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ABSTRACT 
 
 
Key words: Stroke, Single-Molecule Detection, Microfluidics, Biomarkers  

 

There is currently no available molecular diagnostic test for stroke; the common modality for 

diagnosis consists of computed tomography or magnetic resonance imaging. Unfortunately, the 

use of these diagnostic regimens can delay proper therapeutic treatment, which requires 

administration within the first 3 h of a stroke event. We are developing a molecular assay that 

can report, in near real time and at the point-of-care, the presence or absence of biomarkers 

specifically targeted for the diagnosis of ischemic or hemorrhagic stroke. The proposed strategy 

uses blood-borne mRNAs that are either under-expressed or over-expressed as a result of tissue 

damage within the brain. The ability to report on these diagnostic markers is enabled through the 

use of a fluidic bio-processor fabricated in polymers via micro-replication to provide 

autonomous sample processing. This bio-processor comprises a fluidic motherboard that 

possesses task-specific modules for the selection of white blood cells from a blood sample, cell 

lysis and solid-phase extraction of the mRNA markers, ligase detection reaction to identify the 

mRNA markers and an optical module for multiplexed detection.  The sample-processing 

pipeline was streamlined to generate a rapid assay turn-around-time by employing single-

molecule detection. The output of the clinical sample processing hardware are molecular beacons 

undergoing single pair Fluorescence Resonance Energy Transfer (spFRET) that are digitally 

counted to provide exquisite analytical sensitivity for the expression profiling of the relevant 

mRNA markers. The presentation will discuss the use of spFRET for mRNA expression profile 

with comparisons made to quantitative real-time PCR. 
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CHAPTER 1 - INTRODUCTION 

1.1 Gene Expression 

The significance of gene expression profiling is evident in an array of clinical, 

pharmaceutical and industrial applications. 4,27-28,50,52,53,63,74,84 Researchers have just begun to 

understand the importance of manipulating and quantifying the relative activity of target genes, 

which have been emphatically identified. Even more, studies have substantiated their important 

real world medical employments, for example in the case of cancer and HIV.85 The advent of 

next-generation sequencing/gene expression analysis is an increasingly popular science, making 

"digital" alternatives to microarrays and other sequence identification technology novel. 

 Gene expression is the process by which information from a gene is used in the synthesis 

of a functional gene product; this then utilizes the central dogma of molecular biology, which 

includes: transcription, RNA splicing, translation, and post-translational modification of a 

protein.  

 

 

 

 

 

Figure 1.1 Transcription of DNA to RNA to protein forms the backbone of molecular biology and is represented by 
four major stages: 1) DNA replicates its information in replication, 2) DNA codes for messenger RNA (mRNA) in 
transcription, 3) mRNA is processed (essentially by splicing) and migrates from nucleus to cytoplasm. 4) mRNA 
carries coded information to ribosomes, which "reads" this information and uses it for protein synthesis in 
translation. 
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The process of gene expression is used by all known life to generate the macromolecular 

machinery for life: eukaryotes, including multicellular organisms; prokaryotes, including 

bacteria, archaea, and viruses.   Regulation of gene expression (or gene regulation) is the 

function that controls the way information in genes is turned into gene products, in turn giving 

the cell control over structure and function; it is the basis for cellular differentiation, 

morphogenesis, and the versatility and adaptability of any organism to their environment and/or 

physiological events. For instance, changes are prevalent where disease, external stimuli, injury, 

or changes in normal anatomy have occurred. Gene expression serves as a substrate or biomarker 

for change due to the process of gene regulation and the function incurred to control the timing, 

location, and amount of gene expression. This has been observed to have a profound effect on 

the behavior/activity of the gene in a cell or in a multicellular organism.94 Therefore, through 

studies of a specific gene activity (over expression or under expression) and its expression 

profile, the diagnoses of various physiological events can be realized. 

1.2 Conventional Methods 

 There are many methods in molecular biology for gene expression profiling and 

measuring quantities of target nucleic acid sequences like biomarkers. The conventional methods 

include, but are not limited to, Southern blotting, 90 serial analysis of gene expression (SAGE), 86 

DNA microarrays, 87 and RT-qPCR. 4, 88 However, most of these methods exhibit one or more 

shortcomings. It is often the case that conventional methods prove to be time consuming, 

laborious, insensitive, non-quantitative, use dangerous radioactivity, or have substantial 

probability of cross contamination. 4, 86,87,88,90 In recent years, it has become evident among the 

science community that the Quantitative Real-Time PCR (RT-PCR) approach is seemingly the 

most accurate, sensitive and simple method of gene expression level analysis (Figure 1.2). RT-
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qPCR, with the use of Sybr Green I intercalating fluorescent dye, is said to provide the most 

economical and easy-to use application of real-time technology.93 This method combines the 

nucleic acid amplification and detection steps into one homogeneous assay and obviates the need 

for gel electrophoresis to detect amplification products. With the use of the appropriate 

chemistries and data analysis, the need for Southern blotting or DNA sequencing for amplicon 

identification is eliminated.89  

 

 

 

 

 

 

 

 

Figure 1.2 RT-PCR procedures via SYBR-Green, an intercalating dye that fluoresces upon light excitation when 
bound to double stranded DNA.  The double stranded DNA is formed when adjusting conditions that promote the 
steps of denaturation, annealing and extension: 1) The reaction is first heated to 95oC to melt (denaturation) the 
dsDNA into separate strands. 2) The reaction is then cooled to ~50oC, the temperature at which the primers will 
find base-complementary regions in the ssDNA, to which they will stick (annealing). 3) The reaction is finally 
heated to 72oC, the temperature at which the Taq enzyme replicates the primed ssDNA (extension). 

Quantitative Real-Time PCR’s desired simplicity, specificity and sensitivity, with the 

potential for high throughput and the versatile design to procure new chemistries, has deemed 

qPCR the benchmark technology for the detection and/or comparison of gene expression 

profiling (Figure 1.2). PCR has several disadvantages that must be addressed, despite its 

Primer 

Polymerase 
SYBR Green I 

Target Sequence 

Emitted Light 
Polymerase 
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influence in genomics-based analyses. The first issue that must be confronted is that of time; 

typically, PCR is carried out using protocols requiring 30 cycles of 2 hours processing time (240 

seconds per cycle).55, 56 In addition to the issue of time, there are drawbacks with the 

amplification process. It has been discovered that reproducible quantification of any low 

abundance target (< 1000 copies) is problematic due to the inherent limitation of PCR 

amplification of small amounts of template contained within a complex nucleic acid mixture 

(Monte Carlo effect).91 The process is highly susceptible to misinterpretation of sequences due to 

contamination, mis-priming and formation of artifacts. This is largely due to a lack of 

normalization strategy to control for the amount of starting material, variation of amplification 

efficiencies and differences between complex biological samples. But yet, RT-PCR has held true 

against high quality samples to produce quantification results that are biologically relevant, 

commonly proven using internal controls such as reference genes, sometimes also called 

“housekeeping genes”.89,57,92  Secondly, since many biological samples contain inhibitors of the 

RT and/or the PCR step, it is crucial to assess the presence of any inhibitors of polymerase 

activity in RT and PCR. The design of PCR primers employed also causes unforeseen 

problems/constraints; some targeted gene sequence regions are difficult to amplify using PCR, 

regions that include highly repetitive regions and/or DNA regions with high GC content. 

Therefore, in consideration of these matters, it would be advantageous to develop a genomics-

based analysis technique to improve the biological validity of quantitative data. 

With the recent interest and understanding for the analysis of gene expression, the novel 

technique of Single-Molecule Detection or SMD, has become extremely relevant to gene 

quantification analysis. This is due to the sensitivity necessary for gene expression analysis 

because of limited sample volumes. The progressive method, SMD, will be the detection 
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technique under investigation, in respect to this studies theory, and will be integrated with 

microfluidic devices. In this study, SMD measured gene expression of targeted biomarkers will 

be employed to render reliable, quantitative and reproducible data.  

1.3 Biomarkers 

 A biomarker is a biological molecule, which can be found in blood, urine, and other 

bodily fluids; biomarkers also manifest in tissues that are modified by a particular disease state, 

as well as tissues verified to be an indicator for a particular state of an organism. Biomolecules 

such as lipids, carbohydrates, proteins, and nucleic acids have key cellular roles, which make 

them ideal and important biomarkers for measuring the response to external stimuli. 

Additionally, biomarkers signal normal or abnormal processes to tell how well the body responds 

to treatment for a disease or condition. Consequently, the biomarkers’ functional interaction 

makes the discovery and use of them as medical diagnostic and/or prognostic indicators valuable. 

However, studies have shown that biomarker analysis exhibits challenging analytical obstacles 

due to the employment of limited sample sizes, the complex matrices of applied samples, and the 

low abundance of targeted biomarkers/genes.  

Single-molecule detection (SMD) offers an attractive approach for identifying and 

quantifying the presence of biomarkers that show promise in respect of in-vitro molecular 

diagnostics in near-real time, due to the ability to eliminate sample-processing steps (for 

example, eliminating the need for amplification steps, such as PCR). The ability to monitor 

biomarkers using this simple and portable instrument will have a number of important 

applications, such as strain-specific detection of pathogenic bacteria and the molecular diagnosis 
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of diseases requiring rapid turn-around-times directly at the point-of-use by means of a portable 

instrument, which will be outlined in Chapter 3.27 

1.4 Genetic Analysis  

Analysis of genetic material such as DNA or RNA, in a clinical laboratory for diagnostics 

involves a number of critical molecular processing steps that include: 1) sample collection, 2) 

DNA extraction and purification, 3) target enrichment/amplification, 4) scanning or 

identification of molecular alterations or sequence-specific reporters, and 5) detection of the 

products generated as a result of step four. First, samples are collected from bodily fluids and/or 

tissues. The targeted molecules contained within those samples are then isolated from potential 

interferences by the selective extraction and purification of the sample, which is normally 

accomplished through procedures such as ultracentrifugation, liquid-liquid extraction, 

precipitation, or solid-phase extraction. Following this extraction, selected genes of interest are 

amplified for further molecular analyses. Finally, the target DNA is analyzed or detected by a 

number of formats, for example fluorescence. 4 As illustrated in studies when SMD is coupled to 

biological analyses, the high sensitivity enables the detection of target sequences in limited 

biological samples without amplification. Therefore, SMD holds promise for the analysis of 

biomolecules and biomarkers (over expression or under expression) by streamlining the steps 

required in the assays, potentially creating the possibility for near real-time results.1.8 

DNA analysis is being harnessed for a number of diagnoses, such as detection of 

infectious agents, paternity testing and many more.58 However, when these types of analyses are 

coupled with SMD, there is the potential to eliminate processes such as PCR. Previously, it was 

described that there are several disadvantages to using PCR. However, it has been studied that 
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when SMD is used for the same process analysis, there is immediate improvement. It is evident 

that there is increased analysis speed due to the nullification of limitation set forth by PCR 

instrumentation. Additionally, it has been realized that SMD is highly sensitive due to the use of 

fluorescence, which is utilized by using Ligase Detection Reaction via Single-Pair FRET. It is 

also notable, that SMD provides for the direct sequencing of DNA as seen for example, Castro’s 

work demonstrating a technique for the rapid detection of specific nucleic acid sequences in 

unamplified DNA samples from Bacillus anthracis.28 Through these improvements, single-

molecule detection (SMD) of DNA would be highly beneficial in determining gene expression 

level and identifying of an array of targeted sequences.46-49, 51,59-67 Therefore, the focus of this 

thesis will be on the advantages gained by using SMD with genomics-based analysis. 

1.5 Single-Molecule Detection (SMD) 

The potential of SMD in liquids has been realized and shows promise in an array of 

applications. For example, the Soper research group has shown the ability to distinguish between 

molecules of Texas red and Rhodamine 6G using fluorescence coupled with SMD.1 Furthermore, 

detection of other single rhodamine molecules have also been distinguish using hydrodynamic 

flow cells.2, 3 When pursuing this technique further, DNA has been sequenced through the 

detection of isolated fluorescently tagged mononucleotides.4 The work illustrated by Hirschfield 

in 1976, describing detection of a single antibody molecule that was labeled using 80-100 

fluorophores, is noted to be the origin of the development of the SMD technique. Keller and 

coworkers later used hydrodynamically focused flows of molecules to show the decreasing limit-

of-detection in terms of molecule numbers and thus reported their ability to detect individual 

florescent molecules in 1990.2-3 
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SMD begins with the photon burst; a photon burst results when a single molecule is 

resident in a laser beam, where it can be cycled between the excited state and ground state with 

subsequent emission of a single fluorescent photon. The continued cycling process produces a 

burst of photons.  Fundamentally, as the fluorophore is excited, several pieces of information can 

be gathered.  These characteristics include their relative brightness, fluorescence lifetime, 

concentration, and even electrophoretic drift.12 Due to the capability to deduce this variety of 

information, single-molecule spectroscopy (SMS), is currently used to quantitatively measure 

single molecule properties, including gene expression via fluorescence resonance energy transfer 

(FRET), as seen in this study. Essentially this method for analysis has allowed for protein, DNA-

based and RNA-based analysis, while demonstrating a level of detection that is thought to be 

currently unparalleled.1-5,7-11,28 Through this process, individual molecules can be detected with 

highly accurate and quantitative measurements.  

1.6 Molecular Probes/Molecular Beacons (MB)  

Molecular beacons are oligonucleotide probes that can report the presence of specific 

nucleic acid sequences in homogenous solution. The term more often used is “molecular beacon 

probes.” In the presence of the target sequence, they unfold, bind and fluoresce. Molecular 

beacon (MB) probing is one of the chemistries used to carry out many real-time experiments as 

shown in work by Kramer and Tyagi.70 Essentially, MBs are oligonucleotide molecular probes, 

which recognize and signal the presence of specific sequences.70 MBs contain a section that is 

complementary to the target DNA sequence that is bound on either side by bases that are also 

complementary to target sequence. This target DNA sequence is termed the “Loop” region, 

while the complementary bases describes the “Stem” region. The relationship between the stem 

and loop regions in the MB gives high specificity despite a large amount of interfering DNA. 
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MBs are typically labeled with a fluorescent dye at the terminus of the stem region. The stem is 

formed when the two complementary arms, which flank the probe sequence, are hybridized 

(1.3). However, when the stem region does not come into contact with any target DNA, a hairpin 

structure forms, bringing the fluorophore and quencher at the ends of the stem region closer. This 

results in energy transfer to the quencher, rather than fluorescence emission from the 

fluorophore. If the probe or loop sequence comes into contact with the complementary DNA of 

the loop sequence, hybridization results, thus opening the hairpin structure, and subsequently, 

restoring fluorescence.71 

   

 

 

 

 

Figure 1.3 The single-stranded oligonucleotides form a closed stem and loop structure in the absence of target DNA 
and open the stem when hybridized to the target DNA. These Molecular beacons in the closed form have a quencher 
in proximity to the fluorophore and emits no fluorescence. In the open form of the MB probe, the quencher and 
fluorophore are separated due to a conformational changes that result in the detection of fluorescent signal. 

MBs have illustrated their improvement to target sequence probing through increase in 

quantum yield, which also shows sensitivity in the detection of single nucleotide polymorphisms 

(SNPs). 72-74 A disadvantage in previous work of MBs stem from their inability to attach different 

fluorophores or quenchers to opposite ends of the probe, which does not allow for versatility in 

terms of reaction yield. In order to increase yield, more probe was needed, which calls for 

additional cost.76 Work to better this probe assembly was done by Knemeyer, who developed a 

25-mer single-stranded oligonucleotide containing an 18-base recognition sequence.76 An 

oxazine dye, JA242, is the fluorescent energy donor.  In respect, the other end contained 
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guanosine residues, which quenched the signal. As seen in figure 1.4, when the cytosines and 

guanines do not have a target DNA sequence to bind to, a hairpin structure forms, bringing the 

cytosines and guanines in close proximity. This insures that when the hairpin structure comes 

into contact with target DNA, there is hybridization, thus opening the hairpin structure, and the 

MB binds to the target. This forces the cytosines and guanines apart, causing a strong 

fluorescence emission. Knemeyer was able to detect DNA at a very low concentration: 10-12 M.76 

It the literature, we see the method of using MBs or a “smart probe” to probe for bacterial 

SNPs. Marme and colleagues applied fluorescently labeled DNA-hairpin structures in 

combination with SMD. The MBs were hybridized to target DNA sequences, thus causing a 

conformational change, as illustrated in Figure 1.4.77 

 

 

 

 

 

Figure 1.4 Smart probes use a series of guanosines to quench the fluorophore in the closed DNA hairpin loop 
instead of a traditional quencher. This makes the fabrication of the DNA probe inexpensive and less labor intensive 
because only the 5’ end is modified. The probe used here was designed to test for a SNP in TB responsible for 
rifampicin resistance.133 

Marme’s methodology was improved for several reasons. Their use of unlabeled 

oligonucleotides, called “cold” sequences, prevented the formation of secondary structures 

within the target sequence. The “cold” sequence also proved to be a disadvantage to the assay, 

adding complexity and decreasing the limit-of-detection LOD. When compared, the process used 

by Marme and colleagues to identify SNPs in only 10-11 M solutions, versus the 10-12 M 

concentrations used by Knemeyer, it is apparent that they achieved a time improvement, evident 
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by the hybridization only lasted 100 seconds. The PCR for this experimentation added between 

one and two hours of analysis time, and as discussed in previous sections, PCR will add 

substantial assay time to genomics-bases analysis techniques.76-78 

The work of Zhang and colleagues illustrated the use of QDs to improve fluorescence 

detection in these biological assays. Zhang also developed a two-MB SMD system for 

quantification of NAs. This work, too, was innovative, in that this was the first use of two 

differently colored MBs. This work consisted of the development of a comparative hybridization 

assay as well as simultaneous determination of target and control strands. The fluorescent dyes 

used in this work were Oregon green 488 and Cy5.  Compared to other methods, there was a 

decrease in the probe consumption.  The disadvantages of their system were mostly cost related, 

as two lasers had to be used, PCR was needed to amplify target molecules, and using unrelated 

organic dyes, made the system more complicated. Using these organic dyes also proved to be an 

issue due to their broad emission profiles.78 

1.7 Fluorescence Resonance Energy Transfer MBs  

Fluorescence Resonance Energy Transfer (FRET) is a special technique to gauge the 

distance between two chromophores, called a donor-acceptor pair. The limitation of FRET is that 

this transfer process is effective only when the separating distance of donor-acceptor pair is 

smaller than 10 nanometers. However, FRET is a highly distance-dependent phenomenon and 

thus has become a popular tool to measure the dynamic activities of biological molecules within 

nanoscale. The Förster energy transfer is the phenomenon that an excited donor transfers energy 

(not an electron) to an acceptor group through a non-radiative process. This process is highly 

distance-dependent, thus allowing one to probe biological structures. One common application is 
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simply to measure the distance between two positions of interest on a big molecule, generally a 

biological macromolecule, by attaching appropriate donor-acceptor groups to the big one. If the 

big molecule only involves one donor and one acceptor group, the distance between the donor 

and the acceptor can be easily measured if there is no conformational change within this process. 

Besides, if the molecule has a huge conformational change, one may also measure the dynamical 

activities between two sites on this macromolecule such as protein interactions1 . Today, this 

technique is widely applied in many fields such as single-molecule experiments2 , molecular 

imaging3 , molecular motors4 , biosensors5 and DNA mechanical movements6 . The FRET is 

also called the "Spectroscopic Ruler"7 because of its intrinsic convenience. In Figure 1.4, the 

work of Knemeyer, Zhang, and Marme illustrated the effect of energy transfer in the realm of 

creating a MB through the hairpin structure. Using fluorescence resonance energy transfer 

(FRET) will differ by using a fluorophore and a molecule that can accept energy (donor-acceptor 

pair), which will then fluoresce. The sections herein will describe, in detail, the process of FRET. 

Fluorescent Resonance Energy Transfer (FRET), also known as Förster Resonance 

Energy Transfer, is a process that was described over fifty years ago. It is the non-radio active 

transmission of energy from a fluorophore (e.g. donor molecule) to an acceptor molecule through 

distance-dependent interactions. This process has no conversion to thermal energy that may have 

been caused by some sort of thermal collision.81 Wabuyele and colleagues conducted this work 

using two cyanine dyes, Cy5 and Cy5.5, as a FRET pair for SMD of products generated from a 

Ligase Detection Reaction (LDR).27 The cyanine dyes were attached to LDR primers and 

brought into close proximity due to hybridization of the stem structures of MBs. The calculated 

Förster distance (R0) for these cyanine dyes was 61.7 angstroms (Figure 1.5). 27 
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Figure 1.5 The fluorescent dyes Cy5 and Cy5.5 are a commonly used FRET pair. The Cy5 dye can be excited with 
a HeNe laser diode. The Cy5 dye will transfer its energy to Cy5.5 when they are in close proximity. For this dye pair 
R0 distance is 61.7 Å. 

To enhance the FRET efficiency, the donor group should have good abilities to absorb photons 

and emit photons. That means the donor group should have a high extinction coefficient and a 

high quantum yield. The overlap of emission spectrum of the donor and absorption spectrum of 

the acceptor means that the energy lost from excited donor to ground state could excite the 

acceptor group. The energy matching is called the resonance phenomenon. Thus, the more 

overlap of spectra, the better a donor can transfer energy to the acceptor. The overlap integral, 

J(λ), between the donor and the acceptor stands for the overlap of spectra, as shown in Figure 

1.6. 
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	  Em	  (nm):	  670	  
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A. 

Figure 1.6 (A.) The schematic of spectral overlap	  
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Figure 1.6 (B.) The excitation/emission wavelength spectra of Cy5 and Cy5.5 

1.8 Ligase Detection Reaction-based Assays (LDR)  

LDR-based assays are generally compared to assays based on the ligase chain reaction 

(LCR).83 The difference between the two is LDR works in a single DNA strand, which LCR 

works on also, like PCR. The LDR flanks the target material and thus linearly amplifies the 

target material containing the desired sequence. A DNA ligase enzyme can be used to distinguish 

between normal and mutant DNA. Primers are synthesized to be complementary to the target 

sequence, allowing for selective amplification of the mutant allele. LDR has shown much 

promise in medicine, by screening for T-cell receptor polymorphisms and sickle cell anemia.82 

Due to the chemistry of the LDR primers and target sequences; LDR products can also be 

labeled with fluorescent molecules like the MBs making results easily quantifiable.  

LDR also can be used with reverse molecular beacons, or rMBs. Previously, the use of MBs 

illustrated the use a fluorescent dye and a quencher. In using rMBs, the stems are labeled with 

two different dyes forming a FRET pair. For this assay, the melting temperature of the stem 

section, Tm, is higher than the melting temperature of both the LDR primers and of the unligated 

stem section. LDR can be performed after PCR amplification of template DNA or of genomic 

B. 
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DNA directly.27 LDR is also advantageous as it can quickly identify multiple sites of mutations 

or, as mentioned previously, screen large populations for disease polymorphisms.83 

1.9 Ligase Detection Reaction Using Single-Pair FRET  

Wabuyele used an LDR assay to detect SNPs for colorectal cancer diagnostic mutations. The 

assay used SMD and did not use PCR. Without the PCR step, the assay time was greatly 

reduced.27 The assay used two allele-specific primers labeled at their 3’ and 5’ ends with 

fluorescent dyes. The primers flanked a single base mutation of the target template and each 

primer had a complementary arm sequence. The two primers were bound covalently using DNA 

ligase only when the mutation was present, which formed an rMB that could then undergo 

FRET. Wabuyele detected the fluorescence emission in a microfluidic channel using a confocal 

optical system. Using this assay, the K-ras oncogene (codon 12) mutations, which are highly 

associated with colorectal cancer, were detected with a sensitivity of 1:1,000 mutants-to-wild-

type alleles. In order to achieve these results, analysis times of less than five minutes were 

required. LDR allowed for linear amplification of the rMB by increasing the number of thermal 

cycles and thus, illustrated its potential as being compared with PCR.52,53 This process, known as 

LDR single-pair fluorescence resonance energy transfer (LDR-spFRET), is illustrated in Figure 

1.7.  
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Figure 1.7 Schematic of the LDR-spFRET assay in which two allele-specific primers are labeled at their 3’- and 5’-
ends with fluorescent dyes and flank a SNP on the target template. An enzyme, Taq DNA ligase, covalently joins 
the two adjacent primers when perfectly matched to the template, forming a molecular beacon that can undergo 
FRET whereas mismatched primers remain unligated and do not show FRET. The detection temperature of the 
assay was maintained at 75oC to melt the duplex formed between the target and LDR primers as well as stem 
sequences of unligated primers but not the stem of the fully formed beacon. 
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1.10 LDR-spFRET  

Using the combination of a reverse molecular beacon (rMBs) with LDR has proven to be 

increasingly efficient in developing new assays to detect point mutations in genomic DNA.5 This 

combination is known as LDR-spFRET and several assays have been named in the completion of 

this work. The strategy, however, involves the use of two primers that forms a MB after ligation 

of the two primers with attach fluorophores (Donor and Acceptor) and melting from the target 

DNA. The complementary target gene sequence is termed the “loop” region, while the ten 

complementary bases are described as the “stem” region. The relationship between the stem and 

loop regions in the rMB gives high specificity despite a large amount of interfering unwanted 

gene sequences. When the stem region comes into contact with any target DNA, the two primers 

hybridize/ligate and the primers labeled with fluorophores are brought into close proximity, and 

in turn they undergo fluorescence resonance energy transfer (FRET).   If the probe or loop 

sequence comes into contact with a sequence where the primers are not specific, hybridization 

does not result and primers remain unligated, resulting in no fluorescence and no FRET. Once 

the primers are ligated, the solution temperature is then higher than the melting temperature (Tm) 

of the DNA duplex formed by the loop structures, and the target sequence is separated from the 

LDR-spFRET product.  The stem of the rMB was designed to have a higher Tm than that of the 

ligated primers to the template at the concentrations used for the molecular assay. It is important 

to consider that the primers will not be ligated if the DNA target is not complementary to the 

primers. Because of this, an rMB cannot form (Figure 1.7). Only one thermal cycle for LDR is 

needed to form the rMB, but multiple cycles can be used to linearly increase the number of rMBs 

to aid in detection. Single-pair FRET coupled with LDR is quite superior to other methods. 

Single-pair FRET is highly specific, which illustrates the fact that pathogenic information at the 
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strain level can be obtained. In light of the single-pair FRET’s highly specific nature, it is 

thought that the sample volume tested can be of low-targeted gene concentration; this being 

realized gives way to the idea of coupling rMB probing with the use of microfluidic devices. The 

rMB products can then be directly interrogated in a microfluidic channel by a laser-induced 

fluorescence (LIF) system at the single-molecule level that will then be able to report the 

presence of certain pathogens with high sensitivity, reliability, and time efficiency. 

1.11 Microfluidics 

Microfluidics deals with designing and manufacturing devices and processes for the 

manipulation of extremely small volumes of liquid samples. Microfluidics has become an 

integral element of many-advanced diagnostic and screening technologies. For example, work 

done by TED’s Senior Fellow Frederick Balagadde, shows the ability to build an HIV kit in a 

microfluidic system, so with one microfluidic chip, can diagnose one hundred patients at the 

same time. For each of the patients, shows that physicians will be able to do up to one hundred 

different viral loads per patient and this is only done in four hours, which is fifty times faster 

than the current state of the art, at a cost that will be five to five hundred times cheaper than the 

current options.  The impact of microfluidics on the biological and pharmaceutical industries 

continues to expand; yet the basic principles of microfluidics can be found in the earliest treatise 

on fluid dynamics. The basics include fluid flow at the microscale and the forces and 

mechanisms, which may be used for directed transport of fluids and/or particles through 

microscale systems. Research in the field of microfluidics is aimed at minimizing the time and 

cost associated with routine chemical and biological analysis, which in-turn improves 

reproducibility, accuracy and reliability. It is proposed that the use of microfluidic devices in-

conjunction with detection via Single-Molecule Detection (SMD) will demonstrate attractive 
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benefits for gene expression profiling and measuring quantities of target nucleic acid sequences. 

Some of its benefits include enhanced processing speed by eliminating processing steps, 

elimination of ensemble averaging and single-molecule sensitivity. 

1.12 Microfluidics and Its Importance to SMD 

Microfluidic devices for genomic assays play a very important role due to fully 

automated sampling and short analysis times.  Based on these two components, there is a higher 

cost efficiency, due to the shorter run-time and lower volume of reagents necessary for analysis. 

Earlier methods of microfluidic devices by Craighead, 29 Ramsey and Mathies, 30,31 used glass-

based microfluidics.30, 32,33 Craighead’s DNA fragment sizing device consisted of micro/nano-

structured fluidic channels, which defined the effective probe volume and can enhance the 

sampling throughput for SMD.  Ramsey and Mathies used glass-based microfluidic devices using 

organic chromophores and DNA molecules.  In using both types of molecules, it was 

demonstrated that SMD coupled with microfluidics is possible.30, 31 

It is important to consider the type of material used as the microfluidic channel.  

Craighead, Ramsey, and Mathies used glass-based microfluidics. Glass is a good material due to 

its favorable optical properties, mostly due to the auto-fluorescence and low background 

produced. However, using glass also has several disadvantages, such as the cost of 

manufacturing, its low aspect ratio associated with wet etching, and the elevated temperature 

necessary for bonding the coverslip to enclose the channels.34 In recent years, polymers have 

been developed to improve upon the glass-based microfluidic channels.34 Polymers may prove to 

be adequate alternatives due to their cost efficiency, multi-solvent compatibility, 

biocompatibility, tunable surface properties, and the capability to be manipulated for various 
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fabrication designs.35-38 Microfabrication of devices in polymers has been done using injection 

molding, imprinting, embossing, 40 X-ray lithography,35 and laser ablation.40 The use of polymers 

in microfluidics has been applied in the life sciences, which can be illustrated through several 

reviews in the literature. Some of the applications include, PCR amplification, 41-44 DNA 

sequencing and separations, 46-49 even cell culture and handling.50 

1.13 Objective of the Project 

 We will develop a simple flow-through modular fluidic bio-processor made from 

polymeric materials via replication micro-technologies to analyze the molecular content of 

PBMCs for the expression level of mRNAs that provide diagnostic information for ischemic 

and/or hemorrhagic stroke in a turn-around-time (TAT) less than 20 min. The fluidic bio-

processor accepts the input sample (whole blood), clears the blood of RBCs, neutrophils and 

platelets to produce the PBMC fraction, thermally and/or chemically lysis the PBMCs, isolates 

the total RNA using SPE, reverse transcribes the mRNAs into cDNAs, performs an LDR on the 

cDNAs using primers that carry reporter sequences for the target and readout of successful 

ligation events using spFRET. The use of spFRET obviates the need for a PCR step, which not 

only reduces processing time, but also produces exquisite analytical sensitivity. 
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1.14 Report Outline 

A summary of the theory, techniques and methods in this report is presented: 

Chapter 2. Experimental 

This chapter provides experimental methods and optimization applications for the 

microfluidic device. This chapter presents the methods of device fabrication and the 

devices role in gene expression profiling using LDR-spFRET.  

Chapter 3. Design and Development of a Field-Deployable Single-Molecule Detector (SMD) 

for the Analysis of Molecular Markers 

This chapter reports a simple and compact fluorescence single-molecule instrument that 

is straightforward to operate, consisting of fiber optics directly coupled to a microfluidic 

device. It is seen that with this integration of fiber optics, it simplifies the optical 

requirements associated with traditional SMD instruments by eliminating the need for 

optical alignment and simplification of the optical train.  

Chapter 4.  Discussions, Conclusions and Future Work 

This chapter provides experimental results, conclusion and a discussion of the 

future/current work propelling project goals.  
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Chapter 2 - Experimental 

2.1 Thesis Experimental 

 Biomarkers are biological molecules that are found in blood, other bodily fluids, and 

tissues. Research indicates that biomarkers are signatures of a normal or abnormal process, even 

biological conditions or disease.1, 2, 3 A biomarker may be used to see how well or poorly the 

body responds to a treatment; it is also indicative of the presence of a disease or condition. For 

this reason, biomarkers are also noted in medical/scientific literature as molecular markers and 

signature molecules. To potentially harness the body’s capability to render such information 

makes this study, the utility of biomarkers, and the detection of them not only a novel endeavor, 

but also one of necessity. 

 As with current studies, the employment of biomarkers is a significant factor in current and 

future research initiatives. An array of biomarkers will be derived and applyed as a distinction 

method for an applied biomarker panel as well as for identifying stroke and its class. Our 

partnering institution, Downstate Medical Center, first disclosed the biomarkers of research and 

detection interest, after identifying their over or under gene expression regulation behavior.2 

With the information shared by Downstate, the desired PCR and LDR primers were synthesized 

to have high specificity for gene sequences, which have been identified as biomarker for the 

stroke event/condition.  

 As seen in figure 2.1, by means of Real-time PCR expression profiling, the study and data 

recovered of various genes that include Amphiphysin (AMPH), Interleukin (IL1R2), and 

Spectrin alpha chain (SPTAN1) were accomplished and the differentially expressed genes 

between ischemic stroke (labeled in blue) and hemorrhagic stroke (labeled in red) can be clearly 
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realized. The data illustrated by Downstate was carried out on blood samples from patients 

clinically diagnosed with the respective stroke condition via Real-Time PCR. The disparity in 

this plot (e.g. Hem vs. Isc) shows that the gene regulation of an identified gene type can serve as 

a viable biomarker in a diagnostic scheme for the stroke condition. In light of the work done 

previously by Downstate and the large differentiation in gene expression of Amphiphysin 

(AMPH), which is known to be the gene that encodes for a protein which is associated with the 

cytoplasmic surface of synaptic vesicles, the biomarker identified as AMPH was chosen for this 

thesis study. 

 

 

 

 

 

 

 

 

 

Figure 2.1 Gene expression profiles of biomarkers that are characteristic of stroke. The differentially expressed 
genes between ischemic which are labeled in (blue) and hemorrhagic stroke in contrast are labeled in (red) are 
shown. Real time PCR was carried out on blood samples from patients clinically diagnosed with the respective 
stroke condition. Looking at the figure we can visualize the disparity in expression of a gene type during a 
diagnosed stroke condition. 

For gene expression profiling in this works proposed method and conventional method 

the biomarker will be synthesized too double-stranded cDNA from mRNA (Reverse 

Transcription). This reaction utilizes a short oligo(dT) chain is hybridized to the poly(A) tail of 

an mRNA strand. The oligo(dT) segment serves as a primer for the action of reverse 

transcriptase, which uses the mRNA as a template for the synthesis of a complementary DNA 
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strand. The resulting cDNA ends in a hairpin loop. When the mRNA strand has been degraded 

by treatment with NaOH, the hairpin loop becomes a primer for DNA polymerase I, which 

completes the paired DNA strand. The loop is then cleaved by S1 nuclease (which acts only on 

the single-stranded loop) to produce a double-stranded cDNA molecule (From J. D. Watson, J. 

Tooze, and D. T. Kurtz, Recombinant DNA: A Short Course. Copyright © 1983 by W. H. 

Freeman and Company.) . 

Analyzing mRNA in white blood cells circulating throughout the cardiovascular system, 

which are recruited to repair tissue damage in the brain, characterizes this gene expression 

profiling. The blood-brain barrier, which is formed by tight bonds between endothelial cells that 

restricted the passage of solutes, mandates the use of recruited cells this is due to the fact that the 

cells at the stroke event location in the brain are not accessible for gene expression profiling. The 

limited amount of sample advocates the use of mRNA for exploitation due to its potential to be 

reverse transcribed and amplified for quantification analysis, unlike protein biomarkers.    

2.2 Polymerase Chain Reaction (PCR) Amplification of Genomic DNA 

For this work, gene expression profiling’s most practiced conventional method of RT-

PCR was also studied. The method was engineered to probe and quantify for the biomarker 

AMPH, which then was used to serve as a benchmark to determine the validity of the novel gene 

expression profiling method proposed in this chapter. There are several steps involved in PCR 

techniques, which were presented in Section 1.1 and illustrated in Figure 1.2. The overall 

concepts of this profiling method mainly consist of the replication and amplification of the 

biological materials DNA or RNA at an exponential rate.  
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This work’s use of human genomic cDNA made reverse transcription unnecessary to 

create complimentary DNA for the PCR primers; this reverse transcription step is done when 

RNA is the target molecule, due to the fact that the Taq enzyme will not preform on RNA (only 

DNA). The DNA was first denatured; the strands and primer are annealed, and then extended. 

This amplification of sequences is taken through repetitive thermal cycling. This process is 

manipulated through the use of thermal controls as seen in Figure 2.2. Following the thermal 

profile programed into the Stratagene Mx4000 interface (Figure 2.2), it is seen that denaturation 

of the DNA takes place at 95oC for this assay. This causes the double helix to unwind and form 

single stranded DNA making the target sequence readily accessible for primer hybridization. The 

annealing step takes place between 54oC and 72oC (Figure 2.2) making primers readily available 

for complementary sequence, taking into account that both utilized primer’s Tm should be 

between 55oC and 88oC, to alleviate the assembly of self priming and self–dimer structures.7, 8 In 

addition, the primer length should be 17-28 bases long, should end 3’ in a G or C or GC or GC, 

and should be composed of 50-60% G-C to T-A to create a higher priming efficiency due to 

Watson-Crick G-C base pair bond strength. When the correct primer design parameters are 

followed, we see in this step that PCR primers, short oligonucleotides designed to complement a 

specific sites, bind to the template DNA (which was created in the denaturing step) and define 

the region to be amplified (check primer fabrication via http://www.ncbi.nlm.nih.gov/). In the 

last step, extension, the temperature is set at 72oC. The deoxyribonucleotide triphosphates 

(Adenine, dATP; Cytosine, dCTP; Thymine, dTTP; Guanine, dGTP) are polymerized from the 

PCR primer in a 3’ to 5’ direction and subsequently inserted according to Watson-Crick base 

paring from the target DNA strand. These steps are repeated in an exponential amplification 

process, see section 1.1 and figure 1.2 for more details. 
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Figure 2.2 RT-PCR Thermal Profile. 

This study of RT-PCR amplifications (Stratagene, Mx4000) were carried out in 25μL of 

1X PCR buffer II pH 8.3 (BioLabs Ipswich, MA), 2.5 mM MgCl2, 200 μM dNTPx, 1 μM 

forward and reverse primers, 1.25 units of DNA polymerase (AmpliTaq Gold Polymerase, 

BioLabs), 0.1ng of 100ng of template DNA (ATCC, MCF7 - Homo sapiens) and enough 

nuclease-free H2O (Sigma-Aldrich, W4502) to make a total reaction of 25μL. The PCR primer 

sequences (Integrated DNA Technologies, Inc.) are as follows: Forward - 5ʹ ACT TCA CCC 

GAC GCT TAG 3′; Reverse - 5ʹ CAG ACA AAC CTT GGG AAG AT 3ʹ; PCR product size 152 

(bp) after extension, Homo sapiens. In PCR, the reaction cocktail was first heated to 94oC for 10 

minutes to activate the Amplitaq gold enzyme. After a 30 s denaturation step at 94oC, the 

cocktail was subjected to 40 thermal cycles, annealing step at 58oC for 30 s, and extension step at 

72oC for 30 s. Following the thermal cycling, the reaction mixture was maintained at 95oC for an 

additional 7 min to allow complete extension of all RT-PCR products. The PCR products were 

cycled at 95oC to 55oC 40 times to insure proper hybridization.  

 

 

END	  
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2.3 Ligase Detection Reaction (LDR)  

The LDR (which process was outlined in section 1.7) was chosen as a means of 

discrimination for this work. By process of traditional bench top chemistry a thermal cycler 

(Eppendorf, New York) performed LDR on human genomic DNA (ATCC, MCF7 - Homo 

sapiens) at copy numbers between 15-3,090 and at the primer concentration of 100 pM 

(Integrated DNA Technologies, Inc.) through isothermal zones poised at 65oC for 

annealing/ligation and 94oC for denaturing (see Figure 2.3). The subjected reaction mixture 

consisted of 2 units/mL of thermo-stable DNA ligase, 20 mM Tris-HCl (pH 7.6), 25 mM 

potassium acetate, 10 mM magnesium acetate, and 1 mM NAD+ cofactor (New England, 

BioLabs), 10 mM dithiothreitol and nuclease-free H2O for a total volume of 10 μL. It is 

important to note that this same LDR technique can be employed for the probing and 

discrimination of RNA target sequences, unlike the conventional gene expression method RT-

qPCR. 

 

 

 

 

 

 

 

Figure 2.3 LDR Thermal Profile. 
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2.4 LDR Primers and Molecular Beacon Design 

 

 

 

 

 

 

Figure 2.4 LDR Primers and reverse Molecular Beacon Designed to undergo FRET. 

The AMPH gene sequence specific LDR primer  (Integrated DNA Technologies, Inc.), 

which will give way to the production of rMBs for SMD (as seen in figure 2.4 above), are 

synthesized as such: 5’- /5Cy55/GCG GCG CAG CTA GAT TAG GGC AAC AAG TAC-3’;5’- 

/5Phos/TGC AAG AAG GAG CTC AGT TAG CTG CGC CGC/3Cy5Sp/ -3’ (primer length 

should between 17-30 bases long not including tail sequences to specificity). In regard to the 

LDR primer modeling, the acceptor functioning primer was composed by a 20-base loop and a 

10-base stem, with the 10-base arm 5’-end labeled with Cy5.5. The 30-base donor functioning 

primer, which contained a 20-base loop and a 10-base stem, was phosphorylated at its 5’-end and 

at the 3’-end was labeled with Cy5. The two stem sequences were designed to be complementary 

to each other, but not to the target gene sequence, should be 80-90% G-C to T-A to increase 

rMBs Tm. This Tm increase of stem is due to the stronger bond formed by G-C’s triple bond 

Watson-Crick base pairing interactions and in turn makes sure the loop base sequence’s Tm is 

lower then the stem’s Tm, which is essential when considering detection variable. The research 

shows that when the formation of stem-hairpin loops (rMB) is thermodynamically favored over 
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loop-target hybridization (at a temperature of 75oC), the resulting formation generates FRET 

response from the rMB and no FRET from unligated primers. It is important to make sure the 

FRET’s Tm is high such that when self-dimer temperature is exceeded, mRNA and ligase primer 

interactions are present during the temperature set for Single Molecule Detection (SMD) thermal 

profile operations.12 

2.5 Microfluidic Chip Design and Fabrication 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Microfluidic chip AutoCAD Design that illustrates a chip model that has multiple detection zones in the 
dimensions of 100μm x 100μm, 50μm x 50μm, 25μm x 25μm, and 15μm x 15μm respectfully. 

In order to fabricate the chip, microfluidic channels were hot embossed into a 5013-L 

COC substrate (0.5 cm thickness, TOPAS Advanced Polymers GmbH) using a high precision 

micro-milled brass master and hydraulic press (PHI Precision, City of Industry, CA) supplied 

with homemade vacuum chamber. Micro-milling of the master was performed with 50 to 500 

mm diameter solid-carbide milling bits (McMaster-Carr or Quality Tools, Hammond, LA) at 

40,000 rpm using KERN MMP 2522 CNC milling machine (KERN Micro-und Feinwerktechnik 
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FmbH). Hot embossing was achieved by pressing a headed (170oC) metal master into a polymer 

substrate for 210 s at 62 psi pressure. The polymer substrate was then cooled below the liquid-

glass transition state (Tg) of the polymer and separated from the molding master. The chip was 

cut to final size of 3 cm x 7 cm and the holes for fluid s were drilled see Figure 2.5. Further 

optimization and fabrication included O2 plasma modification and UV modification. The 

microfluidic channels were formed by thermal fusion bonding of a thin (0.25μm) COC coverslip 

(GoodFellow, Oakdale, PA) to the embossed COC substrate. For the microfluidic chip assembly, 

the devices were clamped between two glassplates and placed in a convection oven at 132oC for 

15 min for annealing. Reviewing the Tg and identifying the inflection temperature as seen in 

Figure 2.6 realized the annealing parameters. For sample injection, the system was enclosed 

using a 21cm capillary (O.D. 363nm; I.D. 75nm), which was attached by applying epoxy to the 

chip/capillary joint.  

 

 

 

 

 

 

 

 

Figure 2.6 Plot illustrating the measuring of the amount of energy needed to melt the COC polymer sample to 
identify the Tg.  

The plastic material cyclic olefin copolymer (COC) is seen to be a useful substrate 

material for fabricating microfluidic devices due to its low cost, ease of fabrication, excellent 

optical properties, and resistance to many solvents. 
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Figure 2.7 The employed polymer is a cyclo olefin copolymer (COC) copolymerized from norbornene and ethylene 
using a metallocene catalyst. This polymer has a very low auto-fluorescence, which is the natural emission of light 
by biological entities. COC has a high moisture barrier, excellent chemical resistance, high heat resistance and long 
shelf life, which makes it a perfect subtract for this work. 

2.6 Instrument Design 

 SMD Instrument Design. The hardware was designed to not only perform the SMD, but 

also control temperatures for the biochemical reaction. There were five major sections associated 

with the hardware: (1) photon detection, (2) laser diode control, (3) high voltage, (4) microfluidic 

channel temperature control, and (5) data acquisition. The components and layout of the system 

are presented in Figure 2.8. 
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Figure 2.8 (a) Picture of the compact SMD instrument connected to a mini-computer for data collection and 
instrument control. (b) Access panel for loading sample into the microfluidic chip and connecting the collection 
fiber optic to the fiber U-bench, which contained optical fibers and was interfaced to the SPAD. (c) Inside the 
compact SMD instrument showing the arrangement of the VCSEL, SPAD, FPGA and other peripheral electronics. 
(d) Schematic of the FPGA that was used for data acquisition and single-photon processing. The FPGA counted 
signals from the SPAD and output information to the first-in first-out (FIFO) memory. (1) – USB interface cable to 
the controlling computer; (2) – microfluidic chip sitting atop a mounting stage, which is accessed through a drawer 
that slides out from the main instrument case; (3) – controlling computer; (4) – fiber bench with optical cable 
connected to the fluidic chip; (5) – SPAD with integrated fiber optic; (6) – cooling fan for the FPGA, which is 
located underneath this fan; (7) – various power supplies; (8) – fiber bench with optical filters; (9) – VCSEL with 
integrated fiber; and (10) – electrophoresis power supply to actuate fluids electronkinetically.   
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An Opnext HL6385DG vertical cavity surface emitting laser (VCSEL) diode was used as 

the excitation source with a lasing wavelength of 642 nm. To minimize output power 

fluctuations, a highly stable constant current source was designed to provide up to 280 mA drive 

current to the laser. The laser diode was connected to an SMA housing for interfacing a fiber 

optic to it, which also contained a built-in pin diode for laser power monitoring. At 250 mA drive 

current, the laser output from the coupling fiber optic was ~24 mW. Conditioning electronics 

were designed to convert the pin diode output to a 0-5 V signal that was directly proportional to 

the laser diode output power. An optical fiber was coupled to the SMA housing using an SMA 

connector and was a 10/125µm (SMF-28-10, Thorlabs) single-mode fiber. The distal end of this 

fiber was sealed using epoxy glue into a guide channel embossed into the fluidic chip.  

 The photon counting system used a PCDMini single photon avalanche diode, SPAD 

(SensL, Cork, Ireland), which was directly coupled to a fiber optic (200/230 µm BFH48-200, 

ThorLabs). The PCDMini measured 1½” x 1½” and had an integrated Peltier cooler. The 

PCDMini possessed a high single photon quantum efficiency between 650-700 nm (>23%) and 

an extremely low dark count rate (~10 cps). The maximum acceptable count rate of the SPAD 

was determined to be 5M cps (See Supporting Information, Figure S1).  

 Collection of the fluorescence photons was achieved using a high NA (0.48) multimode 

fiber (200/230 µm BFH48-200, Thorlabs) that was sealed within the fluidic chip and oriented at 

90° with respect to the excitation fiber. The distal end of the collection optical fiber was spliced 

into an OFR fiber port (PAF-X-5, Thorlabs) for free beam-to-fiber coupling that allowed 

placement of the appropriate optical filters for the emission and then coupling back into the fiber 

optic cable interfaced to the SPAD.  In this way, the fiber connected to the SPAD did not need to 

be replaced every time the fluidic chip was changed. 
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 To minimize dead time and conserve board space, the photoelectrons generated from the 

SPAD were processed using a custom programmed field programmable gate array (FPGA). The 

FPGA (XCR3256XL-12TQ44I, Xilinx Inc., San Jose, CA) was a surface mount 144-pin device 

programmed using the ISE Webpack software, version 7.1. The design used a JTAG interface for 

in-circuit programming so that the FPGA code could be loaded or modified on the target board 

without the need to remove the FPGA chip for updating. The SPAD produced a TTL pulse that 

was sent to the FPGA, which was used for processing the TTLs from the SPAD.  A diagram of 

the electronic components including the FPGA operation is shown in Figure 1(d). The FPGA 

was integrated into the SMD instrument as a single-photon counter with a unique dual gated 

counter configured in a “ping-pong” format to give virtually zero dead time (50 ns) between 

output counts to the first-in first-out (FIFO) memory.  

 Finally, communication between the microcontroller and the analog system used 12-bit 

A/D and D/A converters via an I2C serial bus. Data transmission between the control board and 

the computer was via the standard USB port. Custom software was written in-house using 

LabView and installed on a mini computer (OQO, Marlton, NJ) for end user control. 

2.7 Microfluidic Chip Optimization  

The prescribed optimized chip was fabricated out of the polymer COC, and then 

embossed at CAMD.  The chip design applied four different detection zone dimensions: 100μm 

x 100μm, 50μm x 50μm, 25μm x 25μm, and 15μm x 15μm, respectfully, as seen in Figure 2.5. 

Each of the four-channels began uniformly with a dimension of 100μm x 100μm and then 

tapered into the desired detection window parameters. To optimize these various channel 

dimensions, studies investigated the probing of genomic DNA, for the target gene sequence of 

AMPH and the florescent events produced by applying the LDR-spFRET technique.  
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Figure 2.9 shows the increase of fluorescent events and their intensity, in equivalent LDR-spFRET product 
dilutions, which have been subjected to SMD methodology. 

When reviewing the data for the different detection zones, there is an increase of real-

time fluorescent events as indicated in Figure 2.9. In addition to the increase of events and 

intensity, which is contributed to the change in concentration detectable in the defined, probe 

volume. The sampling efficiency shows improvement due to the probing volume being 

manipulated my enforced smaller dimensions of the microfluidic channels; which shows more 

detection of rMB events in dimension with smaller detection windows.  

 

 

 

 

 

 

 

 

 

Figure 2.10 shows an increase of fluorescent events and their intensities, in equivalent LDR-spFRET product 
dilutions for channel dimensions 50 μm to 100 μm via SMD, but decreases when sample is detected in 25μm. 
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 When optimizing the microfluidic device, the consideration of polymer surface chemistry 

must be taken into account. If the sample/polymer interaction does not amplify the detection 

method’s figures of merit a surface modification maybe advantageous. This modification was 

done to negate any sample and polymer reaction causing substrate adhesion. If this adsorption 

occurs we see a dramatic decrease of fluorescent events during SMD. To limit this occurrence, 

which can arise during experimental analysis on involved surfaces such as: the inner parts of the 

injection syringe, capillary and microfluidic channel, the COC’s surface chemistry required 

modification. The modification optimizing was deemed beneficial into increase the COC’s 

surface chemistry hydrophilic nature. We know for prior studies that DNA is a hydrophilic 

molecule, in turn making the LDR-spFRET products hydrophilic molecules.  

The modification of the microfluidic chip was realized when the loss of samples on the 

microfluidic channel walls was hypothesized from data illustrated in Figure 2.10. This defect can 

have great impact on the quality of biological sample preparation and detection conditions. It has 

been observed that DNA can bind to polymers, and that the interaction of DNA with channel 

walls can induces a change of conformation, which can go as far as complete denaturation. The 

choice of a polymer with low binding adsorption quality is therefore of crucial importance. The 

LDR-spFRET products seem to have an affinity to the polymer walls; this inherited issue is due 

to the nature and chemistry the rMBs mimic (e.g DNA or RNA). 
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Figure 2.11 The calculated angle shown is determined by the interactions across the three interfaces. This test is 
illustrated with a small liquid droplet resting on a flat horizontal solid surface. The Young’s relation or Wetting, 
which observes the ability of a liquid to maintain contact with a solid surface, determines the droplets shape. 

 

The COC surface modification optimizing applied adaptation procedures such as UV and 

O2 plasma modifying. We learn that after UV modification there is an increase of carboxyl 

groups on the polymer’s surface. Furthermore, the concentration of ether and carbonyl groups 

(C-O-C and C=O) increased on polymer surface after O2 plasma modification; however, the 

percentage of the carbon atoms in C-C groups was reduced at the surface after exposure. To 

further understand the UV and O2 plasma modification, an analysis of the hydrophilic nature of 

the COC’s surface chemistry, a measurement of the contact angle was employed. This depicts 

the angle at a liquid/surface interface as seen in figure. The image reveals that after undergoing 

O2 plasma modification, the contact angle decreases substantially. This is due to the formation of 

the COC’s surface hydrophilicity in respect to the functional groups each modification provokes, 

see figure 2.12.   

 

Angles: [7.20°, 7.20°] 

Angles: [89.40°, 89.40°] Angles: [50.60°, 50.60°] 
UV Modification Un-modification 

Plasma oxidation Modification 
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Figure 2.12 (A.) The surface activation is characterized by the modification of chemical surface properties which is 
based on chain scission, the formation of functional groups, and cross-linking on the surface based on plasma 
generated components mainly UV radiation, charged particles (ions), and radicals, which in turn reacts using an 
oxygen molecule to producing hydro-peroxides, ketones, aldehydes, carboxyls, hydroxides, and ester groups. (B.) O2 
plasma modification - The reaction is initiated with atomic oxygen, which abstracts a hydrogen atom from the 
surface. This result in a free radical on the surface, which in turn can react with an oxygen molecule to producing 
hydro-peroxides, ketones, aldehydes, carboxyls, hydroxides, and ester groups. The plasma oxidation results 
furthermore in breaking the polymer chains and material removal. A specific surface functionalisation is possible 
under precise control of the reaction conditions.  

2.8 RT-PCR Data  

 For the RT-PCR genomic DNA analysis, we first ran the sample cocktail on the 

multiplex quantitative (Stratagene Mx4000) PCR system and confirmed the PCR product 

assembly via agarose gel electrophoresis (Figure 2.13).  

 

 

 

 

 

Figure 2.13 Agarose gel electrophoresis using 1.8% TBE (Tris-Borate-EDTA) Human genomic cDNA and PCR 
primer assembly to form products (152 bp), running at a constant voltage of 200 volts.  

After loading the sample into individual wells with a pipet at a total volume of 5 μL. 

Then place into gel apparatus, connect the leads so that the red (positive) lead is at the end of the 

gel to which the DNA will migrate and the black (negative) lead is at the end of the gel 

A. 

B. 
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containing the wells, running at a constant voltage of 200 volts. When the blue tracking dye 

(which runs in these gels along with a DNA fragment) has migrated about 75% of the distance to 

the end of the gel (60-90 minutes) stop correct. Carefully transfer the gel into a plastic dish and 

add staining solution to cover the gel. Visualize the DNA with UV light. 

 The amplification plot below (Figure 2.14) shows and defines the fluorescence signal 

versus cycle number of the samples. In the initial cycles of the RT-PCR, there is little change in 

fluorescence signal, which defines the baseline for the amplification plot. An increase in 

fluorescence above the baseline indicates the detection of accumulated RT-PCR product. A fixed 

fluorescence threshold of 0.50 was set above the baseline. The parameter Ct (threshold cycle) is 

defined as the fractional cycle number at which the fluorescence passes the fixed threshold. We 

indicate that at a higher genomic DNA concentration, the initial amount of the genomic DNA 

(copy number), the sooner accumulated product is detected in the RT-PCR process as a 

significant increase in fluorescence, and the lower the Ct value. A CT value in the exponential 

phase, where the threshold is picked, there is a linear relation between log of the change in 

fluorescence and cycle number and the reaction components are not limiting (Figure 2.14).  

  

 

 

 

 

 

 

Figure 2.14 RT-PCR Amplification plot of Human genomic DNA diluted in a 10-fold dilution series (copy numbers 
0; 22.8; 45.6; 91.2; 228; 456; 912; 2280; 4560; 9120) and amplified using SYBR Green I. 

Amplification Plot 
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Figure 2.15 (a.) Above. A calibration curve showing the various fluorescence intensities in correlation to the 
genomic DNA (copy number dilutions) employed (i.e. 0; 22.8; 45.6; 91.2; 228; 456; 912; 2280; 4560; 9120). Figure 
2.15 (b.) Below. A standard curve was derived from the serial dilutions in a customary manner. Relative 
concentrations were expressed in arbitrary units. Logarithms (base 10) of concentrations were plotted against 
crossing points. Least square fit was used as the standard curve. 
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2.9 LDR-spFRET via SMD Data  

In the single-molecule detection experiments, tapered detection window with smaller 

dimensions were designed and fabricated in the micro-channel for fluorescence measurement. 

This dimension change was completed in order to capture more photo burst events of the rMB 

generated from LDR. Test results using LDR products of different copy numbers showed good 

correlation between the detected numbers of photon burst and input cDNA copy number in the 

100x100 µm channel. Data was generated utilizing two new chips with straight channels 

containing 100x100 µm and 25x25 µm detection windows, to compare the sensitivity between 

detection windows. The COC substrate was treated by means of the oxygen plasma by placing in 

oven (Harrick Plasma Cleaner/Sterilizer PDC-3XG) for ~2 minutes before closing the channels 

by annealing. Then, after connecting the capillaries, the chip was rinsed with IPA and buffer 

before use (Figure 2.16).  

 

Figure 2.16 Optimized microfluidic chip, which put to use Polymer COC; 25X25 µm channel detection window; 
Pumping injection method; O2 plasma modification. 
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Figure 2.17 Beckman Coulter GenomeLab Plot of LDR-spFRET products. The above graph is showing at ladder 
marker labeled for 20 nucleotides, we see large peaks characteristic of the non-ligased primers. Furthermore, the 
data illustrates peaks between 1600-1700 time (min) characteristic of ligased products   

 The LDR was run 20 cycles in the thermal cycler using cDNA as the template to generate 

the molecular beacon for single-molecule measurement. To confirm formation of LDR product 

after thermal cycling a capillary gel electrophoresis (CGE) was done via Beckman Coulter 

GenomeLab, which is a GeXP Genetic Analysis System that is fully automated that employs an 

array of coated capillaries, novel infrared dyes, an optimized linear polyacrylamide gel (LPA) 

and comprehensive informatics which fully automates the processes of DNA sequencing, gene 

expression and fragment analysis. The results of the CGE plot can be seen in Figure 2.17. The 

result shown in the following plot, illustrates the optimized chip data recovered (Figure 2.18). 

In this plot, the lower curve shows the relationship between the number of detected 

photon bursts and the input cDNA copy number detected on the 100X100 µm channel, and the 

upper curve shows the 25X25 µm channel. The input cDNA copy number was varied from 300 
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to 30,000. In the 25X25 µm channel, the detected photon bursts range from 13 to 630. In the 

100X100 µm channel, the detected photon bursts range from 0.7 to 64. This suggested that many 

more single molecule events could be registered in the 25X25 µm detection channel than in the 

100X100 µm detection channel, and the smaller detection channel offered a better sensitivity in 

the single-molecule measurement. The sample with 30 copies of cDNA was measured in both 

100X100 µm and 25X25 µm channels, but unfortunately there were no photon bursts observed.  

 

Figure 2.18 Calibration plot of channel dimensions at various copy numbers dilutions presented by plotting the 
number of photon events versus the copy number. 
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CHAPTER 3 – DESIGN AND DEVELOPMENT OF A FIELD-DEPLOYABLE SINGLE-
MOLECULE DETECTOR (SMD) FOR THE ANALYSIS OF MOLECULAR MARKERS 

3.1 Introduction 

While many have demonstrated the utility of fluorescence-based single-molecule 

detection (SMD) for several different types of molecular assays,1-10 the transitioning of SMD into 

routine clinical measurements has not occurred to-date in spite of its inherent advantages. The 

advantages afforded by SMD specifically for molecular assays includes, elimination of 

processing steps in multi-step assays (for example, eliminates the need for amplification steps, 

such as PCR), reduces the processing time to realize near real-time readout, exquisite analytical 

sensitivity due to the use of molecular (i.e., digital) counting, and ultra-low limits-of-detection 

(single-molecule level). In addition, SMD can generate quantitative data without the need for 

generating calibration plots when the sampling efficiency of single molecules is near unity.  

The major bottleneck toward realizing the wide-spread use of SMD into many 

applications has been limitations imposed by the equipment required to make these 

measurements, typically consisting of large continuous or pulsed lasers, an extensive array of 

opto-mechanical components and expensive photon transducers, such as CCDs or channel 

plates.11, 12 In fact, most single-molecule measurements are made using laser confocal 

microscopes due to the ultra-small probe volume they generate providing high signal-to-noise 

ratios (SNR) for individual molecules and the excellent light gathering ability of the isotropic 

emission they can produce when using a high numerical aperture microscope objective. 

Another bottleneck for transitioning SMD into routine use is the extensive amount of 

sample preparation that is required prior to carrying out the fluorescence measurement. For 

example, clinical samples, such as blood, urine, cerebral spinal fluid, saliva, etc., typically 
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require extensive amount of pre-processing to isolate the target molecules to minimize matrix 

interferences during the single-molecule measurements. For example, many biomarkers such as 

DNAs and RNAs, are encased within the cellular and nuclear envelopes and therefore, must be 

released via cell lysis prior to analysis. Also, once lysed, the targets must be isolated using for 

example solid-phase extractions to eliminate potential interferences in the downstream 

processing steps and/or interferences during the fluorescence SMD. 

There have been a few reports focused on simplifying some of the operational 

components associated with SMD, for example miniature power supplies developed by 

Erickson.13 Giudice et al. also reported a photon counting module using Si avalanche 

photodiodes14 and several groups have also reported SMD for lab-on-a-chip (LOC) devices with 

potential field-use applications.15-19 However, the literature is currently devoid of any reports 

detailing the development of a compact and simple SMD instrument, including the processing 

electronics, opto-mechanics, excitation source and photon transducer, that can provide 

processing of input samples and the subsequent detection of single molecules using laser-induced 

fluorescence for potential point-of-use measurements.  

The evolution of equipment such as light emitting diodes, laser diodes, optical fibers, and 

gradient refractive index lenses has important applications to SMD.20 Laser diodes are available 

in a wide range of wavelengths and offer reduced sizes compared to other lasers, such as air-

cooled argon, Ti-sapphire, or helium-neon lasers. Furthermore, many different optical 

components allow for the control and shaping of the excitation source to create the necessary 

photon flux to provide near optical saturation for generating high signal-to-noise ratios for SMD. 

On-chip lenses have also been demonstrated to create high photon densities.21-23 Waveguides are 

another important optical component that can be integrated into microfluidic devices for both 
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illumination and emission collection for SMD. Recently, Yin and coworkers demonstrated anti-

resonant reflecting optical waveguides (ARROW) for single-molecule fluorescence correlation 

spectroscopy (FCS) in a microfluidic format.16 The compact planar opto-fluidic devices were 

able to generate small excitation volumes (~fL) and signals coupled to external optical fibers for 

both excitation and detection. A sacrificial layer process on a silicon nitride substrate fabricated 

the ARROWs with silicon dioxide layers serving as the core.  

The drawback to most of the aforementioned approaches was the increased complexity 

associated with the fabrication of the fluidic chip making it difficult to realize low-cost 

disposable platforms appropriate for diagnostic applications. Therefore, simple and low-cost 

optical components incorporated into the microfluidic chip with minimal fabrication steps would 

be highly advantageous for clinical diagnostics. Seo et al. demonstrated a 2D planar lens in 

PDMS to focus light from an LED into a fluidic channel.22 They designed single and multi-

element lenses to effectively shape the excitation beam to increase the resulting fluorescence 

intensity from fluorescent nanospheres. The lenses were fabricated in the same step used to 

fabricate the microfluidic channels. However, the 2D lenses only focused the light in one 

dimension. The direct integration of fiber optics into micro-capillary electrophoresis devices has 

been previously demonstrated in the literature as well.21, 24-33  

When fibers are integrated into microfluidic devices, they can act as waveguides to 

deliver excitation light to a defined location of the device in a well-controlled volume, producing 

high photon irradiances. The illumination volume is set by the core diameter of the fiber optic as 

well as the acceptance angle of the fiber with typical diameters ranging from 4 µm to 1 mm. 

Fiber optics can also act as collection optics. In a method called “butt-end fiber coupling,” a fiber 

was placed against a diffuse light source and collected the light from an area of radius r and solid 
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angle defined by the numerical aperture (NA) of the fiber.34 The maximum collection efficiency 

of a fiber optic cable is achieved by directly integrating the fiber optic into the microfluidic chip 

butting the end to the excitation zone. The NAs of optical fibers (NA 0.12 to 0.22) are generally 

lower than a microscope objective typically used in SMD experiments, but high NA fibers are 

also available (NAs ~0.48). 

The requirement for a small footprint SMD instrument not only includes the opto-

mechanical components, but consideration to the data processing electronics as well. Field 

programmable gate arrays (FPGA) offer a number of advantages compared to standard printed 

circuit boards for the processing of electronic signals generated from photon transducers (see 

Supporting Information, Table S1).35 The integration of FPGA into microfluidic devices has not 

been extensively reported, except for one clinical application.36 However, no reports have 

appeared in which an FPGA was used for SMD.  

Another issue associated with the utilization of SMD for clinical applications has been 

the inability of the SMD equipment to prepare samples prior to the optical measurement. 

Microfluidics offers the possibility of generating systems appropriate for point-of-use analyses 

that can provide full automation of the sample processing pipeline.17 Coupling microfluidics to 

SMD offers the capability to generate sample-processing pipelines that reduce processing time 

through the elimination of processing steps and eliminate the need for operator intervention. In 

addition, the small sample volume requirements associated with microfluidics are compatible 

with SMD. Therefore, the use of SMD coupled to microfluidics can produce systems with unique 

capabilities that can be used for potential point-of-use applications. 
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SMD of bacteria based on the use of genomic probes offers the potential for fast, 

sensitive analysis with minimal amounts of false positive results. For example, Castro et al. 

demonstrated a technique for the rapid detection of specific nucleic acid sequences in 

unamplified DNA samples from Bacillus anthracis.37 38 They demonstrated the ability to detect 

100 amol of target DNA at a SNR of 3 in 200 s and the assay showed good specificity, even in 

the presence of an excess of B. globigii. In addition, Peng et al. used single-pair fluorescence 

resonance energy transfer following a ligase detection reaction to detect bacterial species with 

high specificity and sensitivity.39 The authors reported the ability to identify Gram(+) from 

Gram(-) bacteria in 2.6 min with single copy limit-of-detection. While the aforementioned papers 

are excellent examples of using SMD for the rapid reporting of various bacterial species, the 

hardware used for the measurements were poised on optical tables and in some cases, used 

mode-locked lasers and microchannel plates with time-correlated single photon counting 

electronics for processing the photoelectron events. Thus, the SMD hardware was not conducive 

to point-of-use operation. 

In this paper, we describe the hardware and fluidic components necessary for a molecular 

analysis system that was configured in a compact, and potentially field-deployable format 

capable of performing SMD for the determination of Gram positive/negative status of bacteria as 

an example. The system consisted of the opto-mechanics coupled to a microfluidic chip with the 

interface consisting of fiber optics integrated to the fluidic chip.  The processing electronics were 

based on an FPGA design. The system could detect fluorescence signatures from single 

molecules and also, could prepare the sample prior to the SMD.  
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3.2 Experimental  

 SMD Instrument Design. The hardware was designed to not only perform the SMD, but 

also control temperatures for the biochemical reaction. There were five major sections associated 

with the hardware: (1) photon detection, (2) laser diode control, (3) high voltage, (4) microfluidic 

channel temperature control, and (5) data acquisition. The components and layout of the system 

are presented in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 (a) Picture of the compact SMD instrument connected to a mini-computer for data collection and 
instrument control. (b) Access panel for loading sample into the microfluidic chip and connecting the collection 
fiber optic to the fiber U-bench, which contained optical fibers and was interfaced to the SPAD. (c) Inside the 
compact SMD instrument showing the arrangement of the VCSEL, SPAD, FPGA and other peripheral electronics. 
(d) Schematic of the FPGA that was used for data acquisition and single-photon processing. The FPGA counted 
signals from the SPAD and output information to the first-in first-out (FIFO) memory. (1) – USB interface cable to 
the controlling computer; (2) – microfluidic chip sitting atop a mounting stage, which is accessed through a drawer 
that slides out from the main instrument case; (3) – controlling computer; (4) – fiber bench with optical cable 
connected to the fluidic chip; (5) – SPAD with integrated fiber optic; (6) – cooling fan for the FPGA, which is 
located underneath this fan; (7) – various power supplies; (8) – fiber bench with optical filters; (9) – VCSEL with 
integrated fiber; and (10) – electrophoresis power supply to actuate fluids electronkinetically.   
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An Opnext HL6385DG vertical cavity surface emitting laser (VCSEL) diode was used as 

the excitation source with a lasing wavelength of 642 nm. To minimize output power 

fluctuations, a highly stable constant current source was designed to provide up to 280 mA drive 

current to the laser. The laser diode was connected to an SMA housing for interfacing a fiber 

optic to it, which also contained a built-in pin diode for laser power monitoring. At 250 mA drive 

current, the laser output from the coupling fiber optic was ~24 mW. Conditioning electronics 

were designed to convert the pin diode output to a 0-5 V signal that was directly proportional to 

the laser diode output power. An optical fiber was coupled to the SMA housing using an SMA 

connector and was a 10/125 µm (SMF-28-10, Thorlabs) single-mode fiber. The distal end of this 

fiber was sealed using epoxy glue into a guide channel embossed into the fluidic chip.  

 The photon counting system used a PCDMini single photon avalanche diode, SPAD 

(SensL, Cork, Ireland), which was directly coupled to a fiber optic (200/230 µm BFH48-200, 

ThorLabs). The PCDMini measured 1½” x 1½” and had an integrated Peltier cooler. The 

PCDMini possessed a high single photon quantum efficiency between 650-700 nm (>23%) and 

an extremely low dark count rate (~10 cps). The maximum acceptable count rate of the SPAD 

was determined to be 5M cps (See Supporting Information, Figure S1).  

 Collection of the fluorescence photons was achieved using a high NA (0.48) multimode 

fiber (200/230 µm BFH48-200, Thorlabs) that was sealed within the fluidic chip and oriented at 

90° with respect to the excitation fiber. The distal end of the collection optical fiber was spliced 

into an OFR fiber port (PAF-X-5, Thorlabs) for free beam-to-fiber coupling that allowed 

placement of the appropriate optical filters for the emission and then coupling back into the fiber 

optic cable interfaced to the SPAD.  In this way, the fiber connected to the SPAD did not need to 

be replaced every time the fluidic chip was changed. 
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 To minimize dead time and conserve board space, the photoelectrons generated from the 

SPAD were processed using a custom programmed field programmable gate array (FPGA). The 

FPGA (XCR3256XL-12TQ44I, Xilinx Inc., San Jose, CA) was a surface mount 144-pin device 

programmed using the ISE Webpack software, version 7.1. The design used a JTAG interface for 

in-circuit programming so that the FPGA code could be loaded or modified on the target board 

without the need to remove the FPGA chip for updating. The SPAD produced a TTL pulse that 

was sent to the FPGA, which was used for processing the TTLs from the SPAD.  A diagram of 

the electronic components including the FPGA operation is shown in Figure 1(d). The FPGA 

was integrated into the SMD instrument as a single-photon counter with a unique dual gated 

counter configured in a “ping-pong” format to give virtually zero dead time (50 ns) between 

output counts to the first-in first-out (FIFO) memory.  

 Finally, communication between the microcontroller and the analog system used 12-bit 

A/D and D/A converters via an I2C serial bus. Data transmission between the control board and 

the computer was via the standard USB port. Custom software was written in-house using 

LabView and installed on a mini computer (OQO, Marlton, NJ) for end user control. 

Microfluidic Chip Fabrication. Figure 2a shows the design of the microfluidic chip, 

which consisted of a single channel that had a width of 50 µm and a depth of 120 µm. The 

excitation fiber conduit, which was embossed into the fluidic chip, was 120 µm wide with a 

depth of 120 µm. The collection conduit was 220 µm wide and 220 µm deep. The excitation and 

detection geometry is shown in Figure 2b, which consisted of a four-way intersection.  

A detailed description of the microfluidic chip fabrication protocol is described 

elsewhere40 and a brief description is given in the Supporting Information (Figure 3.2). The 

microfluidic channels were enclosed by thermal fusion bonding a thin (0.25 mm) PMMA 
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coverslip (GoodFellow, Oakdale, PA) to the embossed PMMA substrate following insertion and 

gluing of the fiber optics to the substrate. For thermal fusion bonding, the microfluidic chip 

assembly containing the fibers was clamped between two glass plates and placed in a convection 

oven at 107°C for 20 min.  
  

 

 

 

 

 

 

 

 

Figure 3.2 (a) Design of the polymer-based microfluidic chip with integrated fiber optics for delivering excitation 
light to the chip and collecting the resulting emission. The fibers were placed in guide channels embossed into the 
chip to allow exact placement during chip assembly and were oriented at 90° with respect to each other. The chip 
also contained a backside heater to control the temperature for hybridization-based assays.  (b) Fluorescence image 
of the field-of-view of the excitation and emission fibers showing the intersection of the optical paths, which defined 
the probe volume, which was determined to be 98 pL in this case. The chip was filled with Alexa Fluor 660 dye to 
generate the necessary image.   

Chemicals and Materials. Borate buffer was prepared by dissolving the desired amount of 

sodium borate (Sigma Chemical) into nanopure water secured from a Barnstead Nanopure 

Infinity System (Model D8991, Dubuque IA). The pH (pH 8.5) was adjusted by the addition of 

concentrated HCl. The buffer was diluted to a final concentration of 50 mM and filtered with a 

0.2 µm filter before use. Bovine serum albumin (BSA) from Sigma was added to the buffer (0.1 

mg/mL) to reduce surface non-specific interactions. Alexa Fluor 660 and Dark Red fluorescent 

FluoSpheres (diameter = 0.2 µm) were both purchased from Invitrogen (Eugene, Oregon). The 

fluorescent spheres were sonicated and diluted in the borate buffer to yield the desired 
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concentration. The fluorescent dye was diluted in buffer to yield a final concentration of 2.0 fM. 

Concentrations were selected to keep the occupancy probability below 1.0% to minimize the 

probability of photon bursts arising from ≥2 molecules occupying the probe volume 

simultaneously. 

 Oligonucleotides used to probe for the bacterial genomes and generate molecular beacons 

(MPs) were purchased from Integrated DNA Technologies (Coralville, Iowa) with a custom 

sequence (5’-GCACGAAAGCCTGACGGAGCAACGCCGCGTGAGTGATGACGTGC-3’, 

where the underline section designates the complementary stem sections of the MP). The 5’ end 

was modified with a TYE 665 fluorescent dye and the 3’ end was modified with Iowa Black RQ-

Sp quencher. The MB sequence was designed to probe for the presence of DNA encoding for 

ribosomal RNA (rRNA) related to the Gram(+) gene.41 The MBs were diluted in 50 mM 

borate buffer with BSA to a concentration of 0.5 nM. Two bacterial strains, Staphylococcus 

aureus subsp. Aureus (ATCC 700699) and Escherichia coli (ATCC 700926) were investigated 

in this study and the genomic DNA for each strain was acquired from ATCC (Manassas, VA).  

 Flow Velocity Modeling. A computational fluid dynamic (CFD) simulation was run 

using ANSYS Fluent 12.0 software. The general-purpose preprocessor for CFD analysis was 

done with Gambit 2.0, which created quad element meshing with 80,000 nodes. The input 

volume flow rate for these simulations was 0.05 mL/h. 
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3.3 Results and Discussion 

The diameter of the excitation optical fiber coupled to the microfluidic chip as well as the 

fiber’s divergence served in determining the irradiance and the probe volume size. Reductions in 

the core diameter of the excitation fiber led to an increase in the irradiance producing better 

signal-to-noise ratio for the single-molecule measurements, but also reduced the excitation 

volume, consequently, a reduction in the single-molecule sampling efficiency.42 On the other 

hand, increasing the diameter of the collection fiber along with its numerical aperture and 

reductions in its distance from the emitting source (i.e., single molecule), increased the amount 

of fluorescence processed by the system during the residence time of the molecule within the 

excitation volume.  

The effective field-of-view of the collection fiber overlaid with the excitation fiber’s 

field-of-view should define the probe volume. Ideally, this volume should be minimized to 

reduce noise generated from scattering photons produced from the solvent; however, larger 

collection fibers allowed for more efficient gathering of the fluorescent photons as noted above. 

To visualize the field-of-views of the excitation fiber and collection fiber, we filled the 

microfluidic device with Alexa Fluor 660 and launched laser light into both fibers. We then 

collected two images using a microscope equipped with a CCD camera; (1) Fluorescence 

generated by the excitation fiber only; and (2) fluorescence generated by the collection fiber 

only. An overlay image was also produced from images (1) and (2) (see Figure 2(b)). The 

overlap area of the resulting fluorescence produced from both fiber optics defined the effective 

probe volume. The cross section of the excitation fiber image produced a diameter of 10 µm due 

to its low divergence because this was a single mode fiber (cross sectional area = 7.85 x 10-7 

cm2). With this cross section, the 24 mW output power from the optical fiber generated an 
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irradiance of ~1023 photon cm-2 s-1. This is a reasonable fluence because it generated an excitation 

rate, ka (ka = σI, σ is the absorption cross section, cm2, and I is the laser fluence, photons cm-2 s-1) 

near optical saturation (1/τf, where τf is the fluorescence lifetime of the dye).43  

The probe volume was calculated from the 1/e2 diameter of the laser emanating from the 

fiber (~25 μm) and the collection fiber (observation length = 200 μm) and was determined to be 

9.8 x 10-11 L or 98 pL. This probe volume was used to select the concentration for the SMD 

experiments so that the occupancy (molecules/probe volume) probability could be adjusted to 

minimize contributions of double occupancy within the data stream. 

The probe volume was configured at a right angle with respect to the sample input into 

the probe volume with the two fiber optics meeting at a four-way junction to keep the emission 

fiber close to the excitation fiber to improve the fluorescence collection efficiency. Due to the 

irregular shape of this detection geometry, we performed simulations to map the flow vectors as 

the fluid moved through the probe volume and subsequently into the waste reservoir (see Figure 

2(b)). The simulation results indicated a decrease in the linear velocity as the solution entered the 

wider channel region as expected. The velocity through the probe volume showed minor linear 

velocity changes, however, the paths through the probe volume were distinct. We categorized 

these different paths into three types; (1) perpendicular to the excitation axis; (2) diagonal to the 

excitation axis; and (3) parallel to the excitation axis. We overlaid the CFD simulation results 

with the trapezoid-shaped (black outline, see Figure 3(a)) probe volume. The corresponding path 

lengths across the probe volume for these 3 types were 50, 75, and 200 µm, respectively. These 

differences may result in different transit times for molecules adopting a trajectory as it moves 

through the probe volume. The consequence of this is that a broad range of photon burst peak 
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heights would be generated even when operating under a condition where photobleaching is 

negligible.44  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 (a) Simulation of the flow velocities and flow vectors of the fluid as it moved from the input channel into 
the detection zone (units are m/s). The simulation was run using Fluent software with quad elements meshing and 
80,000 nodes performed in Gambit. An outline of the probe volume as determined from Figure 1 (b) is shown as 
well (black dotted line). (b) 3D surface plot of the detection zone versus the irradiance experienced by single 
fluorescent entities as they traverse through the probe volume. The irradiance decreased as the beam expanded and 
thus, single fluorescent entities traveling along the edges of the Gaussian intensity profile show reduced photon 
fluxes. 

The distribution of the irradiance as a function of channel position was also plotted versus 

the irradiance (photon cm-2 s-1) and is shown in Figure 3(b) with 8 cross sections taken. As can be 

seen, moving away from the terminal end of the excitation fiber, the irradiance decreased, which 



	  69	  

will reduce the SNR in the single-molecule measurement. From these results, it was apparent that 

the perpendicular flow path resulted in the best SNR of the three flow paths due to the higher 

irradiance it afforded. Additionally, the perpendicular path occurred closer to the emission fiber 

terminal end and was centered over this fiber, which would result in a higher collection 

efficiency of the resulting fluorescence photons. 

 

 

 

 

 

 

 

Figure 3.4 Photon burst data collected using the compact, field deployable SMD instrument. The red trace shows 
the blank and the black trace is the data with fluorescent beads or dye seeded into the buffer. (a) Plot of photon 
bursts generated from fluorescent microspheres.  (b) Single Alexa Fluor 660 dye molecule burst data.  

To evaluate various operational parameters associated with this SMD instrument, we 

used fluorescent microspheres as the probes due to their bright fluorescence signatures resulting 

from a high load of dye per bead and the lack of photobleaching they demonstrate. A dilute 

solution of microspheres (3.1 x 106 particles/mL) was used, which had a single particle 

occupancy probability of 0.3 based on the measured probe volume. The spheres were pumped 

through the microfluidic channel using a syringe pump at a flow rate of 0.05 mL/h (linear flow 

rate ~0.096 cm/s at 120 μm x 120 μm channel cross section). Figure 4(a) presents a trace of the 

photon bursts versus time for these microspheres as well as a blank. We were interested in 

understanding the distribution in the amplitudes of these bursts and whether the probe volume 

shape, which was defined by the overlap of the excitation and collection fibers, as well as the 
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various paths taken by the molecules (or microspheres) would affect the variance in this 

distribution, especially when compared to conventional confocal excitation geometries.  

 

 

 

 

 

 

 

Figure 3.4 (c) Autocorrelation analysis was performed on the blank, fluorescent spheres and Alexa Fluor 660 dye 
molecule solutions. The fluorescent microspheres and the Alexa Fluor dye molecules showed transit times of 49 ms 
and 53 ms, respectively, using the same flow rate. 

For typical confocal laser-induced fluorescence (LIF) single-molecule detectors, the 

collimated laser beam is tightly focused to a diffraction-limited spot with the 1/e2 beam waist 

defining the excitation volume and whose intensity distribution has a Gaussian profile. When a 

single fluorescent molecule is brought into this excitation volume, a photon burst is produced 

due to repetitive cycling of the fluorophore from the ground to excited state with subsequent 

relaxation back to the ground state accompanied by photon emission. The magnitude of the burst 

is directly proportional to the local photon density experienced by the molecule during its 

passage through the laser. The distribution pattern of the photon burst amplitudes can thus serve 

as an indicator of the intensity profile the molecules take through the excitation volume. In order 

to examine if the irregular shape of the probe volume arising from the dual optical fiber 

configuration had any effect on the photon burst distribution of single-molecule events, we ran a 

control experiment by hydrodynamically driving the fluorescent beads through a microchannel 

and histogramming to produce a photon burst distribution using a confocal LIF SMD instrument 

described elsewhere45 and compared these results to the dual-fiber arrangement.  
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Photon burst intensity distribution plots for both the confocal and dual-fiber SMD 

instruments were built from the raw trace data. In the single particle detection using the confocal 

setup, the fluorescent beads were diluted to a concentration of ~6 X 105 particles/mL to keep the 

occupancy probability low and the solution was driven through the microchannel at a flow rate to 

give a similar linear velocity as that for the dual-fiber arrangement (~0.096 cm/s). The trace data 

for the photon bursts from the single fluorescent beads detected using the confocal setup is 

shown in Figure 5(a). In order to discriminate real photon burst events from background 

fluorescence fluctuations (i.e., false positives), a threshold level of 3,000 cps was used. A 

histogram was constructed from this photon burst data and is shown in Figure 5(c). In this plot, 

the photon burst magnitude was binned with an increment of 5,000 cps above the threshold level 

and each bin was normalized to the total number of photon burst events. We found that the 

photon burst distribution was best fit to a single exponential function (see Figure 5(c)). The 

reduced  value of the least square fit was 9.5 X 10-4 and the  value was 0.97. From the 

actual trace data, the average photon burst intensity for the confocal excitation volume was 

11,000 ± 12,400 cps. However, we should note that the distribution depicted in Figure 5(c) 

represents a truncated Gaussian due to the fact that events were only counted when their 

maximum exceeded the threshold condition.  

The photon burst trace data of the fluorescent beads detected using the dual-fiber 

instrument is shown in Figure 5(b). A threshold condition of 40,000 cps was set as the 

discriminator threshold in this case to minimize false positive events. A histogram was built from 

the photon burst trace data and is shown in Figure 5(d). The photon burst intensity distribution 

was also best fit to a single exponential function with a reduced  of 1.12 x 10-4 and a  value 

of 0.997. The average photon burst intensity was 65,800 ± 23,700 cps. 

2χ 2R

2χ 2R
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Using the histogram data depicted below in Figures 5(c) and (d), we overlaid a Gaussian 

function on these exponential functions and from these distributions, determined the standard 

deviations and relative standard deviations (RSD) for the burst amplitudes. For the confocal 

system, the standard deviation was 2,970 cps with an RSD of 27% while for the dual fiber 

arrangement; the standard deviation was 23,880 cps with an RSD of 37%.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 (a) Trace data of photon bursts detected using a confocal LIF setup. A threshold level of 3,000 cps was 
set to discriminate true single particle events against background fluorescence fluctuations. (b) Trace data of photon 
burst data detected using the compact SMD instrument. In this case, a threshold level of 40,000 cps was set to 
discriminate single particle events against background fluorescence fluctuations. (c) Histogram of photon burst 
intensity constructed from data set in (a) using the confocal LIF setup. The accepted photon bursts were compiled 
into bins of 5,000 cps. (d) Histogram of photon burst intensity from data set in (c) using the compact SMD 
instrument. The data in this case were accumulated into bins of 20,000 cps. 

The average photon burst intensity for the dual-fiber system was higher than that of the 

confocal setup due to the fact that the residence time of the fluorescent microspheres in the dual 

fiber arrangement were longer than the confocal system (transit time for dual fiber arrangement ≈ 
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49 ms; transit time for confocal arrangement ≈ 15 ms). However, the relative standard deviation 

of the burst distribution was larger for the dual-fiber arrangement because of the multiple paths 

the beads can travel when moving through the excitation volume (see Figure 3(a)). 

Single-fluorophore detection. The SMD system was also analyzed for its ability to detect 

single-fluorophore molecules (see Figure 4(b)). In this case, we chose Alexa Flour 660 due to its 

high quantum yield and favorable photostablity.46 The dye was diluted to a concentration of 2 

fM, which corresponded to a single-molecule occupancy probability of 0.12. The solution was 

pumped through the microfluidic chip at the same volume flow rate as that of the microspheres 

(0.05 mL/h). The fluorescent dye showed a drop in SNR compared to the microspheres, which 

was anticipated due to the high load (1.1 x 105 fluorescein equivalents per microsphere) of 

fluorescent dyes on each microsphere. Using a blank sample with no fluorescent molecules set a 

discriminator level. The discriminator level was set such that no signal from the blank exceeded 

the discrimination level keeping the false positive rate near 0. The single-molecule data showed 

photon burst signals above the background when a discrimination level of 32,000 cps was 

selected for the Alexa Fluor dye. From the data trace shown in Figure 4(d), 48 single-molecule 

photon burst events were detected. 

The autocorrelation functions were derived for the blank, fluorescent spheres and the 

Alexa Fluor dye solutions and are shown in Figure 4(c). The differences in the autocorrelation 

function (ACF) from the blank and the fluorescent samples indicated that single molecule events 

were being detected due to the presence of a non-random component in the ACF. Analysis of the 

full width at half height of the non-random component in the ACF yielded transit times of 49 ms 

for the microspheres and 53 ms for the fluorescent dyes. The ACF did not show evidence of the 

longer transit time components (78-208 ms) associated with some of the flow paths shown in 
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Figure 3(a), but, the ACF is a weighted average with the weighting factors emanating from the 

number of events as well as their intensity (i.e., number of fluorescent photons comprising the 

burst).43 In addition, the transit time is not just a function of the flow velocity of the particles and 

the size of the probe volume, but also the bleaching lifetime,12, 44 and therefore, these longer 

transit time components may not have been observed due to bleaching artifacts and/or molecules 

following paths that produce lower numbers of fluorescent photons due to the lower irradiance 

(see Figure 3(b)). However, the transit time calculated using the ACF did show close agreement 

with that calculated from the linear flow velocity and the average 1/e2 radius of the probe 

volume. 

Gram(+) bacterial detection using single MBs. A calibration curve was constructed from 

oligonucleotides ranging in concentration from 0.5 to 10 fM that were prepared by adding 

different concentrations of target DNA sequences (synthetic complementary DNA sequence to 

the loop section of the MB) to a 0.5 nM solution of the MB. The MB and DNA targets were 

incubated for 5 min and then loaded into a 500μL syringe and pumped through the optical fiber 

chip at 0.01 mL/h (see Figure 3.6). Peaks above the discriminator threshold were counted as 

events and divided by the time of the experimental run (1 min) with the number of events plotted 

versus the concentration to construct a calibration curve, which is shown in Figure 7(a). The data 

points were fit to a linear function (y = 3 x 10-16x + 4.0 x 10-16) with an R2 value of 0.97. Table 2 

in the Supporting Information provides information on the calculation of the sampling efficiency 

(13.6%) for this system as well as the detection efficiency. 

The identification of S. aureus was then performed using DNA extracted from 2,000 

cells, which was then mixed on-chip with a 0.5 nM solution of the MBs in 50 mM borate buffer 

(pH 8.5). The solutions were pumped through the chip at 10μL/h and maintained at a 
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temperature slightly below the Tm of the loop/DNA complement to minimize formation of 

mismatches. As a negative control, DNA from E. coli was also extracted and mixed with the MB 

solution. S. aureus showed multiple events above the discriminator level (28,000 cps) due to the 

loop structure of the MB hybridizing to a complementary sequence contained within the genome 

of S. aureus, whereas the E. coli sample showed no events above this level. The events from the 

S. aureus predicted a DNA concentration (derived from the calibration curve) of 1.3 x 10-15 M.  

Based on the DNA copy number sampled during the experiment, more than one copy of the gene 

was present in each cell. If 20 copies of the gene were present in each cell, the data secured from 

the calibration curve would be in good agreement to that predicated on the input copy number. 

Kim et al. demonstrated that the copy number of the 16S ribosomal gene varies from 1 to 15.47  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Complementary DNA was mixed with 0.5 nM of the MBs and pumped through the microfluidic chip at 
0.01 mL/h.  The target concentrations used in this case were;  (a) 5.0 x 10-16 M; (b) 1.0 x 10-15 M; (c) 5.0 x 10-15 M; 
and (d) 1.0 x 10-14 M.  
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The limit-of-detection for this system is basically a single copy of DNA, indicating that 

the cell detection limit is 1 cell.  However, the ability to detect a single copy depends on the 

single-molecule sampling efficiency to be near unity and the sampling throughput is relatively 

high. The sampling throughput is set by the linear velocity and the input volume requiring 

sample, with higher linear velocities increasing the throughput but dropping the single-molecule 

SNR due to reduced transit times limiting the amount of photons extracted from the molecule.43 

Also, larger probe volumes can enhance the sampling throughput, but this can reduce the SNR in 

the SN|MD measurements because of larger scattering contributions to the background.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 (a) Calibration curve generated from the data shown in Figure 6. The data points were fit to a linear 
function; y = 3 x 1015 x – 0.9291, with R2 = 0.97. (b) rDNA extracted from 2,000 S. aureus cells (Gram (+)) and 
mixed with the 0.5 nM MB solution. As a control, DNA from E. coli (Gram(-)) was extracted and mixed with the 
MB solution as well. The S. aureus showed 3 events above the discrimination level whereas the E. coli showed no 
events above this level. 
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3.4 Conclusions 

We have demonstrated the ability to detect single molecules using a small footprint 

instrument coupled to microfluidics that will find applications where point-of-use measurements 

with near real-time results are required. In addition, the optical train consisting of integrated fiber 

optic cables to the microfluidic for both excitation and emission minimized end user optical 

alignment, which significantly reduced operator expertise requirements; only insertion of the 

cable termini into SMA connectors was required to install a new chip. Also, the implementation 

of a FPGA in conjunction with a diode laser and SPAD significantly reduced the instrument 

footprint compared to conventional single-molecule optical components and data processing 

electronics. As a demonstration of the utility of this instrument for analyses using SMD, MBs were 

designed to probe bacterial cells for the gene encoding the Gram(+) identity using S. aureus and E. coli as 

models.  

In the current format, the target cells were isolated, lysed and the genomic DNA purified 

off-chip. However, we can envision adding additional fluidic sample processing modules to the 

existing microfluidic to provide the ability to fully prepare the sample prior to performing the 

single-molecule measurement. For example, we can select cells,48-50 lyse the selected cells either 

chemically or electrically, isolate the target materials using solid-phase extraction,51-53 and then 

perform the molecular reactions on the purified material.54-56 This will create a fully integrated 

system to accept a variety of input samples, for example clinical samples used for in vitro 

diagnostics, prepare the samples and then perform SMD without requiring significant operator 

intervention or large amounts of operator expertise. 
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CHAPTER 4 – DISCUSSIONS, CONCLUSIONS AND FUTURE WORKS 

4.1 Discussions 

 In regard to the gene expression analysis of the AMPH gene, we are able to quantify and 

illustrate the amount of applied biological material to probing methods such as RT-qPCR and 

LDR-spFRET for plotting of calibration curves: copy number vs. fluorescence intensity, and 

copy number vs. number of single-molecule events for RT-qPCR and LDR-spFRET, 

respectfully.  From this calibration plot we learn the methods detection limits, quantification 

parameters, and the techniques sensitivity. With this information we can compare and contrast 

the two methods to investigate the validity of the techniques as it relates to gene expression 

profiling.   

 For the proposed system to be realized, the utilization of analytical methods that show 

superior probing and detection capabilities is beneficial. The experimental data recovered in this 

work parallels gene expression profiling’s conventional method RT-qPCR, with the proposed 

method LDR-spFRET (figure 4.1). This is accomplished by observing the gene AMPH, probing 

in an indistinguishable sequence area, and applying copy number concentrations in a congruent 

sequence area and applying copy number concentrations in a congruent fashion. 

 

 

 

 

 

 

 

A. 

Figure 4.1 (A.) Calibration plots for the merit comparing of methods RT-qPCR.	  
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Figure 4.1 (B.) Calibration plots for the merit comparing of methods LDR-spFRET. Figure 4.1 (A., B.) The probing 
primers are both located in the same 152 (bp) gene sequence succession of the AMPH biomarker target.  The 
biological samples were both at copy number concentration between 0-10,000. The experiment tests were replicated 
three times and plotting at their means.   

Chapter 1 outlines the differences in RT-qPCR and LDR-spFRET, including the primer 

makeup, amplification and detection methods. When comparing the calibration plots of SMD via 

LDR-spFRET and RT-qPCR, we can ascertain that the linear nature of the plots directly 

correlates with the respected methods amplification process. LDR’s method of sample probing 

depicts a linear progression. Conversely, the exponential amplification of the PCR method 

illustrates a curve, which emulates the nature of the sample probing process; a rapid exponential 

growth that then gives way to linearity limits due to enzyme and dye consumption. Furthermore, 

it has been realized that the amplification process is not necessary for SMD via LDR-spFRET. 

This, theoretically, negates the need for multiple thermo cycling to ensure linear amplification 

and real time quantification of targeted gene sequences. This factor makes the evolution of gene 

expression profiling by means of SMD via LDR-spFRET an advantageous and novel approach. 

The recovered data points, which render the limit of linearity, demonstrated through 

experimental means constructs the graph in figure's 1.0 calibration plot of RT-PCR and deems it 

necessary to investigate the dynamic range. This can then be then used to correlate the sensitivity 
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merit in comparison the to the SMD technique. The lack of the linearity limits as defined in the 

nature of LDR's amplification process makes the calibration plot exploitable at all points. In this 

respect the utilization of all data points defining the graph/slope will be investigated to gage the 

sensitivity of the method, unlike PCR, where the dynamic range's slope is referenced for method 

sensitivity. 

LOQ for RT-PCR: is dependent on the assay, in combination with the master mix and 

real-time PCR instrument. In regard to PCR it is noted that the mandate of an optimized assay-

system is needed to detect a few copies (1-10 c/rxn) or a few hundreds with a higher 

reproducibility. Moreover, if the desired detection is less than 10 (or 100) copies, multiplication 

of replicates (of at least 5-10) must occur. However, this is only possible if the assay has been 

optimized, a high-quality qPCR instrument is available, and a high-quality master mix from one 

of the two market leaders (Roche and ABI) is being used. These aspects make the assay costly 

and not available to all researchers (e.g. labs with cost constraints). These parameters are not 

characteristic of LDR. Multiplying replicates, in theory, should not be necessary and SMD gives 

the ability to detect one copy number in a sample with the utilization of microfluidics in 

combination with LDR-spFRET. The instrumentation that SMD uses is not as contingent upon 

the master mix quality, due to the theoretical sampling efficiency of the instrumentation’s 

probing volume and LDR’s target gene discriminating parameters employed during SMD, which 

should theoretically illustrate a LOD, a single molecule. This work demonstrates that the 

quantification reliability; cost factors, biological sampling validity, and time elements are 

superior in regard to SMD.  

 

 



	  86	  

4.2 Conclusions 

 In Conclusion, the sensitivity and versatility of single-molecule detection can eliminate 

steps required in multistep assays, in turn reducing analysis time. The present work shows, the 

means to eliminate PCR amplification by implementing a ligation assay directly on genomic 

DNA for gene expression profiling. Furthermore, thermal cycling can be negated due to high 

sensitivity yield by single-molecule detection. The specificity of the ligase enzyme applied to 

LDR gene probing coupled to spFRET of rMB’s provided near real-time gene expression 

profiling even when the copy number of target sequences are as low as 300 copies. 

While the conventional method PCR has drawn researchers to invest time in trying to 

reduce the processing time associated with PCR, the ability to perform analysis directly on 

genomic DNA and/or RNA using single-molecule detection possesses other unique advantages. 

Some advantages include: improved quantification using digital molecular counting for real-time 

readout, reduced reagent requirements, and elimination of post-PCR purification/isolation steps. 

This assay configuration will find novel applications where rapid low-volume sampling 

biological analyses are required. 

4.3 Future Works 

Introduction. Currently, no molecular diagnostic exists for stroke. The hypothesis is to 

develop a molecular diagnostic strategy including the biomarker panel, assay approach and the 

necessary hardware, for the point- of-care (POC) diagnosis of ischemic and/or hemorrhagic 

stroke, using mRNA expression profiling directly from whole blood with a processing time <20 

min to accommodate effective therapeutic treatment of this disease. A fluidic bio-processor 

fabricated in polymers via micro-replication technology will provide autonomous sample 

processing and will be comprised of a fluidic motherboard possessing task-specific modules. The 
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sample-processing pipeline will be streamlined to generate a rapid assay turn-around-time 

affected using microfluidics and single-molecule detection. The output of the clinical sample 

processing will be molecular beacons undergoing single pair Fluorescence Resonance Energy 

Transfer (spFRET) that are digitally counted to provide exquisite analytical sensitivity. 

Background. Stroke results from the occlusion or rupture of a blood vessel in or around 

tissue in the brain leading to this tissue being deprived of its blood supply. Stroke is a leading 

cause of death and disability in the United States. The two types of stroke - ischemic stroke (80-

85%) resulting from vessel occlusion, and hemorrhagic stroke (15-20%) resulting from vessel 

rupture - cannot be differentiated on clinical grounds and furthermore, 30% of patients 

presenting stroke-like symptoms do not have stroke at all. It is imperative that stroke diagnosis 

be made quickly and accurately because ischemic and hemorrhagic strokes have different 

treatments and there is only a short time window for effective treatment. Current stroke 

diagnoses require the patient to be transported to a hospital and undergo a brain scan, usually 

with computed tomography (CT), which are very sensitive for the detection of hemorrhagic 

stroke but less so for ischemic stroke in the first hours of a stroke event; this typically delays 

therapy from starting for ~60 min upon arrival of the patient to a hospital. The current 

intravenous treatment for ischemic stroke (recombinant tissue plasminogen activator, rt-(PA)), 

reaches only 2% of patients and is absolutely contraindicated in hemorrhagic stroke. Delay in 

diagnosis is a major reason that this treatment reaches so few patients. Furthermore, the earlier 

treatment starts, the better the outcome. New approaches for speeding up and improving the 

accuracy of ischemic and hemorrhagic stroke diagnoses are therefore much needed to 

accommodate therapy. The purpose of this proposal is to develop a novel technology platform 

for the rapid and point-of-care (POC) molecular diagnosis of stroke using mRNA biomarkers. 
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Research Design and Methods. We will develop a simple flow-through modular fluidic 

bio-processor made from polymeric materials via replication micro-technologies to analyze the 

molecular content of PBMCs for the expression level of mRNAs that provide diagnostic 

information for ischemic and/or hemorrhagic stroke in a turn-around-time (TAT) less than 20 

min. The fluidic bio-processor (see Figure 4.3.) accepts the input sample (whole blood), clears 

the blood of RBCs, neutrophils and platelets to produce the PBMC fraction, thermally and/or 

chemically lysis the PBMCs, isolates the total RNA using SPE, reverse transcribes the mRNAs 

into cDNAs, performs an LDR on the cDNAs using primers that carry reporter sequences for the 

target and readout of successful ligation events using spFRET. The use of spFRET obviates the 

need for a PCR step, which not only reduces processing time, but also produces exquisite 

analytical sensitivity.  
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Through this dialysis we will be able to correlate between normalized gene expression 

and hyper gene expression because of a stroke. Using these bio-makers will help differentiate 

between the two types of strokes and in turn potentially save a significant number of lives. While 

the proposed system is targeted for field diagnosis of stroke using mRNA biomarkers, the system 

can be envisioned for other applications as well that require quantitative expression analysis of 

mRNA. In the case of stroke diagnoses, the fluidic bio-processor can be configured to detect 

other biomarkers necessary for the diagnoses, such as serum proteins, without requiring 

hardware reconfiguring. 
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