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ABSTRACT

A novel sensory platform based on conjugated polymer was developed, that
consists of a monodispersed oligo(phenylene ethynylene) backbone, end-capped with a
terminal alkene for further attachment to a solid surface at one terminus, and an
anthracene based receptor group at the other terminus. Energy transfer from backbone to
end-cap was observed by absorption spectroscopy and fluorescence spectroscopy. Other
ongoing projects described herein include the synthesis of longer-chain analogues of the
above platform, the synthesis of silica microspheres based conjugated polymer sensory
platform and the synthesis of long wavelength (NIR) dye for in vivo amyloid screening

studies.



I THE HISTORY OF CONJUGATED POLYMERS
The Nobel Prize in Chemistry in 2000 was awarded to Heeger, MacDiarmid and
Shirakawa to acknowledge their discovery and development of conductive polymer, an oxidized
polyacetylene (Figure 1), synthesized from polymerization of acetylene. They found that
polyacetylene will become 1x10'° times more conductive after oxidation by I, a process called
doping. This metal-like property has drastically changed our conventional understanding

towards plastic material, to which conductive polymer belongs.'

H H H H H H H H H H

DS T S P T e

H H H H H H H H H

Figure 1. Structure of polyacetylene.

A variety of different conductive polymers were developed and have found wide practical
applications in electronic and optical devices, light emitting diodes (LED), corrosion protection,
photovoltaic cells and sensory devices, photodetectors, field-effect transistors, etc.? A few
representative examples such as poly(phenylene vinylene) (PPV), poly(phenylene ethynylene)

(PPE), polythiophenes (PT), polypyrrole (PPy) and polyaniline (PAn) are shown in Figure 2.

* \ . *_| < > — | % *. H *
n - 4n n
PPV PPE PAN
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>~ =d
N S *
Ho In L Jn
PPy PT

Figure 2. Structures of common conjugated polymers.



However, scientists currently show greater enthusiasm towards the less conductive,
undoped form of conjugated polymers since conjugated polymer was found to display
electroluminescence after voltage is applied. This property has rendered conjugated polymers as
effective candidates for polymer light emitting diodes (PLED). Compared to their traditional
inorganic LED analogs, PLED has significant advantages. First, ink-jet printing technology can
be applied for processing plastic soluble polymers. Second, the devices can be flexible. The
research toward the development of flexible large area display and Electronic Paper Display (E-
PAD) are intensively sought-after.’ The electroluminescent property originates from the fact that
conjugated polymers are semiconductors. Upon excitation, an electron of the valence band of
conjugated polymer is excited to the conduction band. The resulting vacancy in the valence band
is termed “hole”. This bound electron-hole pair, excited state of conjugated polymer, is called
“exciton” and it generates fluorescence because the recombination of the electron and hole leads
to the emission of a photon. By varying the structure of conjugated polymer, the wavelength of

emission covers a wide range of the spectrum from ultra-violet, to visible, to near infrared.

| Conduction Band @| (electron moves in conduction band)

Band Gap {

| Valence Band © | (hole moves in valence band)

Figure 3. The basics of the electronic structure of a semiconducting polymer.



I APPLICATIONS OF CPs IN SENSORY SYSTEMS UTILIZING ENERGY
TRANSFER

In recent years, conjugated polymer-based sensory systems have attracted attention due to
their signal amplification effects after T. M. Swager proposed the concept of a molecular wire in
1995. Signal amplification originates from the transport properties of conjugated polymers.
Transport properties refer to the fact that binding of the analyte to one or a minimal number of
receptors in conjugated polymers is enough to result in a measurable macro-property disturbance.
Electrical conductivity (resistivity) and fluorescence (based on fast energy migration) are two

properties most readily monitored.

Electrical conductivity is very sensitive to the molecular structures and conformation
changes of the conjugated polymers and can be precisely monitored by relatively simple
instrumentation. For example, polypyrrole is 10 thousand times more conductive compared to
its N-methyl analog.” The sterics induced by the N-methyl group cause the adjacent pyrrole rings
not to be co-planar, and consequently this affects the delocalization of the electrons in the poly
pyrrole backbone. The effective delocalization is also dependent on the conformational change
of the backbone caused by binding to analytes. An example is polythiophene with a crown-ether
macrocycle tethered to two adjacent thiophene units. In the presence of alkali metal ions,
depending on the macrocycles present, different thiophene units adopt a planar geometry. Upon
coordination with metal ions, adjacent thiophene units will no longer be co-planar. This twisted

geometry leads to significant conductivity alternation.’

The end group of a polymer is generally not taken into consideration. However, the end
group of a rigid-rod conjugated polymer can play an important role in signal amplification. After

excitation by light, the exciton rapidly migrates to an end group, which has a lower band-gap.
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Scheme 1. The geometry change of polythiophene upon coordination with alkali metal ions.

Recombination of electrons and holes leads to longer wavelength emission. It was reported that
the emission from the end capped group can be dominant.” For example, an anthracene end-cap
in the following conjugated polymer has a lower band-gap compared to its PPE backbone.
Emission from the anthracene comprises 95% of total emission, which results from the fast

energy migration from the polymer backbone to the low band-gap terminus (Figure 4).*

& OCygH33 /N
— VN = N =N =
=/ N/ Ny
\ ,/ Ci6H330 \

Figure 4. The above poly(phenylene ethynylene) displays a dominant anthracene emission
resulting from fast energy migration from the backbone.

There are two possible pathways for the energy migration in conjugated polymers:
Forster energy transfer’ or Dexter Energy Transfer.'® Forster energy transfer can happen both
intramolecularly and intermolecularly since it is a through-space energy transfer based on a
dipole-induced dipole mechanism. The efficiency is proportional to 1/R®, where R is the
distance between the donor and acceptor. In solid state applications such as fluorescent polymer

thin films, Forster energy transfer is the dominant process due to the decreased intermolecular



distances. Dexter Energy Transfer occurs via an exchange mechanism, which can be seen as a
simultaneous exchange of a pair of electrons occurring through interacting molecular orbitals. It
requires strong electronic coupling between the donor and acceptor to compete with the Forster
energy transfer process. The mechanistic difference between Forster and Dexter energy transfers

is shown in Figure 5.

Forster

"k

"
"
:

]
:
|
I

D* A D

Figure 5. Mechanistic difference between Forster and Dexter energy transfer, where D is Donor,
A is Acceptor, D* is the excited state of Donor and A* is the excited state of Acceptor.

Much research has been carried out to further address the energy migration mechanism in
different situations. The aim of our research is to study the factors that have an effect on the
photophysical properties of specially designed, conjugated polymer/oligomer and influence

energy transfer pathways in these systems.



i EXPERIMENTAL DESIGN

The development of sensitive and selective templates for real-time detection of various
analytes is of crucial importance for various fields including clinical, environmental and food
applications, etc.!" Fluorescence-based techniques are desirable due to their high sensitivity.
Recently, substantial progress has been made in the development of small-molecule fluorescent
sensors for the selective detection of a wide array of analytes ranging from ions or small
molecules to large biomolecules utilizing different chemical reactions, supramolecular
interactions and other non-bonding interactions between the sensor and the analyte.'> The
signaling processes are generally restricted to dilute solutions of sensors in various solvents.
However, solution-based detection is harder to implement into practical devices. In contrast,
solid-state fluorescent sensors can be conveniently applied in instrumentation. In addition, they
are well-suited for vapor sensing.”> However, aggregation of the fluorescent sensors in the solid
state usually leads to much diminished fluorescence.'* Furthermore, the analyte-sensor
interaction is limited mostly to the film surface, since it is difficult for the analyte to diffuse into
the solid film."”” Due to these reasons, small-molecule-based solid devices are challenging to be
used in practical sensing applications. Compared to small-molecule sensors, conjugated
polymers (CPs) have apparent advantages such as bright fluorescence in the solid state and

analyte binding amplification resulting from their excitation transport properties.

From a practical viewpoint, it is preferable for a sensory signal to exhibit a new emission at
a different wavelength rather than display fluorescence quenching or enhancement of the original
signal to facilitate detection. Many CP-based fluorescent turn-on sensors have been reported to
date, but most of them do not operate in solid state."> Herein, we are designing a novel approach

to building turn-on or color-changing solid-state fluorescent sensors, based on attenuation of



energy transfer in conjugated systems utilizing the self-assembled monolayer technique (Figure

6).

The core of the strategy lies in the design of the conjugated polymer system. The sensor is

composed of a rigid-conjugated monodisperse oligomer core (oligophenylene ethynylene) end-

Emisgfon from End-Cap

YYY LYY
LN 57&3‘}%
RERRRE

Glass Support Glass Support

CP backbone

Figure 6. General design of a molecular sensor self-assembled on a solid support. Binding of an
analyte results in lowering the band gap at the receptor terminus, thus directing energy migration
towards the end group and enhancing its fluorescence.

capped with an anthracene based sensing group at one terminus, and a silicon-terminated linkage
at the other end. The latter group can be used to covalently attach these molecules to a glass
substrate through self-assembly (Scheme 3). The terminal sensing group is a m-conjugated
moiety bearing a receptor for selective attachment or coordination binding with a specific analyte.
Upon appropriate UV-Vis irradiation, the oligomer backbone will be selectively excited. In
dilute solution, the exciton migration will occur intramolecularly both by through-bond (Dexter-

type) and through-space (Forster-type) mechanisms. Efficiency will strongly depend on the

relative position of the band-gap of the backbone and the HOMO-LUMO gap of the end group.



In a particular case where they are approximately equal before binding the analyte, the energy
transfer towards the end group is not favorable. Short wavelength fluorescence from the
oligomer backbone will be predominant. Analyte binding will lower the energy gap of the
termini. At this moment, exciton migration towards the end cap will be favorable and lead to a
much enhanced fluorescence emission from the end group located at a longer wavelength
compared to the emission from the backbone. One can also envision an opposite situation. Prior
to analyte binding, the band gap at the terminus is relatively low, therefore leading to significant
emission from the end-cap. Upon binding the analyte, the energy gap of the end-cap increases,
energy migration becomes less favorable, and shorter-wavelength emission from the backbone
will be enhanced. In any case, the analyte binding will lead to a fluorescence wavelength change,

making quantitative analytical detection accurate and simple.

The molecular sensors will be combined into a solid-state sensor device through self-
assembling. The self-assembling of alkanethiol on gold surfaces is well established. Detections
of various analytes including metal ions, biologically important molecules, and vapors, based on
such strategies were reported.'® However, gold usually leads to fluorescence quenching, thus
forcing the use of less sensitive optical and electrochemical techniques as analyte binding
transduction schemes. Recently, Reinhoudt et al. reported the self-assembling on a glass surface

for sensing studies where fluorescence was not quenched by the glass support.'’



v RESULTS AND DISCUSSION

Compound 1 was the initially designed target of our mono-dispersed oligomer sensing
platform (Scheme 2). The anthracene end-cap is functionalized with an aldehyde group for
chemosensing of cysteine and homosysteine'® Cysteine and homocysteine are the chemical
stimuli which can result in the band-gap variation through reaction with an aldehyde to give a
thiazolidine ring. Changes from an electron-withdrawing aldehyde group to an electron donating
thiazolidine functionality increase the HOMO-LUMO gap of the end-cap so that the emission
from the end-cap would decrease and that of the backbone should be enhanced. In addition to
the fundamental significance of demonstrating the validity of this chemosensing platform, the
choice of these particular analytes was also dictated by practical considerations. Cysteine and
homocysteine are important biomolecules. Elevated levels of homocysteine are an indication of
cardiovascular and Alzheimer’s disease. Deficiency of cysteine is related to various diseases
such as slow growth, edema, lethargy, liver damage, muscle and fat loss etc. Therefore,

development of a reliable practical methodology is of crucial importance for cysteine and

homocysteine detection.

Et /N HS
— N 4\ )=
o — —
/ﬂﬁg \_/ TN\ 7 Te\_/ AN H,N~ " COOH
L Et \ Cysteine
Cysteine
or Homocysteine
I N N W N Njo H,N~ “COOH
/Aé%g \/ TN T\ T 4 s Homocysteine
Et

\ 7/

n=1,or2

Scheme 2. Designed sensor 1 and its interaction with cysteine and homocysteine.
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Scheme 3. An approach to chemical transformation of terminal alkenes for their self-assembly
on a glass surface.

A. Synthetic Attempts toward 1.

A retrosynthetic analysis revealed that compound 1 might be assembled from three
different fragments (Scheme 4) using palladium-catalyzed Sonogashira coupling (Scheme 5)."

The catalytic cycle of Sonogashira coupling is shown in Scheme 6.

My contribution focused on the synthesis of the Fragment A and Fragment B, and
assembling the target molecule by coupling between the different fragments. Fragment C was

synthesized by Dr. Evgueni Nesterov.

Et 7\
o— —{{ =\ =
NN N\ / Tg\ 7 N\ / Y
1 Et \
Et 7\
— — — 0
= \ —
/A/vvvvo<> ”*Bf\/*/s\/*\/oj
Fragment A Et \ 7
Et 0
o =0
8 0
: )
Fragment B Fragment C

Scheme 4. Retrosynthetic analysis of compound 1.
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Pd(PPh3)4
Cul, Amine
®| + H—R ——— ®%R

Scheme 5. An example of Sonogashira Coupling catalyzed by Pd(0) catalyst.

B Synthesis of Fragment A

10-Undecen-1-ol (2) reacted with TsCl in the presence of pyridine to afford 3 in 62%
yield. Williamson alkylation of 4-iodophenol by tosylate 3 in the presense of K,COs furnishes 4
in 91% yield (Scheme 7). Sonogashira coupling between 4 and TMS-acetylene gives 5 in 99%

yield. Desilylation of 5 by KOH in MeOH furnished the desired fragment A in 85%

® ©
R NHR'3l

Ph
PhgPPd" PPhy
|

Oxidative

Addition cul "

©=-R + NHRj

!

5 £
Ph R—="H NR;

PhgP Pd" PPhy

Transmetallation

Pd(PPhy),  2PPh,

>

G

Trans-Cis
Reductive Isomerization

Elimination
PPh3
N o Ph—pd" PPhg
R

Scheme 6. Mechanism of the Sonogashira coupling.
yield. The 'H NMR of fragment A is shown in Figure 7. The terminal alkyne proton has a
resonance at 3.00 ppm. The three protons on the mono-substituted alkene group shows up at 5.0

ppm (2H) and 5.8 ppm (1H) respectively. The two protons on the methylene group next to the

11



/\/\/\/\/\/O
/\/\/\/\/\/O\Q\ c =
| A

4 5 TMS

/\/\/\/\/\/o
X

H

Fragment A

Scheme 7. a) TsCl, Pyridine, 0°C for 2h, r.t. for 16 h, 63%, b) 4-iodophenol, K,COs, 100°C, 50
h, 91%, ¢) TMS-acetylene, Pd(PPh;)s, Cul, i-Pr,NH,55°C, 30 h, 99%, d) KOH, r.t., 40 min, 85%.
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Figure 7. "H NMR spectrum of Fragment A in CDCls. The resonance of the alkyne proton is
located at 3.00 ppm.
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Scheme 8. Synthesis of Fragment B. a) Br,, cat. I, 0°C, 17 h, b) n-BuLi, -78°C, 1 h, ¢) I,, -78°C
—r. t., overnight, d) TMS-acetylene, Pd(PPhs)s, Cul, i-Pr,NH, 55°C, 24 h, e) KOH, r.t., 40 min.

oxygen atom locate at 3.96 ppm. Aromatic protons show as two doublets at 6.8 ppm and 7.4

ppm. All the remaining protons from the alkyl chains locate in a range from 1.3 ppm to 2.1 ppm.

C Synthesis of Fragment B

para-Diethylbenzene 6 was brominated to afford 7 in 50% yield. Monolithiation with 1

equiv of n-BuLi followed by quenching with I, gave monoiodo compound 8 in 96% yield

(Scheme 8). Sonogashira coupling between 8 and TMS-acetylene catalyzed by Pd(PPhs), and

13



Cul in the presence of diisopropylamine afforded 9 in 99% yield. To achieve a high yield, the
reaction should be carried out at a relatively low (~55°C) temperature. Under these
conditions,the coupling selectively occurred at the more reactive iodine center. A similar
strategy was utilized throughout the rest of the synthesis to achieve highly regioselective mono-
alkynylation by Sonogashira coupling. Half of 9 was lithiated, followed by iodination, to
generate 10 in 95% yield. The other half of 9 was desilylated by KOH in MeOH to produce 11 in
99% vyield. Sonogashira coupling between 10 and 11 furnished 12 in 98% yield. The same
procedures were followed to synthesize tetramer 15 and octamer 18 (Scheme 8). The structure
of compound 18 was confirmed via MALDI-TOF. The exact mass of 18 was calculated to be
1400.72 and [M+H]" was found to be 1401.41 (Figure 9). However, due to the fact that 18 is
very sticky and has very poor solubility in common organic solvents, purification via standard
chromatography was not successful and 18 could not be recovered. A byproduct—a result of
homocoupling of two acetylene—has similar solubilities in different solvents compared to 18
and could not be removed. Still the impure sample of 18 was subjected to desilylation by KOH
in MeOH to effect fragment B. Multiple attempts to use chromatography to purify fragment B
resulted in a very small fraction of relatively pure sample. Most of the product was lost in the
column since no solvents could elute it down. The "H NMR spectra of fragment B is shown in
Figure 10, and its UV-Vis and fluorescence spectra are shown in Figure 8. Fragment B displays
a strong absorption in CHCl; with maximum at 370 nm, corresponding to the oligo(phenylene
enthynylene) backbone. It is strongly fluorescent and displays an intense maximum at 415 nm

with a shoulder peak at 440 nm due to aggregation.

14



Fragment B
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Figure 8. Absoption and emission spectra of fragment B in CHCls.

D Attempts to Couple All Three Fragments

The more soluble tetramer 16 was used to prepare Compound 22, an analogue of
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Figure 9 MALDI-TOF of compound 18. A molecular peak [M+H]" is found at 1401.41.
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Figure 10. '"H NMR of the Fragment B in CDCl;. Singlet at 3.30 ppm corresponds to the
terminal alkyne H.

compound 1 (Scheme 9). Compound 19 was obtained in 56% yield. TMS on 19 was removed
by treating with KOH in MeOH to yield 20 in 92% yield. This was followed by coupling with
fragment A to furnish compound 21 in 53% yield. Ethylene glycol acetal protection of aldehyde
was removed by a catalytic amount of PTSA to generate 22 in 51% yield (Scheme 9). The 'H
NMR of 22 is shown in Figure 11. The aldehyde peak is located at 11.55 ppm. The terminal
monosubstituted alkene peaks are located at 4.97 (2H) and 5.85 (1H) ppm. The presence of the
resonances from both alkene and aldehyde confirmed the attainment of compound 22. Sensing
studies in solutions are currently ongoing. They will be followed by preparations of solid-state

devices through self-assembling on a glass surface.
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Compound 20 (Figure 12A) shows a strong absorption at ca. 375 nm. The corresponding

emission maximum is located at 408 nm, and an additional shoulder peak from aggregation is

Et

I — 1 TMS ]
4 Et
Et I _ b
SN =t e
Et

+

Ng—@iH — 19

Fragment A
. ()
o
== - 0=
AP N 0
. W
20 Fragment C

Scheme 9. Synthesis of a tetramer analog (22) of compound 1. a) Pd(PPh;)s, Cul, Toluene:i-
Pr,NH(7:3), 55°C, 24h, b) PTSA, rt, 12 h.

located at 430 nm. The absorption of fragment C (Figure 12B) has a strong absorption maxima
corresponding to the vibronic transitions at 407 and 431 nm respectively. The emission of

fragment C also shows a vibronic structure with maximum of 439 nm and a less intensive peak at
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466 nm. It is interesting to point out that the absorption of fragment C (acceptor) and emission
of compound 20 (donor) overlap very well (Figure 12C). This indicates that the energy transfer
from the oligomer backbone to the anthracene moiety through the through-space dipole-induced
dipole Forster mechanism will prevail in compound 21. Indeed, the emission of 21 mostly
comes from the anthracene end group (Figure 12D). The excitation wavelength was chosen to be
350 nm, which excites the backbone efficiently but not the anthracene unit. The absorption
spectrum of 21 appears to be a superposition of absorption spectra of its constituents, fragment C
and compound 20 (Figure 12D). This can be attributed to the weak electronic interactions
between the tetramer core and the end group in 21. With these weak electronic couplings, we
can assume that the Forster through-space energy transfer mechanism seems to be predominant
for compound 21. The absorption and emission of the aldehyde-terminated compound 22
displays a significant red shift compared to 21 (Figure 13). This is due to the incorporation of
the electron withdrawing carbonyl group onto the end-cap. As in the previous case, the
efficiency of energy transfer is very high, resulting in predominance of the end-group emission.
With the apparent smaller spectral overlap in this case, there is a good probability for the Dexter
through-bond mechanism to contribute significantly into energy transfer. However, more studies

are required to fully support this conclusion.

Encouraged by the successful synthesis of 22, I tried the synthesis using the less soluble
octamer (18). However, iodination of 18 to its more reactive iodide analog was unsuccessful
under the same condition. I changed the catalyst from Pd(PPhs)s to a more reactive system,
Pd(PhCN),Cl, with P(t-Bu);.”° Considering the large molecular weight, extended reaction time
was applied when coupling with Fragment A. As a result, compound 23 is obtained in a form of

a sticky yellow residue. Desilylation of 23 generated 24 smoothly. However, further attempts to
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couple 24 with fragment C were not successful (Scheme 10). 'H NMR spectrum of 24 is shown

in Figure 14.
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Figure 11. "H NMR of 22 in CDCls. Peak at 11.55 ppm is the resonance of the aldehyde proton.
Resonances of the terminal alkene protons are located at 4.97 ppm and 5.85 ppm.
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Figure 12. A) Absorption and emission of 20 in CHCl;, B) Absorption and emission of
fragment C in CHCI3, C) Overlay of the emission of 20 and absorption of fragment C in CHCl3,
D) Absorption and emission of 21 in CHCl; showing that the emission is mainly from terminal

anthracene moiety.
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Figure 13. Absorption and emission of 22 in CHCl;.
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Scheme 10. Synthetic attempts toward 1. a) Pd(PhCN),Cl,, P(t-Bu)s, i-ProNH, Cul, 65°C, 48 h,
b) KOH/MeOH, 1t, 1 h.
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Figure 14. '"H NMR spectrum of 24 in CDCl;. The alkyne proton appears at 3.32 ppm.
Terminal alkene protons are located at ca. 5.00 ppm and 5.83 ppm. The peak at 5.30 ppm is
from DCM, which is trapped in the gel-like 24 and cannot be removed. The "H NMR spectrum

was collected at elevated temperature to improve 24’s solubility in CDCl;.
We found that the absorption and emission spectra of 24 red are shifted by ca. 15 nm.

This is in a good agreement with the fact that 24 has extended n-electron conjugation (Figure 15).
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Figure 15. Comparison of the absorption (solid lines) and emission (dashed lines) of 24 and 20
in CHC13
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E Attempt with the Hexyl Substituted Derivative

It is well-known that long alkyl chains increase the solubility of compounds in common

organic solvents. To increase the solubility of oligomers in organic solvents and further facilitate
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Br | Z 95%
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- o
Br 9%  Br 99% Br
Hex Hex Hex 4>d
25 26 27 99%
Hex Hex
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Br =H 30 sove Br —H
2
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ex 29 32
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c ) — —
86% — 77% 4
Hex N Hex 24 Fragment A

Done by

Hex
my labmate
@ —jms e A
— 4
Hex

Scheme 11. Toward the synthesis of n-Hexyl substituted oligomers.

A&;’\/

35

the coupling of different fragments, we tried to use p-dihexylbenzene instead of the diethyl
counterpart (Scheme 11). The same procedures as for the synthesis with diethylbenzene

described above were used. After the tetramer 35 was synthesized, I transferred the project to
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another student in my group. The 'H NMR spectrum of 35 is shown in Figure 16. Hexyl groups
indeed increased the solubility of the compounds and made them very soluble even in such a
non-polar solvent as hexane. Importantly, the use of the longer hexyl side chain did not seem to
affect electronic conjugation in the oligomers. Figure 17 shows that the ethyl and hexyl analogs

(20 and 35) have very close absorption and emission spectra in CHCl;.

F Synthesis of Silica Supported Conjugated Polymer

An alternative approach to the oligomer self-assembly-based one described above was to
synthesize the end-capped conjugated polymer chains starting from the low molecular weight

precursor pre-attached to the solid support. This approach seemed to allow avoiding problems
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Figure 16. '"H NMR of 35 in CDCl;. Terminal TMS (9H) is located at 0.29 ppm, and the
terminal alkene (3Hs) is at 4.99 ppm and 5.84 ppm.
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Figure 17. Overlay of the absorption (solid lines) and emission (dashed lines, excited at 350 nm)
spectra of 20 and 36 clearly shows that alkyl substituents on the phenylene group do not exhibit a
strong influence on the photophysical properties of the oligomer backbone.

with low solubility of oligomers. So we attempted it as well, using 0.33um silica microspheres.
Compound 37 reacted with commercially available 3-(trimethoxysilyl)propylamine (38) to yield
the amide 39 in 72% yield (Scheme 12). Special precaution should be taken for column
purification of 39 since it readily reacts with silica gel unless column is pre-treated with
triethylamine. Compound 39 was attached to the surface of silica particles to generate 40, which
has a terminal aryl iodide functionality. This could serve to initiate a Sonogashira-Coupling
based polymerization of monomer 41. After carrying out the polymerization reaction for 24 h, a
solution of end-capping reagent (fragment C) was added to the resulting mixture. This afforded

highly fluorescent microparticles 43 bearing short conjugated polymer chains. GPC studies of

the solution fraction 42 found the number averaged molecular weight Mn ~1800 , which
corresponds to a chain of ca. 10 repeating units, with a polydispersity of 1.65. The overlay of the
emission spectra of the solution fraction and the silica particle clearly showed that the backbone

emission of 42 has almost the same emission maximum as the particle fraction. This also
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confirms that the GPC data were also valid in estimating the short polymer chains attached to the

silica particles. The project was then transferred to my labmate and further studies are ongoing.

—— Solution fraction
——————————— Particle fraction
,,,,,,,,,,, Solution fraction

300 400 500 600 700
Wavelength (nm)

Figure 18. Comparison of the UV-Vis and fluorescence spectra of solution fraction and the
silica particle fraction.

G Synthesis of a Monomer for a Water Soluble Boronic Acid Functionalized
Conjugated Polymer

My task was to synthesize monomer 48 which will be used to prepare a water soluble
polymer (45) with pendant boronic acid groups for ultra-sensitive vicinal glycol detection
(Scheme 13). para-Xylene (49) was brominated to afford 50 in a 70% yield. Benzylic
bromination of 50 with NBS gave 51 in 73% yield. Nucleophilic substitution of the benzylic
bromide by Na,SOs leads to 52 in 77% yield. However, 52 did not couple with TMS-acetylene
to yield the desired monomer 48. It is likely that the benzylic sulfonate groups hinder the
Sonogashira coupling. In an alternative approach, coupling between 51 and TMS-acetylene did
not yield the desired bis-acetylene, but the tetrasubstituted product 53 (Scheme 14). We are
currently exploring the coupling between 50 and TIPS acetylene. TIPS is chosen to replace TMS
due to its better robustness. Compound 54 was obtained in almost 99% yield. I am currently
working on the NBS bromination of the compound 54. Once 55 has been obtained, Na,SO3 will
be used to displace the benzylic bromides to furnish 56. Further desilylation will generate

desired monomer 48 (Scheme 15).
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Scheme 12. Synthesis of a silica microsphere supported conjugated polymer system. a) DCM,
0°C, 1 h, b) Toluene, reflux, 4h, ¢c) KOH, MeOH, rt, 1 h, d) Pd(PPh;)4, Cul, i-Pr,NH, 60°C, 24 h.
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Scheme 13. Retrosynthetic analysis of polymer 45.

H Synthesis of Long Wavelength (Near-Infrared) Dye

Compound 60 is synthesized following a literature procedure.”’ It is further protected
with TBDMS to yield 61 in 55% yield. Stirring with malononitrile in the presence of TiCly in
anhydrous pyridine yields trace amounts of 62. Reaction optimization is ongoing and

deprotection of 62 by fluoride will furnish the expected long wavelength dye (Scheme 16).

Br SO3Na
a b c
—> Br Br — Br Br —— Br Br
70% 73% 7%
NaO3S
49 50 51 52

Br

SO3Na
Sonogashira -
- > H \ H
No Reaction
NaO3S
48
Br ——TMS
Br§:§8r 9, qms a — ™S
Br TMS
51 53

Scheme 14. Attempts to synthesize monomer 47. a) Bry, I, 0°C, 24 hr, b) NBS, CCly, reflux, 24
h, ¢) Na,SOs, EtOH/H,0, TBAB, reflux, d) TMS-acetylene, Pd(PPhs)4, Cul, i-Pr,NH, 60°C, 24 h,
e) TIPS-acetylene, Pd(PPhs)4, Cul, i-Pr,NH, 85°C, 22 h, f) KOH, rt, 1h.
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Scheme 15. New route for the synthesis of monomer 47.
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Scheme 16. Synthesis of long wavelength dye. a) MeMgl, tt, 6 h, b) H', ¢) NaOH, 0°C, 1.5 h, d) Na,S,0s,
rt, 30 min, e) HCI, reflux, 1.5 h, f) NalOy, rt, 30 min, g) TBDMSCI, imidazole, rt, 24 h, h) CH,(CN),,
pyridine, TiCly, 0°C, 15 h.
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\Y CONCLUSION

The synthesis of a monodispersed oligo(phenylene ethynylene) backbone, end-capped
with a terminal alkene for further attachment to a solid surface at one terminus, and an
anthracene based receptor group at the other terminus, was successfully accomplished. Efficient
energy transfer from backbone to end-cap was observed by absorption spectroscopy and
fluorescence spectroscopy in agreement with the initial experimental design. The synthesis of a
longer-chain analogue of the above platform, silica microspheres based conjugated polymer
sensory platform and the synthesis of long wavelength (NIR) dye for in vivo amyloid screening

were described.
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Vi EXPERIMENTAL

Compound 3. 10-Undecen-1-ol (5.0 g, 29.4 mmol) was added in a 300 ml three-neck
round bottom flask and dissolved in pyridine (20 mL). A solution of TsClI (8.4 g, 44.0 mmol) in
pyridine (20 mL) was added dropwise with constant stirring at the ice bath temperature. Mixture
was maintained at 0°C under N, atmosphere for 2 h before it was warmed up to rt. The mixture
was stirred for another 19 h followed by addition of H>O (150 mL). Then, the reaction mixture
was stirred for another 1 h before extraction with EtOAc (3 x 75 mL). Combined organic layers
were washed with 1% HCI (5 x 50 mL) and distilled water (5 x 50mL), and dried over Na;SOj.
Solid was removed by suction filtration. The resulting solution was concentrated under reduced
pressure to give compound 3 (6.0 g) in 63 % yield. Data for compound 3: "H NMR (CDCls, 400
MHz) é 7.79 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.4 Hz, 2H), 5.84-7.77 (m, 1H), 4.99 (d, J = 17.1

Hz, 1H), 4.93 (d, J = 10.2 Hz, 1H), 4.02 (t, J = 6.53 Hz, 2H), 2.04-1.20 (m).

Compound 4. A 250 ml round bottom flask was charged with 4-iodophenol (2.0 g, 9.3
mmol), compound 3 (6 g, 18.5 mmol), K,CO; (2.6 g, 18.5 mmol) and KI (30.7 mg, 1.9 mmol).
Methylethylketone (100 mL) was added. The reaction mixture was refluxed for 50 h under N,
atmosphere. Inorganic salts were removed by suction filtration. The organic solvent was
removed under reduced pressure. The residue was dissolved in DCM and washed with 10%
NaOH solution and distilled water. The organic layer was separated and dried over MgSQOy4. The
resulting organic solution was concentrated under reduced pressure to give crude product, which
was subjected to column chromatography (silica gel, Hexane) to give compound 4 (3.4 g) in 91%
yield. Data for compound 4: "H NMR (CDCls, 250 MHz) § 7.54 (d, J = 8.9 Hz, 2H), 6.68 (d, J =

8.9 Hz, 2H), 5.92-5.73 (m, 1H), 5.05-4.91 (m, 2H), 3.91 (t, J = 6.5 Hz, 2H), 2.10-1.25 (m).
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Compound 5. A mixture of compound 4 (3.2 g, 8.5 mmol), TMS-acetylene (1.7 g, 16.9
mmol), Pd(PPhs)s (147 mg, 0.13 mmol) and Cul (24.4 mg, 0.13 mmol) were charged in a sealed
flask and dissolved in 70 mL of Toluene:i-Pro,NH (v/v 7:3). The mixture was stirred at 55°C for
30 h. The resulting mixture was passed through a short column (silica gel) to remove metal
catalyst and inorganic salts. Concentration under reduced pressure affords compound 5 (2.9 g) in
99% yield. Data for compound 5: '"H NMR (CDCls, 250 MHz) & 7.39 (d, J = 8.7 Hz, 2H), 6.81
(d, J=8.7 Hz, 2H), 5.90-5.73 (m, 1H), 5.50-4.92 (m, 2H), 3.95 (t, J = 6.5 Hz, 2H), 2.10-1.32 (m),

0.24 (s, 9H).

Fragment A. Compound 5 (2.9 g, 8.2 mmol) was dissolved in THF (175 mL) and added
dropwise into a solution of KOH (2.4 g, 42.3 mmol) in MeOH (200 mL) with constant stirring.
The resulting mixture was stirred for an additional 40 min at rt. The solution was poured into
water (300 mL) and extracted with ether. The combined ether layers were washed successively
with water (200 mL), saturated NH4ClI solution (100 mL), brine (100 mL) and water (3 x 100
mL), and dried over Na,SO4. Solution was concentrated under reduced pressure and the residue
was subjected to column chromatography (silica gel, Hexane) to give fragment A (1.9 g) in 85%.
Data for fragment A: "H NMR (CDCl3, 250 MHz) 6 7.42 (d, J = 8.5 Hz, 2H), 6.83 (d, J= 8.5 Hz,

2H), 5.90-5.73 (m, 1H), 5.50-4.92 (m, 2H), 3.96 (t, J = 6.5 Hz, 2H), 2.99 (s, 1H), 2.13-1.20 (m).

Compound 8. A solution of n-BuLi (145 mL of 1.6 M solution in Hexane, 0.23 mol) was
added dropwise to a solution of compound 7 (63 g, 0.23 mol) in THF (900 ml) with constant
stirring at the dry ice/Acetone bath temperature. After addition was complete, the resulting
mixture was stirred for another 3 h followed by addition of a solution of I, (71.3 g, 0.28 mol) in
THF (250 mL). The resulting mixture was stirred for another 1 h at -78°C and allowed to warm

to rt overnight. The solution was concentrated to 30% of the initial volume, and 20% Na,S,0;

31



solution in H,O was added till the mixture turned yellow. Water (300 mL) was added, and the
reaction mixture was extracted with DCM. Organic layers were washed successively with dilute
NayS,03, brine, and water before drying over Na,SO4. Solvents were removed under reduced
pressure. Compound 8 (70 g) was obtained after recrystallization from EtOH. Data for
compound 8: '"H NMR (Acetone-dg, 250 MHz) & 7.77 (s, 1H), 7.48 (s, 1H), 2.84-2.68 (m, 4),

1.22-1.15 (m, 6H).

Compound 9 was prepared following the synthetic procedure for compound 5. The
following amounts of reagents were used: compound 8 (35.7 g, 0.11 mol), TMS-acetylene (10.3
g, 0.11 mol), Pd(PPh;)4 (1.8 g, 1.6 mmol) and Cul (0.31 g, 1.6 mmol) in 400 mL of Toluene:i-
ProNH (v/v 7:3). The crude product was purified by column chromatography (silica gel, Hexane)
to give compound 9 (32 g) in 98% yield. Data for compound 9: 'H NMR (CDCls, 250 MHz) &

7.36 (s, 1H), 7.26 (s, 1H), 2.77-2.64 (m, 4H), 1.25-1.18 (m, 6H), 0.25 (s, 9H).

Compound 10 was iodinated following the synthetic procedure for compound 8. The
following amounts of reagents were used: compound 9 (16.22 g, 52.5 mmol), n-BuLi (40 mL of
1.6 M solution in Hexane, 64 mmol), I, (18 g, 69.8 mmol). Crude product was purified by
column chromatography (silica gel, Hexane) to give compound 10 (17.7 g) in 95% yield. Data
for compound 10: "H NMR (CDClj, 250 MHz) & 7.65 (s, 1H), 7.26 (s, 1H), 2.72-2.64 (m, 4h),

1.25-1.15 (m, 6H), 0.26 (s, 9H).

Compound 11 was prepared following the synthetic procedure for the fragment A. The
following amounts of reagents were used: compound 9 (16.22 g, 52.5 mmol), KOH (9.9 g, 0.16

mol). The product was purified by column chromatography (silica gel, Hexane) to give
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compound 11 (12.3 g) in 99% yield. Data for compound 11: '"H NMR (CDCl3, 250 MHz) & 7.38

(s, 1H), 7.30 (s, 1H), 3.26 (s, 1H), 2.80-2.65 (m, 4H), 1.25-1.18 (m, 6H).

Compound 12 was prepared following the synthetic procedure for compound 5. The
following amounts of reagents were used: compound 11 (12.4 g, 52.5 mmol), compound 10
(17.0 g, 47.7 mmol), Pd(PPh3)4 (0.83 g, 0.72 mmol) and Cul (0.14 g, 0.72 mmol) in 300 mL of
Toluene:i-Pro,NH (v/v 7:3). The product was purified by column chromatography (silica gel,
Hexane) to give compound 12 (21.6 g) in 98% yield. Data for compound 12: 'H NMR (CDCl;,
250 MHz) & 7.42 (s, 1H), 7.36 (s, 1H), 7.34 (s, 1H), 7.33 (s, 1H), 2.90-2.65 (m, 8H), 1.34-1.19

(m, 12H), 0.27 (s, 9H).

Compound 13 was prepared following the synthetic procedure for compound 8. The
following amounts of reagents were used: compound 12 (10 g, 21.5 mmol), n-BuLi (16.1 mL of
1.6 M solution in Hexane, 25.8 mmol) and I, (7.3 g, 28.6 mmol). The product was purified by
column chromatography (silica gel, Hexane) to give compound 13 (8.9 g) in 81 % yield. Data for
compound 13: "H NMR (Acetone-dg, 250 MHz) & 7.80 (s, 1H), 7.45 (s, 1H), 7.43 (s, 1H), 7.35 (s,

1H), 2.90-2.65 (m, 8H), 1.30-1.19 (m, 12H), 0.26 (s, 9H).

Compound 14 was prepared following the synthetic procedure for the fragment A. The
following amounts of reagents were used: compound 12 (10.3 g, 22.2 mmol), KOH (3.7 g, 66.7
mmol). The product was purified by column chromatography (silica gel, Hexane) to give
compound 14 (7.5 g) in 86% yield. Data for compound 14: 'H NMR (Acetone-dg, 250 MHz) &
7.53 (s, 1H), 7.48 (s, 1H), 7.45 (s, 1H), 7.40 (s, 1H), 3.96 (s, 1H), 2.90-2.73 (m, 8H), 1.31-1.20

(m, 12H).
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Compound 15 was prepared following the synthetic procedure for compound 5. The
following amounts of reagents were used: compound 13 (7.5 g, 14.6 mmol), compound 14 (6.3 g,
16.1 mmol), Pd(PPh3)4 (0.3 g, 0.22 mmol) and Cul (0.042 g, 0.22mmol) in 100 mL of Toluene:i-
Pr,NH (v/v 7:3). The product was purified by column chromatography (silica gel,
Hexane:CHCl; 95:5) to give compound 15 (9.8 g) in 86% yield. Data for compound 15: 'H
NMR (CDCls, 300 MHz) & 7.42-7.33 (m, 8H), 2.92-2.72 (m, 16H), 1.35-1.22 (m, 24H), 0.27 (s,

9H).

Compound 16 was prepared following the synthetic procedure for compound 8. The
following amounts of reagents were used: compound 15 (4.6 g, 5.9 mmol), ICH,CH,I (2.3 g, 8.3
mmol) as a replacement for I, n-BuLi (5.1 mL of 1.6 M solution in Hexane, 8.2 mmol). The
product was purified by column chromatography (silica gel, Hexane:CHCI5=50:50) to give
compound 16 (3.8 g) in 77% yield. Data for compound 16: "H NMR (CDCls, 300 MHz) § 7.71 (s,

1H), 7.40-7.26(m, 7H), 2.92-2.69 (m, 16H), 1.34-1.20 (m, 24H), 0.27 (s, 9H).

Compound 17 was prepared following the synthetic procedure for the fragment A. The
following amounts of reagents were used: compound 15 (5.2 g, 6.6 mmol), KOH (1.3 g, 24
mmol). The product was purified by column chromatography (silica gel, Hexane:CHCIl;=1:1) to
give compound 17 (4.6 g) in 99% yield. Data for compound 17: '"H NMR (CDCl;, 250 MHz) &

7.43-7.36 (m, 8H), 3.32 (s, 1H), 2.92-2.69 (m, 16H), 1.56-1.24 (m, 24H).

Compound 18 was prepared following the synthetic procedure for compound 5. The
following amounts of reagents were used: compound 16 (2.0 g, 2.3 mmol), compound 17 (2.0 g,
2.6 mmol), Pd(PPhs3)4 (0.040 g, 0.04 mmol) and Cul (0.007 g, 0.04mmol) in 60 mL of Toluene:i-

ProNH (v/v 7:3). An attempt to purify the product by column chromatography (silica gel, CHCl5)
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gave crude compound 18 (100 mg). Data for compound 18: 'H NMR (CDCls, 250 MHz) & 7.46-

7.37 (m, 16H), 2.93-2.66 (m, 32H), 1.37-1.14 (m, 48H), 0.31 (s, 9H).

Fragment B was prepared following the synthetic procedure for the fragment A. The
following amounts of reagents were used: compound 18 (88 mg, 0.062 mmol), KOH (10 mg, 0.2
mmol). An attempt to purify the product by column chromatography (silica gel, CHCl;) gave
crude fragment B (40 mg). Data for fragment B: '"H NMR (CDCl3, 250 MHz) & 7.43-7.35 (m,

16H), 3.31 (s, 1H), 2.93-2.68 (m, 32H), 1.33-1.21 (m, 48H).

Compound 19 was prepared following the synthetic procedure for compound 5. The
following amounts of reagents were used: compound 16 (0.8 g, 0.97 mmol), fragment A (0.3 g,
1.1 mmol), Pd(PPh3)s (0.017 g, 0.015 mmol) and Cul (0.003 g, 0.015mmol) in 20 mL of
Toluene:i-Pro,NH (v/v 7:3). The product was purified by column chromatography (silica gel,
Hexane:CHCl; 90:10) to give compound 19 (500 mg) in 56% yield. Data for compound 19: 'H
NMR (CDCl;, 400 MHz) 6 7.48-7.34 (m, 18H), 6.88 (d, J = 8.4 Hz, 2H), 5.88-7.58 (m, 1H),

5.03-4.93 (m, 2H), 3.98 (t, = 6.4 Hz, 2H), 2.92-2.79 (m), 2.07-0.87 (m), 0.28 (s, 9H).

Compound 20 was prepared following the synthetic procedure for the fragment A. The
following amounts of reagents were used: compound 19 (500 mg, 0.52 mmol), KOH (87 mg, 1.6
mmol). The product was purified by column chromatography (silica gel, Hexane: CHCl3=80:20)
to give compound 20 (427 mg) in 92% yield. Data for compound 20: '"H NMR (CDCls, 250
MHz) 6 7.49-7.39 (m, 18H), 6.89 (d, J = 8.4 Hz, 2H), 5.92-5.75 (m, 1H), 5.08-4.92 (m, 2H), 3.97

(t, J= 6.5 Hz, 2H), 3.33 (s, 1H), 2.91-2.85 (m), 2.10-0.87 (m).

Compound 21 was prepared following the synthetic procedure for compound 5. The

following amounts of reagents were used: compound 20 (0.053 g, 0.06 mmol), the fragment C
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(0.029 g, 0.06 mmol), Pd(PPhs)4 (2 mg, 0.002 mmol) and Cul (0.35 mg, 0.002mmol) in 6 mL of
Toluene:i-Pr;NH (v/v 7:3). The product was purified by column chromatography (silica gel,
Hexane:EtOAc=80:20) to give compound 21 (39.6 mg) in 53% yield. Data for compound 9: 'H
NMR (CDCls, 250 MHz) & 8.76 (d, J = 8.8 Hz, 2H), 8.61 (d, J = 8.1 Hz, 2H), 7.81-7.34 (m,
21H), 7.13 (s, 1H), 6.90 (d, J = 8.8 Hz, 2H), 5.89-5.80 (m, 1H), 5.05-4.94 (m, 2H), 4.56 (t, J =

6.5 Hz, 2H), 4.34 (m, 4H), 4.00 (t, J = 6.5 Hz, 2H), 2.93-2.87 (m), 1.82-0.88 (m).

Compound 22. The mixture of compound 21 (39.6 mg, 0.032 mmol) and PTSA (10 mg,
0.015 mmol) are dissolved in a mixture of acetone (5 mL) and CHCl; (5mL) and stirred at rt for
24 h. Five drops of conc. aqueous NaHCO; were added before drying over Na,SO4. Organic
solvents were removed under reduced pressure. Resulting crude product was subjected to
column chromatography (silica gel, Hexane:CHCl3=50:50) to give compound 22 (20 mg) in 51%
yield. Data for compound 22: '"H NMR (CDCls, 250 MHz) § 11.77 (s, 1H), 8.99 (d, J = 8.8 Hz,
2H), 8.79 (d, J = 8.2 Hz, 2H), 7.83-7.35 (m, 22H), 6.89 (d, J = 8.1 Hz, 2H), 5.92-5.83 (m, 1H),

5.03-4.90 (m, 2H), 3.99 (t, J = 6.4 Hz, 2H), 2.88 (m), 2.12-0.86 (m).

Compound 23 was prepared following the synthetic procedure for compound 5. The
following amounts of reagents were used: compound 18 (380 mg, 0.27 mmol), the fragment A
(88 mg, 0.33 mmol), Pd(PhCN),Cl, (3.1 mg, 0.015 mmol) as a replacement for Pd(PPhj)4, P(t-
Bu)3(0.2 ml of 0.1 M solution in dioxane) and Cul (1 mg, 0.008mmol) in 5 mL of Dioxane:i-
ProNH (v/v 98:2). An attempt to purify the product by column chromatography (silica gel,
EtOAc) gave crude compound 23 (77 mg). Data for compound 23: '"H NMR (CDCls, 250 MHz)
0 7.41-7.34 (m, 18H), 6.88-6.80 (m, 2H), 5.89-5.72 (m, 1H), 5.06-4.93 (m, 2H), 3.96 (t, J = 6.4

Hz, 2H), 2,97-2.60 (m), 2.10-0.83 (m), 0.28 (s, 9H).
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Compound 24 was prepared following the synthetic procedure for the fragment A. The
following amounts of reagents were used: compound 23 (77 mg, 0.05 mmol), KOH (10.5 mg,
0.19 mmol). The product was purified by column chromatography (silica gel,
Hexane:EtOAc=95:5) to give compound 24 (59 mg) in 80% yield. Data for compound 24: 'H
NMR (CDCl;, 250 MHz) 6 7.48-7.36 (m, 18H), 6.88 (d, J = 8.2 Hz, 2H), 5.88-5.77 (m, 1H),
5.03-4.92 (m, 2H), 3.98 (t, J = 6.5 Hz, 2H), 3.32 (s, 1H), 2.93-2.76 (m), 2.06-2.01 (m), 1.82-1.76

(m), 1.43-0.85 (m).
Compound 26-34 were synthesized following the literature procedures.*

Compound 35 was prepared following the synthetic procedure for compound 5. The
following amounts of reagents were used: compound 34 (0.10 g, 0.08 mmol), the fragment A
(0.05 g, 0.17 mmol), Pd(PPh3)4 (0.9 mg, 0.002 mmol) and Cul (0.45 mg, 0.002mmol) in 5 mL of
Toluene:i-Pr;,NH (v/v 7:3). The product was purified by column chromatography (silica gel,
Hexane:EtOAc=80:20) to give compound 35 (88 mg) in 78% yield. Data for compound 9: 'H
NMR (CDCl;, 300 MHz) 6 7.49-7.33 (m, 10H), 6.90 (d, J = 8.9 Hz, 2H), 5.88-5.78 (m, 1H),

5.05-4.94 (m, 2H), 3.99 (t, J = 6.5 Hz, 2H), 2.90-2.65 (m), 2.09-0.87 (m), 0.30 (s, 9H).

Compound 39. Compound 37 (164 mg, 0.615 mmol) and compound 38 (0.23 ml, 1.3
mmol) were dissolved in DCM (4mL) at 0°C. The mixture was stirred for 1 h and solvents was
evaporated under reduced pressure. The residue was subjected to column chromatography (silica
gel, CHCl3:MeOH 98:2) to give compound 39 (181 mg) in 72% yield. Data for compound 9: 'H
NMR (CDCl3, 250 MHz) 6 7.80 (d, J = 8.3 Hz, 2H), 7.62 (d, J = 8.3 Hz, 2H), 6.49 (s, 1H), 3.47

(q, J = 7.5 Hz, 2H), 1.77 (m, 2H), 0.74 (t, J = 8.7 Hz, 2H).
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Compound 40. Compound 39 (90 mg, 0.22 mmol) and silica microspheres (254 mg, 0.33
um, Bang Laboratories, Inc.) were mixed with toluene (10 mL) and refluxed for 4 h. The surface
modified silica particle were collected via centrifugation and washed a few timeswith acetone

after sonication.

Compound 41 was prepared following the synthetic procedure for the fragment A. The
following amounts of reagents were used: compound 10 (750 mg, 2.1 mmol), KOH (0.35 g, 6.3
mmol). The product was purified by column chromatography (silica gel, Hexane) to give
compound 41 (596 mg) in quantatitive yield. Data for compound 9: "H NMR (CDCl;3, 250 MHz)

d

Compound 42 was prepared following the synthetic procedure for compound 5. The
following amounts of reagents were used: compound 41 (85 mg, 0.3 mmol), compound 40 (50
mg), Pd(PPh3)s (1 mg, 0.001 mmol) and Cul (0.2 mg, 0.001mmol) in 5 mL of Toluene:i-Pr,NH
(v/v 7:3). The reaction was carried out at 60°C for 24 h. The fragment C was added thereafter
and resulting mixture was stirred for 36 h. After centrifugation, compound 43 was obtained as a

solution fraction.

Compound 51. A mixture of compound 50 (20 g, 77 mmol), NBS (28.3 g, 0.16 mol) and
benzoyl peroxide (0.010 g) in benzene (380 mL) was refluxed for 8 h. The solvent was removed
under reduced pressure. The pure product (23 g) was purified by recrystallization in 73% yield.

Data for compound 51: "HNMR (CDCl3, 250 MHz) 6 7.67 (s, 2H), 4.52 (s, 4H).

Compound 52. Compound 51 (2.0 g, 4.7 mmol), Na,SO; (1.5 g, 11.9 mmol) and TBAB
(0.10 g, 0.28 mmol) were mixed in water (50 mL) and ethanol (50 mL) and refluxed for 72 hrs.

The solvents were removed under reduced pressure and the crude product was recrystallized
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from water (20 mL) to give compound 52 (1.7 g) in 77% yield. Data for compound 52: "H NMR

(D,0, 250 MHz) § 7.62 (s, 2H), 4.21 (s, 4H).

Compound 53 was prepared following the synthetic procedure for compound 5. The
following amounts of reagents were used: compound 51 (0.513 g, 1.94 mmol), TIPS-acetylene
(862 mg, 4.7 mmol), Pd(PPh;3)4 (65.4 mg, 0.06 mmol) and Cul (10.8 mg, 0.06 mmol) in 8§ mL of
Toluene:i-Pr,NH (v/v 7:3). The reaction was carried out at 85°C. The product was purified by
column chromatography (silica gel, Hexane) to give compound 53 (0.90 g) in 99% yield. Data
for compound 53: 'H NMR (Acetone-dg, 250 MHz) 6 7.39 (s, 2H), 2.83 (s, 6H), 2.40 (s, 6H),

1.16 (s, 36H).
Compound 60 was synthesized following the literature procedures.”’

Compound 61. Compound 60 (200 mg, 0.65 mmol), TBDMSCI (196 mg, 1.3 mmol) and
imidazole (110 mg, 1.6 mmol) were dissolved in DMF (12 mL) and stirred for 24 h under N,
atmosphere at rt. Mixture was poured into water (100 mL) and extracted with CHCl; (3x100
mL). The organic layer was washed with water and brine and dried over Na,SO4. Solvents were
removed under reduced pressure and the residue was subjected to column chromatography (silica
gel, Hexane:EtOAc=50:50) to give compound 61 (151 mg) in 55% yield. Data for compound 61:
'"H NMR (Acetone-ds, 300 MHz) & 7.67 (s, 1H), 7.58 (d, J = 8.5 Hz, 1H), 7.20 (s, 1H), 6.97 (d, J

= 8.5 Hz, 1H), 1.91 (s, 6H), 1.03 (s, 9H), 0.32 (s, 6H).
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Figure A11. "H NMR of Compound 13.
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Figure A20. "H NMR of Compound 21.
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Figure A29. "H NMR of Compound 31.
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Figure A41. 'H NMR of Compound 61.
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