slow sorption kinetics, norflurazon might be sorbed in 

different domains and thus, we may not see an effect on sorption isotherms, but we may see 

differences in desorption kinetics. Similarly in the kinetics profile, fast and slow regions with a 

plateau at <20 hr were exhibited by Mandeville and Elliot soils. 

Total carbon released from initially dry control samples normalized to soil weight (soil samples 

without pesticide) also reveal fast and slow regions. It is interesting to note that the plateau 

region demonstrated in the kinetics is seen here, within 10-20 hours of soil incubation as shown 

by the plots in figure 5.5.2. This further supports previous assumption of possible SOM 

rearrangement upon wetting. This hypothesis for the presence of fast and slow kinetics during 
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sorption of these HOC pesticides may be attributed to conformational rearrangement of SOM 

during its hydration or wetting; therefore this hypothesis will be evaluated further in Chapter 6. 

The kinetics of pesticide uptake in soils will be fitted to a two-site, non-equilibrium model. 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.5.1 Kinetics of sorption of norflurazon in Pahokee Peat soil 
 

Figure 5.5.3 shows an excitation and emission matrix difference spectra between a 6 hr 

and 4 day prewetted Pahokee Peat and 6 hr and 10 day prewetted Elliot soil. The green color 

corresponds to the subtraction of longer prewetting conditions from that of 6 hr only (e.g., 6 hr–

10 day), and the red color corresponds to the reverse (e.g., 10 day–6 hr).  

It may be seen that 6 hr pre-hydration time for both Elliot and Pahokee Peat soils 

extracted more chromophore groups with shorter emission wavelengths, which may correspond 

to smaller and less condensed SOM. Fluorescence signatures in aquatic or terrestrial natural 

organic matter (NOM) can be ascribed to quinone-like structures, which may differ in 

functionalization and conjugation (Cook et al., 2009). Three main chromophore groups are 

commonly seen with NOM. The first group has an excitation wavelength, λex ≈ 240–325 nm and 

emission wavelength, λem at approximately 300–400nm, which are designated in the literature 

as due to amino acid like moieties (Coble et al., 1990; Coble, 1996; Chen et al., 2003; Stedmon 

et al., 2003; Ariese et al., 2004; Cory and McKnight, 2005; Holbrook et al., 2006; Ohno and Bro, 
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2006; Cook et al., 2009). The second group is for quinone A-like moieties which are less 

functionalized and less conjugated, with λex ≈ 240 –325 nm and λem ≈ 375 –475 nm. Lastly, we 

find quinone-B like moieties with fluorescence properties in the following region: λex ≈ 250–370 

nm and λem ≈ 450 –550 nm which are expected to be highly functionalized, and with a high 

degree of condensation and conjugation (Cook et al., 2009). 

 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.5.2 TOC of soil controls normalized with soil weight (red: Pahokee, cyan: Mandeville, 
green: Elliot) 
 
 

incubation period, hr 
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Figure 5.5.3 Difference spectra of fluorescence excitation emission matrix between a 6 hr and 4 
day Pahokee Peat (left) control solution (green: 6 hr-4 day, red: 4 day-6 hr); and between a 6 hr 
and 10 day Elliot soil (right) control solution (green: 6 hr-10 day, red: 10 day-6 hr). 
 

The fluorescence of quinone A and quinone B-like moieties may therefore come from 

two different energy transitions during excitation: n–π * and π–π *, occurring at longer and 

shorter λs, respectively and are due to quinone-like donor acceptor complexes (Cook et al., 2009; 

Ariese et al., 2004). Based on the above discussion, a 6 hr pre-moistened soil exfoliates smaller 

and more hydrophilic type moieties, such as similar quinone A moieties as designated in Figure 

5.5.3. At a longer wetting time, quinone B like moieties, which are previously characterized to be 

more aromatic and hence more hydrophobic in nature (Cook et al., 2009), were exfoliated.  

5.7 Sorption Capacity in Relation to the Sorbates 

For the three pesticides, organic carbon normalized Freundlich sorption capacity (KFOC) 

follow the trend Flutolanil > Norflurazon > Acifluorfen in all cases (Table 5.6.1-5.6.3, Figure 

5.6.1-5.6.3). For example, in a purely organic dry soil Pahokee Peat, sorption of norflurazon and 

acifluorfen are only ~63.85% and ~21.17% respectively, of the total KFOC of flutolanil. Possible 
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reasons for the differences in pesticide sorption in the same organic matter sorbent are pesticide 

properties such as: a) polarity; b) hydrophobicity; c) structure; d) size; and e) flexibility.  

Here, polarity refers to the number of hydrogen bond acceptor and H-bond donor atoms 

in the molecule. Acifluorfen, norflurazon and flutolanil have 6, 4, and 3 hydrogen bond acceptors 

respectively, and all of them only have one proton donor group. In terms of hydrophobicity, 

flutolanil is the most hydrophobic, followed by norflurazon and then acifluorfen, based on their 

aqueous solubility and octanol water partition coefficients. Each of these pesticides consists of 

two 6 membered aromatic rings and their molecular sizes decrease in the order, acifluorfen > 

flutolanil > norflurazon. However, the presence of other substituents may influence electron 

donor acceptor interactions, as well as imparting differences in the π-donor and acceptor 

capabilities of these aromatic rings. Lastly, the number of freely rotatable bonds is four for both 

acifluorfen and flutolanil and two for norflurazon, which influences the molecules’ flexibility. 

Pollutant solubility, as well as n-octanol water partition coefficient (designated as KOW or 

POW), has been used to predict sorption of HOC to sediments and soils (Allen King et al., 2002; 

Schwarzenbach et al., 2003; Huuskonen, 2003). In a purely organic matter, Pahokee Peat 

pesticide KOW is highly correlated with pesticide KOC, with R2 = 0.998. In the determination of n-

octanol water partition coefficients, the fraction of water in the octanol phase is ~21 mole percent 

(Pignatello, 2009). Hence, aside from hydrophobic forces, free energy relationship from KOW 

also includes some polar forces such as hydrogen bonding and dipole-dipole forces (Pignatello, 

2009). Free energy relationship, with respect to KOW for diverse polar and nonpolar compounds 

(n=403), including pesticides (Huuskonen, 2003), provided the relationship:  log KOC = 0.60 log 

POW + 0.84 with r2 = 0.79. Another one parameter free energy relationship for polar compounds, 

as studied by Nguyen et al. (2005), resulted to log KOC = 0.73 log POW + 0.52 with r2 = 0.83. If 

the log POW values of flutolanil (3.54), norflurazon (2.45), and acifluorfen (~1.54 at pH
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Table 5.6.1 Sorption capacity of Pahokee Peat 
 R2 KF KFOC KD at 0.5 

ppm 
KDOC at 0.5 
ppm 

KD at 
5ppm 

KDOC at 
5ppm 

KrF KrFOC 

Acifluorfen 
sorp dry  71.24±0.35 151.89±0.74 80.81±0.06 172.30±0.06 53.16±0.09 113.34±0.10 3897±40 8310±86 
sorp1d prewet  63.74±0.47 135.91±1.00 71.63±0.08 152.74±0.09 48.61±0.13 103.64±0.14 3740±59 7975±127 
sorp 5d prewet  55.15±0.45 117.59±0.96 62.50±0.08 133.27±0.08 41.23±0.11 87.92±0.12 3050±52 6504±110 
des dry 0.996 75.09±0.83 160.10±1.77 83.37±0.21 177.75±0.22 69.10±0.40 147.34±0.43 7171±252 15289±538 
des1d prewet 0.988 62.60±1.29 133.48±2.76 68.10±0.33 145.21±0.35 61.06±0.68 130.19±0.73 7273±493 15507±1052 
des 5d prewet 0.987 53.75±1.15 114.61±2.46 60.07±0.29 128.08±0.31 53.81±0.61 114.74±0.65 6408±441 13663±941 

Norflurazon 
sorp dry  214.91±2.52 458.23±5.37 246.60±1.24 525.80±2.65 156.19±1.83 333.02±3.90 3109±75 6628±161 
sorp1d prewet  211.12±1.96 450.16±4.18 247.72±0.97 528.19±2.07 145.68±1.33 310.61±2.83 2742±52 5847±110 
sorp 5d prewet  180.73±1.50 385.35±3.20 212.78±0.73 453.69±1.56 123.72±0.99 263.80±2.10 2309±38 4924±81 
des dry 0.997 389.50±1.84 830.49±3.92 450.29±1.77 960.11±3.76 278.18±2.53 593.13±5.40 5433±102 11585±218 
des1d prewet 0.995 350.36±2.17 747.04±4.62 432.58±1.95 922.35±4.16 214.79±2.25 457.97±4.79 3563±77 7597±165 
des 5d prewet 0.991 286.24±2.19 610.31±4.67 344.08±2.09 733.66±4.46 186.74±2.63 398.16±5.62 3312±97 7061±206 

Flutolanil 
sorp dry  336.54±3.18 717.57±6.78 394.12±2.55 840.35±2.72 233.30±3.50 497.44±3.74 1837±38 3917±80 
sorp1d prewet  320.56±1.77 683.50±3.78 363.95±1.52 776.01±1.62 238.77±2.31 509.10±2.46 1930±25 4115±54 
sorp 5d prewet  288.68±1.83 615.52±3.91 334.43±1.80 713.08±1.92 205.19±2.57 437.51±2.74 1630±28 3476±59 
des dry 0.981 397.32±7.11 847.16±15.17 533.57±4.26 1137.69±4.54 200.45±3.72 427.41±3.96 1405±36 2997±76 
des1d prewet 0.995 436.36±4.40 930.40±9.39 515.24±2.78 1098.60±2.96 296.74±3.71 632.70±3.96 2320±40 4947±85 
des 5d prewet 0.996 373.70±2.56 796.80±5.45 458.46±2.22 977.53±2.37 232.51±2.62 495.77±2.79 1760±27 3752±58 
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Table 5.6.2 Sorption capacity of Mandeville Soil 
 R2 KF KFOC KD at 0.5 

ppm 
KDOC at 0.5 
ppm 

KD at 
5ppm 

KDOC at 
5ppm 

KrF KrFOC 

Acifluorfen 
sorp dry  18.82±0.11 173.61±1.05 20.60±0.02 190.04±0.08 15.26±0.03 140.74±0.14 1325±16 12227±148 
sorp1d prewet  17.64±0.07 162.70±0.66 19.28±0.01 177.84±0.05 14.34±0.02 132.32±0.09 1251±10 11541±96 
sorp 5d prewet  16.18±0.08 149.27±0.73 17.73±0.01 163.55±0.06 13.09±0.02 120.74±0.10 1130±11 10425±101 
des dry 0.998 19.89±0.17 183.53±1.52 25.65±0.05 236.59±0.21 22.24±0.09 205.21±0.43 2444±62 22544±576 
des1d prewet 0.995 17.85±0.26 164.69±2.39 23.51±0.07 216.88±0.35 22.09±0.16 203.82±0.75 2761±124 25472±1142 
des 5d prewet 0.994 16.20±0.25 149.41±2.31 21.45±0.08 197.84±0.35 20.23±0.16 186.64±0.76 2551±126 23535±1160 

Norflurazon 
sorp dry  49.05±0.12 452.45±1.11 54.03±0.07 498.39±0.64 39.18±0.12 361.47±1.07 863±5 7959±49 
sorp1d prewet  44.32±0.12 408.86±1.13 48.71±0.06 449.34±0.59 35.60±0.11 328.38±1.01 788±5 7272±46 
sorp 5d prewet  38.44±0.11 354.63±0.98 42.59±0.06 392.94±0.58 30.29±0.10 279.47±0.95 657±5 6064±43 
des dry 0.999 55.92±0.19 515.91±1.76 63.16±0.16 582.69±1.51 42.16±0.25 388.91±2.35 872±11 8048±100 
des1d prewet 0.999 54.10±0.20 499.09±1.87 61.14±0.17 564.04±1.58 40.72±0.26 375.69±2.44 841±11 7762±104 
des 5d prewet 0.999 47.13±0.17 434.79±1.56 54.23±0.15 500.24±1.40 34.03±0.22 313.97±2.04 673±9 6205±83 

Flutolanil 
sorp dry  125.55±0.63 1158.20±5.85 139.65±0.53 1288.24±2.46 98.07±0.87 904.74±4.02 807±10 7441±90 
sorp1d prewet  116.47±0.80 1074.46±7.35 129.57±0.67 1195.28±3.08 90.96±1.09 839.11±5.01 748±12 6901±113 
sorp 5d prewet  103.35±0.61 953.42±5.59 116.06±0.50 1070.67±2.31 78.96±0.79 728.44±3.65 644±9 5942±81 
des dry 0.991 135.50±1.52 1250.04±14.04 161.73±1.09 1492.00±5.01 89.88±1.40 829.19±6.46 696±15 6425±137 
des1d prewet 0.983 121.36±1.64 1119.57±15.13 144.33±1.41 1331.43±6.49 81.21±1.84 749.20±8.48 631±20 5824±180 
des 5d prewet 0.986 108.19±1.46 998.04±13.49 130.40±1.08 1202.95±4.98 70.16±1.35 647.26±6.22 539±14 4974±131 
 

 

 

 

 



158 
 

Table 5.6.3 Sorption capacity of Elliot Soil 
 R2 KF KFOC KD at 0.5 

ppm 
KDOC at 0.5 
ppm 

KD at 5 
ppm 

KDOC at 5 
ppm 

KrF KrFOC 

Acifluorfen 
sorp dry  2.73±0.05 94.28±1.63 3.13±0.01 107.86±0.12 2.00±0.01 68.98±0.18 143±5 4939±158 
sorp1d prewet  2.59±0.02 89.19±0.78 3.00±0.00 103.36±0.06 1.84±0.00 63.34±0.08 122±2 4218±68 
sorp 5d prewet  4.12±0.11 141.98±3.86 4.90±0.02 168.97±0.31 2.75±0.02 94.79±0.40 166±8 5717±292 
des dry 0.920 5.32±0.11 183.44±3.94 7.59±0.06 261.67±0.99 2.33±0.04 80.45±0.71 63±7 2164±229 
des1d prewet 0.920 4.44±0.09 153.03±3.06 6.16±0.05 212.26±0.89 2.08±0.04 71.62±0.70 64±8 2223±261 
des 5d prewet 0.934 11.89±0.26 409.83±8.87 17.23±0.11 594.28±1.96 5.02±0.08 172.99±1.32 123±11 4253±393 

Norflurazon 
sorp dry  12.21±0.07 421.03±2.54 14.28±0.04 492.54±1.33 8.48±0.05 292.52±1.83 182±4 6273±137 
sorp1d prewet  11.73±0.07 404.31±2.30 13.96±0.03 481.41±1.11 7.82±0.04 269.60±1.44 163±2 5618±62 
sorp 5d prewet  10.88±0.06 375.07±2.20 13.00±0.03 448.24±1.14 7.19±0.04 247.99±1.47 135±5 4668±163 
des dry 0.997 17.33±0.09 597.47±3.02 20.18±0.08 695.90±2.73 12.16±0.11 419.35±3.82 233±4 8040±152 
des1d prewet 0.986 19.52±0.15 673.02±5.04 24.57±0.19 847.22±6.64 11.44±0.21 394.56±7.18 181±7 6242±235 
des 5d prewet 0.994 18.09±0.11 623.91±3.96 22.80±0.11 786.13±3.66 10.58±0.11 364.87±3.94 167±4 5755±129 

Flutolanil 
sorp dry  13.55±0.17 467.27±5.86 15.96±0.14 550.21±2.45 9.28±0.19 319.95±3.31 73±2 2508±71 
sorp1d prewet  11.65±0.21 401.64±7.13 13.87±0.16 478.33±2.80 7.77±0.21 267.97±3.64 60±2 2081±77 
sorp 5d prewet  11.92±0.15 411.12±5.02 14.45±0.12 498.28±2.01 7.63±0.14 263.21±2.47 58±1 2013±52 
des dry 0.899 18.68±0.64 644.18±22.01 26.41±0.44 910.83±7.65 8.38±0.33 288.85±5.63 56±3 1941±103 
des1d prewet 0.923 17.48±0.62 602.91±21.48 22.38±0.41 771.59±7.13 9.89±0.42 340.91±7.30 72±4 2494±146 
des 5d prewet 0.951 16.15±0.53 556.88±18.12 21.84±0.36 753.27±6.20 8.03±0.31 276.74±5.29 56±3 1931±101 
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Figure 5.6.1 Sorption (left) and desorption (right) in Pahokee Peat 
 
 

 
Figure 5.6.2 Sorption (left) and desorption (right) in Mandeville soil 
 

 
Figure 5.6.3 Sorption (left) and desorption (right) in Elliot soil 
 
= 5), are substituted in the latter equation, yielded KOC values in L kg-1 are: flutolanil (1271); 

norflurazon (204); and acifluorfen (44). 
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Compared to our experimental results on Pahokee Peat (Table 5.6.1), this model 

overestimates KOC of flutolanil by greater than 40%, while norflurazon and acifluorfen were 

underestimated by greater than 50% and 70%, respectively. This means that use of POW alone is 

insufficient to quantify sorption of these pesticides. Thus, aside from hydrophobic, H-bonding, 

and Keesom forces, other interactions may contribute to sorption of these pesticides. The multi- 

free energy relationship by Nguyen et al. (2005) shows that for polar chemicals, hydrophobic 

forces reflected through cavitation energy (~44%), as well as London and Debye forces (~21%), 

have the greatest contribution to sorption, followed by dipole-dipole forces (15%) and proton 

acceptor capability (16%). The least contribution is from proton donor ability (1%) of the 

molecule. 

 Zhu and Pignatello (2005) presented another free energy relationship that includes 

hydrophobic effects, dipolarity and polarizability, H-bonding and π–π electron donor-acceptor 

interactions. The hydrophobic effect still has the greatest contribution to log KOC, while 

dipolarity and polarizability (D/P) also carries a significant contribution (i.e., 15–40 %). An 

increase in dipole moment and polarizability (i.e., molecular size) increases D/P contribution. 

 Thus flutolanil, having the highest KOC in Pahokee Peat, may be inferred as mainly due to 

its hydrophobicity. An additional contribution to its sorption is due to the potential for very weak 

H-bonding with SOM on its ether, CF3, Cl groups, and moderate H-bonding energies of 

benzamide group, with amide moieties in SOM. In addition, the π-donor ability of the aromatic 

group, is enhanced by the presence of electron donating groups –OR and –NHR, may also 

contribute to π–π electron donor acceptor interactions with SOM; aromatic moieties (typically 

~25%) of SOM (in carbon terms) are envisioned to be largely π-acceptor sites due to presence of 

electron withdrawing groups (Shirzadi et al., 2008a; 2008b; Kellerher and Simpson, 2006). In 

addition, the presence of four rotational bonds for flutolanil increases its molecular flexibility, 
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which may increase sorption by being adapting molecular conformation or geometry to the most 

favored interactions. It can also be noted that the greatest localization of charges from the 

electrostatic potential surface modeling of pesticides is seen for flutolanil (Figures 5.3.1 to 5.3.4), 

which may facilitate dipole interactions. 

 Norflurazon is second in terms of hydrophobicity between the three pesticides, dipolarity, 

and polarizability (i.e., dipole moment). It is also capable of strong to very strong hydrogen 

bonding with carboxylic and phenolic groups in SOM through its azine and amino functionalities 

(Gilli, 2009). The aromatic group containing the CF3 substituent is also slightly electron rich, 

thus it can serve as a π-donor to the electron deficient SOM aromatics. The use of KOW to 

estimate norflurazon’s KOC results to 50% underestimation of its KOC, thus the above additional 

interactions (dipolarity/polarizability, H-bonding, and π–π interactions) also significantly 

contribute to sorption. 

 Acifluorfen is the least hydrophobic, based on KOW and solubility, and also has the lowest 

empirical KFOC. If solely KOW is taken into consideration as influencing KOC, it is greatly 

underestimated by predictive modeling. Hence other interactions largely contribute to its KOC. In 

a neutral form, the carboxylic group exhibits strong to very strong H-bonding with nitrogen 

moieties in SOM such as azine, azole, amine (Gilli, 2009; Gilli and Gilli, 2000). The nitro group 

in the aromatic ring containing the COOH group enhances its acidity. Acifluorfen also had the 

highest dipole moment and is the most polarizable among the three pesticides; this finding may 

also largely influence its sorption (Zhu and Pignatello, 2005). However, it should be noted that 

only a small proportion of acifluorfen exists in the protonated form at the sorption pH (pH ~ 5), 

as the pka of COOH in acifluorfen is ~3.5. Hence, the presence of ionized carboxylic and 

phenolic groups in SOM repels the anion form of acifluorfen, thereby reducing its KOC. In 
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addition, the aromatic rings of acifluorfen are both π electron acceptors (Figure 5.3.1); hence, π–

π electron donor acceptor with SOM moieties would be less probable (Shirzadi, 2008a). 

In a high resolution magic angle spinning NMR study of acifluorfen binding at the soil-

water interface, the results suggested that interactions with electronegative groups such as the 

COOH, Cl, and CF3 groups of the acifluorfen most likely play a dominant role in its sorption at 

pD values of 5.8 – 5.9 (pD is just like pH, because the solvent used is D2O). The COOH group 

may interact through H-bonding and dipole interactions, while F and Cl may also interact 

through dipole interactions and weak H-bonding. The flexibility of this molecule (number of 

rotational bonds = 4), can favorably adapt a planar configuration where all the electronegative 

substituents are on one side of the molecule, thereby facilitating the above interactions. 

5.8 Sorption Capacity in Relation to Sorbents 

 The KFOCs  for norflurazon  in Pahokee and Mandeville soils are statistically equal in a 

dry soil, while it is approximately 8% lower in Elliot soil, which implies that sorption of 

norflurazon is primarily due to organic carbon, especially at organic carbon>3%. Thus, at the 

concentrations used in the sorption isotherms, norflurazon did not show affinity to the mineral 

phase, especially in Mandeville soil, which contains expandable clays. A previous study on 

sorption/desorption of norflurazon on a Ca-montmorillonite showed similar results (Carringer et 

al., 1975).  

For flutolanil and acifluorfen, the KFOC was highest in Mandeville soil, followed by 

Pahokee; the lowest sorption was observed in Elliot soil. Three questions arise from these 

observations, namely: 

1) Why is KFOC sorption in Mandeville soil > Pahokee Peat? 

2) Why is KFOC sorption in Mandeville soil >> Elliot? 
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3) Why does norflurazon show a different behavior, compared to the other two 

pesticides? 

The higher KFOC observed for Mandeville soil may be attributed to the presence of an 

expanding type clay mineral montmorillonite (Figure 5.6.2), as well as presence of an 

appreciable amount of sand grains (Table 5.3.1). Since all pesticides used have both polar and 

nonpolar moieties, these have the ability to interact with both polar and nonpolar sites of 

minerals. We may speculate that the presence of expandable type clay minerals and a high 

proportion of sand in Mandeville soil, adds to its sorption capacity, when compared with 

Pahokee Peat. Mandeville soil consists of approximately 23% clay and 49.38% sand. Its mineral 

fraction consists of quartz, kaolinite, abite, muscovite, and montmorillonite (Figure 5.7.1). 

Quartz is mainly made of phyllosilicates. Kaolinite is a 1:1 non-expandable clay. Muscovite is a 

primary mineral that transforms into expandable 2:1 smectite (potassium ion exchanged) clay 

upon weathering. On the other hand, Na-montmorillonite is a highly expandable 2:1 type clay.  

When 2:1 clays such as montmorillonite and smectite are dispersed in an aqueous 

solution, water molecules can diffuse in the interstitial layer resulting in hydration of the cations 

that hold the two layers together and/or diffusion of some of the exchangeable cations in solution 

(Dunnivant and Anders, 2006; Sposito, 1984; Quirk and Murray, 1999). This will then result to 

an increase in the interlayer spacing, commonly referred to as clay expansion. This expansion or 

swelling of clay increases the surface area of contact for HOC, by diffusion into these interstices. 

In addition, polar interactions with water molecules that hydrate these cations in the interlayer of 

montmorillonite surfaces are plausible (Hundal et al., 2001; Laird et al., 1992). When favorable 

interactions between the clay surface and HOC are present, sorption to these sites is then 

facilitated. For example, cation–π interactions are plausible for the negative quadrupolar 

aromatic ring in flutolanil (i.e., the ring that contains electron donating groups (–OR and –NHR) 
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and the exchangeable cations. This favourable interaction and  flexibility of flutolanil molecule 

(i.e., number of rotational bonds = 4), can lead research to envision  that: 1) the aromatic π 

interacts with the cations; and 2) the localized positive surface potential in the amide, propyl, and 

benzene ring may facilitate n–H bond interactions (where n = nonbonding electrons) in mineral 

surfaces, such as oxygen in siloxane. 

Another plausible mechanism for the enhanced sorption of flutolanil to soils with sand 

grains is aromatic π–H bonding with free silanol groups. Flutolanil has a π-donor ring, and this π 

donor capacity is enhanced by the presence of electron donating substituents –NHC=O and –OR. 

For example, it has been suggested that π cloud of benzene above and below the plane of its ring 

can form weak H-bonding with water (Gotch and Zwier, 1992), with bonding energy of 

approximately 1.78 kcal mol-1 (Suzuki et al., 1992). Evidence of the existence of π–H bonding of 

benzene and toluene with free silanols on a silica surface has been shown through FTIR and 

Raman spectroscopy (Ringwald and Pemberton, 2000).  

In addition, sorption to hydrophobic sites in mineral grains, including clay minerals, may 

enhance sorption of hydrophobic pesticides (Hundal et al., 2001; Quirk and Murray, 1999; Chiou 

and Rutherford, 1997). For example, sand grains may be coated with NOM; several of these 

individual grains with NOM may be intimately associated, thereby forming hydrophobic pores of 

different sizes (Lehmann et al., 2007). Up to now, there is no absolute definition of these 

hydrophobic nanopores in terms of pore diameter. The IUPAC classifies pores based in 

diameters as macropores (>50 nm), mesopores (2–50 nm), and micropores (<2 nm) (IUPAC, 

1972; Nam and Alexander, 1998) whereas soil scientist categorizes micropores as having 

diameters of 5–30 μm (SSSA, 1997). Hassink et al. (1993) suggested the presence of <100 nm 

pore sizes in soils. The pesticides in this study range in molecular sizes of ~254 A°3 to 326 A°3 

and would therefore require approximately a minimum of 30–40 nm pore 
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sizes.  It is apparent from Table 5.1 that sandy and sandy loam soils exhibited the highest KOC 

values. Our results are congruent with aforementioned data, that the presence of an appreciable 

amount of sand in Mandeville soil may increase flutolanil sorption, by means of sorption by π–H 

bonding and sorption to hydrophobic nanopores (Daly, 1987; http://www.efsa.europa.eu). That 

norflurazon did not show the same effect in Mandeville soils indicates that hydrophobicity of the 

HOC is the single most important factor in sorption to these hydrophobic sites. It must be noted, 

however, that sorption of these three pesticides should still occur predominantly in the SOM, due 

to the high organic carbon contents of these sorbents. 

On the other hand, Elliot soil consists of illite clay, which exhibits medium swelling 

properties only, and may not enhance sorption of flutolanil and acifluorfen to the above 

discussed sorbent sites. The soil used by Suzuki et al., (1998) has similarity with Elliot soil in 

this study, in terms of soil use (turf soil), pedon (both belonging to a loam type of soil), as well 

as pH and cation exchange capacity values. Their KOC values are 418 L kg-1 and 467 L kg-1, 

respectively.  

 At Mandeville soil pH, which is 4.62, a greater proportion of acifluorfen is in ionized 

form. Acifluorfen anion, therefore, experiences initial repulsion on the negatively charged clay 

surfaces. However, its carboxylate group may also complex with exchangeable cations in 

mineral oxides, similar to that suggested for fluoroquinolones (antibiotics having an ionizable 

carboxylic group attached to an aromatic ring) (Carrasquillo et al., 2008; Mackay and Seremet, 

2008; Gu and Karthikeyan, 2005). Since sorption of acifluorfen is much lower, compared to 

flutolanil in Mandeville soil, it may be speculated that its sorption in this soil is mainly by 

hydrophobic forces, especially of the unionized form.  

Using reduced Freundlich coefficients (KrF), it is possible to compare sorption affinities 

of HOCs for different sorbents. A plot of the reduced Freundlich coefficient KrF and soil organic 

http://www.efsa.europa.eu/�
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carbon content shows r2 values of 0.97, 0.99, and 0.99 for flutolanil, norflurazon, and 

acifluorfen, respectively in dry soils. Thus, for these pesticides found to be at equilibrium 

concentrations approaching saturation, it may be predicted that sorption to SOM will dominate. 

Normalization of KrF with organic carbon content yields the reduced organic carbon Freundlich 

coefficient, KrFOC. If sorption is solely due to dissolution or partitioning in the SOM, then KrFOC 

should be constant. However, this is not always the case. Differences in KrFOC may be due to the 

following factors: a) the type of organic carbon moieties that make-up the organic matter and the 

resulting SOM structure; b) age of soil; c) mineralogy; and d) sorbate structure and polarity 

(Ding et al. 2002; Chefetz et al. 2000). Both sorption and desorption isotherms generally show 

that KrFOC decreases in this order: Mandeville > Pahokee > Elliot for all pesticides, except for 

norflurazon in Pahokee Peat and Elliot soils which shows a near constant KrFOC in sorption 

isotherms (with only 4–5% difference). This implies that at reduced concentrations, norflurazon 

sorbs mainly to SOM. It can also be argued that the type of organic carbon moieties that make up 

these soils are very similar, resulting in a near constant KrFOC. Indeed, similar elemental 

composition and functional group characterization (by NMR) of Pahokee Peat and Elliot bulk 

soils, as well as their humic materials, are presented by IHSS. The slightly higher sorption KrFOC 

of Mandeville soil, when compared to Pahokee Peat soil (17–20% difference), may be due to the 

differences in: 1) organic carbon make-up and 2) soil mineralogy. This hints at possible sorption 

to mineral/clay surfaces of norflurazon at concentrations approaching saturation, because other 

high energy sites (i.e., SOM) are exhausted.  

Since KrF is more representative of equilibrium concentrations (Ce), approaching water 

solubility limit (Carmo et al., 2000), sorption at certain Ce were also evaluated and compared 

with the original isotherm, in order to have a complete picture irrespective of dimensional 

analysis. Sorption KF at a particular Ce (0.5, 5mg/L) reveals a decreasing order, such that 
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Pahokee Peat > Mandeville > Elliot for all three pesticides investigated as well as in different 

soil wetting conditions. The organic carbon normalized distribution coefficient (KDOC) results 

provide the order Mandeville > Pahokee Peat > Elliot for acifluorfen and flutolanil for all Ce 

evaluated, with the exception of acifluorfen in 5-day prewet Elliot soil. Again, equilibrium 

concentrations 0.5 mg/L and 5 mg/L of norflurazon, derived from the sorption isotherm, show 

the slightest KDOC variation among the three sorbent in their dry state, with differences of ≤12% 

only, when KDOC is compared with Pahokee Peat. This implies that for norflurazon, soil organic 

matter is where the major sorption occurs. A plot of KD versus organic carbon content of sorbents 

at Ce=0.5 mg/L demonstrate that its slope in the desorption part is greater than its corresponding 

sorption (Table 5.7.1 and Figure 5.7.2). This is apparent for norflurazon and flutolanil, which 

suggest that organic matter swelling occurred during sorption. This form of matrix 

rearrangement may not be fully reversible during desorption, hence it accommodates more 

sorbate as surface area for sorption is increased. In addition, KD versus organic carbon desorption 

slopes at Ce=0.5 ppm are quite similar for norflurazon and flutolanil, which suggest that at lower 

concentrations, both pesticides have a nearly equal affinity for SOM sorption sites. It is also 

shown that sorption KD in organic carbon is greater at lower concentration (i.e., 0.5 ppm), than at 

high concentration (i.e., 5 ppm). High energy sorption sites are filled first at lower sorbate 

concentrations. 

If the organic matter contents of the sorbent used in this study are substituted in the linear 

equation given by Morillo et al. (2004), norflurazon KOC in L kg-1 are as follows: Pahokee (426), 

Mandeville (420), and Elliot (397). These results are similar with empirical data: Pahokee (458), 

Mandeville (452), and Elliot (421); thus supporting that for norflurazon, sorption to organic 

matter may be the single most important reason. 
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Table 5.7.1 Equation of the line for Figure 5.7.2 
Pesticide R2 Equation of the line 

Sorption Acifluorfen 0.9979 y = 1.74x - 0.24 
Norflurazon 0.9999 y = 5.30x - 2.13 
Flutolanil 0.9757 y = 8.12x + 19.07 

Desorption Acifluorfen 0.9964 y = 1.68x + 4.81 
Norflurazon 0.9937 y = 10.07x - 25.68 
Flutolanil 0.9918 y = 11.15x + 15.13 

 

 
Figure 5.7.2 Sorption-desorption distribution coefficients at 0.5 ppm equilibrium concentration 
of the different pesticides to the different sorbents 
 
5.9 Sorption with Respect to Hydration 

Tables 5.6.1 to 5.6.3 and Figures 5.6.1 to 5.6.3 show that in general, Freundlich sorption 

capacities or the organic carbon normalized Freundlich sorption coefficient decreases in the 

order of dry, 1-day prewet, and 5-day prewet respectively for all soil and pesticide combination 

except for: 

a) norflurazon in Pahokee Peat, where sorption to dry is statistically equal to that of 1-day 
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 prewet; 

b) flutolanil in Pahokee Peat, where after desorption, KFOC follows the trend 1 day > dry > 5 

day prewet; 

c) acifluorfen in Elliot soil, where KFOC in both sorption and desorption isotherm provide 

the trend 5 day prewet > dry > 1 day prewet; 

d) flutolanil in Elliot where dry > 1 day prewet ≈ 5 day prewet; and 

e) norflurazon in Elliot soil where after desorption, sorption capacity was shown to be  1 

day > 5 day > dry  

The above observation that a dry soil sorbs more of HOC than wet soil is in agreement with our 

domain model of a whole soil. It was presented in Chapter 4 that the molecular assemblage in a 

whole soil consists of a domain of carbohydrate-like moieties, which are in close association 

with aromatic moieties (i.e., lignocellulosic like moieties) and another isolated domain, 

containing aliphatic-like moieties (Lattao et al., 2008). 

 In a dry soil, it may be envisioned that the hydrophobic moieties favor residing on the 

surface of the soil aggregates, while its hydrophilic parts prefer to migrate to the inside of the 

domain. Both the aromatic and aliphatic moieties are then available as sorption sites. Thus, when 

an aromatic HOC is exposed to an initially dry soil, sorption to these hydrophobic moieties is 

favorable through hydrophobic forces. However, sorption to aromatic moieties is thought to be 

more thermodynamically favorable, due to simultaneous π–π electron donor acceptor 

interactions, in addition to hydrophobic forces. On the other hand, in an initially wet soil, the 

hydrophilic moieties prefer to migrate on the surface, while the aromatic moieties reside in the 

core of the domain. The aliphatic domain, then, is available as sorption sites due to isolation 

from the second domain. Therefore, a lower sorption capacity for aromatic HOC, observed in 1- 

day and 5-day prewet soils, therefore is due to availability of mostly aliphatic domains as 
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sorption sites. These findings are also supported by kinetic studies of HOC uptake, such that a 

dry soil had a higher amount sorbed in the fast region (i.e., < 20 hrs), even up to 5-day of the 

slow region, but eventually coincided at longer incubation periods. A 5-day prewet soil had a 

lower sorption capacity compared to a 1-day prewet soils; this result may be explained by the 

kinetics involved in wetting of soils, which includes a fast region up to maximum of 24 hrs, and 

a slow process, which may take several days (Todoruk et al., 2003; Belliveau et al., 2000). In the 

work of Todoruk et al. (2003) and Belliveau et al. (2000), kinetically controlled wetting is 

attributed to the diffusion of water into soil micropores, where the redistribution of water in the 

micropores enables soil conformational rearrangement, resulting in an “expanded” or “swelled 

state”. In addition, for sorption from aqueous systems, entry or diffusion of contaminants to soil 

micropore sorption sites would require diffusion of water into these sites (Belliveau et al., 2000; 

Gamble et al., 2000). Hence, it is not surprising that the kinetic uptake of these HOC on sorption 

studies in slurried systems tend to follow that of kinetics of soil wetting. For a purely organic 

matter, soil micropores may be defined as voids that result from the three dimensional 

conformational geometry of SOM. 

 For whole soils with organic matter and mineral/clay components, wetting is thought to 

involve diffusion of water into SOM micropores, mineral micropores, and clay interlayers, as 

well as micropores that result from interassociations between SOM and mineral particles.  In the 

presence of both soil organic matter and mineral components in soils, wetting will thus affect 

both components simultaneously, resulting in conformational rearrangements within SOM; these 

are primarily due to H-bonding forces with water (Todoruk et al., 2003); diffusion of water to 

mineral surfaces, including clay, will also affect its sorption properties. Sorption of HOC to 

mineral/clay surfaces may be suppressed by hydration of the exchangeable cations, as well as 

formation of films of water on mineral/clay surface through ion-dipole interaction. In prewetted 
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soils, water diffuses into the interlayer spacing of expandable clays, thus forming more layers of 

water films in comparison to a thinner water film in its air-dried state. Although this swelling of 

clay by water increases surface area for sorption, the HOC must compete with water for these 

sorption sites. Sorption of atrazine to a soil containing smectite type of clays, such as 

montmorillonite, show that atrazine sorption decreases in the order of rehydration time: 24 hrs > 

109 hrs > 240 hrs (Chappell et al., 2005). In the same study, molecular simulation of sorption of 

atrazine to a smectite clay with potassium interlayer cations was provided, which shows that the 

presence of more hydration layers (e.g., three water layers) results in a greater interaction of 

atrazine with water molecules than with the interlayer cation; this may explain the reduced 

sorption at a longer wetting period. Water may also H-bond in order to free silanol groups in 

silica surfaces, thereby reducing π–H bonding between π donor site in a contaminant and 

hydrogen of silanols. In summary, regarding a whole soil containing SOM and minerals where 

both serve as sorption domains, a reduction of sorption capacities of prewetted soils is influenced 

by the wetting of organic matter/mineral phases. 

5.10 Hysteresis 

 Sorption and desorption distribution coefficients (KDs) were compared at Ce = 0.5 mg/L, 

because this equilibrium concentration is common in both isotherms for all pesticides. The 

highest initial concentration in the sorption isotherm used for flutolanil was 6 mg L-1; thus, the 

equilibrium concentration after desorption was less than 5 mgL-1. Moreover, KF desorption is 

always greater than the corresponding KF sorption in all sorbate-sorbent hydration conditions, 

except for acifluorfen in 1 and 5 day prewet Pahokee Peat and Mandeville soils. In general, 

Pahokee Peat and Elliot soils exhibit a larger difference between desorption and sorption KFOC 

values for norflurazon and flutolanil. This signifies that organic matter of sorbent is where major 

sorption occurs, if not solely for Pahokee Peat and Elliot. This non-ideal behavior also suggests 
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that: a) other forms of retention mechanism occur, aside from simple dissolution of these HOCs 

in the SOM (Carmo et al., 2000), and b) varying sorption energy sites between sorption and 

desorption are available (Tabatabai and Sparks, 2005). 

 In Mandeville soil, the difference between desorption and sorption KF is less compared 

with Pahokee Peat and Elliot soils. A plausible explanation is that Mandeville soil is younger 

relative to the other two sorbents. This inference is based on the observation that Mandeville top 

soil consists of a great deal of plant materials at different stages of biological degradation which 

are then manually separated during and after soil collections. Hence, its SOM may be assumed as 

less diagenetically altered. This would imply that it contains more “soft” type organic carbon 

moieties (i.e., aliphatic) and less condensed organic carbon functionalities, thus lesser deviation 

to ideal behavior. In addition, HOCs sorbed to the outer rim of inorganic particles in Mandeville 

soil may easily be desorbed. 

All sorption isotherms deviate from linearity, because N values were all less than 1 

(Table 5.9.1). These N values are as follows: acifluorfen 0.74–0.87, norflurazon 0.74–0.86, and 

flutolanil 0.71–0.84. Desorption isotherms showed lesser N values when compared to their 

corresponding sorption isotherms, as given by acifluorfen 0.45–0.51, norflurazon 0.65–0.82, and 

flutolanil 0.47–0.75. These findings indicate the presence of different adsorption sites of varying 

energies (Tabatabai and Sparks, 2005). Only acifluorfen desorption isotherms in Mandeville and 

Pahokee Peat showed a higher N value, which is actually close to linear (0.91–0.97). N values for 

sorption-desorption isotherms also showed the following trend: Elliot < Pahokee Peat < 

Mandeville. Elliot and Pahokee Peat soils, which may consist of older SOM; hence, it is 

expected to have a harder type carbon fractions (aromatics) as well as a more condensed SOM, 

resulting in more non-linear sorption isotherms (Ju and Young, 2005; Young and Weber, 1995). 

 The hysteresis index value is lowest for flutolanil in all three sorbents, followed by 
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norflurazon, and then acifluorfen. The only deviation is acifluorfen in Elliot soil, where it had the 

lowest hysteresis index observed. Except for norflurazon in dry Elliot soil, we observe that 

hysteresis is greatest for Elliot soil, followed by Pahokee Peat, and then Mandeville soil for 

flutolanil and norflurazon. This indicates that Elliot soil has the oldest SOM with more 

reduced/more diagenetically altered organic carbon, and Elliot soil also is more hysteretic, 

compared to Pahokee Peat and the rather young Mandeville soil. For instance, diagenetically-

altered SOM may contain some form of graphitic carbon, such as charcoal. This may cause 

additional sorption sites by diffusion into fixed micropores. 

A greater N value and less hysteresis observed for Mandeville soil may be related once 

again to a large fraction of soft domain (alkyl type moieties) in its organic matter make-up when 

compared to Pahokee Peat and Elliot soil (Huang and Weber, 1997). 

Hysteresis index may be a function of sorbate polarity and structure. The flutolanil 

molecule has a larger surface area of nonpolarity. This enables greater polarizability, thus 

allowing more Van der Waals interactions.  True hysteresis for this compound may be related to 

the creation of more pores as a result of macromolecular swelling during interactions with SOM. 

The penetration of a sorbate to the 3-dimensional macromolecular network of SOM leads to 

some form of conformational change in the SOM, in order to achieve a more energetically 

favored association with the sorbate (maximum interactions). This form of molecular 

rearrangement may induce the formation of new voids for sorption, thereby accommodating 

more sorbate. Thus during desorption, a greater surface area for sorption is available at lower 

concentrations. These deformations in the rigid SOM may relax very slowly or may be 

irreversible. In addition, rearrangement of SOM during desorption may cause entrapment of 

molecules, which will then be more difficult to desorb (Sander et al., 2005; Beinum et al., 2006; 

Ding et al., 2002). This explains an increased affinity for sorbate during desorption, rather than 
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during the sorption process. 

Norflurazon hysteresis index values are close to or equal to 1 (0.96–1) for dry sorbents. 

This implies that the same factors govern its retention at both high and low tested concentrations. 

In contrast with flutolanil, the lowest hysteresis index values for norflurazon were in prewetted 

sorbents and are most pronounced in Elliot soil. 

For acifluorfen, hysteresis is greatest in Elliot soil. The hysteresis index of pesticides in 

Elliot soil is seen to decrease in the following order: norflurazon > flutolanil > acifluorfen. It 

may be hypothesized that the norflurazon sorption in Elliot is mainly due to organic matter, 

whereas flutolanil and acifluorfen have additional sorption site heterogeneity. Since flutolanil 

and acifluorfen present molecules bigger than norflurazon, an additional cause of hysteresis may 

be due to diffusion hindrance in microporous sorption sites. A slightly lower hysteresis index of 

acifluorfen in Elliot soil when compared with flutolanil, may be attributed to a solute 

concentration-induced hysteresis. The acifluorfen sorption concentration is almost 2 orders in 

magnitude with 1–80 ppm. A high concentration may induce SOM swelling (Huang and Weber, 

1997; LeBoeuf and Weber 1997, 2000; Lu and Pignatello, 2002; Weber et al., 2002). 

 The hysteresis observed here can be considered true, and may not be due to colloids 

effect. Artifacts due to colloids effect may be minimized by adding a pesticide-free background 

that has some matrix from pre-equilibration of sorbent. However, Huang et al. (1998) revealed 

that there is no significant difference between this and the use of an electrolyte solution for one-

step desorption procedures. Moreover, loss of solids due to supernatant decanting was calculated 

in all samples; results indicate that the solid loss is insignificant, and therefore had a negligible 

effect on sorption. Furthermore, the hysteresis observed in the sorption of these three pesticides 

is not primarily due to slow diffusion of sorbates during the sorption and desorption steps. In 

order to check whether hysteresis observed in isotherms are true and not mainly due to non- 
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Table 5.9.1 Freundlich N parameter and hysteresis index (HI) 

Acifluorfen Norflurazon Flutolanil 

 Nsorp Ndes HI Nsorp Ndes HI Nsorp Ndes HI 

Pahokee 

dry  0.820±0.003 0.924±0.010 1.127±0.008 0.802±0.010 0.791±0.008 0.987±0.003 0.772±0.013 0.575±0.016 0.744±0.008 

1d prewet 0.834±0.005 0.962±0.020 1.154±0.017 0.769±0.008 0.696±0.009 0.904±0.003 0.817±0.009 0.760±0.011 0.931±0.004 

5d prewet 0.822±0.005 0.962±0.020 1.171±0.017 0.765±0.007 0.735±0.012 0.961±0.007 0.788±0.011 0.705±0.010 0.895±0.000 

Mandeville 

dry  0.871±0.004 0.942±0.007 1.081±0.004 0.861±0.003 0.824±0.005 0.958±0.003 0.847±0.008 0.745±0.014 0.880±0.008 

1d prewet 0.873±0.002 0.980±0.013 1.122±0.012 0.864±0.003 0.824±0.006 0.953±0.004 0.846±0.011 0.750±0.020 0.886±0.013 

5d prewet 0.870±0.003 0.982±0.014 1.129±0.013 0.852±0.003 0.798±0.006 0.936±0.003 0.833±0.009 0.731±0.017 0.877±0.011 

Elliot 

dry  0.811±0.009 0.503±0.031 0.620±0.031 0.774±0.006 0.780±0.008 1.008±0.003 0.764±0.018 0.501±0.034 0.654±0.029 

1d prewet 0.790±0.005 0.545±0.034 0.690±0.039 0.748±0.005 0.668±0.016 0.893±0.016 0.748±0.024 0.645±0.038 0.861±0.023 

5d prewet 0.756±0.015 0.477±0.027 0.631±0.023 0.743±0.005 0.667±0.010 0.897±0.007 0.723±0.017 0.565±0.034 0.781±0.029 
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attainment of diffusive equilibrium, additional sorption isotherms were tested and selected for 

Pahokee Peat and Elliot soils. An increase in KF was seen at longer incubation times, which was 

expected (Beinum et al., 2006). However, N values in sorption desorption isotherm are still much 

less than 1 for norflurazon in 10 day or 15 day time, compared with 5 day contact time. In fact, 

hysteresis index values are lower. The N value should approach 1 with a longer incubation time; 

sorption reversibility might be more possible were the hysteresis observed be mainly due to 

diffusion non-equilibrium processes (Xia and Pignatello, 2001). On aggregate, the results 

strongly suggest that the physico-chemical properties of both sorbate and sorbent contribute to 

sorption irreversibility, as suggested by Chen et al. (2000).  

In summary, our major findings suggest that a) sorption kinetics in soils of varying 

organic matter content show that an initially dry soil sorbs a higher amount of pesticide and a 

faster uptake in the early kinetics stage; b) organic matter is the major domain for sorption, 

however, the presence of expandable clays, together with an appreciable amount of sand, may 

also result in additional pesticide retention; and c) the investigated polarity and structure of 

pesticides and SOM causes nonlinearity and hysteresis in sorption. 
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Chapter 6 
 

Sorption Rates 
 
6.1 Introduction 

 Due to growing concerns about surface and groundwater contamination, soil and water 

remediation, and waste disposal, it is increasingly essential to elucidate the uptake kinetics and 

the mechanism involved in the interaction of HOCs with environmental sorbents (Sparks, 1989). 

Studies on the uptake rates of HOCs are needed to assess the equilibrium time required for 

sorption isotherm experiments. Although experimental conditions in the laboratory may differ 

from that of real environmental systems, results of such studies are still relevant in modeling the 

mobility of contaminants in terrestrial and aquatic systems. In effect, it allows for prediction of 

surface water pollution and/or groundwater contamination over time. Moreover, sorption as well 

as desorption kinetics greatly aids in remediation efforts (Farrell and Reinhard, 1994; Sparks, 

1989; NKedi – Kizza et al., 2006). 

 The kinetic approach to equilibrium in laboratory studies varies from days to weeks or 

even several months in length. In the field it takes much longer to attain equilibrium, which may 

never reach true equilibrium, as the conditions in the environment are more heterogeneous and 

dynamic. Various models have been put forward in order to better evaluate sorption kinetics, 

experimental data, and to identify sources of non-equilibrium. 

Non-equilibrium processes are also known as rate-limiting, or processes that proceed 

slowly. Two major classifications have been suggested: transport related non-equilibrium and 

sorption related non-equilibrium. The former phenomenon is attributed to a presence of 

macroscopic heterogeneities in the sorbent that affects the flow of liquids (Brusseau and Rao, 

1991). This effect is generally less significant in laboratory studies, since sorbents are often 

sampled homogeneously in terms of size. In the environment, the presence of different sizes of 
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soil and aquifer aggregates, as well as variable porosities and turtuosities, are apparent and may 

have a pronounced effect on transport related non-equilibrium. 

Sorption related non-equilibrium are primarily credited to rate-limited mass transfers 

across a boundary, or diffusion processes within the sorbent (Wu and Gschwend, 1986). Three 

probable diffusion mechanisms leading to sorption related non-equilibrium are film, restricted 

intraparticle, and intrasorbent diffusion. Film diffusion is considered negligible, compared to the 

other two diffusion processes in the retention and release of HOCs (Brusseau and Rao, 1989). 

Restricted intraparticle diffusion is associated with the existence of micropores in sorbent 

particles, such as in silica and quartz or sand. Basic assumptions of restricted intraparticle 

include 1) micropores are rigid; and 2) since organic matter predominates the uptake organic 

matter must reside inside the micropore walls in  the case of HOCs (Wu and Gschwend, 1986; 

Ball and Roberts, 1991). 

The rate-limited transport of sorbate within the matrices of the sorbent is ascribed to 

intrasorbent diffusion (Brusseau et al., 1991). Once again, the premise for an uptake of HOCs is 

that the diffusive mass transfer mainly occurs within the matrices of organic matter. Thus, 

intrasorbent diffusion also is known as intraorganic matter diffusion (Brusseau and Rao, 1989). 

Another important assumption of intraorganic matter diffusion is that organic matter is polymeric 

and its interstices are dynamic in nature. From this polymeric view of SOM, in general, the 

conformation of organic matter, as well as the hydration state changes as a result of pH and ionic 

strength. For example, at very acidic pH values (pH < 3), most of the carboxylic and phenolic 

moieties in SOM reside in their protonated or unionized form, thereby intra- and intermolecular 

H-bonding between these moieties is facilitated. This leads to a collapsed, more condensed form 

of SOM, where micropores or voids are expected to diminish in size and number (Stevenson, 

1994; Rausa et al., 1991; Sutton and Sposito, 2005). At environmental pH ranges (pH ~ 4-8), the 
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aforementioned moieties most likely exist in ionized forms; this would pertain to especially 

carboxylic groups in humic materials, because their pKa are ~4-6 (Schwarzenbach et al., 2003) 

and to a lesser degree, the phenolic groups. The presence of negative charges due to carboxylate 

and phenolate groups will result in repulsion between these moieties; hence, SOM adapts a more 

open conformational structure. Conformational rearrangement also occurs as a result of the 

hydration level/state of SOM. Drying of the soil removes water from the surface of SOM, as well 

as the assembly view of SOM; this once again will result in a collapsed form of SOM, as 

explained earlier. As the soil wets, water diffuses into SOM micropore and H-bonds with 

electronegative moieties of SOM. At lower moisture content (<12%) water acts as a crosslinker, 

thereby SOM retains a rigid form (Schaumann and LeBoeuf, 2005). At a moisture content >12% 

and at a longer period of time, more water molecules will surround these electronegative 

moieties, hence less intra- and intermolecular SOM bonding will be present. The result becomes 

an “expanded/swelled” or more flexible form of SOM, similar to the transition in polymers from 

glassy to rubbery states (Schaumann and LeBoeuf, 2005; Pignatello, 2009). 

One particular site mass transfer model, represented below, describes sorption kinetics as 

a first order reaction (Wu and Gschwend, 1986, Nzengung et al., 1997). 

  

where k is the mass transfer coefficient, modeling a function of various sorbate physico-chemical 

properties, as well as sorbent characteristics (Nzengung et al., 1997). Furthermore, the model is 

hypothesized as having only one type of sorption site; the sorption to this site is generally slow. 

Rapid binding sites are thus considered to be nil (Nzengung et al., 1997). As a whole, it has been 

found that one-site models, is a typical means of representing experimental data, may yield less 

than accurate results. 

 Two-site models may be evaluated by applying diffusion equations or first-order mass 
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transfer equations (Selim et al., 1976; Cameron and Klute, 1977). Mathematical solutions to 

diffusion-based models require that the rate-limited mechanism involved must be fully 

elucidated (Brusseau et al., 1989). In addition, detailed information regarding sorbate and sorbent 

properties that affect diffusion of HOCs must be known (Brusseau et al., 1989). These 

requirements may make the use of diffusion-based models daunting in application. Although the 

first order mass transfer models are a simplification of the former, these may provide results that 

are comparable to diffusion models (Hance, 1967; Wu and Gschwend, 1986; Brusseau and Rao, 

1991; Selim et al., 1976; Cameron and Klute, 1977). For these reasons, mass transfer models 

may be preferred in representing various non-equilibrium processes. 

 Two-site models are more common, as most sorption kinetics data depict an initial fast 

uptake, followed by a segment of slow sorption to equilibrium (Wu and Gschwend, 1986). This 

conceptualizes the presence of two classes of sorption sites. Moreover, it may correspond to a 

sorbent with a characteristic geometry involving an outer layer which is easily accessible by 

sorbate and an inner layer where sorbate interaction is expected to be rate-limited (Wu and 

Gschwend, 1986; Streck et al., 1995). 

In this study, the two site non-equilibrium (TSNE) approach was used to fit our sorption 

kinetic data. The TSNE sorption model assumes the presence of two possible sorption domains 

(S1 and S2). Sorption in S1 is usually rapid, while in S2 it is slow, and may be solved by first order 

kinetics (Brusseau, 1991, Nkedi-Kizza et al., 2006). 

 

 

Mathematical treatment of the system was adopted from Nkedi-Kizza (2006), which yields to the 

following solution: 

    +   exp  

C S1 S2 
 

K  

 

   α    1 - α 
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where: 

      C = sorbate concentration in solution at a certain time 

      Co = initial sorbate concentration 

      R = retardation factor 

      F = fraction of retardation in the fast uptake region 

      k2 = rate constant for desorption from S2 domain 

      t = time 

      α = fraction sorbed in S1 domain 

      K = sorption partition coefficient 

From the above equation, the three parameters α (from F), , and K can be and were 

obtained from the non-linear fitting procedure of C/C0 versus time using Sigma Plot Software 

version 10 (Systat Software Inc., 2006). The proceeding equations describe the derivation of 

TSNE. At equilibrium (time = ), sorption occurs in two domains (S1, S2) 

  = α       (1) 

 =      (2) 

Thus, the total amount of sorption at equilibrium is given by: 

      (3) 

It is also assumed that part of the sorbate in site 1 will eventually sorb to site 2: 

       (4) 

At equilibrium,  = 0 

and thus Equation 4 can be written as: 

       (5) 

By substituting Equations 1 and 2, Equation 5 reduces to: 
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           (6) 

The total amount of pesticide sorbed to the soil is given by: 

       (7) 

where A = total mass of sorbate, V = volume of solution, and m = mass of soil                         

If  in Equation 1 is substituted into Equation 7: 

   

        (8) 

  At t=0,    (9) 

At any given time: 

        (10) 

At equilibrium , the equilibrium solution concentration can be solved 

by: 

             (11) 

      (12) 

Substituting  ( from Equation 6 and  from Equation 9, we get: 

         (13) 

Equation 13 may be represented as a linear equation (Perry and Green, 1997): 

   

A solution to this differential as applied to Equation 13 yields Equation 14 

         (14) 

where  
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By substituting Equation 11 ( ), Equation 14 is reduced to: 

         (15) 

which in turn can be represented by the equation below: 

     + exp      (16) 

where the initial conditions upon adding a pesticide solution of certain concentration can be 

described below (Nkedi-Kizza et al., 2006): 

  A = V        S1 =         S2 = 0 

         

   

       

  F =  

 Most studies on non-equilibrium processes carried out on air-dried soils become slurried 

upon addition of sorbate solutions. However, it is shown in the literature that fully saturated soils 

may behave differently. Neutral nonpolar sorbates such as benzene were observed to have a 

greatly reduced partitioning when sorption was initiated from water solution, or from pre-water 

soaked sorbent, compared to a dry sorbent containing high organic matter content (Rutherford 

and Chiou, 1992a; 1992b). In one study, chlortoruron uptake over time with field-moist soil and 

sand was lower than when using the same sorbents, air-dried (Altfelder et al., 1999). Other 

investigations have shown that sorption increased when the soil was subjected to drying and 

rewetting cycles after pesticide application (Shelton et al., 1995; Gamble et al., 2000; Lennartz 

and Louchart, 2007). 

 Different postulates, offered in an attempt to explain the above observations, are 
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discussed below. Structural and chemical reorganization of organic matter particles occur when 

soil is subjected to drying or wetting, which affects the uptake of HOCs (Lennartz and Louchart, 

2007). A change in activation energies in the interactions between HOCs and NOM interfaces 

may result when the solid interface is subjected to changes in soil water content (Calderbank, 

1989; Li et al., 1996; Belliveau et al., 2000). In yet another case, it has been hypothesized that 

hydration increases the polarity of SOM, thereby decreasing the partitioning of nonpolar 

compounds to SOM (Rutherford and Chiou, 1992b). Previous explanations mainly point to the 

influence of wetting on sorbent properties and subsequently on sorbate-sorbent equilibrium 

interactions. 

Belliveau et al. (2000) kinetically monitored the water uptake of an air-dried soil through 

magnetic resonance imaging (MRI); the soil was pre-soaked overnight. Results show that longer 

time spans from days to months, were needed to achieve a water-soil equilibrium, suggesting that 

air-dried soil may recover very slowly from pore structure deformation. Low-field NMR 

relaxation studies on fractionated soil components, artificial soils, and whole soils show 

differences in wetting behavior (Todoruk et al., 2003). It was found that the wetting of initially 

oven-dried montmorillonile is instantaneous with short T2s (spin-spin relaxation time), found to 

be a characteristic of micropore-bound water. In comparison, silica particles took approximately 

two days to reach equilibrium state. On the other hand, humin wetting is also rapid, with short T2 

values approximating the presence of mesopores and micropores. Humic acid has a slightly 

longer wetting time of three hours, with all of these representing water migration into 

micropores. In contrast, wetting of whole soils demonstrates a minimum of three possible water 

compartments designated as macropores, mesopores, and micropores. It should be noted that this 

classification is not to be confused with the IUPAC definition of pore sizes in consolidated 

media. At least two rates were observed: a fast process occurring within 24 hours, and a slow 
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process that may last for several days. In addition, shorter T2 peaks, attributed to micropores, 

develop and dominate over time. From the above observations, it has been concluded that 

wetting allows swelling, which can be attributed to pore reopening and pore reformation 

(Belliveau et al., 2000; Todoruk et al., 2003; Schaumann and LeBoeuf, 2005; Borisover, 2001). 

The implication of the findings above, with respect to HOC uptake may be emphasized with a 

two step-sorption model. The first step is adsorption of HOC at the surface, followed by a rate-

limited diffusion into the sorbent matrix (Belliveau et al., 2000; Kan et al., 1998; Borisover, 

2001; Schaumann and LeBoeuf, 2005). 

In summary, previous studies demonstrated that the wetting behavior of separate soil 

components differs from whole soils. It is thus recommended that further investigations be done 

to elucidate the effect of wetting on solid surfaces and organic matter-mineral interassociations, 

and on the mechanisms of HOC uptake. Furthermore, experiments to this effect must include 

presoaking of sorbent with water, taking into account that wetting of soils may take several days 

(Gamble et al., 2000; Li et al., 1996; Belliveau et al., 2000; Schaumann and LeBoeuf, 2005). 

 Keeping these suggestions in mind, this study involves the use of pesticides of different 

polarities and sorbents of different organic matter and mineral contents, as well as three different 

hydration conditions (dry, 1 day, and 5 day prewet) in the study of sorption kinetics and sorption-

desorption isotherms. Our hypothesis is that soil hydration will affect the rate of uptake of HOC 

based on our model, which was developed from 2-D 1H-13C HETCOR NMR, presented in 

Chapter 4. The specific objectives are as follows: 1) to determine the influence of NOM and 

mineral content on sorption, as well as the kinetics of the uptake of HOCs in dry and wet soils; 2) 

to investigate how pesticide polarity and structure affect sorption phenomena; 3) to evaluate 

possible sources of non-equilibrium sorption rates; and 4) to compare the KOC obtained from 

sorption kinetics with that of the KOC derived from isotherms. 
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6.2 Method 

 Samples of appropriate soil to solution ratio, as previously determined, were incubated 

for various time intervals. The goals of this step were 1) to determine the time needed to reach 

sorption equilibrium; 2) to measure the amount of analyte sorbed over the duration of the study; 

and 3) to evaluate sorption kinetic parameters. The sample analysis was conducted using the 

parallel method, wherein a different set of samples were prepared for each time period needed to 

complete sorption kinetics studies (OECD, 2000). At the end of the study, a graph was drawn 

relating incubation time (hours) to the amount of pesticide sorbed in soil, in the form of relative 

pesticide concentrations (C/C0) (Figures 6.2.1 - 6.2.3). The sorption coefficient at equilibrium 

(K) is then calculated from the curve fitting of Equation 16. It is a nonlinear equation with the 

form: y = y0 + ae-bx where y is the relative pesticide concentration and x is incubation period in 

hours. K is defined as the ratio of the concentration of pesticide adsorbed in soil at equilibrium 

(mg/kg), and the concentration in aqueous solution phase (mg/L), as described below 

K =    

The parameters α, k2 and F were also obtained from model fitting. 

The best fit line and the parameters, as well as their corresponding standard errors for this 

non-linear regression, were obtained via the use of the Marquardt-Levenberg algorithm, as 

implemented in  Sigma Plot version 10 (Systat Software, Inc., CA). The Marquardt-Levenberg 

algorithm returns the values of the parameters by minimization of the least squares error between 

the actual values and predicted values of the dependent variable. Yield results were within the 

95% confidence limit. R2 is the coefficient of determination, showing how well it fits the model. 

6.2.1 KOC in Pahokee Peat 

Pahokee Peat is classified as an agricultural peat soil of the Florida Everglades, wherein 

freshwater marshes contribute to highly organic matter make-up (http://ihss.gatech.edu). In 

http://ihss.gatech.edu/�
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addition, it is a soil type of very poor drainage with an elemental composition of 46.90% C, 

3.90% H, 30.30% O and 3.42% N. For additional information, the reader is referred to Table 

5.3.1. 

 It can be seen by the fitted curves in Figures 6.2.1 through 6.2.3, as well as by the values 

of R2 (0.92-0.97), reported in Table 6.2.1 through Table 6.2.3, demonstrating that the TSNE 

model fits the experimental data well. The observed minimal to zero differences in KOC between 

a dry and one day prewetted soil implies that the time needed for water-soil equilibration may 

take longer than 24 hours. This is supported in the literature, wherein the wetting process of a 

whole soil has a fast component that may take up to a maximum of 24 hrs, coupled with a slow 

component that is longer and may reach up to 5 days, 22 days, or even longer (Todoruk et al., 

2003; Belliveau et al., 2000; Gamble et al., 2000; Schaumann and LeBoeuf, 2005). In addition, 

normalized TOC data (Figure 5.5.2), as well as excitation and emission matrix studies (Figure 

5.5.3) on soil controls from kinetic studies, demonstrate a minimum of two-rate components in 

the wetting process, with the fast step occuring at less than 20 hours. 

Flutolanil exhibited the highest difference (14.70%) in KOC between a dry and 5 day 

prewetted condition (Figure 6.2.4). In addition, the KOC trend in relation to the pesticide type is 

clearly shown to be flutolanil > norflurazon > acifluorfen, which strongly correlates with 

hydrophobicity in terms of water solubility (R2 = 0.91) with an octanol water partition coefficient 

(R2 = 0.999). 

The results for Pahokee Peat are not surprising. Pahokee Peat is a highly organic soil 

(93.8% organic matter, assuming % organic matter = 2  % organic carbon). Thus, uptake is 

attributed primarily to a diffusive mass transfer within the organic matter matrix (Madhunet et 

al., 1986; Nkedi-Kizza et al., 2006; Brusseau et al., 1991; Schwarzenbach and Westfall, 1981). 

For HOC sorption in aqueous systems, diffusion of water in SOM is necessary (Gamble et al., 
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2000; Belliveau et al., 2000). The polymeric model point of view, as SOM is hydrated, it forms a 

more open and flexible form (i.e., gel-like or rubbery phase). The more hydrophobic the 

contaminant, the more it partitions to this phase. The lower sorption affinity of an HOC on a 5 

day prewetted SOM suggests that the water competes with HOC for sorption sites. 

From our domain perspective of SOM, discussed earlier in Chapter 4, hydrophobic 

moieties are readily available as sorption sites in a dry soil. This includes the isolated alkyl type 

domain and those aromatic moieties which have migrated to the surface of the second domain 

during the air drying process. Thus, a more hydrophobic aromatic contaminant will show high 

sorption in a dry soil. In contrast, in a wet soil, the alkyl moieties will still be available as 

sorption sites, while the second domain would experience a conformational rearrangement, such 

that the hydrophilic moieties would be more available on the outer layer. Hence, sorption of 

aromatic HOCs is reduced. 

In comparison with flutolanil, sorption of norflurazon in Pahokee Peat exhibited no 

statistical difference between a one day prewet and a five day prewet. This can be explained by 

the preference of norflurazon for polar forces, such as strong hydrogen bonding with –COOH, 

and –OH containing hydrophilic moieties in SOM due to azine and amino groups in norflurazon 

structure. It also means that in a wet soil, this preference effectively competes with water for 

sorption in hydrophilic SOM moieties. Thus, the effects of drying and wetting cycles on sorption 

of contaminants, is found to be more pronounced in hydrophobic HOCs. 

6.2.2 KOC in Mandeville Soil 
 

The Mandeville soil comes from a wetland in Louisiana. It contains a medium amount of 

organic matter (21.68% organic matter), compared with the other two soils (Table 5.3.1), and a 

relatively high amount of sand (49.38%) relative to the other soils. Additional information on 

this soil is provided in Table 5.3.1. 
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Figure 6.2.1 Sorption kinetics of acifluorfen in dry (green), 1 day prewetted (blue), and 5 day 
prewetted (red) Pahokee Peat (a), Mandeville (b) and Elliot (c) soils. 
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Figure 6.2.2 Sorption kinetics of norflurazon in dry (green), 1 day prewetted (blue), and 5 day 
prewetted (red) Pahokee Peat (a), Mandeville (b) and Elliot (c) soils. 
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Figure 6.2.3 Sorption kinetics of flutolanil in dry (green), 1 day prewetted (blue), and 5 day 
prewetted (red) Pahokee Peat (a), Mandeville (b) and Elliot (c) soils. 
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Figure 6.2.4 KOC in Pahokee Peat 
 

Experimental sorption kinetics data in Mandeville soil exhibited the best TSNE model 

fits for the soils studied, with R2 values of 0.96-0.99 for the three pesticides: acifluorfen, 

norflurazon, and flutolanil. This may also be seen from Figure 6.2.5 and the data in Table 6.2.2. 

The KOC of each pesticide in an initially dry Mandeville soil is higher than those of pre-hydrated 

soils. This difference is once again more pronounced in the most hydrophobic pollutant 

flutolanil, with a percent difference of 14.33% between dry and five day prewet. KOC values of 

the three pesticides in Mandeville reflects that flutolanil > norflurazon > acifluorfen, relating to 

the hydrophobicity of the molecules (R2 = 0.82, with respect to KOC correlation with water 

solubility, and R2 = 0.96 with respect to octanol-water partition coefficient). However, the 

correlation coefficient is lower than that of Pahokee Peat, suggesting that sorption of these 

compounds is not only due to the amount of organic matter, but possibly the type and nature of 

organic matter present may be the cause or part of the cause. 

Flutolanil and acifluorfen exhibited the highest Koc in Mandeville soil, compared to 

Pahokee Peat and Elliot soils. Increased sorption capacity of flutolanil and acifluorfen in 

Mandeville may be due to its additional mineral components, especially the sand component. 

The presence of an appreciable amount of sand in the Mandeville soil may provide additional 
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Figure 6.2.5 KOC in Mandeville 
 
binding sites by diffusion into micropores (Sparks, 1989; Brusseau et al., 1991; Brusseau and 

Rao, 1991; Todoruk et al., 2003). However, the TSNE model may not account for these sorption 

sites (Farrell and Reinhand, 1994). Mineral grains such as sand may be coated with NOM, and 

such individual sand grains may aggregate to form pores of varying sizes, such as “hydrophobic 

nanopores” as explained in Chapter 5. The presence of these hydrophobic nanopores, would then 

allow certain hydrophobic pollutants to diffuse inside, providing the size of the pollutant is 

smaller than the critical diameter of the nanopore (Pignatello, 2000). Sorption of flutolanil in 

soils with high sand content has been shown to be higher (Daly, 1987). Additional sorption of 

flutolanil to the sand surface would be through aromatic π–H binding with silanol groups. The 

negative quadrupole moment located above and below the aromatic ring of flutolanil that 

contains the amide and ether substituent can exhibit H-bonding with free silanol, as explained in 

Chapter 5. 

 The presence of Na-montmorillonite clay, by which diffusion within the clay is likely to 

occur upon clay swelling may also cause an increase in sorption. The presence of Na-

montmorillonite and smectite (from muscovite) clay types in Mandeville soil may also add to 

increased sorption of flutolanil and acifluorfen in this soil, compared to Pahokee Peat. Na-
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montmorillonite is a highly swelling 2:1 type of clay. Diffusion of water into the interlayer 

spacing (swelling) of this clay increases the distance between the interlayer spacing, as water 

hydrates the interlayer cation (i.e., Na+). In addition, water also forms layers, or films, on the 

surface, of these negatively-charged interlayers. Clay swelling enlarges the surface area for 

sorption of contaminants. However, only sorbates, capable of favorable interactions with the clay 

interlayer surfaces, may exhibit sorption to these sites. Flutolanil and acifluorfen can sorb to 

these sites, based on their structures and electrostatic surface potential, as discussed in Chapter 5. 

The above KOC results for Pahokee Peat and Mandeville soil corroborates our previous 

model that an initially dry soil will sorb more HOC. The more hydrophilic molecules will tend to 

reside inside the NOM domain. The more hydrophobic molecules, on the hand, will migrate on 

the outer surface of the NOM as a soil dries. 

6.2.3 KOC in Elliot Soil 

Elliot soil comes from the grasslands of Illinois and is classified as fine, illitic, mesic 

Aquic Arguidoll (http://ihss.gatech.edu; http://ssldata.nrcs.usda.gov). Among the three soils, this 

soil has the least amount of organic matter, 5.8% (Table 5.3.1). The mineral fraction consists of 

28.55% clay, 57.74% silt, and 6.39% sand. Additional soil properties are given in Table 5.3.1. 

Figure 6.2.6 and Table 6.2.3 reveal that fitting the TSNE model to kinetics experimental 

data results in higher KOC in dry, compared to wet, Elliot soil for norflurazon only (R2 = 0.96-

0.97). Sorption of acifluorfen and flutolanil are lowest in Elliot soil among the soils of this study 

and are concentration-dependent. The lower uptake of acifluorfen in Elliot soil can be explained 

by the pH of Elliot soil, further explained under the discussion of acifluorfen sorption. Elliot soil 

also has lesser sand content, which might partly explain the lower observed Koc in Elliot soil 

than in Mandeville soil. Lesser porosity corresponds to a lower contribution from intraparticle 

mass transfer. 

http://ihss.gatech.edu/�
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Elliot soils also contain illite clay (also known as hydrous micas), which is characterized 

by low to medium swelling only, in contrast with high swelling montmorillonite clay in 

Mandeville soil. This difference between the type of clay in Mandeville and Elliot soils can have 

a significant impact on sorption. The swelling of illite clays may not provide enough surface area 

to allow diffusion into its interstices of the HOCs used in this study. The effect of clay 

composition, especially of highly expandable clays, was discussed under section 6.2.2. In 

addition, the nature of organic matter in Elliot soil, as well as the interplay between its organic 

matter and mineral components, may influence its sorption capacity. 

The sorption of norflurazon to Elliot soil and Pahokee Peat are comparable in both 

kinetics and isotherm results. This leads us to conclude that norflurazon binding is almost solely 

influenced by organic carbon content. This is in agreement with a previous report that 

norflurazon binding to soil is primarily a function of organic matter content (Morillo et al., 2002; 

2004). Therefore, sorption of HOCs in soils with little or no expandable clay content and less 

sand content, are the result of organic matter. 

The TSNE model is not applicable to sorption of acifluorfen in one day and five day 

prewet Elliot soil, as it provides a fraction of instantaneous sorption value, α, equal to 0. This 

implies that sorption in Elliot soils can be better described by a one-site non-equilibrium model, 

where the kinetics of uptake is generally slow at all times. 

6.2.4 Sorption KOC of Acifluorfen 

The sorption capacities (Ks) of acifluorfen in dry soil, obtained from a TSNE curve 

fitting, follow the trend that Pahokee Peat > Mandeville > Elliot. Of the three studied pesticides, 

acifluorfen exhibited the lowest KOC. Acifluorfen is a slightly-ionized, nonpolar, organic 

compound with a pKa of ~3.5 (Roy et al., 1983), while Pahokee Peat, Mandeville, and Elliot soils  
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Figure 6.2.6 KOC in Elliot Soil 

have pH values of 4.20, 4.62, and 6.1 respectively, in water (Table 5.3.1). At these soil pH values 

(4-6), acifluorfen exists mainly in its anion form. The carboxylic groups in SOM are also ionized 

at this pH and to a lesser extent, the phenolic groups (Stevenson, 1994; Schwarzenbach et al., 

2003). Therefore, the anion form of acifluorfen will most likely be repelled by these negative 

charges, except for the amino groups, which are likely to be protonated/positively charged at 

acidic pHs. Thus, the soil pH affects, in part, the sorption of acidic pesticides (Saltzman and 

Yaron, 1986). The lower pH in both Pahokee and Mandeville explains the higher sorption of 

acifluorfen to these soils, because more of acifluorfen exists in nonionic form. In its neutral state, 

aside from Van der Waals interactions with SOM, the COOH groups in acifluorfen will most 

likely form strong hydrogen-bonds with the nitrogen-containing moieties in SOM, especially the 

amino groups and azines, while the NO2 group may form very weak hydrogen-bonds with amino 

and amide groups within SOM (Gilli, 2009).  

The slightly higher KOC for Mandeville soil, compared to Pahokee Peat, may also be 

explained by the difference in the nature of organic matter between these two soils. However, as 

stated earlier, the presence of an appreciable amount of sand grains may have increased sorption 

into Mandeville soil. In addition, the presence of the montmorillonite type of clay in Mandeville 
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soil has been identified by X-ray data (Figure 5.7.1). It has been suggested that in 

montmorillonite clays, acifluorfen has the possibility of complexing with divalent and trivalent 

cations (Pusino et al., 1991; Pusino et al., 1993). Mandeville soil has a high cation exchange 

capacity (Table 5.3.1), with high amounts of Al3+ and Ca2+ (Table 5.3.2), which in turn adds to 

the effect of increased sorption in Mandeville soils. This can be attributed to the presence of a 

more ionized form of soil solution pHs, greater than acifluorfen’s pKa (Locke et al., 1997), since 

an acifluorfen carboxylate group may form complexes with these and other metal cations 

(Kozlowski et al., 1990; Pusino et al., 1991). This view is supported by Spartan calculations 

(Figure 5.3.2), where a negative electrostatic potential density is located in the vicinity of the 

NO2–COOH functional groups. 

6.2.5 Sorption KOC of Norflurazon 

KOC values of norflurazon for initially dry soils show the trend of Elliot > Pahokee Peat > 

Mandeville. Norflurazon is a neutral nonpolar compound, yet is less hydrophobic than flutolanil. 

It has a surface volume of 254A°3 and a surface area of 277A°2 (Table 5.3.3). The modeled 

electrostatic potential surface of norflurazon reveals the following: a concentrated, but highly 

negative, potential in the vicinity of its carbonyl; an area of highly positive potential centered on 

two nitrogens in its aromatic ring and amine side chain; a slightly negative potential on the 

aromatic ring that contains the CF3 group; and a negative electrostatic potential around its CF3 

substituent. Based from its structure and electrostatic potential surface, binding of norflurazon is 

mainly due to H-bonding, induced dipole, and Van der Waals interaction (Saltzman and Yaron, 

1986). If norflurazon sorption is solely due to organic matter content, then the Koc should be 

constant in all soils.  

The higher KOC value of norflurazon sorption to Elliot, compared to the Mandeville soil, 

can be explained by the higher concentration of silt, coupled with the lower sand content in Elliot 
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soil. Silt is composed of smaller particles than sand, and requires a higher surface area for 

sorption, as the latter is often inversely correlated with the square of the particle radius 

(Pignatello, 2009; Ball and Roberts, 1991; Kleineidam et al., 1999; Wu and Gschwend, 1986; 

Pignatello, 1990; Steinberg et al., 1987). In addition, norflurazon’s KOC values for Elliot and 

Pahokee Peat soils are higher than in Mandeville soil. It may be postulated that the former soils 

have older, and therefore more condensed/humified organic matter, while Mandeville soil may 

be postulated as a younger soil. The researcher observed during soil collection that its topsoil 

consists of plant debris at various stages of decomposition; hence the presence of a more rubbery 

phase of NOM is expected. 

6.2.6 Sorption KOC of Flutolanil 

Flutolanil is the most hydrophobic of all the pesticides used. Its molecular surface area 

depicts a larger area of positive, electrostatic potential and a small, but dense, highly negative 

electron density, centered on the carbonyl of the amido group. 

 The KOC values based upon sorption kinetics reveal the following trend: Mandeville > 

Pahokee Peat > Elliot soil, regardless of hydration condition. Additional sorption to sand grains 

once again is the probable explanation for the observed trend. Furthermore, the above 

observation may also imply that the nature and type of the NOM present also affects sorption. 

The lower flutolanil sorption in Elliot soils, as compared with Pahokee Peat, may mean that 

intimate mineral and NOM associations in Elliot soil may restrict diffusion of this hydrophobic 

contaminant into hydrophobic NOM sites. 

6.2.7 k2 Values and k2-K Relationships 

Sorption desorption rates are governed by diffusion processes of sorbate into sorbent and 

thereby greatly influence transport and bioavailability of contaminants (Pignatello, 2009). 

Diffusion is defined as the tendency of molecules to move about and redistribute as a function of 



 207 

concentration gradients (Pignatello, 2009). The diffusion of a molecule in a sorbent is affected by 

the molecular size and structure of the sorbate, the nature and geometry of the sorbent, chemical 

potential, interfacial boundary conditions, and temperature (Pignatello, 2000; Brusseau et al., 

1991; Haws et al., 2006; Karger and Ruthven, 1992). Since neutral hydrophobic organic 

compounds mainly sorb to organic matter components in soils, the kinetic uptake or release is 

limited by intraorganic matter diffusion (Nkedi-Kizza, 2006). All pesticides have a lower k2 

value and a higher K value in Pahokee Peat than in Mandeville soil, because Pahokee Peat has a 

higher organic matter content. As organic matter content increases, the path to be traversed by 

the diffusing molecule becomes longer; hence, the k2 value is low, which implies a slower 

diffusion. It has also been shown from this study by both sorption isotherm and sorption kinetics, 

that the derived K value is highly and positively correlated to organic matter content. 

Acifluorfen has a lower k2 value and higher K value in Mandeville soil than in Elliot soil. 

This is expected, because Mandeville soil carries a higher organic matter content. In addition, the 

lower k2 in Mandeville soil may be attributed to diffusion in mineral grains (i.e., sand and clay). 

In Pahokee Peat, flutolanil also showed the smallest k2 value; this finding supports the idea that 

more nonpolar HOCs will exchange more slowly into the SOM binding sites, due to the 

restricted diffusivity of bigger nonpolar molecules. The TSNE fit of flutolanil is lowest in Elliot 

soil (R2 = 0.88), hence it is rather difficult to compare its kinetic parameters with that of 

flutolanil sorption in Pahokee Peat and Mandeville. In Mandeville and Elliot soils, k2 values 

follow norflurazon < flutolanil < acifluorfen. The slower desorption of norflurazon in these soils 

may be attributed to a greater amount of varying interactions of norflurazon with the SOM of 

these soils, illustrated once again by the electrostatic potential. In addition, this molecule has a 

total of 5 proton acceptor/donor sites, and has the greatest amount and strength of hydrogen-

bonding forces with SOM moieties, compared to the other two pesticides. 
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6.2.8 Fraction of Instantaneous Sorption, α 

  The variable α is defined as the fraction of pesticide partitioning in S1 sites at 

equilibrium. The TSNE model described well the sorption kinetics in Pahokee Peat and 

Mandeville soils, showing that correlation fit, r2 equal to 0.92 to 0.99. These soils contain high to 

intermediate organic matter content; hence the assumption of the TSNE model that intraorganic 

matter diffusion is the primary cause of slow sorption holds true. The fraction of instantaneous 

sorption α can only be compared between these two sorbents. In a dry Pahokee Peat soil, α is 

given to be acifluorfen > norflurazon > flutolanil, while α values in Mandeville soil are similar 

and within the experimental error. The results of α from Pahokee Peat support further the 

assumption in the TSNE model that for highly organic soils, diffusion into the organic matter 

interstices is the main reason for chemical non-equilibrium sorption. 

It can also be deduced from the results that an initially dry Pahokee Peat or Mandeville 

soil has a higher α th an p rewetted counterparts, for all pesticides and soil combinations. This 

finding is in agreement with our domain-based SOM model described in Chapter 4. In a dry soil, 

hydrophobic moieties (alkyl and aromatic types) are both available for sorption, leading to an 

increased sorption of HOCs. The same α value for norflurazon found in a dry Pahokee Peat and 

Mandeville soil, is once again a strong indication that sorption of norflurazon is mainly, if not 

solely, due to organic matter. 

6.2.9 Comparison of KOC from Sorption Rate and Sorption Isotherm 

KOC values derived from sorption isotherm were compared to a kinetics model using the 

same starting initial concentration; the results were presented in Table 6.2.4 and will be 

represented here as KOCi and KOCr, respectively. For acifluorfen, KOCi values are generally higher 

than from KOCr values, except for five day prewet Mandeville and Pahokee Peat soils. The 

differences were statistically significant at a 95% confidence level, using the T-test. 
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Table 6.2.1 Sorption kinetics parameters in Pahokee Peat soil 
Hydration 
Condition k2 (hr-1) α K Koc (L kg-1) R2 

Flutolanil 
Dry 0.013(0.001) 0.245(0.013) 356.96(12.07) 761.12(25.75) 0.94 
1d wet 0.010(0.001) 0.200(0.010) 339.72(10.34) 724.35(22.05) 0.97 
5d wet 0.01(0.001) 0.203(0.011) 304.49(8.27) 649.23(17.63) 0.97 

Norflurazon 
Dry 0.024(0.001) 0.359(0.014) 174.82(2.46) 372.76(5.25) 0.94 
1d wet 0.026(0.002) 0.233(0.020) 169.09(2.45) 360.52(5.23) 0.96 
5d wet 0.016(0.001) 0.326(0.020) 165.04(3.00) 351.89(6.40) 0.95 

Acifluorfen 
Dry 0.026(0.002) 0.487(0.015) 32.57(0.37) 69.46(0.79) 0.95 
1d wet 0.030(0.003) 0.269(0.037) 31.50(0.56) 67.17(1.20) 0.92 
5d wet 0.024(0.002) 0.372(0.020) 29.44(0.49) 62.78(1.05) 0.94 

 
Table 6.2.2 Sorption kinetics parameters in Mandeville soil 

Hydration 
Condition k2 (hr-1) α K Koc (L kg-1) R2 

Flutolanil 
Dry 0.042(0.002) 0.35(0.01) 107.19(0.94) 988.88(8.67) 0.97 
1d wet 0.043(0.001) 0.22(0.01) 96.47(0.85) 889.94(7.81) 0.98 
5d wet 0.035(0.001) 0.26(0.01) 91.84(0.99) 847.19(9.14) 0.97 

Norflurazon 
dry 0.033(0.002) 0.34(0.01) 36.23(0.39) 334.23(3.61) 0.96 
1d wet 0.023(0.001) 0.27(0.02) 34.67(0.58) 319.82(5.38) 0.96 
5d wet 0.016(0.001) 0.30(0.01) 34.17(0.68) 315.18(6.30) 0.96 

Acifluorfen 
dry 0.058(0.003) 0.33(0.02) 10.63(0.08) 98.10(0.71) 0.97 
1d wet 0.038(0.001) 0.22(0.02) 10.27(0.08) 94.74(0.72) 0.98 
5d wet 0.033(0.001) 0.21(0.01) 10.07(0.06) 92.86(0.59) 0.99 

 
Table 6.2.3 Sorption kinetics parameters in Elliot soil 

Hydration 
Condition k2 (hr-1) α K Koc (L kg-1) R2 

Flutolanil 
dry 0.027(0.003) 0.51(0.03) 10.45(0.17) 360.52(5.93) 0.88 
1d wet 0.026(0.002) 0.39(0.03) 10.12(0.16) 349.12(5.40) 0.94 
5d wet 0.012(0.002) 0.44(0.03) 10.38(0.28) 357.95(9.65) 0.93 

Norflurazon 
dry 0.008(0.001) 0.26(0.02) 11.49(0.25) 396.32(8.58) 0.96 
1d wet 0.011(0.001) 0.14(0.01) 10.21(0.18) 351.96(6.09) 0.97 
5d wet 0.009(0.000) 0.15(0.01) 10.27(0.17) 354.02(5.91) 0.97 

Acifluorfen 
dry 0.083(0.006) 0.37(0.03) 1.114(0.007) 38.76(0.23) 0.96 
1d wet 0.271(0.036) 0 0.763(0.004) 26.37(0.15) 0.88 
5d wet 0.164(0.032) 0 0.675(0.006) 23.47(0.22) 0.90 
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The KOCi of flutolanil and norflurazon in Mandeville soil corresponds to the result of KOCr 

for sorption rates in dry soil only. A disparity is seen for KOCi of flutolanil and norflurazon in 

Pahokee Peat and Elliot, compared to its sorption rate counterpart, where KOCi is much lower 

than KOCr (Table 6.2.4). Norflurazon also exhibited larger differences than flutolanil in Pahokee 

Peat and Elliot soils. Possible causes of the lower KOCi values of norflurazon and flutolanil are as 

follows: a) KOCi values include a slow diffusion to sorption sites, and b) the use of linear 

regression to determine KF at a particular concentration may not be steadfastly accurate. It is 

often difficult to reach true equilibrium, because sorption continues to increase with more contact 

time between sorbate and soil (Beinum et al., 2006). The TSNE kinetic model explicitly includes 

a time-dependent mass transfer to micropores, whereas the Freundlich sorption model assumes 

sorption sites have a distribution of energies (Tabatabai and Sparks, 2005; Xia and Pignatello, 

2001). Although the use of a linearized form of the Freundlich equation to determine KFs at a 

particular aqueous concentration proved to be adequate most of the time, deviations to the 

Freundlich equation may occur at high and low concentrations (Chen et al., 1999; Carmo et al., 

2000) and thus may have contributed to the discrepancies observed between the KOCi and KOCr 

values. 

Based on our kinetic results, an initially dry soil sorbs more pesticide than a wet soil, and 

also demonstrates a fast uptake in the initial rate of kinetics. However, a prewetting incubation of 

five days or longer may be needed to observe this effect, because soil-wetting equilibrium may 

take longer than one day. This finding serves as evidence to our assemblage model from 2-D 

NMR results that SOM consists of two isolated domains. The first domain contains alkyl type 

moieties and the second domain consists of O-alkyl and aromatic moieties. When the soil is dry, 

alkyl moieties as well as aromatic moieties will be more available for sorption sites, resulting in 
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a fast and increased sorption of HOCs. Contrary to this, when the soil is wet, the O-alkyl type 

moieties migrate toward the surface of the second domain, while the aromatic moieties reside in 

the inner part of the second domain. This will most likely result in a decrease in sorption of 

HOCs, especially of aromatic types, similar to the case in this study (Lattao et al., 2008). An 

explanation has been provided in the literature, that wetting of the organic matrix in soil 

increases the availability of soft or amorphous domains and hence the organic contaminant 

becomes more “labile” (Huang and Weber, 1997). Here, soft domains may refer to alkyl-type 

moieties. 

The above findings also show that the TSNE model fits very well for the sorption of 

HOC in highly organic soils, while it fails to predict the sorption kinetic parameters in a less 

organic-rich Elliot soil. Most agricultural types of soils and aquifer materials have organic 

carbon content less than or equal to that of Elliot soils. Thus, with such type of sorbents, there is 

a need to use kinetic models that better describe transport behaviors of HOC. However, the 

TSNE model results are useful as it helps elucidate the assumptions in the soil molecular 

assemblage model. Moreover, our results corroborate previous reports that wetting induces SOM 

conformational changes, thereby affecting HOC uptake. It was also found that sorption rates of 

HOCs in different soils generally have fast and slow components. The presence of rate-limited 

processes may serve to explain the observed irreversibility of sorption and desorption isotherms.  

Our results also support the hypothesis that the presence of minerals and its association 

with organic matter impacts sorption rates, as suggested by Sparks (1989). Another important 

generalization is that in samples of high organic carbon content, it is imperative to have an idea 

of the type and nature of organic matter in order to adequately explain how this will affect non-

equilibrium sorption. 
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Table 6.2.4 Comparison of KOC from sorption isotherm and sorption kinetics 
 
Soil type/Wetting 
conditions 

KFOC from sorption ,  L kg-1 (KOCi) KOC  from sorption kinetics, L kg-1 (KOCr) 
Acifluorfen Norflurazon Flutolanil Acifluorfen Norflurazon Flutolanil 

Pahokee Peat dry 75.33±0.18 288.83±1.69 599.60±2.83 69.46±0.79 372.76±5.25 761.12±25.75 

Pahokee Peat 1d 
prewet 71.25±0.26 263.26±1.22 591.62±1.64 67.17±0.71 360.52±5.23 724.35±22.05 

Pahokee Peat 5d 
prewet 58.81±0.24 222.81±0.93 520.69±1.65 62.78±0.23 351.89±6.40 649.23±17.63 

Mandeville dry 103.42±0.32 338.53±0.41 978.46±2.47 98.10±1.20 334.23±3.61 988.88±8.67 

Mandeville 1d prewet 97.50±0.20 308.02±0.43 907.52±3.10 94.74±0.72 319.82±5.38 889.94±7.81 

Mandeville 5d prewet 88.31±0.22 260.69±0.36 793.35±2.33 92.86±0.15 315.18±6.30 847.19±9.14 

Elliot dry 41.75±0.36 258.45±0.78 322.90±2.02 38.76±1.05 396.32±8.58 360.51±5.93 

Elliot 1d prewet 35.88±0.16 234.91±0.67 270.54±2.40 26.37±0.59 351.96±6.09 349.12±9.65 

Elliot 5d prewet 49.42±0.67 215.45±0.63 266.11±1.62 23.47±0.22 354.02±5.91 357.95±5.40 
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From an environmental and agricultural point of view, the application of HOCs such as 

pesticides under a dry soil condition would prove more beneficial since it would reduce losses 

due to leaching and degradation. Furthermore, less pesticidal active ingredient should be applied 

to sustain biological activity on target organisms. Conversely, wet soil would have an initially 

slower uptake with less sorption of an HOC, compared to a dry soil. Thus, a downward transport 

and losses due to metabolites would become more imminent. This may suggest a higher dose of 

HOC pesticides, in order to meet the required pesticide reactivity. For example, norflurazon is 

used as a post-emergent herbicide in rice fields. Rice plantations are constantly irrigated, hence 

applied HOC pesticides are expected to show the greatest amount of loss, and most likely would 

be found in groundwater and surface waters. Evidence of this result is summarized in the 

literature (Gilliom et al., 2006, Senseman 1997a). In agricultural fields, the area of pesticide 

mixing is usually located near a groundwater well. Hence, these areas are mostly exposed to 

wetting. It is therefore expected that groundwater contamination on these sites will be more 

prevalent. In fact this was found to be the case (Senseman et al., 1997b). Therefore, it is not 

surprising that efforts have been undertaken to develop slow release formulations of mobile 

pesticides such as norflurazon (Undabeytia et al., 2000; Sopeña et al., 2007; Villaverde et al., 

2006). 

To date, this study offers a more extensive and systematic investigation of the effect of 

wetting on HOC sorption, encompassing the use of a) sorbates of different polarities, b) soils of 

different organic matter and mineral content, and c) three different hydration conditions on the 

evaluation of sorption kinetics, sorption isotherms, and desorption isotherms. 
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Chapter 7 
 

Conclusion 
 

The main objectives of this study were as follows: 1) to determine the effect of 

hydration/solvation on the nature of organic matter released from the soil; 2) to gain further 

insight into in situ soil organic matter (SOM) molecular assemblage in a whole soil and to relate 

its interactions with hydrophobic organic compounds; and 3) to investigate how hydration, 

natural organic matter, and mineral/clay content affect kinetics of uptake, sorption capacity, and 

release of hydrophobic organic compounds (HOCs). 

Chapter 3 of this thesis discusses our work involving the use of a hydration/solvation 

effect as a probe to better understand SOM supermolecular assemblage. An aqueous solution 

(aqueous phase) and an aqueous phase amended with either acetonitrile, methanol, dimethyl 

sulfoxide, acetic acid, or hydrochloric acid to a final concentration of 4.6  10-3 M of the said 

solvents (viewed as mobile phases) were contacted with a whole organic soil Pahokee Peat at 

different time intervals of 1, 20, and 45 day, respectively. Colorimetric inspection of the samples 

revealed a change in color of the supernatants from light to darker yellow at longer contact times 

for all exfoliating solvents used, with the exception of a water-acetonitrile mobile phase, which 

gave a differentiating color of light yellow at one day contact time and a distinct brownish red 

supernatant at 20 and 45 day periods. The UV absorbance at 280 nm also increased in the order: 

1 > 20 > 45 day. Since absorbance is mainly due to presence of conjugated and/or aromatic 

systems, and UV absorbance at 280 nm of SOM was previously shown to correlate to the amount 

of aromatic moieties, this imply that the acetonitrile mobile phase extracted a greater amount of 

poly(aromatics) and conjugated π systems. Emission scans utilizing a single excitation 

wavelength of either 254, 375 or 465 nm and synchronous fluorescence indicated the presence of 

at least two types of fluorophores. Furthermore, a fluorescence-based humification index (HIX), 
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defined as the ratio between the fluorescence intensities at the longer wavelengths to that of the 

lower wavelength intensities, were calculated as a means of comparing the degree of 

humification of the released SOM. Humification is defined as the process whereby small organic 

molecules are transformed into larger organic molecules, and these larger molecules are 

characteristically more conjugated, more condensed and more aromatic in nature. 

Higher HIX values are indicative of the presence of more humified materials. The 

acetonitrile mobile phase consistently showed the highest HIX values, which corroborated the 

colorimetric and UV results of an exfoliation of the highest amount of aromatic and conjugated 

systems. Fluorescence analysis also demonstrated a kinetic effect on the hydration/solvation of 

SOM. At the 20-day incubation period, there was a general increase in the amount of 

fluorophores at the longer emission wavelength, characterized by the peak, centered at ~462 nm 

and a shoulder at ~440 nm in the synchronous spectra. In contrast, at the 45-day period, a greater 

amount of lower wavelength fluorescence features centered at ~392 nm, were exfoliated. The 

fluorophores released may be ascribed to quinone-like moieties in NOM, more specifically to 

less conjugated quinone A moieties and to more conjugated, more functionalized quinone B 

moieties, as described in our recent work (Cook et al., 2009). Thus, more quinone B type 

moieties and a greater amount of quinone A type moieties, were exfoliated from 20 and 45-day 

incubation periods, respectively. The 13C CPMAS spectra of freeze-dried exfoliated soil, as well 

as FTIR analyses of freeze-dried exfoliation supernatants from 45-day water and water-

acetonitrile exfoliation samples, were in agreement with UV and fluorescence analyses, that 

hydrophilic moieties, including aromatic types were preferentially extracted, and that across the 

board, water-acetonitrile extracted more alkyl, O-alkyl, aromatic and carbonyl type moieties than 

by water alone. The extraction of both alkyl and aromatic moieties, in the aqueous mobile phases 

occured due to frequent associations with hydrophilic moieties, as in the case of plant polyesters, 
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plant lipids, and lignocellulosic materials. Interestingly, the water-acetonitrile mobile phase 

exfoliated the greatest amount of SOM, including a greater amount of quinone-B type moieties, 

which implied that it had the greatest disruptive effect on the intermolecular forces that held the 

SOM moieties into assemblies. The result may be attributed to the following: 1) differences in H-

bond donor acidity (α) of methanol and acetonitrile, suggesting that there are less water-

acetonitrile associations; hence, acetonitrile is more available to solvate SOM; 2) smaller volume 

and linearity of acetonitrile allowed easier penetration and access to molecular voids, compared 

to methanol and dimethyl sulfoxide; and 3) the ability of acetonitrile to form phenol-water-

acetonitrile complexes, due to hydrogen bonding. 

The exfoliation of SOM using aqueous solutions was kinetically controlled and may be 

explained in a similar manner to a soil-wetting process. When an air-dried soil was wetted for a 

short period (e.g., one day), some hydrophilic moieties, initially present at the outer layer, were 

hydrated/solvated and subsequently dissolved in the solution. At longer wetting times, for 

example a 20-day period, more hydrophilic moieties migrated to the outer surface; thus more of 

these moieties were solubilized, compared to the one day wetting. Furthermore, solvent 

molecules also penetrated into SOM voids and interacted with SOM moieties through hydrogen 

bonding (hydrophobic forces in the presence of acetonitrile, methanol, and dimethyl sulfoxide), 

thereby disrupting the inter- and intramolecular hydrogen bond contacts within SOM, resulting 

to a “swelled” state or a more open conformation of SOM. Thus, larger and more hydrophobic 

moieties located in the middle layer were released into the solution. Beyond the 20-day wetting 

period, as in the case of a 45-day wetting period, hydrophilic moities which were previously 

protected by the hydrophobic middle layer were then exfoliated. Sorption-desorption studies of 

hydrophobic organic compounds often use small amounts of solvent ranging from < 1% to < 2% 

in order to dissolve hydrophobic organic compounds (HOCs) in aqueous solution. Our results 
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raised concerns on the possible effect of these solvent additions to the sorption process. HOCs 

such as pesticides were usually applied with the aid of solvent systems and might also be applied 

as bi-solute systems; hence the need to have a more accurate predictive modeling of their 

sorption. 

 Chapter 4 is based from our previous work (Lattao et al., 2008) and discusses the use of 

2-Dimensional 1H–13C Heteronuclear (HETCOR) Nuclear Magnetic Resonance (NMR) for the 

first time, to gain direct molecular insight of the SOM assembly at a molecular level in a whole 

soil. The study implemented LG-CP or Ramp-CP pulse sequences in the generation of the 2-D 

HETCOR spectra and allowed the observation of intra- and intermolecular connectivities within 

the in situ SOM, which demonstrated the existence of at least two distinct domains. The first 

domain type consisted of alkyl moieties that are isolated in space; in most probability, these alkyl 

moieties represented cuticular and lipid materials, including degradation products. The second 

domain type consisted of aromatic moieties that are in close association with O-alkyl type 

moieties. The distance probed here was over 0.4 nm and up to 0.8 nm. The sample used in this 

study was a freeze-dried organic soil; hence, the molecular assemblage information derived from 

these data represented that of a dried soil, but could also be extended to a wet soil based on the 

literature available on soil hydration. A model was then put forward in relation to the influence 

of SOM molecular assembly on the sorption of hydrophobic organic compounds. In a wet soil, it 

may be envisioned that the isolated alkyl domains were more available as sorption sites for 

HOCs, because hydrophilic O-alkyl moieties would have migrated to the outer layer of the O-

alkyl/aromatic domains. The more hydrophobic aromatic moieties were protected in the inner 

layer and therefore were less available as sorption sites. As the soil dried, the SOM underwent a 

conformational rearrangement, such that O-alkyl moieties migrated back to the inner core, while 

aromatic moieties were exposed on the outer surface of the second domain type. These aromatic 
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moieties were then expected to serve as thermodynamically more favorable sorption sites, 

especially for aromatic HOCs, through formation of π–π complexes and π–π electron donor-

acceptor interactions.  

It is therefore plausible that HOCs initially sorbed to the alkyl domains migrated to the 

aromatic domains, and this step would be controlled by steric, kinetic and thermodynamic 

effects. When the soil experienced another wetting period, the reverse SOM conformational 

arrangement was expected, such that the aromatic moieties once again were located in the inner 

layer, coated by a layer of hydrophilic O-alkyl moieties on the surface. This arrangement 

hindered the exit of HOCs that were sorbed to the aromatic moieties and restricted further entry 

of HOCs, as long as the aqueous solution and the HOCs were unable to compete with and/or 

disrupt the intermolecular forces that held these SOM moieties into supramolecular assemblies. 

Thus, it may be envisioned that sorption-desorption processes in the environment, including the 

approach to equilibrium, are influenced by drying/wetting cycles to which soil is subjected. 

 Chapter 5 involves the sorption and desorption studies on three trifluorinated aromatic 

pesticides of varying polarities, namely: acifluorfen, norflurazon, and flutolanil. The sorbents 

were Pahokee Peat, Mandeville and Elliot soils, which have characteristic high, intermediate, and 

low organic contents, respectively. In addition, Mandeville soil contained a high proportion of 

sand and an appreciable amount of expandable type clay. On the other hand, Elliot soil has high 

silt content and also a significant amount of medium expandability type clay. The objectives of 

this study were as follows: 1) to determine the effect of sorbent’s organic matter content and 

sorbate’s polarity on the sorption-desorption of HOCs; 2) to investigate the effect of sorbent’s 

mineral/clay content on sorption-desorption of these HOCs; and 3) to test our hypothesis that the 

hydration condition of the soil affects the uptake and release of HOCs, based from our molecular 

assembly model. 
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The highest sorption to soils was observed for flutolanil, followed by norflurazon, and 

then lowest sorption was viewed for acifluorfen. This trend correlates well with the 

hydrophobicity of the sorbates, since flutolanil was the most hydrophobic, while acifluorfen was 

the least hydrophobic. Aside from London Van der Waals hydrophobic forces, H-bonding and π–

π electron-donor acceptor reactions potentially increased the sorption of flutolanil. Flutolanil is 

capable of very weak to moderate H-bonding with SOM moieties due to its ether, CF3 and Cl 

substituents, and amide groups respectively. The presence of negative quadrupolar moments 

above and below the plane of its aromatic rings made it a suitable π-donor, which also favored 

sorption to SOM moieties, especially aromatic moieties with π-acceptor abilities. Additional 

norflurazon sorption could be attributed from strong to very strong hydrogen bonding 

capabilities, with carboxylic and phenolic groups in SOM through azine and amino 

functionalities. The ionization of acifluorfen at the sorption pH (~5), decreased its sorption 

potential, since some ionizable functionalities in SOM (i.e., carboxylic and phenolic groups) 

were also ionized at this pH, causing anion-anion repulsion. The pesticides acifluorfen, 

norflurazon, and flutolanil inherently have –CF3 in their structures, making them highly 

amenable to 19F NMR studies. It is therefore recommended that 19F MAS and high resolution 

magic angle spin experiments be conducted in order to gain further molecular insight into their 

associations with SOM moieties.   

 The organic carbon normalized Freundlich sorption capabilities (KFOC) of Pahokee Peat 

and Mandeville soils for norflurazon were statistically equal, while a slight difference (~7%) was 

demonstrated by Elliot soil, implying that norflurazon sorbs primarily to organic matter. Sorption 

capacities for flutolanil and acifluorfen showed the following trend: Mandeville soil > Pahokee 

Peat > Elliot soil. The presence of a high proportion of sand and clay in Mandeville soil serves as 

additional sorption sites, which may be attributed to: 1) presence of hydrophobic sorption sites  
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in mineral grains (i.e., sand and clay); 2) H-bonding with free silanol groups; and 3) increased 

surface area for sorption, due to the presence of highly expandable 2:1 type sodium 

montmorillonite clay. It may be postulated that the presence of medium-swelling clays in Elliot 

soil has a negligible effect on sorption of these pesticides, possibly due to steric effects on the 

interstitial layer. Furthermore, Elliot soil carries a high proportion of silt content, and it is 

possible that the nature and molecular arrangement of SOM in such soil components affects its 

interactions with HOCs. 

 The amount of pesticides sorbed during sorption and after desorption, decreased in this 

order: dry > 1 day prewet > 5 day prewet for all pesticides in Mandeville soil and Pahokee Peat, 

except for the following: 1) sorption of norflurazon in Pahokee Peat in dry soil is statistically 

equivalent to that of 1 day prewetted soil; and 2) after desorption, KFOC of flutolanil in Pahokee 

Peat was shown to be 1 day prewet > dry > 5 day prewet. Thus, in general our results showed 

that a dry soil sorbs more HOC than prewetted soil, which was in agreement with the molecular 

assemblage model from Chapter 4. The following deviations to this general trend were observed 

for Elliot soil: 1) sorption and desorption KFOC of acifluorfen in Elliot soil showed the trend 5 

day prewet > dry > 1 day prewet; 2) sorption KFOC of flutolanil in Elliot soil was greatest in a dry 

soil and is statistically equal for 1 day and 5 day prewet soils; and 3) desorption KFOC of 

norflurazon in Elliot soil was found to be: 1 day > 5 day prewet > dry. The above deviations for 

Elliot soil once again raised an interesting question as to the nature of SOM-mineral associations 

in silty soils, especially at the molecular level. The most agricultural type of soils have an SOM 

content equal to or less than that of Elliot soils, and typically contain expandable type clay 

minerals. It is therefore recommended that the type of study carried out in this work be extended 

to such soil types. It has been suggested in the literature that SOM may exist as coatings or as 

patches in silt and mineral grains (Schwarzenbach et al., 2003; Pignatello, 2009); which leads to 
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an interesting question of the associations of SOM with mineral surfaces. Thus, further studies 

are needed to elucidate this matter, as SOM-mineral associations play a role in 1) sorption of 

HOCs, 2) stabilization of SOM, hence recalcitrance of carbon pools in SOM; and 3) soil 

aggregate formation. 

 Kinetic results indicated that an initially dry soil (Pahokee Peat, Madeville, or Elliot 

soils), sorbs more (acifluorfen, norflurazon, or flutolanil) and demonstrated a faster uptake of 

pesticide than a wet soil at the early stage (<24 hr) of the kinetic curve. This difference was more 

observable between a dry and 5 day prewetted soils; it was suggested in the past that times 

longer than 24 hours are needed to attain equilibrium wetting of soil. This finding was consistent 

with the molecular assemblage model, derived from our 2-D 1H-13C HETCOR NMR 

experiments and the implications in relation to HOC sorption and desorption to dry or wet soils. 

In addition, the pseudo-equilibrium was approached in approximately five days for all soil-

pesticide combinations. Furthermore, at 5 days, sorption of dry and prewetted soils tend to 

converge, which supported the finding once again that wetting of a dry soil may take place 

within approximately five days or longer. 

 In Chapter 6, experimental kinetic data were fitted with a two-site non-equilibrium 

model, yielding a very good fit. Almost all soil-pesticide combinations yielded R2 values of 0.92 

– 0.99 except for slightly lower correlation fits for flutolanil in dry Pahokee Peat, and acifluorfen 

in 1 day and 5 day wet Elliot soil. Thus, sorption rates of HOCs in different soils generally have 

fast and slow components, the only deviation is acifluorfen in Elliot soil, with the fraction of 

instantaneous (fast) sorption 0, possibly suggesting a one-site non-equilibrium model, which 

means that its sorption is slow throughout the sorption process. 

The above findings have environmental and agricultural implications. It is envisioned that 

the application of hydrophobic agricultural chemicals, including pesticides in a dry soil, would 
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be more beneficial in leading to a greater amount sorbed and an initial fast uptake; hence it 

would reduce losses due to horizontal (i.e., runoff) and downward water movement. In addition, 

sorbed pesticides are less bioavailable for degradation. This would result to a greater amount of 

pesticide being sorbed to soil components, and it may be argued that the availability of this 

sorbed pesticide for uptake by target organisms would depend on the subsequent hydration levels 

of the soil. Conversely, pesticide application to a wet soil increases the tendency for losses due to 

runoff, seepage, and degradation. This suggests that greater amounts of pesticide should be 

applied for bioefficacy. Thus, a higher risk of contamination of surface water and ground water 

would be expected for pesticides (and HOC across the board) applications in wet soils. 
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