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ABSTRACT 

The development of fluorogenic substrates for real- time tumor cell detection has led to a 

vastly expanding field for personal oncology.  Fluorophores have been studied as appendages to 

larger scaffolds leading to accumulation of these dyes in tumor cells or their surrounding 

environment, taking advantage of tumor anatomy.  A new class of fluorophores has been 

developed in which the dye is an active participant in the mechanism of cancer cell detection.  

These dyes have been conjugated such that their fluorescence has been eliminated or altered and 

will undergo a change to reveal their fluorescent signal upon activation by a mechanism that is 

unique to tumor cells.   

The research presented in this dissertation encompasses the design, synthesis, properties, 

and utilization of latent fluorophores that are specifically activated by an enzyme that is         

highly upregulated in tumor cells, NAD(P)H:quinone oxidoreductase-1 (NQO1).  These dyes 

utilize the 2-electron reduction of quinones to hydroquinones, which NQO1 specifically 

catalyzes.  A dye’s fluorescence can be quenched by conjugating a quinone directly to the 

fluorophore, only to   have its signal uncloaked after activation by NQO1.  The objectives in this 

research will be achieved by: (1) the characterization of properties (stability in biological 

environments, quantum yields) of the quinone, dyes, and their conjugated counterparts; (2) 

determination of kinetic parameters (Michaelis constant (Km), theoretical maximum velocity 



 

xviii 
 

(Vmax), catalytic constant (k cat ), enzyme efficiency (k cat /Km) of the substrates towards NQO1 and 

the way solvent affects such parameters during assay conditions; and (3) utilization of a latent 

fluorophore for in vivo NQO1 analysis (widefield imaging, confocal single-/two-photon 

microscopy, flow cytometry) and determining the fate of the released fluorophore.  Integration of 

these studies led to the development of two different latent fluorophores that are readily activated 

by NQO1.  Of these two fluorogenic cancer sensors, one was found to possess a highly novel 

quenching mechanism between the quinone and the dye. 
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CHAPTER 1 

INTRODUCTION 
 

1.1 Research Goals and Aims 

The goal of this research is the design and characterization of latent fluorophores used as 

sensors for the detection of NAD(P)H:quinone oxidoreductase-1 (NQO1) in tumor cells.1-4  In 

particular, the design of the fluorogenic sensor is such that it will need to contain a cleavable 

substrate that is selectively activated by NQO1 and a fluorophore that will have its fluorescence 

quenched when conjugated with said substrate.  Both the quenched dye and the free dye will be 

tested to ensure high stability while in a biological milieu.  Both the capped dye and free dye had 

their optical properties examined to ensure a high probability of success in their application as an 

“off-on” type sensor.  These fluorogenic sensors will be tested in vitro with cancer cell lines 

known to contain NQO1 and cells known to be devoid of the enzyme.   

Sir George Gabriel Stokes first observed fluorescence in the early 19th century and coined 

the term “fluorescence” after noticing a blue light emitting from a solution of quinine sulfate. 

Since then, fluorescent dyes have made an immense impact in biological sciences, and more 

recently in the field of biomedical imaging.5-6  Biomedical imaging has become a crux in the 

field of screening and disease treatment of cancer patients.7  Statistics such as 1,638,910 new 

cancer cases and 577,190 deaths projected in the year 2012 provide motivation for the need of 

better detection and treatment of such a widespread disease.8  Biomedical imaging has been at 

the heart of the cancer treatment by assisting with prediction, screening, biopsy guidance for 

detection, staging, prognosis, therapy planning, therapy guidance, therapy response, recurrence, 

and palliation.9  Techniques involved in cancer detection and diagnosis are: magnetic resonance 

imaging (MRI), positron emission tomography (PET), X-ray, radiography, ultrasound, and 

nuclear medicine.  But, these techniques lack specificity, sensitivity, and may yield radioactive 
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risks.9  With a better understanding of the processes in the human body and the 

anatomy/biochemistry of tumors, better optical imaging agents and techniques have emerged.  

This type of imaging has been promising because it is non-invasive, potentially provides real-

time information, and can provide high spatial resolution of cancerous tissues.10   

Though the research into fluorophores relevant to cancer diagnosis/treatment has been 

expanding rapidly, there are currently only three clinically-approved exogenous fluorescent 

tracers.11  Fluorescent sensors can be broken down into two categories: always on and off-on.  

These can be classified into two subcategories of organic and inorganic fluorophores.10  Always-

on fluorophores are typically conjugated to larger scaffolds such as macromolecules, peptide 

sequences, and antibodies, and they have been utilized for tumor imaging through a receptor-

mediated process or accumulation from enhanced permeability and retention (EPR) within 

tumors.12  The drawback to this process is long accumulation time within the body, leading to 

poor contrast when imaging.13  Off-on type activatable sensors have been shown to be superior to 

always-on fluorophores due to the low background signal produced in the quenched state and the 

large fluorescence enhancement (FE) after activation and subsequent release of the 

fluorophore.14  Even with the fact that NQO1 is a highly upregulated enzyme in cancer cells that 

selectively reduces quinoid compounds via a 2-electron reduction, no dyes have been reported 

for use in real-time in vitro sensors of this enzyme.15 

O

O

O

Dye
2H/2e-

OH

OH

O

Dye
Lactonization

OH

O

O

+ Dye

 

Scheme 1.1.  Illustration of the NQO1-activatable substrate and dye release mechanism. 

Trimethyl- lock 
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The first aim of this research is the development of two NQO1-activatable fluorescent 

sensors to be used as intracellular probes.  The base of these dyes will be the activatable quinone 

substrate that is selectively activated by NQO1.  The quinone unit will contain a trimethyl-lock 

(Q3) motif, which has been shown to substantially increase the rate of cyclization and 

subsequently should lead to a rapid dye release.16  The first fluorophore synthesized will contain 

a rhodamine-morpholino urea dye conjugated to Q3.  This rhodamine-based dye has been 

previously shown to have a high intensity in the mono-conjugated form and be nearly completely 

quenched when di-conjugated.17-19  The second dye will pair a naphthalimide dye with the Q 3 

moiety via a short spacer.  This “fluorophore-spacer-receptor” dye has its fluorescence quenched 

as a result of a novel use of photoinduced electron transfer (PeT).20  After each dye was 

synthesized, they were tested to ensure rapid release of the attached dye subsequent to quinone 

reduction.  To this end, the quinone units were chemically reduced with a strong reducing agent 

(sodium dithionite, Na2S2O4), and the fluorescence intensity was followed over time.  To 

confirm the quinone activating group was highly stable and could withstand the known reducing 

intracellular environment, the Q3 capped rhodamine dye was investigated while under 

physiological conditions in the presence of biological reductants.  This fluorophore was 

incubated with NADH (E1/2 = -0.31 V)21, ascorbic acid (E1/2  = 0.051 vs. SHE)22, glutathione 

(E1/2 = -0.22 V)23, and dithiothreitol (E1/2 = -0.33 V)24, and the fluorescence signal was observed 

in order to determine if release was taking place.  To confirm the capability of the Q3-capped 

naphthalimide dye to be quenched via PeT, the reduction/oxidation potentials of the quinone unit 

and the naphthalimide dye were determined using cyclic voltammetry (CV), and they were used 

to calculate the energy change (∆G)25 from the Rehm-Weller equation. 
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The second aim of this work is characterization of the optical properties of the 

fluorophores and determination of the effectiveness at which NQO1 activated the sensors by 

performing enzyme kinetics.  To determine the FE from pre- and post-activation of the dyes, a 

quantum yield for each dye was determined.  To determine the quantum yield for the capped and 

free dyes, the fluorescence signal was compared to a compound with a well-known quantum 

yield; for the rhodamine-based dyes, fluorescein was used, while quinine sulfate was compared 

to the naphthalimide dyes.17, 26  Enzyme assays and the kinetic parameters they yield provide 

information for how effective the sensors are as substrates for NQO1 and can be related to other 

published compounds.  By assaying the capped sensors with human NQO1 (hNQO1), kinetic 

parameters of Km (Michaelis constant, substrate affinity), Vmax (maximum theoretical turnover 

rate), k cat  (catalytic constant), and k cat /Km (enzyme efficiency) were produced.   

The final aim of this research is determination of the applicability of the fluorophores as 

in vivo sensors of hNQO1.  To complete this objective, multiple cell lines of different origins 

that are known to contain or be devoid of hNQO1, were purchased and incubated with the dyes 

and subsequently analyzed using: fluorescence plate reader, flow cytometry, and fluorescence 

imaging using a widefield microscope and single-/two-photon microscope.  From these analyses, 

it is possible to determine if each sensor was selectively activated in the cell lines known to 

contain hNQO1 or remain inactivate in the cell lines devoid of the enzyme.  If the sensor was 

found to be activated, its fate was determined post-activation using colocalization experiments 

(confocal microscopy).   

From the information presented in this work, I have demonstrated a novel use of NQO1 

as a rapid in vivo sensor in tumor cells.  The results presented in this work lay the groundwork 

for the next steps in NQO1 sensor utilization, possibly leading to ex vivo and in vivo analysis of 
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tumors.  Illustrated is a first-generation sensor which has great potential to lead to further 

advancements in creating fluorophores for the detection of NQO1.  Also, there is potential to 

create a better understanding of the role NQO1 plays in tumors and possibly in cancer analysis 

and treatment.   

1.2 Biomedical Optical Imaging 

Biomedical optical imaging has rapidly emerged as a field with the potential to impact all 

areas of cancer research and personal oncology, from the molecular level to a living system, and 

from the bench to the bedside.  In the clinic, biomedical imaging plays a major role in all facets 

of cancer management by non-invasively detecting and visualizing biological processes within a 

living system.27 These major involvements include: prediction,28 screening,29-30 biopsy guidance 

for detection,31 staging,32-34 prognosis,35 therapy planning,36-37 therapy guidance,38 therapy 

response,39-42 recurrence,43 and palliation.9  On the research (preclinical) side, imaging assists in 

the fundamental understanding of molecular pathways involved in carcinogenesis, aids in drug 

discovery, and provides a better understanding of the morphologic and biochemical processes 

within individual cells, tumors, and whole organs.27  The instrumentation predominantly used in 

cancer management include: magnetic resonance imaging (MRI), positron emission tomography 

(PET), computerized tomography (CT), X-ray, radiography, and ultrasound.  Though these 

methodologies are common place in the clinic, they lack specificity, sensitivity (Figure 1.1), and 

may yield radiation.10  The only clinically used techniques with sufficient sensitivity for 

molecular imaging are nuclear imaging techniques.  However, nuclear imaging techniques have 

severe drawbacks, such as: a cyclotron is used to develop radiotracers, radioactivity handling, 

lack of shelf life for the radiotracers, and the need to balance the half-life of the radiotracer with 

the pharmacokinetics of the targeting agent.44  Also, the majority of the biomedical imaging 
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techniques are impractical in the research lab due to cost and spatial resolution when compared 

to optical imaging techniques.27   

 

Figure 1.1  Relative sensitivity of imaging technologies; from Fass (2008). 

Optical imaging in both clinical and preclinical applications has been expanding due to 

the low cost, real-time analysis, non-invasiveness, ability to image at microscopic and 

macroscopic level (subcellular to whole animal body to human organ), specificity of probes, and 

sensitivity.  Optical imaging in cancer diagnostics originally observed changes in the contrast of 

endogenous sources.  Due to neoplastic tissues forming from cancer, biochemical and 

morphological alterations could be observed by changes in absorbance, light scattering, 

fluorescence, and polarization properties.27  One such characteristic change is a decrease in the 

fluorescence in the green region from stromal collagen cross-links as they are broken down from 

carcinogenesis.45  Similarly, an increase in fluorescence from nicotinamide adenine dinucleotide 

(NADH) and flavin adenine dinucleotide (FAD) have been attributed to an increase in metabolic 

activity.46  One of the benefits of imaging endogenous sources is there is no need for 

administering exogenous agents that require approval for clinical use.  However, these sources of 
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optical contrast are rarely limited to only carcinogenesis.27  Currently, the most common 

approach to increasing contrast and sensitivity in optical imaging is the use of exogenously 

introduced fluorophores.  These can be used as individual species or conjugated to larger 

scaffolds; examples are shown in Figure 1.2.   

 

Figure 1.2.  Five classes of molecularly-specific optical contrast agents. From left to right in 
order of increasing size: small molecules including glucose and peptides can be functionalized 
with fluorescent dyes. Aptamers can be designed to form activatable ‘‘smart probes,’’ with 
fluorescence quenched until target binding. Antibody probes are generally functionalized with 
fluorescent dyes in the Fc domain. Targeting molecules can be coupled to nanoparticle-based 
optical reporters, including gold nanoparticles and quantum dots; from Pierce et al. (2008).   
 
 Each of the fluorophore categories in Figure 1.2 can be utilized in a variety of techniques, 

from preferential accumulation in tumor sites47-48 to specifically targeting of endogenous 

ligands49.  Other such non-specific fluorophores have been used to increase contrast in optical 

imaging,50-52 while new off-on sensors are being studied to switch from a nonfluorescent state to 

a fluorescent state in the presence of a specific biochemical event.12  The existence of all imaging 

probes and fluorophore-scaffolds is to provide high sensitivity and specific interactions with the 

biological targets, though the path to that goal may vary.  Optimal imaging fluorophores must 
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possess large Stokes shift for minimum interference between absorption and emission, high 

molar extinction coefficient, high quantum yield, photo-stability, biological stability, and water 

solubility with minimal aggregation.10  Depending on the imaging application, specific 

wavelengths may prove to be more valuable to provide the essential signal-to-background ratio 

(SBR).  With in vitro and ex vivo optical imaging, a wider spectrum of wavelengths may be used 

due to less endogenous interference.  With in vivo and clinical applications, it is of great value to 

develop probes in the near-infrared (NIR) region (650 to 900 nm).  This is due to the scattering 

and absorbance of light in tissue components, oxy-/deoxyhemoglobin, and water, Figure 1.3.53      

 

Figure 1.3.  Extinction coefficient value of water, oxy- and deoxyhemoglobin are plotted 
ranging from visible to near-infrared wavelength; from Kobayashi et al. (2010).53 
 
1.2.1 Instrumentation 

The instrumentation used for optical imaging can vary greatly, depending on the 

application and biochemical or physiological process being observed.  Benchtop (research lab)-

based imaging can require subcellular resolution to obtain information on intra-/extracellular 

biochemical and biophysical processes,54 and up to macroscopic resolution to observe 
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physiological events in whole animals.55  Optical imaging in the clinical aspect ranges from 

cellular resolution for surgical guidance in resecting tumors56 to whole organ imaging for cancer 

diagnosis.57-58  Outside of image-guided invasive biopsy, current biomedical imaging 

technologies are not performed at the same time as the treatment.  The use of fluorescence-based 

optical modalities offers the opportunity for both real-time in situ diagnosis and treatment at the 

same time as surgical procedures.44  Detailed below is a non-exhaustive list of common 

techniques, descriptions, and current work utilizing preclinical and clinical modalities for the 

optical imaging of exogenously introduced fluorophores.   

Confocal microscopy has become a common imaging technology in the laboratory due to 

its high contrast and high resolution (between 0.21 to 0.58 µm spatially and 0.44 to 3.44 µm 

axially)59 of thin samples, such as cells and tissue.  The primary characteristic of the confocal 

microscope is the use of continuous wave lasers to excite samples and use a pinhole aperture to 

remove out-of-focus light from non-observed emitting samples.  Images are built point-by-point 

as the imaging laser scans a sample, leading to the ability to produce high quality 2D and 3D 

images.27  This type of imaging is ideal for preclinical in vitro analysis, because it is non-

destructive and has the ability to image cellular samples in their physiological state.  In vitro 

imaging is also a more controlled environment than in vivo analysis, providing a better 

determination of the future efficacy of the compound under study.  With confocal microscopy, 

protein interaction can be observed60 and the fate of exogenous agents can be determined after 

compartmentalization and intracellular trafficking by using multiple contrast agents in a single 

sample.61  By obtaining a better understanding of the intra/extracellular biochemical components 

and processes of cancerous cells, it is possible to gain better insight into the processes of the 

formation of neoplastic tissue during carcinogenesis.  The intracellular fate of drugs, drug 
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delivery systems, and imaging agents yields crucial information in providing insight into future 

efficacy, such as in vivo analysis, and aids in future development of new drugs and imaging 

systems.  Confocal imaging is also a rapid analysis technique when evaluating active targeting 

fluorogenic probes against specific cellular epitopes.62  With the constant miniaturization of 

imaging technology, new methodologies are being developed from older instrumentation.  Work 

has been done to create a portable endoscopic confocal imaging device that utilizes multiple 

flexible/narrow-diameter fiber optic cables, miniature lenses, and compact scanning mechanisms, 

Figure 1.4.63-64   This imaging platform has been able to achieve a lateral resolution of 2.0 µm 

and an axial resolution of 25 µm;65 it has also been used in clinical studies to image the 

gastrointestinal tract,64 colon,66 and ovaries.65   

 

Figure 1.4.  Schematic diagram of the prototype F400/S (Mauna Kea Technologies), a dual 
fibered confocal imaging and spectroscopic platform; from Thiberville (2007).64 
 

 As a result of the need for deeper tissue penetration and the existence of the highly 

successful confocal microscope, multiphoton microscopy was developed.  This technique 
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exploits the high-resolution capabilities of the confocal microscope, but uses a pulsed laser with 

longer wavelength excitation.  This longer wavelength generates less Rayleigh scattering and 

allows for deeper sample penetration for optical imaging.  In this method, fluorophores are 

excited by near-simultaneous absorption of 2 (or more) photons at half the energy of the single-

photon transition, Figure 1.5.  This is possible by rapidly pulsing (~100 fs pulse width, 80 MHz 

pulse frequency) the sample with the laser beam.27  Whereas continuous wave lasers in confocal 

microscopy excite all fluorophores in the path of the laser beam, pulsed lasers only generate 

sufficiently excited molecules (to generate fluorescence) at the focal point, Figure 1.5.67  This 

modality has not only provided superb in vitro analysis of carcinogenesis.27   

                          

Figure 1.5.  Continuous-wave vs. pulsed laser: a continuous-wave laser can be thought to consist 
of a steady stream of photons. A pulsed laser beam can be thought to be composed of a stream of 
evenly spaced, tightly grouped photon packets (A).  Jablonski diagrams for confocal (one-
photon) and two-photon fluorescence interactions (B); from Christensen and Nedergaard 
(2011).67 
 

Brown et al. have shown that multiphoton microscopy used for in vivo imaging of tumor 

models in live mice can provide insight into tumor physiology by measuring gene expression, 

angiogenesis, blood-flow velocities, leukocyte/endothelial interactions, and permeability of 

tumors.68  Runnels et al. were able to fluorescently label vascular endothelial cell adhesion 

molecules so as to obtain spatial and temporal relationships and build 3D images of the 

A B 
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vasculature, while also following specific populations of cells.69  This use of live animals for 

multiphoton imaging leads to the possibility of studying inflammation, angiogenesis, and 

atherogenesis.69  While multiphoton microscopy has become vital in the imaging of in vitro and 

in vivo settings and has provided unprecedented insights into the process of carcinogenesis, the 

ability to miniaturize the methodology has been hampered due to the translation of the pulse 

laser to utilize fiber-optic cables.27  Though the miniaturization has been slower compared to 

confocal microscopy, there have been recent reports of imaging endoscope systems utilizing 

multiphoton microscopy.70-72 

 Though the goal for optical imaging modalities remains to be real-time analysis of 

the area under investigation, many real-time optical imaging instruments for clinical use have 

emerged since the first clinical applications of fluorescently guided surgery using indocyanine 

green (ICG) to aid in the resection of the sentinel lymph node.56, 73-77  The basic setup for each 

imaging system includes light emitting diodes (LEDs) or lasers that emit a narrow bandwidth, 

band-pass filters to limit possible detection of the excitation source, and a charge-coupled device 

(CCD) camera for the collection of the emission signal.11  One of the first clinically used 

fluorescence-guided optical imagers was the fluorescence-assisted resection and exploration 

(FLARE) system, which was designed and used by the Frangioni research group.75  This 

widefield imaging device is capable of exciting fluorophores at 656 — 678 nm and 745 — 779 

nm, and it contains a CCD camera with band-pass filters at 689 to 725 nm and 800 to 848 nm.11  

It possesses a field of view (FOV) between 3.7 to 195 cm2, and uses more than one imaging 

camera to allow for image overlay between visual and fluorescence images.  Since the inception 

of the FLARE imaging device, Frangioni has developed a second-generation machine called the 

mini-FLARE, Figure 1.6.78  This imaging device contains the same imaging parameters as 
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FLARE, with updated technology and a shorter working distance: 45 cm for flare and 10 to 32 

cm for mini-FLARE.11 

 

                    

 

Figure 1.6.  The Mini-FLARE portable near-infrared fluorescence imaging system, composed of 
electronics/monitor cart and counterweighted imaging system pole (A). Sterile drape/shield 
attached to the imaging head (B).  The portable/hand-held Photodynamic Eye (C); from Mieog et 
al. (2011)  and Tagaya et al. (2008).74, 78 
 
 As technology progresses, there is a desire to utilize the ever decreasing size of 

electronics and optics in newer imaging systems.  The Photodynamic Eye (PDE, Photonics, 

Hamamatsu, Japan) is a commercially-available system that is a more portable optical imaging 

system compared to the (mini-)Flare system, Figure 1.6.  With the reduction in size, it has fewer 

capabilities than other systems.  The PDE only provides black and white images of the area of 

interest, and only excites at 760 nm with 36 LEDs.79  Another advantage of this reduction in size 
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is the ability to produce laparoscopic imaging systems for minimally invasive surgery.  To date, 

there are only four clinically-approved systems: the D-light80 and D-light NIR81 systems, 

Olympus narrow-band imaging (NIB),82 and an integrated system52 for the da Vinci Si Surgical 

robot.11   

1.2.2 Nanomaterial-Based Sensors 

Of all the in vivo imaging probe types, nanomaterials have certainly been one of the more 

intriguing.  The most beneficial aspects of nanomaterial-based probes are their photostability, 

brightness, narrow excitation/emission bands, utilization of the EPR effect to allow for          

their passive accumulation in tumor sites, and ability to functionalize the exteriors as to allow   

for their association with different functionalities.83  However, the major drawbacks in the use   

of these sensors in the clinic are concerns about their toxicity,84-85 poor biodistribution due         

to uptake by the reticuloendothelial system (RES), only having a 2:1 to 4:1 signal-to-background 

ratio with passive uptake probes, and the inability to passively accumulate intracellularly (though 

this can be achieved through mediated endocytosis) due to the size of the particles.  The          

two main types of nanoprobes are organic-based nanoparticles (polymer-core nanoparticle, 

polymer micelles, polymersomes, liposomes, lipid micelles, and lipid-core nanoparticles) and 

inorganic nanocrystals (semi-conducting quantum dots (QD) and silica nanoparticles), Figure 

1.7.83  Due to their intense fluorescent signal, ability to shift excitation/emission wavelengths     

by adjusting particle size, and photostability, QDs have emerged as useful tools in the optical 

imaging field and have led to a plethora of commercially-available dyes.  The most common 

QDs are ZnS, CdSe, and CdTe, and typically have their surface coated with organic material (i.e. 

poly(ethylene glycol) (PEG)) to prolong blood lifetime between 48 and 72 hours and prevent 

protein adsorption.83, 86  The size of the nanoparticles has been found to have a profound effect 
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on the ability to accumulate in tumor sites in in vivo experiments.  Nanoparticles in the range of 

111 to 141 nm were found to accumulate efficiently, while particles larger than 166 nm were 

rapidly removed by the RES.87   

 

 

Figure 1.7.  Inorganic nanoprobes are quantum dots (A) or dye-loaded silica, calcium phosphate, 
gold or oxide nanoparticles, for which the organic dye can be included in the inorganic matrix 
(B), or grafted on the nanoparticle surface (C). Organic nanoprobes can be divided in two main 
families: dye-loaded polymer-based and dye-loaded lipid-based nanoparticles. In each family, 
different architectures can be found: polymer- or lipid- core particles (polymer nanospheres (D), 
proteins (E), lipid nanoparticles (F), lipoproteins (G)), self-assembled constructions (polymer 
(H) or lipid (I) micelles), nanocapsules (polymersomes (J) or liposomes (K)). The fluorescent 
organic dye can be either included in the hydrophobic core or shell of the structure, or grafted on 
the nanoparticle surface (hydrophilic organic dye).  From Merian et al (2012).83 
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 One of the first in vivo imaging experiments was performed by Gao et al., where they 

successfully synthesized a tri-block polymer-coated CdSe QD with prostate-specific membrane 

antigens (PSMA) attached.  This attachment of PSMA to the outer shell of the nanoparticle 

allowed the QDs to effectively adhere to prostate tumor cells in mice (from a xenograft), 

allowing for sensitive and specific in vivo imaging.86  Cai et al. similarly produced a polymer-

coated QD using arginine-glycine-aspartic acid as the targeting ligand, which binds to the α vβ 3  

integrin that is known to play a role in angiogenesis and metastasis.88  This imaging probe 

produced maximum intensity after 6 hours post-injection, with good contrast in a mouse model.   

 Organic-based nanocarriers have been studied extensively over the last several decades as 

drug delivery systems, with several clinically-approved applications.83, 89-90  Because of this, 

these nanocarrier systems have been studied extensively, and their in vivo fate and 

biodistribution have been determined.  Similar to QDs, organic-based nanocarriers are typically 

conjugated to PEG to minimize removal by the RES and to extend blood circulation time.  

Tumor targeting ligands—such as antibodies, peptides, and saccharides—have also been 

attached so as to increase targeting efficacy.83  The use of organic-based nanocarriers has only 

recently been studied as a vehicle for in vivo fluorescent probes.  One of the main systems 

studied is the dye-loaded lipid based liposome, due to the vast amount of previous work using 

liposomes as drug delivery systems.  Here, liposomes encapsulate fluorophores and will 

accumulate in tumor sites in vivo due to the EPR effect.  Sandanaraj et al. demonstrated           

the use of an egg phosphaditylcholine, cholesterol, and 1,2-disteroyl-sn-glycero-3-

phosphoethanolamine-N-methoxy-(poly(ethylene glycol)2000)-based liposome that contains 

cyanine 5.5 (Cy5.5) and indocyanine green (ICG) as an in vivo probe for tumors and arthritis 

disease models in mice.91  This system was observed to be highly stable for up to 70 days, and it 
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was found to passively accumulate in tumor sites due to the EPR effect.  Portnoy et al. 

synthesized liposomes from phospholipon 50 and noncovalently-attached ICG, and monoclonal 

antibodies for epidermal growth factor receptor (EGFR) to them.92  EGFR is an extracellular 

ligand that has been found to be overexpressed in carcinomas.  This dye system was optically 

imaged in vitro and was found to selectively bind to membrane bound receptors, which led to 

endocytosis.   

1.2.3 Antibody-Based Sensors 

Another option to increase contrast for intraoperative tumor analysis (in vivo and in vitro 

imaging) is the direct conjugation of always-on fluorophores to antibodies with known 

associations pertaining to specific cell types.  This process is commonly used for 

immunohistochemical labeling of fixed cells and cell assays.  Some of the drawbacks to this 

method are the possibility of loss of antibody recognition after dye conjugation, loss of 

fluorescence signal after conjugation, limited availability of antibodies, localization of epitopes, 

and the need to maintain proper controlled environmental conditions that prevent antibody 

degradation.10, 27  As with always-on nanoprobes, antibody-based imaging constructs require 

sufficient clearance time in vivo to obtain an optimal SBR when imaging.  Soukos et al. 

produced a monoclonal antibody against EGFR and subsequently conjugated it with the NIR 

Cy5.5 dye to test for immunophotodiagnostic properties for oral precancer and as a surrogate 

marker for disease progression.93  For this work, they used this probe to image a hamster cheek 

pouch carcinogenic model in vivo.  While they were successful in producing a probe that 

specifically labeled the tumor site and provided high contrast, the amount of time for the 

maximum contrast was rather high (between 4 to 8 days).  Rosenthal et al. similarly used an 

EGFR-Cy5.5 probe to image in vivo head and neck squamous cell carcinomas (HNSCC) in 
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xenografts in mice.94  They were also able to localize tumor sites using fluorescence imaging at 

24, 48, and 72 hours after injection of the probe.  Terwisscha et al. labeled antibodies for 

vascular endothelial growth factor (VEGF) and human epidermal growth factor (HER) 2 with the 

NIR dye IRDye 800CW for a proof of concept in intraoperative tumor detection in xenograft-

bearing mice.95  While they were able to obtain a submillimeter differentiation between tumor 

tissue and healthy tissue, the SBR was only 1.93 — 2.92 after 6 days of injection.   

1.2.4 Aptamer-Based Sensors 

One optical imaging modality that is still in its infancy is that based on aptamers as 

molecular fluorescent beacons.  Aptamers are single-stranded ribonucleic acids or 

deoxyribonucleic acids (RNA or DNA) that adopt unique conformations due to intermolecular 

forces.13  Thanks to their extra small size, polyanionic nature, and diminished immunogenicity, 

aptamers can provide rapid tissue penetration and uptake, high affinity for specific epitopes, 

shorter residence in blood and non-target organs, and higher target accumulation.  Compared to 

antibodies, they are economical, synthetically reproducible, and can easily be conjugated with 

signaling molecules without altering their binding affinity or specificity.96  Because of these 

properties, aptamers are ideal targets for optical diagnostics and in vivo imaging.  Shi et al. 

produced an always-on aptamer labeled with cyanine 5 (Cy5), denoted as TD05; that were 

shown to have a strong binding affinity and high specificity for Ramos cells.96  This Cy5-TD05 

aptamer system was found to provide high contrast in vivo in the B-cell lymphoma cell line 

(Ramos cells) xenografts in mice.  After 4 to 5 hours, the unbound, always-on Cy5-TD05 was 

removed via the blood stream, leaving behind fluorescent probe-enriched tumors.  In comparison 

to a negative control probe that produced a signal-to-background ratio (SBR) of 9.77 in the 

Ramos xenografts, a SBR of 115.5 was obtained with Cy5-TD05.  The same research group 
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produced an activatable aptamer probe (AAP) for in vivo tumor detection.13  To alleviate the 

need for long diagnosis time due to high background signal from imaging with always-on 

fluorophores, this design utilized an off-on fluorescence system in which the aptamer was 

essentially nonfluorescent in the unbound state.  After binding to a specific marker, the aptamer 

undergoes conformational change revealing probe fluorescence.  This “sgc8” aptamer consisted 

of three fragments: the cancer-targeting aptamer sequence (A-strand), unreactive poly-T linker 

(T-strand), and a short DNA recognition sequence (C-strand) complementary to part of the A-

strand; this resulted in an aptamer stem-loop hairpin structure that opens up upon specifically 

binding to the cell membrane protein kinase-7 (PTK7), Figure 1.8.97   

 

Figure 1.8.  Schematic representation of the novel strategy for in vivo cancer imaging using an 
activatable aptamer probe (AAP) based on cell membrane protein-triggered conformation 
alteration. The AAP consists of three fragments: a cancer-targeted aptamer sequence (A-strand), 
a poly-T linker (T-strand), and a short DNA sequence (C-strand) complementary to a part of the 
A-strand, with a fluorophore and a quencher attached at either terminus.  In the absence of a 
target, the AAP adopts a hairpin structure, resulting in quenched fluorescence. When the probe is 
bound to membrane receptors of the target cancer cell, its conformation is altered, thus resulting 
in an activated fluorescence signal; from Shi et al. (2011).13 
 

Attached to one terminus is the fluorophore fluorescein-5(6)-carbonyl (FAM) and the 

other terminus contains the quencher BHQ1, producing a Förster resonance energy transfer 
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(FRET) quenching mechanism prior to activation binding by PTK7.  Though the tumors could be 

easily observed via fluorescence optical imaging in vivo using xenografts in mice, fluorescence 

signal was prevalent throughout the entire body after 15 minutes.  This leads to one of the 

downsides of aptamer imaging, which is the instability while circulating in the blood stream.  

Only after sufficient time has passed to remove the non-specifically activated aptamer probe, can 

it be possible to obtain high enough contrast for tumor detection.  Nonetheless, their studies 

indicated substantial tumor fluorescence even 120 minutes after injection with minimal signal 

appearing after 180 minutes.   

1.2.5 Peptide Motifs  

Another route in the miniaturization of ligands for target-mediated imaging is the use of 

short peptide sequences labeled with fluorophores.  The goal in this model is development of 

short sequences (10 — 15 amino acids) without losing the specific target affinity of their 

naturally derived counterparts (antibodies).27  The positives from this miniaturization process and 

increased biodistribution and bioavailability, and decreased cost due to fewer steps needed to 

synthesize the short sequences.  However, use of such few amino acids yields a lower number of 

fluorophores per target recognition moiety, leading to a lower fluorescence signal.  As with 

antibodies, aptamers, and nanocarriers, the epitopes that have been most commonly studied for 

peptide-mediated imaging are membrane bound and found to be overexpressed in tumor tissues.  

One of the more commonly studied peptide sequences for in vivo and in vitro analysis is the 

cyclic tripeptide arginine-glycine-aspartic acid, c(RGD), having been shown to have a high 

specificity towards the transmembrane glycoprotein α vβ 3 .62, 98-102  One of the methods used by 

Jin et al. to improve the contrast capabilites with the c(RGD) peptide sequence is a single species 

containing multiple copies of the same sequence.100  Here, they were able to tether four c(RGD) 
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units to a single Cy5-labeled cyclic decapeptide platform called a regioselectively addressable 

functionalized template (RAFT), Figure 1.9A.  Using cell lines transfected so as to be α vβ 3-

positive or α vβ 3-negative, they were able to obtain a higher contrast between the cell lines with 

the RAFT-c(RGD)4 Cy5-labeled unit compared to the single Cy5-labeled c(RGD) sequence.  

From here, they used the labeling motif in a xenograft model containing both the negative and 

positive cell lines, where RAFT-c(RGD)4 afforded a SBR of 15.9 at four hours post-injection.  

After the same time period, the c(RGD) yielded a SBR of 1.4.   

Another peptide methodology for optical imaging involves the construct of an activatable 

cell penetrating peptide (ACPP).103-105  Cell penetrating peptides (CPPs) were first discovered 

from the HIV-1 Tat peptide,106 and it has since been discovered that multicationic oligomers107 

are equally or more effective than Tat.  These CPPs are essentially membrane translocation units 

and can be directly conjugated to materials, which can then enter the cell through a non-receptor 

mediated process.  Though this process is still mostly ambiguous, it is believed the peptides 

adsorb to the cell surface through electrostatic interactions and enters the cell via endocytosis.  

Jiang et al. synthesized an ACPP by attaching a CPP to a cleavable linker that was enzymatically 

removable, Figure 1.9B.104  This linker neutralized the CPP, preventing it from being taken up 

intracellularly.  The enzyme which they designed this linker to be activated by was a matrix 

metalloproteinase (MMP), specifically MMP-2 and MMP-9, because they have been the most 

characterized.  MMPs are extracellular proteases that are responsible for invasion, metastasis, 

and the degradation of the extracellular matrix (ECM).108-110  To evaluate the ability of the ACPP 

to label tumors in vivo, they created a xenograft model in mice with a cell line known to contain 

MMPs and measured the fluorescence intensity at the tumor site from Cy5-labeled ACPPs.  

After 50 minutes post-injection of the probe, the ACPPs were found to be mildly effective in 
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labeling the tumors.  The contrast index was calculated to be 2.1, while the contrast index for two 

negative control peptide sequences was 1.3 and 1.5.   

          

Figure 1.9.  Structure of RAFT-c(RGD)4.  Schematic diagram of activatable CPPs. Cellular 
uptake induced by a cationic peptide is blocked by a short stretch of acidic residues attached by a 
cleavable linker. Once the linker is cleaved, the acidic inhibitory domain drifts away, and the 
cationic CPP is free to carry its cargo into cells. From Granger et al. (2005) and Jiang et al. 
(2004).99, 104 
 
 
1.2.6 Small-Molecule Conjugates 

An even more simplistic imaging scaffold involves the use of small-molecule targeted 

probes.  From the probes listed above, small molecules are generally more cost effective, easier 

to make, show better pharmacokinetic properties, higher biodistribution, and are often less 

immunogenic.111  For optical imaging, these probes are generally conjugated with always-on 

NIR fluorophores and target well-known tumor properties, such as prostate-specific membrane 

antigen (PSMA),112-113 overexpression of folate receptors,111 hypoxia,114 and increased glucose 

uptake.115  PSMA has been studied extensively116 for the detection of prostate cancer, because it 

is a well-known biomarker (that consists of an extracellular domain) of prostate cancer and 
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metastatic prostate cancer cells, and it has been detected even in neovasculature of a variety of 

non-prostatic solid malignancies.113, 117-118  Chen et al. developed an inhibitor for the enzyme 

active site of the extracellular domain portion of PSMA and labeled it with the NIR dye IRDye 

800CW.112  To demonstrate this probe’s effectiveness, they created a xenograft mouse model 

containing a cell line known to upregulate PSMA and another cell line that does not express 

PSMA.  In vivo fluorescence imaging revealed substantial retention of the probe in the PSMA-

containing cell line after 20.5 hours post-injection and minimal signal from the negative cell line.  

This positive fluorescent signal was observed 70.5 hours after injection.  Tueng et al. synthesized 

a folic acid-bearing molecule conjugated to an NIR dye for optical detection of ovarian cancer.111  

Previous reports have demonstrated that membrane-bound folic acid receptors are highly 

overexpressed in ovarian cancer cell lines.119-121  In this study, they used the probe to determine 

the fate of the dye in vitro in an ovarian cancer cell line.  After 30 minutes of incubating the 

cultured cells with the probe, it was confirmed the probe was taken up through a receptor-

mediated endocytotic process and was localized in endosomes.  In vivo analysis was also 

performed in a xenograft mouse model, where they determined that the probe could be optically 

imaged one hour after injection, and its signal reached a plateau 24 hours after injection.   

1.3 Activatable Fluorophores  

Fluorescent probes have become a common tool for sensing biochemical processes, 

diagnosing diseases, detection of hazardous materials, drug discovery, and sensing biological 

environments.122  With intrusive fluorescence being fairly rare amongst most compounds, 

fluorescence-based sensors are highly sensitive, while being economical, and easy to use.  

Attachment of specific recognition units on fluorophores that perturb the photophysical 

properties of the dye allows for the creation of unique probes that can be used to detect specific 
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analytes.  A highly sensitive and selective probe can be created by having a good understanding 

of the interaction between the recognition unit and the analyte being detected.  This receptor-

analyte interaction can consist of hydrogen bonding, π-π , donor-acceptor, electrostatic, and 

hydrophobic/hydrophilic interactions, metal coordination, and chemical or enzymatic 

reaction.122-123  Various fluorogenic probes and their applications will be discussed below. 

1.3.1 Detection of Metal Ions and pH Changes 

One of the common probe types are those for the detection of metal species such as Hg2+, 

MeHg+, Ag+, Pd0, Pd2+, Pt2+, Pt4+, Cu+, Cu2+, Au+, and Au3+.122  This is in part due to the wide 

use of metal-containing catalysts in industry that have the potential to leach into soils and water 

sources as a results of spills and waste disposal.  Here, these metal species have the potential to 

make their way into drinking water and food sources and later into the bodies of people, where 

they can cause damage to organs and even cause cancer.  Having a specific and sensitive probe 

helps in the detection of polluted water and food and aids in decontamination protocols after 

industrial spills.  Since their inception by de Silva,124 photoinduced electron transfer (PeT)-based 

probes have become common place in the fluorescence-based detection arena due to the ease of 

changing their recognition and signal units.  These fluorophores are designed to have a relatively 

long range interaction between the fluorophore and receptor moieties, and generally are of the 

structural form fluorophore-linker-receptor.20  This system generally acts as an off-on (turn-on) 

type probe.  In the quenched state, electron transfer from the non-ionized receptor to the excited 

fluorophore prevents the fluorophore’s excited electronic state from relaxing down via a photon-

emitting process.  Upon binding of the analyte, the receptor’s oxidation potential is perturbed.  

This prevents the transfer of the electron to the excited fluorophore, thereby dequenching the 

dye.  In a majority of PeT quenching probes using the fluorophore-linker-receptor structure, the 



25 
 

receptor unit contains an aliphatic amine that can readily be protonated and deprotonated so as to 

cause a shift in the amine oxidation potential.  4-amino-naphthalimide-based fluorophores have 

become one of the most studied PeT fluorophores, due to their highly fluorescent nature resulting 

from the “push-pull” internal charge transfer (ICT) mechanism and the aromatic amine that can 

be easily conjugated with a wide variety of linkers and receptors, Figure 1.10.125 

 

Figure 1.10.  4-amino-1,8-naphthalimide structure and schematic representation of the ICT 
excited state within the 4-amino-1,8-naphthalimide fluorophore caused by a “push–pull” action. 
From Duke et al. (2010).125 
 
 He et al. devised a 4-amino-naphthalimide probe to detect potassium in whole blood and 

serum using a cryptand as the receptor unit.126  An ideal probe for detection of any metal cation 

detector must possess: good selectivity against all other cationic species relative to the one under 

study, good binding properties to the ligand, and little to no pH interference.  Quenching of dye 

fluorescence through PeT was achieved by its conjugation to the cryptand via a short benzyl 

linker moiety.  Their probe was found to be selective and sensitive to potassium, because smaller 

cationic metal species are too small to properly bind to the cryptand ligand.  However, it was 

observed that potassium could be displaced by high concentrations of sodium.  Also using a 4-

amino-naphthalimide PeT quenched probe, it was demonstrated that detecting 

aqueous/physiological Zn2+ was possible, Gunnlaugsson et al.127  This PeT probe used a simple 
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aromatic iminodiacetate receptor molecule for the selective detection of Zn2+.  While the probe 

was amenable with PeT type quenching at physiological pH, there was a turn-on effect in 

fluorescence at lower pH values between 2 and 5 due to the protonation of the tertiary amine of 

the receptor.  With that being the only drawback, the probe was found to be highly selective for 

Zn2+ vs. Mg2+, Ca2+, Hg2+, and Cd2+; none of the latter produced increases in fluorescence.   

 Recently, another set of fluorogenic probes that exploits naphthalimide dyes are the 

compounds of ratiometric and colorimetric probes.  Rather than turning off and then on, these 

probes are always fluorescent.  However, their emission wavelength shifts in either a red or a 

blue after binding of the target analyte to the receptor unit.  The shift in wavelength is brought on 

by a perturbation in the ICT mechanism by analyte binding, either through weakening or 

strengthening of the “push-pull” characteristic.128  This is useful in that these reporters still 

contain the sensitivity of off-on probes, but also provide the aesthetic appeal of a colorimetric 

assay, thereby allowing for quantitative analysis using the ratios of the pre-/post-binding 

fluorescence.129  Xu et al. developed this type of dye using a naphthalimide construct for the 

detection of Zn2+.129  In a pH 7.0 acetonitrile/water (80/20) solution, it was found that their probe 

red shifted from 537 nm to 593 nm with excitation at the isosbestic point (λex  = 470 nm).  The 

quantum yield did decrease from pre-addition to post-addition of zinc, Φ = 0.33 and Φ = 0.14 for 

λem = 537 and λem = 593 nm, respectively.  This probe was also found to be quenched by the 

addition of Cu2+, Co2+ and Zn2+, while Li+, Na+, Mg2+, Ca2+, Fe3+, Mn2+, Al3+, Cd2+, Hg2+, Ag+ 

and Pb2+ caused no change in the optical properties.129  Xu et al. also synthesized a Cu2+ probe in 

which the fluorescence was red shifted from 518 nm to 592 nm in an ethanol/water (60/40) 

solution, with no effect from pH, changes between 2.88 to 12.0.130  As seen in Figure 1.11, the 

binding of Cu2+ deprotonates the two aromatic nitrogens on the naphthalene system, which in 
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turn causes the electron-donating ability of the nitrogens to increase thereby shifting the 

fluorescence to the red.  However, the quantum yield for the red-shifted dye was very low, Φ = 

0.14. 

 

Figure 1.11.  Binding of Cu2+ and deprotonation of the two aromatic amines. From Xu et al. 
(2005).130 
 
1.3.2 Biologically Relevant Probes 

 As our knowledge of the biological and biochemical milieu increases, the ability to detect 

the events and analytes that compose it also increases.  A majority of these processes and 

molecules can be observed using fluorophores, due to the high sensitivity of fluorescent probes.  

These events can include detection of thiols,131-133 hypoxia,134 intracellular hydrogen sulfide,135 

and pH changes to label endosomes and lysosomes for fluorescence microscopy.128  These 

probes can be designed based on a variety of mechanisms, from off-on to ratiometric, from 

structural changes in the fluorophore that induce fluorescence, or altering the ICT of the probe.  

With glutathione being the most abundant intracellular thiol that plays a major role in regulation, 

structure, and function of proteins—as well as its association with heart disease, cancer, stroke, 

and neurological disorders—it has been one of the most studied of the biochemical 

compounds.131, 136-138  As with a majority of the thiol-sensing fluorophores, Pires et al. utilized a 

disulfide bond as the receptor unit for glutathione detection.131  This probe is of the off-on 
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variety and consists of a rhodamine-110 base, di-conjugated with two disulfide-containing 

receptor units.  This di-conjugation of both aromatic amines in rhodamine-110 creates a locked 

form and prevents fluorescence.  After reduction of the disulfide bonds by glutathione, both 

linkers underwent cyclization to leave behind the highly fluorescent rhodamine-110.  This probe 

was found to be specific for glutathione when compared to a second similar probe that contains 

no disulfide units; minimal change in the fluorescent signal was found when it was incubated 

with glutathione.  Though this cyclization process can be relatively slow, they were able to 

effectively image cells using confocal microscopy and used flow cytometry to detect the 

presence of intracellular glutathione. 

 Tumor environments generally have a lower pH and are hypoxic compared to other 

physiological environments. Drug resistance, poor progression-free survival, and metastasis have 

also been linked to hypoxia.114, 134, 139-141  Recently, work has been performed to produce 

fluorogenic probes that are selectively activated under hypoxic conditions so as to better 

understand the tumor microenvironment and to detect tumors using optical imaging.  One of the 

more common methodologies in fluorescent detection of hypoxia involves using a nitro-based 

receptor group that can be easily reduced under hypoxic conditions.  Cui et al. designed a 4-

amino-naphthalimide probe with a nitro-benzyl receptor unit.134  When conjugated to the 

naphthalimide dye, the receptor weakens the ICT of the fluorophore yielding a blue emission.  

After reduction of the nitro-group, the receptor undergoes electron-cascade elimination, leaving 

behind a non-conjugated 4-amino-naphthalimide having a red-shift fluorescence signal.  Their 

irreversible and ratiometric/colorimetric probe was found to be selectively reduced by 

nitroreductase versus thiol reducing species, such as glutathione, dithiothreitol, cysteine, and 
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homocysteine.  In vitro analysis was performed using the A549 cell line, where it was proven 

that the probe could differentiate between hypoxic tumors and normal tissues.   

1.3.3 Fluorophore Activation by Enzymes 

 As mentioned above, with a better understanding of the micro-/macroenvironment and 

biochemistry of diseases come better modalities for detecting and understanding these diseases.  

One of the more common approaches is to tailor fluorogenic probes to be selectively activated by 

enzymes that are over-expressed in specific diseases.  These probes can be used for in vitro and 

in vivo analysis, tumor resection, and even aid in drug design.  The ability to selectively      

detect specific enzymes hinges on having in hand a stable receptor substrate that is activated     

by only the enzyme in question.  To be able to relate this probe to in vitro and in vivo work,     

the enzyme must be highly upregulated in the environment being studied and preferably be    

non-existent in a majority of other tissues.  Coupling this upregulated enzyme with fluorescence-

based probes,   it is possible to obtain real-time information from the diseased environment.  In 

turn, this leads   to better designed enzyme substrates, drug delivery systems, and even 

fluorophores.  Common enzymes being studied include matrix metalloproteinases,142 γ-

glutamyltranspeptidase (GGT),12 β-galactosidase,143 aldo-keto reductase,144-145 cathepsins,146-147 

3α-hydroxysteroid dehydrogenases,148 N-acetyltransferase 2,149 cytochrome P450,19 PSMA,150 

penicillin G acylase (PGA),151 esterase,17-18, 152 and caspase-3.153-154 

 The Raines group has performed a significant amount of research in rhodamine110-based 

latent fluorophores that are activated by esterases17-18 and cytochrome P450.19  From this group, 

multiple “proof-of-concept” type probes have been developed.  In one such case, Watkins et al. 

demonstrated an off-on rhodamine110 fluorophore that is conjugated to an esterase substrate and 

also with a tag to label a haloalkane dehalogenase (HD) variant.18  This esterase substrate 
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contains a trimethyl-lock unit, that after esterase activation, increases the rate at which the 

activated substrate is cleaved from the fluorophore so as to leave behind the highly fluorescent 

rhodamine dye.  The second unit conjugated to the rhodamine110 is a tag that upon hydrolysis 

by HD forms a highly reactant species that covalently labels the HD proteins.  This probe was 

able to rapidly (15 minutes) diffuse through the cell membrane, label HD, and become activated 

by an esterase.  In vitro analysis using confocal microscopy and the U2OS cell line demonstrated 

that when in the quenched state, the probe displayed minimal background signal.  This allowed 

for fluorescence imaging without having to perform time-consuming washing steps.  This type of 

imaging has the potential to play a large part in in vivo and even clinical analysis using 

fluorogenic probes.  Being able to covalently label enzymes with high selectively and using off-

on fluorophores that are activated by enzyme prevalent in all tissues could prove to be beneficial 

in cancer detection by irreversibly labeling overexpressed enzymes with a latent fluorophore, 

while all un-labeled and activated fluorophores can be rapidly removed from the body.   

 The Shabat research group has developed latent fluorophores to obtain a better design 

and understanding of some drug delivery systems (DDSs).147, 155-158  These types of drugs are 

activated in a specific target site so as to increase the effectiveness of the drug on the diseased 

area while reducing harm to healthy tissue.  When using off-on fluorescent probes, it is possible 

to obtain better DDS designs from the trigger system to the linker covalently attaching the trigger 

to the drug molecule(s).  From the sensitivity of fluorescent probes, real-time information can be 

obtained from the activation and drug release from DDSs when the fluorophore is the pseudo-

drug in the DDSs design.  This can give information involving pharmacokinetics, 

pharmacodynamics, cell permeation efficiencies and pathways, and mechanisms of activation.147  

One methodology for obtaining more efficient DDSs is use of a linker that connects the 
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activatable unit to the drug and subsequently undergoes a rapid elimination; the self-eliminating 

linker is sufficiently long to separate the activating unit far enough away from any bulky groups 

that may hinder enzyme activation.  Shamis and Shabat developed a dendritic amplification DDS 

in which six fluorescent probes were attached to a single activating unit.157  The trigger group in 

this setup was cleaved by penicillin G acylase (PGA), and the six tryptophan signaling groups 

were conjugated through an elaborate dendritic self-immolative linker system.  From this work, 

it was observed that it is possible to obtain 100% release of the signaling unit after a single 

activation event, though release occurred over a 48-hour period.   

 One of the nascent techniques for the detection of tumors is fluorescence-based optical 

imaging.  By using highly fluorescent markers in vivo, it is possible to rapidly label tumor cells 

and obtain accurate borders between cancerous tissue and healthy tissue, something that is very 

difficult to do with small metastatic tumors when using conventional imaging methods.  Another 

drawback to the current clinical imaging techniques is the limited ability to image during 

surgery, thus not allowing real-time information to be provided to the surgeon resecting the 

tumors.  Current fluorescent-dye cancer imaging applications use always-on probes, and as a 

result, they require a substantial amount of time to allow for passive accumulatation in the tumor 

site.  Removal of the un-accumulated dye is also essential so as to reduce the amount of 

background fluorescence (increase the SBR).  Urano et al. have developed a rhodamine-based, 

off-on fluorophore that is selectively activated by γ-glutamyltranspeptidase (GGT).12  This GGT 

protein is a membrane-bound enzyme involved in glutathione homeostasis, and it has been found 

to be expressed in a variety of ovarian cancer cell lines.  Using this probe, they were able to 

within 10 minutes differentiate cell lines containing and devoid of GGT using confocal 
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microscopy, and after 60 minutes using flow cytometry.  It was also possible to detect ovarian 

tumors in xenograft mouse models using fluorescence imaging.   

1.4 NAD(P)H:Quinone Oxidoreductase-1  

 NAD(P)H:quinone oxidoreductase-1 (NQO1, EC 1.6.99.2, DT-diaphorase) is a flavin-

based, two-electron reductase enzyme that is highly upregulated (20- to 80-fold increase with 

respect to normal tissue) in a wide range of tumor cells, such as lung, colon, melanoma, ovarian, 

prostate, and breast cancer.1, 3-4, 159-162  As a result, NQO1 has been the target of studies as a site-

specific trigger for quinone-containing prodrugs.15, 160, 163-165  However, there are no reports 

demonstrating the use of a real-time, NQO1-activated fluorescent sensor for in vitro analysis or 

in vivo tumor detection. 

1.4.1 Origin and Enzymatic Mechanism  

 NQO1 was previously discovered in the laboratory of Lars Ernster and visiting professor 

Franco Navazio in 1957 while they were studying the distribution of intracellular NAD-/NADP-

dependent dehydrogenases in soluble fractions of animal tissues.166-168  This enzyme was first 

isolated from the cytosolic fractions of rat liver homogenates and was found to oxidize 

diphosphopyridine nucleotide (DPNH, NADH) and triphosphopyridine nucleotide (TPNH, 

NADPH) at equal rates, which is how the name “DT-diaphorase” was coined.169-171  While the 

first uncharacteristic attribute of NQO1 was that it was nonspecific towards NADH and NADPH, 

it was also different in that it was cytosolic and more active than diaphorase enzymes associated 

with the mitochondria and microsomes.172  In 1962, Ernster et al. published a document detailing 

NQO1 purification from the soluble fractions of rat-liver cytosol, and the enzymatic properties of 

NQO1.173  Of note, it was determined that there was NQO1 activity in the microsomal and 

mitochondrial centrifugation fractions.  However, these activities were 42% for the microsomal 



33 
 

fraction and 28% for the mitochondrial fraction compared to the soluble fraction.  It was also 

speculated that these activities could be due to contamination of the mitochondrial and 

microsomal fractions.  It was mentioned that the quinoid species 2,6-dichlorophenolindolphenol 

(DCPIP) and coenzyme Q0 were suitable substrates for NQO1, while its reducing capabilities 

against vitamin K1, vitamin K2, coenzyme Q10, cytochrome c, and cytochrome b5  was 

negligible.  It was also discovered that the rat NQO1 was strongly (and competitively) inhibited 

by dicumarol, while its activity was enhanced in the presence of bovine serum albumin (BSA), 

polyvinylpyrrolidone (PVP), certain phospholipids, and certain non-ionic detergents (Tween-20, 

Tween-60, and Lubrol-W), as well as certain phospholipids.  Maximum enzymatic enhancement 

with added BSA was found to be 3- to 15-fold versus without BSA.  While it was found that 

increased pH also slightly increased enzyme function, there was no defined optimum.   

 Since the first publication about purification and activity, extensive work has been 

performed on NQO1 to better understand its structure, activation mechanism, biosynthesis, and 

its role in humans and animals.170  It has since been found that the enzyme catalyzes the              

2-electron reduction of quinones to hydroquinones, along with other quinoid species to their 

reduced version.  Due to its catalytic mechanism, it has been labeled a detoxifying enzyme as it 

reduces quinones to hydroquinones, as opposed to quinones being reduced by one electron to the 

radical-containing semiquinones.174  NQO-enzymes have been found not only in animals, but 

also in plants and bacteria.175  NQO1 and NQO2 are both found in mammals, while NQO3, 

NQO4, and NQO5 are found in eubacteria, fungi, and archaebacteria, respectively.  A mutated 

version of NQO1 (NQO1*2) has been discovered in which a mutation at position 609 has 

occurred, causing the enzyme to become inactive.2  NQO1 is most abundantly found in animal 

liver tissue, and it is also found in the brain, heart, lung, kidney, small intestine, skeletal muscle, 
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and mammary glands.170  But of most importance, NQO1 has been found to be upregulated in 

cancerous tissues 20- to 80-fold compared to normal tissue of the same origin. 1, 3-4, 159-162  

Interestingly, it has been noted that small cell lung carcinomas (SCLCs) have very little NQO1 

activity when compared with that of normal tissue, while the difficult to treat non-small cell lung 

carcinomas (NSCLCs) have been found to have highly elevated NQO1 activity.159   

  

 

Figure 1.12.  Mechanism of the obligatory two-electron reduction of benzoquinone (Q) by 
rNQO1.  The overall reaction is: NADH + Q + H+ to NAD+ + QH2. From Li et al. (1995). 
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X-ray crystallography has aided in determining the structures of NQO1 from rats 

(rNQO1), mice (mNQO1), and humans (hNQO1).176-177  The human enzyme is a roughly 62 kDa 

interlocking homodimer of 273 residues and contains one flavin adenine dinucleotide (FAD) per 

monomer.  Each NQO1 has two separate domaines, a catalytic domain with an α/β  fold and a C-

terminal domain that forms part of the binding site for the adenosine portion of NAD+.176  When 

reducing the same substrate (vitamin K3, menadione), the human and mouse version are both 

slower by a factor of two when compared to the rat version.176  The FAD units were found to 

bind tightly in all three enzyme structures (mouse, human, and rat) and did not readily come off 

in native conditions.  Though the residue differences between the three enzymes are only slightly 

different, there is an 86% similarity between hNQO1 and rNQO1, and 94% similarity between 

rNQO1 and mNQO1.  The proposed reduction mechanism (ping-pong) by Li et al. of rNQO1 

reducing benzoquinone is shown in Figure 1.12.177  Here, the reduced NAD(P)H enters the active 

site and reduces the FAD+ to  FADH2 via hydride transfer.  After NAD+ leaves, the duroquinone 

enters the active site and is reduced by the hydride from FADH2. 

1.4.2 Intracellular Localization 

 Previous studies have shown the presence of NQO1 in microsomes (vesicles formed from 

the smooth/rough endoplasmic reticulum (ER) after cell homogenization), mitochondria, Golgi 

membranes, plasma membranes, and the largest amount (>90%) in the cytosol, in rat liver 

cells.161, 178-181  40% of the microsomal NQO1 enzyme was found to be in the lumen, while the 

rest was incorporated into the membrane. NQO1 content was determined by collecting cellular 

organelles via preparative ultracentrifugation, where the total protein conten—NQO1 and all 

other proteins—and NQO1 activity were determined for each fraction.  Even though this method 

did provide similar results for all experiments (highest activity was found in the cytosol and 
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lower activity in the mitochondria, Golgi membrane, plasma membrane, and microsomes), 

activity caused by cytosolic contamination of the fractions after centrifugation could not be 

discounted.178-179, 182  NQO1 movement in rat liver cells was also determined by radioactive 

labeling of amino acids that were injected into rats.178  It was found that 5 minutes after injection, 

the highest enzyme activity was observed in the rough ER.  NQO1 was then found to move into 

the smooth ER after 20 minutes, where it began to leave within minutes.178 Cytosolic content 

slowly increased, while mitochondrial NQO1 appeared to reach a maximum after 15 minutes.  

No other readings were performed after thirty minutes, and the only compartments tested were 

rough ER, smooth ER, mitochondria, and cytosol.  Later, Winski et al. used confocal microscopy 

and immunohistochemical labeling in fixed cells to determine the location of NQO1 in the 

cytosol and nucleus of HT-29 (human colorectal adenocarcinoma) and H661 (human non-small 

cell lung cancer) cells.183 This group also used immunoelectron microscopy to provide evidence 

that the enzyme was not located in the mitochondria, Golgi, and endoplasmic reticulum.  Along 

with the electron microscopy data showing a very slight signal in the mitochondria, 

immunoelectron microscopy has its own drawbacks caused by a loss of antigenicity during the 

freezing fixative step and also by embedding the cells in resin.183   

1.4.3 NQO1-Based Prodrugs and Inhibitors for Cancer Treatment  

 To date, there has been extensive work taking advantage of the upregulated state of 

hNQO1 in tumor cells with the development of xenobiotics,1-2, 15, 162, 184-189 prodrugs,163, 165, 190 

and inhibitors.191-195  After a quinone species undergoes NQO1-catalyzed reduction to its 

hydroquinone, the compound either becomes activated or deactivated.188  While NQO1 can 

deactivate specific quinones to hydroquinones to prevent them from oxidatively damaging cells, 

it can also activate quinoidal molecules by creating the reduced form that has a higher reactivity, 
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such as alkylating agents that can damage DNA.  This conversion of a quinone to a bioreactive 

alkylating agent has been essential in the design of a wide variety of xenobiotics for cancer 

therapy.  Tailoring these activating substrates specifically for NQO1 allows for the creation of 

drug compounds that become cytotoxic in the tumor tissues highly overexpressing the enzyme.  

The most successful xenobiotic that can be activated by NQO1, is mitomycin C (MMC).188  

MMC has been used as a cytotoxic agent since the 1960s, and has activity against lung, stomach, 

head and neck, prostate, breast and bladder tumors, and is currently used in cancer therapies.160  

MMC is an indolquinone that, after reduction, forms an alkylating species.  This reactive species 

is cross-linked to DNA, and thereby preventing replication.  Though MMC has been clinically 

used, it is considered a poor substrate for hNQO1.  This has led scientists to develop analogs of 

MMC that are better substrates for hNQO1 and still possess the cytotoxic active nature.  One of 

the more effective analogues is EO9,15 and it was discovered to be reduced more rapidly by the 

enzyme when compared to MMC.  But this compound failed in clinical trials due to kidney 

toxicity and rapid plasma clearance.  A second type of NQO1-activatable xenobiotic was in the 

form of an aziridinylbenzoquinone, specifically diaziquone (AZQ).160, 188    AZQ is also a DNA 

alkylating agent found to be effective in cancer treatment, but it suffered due to pH-dependent 

alkylation and poor enzymatic activity, and it failed in clinical trials as it did not supersede 

therapy agents already in use.160  Hernick et al. synthesized a series of indolquinone prodrugs 

containing phosphoramidate at either the 2- or 3-position of the indole ring.165  After reduction 

by NQO1, the cytotoxic phosphoramidate was cleaved and could add to DNA.  Their work 

discovered that leaving groups in the 2-position were excellent substrates for NQO1 and could be 

correlated with cytotoxicity in vitro.  While 3-substituted prodrugs were potent inhibitors of the 

enzyme, there was no correlation found in the cytotoxicity studies.   
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 One of the unique uses of NQO1 has been in the development of mechanism-based 

inhibitors to aid in the treatment of pancreatic cancer.194  The reasoning behind this is to remove 

the ability of NQO1 to use its chemoprotective nature in pancreatic tumor cells. Previous work 

had shown that NQO1 was a superoxide scavenger and prevented the levels of superoxides in 

pancreatic cancer cells from elevating.194, 196  Irreversibly inhibiting the enzyme would allow 

these levels to increase, causing toxicity.  Dicumarol is a well-known potent inhibitor for NQO1, 

but it lacks solubility in aqueous media, is a reversible inhibitor against NAD(P)H, and is also 

known to inhibit multiple enzymes.194  The mechanism-based inhibitor ES936 was developed 

from an indolquinone that formed a highly reactive iminium ion species after NQO1 

reduction.191, 194  Immediately after activation in the enzyme active site, the hydroquinone 

undergoes an irreversible alkylation with a tyrosine residue, completely inhibiting the enzyme.   

1.4.4 NQO1 Specific Latent Fluorophores  

 Though NQO1 has been studied extensively for the development and implementation of 

xenobiotic drugs for cancer therapy due to its high level of overexpression in a large portion of 

tumors of varying origin, there have never been fluorescent probes synthesized for in vitro and in 

vivo analysis of NQO1-containing tumor cells.  However, there have been two off-on NQO1 

activatable latent fluorophores developed by the Huang research group for the detection of 

glucose in a NQO1-glucose dehydrogenase coupled assay.197  Thus, their main interest was in 

analyzing the substrate specificity of the two latent fluorophores with NQO1.  The first probe 

contained a rhodamine110-based dye that was di-conjugated with two trimethyl-locked 

quinones, similar to that in Scheme 1.1.197-198  Their analysis of this fluorophore involved 

performing enzyme assays with NQO1 and relating the increase in fluorescence to a known 

concentration of rhodamine110, assuming rapid reduction and removal of both quinone units.  
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This assumption is inherently problematic as it does not take into account the fluorescence signal 

derived from the mono-conjugated rhodamine species that exists after reduction/removal of a 

single quinone group.  This mono-conjugated species has half the fluorescence intensity 

compared to rhodamine-110.17  Secondly, having two enzymatic activation steps to achieve the 

final product is not beneficial in real-time analysis.  A second probe was synthesized by 

conjugating the same trimethyl-locked quinone to an N,N’-dimethylethylenediamine linker 

attached to a coumarin dye.198  This probe, even with a single quinone, lacks real-time analysis 

due to the linker.  Here, it takes two non-enzymatic events to reveal the fluorescent signal of the 

coumarin dye, removal of the quinone and cyclization/removal of the linker.  This cyclization of 

the diamine linker into an urea species is rather detrimental in obtaining a rapid analysis type 

assay, as cyclization spacers can be plagued with long half-lives.199 

1.5 References 

(1) Beall, H. D.; Murphy, A. M.; Siegel, D.; Hargreaves, R. H.; Butler, J.; Ross, D., 
Nicotinamide Adenine Dinucleotide (Phosphate): Quinone Oxidoreductase (DT-
diaphorase) as a Target for Bioreductive Antitumor Quinones: Quinone Cytotoxicity and 
Selectivity in Human Lung and Breast Cancer Cell Lines. Mol Pharmacol 1995, 48 (3), 
499-504. 

(2) Traver, R. D.; Horikoshi, T.; Danenberg, K. D.; Stadlbauer, T. H. W.; Danenberg, P. V.; 
Ross, D.; Gibson, N. W., NAD(P)H:Quinone Oxidoreductase Gene Expression in Human 
Colon Carcinoma Cells: Characterization of a Mutation Which Modulates DT-
Diaphorase Activity and Mitomycin Sensitivity. Cancer Res 1992, 52 (4), 797-802. 

(3) Fitzsimmons, S. A.; Workman, P.; Grever, M.; Paull, K.; Camalier, R.; Lewis, A. D., 
Reductase Enzyme Expression Across the National Cancer Institute Tumor Cell Line 
Panel: Correlation With Sensitivity to Mitomycin C and EO9. J Natl Cancer Inst 1996, 
88 (5), 259-269. 

(4) Cresteil, T.; Jaiswal, A. K., High Levels of Expression of the NAD(P)H:Quinone 
Oxidoreductase (NQO1) Gene in Tumor Cells Compared to Normal Cells of the Same 
Origin. Biochem Pharmacol 1991, 42 (5), 1021-1027. 



40 
 

(5) Ueno, T.; Nagano, T., Fluorescent Probes for Sensing and Imaging. Nat Meth 2011, 8 (8), 
642-645. 

(6) Hillman, B. J., Introduction to the Special Issue on Medical Imaging in Oncology. J Clin 
Oncol 2006, 24 (20), 3223-3224. 

(7) Ehman, R. L.; Hendee, W. R.; Welch, M. J.; Dunnick, N. R.; Bresolin, L. B.; Arenson, R. 
L.; Baum, S.; Hricak, H.; Thrall, J. H., Blueprint for Imaging in Biomedical Research. 
Radiology 2007, 244 (1), 12-27. 

(8) Siegel, R.; Naishadham, D.; Jemal, A., Cancer Statistics, 2012. CA Cancer J Clin 2012, 
62 (1), 10-29. 

(9) Fass, L., Imaging and Cancer: A Review. Mol Oncol 2008, 2 (2), 115-152. 

(10) Luo, S.; Zhang, E.; Su, Y.; Cheng, T.; Shi, C., A Review of NIR Dyes in Cancer 
Targeting and Imaging. Biomaterials 2011, 32 (29), 7127-7138. 

(11) van den Berg, N. S.; van Leeuwen, F. W.; van der Poel, H. G., Fluorescence Guidance in 
Urologic Surgery. Curr Opin Urol 2012, 22 (2), 109-120. 

(12) Urano, Y.; Sakabe, M.; Kosaka, N.; Ogawa, M.; Mitsunaga, M.; Asanuma, D.; Kamiya, 
M.; Young, M. R.; Nagano, T.; Choyke, P. L.; Kobayashi, H., Rapid Cancer Detection by 
Topically Spraying a Gamma-Glutamyltranspeptidase-Activated Fluorescent Probe. Sci 
Transl Med 2011, 3 (110), 110-119. 

(13) Shi, H.; He, X.; Wang, K.; Wu, X.; Ye, X.; Guo, Q.; Tan, W.; Qing, Z.; Yang, X.; Zhou, 
B., Activatable Aptamer Probe for Contrast-Enhanced in vivo Cancer Imaging Based on 
Cell Membrane Protein-Triggered Conformation Alteration. Proc Natl Acad Sci U S A 
2011, 108 (10), 3900-3905. 

(14) Razgulin, A.; Ma, N.; Rao, J., Strategies for in vivo Imaging of Enzyme Activity: An 
Overview and Recent Advances. Chem Soc Rev 2011, 40 (7), 4186-4216. 

(15) Phillips, R. M., Bioreductive Activation of a Series of Analogues of 5-aziridinyl-3-
hydroxymethyl-1-methyl-2-[1H-indole-4, 7-dione] prop-β-en-α-ol (EO9) by Human DT-
Diaphorase. Biochem Pharmacol 1996, 52 (11), 1711-1718. 



41 
 

(16) Ong, W.; Yang, Y.; Cruciano, A. C.; McCarley, R. L., Redox-Triggered Contents 
Release from Liposomes. J Am Chem Soc 2008, 130 (44), 14739-14744. 

(17) Lavis, L. D.; Chao, T.-Y.; Raines, R. T., Fluorogenic Label for Biomolecular Imaging. 
ACS Chem Bio 2006, 1 (4), 252-260. 

(18) Watkins, R. W.; Lavis, L. D.; Kung, V. M.; Los, G. V.; Raines, R. T., Fluorogenic 
Affinity Label for the Facile, Rapid Imaging of Proteins in Live Cells. Org Biomol Chem 
2009, 7 (19), 3969-3975. 

(19) Yatzeck, M. M.; Lavis, L. D.; Chao, T.-Y.; Chandran, S. S.; Raines, R. T., A Highly 
Sensitive Fluorogenic Probe for Cytochrome P450 Activity in Live Cells. Bioorg Med 
Chem Lett 2008, 18 (22), 5864-5866. 

(20) Bissell, R. A.; de Silva, A. P.; Gunaratne, H. Q. N.; Lynch, P. L. M.; Maguire, G. E. M.; 
Sandanayake, K. R. A. S., Molecular Fluorescent Signalling with 'Fluor-Spacer-Receptor' 
Systems: Approaches to Sensing and Switching Devices via Supramolecular 
Photophysics. Chem Soc Rev 1992, 21 (3), 187-195. 

(21) Carlson, B. W.; Miller, L. L., Mechanism of the Oxidation of NADH by Quinones - 
Energetics of One-Electron and Hydride Routes. J Am Chem Soc 1985, 107 (2), 479-485. 

(22) Ball, E. G., Studies on Oxidation-Reduction XXIII. Ascorbic Acid. J Biol Chem 1937, 
118 (1), 219-239. 

(23) Reipa, V., Direct Spectroelectrochemical Titration of Glutathione. Bioelectrochem 2004, 
65 (1), 47-49. 

(24) Hutchison, R. S.; Ort, D. R., Measurement of Equilibrium Midpoint Potentials of 
Thiols/Disulfide Regulatory Groups on Thioredoxin-Activated Chloroplast Enzymes. 
Biothiols, Pt B 1995, 252, 220-228. 

(25) Lakowicz, J. R., Mechanisms and Dynamics of Fluorescence Quenching. In Principles of 
Fluorescence Spectroscopy, Third ed.; Springer: 2006; pp 331-351. 

(26) Melhuish, W. H., Quantum Efficiencies of Fluorescence of Organic Substances: Effect of 
Solvent and Concentration of the Fluorescent Solute. J Phys Chem 1961, 65 (2), 229-235. 



42 
 

(27) Pierce, M. C.; Javier, D. J.; Richards-Kortum, R., Optical Contrast Agents and Imaging 
Systems for Detection and Diagnosis of Cancer. Int J Cancer 2008, 123 (9), 1979-1990. 

(28) de Torres, J. P.; Bastarrika, G.; Wisnivesky, J. P.; Alcaide, A. B.; Campo, A.; Seijo, L. 
M.; Pueyo, J. C.; Villanueva, A.; Lozano, M. D.; Montes, U.; Montuenga, L.; Zulueta, J. 
J., Assessing the Relationship Between Lung Cancer Risk and Emphysema Detected on 
Low-Dose CT of the Chest. Chest 2007, 132 (6), 1932-1938. 

(29) Lehman, C. D.; Isaacs, C.; Schnall, M. D.; Pisano, E. D.; Ascher, S. M.; Weatherall, P. 
T.; Bluemke, D. A.; Bowen, D. J.; Marcom, P. K.; Armstrong, D. K.; Domchek, S. M.; 
Tomlinson, G.; Skates, S. J.; Gatsonis, C., Cancer Yield of Mammography, MR, and US 
in High-Risk Women: Prospective Multi-Institution Breast Cancer Screening Study. 
Radiology 2007, 244 (2), 381-388. 

(30) Paajanen, H., Increasing Use of Mammography Improves the Outcome of Breast Cancer 
in Finland. Breast J 2006, 12 (1), 88-90. 

(31) Nelson, S. J.; Huhn, S.; Vigneron, D. B.; Day, M. R.; Wald, L. L.; Prados, M.; Chang, S.; 
Gutin, P. H.; Sneed, P. K.; Verhey, L.; Hawkins, R. A.; Dillon, W. P., Volume MRI and 
MRSI Techniques for the Quantitation of Treatment Response in Brain Tumors: 
Presentation of a Detailed Sase Study. J Magn Reson Imaging 1997, 7 (6), 1146-1152. 

(32) Kent, M. S.; Port, J. L.; Altorki, N. K., Current State of Imaging for Lung Cancer 
Staging. Thorac Surg Clin 2004, 14 (1), 1-13. 

(33) Brink, I.; Schumacher, T.; Mix, M.; Ruhland, S.; Stoelben, E.; Digel, W.; Henke, M.; 
Ghanem, N.; Moser, E.; Nitzsche, E. U., Impact of [18F]FDG-PET on the Primary 
Staging of Small-Cell Lung Cancer. Eur J Nucl Med Mol Imaging 2004, 31 (12), 1614-
1620. 

(34) Shim, S. S.; Lee, K. S.; Kim, B.-T.; Chung, M. J.; Lee, E. J.; Han, J.; Choi, J. Y.; Kwon, 
O. J.; Shim, Y. M.; Kim, S., Non–Small Cell Lung Cancer: Prospective Comparison of 
Integrated FDG PET/CT and CT Alone for Preoperative Staging. Radiology 2005, 236 
(3), 1011-1019. 

(35) Lee, K. S.; Jeong, Y. J.; Han, J.; Kim, B.-T.; Kim, H.; Kwon, O. J., T1 Non–Small Cell 
Lung Cancer: Imaging and Histopathologic Findings and Their Prognostic Implications. 
Radiographics 2004, 24 (6), 1617-1636. 



43 
 

(36) Ferme, C.; Vanel, D.; Ribrag, V.; Girinski, T., Role of Imaging to Choose Treatment. 
Cancer imaging : the official publication of the International Cancer Imaging Society 
2005, 5 Spec No A, 113-119. 

(37) Ciernik, I. F.; Dizendorf, E.; Baumert, B. G.; Reiner, B.; Burger, C.; Davis, J. B.; Lütolf, 
U. M.; Steinert, H. C.; Von Schulthess, G. K., Radiation Treatment Planning with an 
Integrated Positron Emission and Computer Tomography (PET/CT): a Feasibility Study. 
Int J Radiat Oncol Biol Phys 2003, 57 (3), 853-863. 

(38) Ashamalla, H.; Rafla, S.; Parikh, K.; Mokhtar, B.; Goswami, G.; Kambam, S.; Abdel-
Dayem, H.; Guirguis, A.; Ross, P.; Evola, A., The Contribution of Integrated PET/CT to 
the Evolving Definition of Treatment Volumes in Radiation Treatment Planning in Lung 
Cancer. Int J Radiat Oncol Biol Phys 2005, 63 (4), 1016-1023. 

(39) Neves, A. A.; Brindle, K. M., Assessing Responses to Cancer Therapy Using Molecular 
Imaging. Biochim Biophys Acta 2006, 1766 (2), 242-261. 

(40) Stroobants, S.; Goeminne, J.; Seegers, M.; Dimitrijevic, S.; Dupont, P.; Nuyts, J.; 
Martens, M.; van den Borne, B.; Cole, P.; Sciot, R.; Dumez, H.; Silberman, S.; 
Mortelmans, L.; van Oosterom, A., 18FDG-Positron Emission Tomography for the Early 
Prediction of Response in Advanced Soft Tissue Sarcoma Treated with Imatinib 
Mesylate (Glivec®). Eur J Cancer 2003, 39 (14), 2012-2020. 

(41) Aboagye, E. O.; Bhujwalla, Z. M., Malignant Transformation Alters Membrane Choline 
Phospholipid Metabolism of Human Mammary Epithelial Cells. Cancer Res 1999, 59 (1), 
80-84. 

(42) Brindle, K., New Approaches for Imaging Tumour Responses to Treatment. Nat Rev 
Cancer 2008, 8 (2), 94-107. 

(43) Keidar, Z.; Haim, N.; Guralnik, L.; Wollner, M.; Bar-Shalom, R.; Ben-Nun, A.; Israel, 
O., PET/CT Using 18F-FDG in Suspected Lung Cancer Recurrence: Diagnostic Value 
and Impact on Patient Management. J Nucl Med 2004, 45 (10), 1640-1646. 

(44) Aldrich, M. B.; Marshall, M. V.; Sevick-Muraca, E. M.; Lanza, G.; Kotyk, J.; Culver, J.; 
Wang, L. V.; Uddin, J.; Crews, B. C.; Marnett, L. J.; Liao, J. C.; Contag, C.; Crawford, J. 
M.; Wang, K.; Reisdorph, B.; Appelman, H.; Turgeon, D. K.; Meyer, C.; Wang, T., 
Seeing it Through: Translational Validation of New Medical Imaging Modalities. Biomed 
Opt Express 2012, 3 (4), 764-776. 



44 
 

(45) Drezek, R.; Brookner, C.; Pavlova, I.; Boiko, I.; Malpica, A.; Lotan, R.; Follen, M.; 
Richards-Kortum, R., Autofluorescence Microscopy of Fresh Cervical-Tissue Sections 
Reveals Alterations in Tissue Biochemistry with Dysplasia. Photochem Photobiol 2001, 
73 (6), 636-641. 

(46) Skala, M. C.; Riching, K. M.; Gendron-Fitzpatrick, A.; Eickhoff, J.; Eliceiri, K. W.; 
White, J. G.; Ramanujam, N., In vivo Multiphoton Microscopy of NADH and FAD 
Redox States, Fluorescence Lifetimes, and Cellular Morphology in Precancerous 
Epithelia. Proc Natl Acad Sci U S A 2007, 104 (49), 19494-19499. 

(47) Trivedi, E. R.; Harney, A. S.; Olive, M. B.; Podgorski, I.; Moin, K.; Sloane, B. F.; 
Barrett, A. G.; Meade, T. J.; Hoffman, B. M., Chiral Porphyrazine Near-IR Optical 
Imaging Agent Exhibiting Preferential Tumor Accumulation. Proc Natl Acad Sci U S A 
2010, 107 (4), 1284-1288. 

(48) Zhang, C.; Liu, T.; Su, Y.; Luo, S.; Zhu, Y.; Tan, X.; Fan, S.; Zhang, L.; Zhou, Y.; 
Cheng, T.; Shi, C., A Near-Infrared Fluorescent Heptamethine Indocyanine Dye with 
Preferential Tumor Accumulation for in vivo Imaging. Biomaterials 2010, 31 (25), 6612-
6617. 

(49) Xiao, W.; Yao, N.; Peng, L.; Liu, R.; Lam, K. S., Near-Infrared Optical Imaging in 
Glioblastoma Xenograft with Ligand-Targeting Alpha 3 Integrin. Eur J Nucl Med Mol 
Imaging 2009, 36 (1), 94-103. 

(50) Wu, K.; Liu, J.-J.; Adams, W.; Sonn, G. A.; Mach, K. E.; Pan, Y.; Beck, A. H.; Jensen, 
K. C.; Liao, J. C., Dynamic Real-time Microscopy of the Urinary Tract Using Confocal 
Laser Endomicroscopy. Urology 2011, 78 (1), 225-231. 

(51) Sonn, G. A.; Jones, S. N.; Tarin, T. V.; Du, C. B.; Mach, K. E.; Jensen, K. C.; Liao, J. C., 
Optical Biopsy of Human Bladder Neoplasia with in vivo Confocal Laser 
Endomicroscopy. J  Urol 2009, 182 (4), 1299-1305. 

(52) Tobis, S.; Knopf, J.; Silvers, C.; Yao, J.; Rashid, H.; Wu, G.; Golijanin, D., Near Infrared 
Fluorescence Imaging with Robotic Assisted Laparoscopic Partial Nephrectomy: Initial 
Clinical Experience for Renal Cortical Tumors. The Journal of urology 2011, 186 (1), 47-
52. 

(53) Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y., New Strategies for 
Fluorescent Probe Design in Medical Diagnostic Imaging. Chemical reviews 2010, 110 
(5), 2620-2640. 



45 
 

(54) Son, J. H.; Lim, C. S.; Han, J. H.; Danish, I. A.; Kim, H. M.; Cho, B. R., Two-Photon 
Lysotrackers for in vivo Imaging. J Org Chem 2011, 76 (19), 8113-8116. 

(55) Robinson, J. T.; Hong, G.; Liang, Y.; Zhang, B.; Yaghi, O. K.; Dai, H., In Vivo 
Fluorescence Imaging in the Second Near-Infrared Window with Long Circulating 
Carbon Nanotubes Capable of Ultrahigh Tumor Uptake. J Am Chem Soc 2012, 134 (25), 
10664-10669. 

(56) Miyashiro, I.; Miyoshi, N.; Hiratsuka, M.; Kishi, K.; Yamada, T.; Ohue, M.; Ohigashi, 
H.; Yano, M.; Ishikawa, O.; Imaoka, S., Detection of Sentinel Node in Gastric Cancer 
Surgery by Indocyanine Green Fluorescence Imaging: Comparison with Infrared 
Imaging. Ann Surg Oncol 2008, 15 (6), 1640-1643. 

(57) Kejík, Z.; Bříza, T.; Králová, J.; Martásek, P.; Král, V., Selective Recognition of a 
Saccharide-type Tumor Marker with Natural and Synthetic Ligands: a New Trend in 
Cancer Diagnosis. Anal Bioanal Chem 2010, 398 (5), 1865-1870. 

(58) Olivo, M.; Fu, C.; Raghavan, V.; Lau, W., New Frontier in Hypericin-Mediated 
Diagnosis of Cancer with Current Optical Technologies. Ann Biomed Eng 2012, 40 (2), 
460-473. 

(59) Lee, D. A.; Knight, M. M.; F. Bolton, J.; Idowu, B. D.; Kayser, M. V.; Bader, D. L., 
Chondrocyte Deformation Within Compressed Agarose Constructs at the Cellular and 
Sub-Cellular Levels. J Biomech 2000, 33 (1), 81-95. 

(60) Lustbader, J. W.; Cirilli, M.; Lin, C.; Xu, H. W.; Takuma, K.; Wang, N.; Caspersen, C.; 
Chen, X.; Pollak, S.; Chaney, M.; Trinchese, F.; Liu, S.; Gunn-Moore, F.; Lue, L. F.; 
Walker, D. G.; Kuppusamy, P.; Zewier, Z. L.; Arancio, O.; Stern, D.; Yan, S. S.; Wu, H., 
ABAD Directly Links Abeta to Mitochondrial Toxicity in Alzheimer's Disease. Science 
2004, 304 (5669), 448-452. 

(61) Watson, P.; Jones, A. T.; Stephens, D. J., Intracellular Trafficking Pathways and Drug 
Delivery: Fluorescence Imaging of Living and Fixed Cells. Advanced drug delivery 
reviews 2005, 57 (1), 43-61. 

(62) Lucie, S.; Elisabeth, G.; Stephanie, F.; Guy, S.; Amandine, H.; Corinne, A.-R.; Didier, 
B.; Catherine, S.; Alexei, G.; Pascal, D.; Jean-Luc, C., Clustering and Internalization of 
Integrin [alpha]v[beta]3 With a Tetrameric RGD-Synthetic Peptide. Mol Ther 2009, 17 
(5), 837-843. 



46 
 

(63) Jean, F.; Bourg-Heckly, G.; Viellerobe, B., Fibered Confocal Spectroscopy and 
Multicolor Imaging System for in vivo Fluorescence Analysis. Optics express 2007, 15 
(7), 4008-4017. 

(64) Thiberville, L.; Moreno-Swirc, S.; Vercauteren, T.; Peltier, E.; Cave, C.; Bourg Heckly, 
G., In vivo Imaging of the Bronchial Wall Microstructure Using Fibered Confocal 
Fluorescence Microscopy. American journal of respiratory and critical care medicine 
2007, 175 (1), 22-31. 

(65) Tearney, G. J.; Wang, T. D.; Society of Photo-optical Instrumentation Engineers., 
Endoscopic microscopy III : 20-21 January 2008, San Jose, California, USA. SPIE: 
Bellingham, Wash., 2008. 

(66) Hsiung, P.-L.; Hardy, J.; Friedland, S.; Soetikno, R.; Du, C. B.; Wu, A. P.; Sahbaie, P.; 
Crawford, J. M.; Lowe, A. W.; Contag, C. H.; Wang, T. D., Detection of Colonic 
Dysplasia in vivo Using a Targeted Heptapeptide and Confocal Microendoscopy. Nat 
Med 2008, 14 (4), 454-458. 

(67) Christensen, D. J.; Nedergaard, M., Two-Photon in vivo Imaging of Cells. Pediatr 
Nephrol 2011, 26 (9), 1483-1489. 

(68) Brown, E. B.; Campbell, R. B.; Tsuzuki, Y.; Xu, L.; Carmeliet, P.; Fukumura, D.; Jain, 
R. K., In vivo Measurement of Gene Expression, Angiogenesis and Physiological 
Function in Tumors Using Multiphoton Laser Scanning Microscopy. Nat Med 2001, 7 
(7), 864-868. 

(69) Runnels, J. M.; Zamiri, P.; Spencer, J. A.; Veilleux, I.; Xunbin, W.; Bogdanov, A.; Lin, 
C. P., Imaging Molecular Expression on Vascular Endothelial Cells by In Vivo 
Immunofluorescence Microscopy. Mol Imaging 2006, 5 (1), 31-40. 

(70) Huland, D. M.; Brown, C. M.; Howard, S. S.; Ouzounov, D. G.; Pavlova, I.; Wang, K.; 
Rivera, D. R.; Webb, W. W.; Xu, C., In vivo Imaging of Unstained Tissues Using Long 
Gradient Index Lens Multiphoton Endoscopic Systems. Biomed Opt Express 2012, 3 (5), 
1077-1085. 

(71) Bird, D.; Gu, M., Fibre-Optic Two-Photon Scanning Fluorescence Microscopy. J 
Microsc 2002, 208 (1), 35-48. 

(72) Tang, S.; Jung, W.; McCormick, D.; Xie, T.; Su, J.; Ahn, Y. C.; Tromberg, B. J.; Chen, 
Z., Design and Implementation of Fiber-Based Multiphoton Endoscopy with 



47 
 

Microelectromechanical Systems Scanning. Journal of biomedical optics 2009, 14 (3), 1-
17. 

(73) Sevick-Muraca, E. M.; Sharma, R.; Rasmussen, J. C.; Marshall, M. V.; Wendt, J. A.; 
Pham, H. Q.; Bonefas, E.; Houston, J. P.; Sampath, L.; Adams, K. E.; Blanchard, D. K.; 
Fisher, R. E.; Chiang, S. B.; Elledge, R.; Mawad, M. E., Imaging of Lymph Flow in 
Breast Cancer Patients after Microdose Administration of a Near-Infrared Fluorophore: 
Feasibility Study1. Radiology 2008, 246 (3), 734-741. 

(74) Tagaya, N.; Yamazaki, R.; Nakagawa, A.; Abe, A.; Hamada, K.; Kubota, K.; Oyama, T., 
Intraoperative Identification of Sentinel Lymph Nodes by Near-Infrared Fluorescence 
Imaging in Patients with Breast Cancer. American journal of surgery 2008, 195 (6), 850-
853. 

(75) Troyan, S. L.; Kianzad, V.; Gibbs-Strauss, S. L.; Gioux, S.; Matsui, A.; Oketokoun, R.; 
Ngo, L.; Khamene, A.; Azar, F.; Frangioni, J. V., The FLARE Intraoperative Near-
Infrared Fluorescence Imaging System: A First-in-Human Clinical Trial in Breast Cancer 
Sentinel Lymph Node Mapping. Ann Surg Oncol 2009, 16 (10), 2943-2952. 

(76) Tanaka, E.; Choi, H.; Fujii, H.; Bawendi, M.; Frangioni, J., Image-Guided Oncologic 
Surgery Using Invisible Light: Completed Pre-Clinical Development for Sentinel Lymph 
Node Mapping. Ann Surg Oncol 2006, 13 (12), 1671-1681. 

(77) Ogasawara, Y.; Ikeda, H.; Takahashi, M.; Kawasaki, K.; Doihara, H., Evaluation of 
Breast Lymphatic Pathways with Indocyanine Green Fluorescence Imaging in Patients 
with Breast Cancer. World J Surg 2008, 32 (9), 1924-1929. 

(78) Mieog, J.; Troyan, S.; Hutteman, M.; Donohoe, K.; van der Vorst, J.; Stockdale, A.; 
Liefers, G.-J.; Choi, H.; Gibbs-Strauss, S.; Putter, H.; Gioux, S.; Kuppen, P.; Ashitate, Y.; 
Löwik, C.; Smit, V.; Oketokoun, R.; Ngo, L.; van de Velde, C.; Frangioni, J.; 
Vahrmeijer, A., Toward Optimization of Imaging System and Lymphatic Tracer for 
Near-Infrared Fluorescent Sentinel Lymph Node Mapping in Breast Cancer. Ann Surg 
Oncol 2011, 18 (9), 2483-2491. 

(79) Unno, N.; Inuzuka, K.; Suzuki, M.; Yamamoto, N.; Sagara, D.; Nishiyama, M.; Konno, 
H., Preliminary Experience with a Novel Fluorescence Lymphography Using 
Indocyanine Green in Patients with Secondary Lymphedema. J Vasc Surg 2007, 45 (5), 
1016-1021. 



48 
 

(80) Frimberger, D.; Zaak, D.; Stepp, H.; Knüchel, R.; Baumgartner, R.; Schneede, P.; 
Schmeller, N.; Hofstetter, A., Autofluorescence Imaging to Optimize 5-ALA-Induced 
Fluorescence Endoscopy of Bladder Carcinoma. Urology 2001, 58 (3), 372-375. 

(81) van der Poel, H. G.; Buckle, T.; Brouwer, O. R.; Valdes Olmos, R. A.; van Leeuwen, F. 
W., Intraoperative Laparoscopic Fluorescence Guidance to the Sentinel Lymph Node in 
Prostate Cancer Patients: Clinical Proof of Concept of an Integrated Functional Imaging 
Approach Using a Multimodal Tracer. Eur Urol 2011, 60 (4), 826-33. 

(82) Shen, Y. J.; Zhu, Y. P.; Ye, D. W.; Yao, X. D.; Zhang, S. L.; Dai, B.; Zhang, H. L.; Zhu, 
Y., Narrow-Band Imaging Flexible Cystoscopy in the Detection of Primary Non-Muscle 
Invasive Bladder Cancer: A "Second Look" Matters? International urology and 
nephrology 2012, 44 (2), 451-457. 

(83) Mérian, J.; Gravier, J.; Navarro, F.; Texier, I., Fluorescent Nanoprobes Dedicated to in 
Vivo Imaging: From Preclinical Validations to Clinical Translation. Molecules 2012, 17 
(5), 5564-5591. 

(84) Rzigalinski, B. A.; Strobl, J. S., Cadmium-Containing Nanoparticles: Perspectives on 
Pharmacology and Toxicology of Quantum Dots. Toxicology and applied pharmacology 
2009, 238 (3), 280-288. 

(85) Oberdörster, G.; Oberdörster, E.; Oberdörster, J., Nanotoxicology: An Emerging 
Discipline Evolving from Studies of Ultrafine Particles. Environ Health Perspect 2005, 
113 (7). 

(86) Gao, X.; Cui, Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S., In vivo Cancer Targeting 
and Imaging with Semiconductor Quantum Dots. Nat Biotech 2004, 22 (8), 969-976. 

(87) Schädlich, A.; Caysa, H.; Mueller, T.; Tenambergen, F.; Rose, C.; Göpferich, A.; 
Kuntsche, J.; Mäder, K., Tumor Accumulation of NIR Fluorescent PEG–PLA 
Nanoparticles: Impact of Particle Size and Human Xenograft Tumor Model. ACS Nano 
2011, 5 (11), 8710-8720. 

(88) Cai, W.; Shin, D.-W.; Chen, K.; Gheysens, O.; Cao, Q.; Wang, S. X.; Gambhir, S. S.; 
Chen, X., Peptide-Labeled Near-Infrared Quantum Dots for Imaging Tumor Vasculature 
in Living Subjects. Nano Lett 2006, 6 (4), 669-676. 



49 
 

(89) Sahoo, S. K.; Parveen, S.; Panda, J. J., The Present and Future of Nanotechnology in 
Human Health Care. Nanomedicine : nanotechnology, biology, and medicine 2007, 3 (1), 
20-31. 

(90) Wagner, V.; Dullaart, A.; Bock, A. K.; Zweck, A., The Emerging Nanomedicine 
Landscape. Nat Biotechnol 2006, 24 (10), 1211-1217. 

(91) Sandanaraj, B. S.; Gremlich, H.-U.; Kneuer, R.; Dawson, J.; Wacha, S., Fluorescent 
Nanoprobes as a Biomarker for Increased Vascular Permeability: Implications in 
Diagnosis and Treatment of Cancer and Inflammation. Bioconjug Chem 2009, 21 (1), 93-
101. 

(92) Portnoy, E.; Lecht, S.; Lazarovici, P.; Danino, D.; Magdassi, S., Cetuximab-Labeled 
Liposomes Containing Near-Infrared Probe for in vivo Imaging. Nanomedicine : 
nanotechnology, biology, and medicine 2011, 7 (4), 480-488. 

(93) Soukos, N. S.; Hamblin, M. R.; Keel, S.; Fabian, R. L.; Deutsch, T. F.; Hasan, T., 
Epidermal Growth Factor Receptor-targeted Immunophotodiagnosis and 
Photoimmunotherapy of Oral Precancer in Vivo. Cancer Res 2001, 61 (11), 4490-4496. 

(94) Rosenthal, E. L.; Kulbersh, B. D.; King, T.; Chaudhuri, T. R.; Zinn, K. R., Use of 
Fluorescent Labeled Anti-Epidermal Growth Factor Receptor Antibody to Image Head 
and Neck Squamous Cell Carcinoma Xenografts. Molecular cancer therapeutics 2007, 6 
(4), 1230-1238. 

(95) Terwisscha van Scheltinga, A. G. T.; van Dam, G. M.; Nagengast, W. B.; Ntziachristos, 
V.; Hollema, H.; Herek, J. L.; Schröder, C. P.; Kosterink, J. G. W.; Lub-de Hoog, M. N.; 
de Vries, E. G. E., Intraoperative Near-Infrared Fluorescence Tumor Imaging with 
Vascular Endothelial Growth Factor and Human Epidermal Growth Factor Receptor 2 
Targeting Antibodies. J Nucl Med 2011, 52 (11), 1778-1785. 

(96) Shi, H.; Tang, Z.; Kim, Y.; Nie, H.; Huang, Y. F.; He, X.; Deng, K.; Wang, K.; Tan, W., 
In vivo Fluorescence Imaging of Tumors using Molecular Aptamers Generated by Cell-
SELEX. Chem Asian J 2010, 5 (10), 2209-2213. 

(97) Shangguan, D.; Cao, Z.; Meng, L.; Mallikaratchy, P.; Sefah, K.; Wang, H.; Li, Y.; Tan, 
W., Cell-Specific Aptamer Probes for Membrane Protein Elucidation in Cancer Cells. J 
Proteome Res 2008, 7 (5), 2133-2139. 



50 
 

(98) Haubner, R.; Gratias, R.; Diefenbach, B.; Goodman, S. L.; Jonczyk, A.; Kessler, H., 
Structural and Functional Aspects of RGD-Containing Cyclic Pentapeptides as Highly 
Potent and Selective Integrin αVβ3 Antagonists. J Am Chem Soc 1996, 118 (32), 7461-
7472. 

(99) Garanger, E.; Boturyn, D.; Jin, Z.; Dumy, P.; Favrot, M.-C.; Coll, J.-L., New 
Multifunctional Molecular Conjugate Vector for Targeting, Imaging, and Therapy of 
Tumors. Mol Ther 2005, 12 (6), 1168-1175. 

(100) Zhao-Hui, J.; Josserand, V.; Razkin, J.; Garanger, E.; Boturyn, D.; Favrot, M.-C.; Dumy, 
P.; Coll, J.-L., Noninvasive Optical Imaging of Ovarian Metastases Using Cy5-labeled 
RAFT-c(-RGDfK-)4. Mol Imaging 2006, 5 (3), 188-197. 

(101) Jin, Z. H.; Josserand, V.; Foillard, S.; Boturyn, D.; Dumy, P.; Favrot, M. C.; Coll, J. L., 
In vivo Optical Imaging of Integrin Alpha(v)-Beta(3) in Mice Using Multivalent or 
Monovalent cRGD Targeting Vectors. Molecular cancer therapeutics 2007, 6. 

(102) Themelis, G.; Harlaar, N. J.; Kelder, W.; Bart, J.; Sarantopoulos, A.; van Dam, G. M.; 
Ntziachristos, V., Enhancing Surgical Cision by Using Real-Time Imaging of Alpha(V)-
Beta(3)-Integrin Targeted Near-Infrared Fluorescent Agent. Ann Surg Oncol 2011, 18 
(12), 3506-3513. 

(103) Nguyen, Q. T.; Olson, E. S.; Aguilera, T. A.; Jiang, T.; Scadeng, M.; Ellies, L. G.; Tsien, 
R. Y., Surgery with Molecular Fluorescence Imaging Using Activatable Cell-Penetrating 
Peptides Decreases Residual Cancer and Improves Survival. Proc Natl Acad Sci U S A 
2010, 107 (9), 4317-4322. 

(104) Jiang, T.; Olson, E. S.; Nguyen, Q. T.; Roy, M.; Jennings, P. A.; Tsien, R. Y., Tumor 
Imaging by Means of Proteolytic Activation of Cell-Penetrating Peptides. Proc Natl Acad 
Sci U S A 2004, 101 (51), 17867-17872. 

(105) Olson, E. S.; Jiang, T.; Aguilera, T. A.; Nguyen, Q. T.; Ellies, L. G.; Scadeng, M.; Tsien, 
R. Y., Activatable Cell Penetrating Peptides Linked to Nanoparticles as Dual Probes for 
in vivo Fluorescence and MR Imaging of Proteases. Proc Natl Acad Sci U S A 2010, 107 
(9), 4311-4316. 

(106) Vivès, E.; Brodin, P.; Lebleu, B., A Truncated HIV-1 Tat Protein Basic Domain Rapidly 
Translocates through the Plasma Membrane and Accumulates in the Cell Nucleus. J Biol 
Chem 1997, 272 (25), 16010-16017. 



51 
 

(107) Rothbard, J. B.; Kreider, E.; VanDeusen, C. L.; Wright, L.; Wylie, B. L.; Wender, P. A., 
Arginine-Rich Molecular Transporters for Drug Delivery:  Role of Backbone Spacing in 
Cellular Uptake. J Med Chem 2002, 45 (17), 3612-3618. 

(108) Talvensaari-Mattila, A.; Paakko, P.; Turpeenniemi-Hujanen, T., Matrix 
Metalloproteinase-2 (MMP-2) is Associated with Survival in Breast Carcinoma. Br. J. 
Cancer 2003, 89 (7), 1270-1275. 

(109) Bremer, C.; Bredow, S.; Mahmood, U.; Weissleder, R.; Tung, C.-H., Optical Imaging of 
Matrix Metalloproteinase–2 Activity in Tumors: Feasibility Study in a Mouse Model. 
Radiology 2001, 221 (2), 523-529. 

(110) Rocca, G. L.; Pucci-Minafra, I.; Marrazzo, A.; Taormina, P.; Minafra, S., Zymographic 
Detection and Clinical Correlations of MMP-2 and MMP-9 in Breast Cancer Sera. Br J 
Cancer 2004, 90 (7), 1414-1421. 

(111) Tung, C.-H.; Lin, Y.; Moon, W. K.; Weissleder, R., A Receptor-Targeted Near-Infrared 
Fluorescence Probe for In Vivo Tumor Imaging. ChemBioChem 2002, 3 (8), 784-786. 

(112) Chen, Y.; Dhara, S.; Banerjee, S. R.; Byun, Y.; Pullambhatla, M.; Mease, R. C.; Pomper, 
M. G., A Low Molecular Weight PSMA-based Fluorescent Imaging Agent for Cancer. 
Biochem Biophys Res Commun 2009, 390 (3), 624-629. 

(113) Liu, T.; Wu, L. Y.; Hopkins, M. R.; Choi, J. K.; Berkman, C. E., A Targeted Low 
Molecular Weight Near-Infrared Fluorescent Probe for Prostate Cancer. Bioorg Med 
Chem Lett 2010, 20 (23), 7124-7126. 

(114) Okuda, K.; Okabe, Y.; Kadonosono, T.; Ueno, T.; Youssif, B. G. M.; Kizaka-Kondoh, S.; 
Nagasawa, H., 2-Nitroimidazole-Tricarbocyanine Conjugate as a Near-Infrared 
Fluorescent Probe for in Vivo Imaging of Tumor Hypoxia. Bioconjug Chem 2012, 23 (3), 
324-329. 

(115) Levi, J.; Cheng, Z.; Gheysens, O.; Patel, M.; Chan, C. T.; Wang, Y.; Namavari, M.; 
Gambhir, S. S., Fluorescent Fructose Derivatives for Imaging Breast Cancer Cells. 
Bioconjug Chem 2007, 18 (3), 628-634. 

(116) Elfriede, S., Biological and Chemical Sensors for Cancer Diagnosis. Meas Sci Technol 
2010, 21 (11), 112002-112026. 



52 
 

(117) Chang, S. S.; Reuter, V. E.; Heston, W. D. W.; Gaudin, P. B., Metastatic Renal Cell 
Carcinoma Neovasculature Expresses Prostate-Specific Membrane Antigen. Urology 
2001, 57, 801-805. 

(118) Chang, S. S.; O’Keefe, D. S.; Bacich, D. J.; Reuter, V. E.; Heston, W. D. W.; Gaudin, P. 
B., Prostate-specific Membrane Antigen Is Produced in Tumor-associated 
Neovasculature. Clin Cancer Res 1999, 5 (10), 2674-2681. 

(119) Konda, S. D.; Aref, M.; Wang, S.; Brechbiel, M.; Wiener, E. C., Specific Targeting of 
Folate-Dendrimer MRI Contrast Agents to the High Affinity Folate Receptor Expressed 
in Ovarian Tumor Xenografts. Magn. Reson. Mat. Phys. Biol. Med. 2001, 12 (2-3), 104-
113. 

(120) Toffoli, G.; Cernigoi, C.; Russo, A.; Gallo, A.; Bagnoli, M.; Boiocchi, M., 
Overexpression of Folate Binding Protein in Ovarian Cancers. Int J Cancer 1997, 74 (2), 
193-198. 

(121) Miotti, S.; Bagnoli, M.; Ottone, F.; Tomassetti, A.; Colnaghi, M. I.; Canevari, S., 
Simultaneous Activity of Two Different Mechanisms of Folate Transport in Ovarian 
Carcinoma Cell Lines. J Cell Biochem 1997, 65 (4), 479-491. 

(122) Eun Jun, M.; Roy, B.; Han Ahn, K., "Turn-On" Fluorescent Sensing With "Reactive" 
Probes. Chem Comm 2011, 47 (27), 7583-7601. 

(123) Yoon, Z. S.; Noh, S. B.; Cho, D.-G.; Sessler, J. L.; Kim, D., Evaluation of Planarity and 
Aromaticity in Sapphyrin and Inverted Sapphyrin Using a Bidirectional NICS (Nucleus-
Independent Chemical Shift) Scan Method. Chem Comm 2007,  (23), 2378-2380. 

(124) de Silva, A. P.; Gunaratne, H. Q. N.; Habib-Jiwan, J.-L.; McCoy, C. P.; Rice, T. E.; 
Soumillion, J.-P., New Fluorescent Model Compounds for the Study of Photoinduced 
Electron Transfer: The Influence of a Molecular Electric Field in the Excited State. 
Angew Chem, Int Ed 1995, 34 (16), 1728-1731. 

(125) Duke, R. M.; Veale, E. B.; Pfeffer, F. M.; Kruger, P. E.; Gunnlaugsson, T., Colorimetric 
and Fluorescent Anion Sensors: An Overview of Recent Developments in the Use of 1,8-
naphthalimide-Based Chemosensors. Chem Soc Rev 2010, 39 (10), 3936-3953. 

(126) He, H.; Mortellaro, M. A.; Leiner, M. J. P.; Fraatz, R. J.; Tusa, J. K., A Fluorescent 
Sensor with High Selectivity and Sensitivity for Potassium in Water. J Am Chem Soc 
2003, 125 (6), 1468-1469. 



53 
 

(127) Gunnlaugsson, T.; Lee, T. C.; Parkesh, R., A Highly Selective and Sensitive Fluorescent 
PET (Photoinduced Electron Transfer) Chemosensor for Zn(II). Org Biomol Chem 2003, 
1 (19), 3265-3267. 

(128) Qian, X.; Xiao, Y.; Xu, Y.; Guo, X.; Qian, J.; Zhu, W., "Alive" Dyes as Fluorescent 
Sensors: Fluorophore, Mechanism, Receptor and Images in Living Cells. Chem Commun 
2010, 46 (35), 6418-6436. 

(129) Xu, Z.; Qian, X.; Cui, J.; Zhang, R., Exploiting the Deprotonation Mechanism for the 
Design of Ratiometric and Colorimetric Zn2+ Fluorescent Chemosensor with a Large 
Red-Shift in Emission. Tetrahedron 2006, 62 (43), 10117-10122. 

(130) Xu, Z.; Qian, X.; Cui, J., Colorimetric and Ratiometric Fluorescent Chemosensor with a 
Large Red-Shift in Emission:  Cu(II)-Only Sensing by Deprotonation of Secondary 
Amines as Receptor Conjugated to Naphthalimide Fluorophore. Org Lett 2005, 7 (14), 
3029-3032. 

(131) Pires, M. M.; Chmielewski, J., Fluorescence Imaging of Cellular Glutathione Using a 
Latent Rhodamine. Org Lett 2008, 10 (5), 837-840. 

(132) Lee, M. H.; Han, J. H.; Kwon, P.-S.; Bhuniya, S.; Kim, J. Y.; Sessler, J. L.; Kang, C.; 
Kim, J. S., Hepatocyte-Targeting Single Galactose-Appended Naphthalimide: A Tool for 
Intracellular Thiol Imaging in Vivo. J Am Chem Soc 2011, 134 (2), 1316-1322. 

(133) Zhu, B.; Zhang, X.; Li, Y.; Wang, P.; Zhang, H.; Zhuang, X., A Colorimetric and 
Ratiometric Fluorescent Probe for Thiols and its Bioimaging Applications. Chem Comm 
2010, 46 (31), 5710-5712. 

(134) Cui, L.; Zhong, Y.; Zhu, W.; Xu, Y.; Du, Q.; Wang, X.; Qian, X.; Xiao, Y., A New 
Prodrug-Derived Ratiometric Fluorescent Probe for Hypoxia: High Selectivity of 
Nitroreductase and Imaging in Tumor Cell. Org Lett 2011, 13 (5), 928-931. 

(135) Lippert, A. R.; New, E. J.; Chang, C. J., Reaction-Based Fluorescent Probes for Selective 
Imaging of Hydrogen Sulfide in Living Cells. J Am Chem Soc 2011, 133 (26), 10078-
10080. 

(136) Wu, G.; Fang, Y.-Z.; Yang, S.; Lupton, J. R.; Turner, N. D., Glutathione Metabolism and 
Its Implications for Health. J Nutr 2004, 134 (3), 489-492. 



54 
 

(137) Deneke, S. M., Thiol-based antioxidants. In Current Topics in Cellular Regulation, Earl, 
R. S.; Chock, P. B., Eds. Academic Press: 2001; Vol. Volume 36, pp 151-180. 

(138) Cole, S. P. C.; Deeley, R. G., Transport of Glutathione and Glutathione Conjugates by 
MRP1. Trends Pharmacol Sci 2006, 27 (8), 438-446. 

(139) Williams, K. J.; Albertella, M. R.; Fitzpatrick, B.; Loadman, P. M.; Shnyder, S. D.; 
Chinje, E. C.; Telfer, B. A.; Dunk, C. R.; Harris, P. A.; Stratford, I. J., In vivo Activation 
of the Hypoxia-targeted Cytotoxin AQ4N in Human Tumor Xenografts. Mol Cancer 
Thera 2009, 8 (12), 3266-3275. 

(140) Höckel, M.; Schlenger, K.; Aral, B.; Mitze, M.; Schäffer, U.; Vaupel, P., Association 
Between Tumor Hypoxia and Malignant Progression in Advanced Cancer of the Uterine 
Cervix. Cancer Res 1996, 56 (19), 4509-4515. 

(141) Rofstad, E. K.; Rasmussen, H.; Galappathi, K.; Mathiesen, B.; Nilsen, K.; Graff, B. A., 
Hypoxia Promotes Lymph Node Metastasis in Human Melanoma Xenografts by Up-
Regulating the Urokinase-Type Plasminogen Activator Receptor. Cancer Res 2002, 62 
(6), 1847-1853. 

(142) Weissleder, R.; Tung, C.-H.; Mahmood, U.; Bogdanov, A., In vivo Imaging of Tumors 
with Protease-Activated Near-Infrared Fluorescent Probes. Nat Biotech 1999, 17 (4), 
375-378. 

(143) Kamiya, M.; Kobayashi, H.; Hama, Y.; Koyama, Y.; Bernardo, M.; Nagano, T.; Choyke, 
P. L.; Urano, Y., An Enzymatically Activated Fluorescence Probe for Targeted Tumor 
Imaging. J Am Chem Soc 2007, 129 (13), 3918-3929. 

(144) Halim, M.; Yee, D. J.; Sames, D., Imaging Induction of Cytoprotective Enzymes in Intact 
Human Cells: Coumberone, a Metabolic Reporter for Human AKR1C Enzymes Reveals 
Activation by Panaxytriol, an Active Component of Red Ginseng. J Am Chem Soc 2008, 
130 (43), 14123-14128. 

(145) Yee, D. J.; Balsanek, V.; Bauman, D. R.; Penning, T. M.; Sames, D., Fluorogenic 
Metabolic Probes for Direct Activity Readout of Redox Enzymes: Selective 
Measurement of Human AKR1C2 in Living Cells. Proc Natl Acad Sci U S A 2006, 103 
(36), 13304-13309. 



55 
 

(146) Abd-Elgaliel, W. R.; Cruz-Monserrate, Z.; Logsdon, C. D.; Tung, C.-H., Molecular 
Imaging of Cathepsin E-Positive Tumors in Mice Using a Novel Protease-Activatable 
Fluorescent Probe. Molecular BioSystems 2011, 7 (12), 3207-3213. 

(147) Weinstain, R.; Segal, E.; Satchi-Fainaro, R.; Shabat, D., Real-Time Monitoring of Drug 
Release. Chem Commun 2010, 46 (4), 553-555. 

(148) Yee, D. J.; Balsanek, V.; Sames, D., New Tools for Molecular Imaging of Redox 
Metabolism:  Development of a Fluorogenic Probe for 3α-Hydroxysteroid 
Dehydrogenases. J Am Chem Soc 2004, 126 (8), 2282-2283. 

(149) Cui, L.; Zhong, Y.; Zhu, W.; Xu, Y.; Qian, X., Selective and Sensitive Detection and 
Quantification of Arylamine N-acetyltransferase 2 by a Ratiometric Fluorescence Probe. 
Chem Commun 2010, 46 (38), 7121-7123. 

(150) Jones, G. B.; Crasto, C. F.; Mathews, J. E.; Xie, L.; Mitchell, M. O.; El-Shafey, A.; 
D’Amico, A. V.; Bubley, G. J., An Image Contrast Agent Selectively Activated by 
Prostate Specific Antigen. Bioorg Med Chem Lett 2006, 14 (2), 418-425. 

(151) Meyer, Y.; Richard, J.-A.; Delest, B.; Noack, P.; Renard, P.-Y.; Romieu, A., A 
Comparative Study of the Self-Immolation of Para-aminobenzylalcohol and 
Hemithioaminal-Based Linkers in the Context of Protease-Sensitive Fluorogenic Probes. 
Org Biomol Chem 2010, 8 (8), 1777-1780. 

(152) Mangold, S. L.; Carpenter, R. T.; Kiessling, L. L., Synthesis of Fluorogenic Polymers for 
Visualizing Cellular Internalization. Org Lett 2008, 10 (14), 2997-3000. 

(153) Richard, J.-A.; Meyer, Y.; Jolivel, V. r.; Massonneau, M.; Dumeunier, R.; Vaudry, D.; 
Vaudry, H.; Renard, P.-Y.; Romieu, A., Latent Fluorophores Based on a Self-Immolative 
Linker Strategy and Suitable for Protease Sensing. Bioconjug Chem 2008, 19 (8), 1707-
1718. 

(154) Wang, Z.-Q.; Liao, J.; Diwu, Z., N-DEVD-N′-morpholinecarbonyl-rhodamine 110: 
Novel Caspase-3 Fluorogenic Substrates for Cell-Based Apoptosis Assay. Bioorg Med 
Chem Lett 2005, 15 (9), 2335-2338. 

(155) Erez, R.; Shabat, D., The Azaquinone-methide Elimination: Comparison Study of 1,6- 
and 1,4-eliminations Under Physiological Conditions. Org Biomol Chem 2008, 6 (15), 
2669-2672. 



56 
 

(156) Amir, R. J.; Popkov, M.; Lerner, R. A.; Barbas, C. F.; Shabat, D., Prodrug Activation 
Gated by a Molecular “OR” Logic Trigger. Angew Chem Int Ed Engl 2005, 44 (28), 
4378-4381. 

(157) Shamis, M.; Shabat, D., Single-Triggered AB6 Self-Immolative Dendritic Amplifiers. 
Chemistry – A Euro J 2007, 13 (16), 4523-4528. 

(158) Haba, K.; Popkov, M.; Shamis, M.; Lerner, R. A.; Barbas, C. F.; Shabat, D., Single-
Triggered Trimeric Prodrugs. Angew Chem Int Ed Engl 2005, 44 (5), 716-720. 

(159) Malkinson, A. M.; Siegel, D.; Forrest, G. L.; Gazdar, A. F.; Oie, H. K.; Chan, D. C.; 
Bunn, P. A.; Mabry, M.; Dykes, D. J.; Harrison, S. D.; Ross, D., Elevated DT-diaphorase 
Activity and Messenger RNA Content in Human Non-Small Cell Lung Carcinoma: 
Relationship to the Response of Lung Tumor Xenografts to Mitomycin C. Cancer Res 
1992, 52 (17), 4752-4757. 

(160) Danson, S.; Ward, T. H.; Butler, J.; Ranson, M., DT-Diaphorase: A Target for New 
Anticancer Drugs. Cancer Treat Rev 2004, 30 (5), 437-449. 

(161) Ernster, L.; Danielson, L.; Ljunggren, M., Dt Diaphorase I. Purification from the Soluble 
Fraction of Rat-Liver Cytoplasm, and Properties. Biochim Biophys Acta 1962, 58 (2), 
171-188. 

(162) Smitskamp-Wilms, E.; Hendriks, H. R.; Peters, G. J., Development, Pharmacology, Role 
of DT-Diaphorase and Prospects of the Indoloquinone EO9. Gen Pharmacol 1996, 27 
(3), 421-429. 

(163) Volpato, M.; Abou-Zeid, N.; Tanner, R. W.; Glassbrook, L. T.; Taylor, J.; Stratford, I.; 
Loadman, P. M.; Jaffar, M.; Phillips, R. M., Chemical Synthesis and Biological 
Evaluation of a NAD(P)H:quinone Oxidoreductase-1 Targeted Tripartite Quinone Drug 
Delivery System. Molecular cancer therapeutics 2007, 6 (12 Pt 1), 3122-3130. 

(164) Buffinton, G. D.; Ollinger, K.; Brunmark, A.; Cadenas, E., DT-Diaphorase-Catalysed 
Reduction of 1,4-naphthoquinone Derivatives and Glutathionyl-Quinone Conjugates. 
Effect of Substituents on Autoxidation Rates. Biochem J 1989, 257 (2), 561-571. 

(165) Hernick, M.; Flader, C.; Borch, R. F., Design, Synthesis, and Biological Evaluation of 
Indolequinone Phosphoramidate Prodrugs Targeted to DT-Diaphorase. J Med Chem 
2002, 45 (16), 3540-3548. 



57 
 

(166) Ernster, L.; Navazio, F., Studies on TPN-Linked Oxidations: I. Pathways of Isocitrate 
Oxidation in Rat Liver Mitochondria. Biochimica et Biophysica Acta 1957, 26 (2), 408-
415. 

(167) Navazio, F.; Ernster, B. B.; Ernster, L., Studies on TPN-Linked Oxidations: II. The 
Quantitative Significance of Liver Lactic Dehydrogenase as a Catalyzer of TPNH-
Oxidation. Biochimica et Biophysica Acta 1957, 26 (2), 416-421. 

(168) Ernster, L., DT-Diaphorase: A Historical Review. Chemica Scripta 1987, 27A, 1-13. 

(169) Ernster, L.; Navazio, F., Soluble Diaphorase in Animal Tissues. Acta Chemica 
Scandinavica 1958, 12 (3), 595-595. 

(170) Lind, C.; Cadenas, E.; Hochstein, P.; Ernster, L., [30] DT-diaphorase: Purification, 
Properties, and Function. In Methods in Enzymology, Lester Packer, A. N. G., Ed. 
Academic Press: 1990; Vol. Volume 186, pp 287-301. 

(171) Ernster, L.; Ljunggren, M.; Danielson, L., Purification and Some Properties of a Highly 
Dicumarol-sensitive Liver Diaphorase. Biochem Biophys Research Comm 1960, 2 (2), 
88-92. 

(172) Ernster, L., Structural Factors Involved in the Diaphorase and Cytochrome c-Reductase 
Activities of Mitochondria and Microsomes. Acta Chemica Scandinavica 1958, 12 (3), 
600-602. 

(173) Ernster, L.; Ljunggren, M.; Danielson, L., DT Diaphorase 1. Purification From Soluble 
Fraction of Rat-Liver Cytoplasm, and Properties. Biochim Biophys Acta 1962, 58 (2), 
171-188. 

(174) Dinkova-Kostova, A. T.; Talalay, P., Persuasive Evidence that Quinone Reductase Type 
1 (DT Diaphorase) Protects Cells Against the Toxicity of Electrophiles and Reactive 
Forms of Oxygen. Free Radical Biology and Medicine 2000, 29 (3–4), 231-240. 

(175) Vasiliou, V.; Ross, D.; Nebert, D. W., Update of the NAD(P)H:Quinone Oxidoreductase 
(NQO) Gene Family. Hum Genomics 2006, 2 (5), 329-335. 

(176) Faig, M.; Bianchet, M. A.; Talalay, P.; Chen, S.; Winski, S.; Ross, D.; Amzel, L. M., 
Structures of Recombinant Human and Mouse NAD(P)H:Quinone Oxidoreductases: 



58 
 

Species Comparison and Structural Changes with Substrate Binding and Release. Proc 
Natl Acad Sci U S A 2000, 97 (7), 3177-3182. 

(177) Li, R.; Bianchet, M. A.; Talalay, P.; Amzel, L. M., The Three-Dimensional Structure of 
NAD(P)H:Quinone Reductase, a Flavoprotein Involved in Cancer Chemoprotection and 
Chemotherapy: Mechanism of the Two-Electron Reduction. Proc Natl Acad Sci U S A 
1995, 92 (19), 8846-8850. 

(178) Edlund, C.; Elhammer, A.; Dallner, G., Distribution of Newly Synthesized DT-
Diaphorase in Rat Liver. Biosci Rep 1982, 2 (11), 861-865. 

(179) Nakamura, M.; Hayashi, T., One- and Two-Electron Reduction of Quinones by Rat Liver 
Subcellular Fractions. J Biochem 1994, 115 (6), 1141-1147. 

(180) Das, M.; Rastogi, S.; Khanna, S. K., Mechanism to Study 1:1 Stoichiometry of NADPH 
and Alkoxyphenoxazones Metabolism Spectrophotometrically in Subcellular Biological 
Preparations. Biochim Biophys Acta 2004, 1675 (1–3), 1-11. 

(181) Vaes, G., Cell-to-Cell Interactions in the Secretion of Enzymes of Connective Tissue 
Breakdown, Collagenase and Proteoglycan-Degrading Neutral Proteases. A Review. 
Inflammation Research 1980, 10 (6), 474-485. 

(182) Das, M.; Rastogi, S.; Khanna, S. K., Mechanism to Study 1 : 1 Stoichiometry of NADPH 
and Alkoxyphenoxazones Metabolism Spectrophotometrically in Subcellular Biological 
Preparations. Biochim Biophys Acta 2004, 1675 (1-3), 1-11. 

(183) Winski, S. L.; Koutalos, Y.; Bentley, D. L.; Ross, D., Subcellular Localization of 
NAD(P)H:Quinone Oxidoreductase 1 in Human Cancer Cells. Cancer Res 2002, 62 (5), 
1420-1424. 

(184) Winski, S. L.; Hargreaves, R. H.; Butler, J.; Ross, D., A New Screening System for 
NAD(P)H:quinone Oxidoreductase (NQO1)-directed Antitumor Quinones: Identification 
of a New Aziridinylbenzoquinone, RH1, as a NQO1-directed Antitumor Agent. Clin 
Cancer Res 1998, 4 (12), 3083-3088. 

(185) Beall, H. D.; Winski, S.; Swann, E.; Hudnott, A. R.; Cotterill, A. S.; O'Sullivan, N.; 
Green, S. J.; Bien, R.; Siegel, D.; Ross, D.; Moody, C. J., Indolequinone Antitumor 
Agents:  Correlation Between Quinone Structure, Rate of Metabolism by Recombinant 
Human NAD(P)H:Quinone Oxidoreductase, and in Vitro Cytotoxicity. J Med Chem 
1998, 41 (24), 4755-4766. 



59 
 

(186) Everett, S. A.; Naylor, M. A.; Patel, K. B.; Stratford, M. R. L.; Wardman, P., 
Bioreductively-Activated Prodrugs for Targetting Hypoxic Tissues: Elimination of 
Aspirin from 2-nitroimidazole Derivatives. Bioorg Med Chem Lett 1999, 9, 1267-1272. 

(187) Newsome, J. J.; Swann, E.; Hassani, M.; Bray, K. C.; Slawin, A. M. Z.; Beall, H. D.; 
Moody, C. J., Indolequinone Antitumour Agents: Correlation Between Quinone Structure 
and Rate of Metabolism by Recombinant Human NAD(P)H:Quinone Oxidoreductase. 
Org Biomol Chem 2007, 5 (10), 1629-1640. 

(188) Ross, D.; Kepa, J. K.; Winski, S. L.; Beall, H. D.; Anwar, A.; Siegel, D., NAD(P)H : 
Quinone Oxidoreductase 1 (NQO1): Chemoprotection, Bioactivation, Gene Regulation 
and Genetic Polymorphisms. Chem Biol Interact 2000, 129 (1-2), 77-97. 

(189) Gibson, N. W.; Hartley, J. A.; Butler, J.; Siegel, D.; Ross, D., Relationship Between DT-
Diaphorase-Mediated Metabolism of a Series of Aziridinylbenzoquinones and DNA 
Damage and Cytotoxicity. Mol Pharm 1992, 42 (3), 531-536. 

(190) Skelly, J. V.; Sanderson, M. R.; Suter, D. A.; Baumann, U.; Read, M. A.; Gregory, D. S. 
J.; Bennett, M.; Hobbs, S. M.; Neidle, S., Crystal Structure of Human DT-Diaphorase:  A 
Model for Interaction with the Cytotoxic Prodrug 5-(Aziridin-1-yl)-2,4-dinitrobenzamide 
(CB1954). J Med Chem 1999, 42 (21), 4325-4330. 

(191) Winski, S. L.; Faig, M.; Bianchet, M. A.; Siegel, D.; Swann, E.; Fung, K.; Duncan, M. 
W.; Moody, C. J.; Amzel, L. M.; Ross, D., Characterization of a Mechanism-Based 
Inhibitor of NAD(P)H:Quinone Oxidoreductase 1 by Biochemical, X-ray 
Crystallographic, and Mass Spectrometric Approaches. Biochem 2001, 40 (50), 15135-
15142. 

(192) Phillips, R. M., Inhibition of DT-Diaphorase (NAD(P)H:Quinone Oxidoreductase, ec 
(1.6.99.2) by 5,6-dimethylxanthenone-4-acetic acid (DMXAA) and Flavone-8-acetic acid 
(FAA): Implications for Bioreductive Drug Development. Biochem Pharmacol 1999, 58 
(2), 303-310. 

(193) Lee, Y. Y.; Westphal, A. H.; de Haan, L. H. J.; Aarts, J. M. M. J. G.; Rietjens, I. M. C. 
M.; van Berkel, W. J. H., Human NAD(P)H:Quinone Oxidoreductase Inhibition by 
Flavonoids in Living Cells. Free Radic Biol Med 2005, 39 (2), 257-265. 

(194) Colucci, M. A.; Reigan, P.; Siegel, D.; Chilloux, A.; Ross, D.; Moody, C. J., Synthesis 
and Evaluation of 3-Aryloxymethyl-1,2-dimethylindole-4,7-diones as Mechanism-Based 
Inhibitors of NAD(P)H:Quinone Oxidoreductase 1 (NQO1) Activity. J Med Chem 2007, 
50 (23), 5780-5789. 



60 
 

(195) Reigan, P.; Colucci, M. A.; Siegel, D.; Chilloux, A.; Moody, C. J.; Ross, D., 
Development of Indolequinone Mechanism-Based Inhibitors of NAD(P)H:Quinone 
Oxidoreductase 1 (NQO1):  NQO1 Inhibition and Growth Inhibitory Activity in Human 
Pancreatic MIA PaCa-2 Cancer Cells. Biochem 2007, 46 (20), 5941-5950. 

(196) Siegel, D.; Gustafson, D. L.; Dehn, D. L.; Han, J. Y.; Boonchoong, P.; Berliner, L. J.; 
Ross, D., NAD(P)H:Quinone Oxidoreductase 1: Role as a Superoxide Scavenger. 
Molecular Pharmacology 2004, 65 (5), 1238-1247. 

(197) Huang, S. T.; Lin, Y. L., New Latent Fluorophore for DT Diaphorase. Org Lett 2006, 8 
(2), 265-268. 

(198) Huang, S.-T.; Peng, Y.-X.; Wang, K.-L., Synthesis of a New Long-Wavelength Latent 
Fluorimetric Indicator for Analytes Determination in the DT-Diaphorase Coupling 
Dehydrogenase Assay System. Biosens Bioelectron 2008, 23 (12), 1793-1798. 

(199) de Groot, F. M. H.; Loos, W. J.; Koekkoek, R.; van Berkom, L. W. A.; Busscher, G. F.; 
Seelen, A. E.; Albrecht, C.; de Bruijn, P.; Scheeren, H. W., Elongated Multiple Electronic 
Cascade and Cyclization Spacer Systems in Activatible Anticancer Prodrugs for 
Enhanced Drug Release. J Org Chem 2001, 66 (26), 8815-8830. 

 
 



 61  
 

CHAPTER 2 

SHEDDING LIGHT BY CANCER REDOX—HUMAN NAD(P)H:QUINONE 
OXIDOREDUCTASE-1 ACTIVATION OF A CLOAKED FLUOROPHORE DYE * 

 
2.1 Introduction 

 Reductase enzymes associated with cancer have become an active area of research due to 

their presence being used to understand the cellular machinery of the disease and their potential 

for activation of prodrugs for disease therapies.  NQO1 (DT-diaphorase, EC 1.6.99.2) is highly 

upregulated in cancer cells1-3 and is found in the cytosol, Golgi complex, nucleus, mitochondria, 

cellular membrane, and endoplasmic reticulum, as well as extracellularly.4-11  NQO1 catalyzes 

the 2-electron reduction of quinones to their hydroquinones using NADH or NADPH as an 

electron donor.12-13  As a result, NQO1 is a focal point for cancer therapies utilizing 

bioactivatable prodrug quinones, including those that undergo rearrangement reactions14-15 and 

quinones that are cleaved from a target drug upon reduction, thereby releasing the active drug 

target.16-17  The lack of information on the effects of local environment on quinone prodrug 

activation and target drug release has slowed progress in this arena.18-19  Thus, it is of great 

importance to develop and understand the behavior of triggerable reporter molecules that may 

allow for selective and sensitive detection of NQO1 activity and provide temporal and spatial 

feedback on quinone reduction and target release.  Of the various routes to measure enzyme 

activity, cloaked or latent fluorophores are particularly attractive due to their triggerable off-on 

fluorescence.20-22  This off-on activation mechanism provides superior signal-to-background ratio 

due to the low amount of signal the cloaked fluorophore gives off.23-24  Discussed here is the 

delineation, synthesis, successful, and even unsuccessful use of a new cloaked reporter whose 

fluorescence is vastly increased upon its efficient human NQO1-catalyzed reductive de-cloaking.   

* Portions of this chapter appear previously as Silvers, W.; Payne, A; McCarley, R., Chem. Comm.  
2011, 47 (40), 11264-11266. Reproduced by permission of The Royal Society of Chemistry. Article.  

http://pubs.rsc.org/en/content/articlelanding/2011/CC/C1CC14578A
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Possible reasons for the unsuccessful use of this cloaked fluorophore in relation to in vitro 

analysis of NQO1 are analyzed and discussed, so as to provide insight for the future design and 

selection of fluorophores that may be created for cellular-based sensing.   

2.2 Experimental Section 

2.2.1 Materials and Methods 

 3-(3',6'-dioxo-2',4',5'-trimethylcyclohexa-1',4'-diene)-3,3-dimethylpropionic acid (Q3PA, 

1) and rhodamine110-morpholino urea (Rho-Morph) were prepared according to literature 

procedures.21, 25  All chemicals were purchased from Sigma-Aldrich or Fisher Scientific and used 

as received.  For column chromatography, a Biotage FlashMaster Personal (Biotage) was used 

with pre-packed 10 g silica gel columns.  Fluorescence-based activity, quantum yield 

determination, and stability studies were performed on a Perkin Elmer LS55 fluorescence 

spectrometer in quartz cuvettes.  Enzyme assays were performed using black plastic 96-well 

plates (BD Falcon brand) on a FLUOstar OPTIMA from BMG LABTECH.  1H-NMR spectra 

were collected in CDCl3 on a Bruker AV-400 spectrometer and 13C-NMR spectra were collected 

in CDCl3 on a Varian system 700 spectrometer.  All NMR experiments were performed in 

deuterated solvents and the chemical shifts are reported in standard δ notation as parts per 

million using tetramethylsilane as an internal standard.   

2.2.2 Cell Culture 

 HT-29 (human colorectal adenocarcinoma), A549 (human non-small cell lung cancer 

(NSCLC)), and H596 (human NSCLC) were all purchased from American Type Cell Culture.  

HT-29 cells were cultured in McCoy’s 5A medium supplemented with 10% fetal bovine serum 

(FBS) and 100 IU/mL penicillin-streptomycin.  A549 cells were cultured in F-12K medium 

supplemented with 10% FBS and 100 IU/mL penicillin-streptomycin.  H596 cells were cultured 
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in RPMI-1640 supplemented with 10% FBS and 100 IU/mL penicillin-streptomycin.  Cells were 

incubated at 37 °C in a humidified incubator containing 5% wt/vol carbon dioxide (CO 2). 

2.2.3 Synthesis of Q3-Rho-Morph 
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Scheme 2.1. Synthesis of Q3-Rho-Morph (1). 

Rho-Morph 2 (53.6 mg, 0.121 mmol) was dissolved in anhydrous DMF (0.9 mL) and 

anhydrous pyridine (0.6 mL) under Ar. To this was added EDCI (43.72 mg, 0.228 mmol) and 

Q3PA 3 (74.91 mg, 0.299 mmol). This solution was stirred at room temperature for 24 hr. 

Solvent was removed under reduced pressure and the resulting residue was purified using 

column chromatography (1:1 DCM:ethyl acetate, Rf  = 0.43) to give probe 1 as a yellow solid 

(27.8 mg, 34 %). 1H-NMR (400 MHz, CDCl3) δ (ppm): 1.51 (d, 4H, J = 4.2 Hz), 1.99 (d, 4H, J 

= 4.2 Hz), 2.18 (s, 3H), 3.05 (s, 3H), 3.53 (d, 4H, J = 2.5 Hz), 3.75 (d, 4H, J = 2.4 Hz), 6.61 (m, 

2H), 6.95 (d, 1H, J = 4.8 Hz), 7.02 (m, 3H), 7.39 (d, 1H, J = 4.9 Hz), 7.60 (m, 2H), 7.88 (s, 1H), 

7.98 (d, 1H, J = 4.2 Hz). 13C-NMR (175 MHz, CDCl3) δ (ppm): 12.2, 12.8, 14.3, 29.0, 38.4, 

44.4, 50.2, 66.6, 83.4, 107.8, 107.8, 112.8, 114.0, 115.5, 115.8, 124.2, 125.0, 126.2, 128.2, 128.3, 

129.9, 135.4, 138.1, 138.3, 139.9, 141.4, 143.4, 151.6, 151.7, 153.1, 154.9, 170.1, 170.9, 187.6, 

191.5. ESI-MS: For C39H37N3O8: calculated m/z = 676.2659 [M+H]+; observed m/z = 676.2656 

[M+H]+; 0.4 ppm error. 



 64  
 

2.2.4 Stability of Q3-Rho-Morph Against Biological Reductants  

 Stability studies against biological reductants were performed with a final concentration 

of probe 1 being 5.0 × 10−6 M, using quartz cuvettes (final volume of 3.0 mL) and a Perkin 

Elmer LS55 spectrophotometer (λex  = 490 nm and λem = 520 nm). The buffer used was 0.1 M 

PBS (pH = 7.4, 0.007% BSA, 0.1 M KCl). Stability against NADH was performed in a 100 × 

10−6 M solution of NADH, with and without the presence of human NQO1 (5 × 10−5 g); the 

fluorescence intensity was monitored every 40 sec for 2.2 hr. Stability against biological 

reductants was tested by adding enough reductant to achieve a 1.0 × 10-3 M concentration for 

glutathione, ascorbic acid, and dithiothreitol, and 0.4 mM sodium dithionite, in a 5.0 × 10−6 M 

solution of compound 1 in buffer. The fluorescence intensity was monitored every 0.5 min for 6 hr. 

2.2.5 NQO1 Assay of Compound Q3-Rho-Morph 

NQO1 assays for the conversion of probe 1 to dye 2 were performed by following 

fluorescence intensity (excitation at 485 nm and emission at 520 nm) every minute for at least 20 

minutes using a FLUOstar OPTIMA instrument and Falcon 96-well plates (black with clear 

bottoms).  Recombinant human NQO1 (Sigma-Aldrich) in pH 7.4, 0.1 M PBS and supplemented 

with 0.007% bovine serum albumin (BSA) was used. Stock solutions of compound 1 were 

prepared in ethanol and diluted in buffer to a final concentration between 2.5 × 10−6 and            

60 × 10−6 M. Total volume per well was 200 × 10−6 L with a final NQO1 content of 1 × 10−5 g. 

Assays were initiated by the instrument-injection of NADH so as to yield a final NADH 

concentration of 100 × 10−6 M. The concentration of released 2 at any given time was 

determined from a fluorescence intensity vs. concentration calibration curve (Figure 2.1) for dye 

2 in pH 7.4, 0.1 M PBS and 0.007% BSA.  Rate versus [1] curves were fitted with a non-linear 
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least-squares algorithm so as to obtain Km and Vmax values using the computer program from 

Cleland.26 

 

Figure 2.1. Calibration curve of Rho-Morph in pH 7.4, 0.1 M PBS supplemented with 0.007% 
BSA.  Calibration was performed in a black clear bottom Falcon 96-well plate while exciting at 
λex  = 485 nm and observing the emission at λem = 520 nm. 
  
2.2.6 Q3-Rho-Morph Incubation in Cells and Post Incubation Analysis 

 A549, HT-29, and H596 cells were plated in sterile black plastic Falcon 96-well plates 

overnight to allow the cells to adhere to the bottom of the wells.  Each cell line was plated in 4 

different wells at ~95% confluency.  The next day, the medium was removed and replaced with 10 

µM Q3-Rho-Morph in DMEM/F-12K medium supplemented with 10% FBS. Fluorescence analysis 

was performed using a FLUOStar Optima (BMG Labtech) at 37.0 °C scanning every 15 minutes for 

16 hours, λex = 485 and λem = 520 nm.   

 Post-analysis of the culture medium and cells was performed using the FLUOStar Optima, 

λex = 485 and λem = 520 nm.  The old medium from the experiment was removed and placed into 

0.0 0.5 1.0 1.5 2.0 2.5

0

500

1000

1500

2000

2500

3000

F
lu

or
es

ce
nc

e 
(R

FU
)

[Rho-Morph] x 10-6 Μ



 66  
 

empty wells and fresh medium with no probe was added to the wells containing cells to analyze the 

fluorescence intensities from the cells and medium separately.   

2.2.7 Live Cell Confocal Imaging  

Confocal fluorescence images were acquired with a Leica TCS SP2 tandem scanning 

laser scanning microscope.  Experiments were performed using a 40x oil immersion objective 

lens (1.25 NA).  Imaging of DRAQ5 (nuclear stain) and Q3-Rho-Morph—loaded cells was 

accomplished using a sequential scanning method with excitation via a 488 nm laser and 

collecting emitted light between 500 and 555 nm with a PMT voltage of 790 V.  DRAQ5 was 

excited using a 633 nm laser and emitted light collected between 650 to 750 nm with a PMT 

voltage of 513 V.  Images were frame averaged 6 times.  HT-29, A549, and H596 cells were 

incubated overnight in black 35 x 10 mm, 22 mm well glass bottom dishes (Chemglass Life 

Sciences) in its complete growth medium at 37 °C with 5% CO 2.  Prior to imaging, the medium 

was removed and replaced with F-12K medium (containing no phenol red) maintained at 37 °C.  

From a concentrated solution of Q3-Rho-Morph in DMSO, the probe was added directly to the 

dish to give a concentration of 10 µM (while ensuring approximately 1% or less DMSO with 

respect to medium).  Cells were incubated with Q 3-Rho-Morph for varying amounts of time.  

Five minutes prior to imaging, DRAQ5 was added from a stock solution in DMSO to give a 

concentration of 3.0 µM.  Background for all images was removed in the same fashion using the 

Leica software LAS LF Lite.  Image analysis was performed using ImageJ.   

2.2.8 Formation of Dihydro-Rho-Morph 

 The reduction of Rho-Morph to Dihydro-Rho-Morph was carried out by mixing a 5 µM 

solution of Rho-Morph in 0.1 M PBS with 7 mg NADH (final concentration of 3.3 mM) and 
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observing the change in absorbance over time.  Spectra were collected every hour for 6 hours 

between 400 and 600 nm on a Cary 50 Bio UV-Visible Spectrophotometer.   

2.3 Results and Discussion  

2.3.1 De-Cloaking of Q3-Rho-Morph  
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Figure 2.2. Activation of cloaked fluorophore 1 by human NQO1 to yield the highly fluorescent 
dye 2. 
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The cloaked reporter Q3-Rho-Morph is based on two fundamental units, namely an N-

morpholino-capped rhodamine 221 and a quinone propionic acid trigger group (Q3PA),27 Figure 

2.2. Formation of the de-cloaked Rho-Morph occurs by Q3PA trigger group removal, which is 

composed of two steps. Reductive activation of the Q3PA trigger group of 1 can be initiated via 

chemical27 or enzymatic routes to yield the trimethyl-locked25 hydroquinone that subsequently 

undergoes self-removal to form the lactone and highly fluorescent 2. As previously reported, the 

rate of lactone formation for the Q3PA trigger group is relatively fast in buffered aqueous media, 

with a t1/2  in the minutes time domain.28  We designed the cloaked reporter 1 such that there are 

no concerns over removal of two trigger groups to yield the active reporter,29-30 nor are there 

issues regarding additional slow chemical steps31 to signal the presence of hNQO1 activity. 

To ensure an off-on cloaked reporter system was produced, the emission spectra and 

quantum yield (Φ) values of probe Q3-Rho-Morph and dye Rho-Morph were obtained in 

aqueous media at physiological pH (0.1 M phosphate-buffered saline, PBS, pH = 7.4) using 

Equation 2.1: 

Φ𝐹 =  Φ𝑆 �
∫𝐹𝑒𝑚 ,𝐹
∫ 𝐹𝑒𝑚 ,𝑆

�                                              Equation 2.1 

where Φ F is the quantum yield of the dye, Φ S is the quantum yield of the standard, Fem,F is the 

integration of the fluorescence spectrum of the dye, and F em,S is the integration of the 

fluorescence spectrum for the standard.32  Fluorescein was used as the standard with a quantum 

yield of Φ = 0.95.21  Q3-Rho-Morph exhibits little in the way of fluorescence emission as noted 

by its spectrum in Figure 2.3 and quantum yield of 0.005. However, Rho-Morph is strongly 

fluorescent with a quantum yield of 0.48, leading to a 96-fold difference in quantum efficiencies. 

This significant difference in quantum yields is quite sufficient to classify this reporter system as 

being off-on in nature. 
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Figure 2.3. Fluorescence spectra of Q3-Rho-Morph 1 (blue line) and Rho-Morph 2 (red line) in 
pH 7.4, 0.1 M PBS; concentrations of each were such so as to provide an absorbance of 0.047 at 
465 nm. Excitation wavelength = 490 nm and emission wavelength = 520 nm. 
 
2.3.2 Stability of Q3-Rho-Morph 

 To assess the selectivity of the de-cloaking of probe Q3-Rho-Morph, we investigated its 

stability under physiological solution conditions in the presence of various adventitious, potential 

reducing agents. Upon inspection of Figure 2.4, it is clear that probe 1 (5.0 × 10-6 M) is relatively 

unaffected while in the presence of high concentrations (1 × 10-3 M, 100-fold excess) of various 

reductants: ascorbic acid (AA, E1/2 = 0.051 vs. SHE),33 glutathione (GSH, E1/2 = -0.22 V),34 and 

dithiothreitol (DTT, E1/2 = -0.33 V).35 As a control, a strong reducing agent (sodium dithionite, 4 

× 10-4 M final concentration) known to efficiently reduce the Q3PA trigger group was added to a 

5.0 × 10-6 M solution of probe 1 to provide a signal for ~100% activation of the probe. GSH and 

AA are found to have minimal effect (~3–4% activation at 8 min), while DTT caused a slightly 

higher (~8%) increase in fluorescence. Based on these results, cloaked probe 1 is highly stable 
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toward activation by possible biological interferents, such as glutathione that is known to be 

present at millimolar concentrations within cells and micromolar levels in the blood stream.36-37 

 

Figure 2.4. Fluorescence response of probe 1 (5.0 × 10-6 M) in pH 7.4, 0.1 M PBS while in the 
presence of 1 × 10-3 M DTT, AA, and GSH relative to the complete activation of 1 by 4 × 10-4 M 
sodium dithionite. 
 
 We determined the ability of hNQO1 to de-cloak 1 to yield dye 2 upon activation of the 

Q3PA trigger group (Ep,c = -0.28 V vs. SHE). Solutions of probe 1 exhibited a rapid increase in 

fluorescence after hNQO1 (5.0 × 10-5 g) was added (Figure 2.5), pointing to efficient de-cloaking 

of the dye by hNQO1. Under the same conditions in the absence of hNQO1, i.e. an aqueous 

solution containing only β-NADH cofactor (1 × 10-4 M; E1/2 = -0.31 V)38 in 0.1 M PBS, there 

was no evidence for hydrolytic or NADH-based activation of cloaked reporter 1. Thus, cloaked 

reporter 1 can be used to quickly detect hNQO1 activity. 
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Figure 2.5. Fluorescent signal from the activation of 5.0 × 10-6 M 1 in a 1 × 10-4 M solution of 
NADH in the presence and absence of recombinant human NQO1 (5 × 10-5 g, 8 × 10-6 M) in pH 
7.4, 0.1 M PBS with 0.007% bovine serum albumin. Excitation wavelength = 490 nm and 
emission wavelength = 520 nm. 
 
2.3.3 Q3-Rho-Morph Substrate Analysis With hNQO1 

 In order to quantitatively evaluate the ability of hNQO1 to activate 1 with time, kinetic 

parameters were obtained for hNQO1 based on the release of 2. The amount of 2 present was 

obtained by observing the intensity of its fluorescence (λex  = 485 nm and λem = 520 nm) and 

converting this to a concentration by use of a calibration curve for 2, which was linear over the 

concentration ranges studied. Monitoring fluorescent product formation is a common approach 

for enzymatic activation of cloaked fluorophores.22, 39 The initial rate of product formation V was 

obtained for 2 concentrations of 2.5–60 × 10-6 M and then plotted as a function of [1], as 

presented in Figure 2.6. Kinetic parameters were determined by non-linear, least-squares fitting 

of the data in Figure 2.6 to the Michaelis–Menten equation.26  The Michaelis constant (Km) value 

was determined to be 23.7 ± 3.5 µM, maximum velocity  (Vmax) was 0.00214 ± 0.00013 µmol 

min-1 mg·NQO1-1, catalytic activity (k cat ) was 0.00110 ± 0.00007 sec,-1 catalytic efficiency 

(k cat /Km) was 46.4 ± 7.4 M-1 sec-1, and the error from fitting was χ2 =5.6 × 10-9,.  Based on the 

values for Vmax, k cat , and k cat /Km, it can be concluded that Q3-Rho-Morph is a good substrate 
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(though not the best) for hNQO1 when compared to substrates containing the same Q3PA 

activatable group.17, 29, 31  The cause for lower catalytic efficiency could be in part due to the 

bulky rhodamine110  species to which the Q3PA is directly conjugated.  This steric hindrance 

would potentially slow the rate at which Q3-Rho-Morph moves into the active site in hNQO1.   

 
Figure 2.6. Kinetic plot for recombinant human NQO1 (1 × 10-5 g) towards 1 in pH 7.4, 0.1 M 
PBS, and 0.007% bovine serum albumin. Solid blue line indicates best fit to Michaelis–Menten 
equation. 
 
2.3.4 hNQO1 Sensor Using Q3-Rho-Morph 

 With the evidence that Q3-Rho-Morph is activated by hNQO1, is stable towards certain 

biological reductants, and has a large 96-fold fluorescence enhancement (FE), we set out to 

determine if the dye could be used as an hNQO1 sensor in cancer cells.  First, a simple test was 

used to determine if cells known to contain hNQO1 could significantly activate Q3-Rho-Morph 

when compared to cells devoid of hNQO1.  The three cell lines used had been previously studied 

for hNQO1 activity and are: HT-29 (colorectal carcinoma, hNQO1-positive), A549 (NSCLC, 

hNQO1-positive), and H596 (NSCLC, hNQO1-negative).14, 40    When in the presence of 10 µM 

Q3-Rho-Morph, an almost linear increasing fluorescence was found for not only the two positive 
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cells lines, but also the negative cell and even the medium (though only a 1.5-fold increase),  

Figure 2.7. 

 
Figure 2.7.  Following the fluorescence in HT-29 cells (red, dot), A549 cells (blue, solid), H596 
cells (green, dash), and DMEM/F-12K with 10% fetal bovine serum (black, dot-dot, dash) when 
in the presence of 10 µM Q3-Rho-Morph.  Samples were scanned every 15 minutes over a 16 
hour period with λex  = 485 nm and λem = 520 nm.   
 

Based on the fact that there was a significant increase in signal over 16 hours for A549 

(4.8-fold increase) and HT-29 (3.3-fold increase), it is believed that the increase is due to 

conversion of Q3-Rho-Morph to Rho-Morph.  Over the same time period, an increase in 

fluorescence was also found for the negative cell line H596 (2.6-fold increase) and also the dye 

in complete DMEM/F-12K growth medium (1.6-fold increase).   

 To again assess the applicability of Q3-Rho-Morph as a rapid sensor for hNQO1 in 

cancer cells, confocal imaging was performed on HT-29, A549, and H596 cells lines after 

incubation with the probe.  Cells were always cultured overnight and plated at ~80% confluency 

in the imaging dishes to allow for adhesion of the cells to the glass bottom.  To simplify the 

imaging process, the culture medium containing dye was never removed from the wells and the 

cells were never washed prior to observing the cells under the confocal microscope.  The first 
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complication was found to be the amount of weak signal arising intracellularly.  It was found that 

the only way to achieve usable images was to use a high (790 V) PMT detector voltage, which 

also produced signal from the probe in the medium.  Secondly, there was no differentiation 

between the two cell lines (HT-29 and A549) known to contain hNQO1 and the cell line (H596) 

which is devoid of the enzyme.  As seen in Figure 2.8, all three cell lines essentially look the 

same (with minimal background removed using the imaging software) with respect to the 

amount of green signal, which is derived from the excitation at 488 nm.  The nuclei are blue in 

each image.  Using the program ImageJ, the relative average cytosolic intensities for each cell 

line were determined from the images in Figure 2.8.  HT-29 (A) was found to have an average 

intensity at 11.4, A549 (B) at 22.5, and H596 (C) at 17.1.  These values confirm the fact that 

A549 and HT-29 cannot be distinguished from H596.  This type of experiment was performed 

multiple times with varying concentrations of Q3-Rho-Morph and varying incubation times, all 

leading to similar images where no cell line could be labeled as “hNQO1-positive” or “hNQO1-

negative”.     

   

Figure 2.8. Confocal imaging of HT-29 (A), A549 (B), and H596 (C) cells after a one hour 
incubation with 10 µM Q3-Rho-Morph (green).  Cells were all stained with 3.0 µM DRAQ5, 
which is labeled in blue.  Cells were imaged using 488 nm and 633 nm lasers to excite Rho-
Morph and DRAQ5, respectively.   
 

A B C 
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It was next illustrated that changing certain variables, such as incubation time, would lead 

to similar results as seen in Figure 2.8.  To do this, we incubated A549 and H596 cells with Q3-

Rho-Morph for 24 and 72 hours and obtained fluorescence images at each time period, Figure 

2.9.   

     

     

Figure 2.9.  Confocal imaging of A549 cells after 24 and 72 hours of incubating with Q 3-Rho-
Morph, A and B respectively, and H596 cells after 24 and 72 hours of incubating with Q 3-rho-
Morph, C and D respectively.  Cells were imaged while exciting at 488 nm, represented by green 
in each image.   
 

It is clearly visible that the intensities in both cell lines increase from 24 to 72 hours, but 

A549 never obtains substantially more signal than H596.  Using ImageJ to analyze the cytosolic 

signal of each image, values for A549 at 24 hours and 72 hours were found to be 18.0 and 32.9, 

B A 

D C 
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respectively.  Values for H596 at 24 hours and 72 hours were found to be 11.3 and 23.2, 

respectively.  Also of note, the PMT detector voltage was left the same between the two 

incubation periods which indicates a lack of formation or accumulation of Rho-Morph in the 

cells.  This lack of intense signal leads me to believe there is either no (or very little) activation 

to Rho-Morph, degradation of Q3-Rho-Morph, or efflux/quenching of Rho-Morph in the hNQO1 

positive cell lines.  

2.3.5 Elucidating the Negatives of Q3-Rho-Morph 

To try and elucidate the mechanism(s) for which Q3-Rho-Morph failed to be used as an 

in vitro hNQO1 sensor, several experiments were performed involving stability of Q3-Rho-

Morph and Rho-Morph.  First, the stability of Q3-Rho-Morph was tested at a low pH (4.0) to 

determine if there was any degradation due to the low pH of acidic compartments in cells.  A 10 

µM solution of Q3-Rho-Morph was made in pH 4.0, 0.1 M PBS and fluorescence was checked 

for 16 hours while exciting at 485 nm and following the emission at 520 nm.  As seen in Figure 

2.10, there is no significant change in fluorescence.  In fact, the change that does occur is similar 

to the results in Figure 2.4.  Over the first 15 minutes, an increase of 4% is seen and 14% over 

the first hour.  This provides evidence that low intracellular pH would not degrade the sensor and 

thus lead to little gain in fluorescence when imaging.   
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Figure 2.10.  Following the fluorescence of Q3-Rho-Morph over time while in pH 4.0, 0.1 M 
PBS.  λex  = 485 nm and λem = 520, scanning every 15 minutes for 16 hours.   
 
 The next goal was to try and determine the fate of Rho-Morph after its production in the 

hNQO1-positive cell lines.  Though Q3-Rho-Morph was found to be stable towards biological 

reductants, Rho-Morph was tested against one of the more prevalent intracellular reducing 

species, NADH.  NADH has a reduction potential of -0.31 V and the concentration in human 

breast cancer cells has been calculated to be 168 ± 49 µM.38, 41  A 5 µM solution of Rho-Morph 

was made up in pH 7.4, 0.1 M PBS, and NADH was added to give a concentration of 100 µM.  

From this, fluorescence intensity was followed over time.  In Figure 2.11, it is seen that NADH 

rapidly reduces the signal from Rho-Morph.  One hour after the addition of NADH, Rho-Morph 

produces 30% less fluorescence.  This is a significant reduction in signal with a relatively low 

NADH concentration, as compared to intracellular concentrations. 
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Figure 2.11.  Observing the signal reduction of a 5 µM solution of Rho-Morph in pH 7.4, 0.1 M 
PBS with 100 µM NADH.  Sample was scanned every 5 minutes over 5 hours, λex  = 490 nm and 
λem = 520 nm.   
 

Observing that the signal decreases over time after NADH is introduced also shows the 

reduction of fluorescence of Rho-Morph is most likely not a photophysical property, but rather a 

chemical interaction between the two compounds.  Similar nonfluorescent “dihydro” forms of 

rhodamine and fluorescein dyes were found to have been patented and are currently 

commercially available for the detection of intracellular reactive oxygen species.42  These dyes 

were synthesized by the reduction of the parent dye via sodium borohydride in buffer until no 

absorption band (λ = 490 nm) appeared, after which the dye was diluted as is and used 

immediately in cell studies.  After being re-oxidized, these sensors regained their fluorescence.  

It was postulated Rho-Morph was undergoing a similar reduction by NADH, Scheme 2.2.   
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Scheme 2.2.  Possible conversion of the quinoid version of Rho-Morph to a Dihydro-Rho-Morph 
species via reduction by NADH.   
 

To test this theory, a 5 µM solution of Rho-Morph in pH 7.4, 0.1 M PBS was added 

sufficient NADH to give a final concentration of 3.3 mM.  The absorbance spectrum was 

scanned over a 6 hour period in one hour intervals in the region where Rho-Morph is excited 

(400-600 nm), Figure 2.12.  As seen below, the absorbance diminished to 3% of its original 

absorbance at λ = 485.  After the first hour, the absorbance at λ = 485 nm had dropped by 43%, 

and 71% after the first 2 hours. This observation of reduction and absorbance decrease leads to 

the conclusion that the Dihydro-Rho-Morph is not be fluorescent, similar to the commercially 

available dyes. 
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Figure 2.12.  Observing the reduction and change in absorbance of Rho-Morph to Dihydro-Rho-
Morph via reduction in a 3.3 mM solution of NADH.   
 

    Though NADH is not as strong as a reducing agent as sodium borohydride, we 

speculated the electron withdrawing urea group on Rho-Morph would sufficiently lower the 

reduction potential of the dye allowing Rho-Morph to be reduced by NADH at higher 

concentrations.  This formation of Dihydro-Rho-Morph intracellularly would be in competition 

with the formation of Rho-Morph from Q3-Rho-Morph and the re-oxidation of Dihydro-Rho-

Morph into its fluorescent form.    

 A reason why Q3-Rho-Morph possibly failed as an in vitro sensor could be due to the 

specific form that Rho-Morph exists while being intracellular that was published by Watkins et 

al.43  Their group discovered a perturbation in the equilibrium of the rhodamine quinoid and 

lactone species when rhodamine was mono-conjugated with an electron withdrawing group, such 
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as a urea bond, Scheme 2.3.  This created a shift towards the cell membrane permeant/non-

fluorescent lactone form.  This issue explains the lack of dye accumulation in the hNQO1-

positive cell lines and the need to image with a high PMT detector voltage.  This theory was 

tested by removing the medium from the wells after the end of experiment in Figure 2.7 and 

measuring the fluorescence of the medium and cells and comparing the two values to determine 

if a majority of the dye signal was present in medium.  At the end of that experiment, wells 

containing A549 cells and the used medium had an average intensity of 33,347; HT-29 had 

26,541, and 17,758 relative fluorescence units (RFU).  After removing the old medium and 

placing it in an empty well, the signal arising from the cells with fresh medium and also the old 

medium by itself was measured, with the results in Table 2.1.  From the data collected, it was 

found that the intensity of A549 cells was only 3.4% of that from the used medium.  Similar 

results were found for HT-29 and H596 cells, 7.4% and 6.0% respectively.  First observations 

were that the intensities were higher when measuring the fluorescence from the old medium with 

no cells compared to the values obtained at the end of the incubation period with the cells.  This 

can be attributed to the bottom-read nature of the FLUOStar Optima and that the cell layer was 

most likely acting as a filter between the detector and medium.  It is also clear that the signal 

attributed to the cells with fresh medium was low for all cell lines, demonstrating the lack of 

accumulation of Rho-Morph in each cell line.  While the signal from the old A549 medium is 

significantly higher (55%) than that derived from the H596 cells, the HT-29 medium signal was 

only 15% higher than that of H596.  These old medium intensities are similar to what was seen 

in Figure 2.7, leading to a very plausible efflux mechanism to which Rho-Morph shifts to the 

lactone form and moves from intracellular to extracellular.   
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Scheme 2.3.  Shift in equilibrium from the fluorescent quinoid form to the non-
fluorescent/membrane permeable lactone form. 
 
 
Table 2.1.  Summary of fluorescence intensities in cells and culture medium after incubating in 
culture medium containing 10 µM Q3-Rho-Morph for 16 hours. λex  = 485 and λem = 520 nm.  
Units are in RFU.   
 

Cells Only Old Medium 
A549 H596 HT-29 A549 H596 HT-29 
1804 1275 1835 46888 21184 24890 

 

2.4 Conclusions 

 Based on the data presented here, we have clearly demonstrated that the turning on (de-

cloaking) of the new cloaked fluorophore Q3-Rho-Morph under physiological solution 

conditions is sensitive to the presence of hNQO1, while the de-cloaking is sufficiently selective 

with regard to the presence of potential interferents.  Importantly, Q3-Rho-Morph was designed 

to utilize ‘‘single-hit’’ enzyme activation; in other words, only a single stimulus is required to 

cause signal transduction (the release of Rho-Morph).  In addition, the signal revealing process 

for the activated species is efficient, as it requires only one step (hydroquinone lactonization).  

Though the biological stability of Q3-Rho-Morph and the photophysical properties of Rho-

Morph were promising as an in vitro sensor, there were unforeseen pitfalls with the Rho-Morph 

scaffold that led to the inability to use Q3-Rho-Morph in cellular studies.  One shortcoming was 

Polar Medium 
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found to be the formation of a nonfluorescent Dihydro-Rho-Morph species following the 

reduction of Rho-Morph by NADH.  Another issue with Rho-Morph was published by Watkins 

et al.43 and leads to the postulation that in the presence of polar media, Rho-Morph favors a 

nonfluorescent/cell membrane permeable lactone form over the fluorescent quinoid form.  This 

is due to the electron withdrawing urea group on one side of the xanthene ring system.  Though 

Q3-Rho-Morph is not suitable for intracellular hNQO1 sensing, it is quite useful for enzymology 

studies with hNQO1 due to the single-hit activation mechanism and the large FE from the 

quenched dye to the de-quenched dye.  It also has provided invaluable information in regards to 

the future design of cloaked fluorescent sensors, regardless of the specific activation mechanism.   
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CHAPTER 3 

NAPHTHALIMIDE-BASED CLOAKED FLUOROPHORE FOR THE RAPID AND 
FACILE DETECTION OF HUMAN NAD(P)H:QUINONE OXIDOREDUCTASE-1 IN 

TUMOR CELLS 
 

3.1 Introduction 

 To obtain the best prognosis possible in dealing with cancer, it is desirable to have an 

accurate and early diagnosis and resect as much tumor(s) as possible.1-2  This is conceivable by 

having a highly sensitive and selective probe that has the ability to detect circulating cancer cells 

or rapidly give proof-positive results from a biopsy of ex vivo tumors.  By providing real-time 

information on the tumor microenvironment, a better determination of pharmacodynamic effect 

of drugs on the specific tumor cells can be obtained.  This will lead to better prediction and 

evaluation of which therapy should be undertaken.3  With complete resection of tumors 

correlating to “curing” patients, it is highly important to determine small tumor locations and 

accurate borders between tumors and healthy tissues.2, 4-5  Fluorescence-guided surgical resection 

has been of great interest recently with the production of several varieties of activatable 

fluorophores ranging from cell penetrating peptides, aptamers, enzyme catalyzed fluorophores, 

and biosynthetically produced fluorophores.6-9  Previously reported enzyme activatable probes 

for tumor detection are primarily activated by: cathepsin, caspase, γ-glutamyltranspeptidase, and 

matrix metalloproteinase.8, 10-12  By selecting a specific enzyme biomarker with unique properties 

that is highly upregulated in tumor cells from a wide range of origin, it is possible to produce a 

single sensor with multifunctional capabilities. 

 Multifunctional fluorescent-based sensors have recently become a powerful tool in the 

treatment and diagnosis of cancer, given their specific and sensitive nature.13  The use of smart 

off-on sensors, where the fluorescence is quenched and only revealed after a specific stimulus, 
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provide a more ideal system due to the sensitivity, low signal-to-background ratio, specificity, 

more economical when using fewer synthetic steps and inexpensive starting materials, and 

stability in biological environments.13-14  This strategy can utilize the upregulation of specific 

enzymes in tumor cells with respect to normal tissue.  Enzymatically cleavable groups can be 

conjugated directly to fluorophores causing a quenching effect of the fluorescent signal, with the 

subsequent generation of the fluorescent species upon the removal of the cleavable group.  This 

enzyme catalyzed off-on sensor is more advantageous than receptor-mediated diagnosis, which 

commonly employs “always-on” probes containing high background signal and require 

considerable time to achieve a desirable background-to-signal ratio.8, 15  Ideally, the sensor would 

be of low molecular weight (<1000 Da) and be hydrophobic in nature to facilitate diffusion and 

retention in tumor cells.13 

 One of the more prolific upregulated cytosolic enzymes present in a wide variety of 

tumor cells is NAD(P)H:quinone oxidoreductase-1 (NQO1), which is widely distributed and 

found to be over-expressed 2- to 50-fold (with respect to normal tissue) in human tumors ranging 

from colon, breast, lung (small cell and non-small cell lung cancers), liver, stomach, kidney, 

head/neck, to ovarian carcinomas.16-17  This flavoprotein catalyzes the two-electron reduction of 

quinones and quinoid species, preventing the formation of reactive oxygen species (ROS) from 

the single-electron reduction of quinones to semiquinones.  Given its over-expression in tumor 

cells and its enzyme catalyzing reaction, NQO1 has been previously studied as a bioactivator for 

chemotherapeutics.18-19  Outside of its enzymatic characterization, NQO1 is a multitasking 

enzyme and has also been associated as being a gatekeeper for the 20S proteasome pathway and, 

though the exact mechanism is still unclear, stabilizing the tumor suppressors p53, p73α, and 

p33.20  The suppressor p53 is activated under conditions of stress which initiates cell cycle arrest, 
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DNA repair, and apoptosis and is also important in suppressing tumor initiation and growth.  

More than half of all human cancers have been known to have lost p53 function.21     

 

 
 
Figure 3.1. Passive diffusion of the hNQO1 sensor (Q3NN) across the cell membrane, followed 
by enzymatic activation with subsequent release of the fluorescent dye NN.   
 
3.2 Experimental Section 

Here, the design, characterization, and utilization of a first generation activatable cloaked 

fluorophore enzymatically activated by NQO1 is reported.  This fluorophore contains an 

activatable trimethyl-locked quinone subunit that, after reduction, rapidly cyclizes leaving behind 

the reporter fluorophore. This sensor employs a unique two-step quenching mechanism of 

photoinduced electron transfer (PeT), allowing it to be highly sensitive and specific for NQO1 

activity.  This two-step PeT exploits the two-electron reduction from NQO1 and only reveals its 

fluorescence after quinone elimination, circumventing false activation from non-specific single-

electron reduction of the quinone unit.  The sensor is hydrophobic, small in molecular weight, 

and neutral in charge, allowing it to easily passively diffuse into the cytosol of tumor cells, 
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Figure 3.1.  The product dye contains a naphthalimide scaffold and is fluorescent via a push-pull 

internal charge transfer (ICT) mechanism.  The dye was found to be highly fluorescent in 

aqueous media and is cationic at neutral pH.  Given its rapid activation mechanism, it provides 

real-time tumor cell analysis and allows for quick tumor cell differentiation with respect to 

NQO1.  

3.2.1 Materials and Methods 

 3-(3',6'-dioxo-2',4',5'-trimethylcyclohexa-1',4'-diene)-3,3-propionic acid (Q1PA, 6A) and 

3-(3',6'-dioxo-2',4',5'-trimethylcyclohexa-1',4'-diene)-3,3-dimethylpropionic acid (Q3PA, 6B) 

were prepared according to literature procedures.22  All chemicals were purchased from Sigma-

Aldrich or Fisher Scientific and used as received.  For column chromatography, a Biotage 

FlashMaster Personal was used with 50 g SNAP silica columns (Biotage).  Thin layer 

chromatography was performed on aluminum-backed 60 F254 silica plates from EMD 

Chemicals, INC.  1H- and 13C-NMR spectra were collected at room temperature on a Bruker AV-

400 or a Varian system 700 spectrometer.  All NMR experiments were performed in deuterated 

solvents and the chemical shifts are reported in standard δ notation as parts per million using 

tetramethylsilane as an internal standard.  Peaks in NMR are listed as either, singlet (s), doublet 

(d), doublet of doublets (dd) triplet (t), multiplet (m), two triplets (2t) while coupling constants 

(J) are reported in Hertz (Hz).  Mass spectral analyses were carried out using an Agilent 6210 

ESI-TOF.   

3.2.2 Cell Culture 

 HT-29 (human colorectal adenocarcinoma), A549 (human NSCLC), H596 (human 

NSCLC), and H446 (human small cell lung cancer) were all purchased from American Type Cell 

Culture.  HT-29 cells were cultured in McCoy’s 5A medium supplemented with 10% fetal 
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bovine serum (FBS) and 100 IU/mL penicillin-streptomycin.  A549 cells were cultured in F-12K 

medium supplemented with 10% FBS and 100 IU/mL penicillin-streptomycin.  H596 were 

cultured in RPMI-1640 supplemented with 10% FBS and 100 IU/mL penicillin-streptomycin.  

H446 were cultured in RPMI-1640 supplemented with 10% FBS and 100 IU/mL penicillin-

streptomycin.  Cells were incubated at 37 °C in a humidified incubator containing 5% wt/vol 

carbon dioxide (CO2).  

NNOO OO

NNHH22

OO OO

NNHH22

OO
NNHH22

EEttOOHH,, rreefflluuxx

NNHH
OOHH BBoocc22OO

CCHH22CCll22
NN

HHOO OO

OO
11)) PPhhoossggeennee
    TToolluueennee,, NNaa22CCOO33

22)) 22
    DDMMFF

33 44

NNOO OO

HHNN OO

OO
NNHH22

33)) TTFFAA
    CCHH22CCll22

55

EEDDCCII,, HHOOBBtt

DDMMFF

NNOO OO

HHNN OO

OO
NN

OO

OO

OO
RR RROO

QQ11NNNN:: RR == --HH
QQ33NNNN:: RR == --MMee

11 22

55

OO

OO
RR

RR

OO

OOHH

66AA:: RR == --HH
66BB:: RR == --MMee

7777%%

6699%%

6600%%

QQ11NNNN:: 3377%%
QQ33NNNN:: 3311%%

 

Scheme 3.1. Synthetic route for Q3NN and Q1NN.  

3.2.3 4-Amino-9-(N-butyl)-1,8-naphthalimide Synthesis 

 4-amino-1,8-napthalic anhydride 1 (0.99 g, 4.64 mmol) was dissolved in 250 mL 200 

proof ethanol under a nitrogen atmosphere and brought to reflux.  To this solution was added 1-

butylamine (1.84 mL, 18.56 mmol), after which the reaction was left to reflux for 14 hours.  
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After cooling to room temperature, the solvent was removed under reduced pressure and the 

crude product was collected and purified using silica gel column chromatography (2:1 

DCM:EtOAc, Rf  = 0.38).  Product was collected, solvent removed, and the solid was placed 

under high vacuum yielding 2 as a yellow solid (0.95 g, 77%).  1H-NMR (DMSO-d6 , 400 MHz): 

δ 8.57 (1H, d, J = 8.3 Hz), 8.39 (1H, d, J = 7.2 Hz), 8.15 (1H, d, J = 8.3 Hz), 7.62 (1H, t, J = 7.5 

Hz), 7.41 (2H, s), 6.81 (1H, d, J = 8.7 Hz), 3.98 (2H, t, J = 7.1 Hz), 1.55 (2H, m, J = 7.4 Hz), 

1.30 (2H, m, J = 7.4 Hz), and 0.89 (3H, t, J = 7.3 Hz).  13C-NMR (DMSO-d6 , 100 MHz): 

δ 164.2, 163.4, 153.1, 134.4, 131.4, 130.1, 129.7, 124.4, 122.3, 119.8, 108.6, 108.0, 30.3, 20.3, 

14.2. ESI-MS: for C16H16N2O12: calculated m/z = 291.1104 [M + Na]+; observed m/z = 

291.1111 [M + Na]+; 2.4 ppm error. 

3.2.4 tert-Butyl-2-hydroxyethyl(methyl)carbamate Synthesis 

 N-(methylamino)ethanol 3 (4.41 g, 55.1 mmol) was dissolved in dry THF under nitrogen 

atmosphere and chilled using an ice bath.  Di-tert-butyl dicarbonate (35.8 mL of a 2 M solution 

in THF, 71.7 mmol) was added slowly to the reaction mixture and left to stir for 2 hours.  The 

solvent was removed under vacuum and the crude product was purified using silica gel 

chromatography (1:1 Hexanes:EtOAc, Rf  = 0.37).  Product was collected and after a night on 

high vacuum afforded 4 as a slight yellow to colorless oil (6.67 g, 69%).  1H-NMR (CDCl3, 400 

MHz): δ 3.63 (2H, t, J = 5.6 Hz), 3.27 (2H, t, J = 6.1 Hz), 2.83 (3H, s), 1.36 (9H, s).   13C-NMR 

(CDCl3, 100 MHz): δ 154.0, 79.6, 60.8, 60.0, 51.1, 35.3, and 28.2.  ESI-MS: for C16H16N2O12: 

calculated m/z = 198.1101 [M + H]+; observed m/z = 198.1101 [M + H]+; 0.0 ppm error. 

3.2.5 NN Synthesis  

To a dry round bottom flask under argon atmosphere was added 120 mL dry toluene and 

sodium carbonate (4.65 g, 0.044 mol).  To the toluene suspension was added phosgene (28.5 mL 
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from a 20% solution in toluene, 53.5 mmol) and 100 µL dry DMF, after which the solution was 

chilled in an ice bath.  4 (1.9 g, 10.7 mmol) was dissolved in 20 mL dry toluene and slowly 

added to the phosgene solution over a 10 minute period.  After 2 hours, nitrogen was rapidly 

bubbled through the reaction for 30 minutes to remove excess phosgene.  Reaction was then 

filtered and solvent removed under reduced pressure.  The colorless oil product was dissolved in 

15 mL dry DMF under a nitrogen atmosphere and 2 (0.36 g, 1.34 mmol) was added.  After 

stirring for 20 hours the DMF was removed using a rotary evaporator.  Product was partially 

purified using silica gel column chromatography (2:1 DCM:EtOAc), leaving a yellow solid after 

removal of the solvent. 

 The partially purified product was dissolved in 15 mL dry DCM under nitrogen 

atmosphere to which 10 mL trifluoroacetic acid was added slowly.  After one hour, the solvent 

was removed and the product was purified using silica gel column chromatography (1:5 

DCM:EtOAc, Rf  = 0.22).  Removal of the solvent yielded 5 as a yellow solid (0.298 g, 60%).  

1H-NMR (DMSO-d6 , 400 MHz): δ 8.70 (1H, d, J = 8.4 Hz), 8.51 (2H, dd,  J = 7.4 Hz), 8.17 (1H, 

d, J = 8.2 Hz), 7.86 (1H, t, J = 7.5 Hz), 4.44 (2H, t, J = 4.9 Hz), 4.03 (2H, t, J = 7.4 Hz), 3.30 

(2H, t, J = 5.2 Hz), 2.65 (3H, s), 1.60 (2H, m, J = 7.6 Hz), 1.33 (2H, m, J = 7.5 Hz), 0.91 (3H, t, 

J = 7.4 Hz). 13C-NMR (DMSO-d6 , 100 MHz): δ 163.9, 163.4, 158.5, 158.2, 154.2, 140.9, 132.1, 

131.5, 129.7, 128.8, 126.9, 124.4, 122.8, 119.2, 119.0, 117.8, 116.2, 61.1, 47.9, 33.4, 31.2, 30.1, 

20.3, 14.2. ESI-MS: for C16H16N2O12: calculated m/z = 370.1761 [M + H]+; observed m/z = 

370.1760 [M + H]+; 0.3 ppm error. 

3.2.6 Q1NN Synthesis  

 5 (55.2 mg, 0.15 mmol) was dissolved in 4 mL DMF under a nitrogen atmosphere, to 

which 60 µL triethylamine was added.  To DMF was added HOBt (41.0 mg, 0.30 mmol) and 
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EDCI (58.0 mg, 0.30 mmol), and 6A (33.0 mg, 0.15 mmol).  Reaction was left to stir for 12 

hours, after which the solvent was removed under high vacuum.  Product was purified using 

silica gel column chromatography (1:1 DCM:EtOAc, Rf  = 0.29).  Removal of the solvent 

afforded Q1NN as a yellow solid (31.8 mg, 37%).  1H-NMR (DMSO-d6 , 400 MHz): δ 8.66 (1H, 

dd, J = 7.7 Hz), 8.49 – 8.37 (2H, m, J = 8.2 Hz), 8.11 (1H, dd, J = 8.2 Hz), 7.82 (1H, m, J = 9.0 

Hz), 4.34 & 4.28 (2H, 2t, J = 5.9 Hz), 4.03 (2H, t, J = 4.2 Hz), 3.63 (2H, t, 5.8 Hz), 3.02 – 2.89 

(3H, m), 2.55 (2H, m, J = 8.2 Hz), 2.35 (2H, m, J = 8.4 Hz), 1.90 (5H, m), 1.80 – 1.72 (4H, m), 

1.59 (2H, m, J = 8.0 Hz), 1.34 (2H, m, J = 7.7 Hz), and 0.91 (3H, t).  13C-NMR (DMSO-d6 , 175 

MHz): δ 186.9, 186.6, 186.4, 186.2, 171.4, 171.1, 163.4, 162.9, 154.0, 142.6, 140.7, 140.5, 

140.3, 140.1, 139.9, 139.8, 139.7, 131.6, 130.9, 129.4, 128.3, 126.4, 124.0, 122.2, 118.5, 118.3, 

117.1, 72.0, 70.1, 62.5, 62.3, 48.2, 46.4, 35.8, 33.1, 31.6, 30.9, 29.7, 22.3, 22.1, 19.8, 13.7, 12.1, 

12.0, 11.9, 11.7, and 11.6.  ESI-MS: for C16H16N2O12: calculated m/z = 574.2548 [M + H]+; 

observed m/z = 574.2556 [M + H]+; 1.4 ppm error.,  

3.2.7 Q3NN Synthesis 

 5 (113 mg, 0.31 mmol) was dissolved in 5 mL DMF under a nitrogen atmosphere, to 

which 400 µL triethylamine was added.  To DMF was added HOBt (83.8 mg, 0.62 mmol) and 

EDCI (118.9 mg, 0.61 mmol), and 6B (77.5 mg, 0.31 mmol).  Reaction was left to stir for 12 

hours, after which the solvent was removed under high vacuum.  Product was purified using 

silica gel column chromatography (1:1 DCM:EtOAc, Rf  = 0.61).  Removal of the solvent 

afforded Q3NN as a yellow solid (57.8 mg, 31%).  1H-NMR (DMSO-d6 , 400 MHz): δ 8.68 (1H, 

t, J = 9.4 Hz), 8.49 (2H, m, J = 6.6 Hz), 8.14 (1H, m, J = 8.2 Hz), 7.84 (1H, m, J = 5.4 Hz), 4.37 

& 4.20 (2H, 2t, J = 5.6 Hz), 4.03 (2H, t, J = 7.3 Hz), 3.66 & 3.54 (2H, 2t, J = 5.3 Hz), 3.05 – 

2.80 (5H, m, J = 22.4 Hz), 1.97 (3H, d, J = 5.3 Hz), 1.83 – 1.77 (6H, m, J = 9.8 Hz), 1.60 (2H, 
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m, J = 6.5 Hz), 1.35 – 1.29 (8H, m, J = 7.4 Hz), and 0.91 (3H, t).  13C-NMR (DMSO-d6 , 175 

MHz): δ 190.3, 186.8, 171.9, 171.5, 163.5, 162.9, 155.3, 153.9, 143.2, 140.6, 136.5, 134.6, 

131.6, 128.3, 124.0, 122.3, 117.3, 62.5, 46.2, 45.7, 37.3, 37.2, 33.2, 29.7, 27.9, 19.8, 13.7, 12.5, 

and 11.6.  ESI-MS: for C16H16N2O12: calculated m/z = 602.2861 [M + H]+; observed m/z = 

602.2872 [M + H]+; 1.8 ppm error. 

3.2.8 Acetyl-NN Synthesis 

 5 (63.5 mg, 0.17 mmol) was dissolved in 2 mL dry DMF under a nitrogen atmosphere.  

From a 1 M solution in DCM, 0.8 mL acetyl chloride (0.8 mmol) and 0.2 mL triethylamine was 

added to the DMF solution.  Reaction was left to stir for 4 hours, after which the solvent was 

removed using a rotary evaporator.  Product was purified using silica gel chromatography (1:4 

DCM:EtOAc, Rf  = 0.13).  Solvent was removed and Acetyl-NN collected as a yellow solid (28.4 

mg, 40%).  1H-NMR (DMSO-d6 , 400 MHz): δ 8.61 (1H, m), 8.49 (2H, m, J = 7.3 Hz), 8.11 (1H, 

m, J = 2.6 Hz), 7.83 (1H, m, J = 7.4 Hz), 4.35 – 4.27 (2H, 2t), 4.02 (2H, t, J = 7.3 Hz), 2.63 (2H, 

m, J = 12.6 Hz), 3.05 – 2.86 (3H, 2s), 2.04 – 1.99 (3H, 2s), 1.60 (2H, t, J = 7.4 Hz), 1.35 (2H, t, J 

= 7.5 Hz), and 0.91 (3H, t, J = 7.6 Hz).   ESI-MS: for C16H16N2O12: calculated m/z = 412.1867 

[M + H]+; observed m/z = 412.1872 [M + H]+; 1.2 ppm error. 
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Scheme 3.2. Synthesis of Acetyl-NN.   
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3.2.9 Cyclic Voltammetry 

 Cyclic voltammetry was performed on NN and Q3PA in dry acetonitrile and 0.1 M 

tetrabutylammonium perchlorate.  Princeton applied research potentiostat/galvanostat model 

273A was used along with the program Power suite-2.53.  Voltammograms were collected at 

room temperature after degassing the solution with nitrogen for 20 minutes.  A glassy-carbon 

electrode (pretreated for ten minutes) was used as the working electrode, platinum wire as the 

counter electrode, and a silver (Ag/Ag+) reference electrode was used.  To obtain the oxidation 

peak for NN, the solution was cycled from 0.5 to 2.0 back to 0.5 V at 100 mV/second and the 

reduction peak was collected by cycling from 0.0 to -1.8 back to 0.0 V at 100 mV/second.  

Quinone reduction and oxidation peaks were determined after cycling from -0.25 to -2.0 back to 

-0.25 at 100 mV/second.  Afterwards, ferrocenecarboxylic acid was run from 0.0 V to 0.8 V and 

back to 0.0 V at 100 mV/second in 0.1 M tetrabutylammonium perchlorate in ACN using a 3.0 

M KCl Ag/AgCl reference electrode and again with the Ag/Ag+ electrode.  From this, the half-

wave potential was determined for both reference electrodes.  To convert the E1/2 to a standard 

hydrogen electrode (SHE) value, 0.21 V was added to the E1/2 value for the Ag/AgCl electrode 

sample value.23  The difference between the two reference electrode E1/2 values was used to 

convert all values to SHE. 

3.2.10 Enzyme Kinetics 

Kinetic measurements were performed using a PerkinElmer LS55 fluorescence 

spectrometer.  All measurements were collected at room temperature in pH 7.4, 0.1 M PBS with 

0.1 M KCl and supplemented with 0.007% BSA while exciting at λex  = 390 nm and following 

the emission at λem = 470 nm as NN was released following the enzymatic reduction of Q3NN.  

A stock solution of 100 µM β-nicotinamide adenine dinucleotide, reduced disodium salt (β-
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NADH, Sigma-Aldrich) was made using the PBS buffer and subsequently used to make all other 

solutions as to have a final concentration of 100 µM β-NADH in each assay.  Solutions of Q3NN 

were made from the NADH/0.1 M PBS solutions ranging from 2 to 60 µM.  A 1.33 µg/mL stock 

solution of recombinant human NQO1 (Sigma-Aldrich) was prepared using the same buffer as 

above to give 20 µg hNQO1 per assay.  Each assay was performed in a quartz fluorescence 

cuvette containing 1.5 mL Q3NN solution and initialized by the addition of 1.5 mL hNQO1 

solution.  Measurements were collected every 30 seconds for five minutes.  Fluorescence units 

were converted to concentration by creating stock solutions of Q 3NN containing the same 

concentration of NN and measuring the fluorescence with no hNQO1 present.  Measurements 

were done in triplicate. 

3.2.11 Flow Cytometry 

 Cells were suspended at a count of 1 × 106 in 1 mL of complete growth medium.  To each 

suspension was added Q3NN from a stock DMSO solution to give a final concentration of 20 

µM of the sensor, while keeping the DMSO at approximately 1% or less after dilution.  The 

suspension was incubated with the sensor for 10 or 60 minutes at 37 °C.  After which 30 mL of 

4% paraformaldehyde (maintained at 37.0 °C) in 0.1 M PBS was added to the mixture to fix the 

cells for 1 hour.  After fixation, the cells were washed twice with 0.1 M PBS and resuspended in 

1 mL PBS.  Data acquisition was carried out on a iCyt Reflection flow cytometer (iCyt, 

Champaign, IL) configured for DAPI fluorescence measurements using the 405 nm excitation 

laser and a 457/60 nm bandpass filter for emission.  Fluorescence measurements were made with 

logarithmic amplification.  A total of 10,000 cells per sample were acquired using Winlist 

software (Verity Software House, Topshame, ME) and FlowJo software was used to plot the 

data.   
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3.2.12 Cell Viability 

 To determine cell viability, a suspension of HT-29, A549 and H596 cells were cultured in 

5 mL of their respective complete growth medium in a sterile tube.  To the medium was added 

Q3NN (from a 1.8 mM stock solution) in DMSO, to give a 20 µM Q3NN solution and the cells 

were incubated at 37 °C, 5% CO2 for 60 minutes, after which 1 mL of the suspension was 

removed and 0.1 mL trypan blue was added.  Cells were immediately counted using a 

hemocytometer with the aid of a microscope.  The remainder of the 4 mL of suspended cells was 

left in the incubator for 24 hours.  Cells were again removed and counted as above.   

3.2.13 Optical Differentiation 

 HT-29, A549, and H596 cells were grown overnight on 22 x 22 mm glass cover slips in 

complete growth medium.  Old growth medium was removed and replaced with a 20 µM Q3NN 

solution in fresh growth medium.  Cells were incubated at 37 °C with the sensor for 10 minutes 

and then rinsed with 0.1 M PBS.  Cover slips of each cell line were immediately placed upside 

down on glass slides and visualized with a Mineralight Model UVGL-25 (365 nm, 0.16 amps,  

~60 Hz).  Image was taken using a Kodak digital camera.   

3.2.14 Widefield Fluorescence Imaging of Fixed Cells 

 The images were acquired using a Leica DM RXA2 fluorescent microscope equipped 

with a 100x 1.4NA objective lens and a Cooke SensiCam QE.  Slidebook software was used to 

control the camera and microscope as well as image renormalization, deconvolution and scale 

bar placement. The nucleus was stained with DRAQ5 and a Leica CY5 filter set (λex  620/60, λem 

700/75) was used when visualizing this dye.  NN dye was visualized using a Leica A4 filter set 

(λex  360/40 λem 470/40).  HT-29, A549, and H596 cells were grown overnight on 22 x 22 mm 

glass cover slips in 6 well plates in their respective complete culture medium at 37 °C in 5% 
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CO2.  Prior to sensor addition the old growth medium was replaced with 2 mL of fresh medium 

maintained at 37 °C.  A 1.87 mM solution of Q3NN was made in DMSO and 21.4 µL was added 

to each well to give a 20 µM solution of the sensor.  The cells were incubated with the Q 3NN in 

the 37 °C incubator for 10 minutes, after which the cover slips were removed and rinsed with pH 

7.4, 0.1 M PBS.  Cells were immediately fixed with 4% paraformaldehyde in pH 7.4, 0.1 M PBS 

for 30 minutes.  After fixation, the cover slips were again rinsed with buffer and then submerged 

in a 3 µM DRAQ5 solution in 0.1 M PBS for 5 minutes.  After staining, the cover slips were 

rinsed with buffer and mounted to glass slides using immu mount.  Glass slides were left in the 

dark overnight to allow the immu mount to dry, after which the cells were imaged.  Image 

analysis was performed in ImageJ.   

3.2.15 Confocal Colocalization 

 Confocal fluorescence images were acquired with a Leica TCS SP5 tandem scanning 

multiphoton laser scanning microscope at the Cell Biology and Bioimaging Core within 

Pennington Biomedical Research Center at Louisiana State University, Baton Rouge.  

Experiments were performed using a 40x oil immersion objective lens (1.25 NA).  Imaging of 

the lysotracker and Q3NN loaded HT-29 cells was accomplished using a sequential scanning 

method with sensor excitation via a 405 nm laser at 10% output and collecting emitted light 

between 417-467 nm.  Lysotracker Red was excited using a 561 nm laser at 10% output and 

emitted light collected between 574-621 nm.  DIC images were collected using a PMT detector 

and 633 nm light at 3% output as an illumination source.  All imaging was done at 37 °C using 

the Leica TCS SP5 in resonant scanning mode and collecting images bidirectionally (16 KHz) at 

a zoom setting of 3.6.  Images were line averaged 64 times.  HT-29 cells were incubated 

overnight in black 35 x 10 mm, 22 mm well glass bottom dishes (Chemglass Life Sciences) in its 
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complete growth medium at 37 °C with 5% CO2.  Prior to imaging, the medium was removed 

and replaced with F-12K medium (containing no phenol red) maintained 37 °C.  From a 

concentrated solution of Q3NN in DMSO, the sensor was added directly to the dish to give a 

concentration of 20 µM (while ensuring approximately 1% or less DMSO with respect to 

medium).  Cells were incubated with Q3NN for a total time of 20 minutes.  Five minutes prior to 

imaging, Lysotracker Red-DND 99 was added from a stock solution in DMSO to give a 

concentration of 0.1 µM.  

3.2.16 In vitro 2-Photon Imaging 

 2-photon confocal fluorescence images were acquired with a Leica TCS SP5 tandem 

scanning multiphoton laser scanning microscope at the Cell Biology and Bioimaging Core within 

Pennington Biomedical Research Center at Louisiana State University, Baton Rouge.  

Experiments were performed using a 40x oil immersion objective lens (1.25 NA).  Imaging of 

live cells was accomplished using a MaiTai two-photon laser tuned to 750 nm (3% laser power, 

modelocked Ti:sapphire laser; Tsunami Spectra Physics) and emission was collected using a 

short-pass 680 nm filter.  DIC images were collected using a PMT detector and 633 nm light at 

3% output as an illumination source.  All imaging was done at 37 °C using the Leica TCS SP5 in 

resonant scanning mode and collecting images bidirectionally (16 KHz) at a zoom setting of 3.6.  

Images were line averaged 64 times.  HT-29, A549, H596, and H446 cells were incubated 

overnight in black 35 x 10 mm, 22 mm well glass bottom dishes (Chemglass Life Sciences) in 

their respective complete growth medium at 37 °C with 5% CO 2.  Prior to imaging, the medium 

was removed and replaced with F-12K medium (containing no phenol red) maintained at 37 °C.  

From a concentrated solution of Q3NN in DMSO, the sensor was added directly to the dish to 

give a concentration of 20 µM (while ensuring approximately 1% or less DMSO with respect to 
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medium).  Cells were then imaged, with no washing or medium removal steps, after 10 minutes 

of incubation with Q3NN.  Image analysis was performed in ImageJ.   

3.3 Results and Discussion 

3.3.1 Thermodynamic Analysis for PeT Quenching 

 The sensor Q3NN is of a fluorophore-linker-trigger format with a naphthalimide dye as 

the fluorophore, which has been shown to have its fluorescence modulated by PeT.14  Scheme 

3.1 shows the synthesis of Q3NN and Q1NN.  The sensor utilizes a PeT quenching mechanism 

with a quinone as the trigger moiety that would not only act as an electron acceptor, but also as 

an electron donor when in the reduced hydroquinone state (Figure 3.2).  When the naphthalimide 

is excited, the sensor undergoes oxidative electron transfer (OeT), with the excited electron in the 

fluorophore transferring to the electron poor quinone, thus quenching the fluorescence.  After the 

quinone undergoes two-electron reduction to hydroquinone, the system is quenched via reductive 

electron transfer (ReT) by electron donation from the hydroquinone to the empty ground state in 

the dye.  The fluorescence is finally revealed after cleavage of the hydroquinone unit (through 

lactonization).   

 

Figure 3.2. Schematic representation of the unique utilization of PeT in the hNQO1 sensor 
Q3NN.  Proposed quenching mechanisms for Q3NN prior (OeT) and post (ReT) 
chemical/enzyme catalyzed reduction, and the subsequent release of the fluorescent NN dye.   
 

Φ = 0.07 Φ = 0.23 

OeT ReT 
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This system would create a highly specific sensor towards the two electron reduction by 

hNQO1 and only reveal its fluorescence after the removal of the quinone subunit from the parent 

dye.  This will not only produce a large fluorescence enhancement (FE), but also ensures 

minimal background signal from the quenched probe.  The base dye chosen was a 1,8-

naphthalimide-butyl fluorophore due to its versatility, biological inertness, and large 

fluorescence in aqueous media. 14, 24  Quinone propionic acid, which can be reduced via chemical 

or enzymatic catalyzed reactions, was chosen as the trigger group for its ability to react as an 

electron acceptor/donor (hydroquinone form) in the PeT quenching process, stability against 

biological reductants, and reactivity towards hNQO1.22, 25-27  The quinone contains three methyls 

in the “trimethyl-lock” positions as to create a rapid and spontaneous release from the probe 

allowing for real-time detection of hNQO1.28 

Given the nature of the fluorescence enhancement mechanism, reductive-removal of the 

trigger group, the Rehm-Weller equation was used to determine if quenching was 

thermodynamically possible prior to and post reduction by ensuring a sufficiently negative 

energy change for PeT (∆GPeT ) until cleavage of the trigger group occurs, Equation 3.1.29 

 ∆G𝑃𝑒𝑇 = 𝐸𝑜𝑥 − 𝐸𝑟𝑒𝑑 − ∆𝐺00 −
𝑒2

𝜀𝑑
                        Equation 3.1 

In this equation, Eox  is the oxidation potential of the donor, E red is the reduction potential 

on the acceptor, ∆𝐺00  is the energy of the first excited singlet state, and 
𝑒2

𝜀𝑑
 is the Coulombic 

interaction energy of the ion pair.  To ensure complete quenching, the quinone was attached to 

the naphthalimide via a short N-methylethanolamine linker through a carbamate bond on the 

naphthalimide ring.  This linker provides three crucial properties: it creates a tertiary amide at the 
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quinone end which prevents the formation of a non-activatable spirolactam, shifts the 

fluorescence of the dye in a hypsochromic shift increasing the energy of the first excited singlet 

state (decreasing ∆GPeT ), and is sufficiently short to allow for a high probability of electron 

transfer.24, 30   

 

Figure 3.3. Intersection of the normalized absorbance spectrum of NN and its fluorescence 
spectrum; used to calculate the energy of the ground state to the fist excited state. Spectra were 
obtained in acetonitrile as the solvent. 

The energy of the first excited singlet state of NN was measured to be 3.06 eV, by 

determining the interception of the normalized absorbance and fluorescence spectra (Figure 3.3), 

and the Coulombic interaction variable is known to be 0.06 eV.29  In the first quenching step, 

prior to quinone reduction, oxidative electron transfer (OeT) takes place by the transfer of the 

excited electron to quinone.  Using cyclic voltammetry (CV), the oxidation potential of NN 

(Figure 3.4) was measured as Ep,a = 1.75 eV vs SHE and the reduction potential for the quinone 

was Ep,c = -1.02 eV vs SHE (Figure 3.5).  This generates -0.35 eV as ∆GPeT , which leads to the 

thermodynamic possibility of electron transfer from the excited dye to the electron poor quinone.  

Post quinone reduction, the quenching system switches to a reductive electron transfer (ReT) 

mechanism.  Again using CV, the reduction potential of NN (Figure 3.4) is Ep,c = -1.33 eV vs 
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SHE and the oxidation potential for the 2-electron reduced quinone species (Figure 3.5) is       

Ep,c = -0.9 eV vs SHE, also giving a sufficiently negative ∆GPeT  in -2.69 eV.   

 
 

Figure 3.4. Cyclic voltammograms of NN showing the oxidation and reduction peaks used to 
calculate ∆GPeT.  Potential scans were conducted in a 0.1 M tetrabutylammonium perchlorate 
solution in acetonitrile.   

 
Figure 3.5. Cyclic voltammogram of Q3PA showing the oxidation and reduction peaks used to 
calculate ∆GPeT.  Potential scans were conducted in a 0.1 M tetrabutylammonium perchlorate 
solution in acetonitrile.   
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3.3.2 Reduction Produces Dequenching of Q3NN 

 The absorbance spectroscopy for Q3NN and NN was found to be broad, ranging from 

310 to 430 nm centered at 374 nm, Figure 3.6.  As shown in Figure 3.7, fluorescence 

spectroscopy of 2 µM solutions of Q3NN and NN displayed spectra ranging from 420 to 610 nm 

and containing a large Stokes shift of 116 nm, producing minimal overlap with its absorbance 

spectrum.  Using quinine sulfate as a standard (Φ = 0.54),31 quantum yields for Q3NN and NN 

were obtained in aqueous media at physiological pH (0.1 M phosphate-buffered saline, PBS, pH 

= 7.4) and were calculated at 0.007 and 0.23 (33-fold FE), respectively.   

 

Figure 3.6.  Absorbance spectra of 20 µM Q3NN, NN, and Acetyl-NN in pH 7.4, 0.1 M PBS 
with 0.1 M KCl.   

Quantum yield was determined using Equation 2.1.  The quantum yield for NN is 

comparable to other sensors applied to cancer detection and localization that have yields ranging 

from 0.0028 for indocyanine green to 0.21 for Cy5.5 dyes.6, 32  As proof positive that NN could 

indeed be released after quinone reduction, a strong reducing agent (sodium dithionite) was 
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added to a 10 µM solution of Q3NN, Figure 3.8.  While exciting the solution at 370 nm and 

following the emission intensity at 470 nm, it was found that NN was rapidly released post-

reduction. 

 
Figure 3.7. Fluorescence spectra of 2 µM solution of Q3NN and NN in pH 7.4, 0.1 M PBS with 
0.1 M KCl. λex  = 378 nm. 
 

As method of checking the 2-step PeT mechanism, a second probe was synthesized 

(Q1NN) where the quinone was lacking the two geminal methyls of the trimethyl-lock, thus 

significantly reducing cyclization and dye release.22  As seen in Figure 3.8, Q3NN undergoes a 

much more rapid dye release after the addition of sodium dithionite when compared to that of 

Q1NN.  Combining the very unique quenching mechanism, large Stokes shift, pronounced 

fluorescence signal enhancement, practicality of an off-on type sensor, and the biologically 

stable trigger-group, Q3NN can then be utilized as an hNQO1 sensor in real-time applications 

such as flow cytometry and fluorescence imaging. 
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Figure 3.8. Comparing the release of NN in 10 µM solutions of Q3NN and Q1NN in pH 7.4, 0.1 
M PBS following reduction via addition of 2.75 mg sodium dithionite into cuvettes.  Solutions 
were excited at λex  = 370 nm and emission followed at λem = 470 nm.   
 
3.3.3 Acetyl-NN and Other NN Properties 
 

To ensure the amide bond connecting the linker and quinone did not significantly 

influence the optical properties of NN and Q 3NN, Acetyl-NN was synthesized (Scheme 3.2).  

Absorbance and fluorescence properties of Acetyl-NN were determined and then compared to 

NN and Q3NN.  The absorbance spectrum for 20 µM Acetyl-NN (Figure 3.6) had a similar 

maximum to that of NN, but appeared to have a higher extinction coefficient.  Using Equation 

2.1 and NN as the standard, the quantum yield for Acetyl-NN was calculated to be Φ = 0.35.  

Comparing the fluorescence spectra for NN, Q 3NN, and Acetyl-NN in pH 7.4, 0.1 M PBS 

demonstrates the increase in quantum yield for each compound while exciting at 365 nm, Figure 

3.9.   
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Figure 3.9. Fluorescence spectra of Q3NN, NN, and Acetyl-NN in pH 7.4, 0.1 M PBS (each 
solution had an absorbance of 0.048 abs.). λex  = 365 nm.  
 
 As detailed in Chapter 2, one of the issues with the Q3-Rho-Morph sensor was the 

quenching of the Rho-Morph product dye by NADH.  This was an issue solved by using the 

naphthalimide dye scaffold.  It was found that after one hour of mixing Rho-Morph into a 100 

µM solution of NADH, the fluorescence of the dye was reduced by 26%.  On the other hand, NN 

fluorescence was only reduced 4% while in the presence of NADH, Figure 3.10.  Stability of 

Q3NN at low pH was also tested to ensure no non-specific activation if the sensor accumulated 

in acidic compartments in cells.  A 5.0 µM Q3NN solution in 0.1 M PBS had its fluorescence 

spectrum observed every 10 minutes at a pH of 5.0 over a 50 minute period while exciting at λ = 

380 nm, Figure 3.11.  It was found that Q3NN was relatively stable at a low pH and would be 

suitable for cellular imaging, even after longer incubation periods.   

400 450 500 550 600 650 700
0

100

200

300

400

500

600

700

800

Fl
uo

re
sc

en
ce

 (R
FU

)

Wavelength (nm)

 Acetyl-NN
 NN
 Q3NN



  

109 
 

 
 

Figure 3.10. Observing the fluorescence of 2.0 µM NN in 0.1 M PBS pH 7.4 while in the 
presence of 100 µM NADH. λex  = 380 nm and λem = 470 nm.   
 

 
 

Figure 3.11. Fluorescence spectra of 5 µM Q3NN in 0.1 M PBS at pH 5.0 over a 50 minute 
period.  Scans were taken every 10 minutes while exciting at λ = 380 nm.   
 
 As seen with other amine-linker-naphthalimide dye systems, the fluorescence in NN is 

also PeT modulated by the pKa of the secondary amine at the end of the linker.33-36  For this PeT 
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quenching system, the neutral secondary amine acts as an electron acceptor, quenching the 

naphthalimide dye.  It was found that the pKa of NN was approximately 12.0, sufficiently high 

enough that physiological pH would have little effect on intensities for cellular imaging 

purposes, Figure 3.12.   

 
Figure 3.12.  Fluorescence intensities of NN with respect to change in pH, λex  = 385 nm and λem 
= 480 nm.   
 
3.3.4 Enzyme Kinetic Analysis With hNQO1 

 To confirm that Q3NN was a suitable substrate for hNQO1 and to ensure the rate of 

release of the fluorophore in the presence of the enzyme, we measured the apparent kinetic 

activity of the enzyme relative to dye release.   As shown in Figure 3.13, results displayed as 

Michaelis-Menten kinetics with Km = 3.86 ± 0.79 µM, Vmax = 0.037 ± 0.002 µmol min-1 

mg·NQO1-1, k cat  = 0.019 ± 0.001 sec-1, and k cat /Km = 4.9 (± 1.0) × 103 M-1 sec-1.  Due to the 

single activation mechanism and the non-bulky linker, the kinetic constants are significantly 

higher than our reported hNQO1 activatable fluorophore (Q3-Rho-Morph), Chapter 2.25  This 
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higher enzymatic affinity and rapid dye release ensures sufficient signal enhancement for rapidly 

detecting hNQO1. 

 
Figure 3.13. Michaelis-Menten kinetics plot of hNQO1 (20 µg) towards Q3NN.  Inset contains 
sample 1 µM Q3NN assay observing NN release by fluorescence, relative to fluorescence signal 
of total release (1 µM NN).   
 
3.3.5 Rapid Differentiation Between Target Cells 

 I next wanted to assess the ability to rapidly differentiate between cell lines known to 

contain hNQO1 and those devoid of the enzyme with and without the aid of instrumentation.  

The colorectal carcinoma cell line HT-29 and the non-small cell lung cancer (NSCLC) cell line 

A549 were both previously shown to contain hNQO1 activity and the NSCLC H596 is found to 

be devoid of hNQO1.17, 37  Using cell lines originating from different organs demonstrates the 

breadth at which the probe can accurately detect hNQO1 in cells from varying locations.  After a 

ten minute incubation period in a solution containing Q3NN, it was possible to differentiate 

between the cells using only a fluorescent lamp emitting at 365 nm and the un-aided eye, Figure 

0 10 20 30
0.005

0.010

0.015

0.020

0.025

0.030

0.035

V
 (µ

m
ol

 m
in

-1
 m

gN
Q

O
1-1

)

[Q3NN] x 10-6 M



  

112 
 

3.14.  Both HT-29 and A549 appeared fluorescent blue and the cell line H596 was found to emit 

no fluorescence.  The ability to visually determine the presence of hNQO1 in cells is again due to 

the marked difference in fluorescence from the quenched Q 3NN and unquenched NN, the high 

quantum yield of NN, and the appearance of the fluorescence in the visual spectrum.  This 

technique helps demonstrate the simplicity of the sensor as it comes to the rapid detection of 

tumor cells.  Given the ability to visually detect tumor cells and determine accurate 

tumor/healthy tissue borders in real-time, without the aid of imaging equipment, would be highly 

beneficial for surgical resection of tumors with small foci. 

 

Figure 3.14. Optical differentiation between HT-29 (A), A549 (B), and H596 (C) cells after 
incubation with Q3NN.  Fluorophore is excited by a handheld lamp emitting 365-nm light.   

Similarly, flow cytometry assays were used to assess the applicability of Q3NN to rapidly 

detect hNQO1 in tumor cells.  The probe was incubated in a suspension of HT-29, A549, and 

H596 cells for 10 or 60 minutes and a flow cytometer was used to detect the fluorescence in 

individual cells.  In Figure 3.15 is depicted the fluorescence signal intensities per cells of each 

cell line in relation to the activation of Q3NN. The results showed high intensity unimodal 

fluorescence signal from Q3NN activation in HT-29/A549, while the negative cell line, H596, 

produced minimal fluorescence.  It was also found that there was little to no increase in signal 
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when increasing the incubation time from ten to sixty minutes, demonstrating the rapid and 

substantial activation in A549/HT-29 and the stability Q3NN in H596, Figure 3.15.  With the low 

fluorescence in the H596 cells and no increase in signal over a longer incubation period, the 

results demonstrate lack of non-specific activation of Q3NN.  Given the stability and the very 

short incubation time to reveal sufficient fluorescence signal to differentiate between cells 

absent/containing hNQO1, it is indicated that Q3NN is a highly sensitive and selective sensor 

and can be used as a rapid tumor cell detection sensor.   

                  

Figure 3.15. Flow cytometry assay of Q3NN activation in 2 hNQO1-containing cell lines (A549 
and HT-29) and a cell line with no hNQO1 activity (H596) after a 10 minute incubation period 
(A) or a 60 minute incubation period (B).  Assay was performed by counting 10,000 cells and the 
concentration of Q3NN was 20 µM. 

3.3.6 Q3NN for the Specific Detection of hNQO1 Overexpressing Cells 

 With the positive results from enzyme kinetics and flow cytometry, I sought to use a 

complimentary technique in fluorescence microscopy to further validate the effectiveness of 

Q3NN to rapidly distinguish cells with hNQO1 activity and provide spatial resolution on the 

activation and compartmentalization of the NN dye released.  In agreement with flow cytometry 

data, fluorescence microscopy on fixed cells and a ten minute incubation time also revealed 

significant sensor uptake and activation leading to intracellular fluorescence for the A549 and 

A B 
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HT-29 cell lines and minimal signal for H596, Figure 3.16.  The average cytosolic signal was 9 

times higher in A549 cells compared to H596, while the average intensities were 23 times higher 

in HT-29 compared to H596.  Values of 9- to 23-fold increase from target cells to non-target 

cells is substantially higher than 2.5-fold increase, which previously was considered to be 

substantial accumulation.38  Though the NN is excited near the ultraviolet region which can 

produce significant absorbance from hemoglobin and background fluorescence, the activation of 

Q3NN to NN yields high signal-to-background relative to other exogenously introduced sensors 

ensuring sensitive tumor analysis.15  From these results, it appears that paraformaldehyde 

fixation has little effect on dye quantum yield and also that there is no efflux of the dye from the 

fixed cells.  Being able to retain its fluorescence after fixation gives it the potential to be 

invaluable for ex vivo quantitative analysis of excised tumors for a period of time after surgical 

removal. 

 

Figure 3.16. Widefield fluorescent imaging of fixed HT-29 (A,D), A549 (B,E), and H596 (C,F) 
cells after a 10 minute incubation with Q3NN. Top row contains images of NN production (blue) 
and the bottom row is the overlays with the nuclei (red).  Scale bars are 10 µm.   



  

115 
 

 To determine the fate of the fluorophore NN after intracellular activation, confocal 

microscopy was used to localize NN in lysosomes using Lysotracker Red as an organelle-

specific probe.  For these experiments, live HT-29 cells were used after incubating for 20 

minutes with Q3NN, to which Lysotracker Red was added to the media in the imaging dish.  It 

was found that a majority of the NN signal originated from the cytosol, while accumulation did 

occur in late endosomes/lysosomes, Figure 3.17.  This was an expected fate for intracellular NN 

due to the ionizable amine at the end of the linker, because it is common for amine containing 

species to accumulate in acidic vesicles due to the pH difference with the cytosol.  This 

accumulation of dye in late endosomes/lysosomes is beneficial in that it leads to slower efflux of 

NN and longer intracellular accumulation time, which can further lead to higher signal-to-

background.  

 

Figure 3.17. Confocal image of HT-29 cells depicting the accumulation of NN (A) in lysosomes 
(B) after intracellular production.  DIC image is also provided for reference (C). Scale bars are 
25 µm.  Arrows points to localization of NN in lysosomes.   
 
 One of the more recent and powerful biologically relevant imaging techniques is 

multiphoton microscopy (MP) where fluorophores are excited by two, sometimes even three, 

photons at a much lower energy wavelength.39  This system is more advantageous when  
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compared to traditional fluorescence microscopy in that longer wavelength photons have a lower 

probability of being scattered and can penetrate deeper into tissues, is less phototoxic to tissues, 

produces less background noise due to less out-of-focus excitation, and yields less 

photobleaching of the fluorophores allowing for longer imaging periods.  MP imaging is ideal 

for ex vivo thick specimen sampling and in vivo experiments directly observing targets in their 

physiological environment where 2D and 3D maps can be generated.6 

 After incubating in complete growth medium containing Q3NN, 2-photon microscopy 

revealed significant fluorescence signal enhancement in live HT-29 and A549 cells and minimal 

signal in two hNQO1-negative cell lines, H596 and H446 (a small cell lung carcinoma known to 

be devoid of hNQO1 activity), Figure 3.18.37  It was calculated that the average cytosolic 

fluorescence signal was 13-fold higher in A549 compared to H596 and 3.66 × 104-fold higher in 

H446 cells.  Similar results were obtained with the HT-29 cell line, with the cytosolic intensity 

being 15-fold higher compared to H596 and a 4.51 × 104 increase compared to H446.  As before, 

the signal appears slightly heterogeneous throughout the cytosol with accumulation in small 

punctate organelles.  To ensure prolonged exposure to Q3NN and NN had little effect on cell 

health, cells were incubated in a 20 µM Q3NN solution in complete growth medium for one hour 

and one day, after which a trypan blue assay was used to determine cell viability.  After one 

hour, cell viability for HT-29, A549, and H596 was 97.7%, 98.8%, and 100%, respectively, and 

97.7%, 98.7%, and 98.4%, respectively, after one day.  Of note, due to the background-to-signal 

ratio, this assay requires no time consuming washing step as with “always-on” sensors.  This is 

one of the more important aspects of the off-on nature of Q3NN in that it significantly reduces 

the time between dye addition to detection producing a sensor ideal for a “real-time” detection 

technique.   
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Figure 3.18. 2-Photon confocal microscopy imaging of live HT-29 (A,E), A549 (B,F), H596 
(C,G), and H446 (D,H) cells following a 10 minute incubation time with Q3NN.  Fluorescence 
images of each cell line are on the top row with their respective differential interference contrast 
(DIC) image on the bottom row.  Images were acquired while exciting at λex  = 750 nm (3% laser 
power) without any washing steps between sensor addition and imaging.   

3.3.7 Quantitative Analysis of hNQO1 Probes 

 The rate of lactonization for Q3-Rho-Morph and Q3NN after reduction was determined to 

give a better understanding of the activation kinetics.  This will provide valuable insight into 

future probe design to achieve the most effective probe possible.  In the presence of excess 

sodium dithionite the quinone units in Q3-Rho-Morph and Q3NN should undergo near 

instantaneous reduction to the hydroquinone (less than 1 s for Q3 propionic acid)40, followed by 

the slow step of lactonization of the hydroquinone with concurrent release of the dye.  Due the 

rapid reduction step, the dye release was considered to be a pseudo-first-order step.  To 

determine the rate constant (k) for dye release, Equation 3.2 was used.   

ln �[A]𝑡
[A]0

� =  −𝑘𝑡                                     Equation 3.2 

 In this equation, [A]t and [A]0 are the concentrations of the reduced probe at time t and 

time 0, respectively.  An approximate rate constant for each probe was determine by adding 
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excess sodium dithionite to a dilute solution (5 µM) of probe in pH 7.4 0.1 M PBS with 0.1M 

KCl and following the fluorescence increase over a long period of time.  The rate constant was 

calculated by taking the time at which half the maximum signal was achieved and recognizing 

that at this point [A]t/[A]0 = 0.5.  For Q3NN, the time was 54 minutes for 50% consumption of 

Q3NN, yielding a rate constant of k = 2.1 × 10–4 sec–1.  For Q3-Rho-Morph, the time was 2.5 

minutes resulting in a rate constant of k = 4.62 x 10–3 sec–1.  This shows that Q3-Rho-Morph 

undergoes dye significantly faster than Q3NN, with the rate constant is only 20-fold higher.  This 

increase in lactonization for Q3-Rho-Mrph could be due to the electronic effect of the attached 

dye on the amide and the lack of the methyl on the nitrogen in the amide versus Q3NN.  The 

latter is supported in studies by Iresha Perera in the McCarley Group, as it was found that the 

Q3PA derivative of N-methyl-ethanolamine cyclized at least two times slower than the 

ethanolamine derivative in D2O) medium.41 

 A second experiment was also used to highlight the effect the lactonization rate has on 

dye release, in which enzyme kinetics were again performed on Q3-Rho-Morph where the 

oxidation of NADH to NAD+ was followed over time instead of following the formation of Rho-

Morph.  Due to absorbance overlap at 340 nm this experiment was not possible for Q 3NN.  

Kinetics was performed exactly as written in Chapter 2, except the fluorescence change observed 

was from the fluorescent NADH to the nonfluorescent NAD+.  Here, NADH was excited at       

340 nm and the emission was observed at 460 nm.  The results are displayed in Figure 3.19. 

 From this, it was found that Km = 5.37 ± 0.67 µM, Vmax = 0.019 ± 0.001 µmol min-1 

mg·NQO1-1, k cat  = 0.01 ± 0.001 sec-1, and k cat /Km = 1.8 (± 0.4) × 103 M-1 sec-1.  When compared 

to the assay in Chapter 2 where the formation of Rho-Morph was followed, the Vmax for this 

NADH fluorescence assay was 9-fold higher.  This outcome is as expected due to the two-step 
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process of NQO1 reduction then hydroquinone lactonization to yield the free Rho-Morph.  At 

this stage, I do not have any direct evidence that would indicate more/less rapid reduction of 

Q3NN by NQO1 (due to the spectral overlap of the NADH and NN species).  However, it is 

clear from the dithionite reduction results discussed above that the cyclization process is slower 

for Q3NN vesus Q3-Rho-Morph, and this is probably the major contributor to the somewhat 

expected slow Vmax value for its NQO1 activation (reduction and cyclization).  Future studies 

should target enzyme parameters for the NQO1 activation of Q 3PA linked directly to the 

aromatic amine of the naphthalimide or a Q3NN-like derivative having a naphthalimide 

absorption/emission that is significantly shifted from that of NADH so that the reduction 

cyclization steps can be separated, as was possible with the Q 3-Rho-Morph.   

 

Figure 3.19. Kinetic plot for recombinant human NQO1 (1 × 10-5 g) towards Q3-Rho-Morph in 
pH 7.4, 0.1 M PBS, and 0.007% bovine serum albumin while observing the oxidation of NADH. 
Solid blue line indicates best fit to Michaelis–Menten equation. 
 
3.4 Conclusions 

 I have developed a first-generation sensor utilizing a unique use of PeT quenching for use 

as an off-on sensor for the rapid, sensitive, and specific detection of hNQO1-containing tumor 

cells.  Following activation of the non-fluorescent capped Q3NN, the highly fluorescent NN dye 

is released leading to high signal-to-background ratios with respect to non-targeted cells.  Given 
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the enzymatic efficiency of Q3NN and the rapid single step activation mechanism post-

reduction, Q3NN was found to be a better substrate for hNQO1 when compared to other 

rhodamine-containing sensors and also sensors that require a slow linker cyclization step to 

dequench the fluorophore.25, 42-43  Flow cytometry analysis revealed Q3NN to be highly specific 

and sensitive for tumor cells containing hNQO1 after a short incubation period with the sensor, 

allowing for easy differentiation between targeted and non-targeted cells.  Q3NN and NN were 

found to be biologically compatible to where they were not detrimental to cell health.  Confocal 

microscopy revealed NN to be found mostly in the cytosol with partial accumulation in acidic 

vesicles.  The fluorophore NN was found to be easily excited via a multiphoton laser which is 

becoming an increasingly useful medical diagnostic tool given the lower background signal 

multiphoton microcopy generates along with the deeper sample penetration, lower phototoxicity, 

and less photobleaching.  Given the need for real-time analysis of tumor/healthy tissue, Q3NN 

has the potential to aid in ex vivo analysis and in vivo detection and resection of tumors of 

varying origin.  This is thanks in part to the accumulation in acidic cellular organelles, high 

background-to-signal ratio, specificity to hNQO1 leading to high sensitivity to tumor cells, and 

stability. 
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CHAPTER 4 

SOLVENT DEPENDENCE EFFECTS ON HUMAN NAD(P)H:QUINONE 
OXIDOREDUCTASE-1 ACTIVITY 

 
4.1 Introduction  

 With the growing number of NQO1 substrates and inhibitors for cancer treatment,1-7 

there is a pressing need for consistency when determining substrate specificity allowing for more 

accurate comparison between substrates.  The most common way to compare substrate 

specificity for enzymes is to determine and compare kinetic parameters such as: the theoretical 

maximum velocity (Vmax), Michaelis constant (Km), catalytic turnover (k cat ), and catalytic 

efficiency (k cat /Km).8  This is accomplished by performing enzyme assays in very similar 

environments, such as in specific buffers, buffer and salt concentrations, pH, same enzyme 

activators (such as fetal bovine serum), etc.  One of the issues in the execution of enzyme assays 

is that a majority of substrates are not highly water soluble, while the native environment of 

enzymes is aqueous media.8  To circumvent this problem, solutes are generally dissolved in 

organic solvents that are miscible with water.  This inherently imparts a new variable in 

determining the ability of an enzyme to catalyze a specific reaction.  As enzymes are intricate 

machinery whose nature is to catalyze reactions in specific environments, any perturbation to 

that environment can cause drastic changes in enzyme structure and catalytic activity.  One of the 

largest effects organic solvents have on enzymes is the removal of water from the hydration shell 

or the active site in the enzyme causing drastic changes in the solvation of the enzyme. 9-13  This 

removal of water leads to denaturation of the 3D structure of the enzyme.  These forces include: 

hydrogen bonding, van der Waals, and hydrophobic interactions.9  By altering this balance of 

forces, a change is created in the enzyme rigidity and the ability to catalyze its specific reaction.  

From previous work, it has been found that polar solvents have the ability to penetrate deeper 
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into an enzyme, whereas nonpolar solvents have a more limited penetration.9  Along with 

polarity, solvents with lower dielectric constants impart stronger electrostatic interactions leading 

to more rigid enzymes.11, 14  NQO1 utilizes a flavin adenine dinucleotide (FAD) cofactor in the 

active site to catalyze its 2-electron reduction reactions.  Faig et al. elucidated the structure of the 

FAD unit in the active site of human-NQO1 (hNQO1) and were able to reveal the hydrogen 

bonding, van der Waals interactions, and the water molecules between FAD and the hNQO1 

protein, Figure 4.1.15   

 

Figure 4.1.  Hydrogen bonding and van der Waals interaction observed between FAD and 
protein in hNQO1. Open radiated circles indicate hydrophobic interactions.  Hydrogen bonds are 
represented by dashed green lines; water molecules are shown as blue filled circles.15 
 
 As seen in Figure 4.1, there are multiple interactions which are a part of the FAD and 

NQO1 protein where the catalysis occurs.  Perturbation of this substructure, and also the 

solvation of the enzyme, has the potential to cause drastic fluctuations in enzymes ability to 

catalyze the reduction of quinones.  As mentioned above, many enzyme substrates are only 

soluble in organic solvents.  This introduction of non-native species to the NQO1 assay 

environment can produce inconsistent results in substrate analysis.  Previous work on producing 

NQO1 substrates and determining the ability of NQO1 to reduce these compounds has produced 

a variety of assay conditions in which different organic solvents are used at low concentrations 
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ranging from 0.5% to 2%, or even unspecified amounts.2, 4-5, 16-19  Here, the ability of hNQO1 to 

catalyze the reduction of 3-(3',6'-dioxo-2',4',5'-trimethylcyclohexa-1',4'-diene)-3,3-

dimethylpropionic acid (Q3PA) to its hydroquinone under various solvent-buffer systems is 

analyzed, Scheme 4.1.  To test hNQO1 activity, multiple assays were performed with only one 

variable, the solvent.  The solvents tested are the most commonly used water miscible organic 

solvents used in hNQO1 assays: acetonitrile (ACN), ethanol (EtOH), and dimethyl sulfoxide 

(DMSO).  By changing only the solvent type and the overall solvent percentage, it will be 

possible to elucidate the effect of different organic solvents on the ability of hNQO1 to catalyze 

the reduction of quinones. 

NADH

NAD+ hNQO1O

hNQO1R

O

O

O

OH
Reduction

OH

OH

O

OH
Lactonization

OH

O

O
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Scheme 4.1.  Reduction and lactonization of Q3PA by NQO1.   

4.2 Experimental Section 

4.2.1 Materials and Methods 

All chemicals were purchased from Sigma-Aldrich or Fisher Scientific and used as 

received.  3-(3',6'-dioxo-2',4',5'-trimethylcyclohexa-1',4'-diene)-3,3-dimethylpropionic acid 

(Q3PA) was prepared according to literature procedures.20  Enzyme assays were performed using 

a quartz 96-well plate (Hellma) on a FLUOstar OPTIMA plate reader from BMG LABTECH.   

4.2.2 NADH Calibration Curve Preparation  

 Phosphate-buffered saline (PBS) solutions were prepared by dissolving potassium 

phosphate monobasic (4.54 g, 0.033 mol), potassium phosphate dibasic (11.6 g, 0.067 mol), and 

potassium chloride (7.45 g, 0.1 M) in one liter of nanopure water/organic solvent.  The pH was 
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adjusted by adding a concentrated solution of potassium hydroxide dropwise.  Fetal bovine 

serum (FBS) was added to give a final concentration of 0.007% w/v.  Standard solutions of β-

nicotinamide adenine dinucleotide reduced disodium salt (NADH) were prepared by diluting 

stock NADH solutions in solvent-PBS into the same solvent system.  A calibration curve for 

each solvent-PBS system was obtained by placing 200 µL of the NADH standard solutions into 

the quartz 96-well plate.  Absorbance measurements were obtained using the λ = 340 nm filter 

with each scan containing 40 flashes.  Each experiment was done in triplicate.  

4.2.3 Enzyme Assay Conditions 

 NQO1 assays for the reduction of Q3PA were performed by following reduction in 

absorbance at 340 nm for the conversion of reduced NADH to the oxidized form NAD+.  Scans 

were taken every 4 seconds for 44 seconds at room temperature (22 to 24 °C) using a FLUOstar 

OPTIMA plate reader, and the assays were performed in a quartz 96-well plate (Hellma).  

Recombinant human NQO1 (Sigma-Aldrich) in pH 7.4, 0.1 M solvent-PBS and supplemented 

with 0.007% bovine serum albumin (BSA) was used. Stock solutions of Q3PA were prepared in 

the 0.1 M solvent-PBS and diluted in buffer to a final concentration between 25 × 10−6 and 350 × 

10−6 M. Total volume per well was 200 × 10−6 L with a final NQO1 content of 5 × 10−7 g. Assays 

were initiated by the instrument-injection of NADH so as to yield a final NADH concentration of 

100 × 10−6 M.  All assays were performed in triplicate.  Rate versus [Q3PA] curves were fitted 

with a non-linear least-squares algorithm so as to obtain apparent Km and Vmax values.   

4.3 Results and Discussion 

4.3.1 NADH Calibration Curves 

 To determine the kinetic parameters for hNQO1 in each solvent system, the oxidation of 

NADH to NAD+ was followed over 44 seconds.  This is possible because NADH strongly 
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absorbs at 340 nm and NAD+ does not.  To ensure proper conversion from absorbance units to 

concentration units for each assay, a calibration curve for NADH was produced for all solvent-

PBS systems, Figure 4.2.     

            

            

              

Figure 4.2.  Calibration curves for NADH in 5% DMSO-PBS (A), 10% DMSO-PBS (B), 5% 
Ethanol-PBS (C), 10% Ethanol-PBS (D), 5% ACN-PBS (E), and 10% ACN-PBS (F) a quartz 
96-well plate.  Each solution contained 0.1M PBS supplemented with 0.007% FBS and had a pH 
of 7.4.  λ = 340 nm. 
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While each extinction coefficient was relatively close to that of NADH in pH 7.4, 0.1 M 

PBS with 0.007% FBS (4390 M-1cm-1)16, they did vary slightly.  Extinction coefficients (ε) for 

5% and 10% DMSO-PBS were measured to be 3879 ± 170 M-1cm-1 and 4090 ± 106 M-1cm-1, 

respectively.  While ε in 5% and 10% ethanol-PBS systems was 4610 ± 62 M-1cm-1 and        

4120 ± 111 M-1cm-1, respectively; in 5% and 10% ACN-PBS, ε was found to be                    

4020 ± 51 M-1cm-1 and 4323 ± 20 M-1cm-1, respectively.  Because all calibration curves were run 

in triplicate and produced expected results, the values were considered acceptable and used for 

each assay. 

4.3.2 Solvent Effect on NQO1 Kinetics 

 To determine what effect, if any, organic solvents would impact the ability of hNQO1 to 

catalyze the reduction of quinones, multiple enzyme assays were performed in a wide variety of 

solvent-containing systems with differing percentages of solvent in each system.  To ensure it 

was a solvent-dependent experiment, all other parameters except solvent type and percentage 

were kept constant.  For all systems, the pH was adjusted to 7.4, the substrate used was always 

Q3PA each system contained 0.007% FBS, every assay contained 0.5 µg enzyme from the same 

batch, assays were run in triplicate, NADH concentration was 100 µM, and all systems contained 

0.1 M PBS and 0.1 M KCl.  The solvents tested were ACN, EtOH, and DMSO at 5% and 10% in 

each solvent-PBS system, Figure 4.3. 

 After each assay was completed, apparent Michaelis-Menten kinetic parameters 

were obtained using the computer program from Cleland, Table 4.1.21  This program determines 

values and their error from least squares fitting to the equation: 

𝑉 =  𝑉max  × [𝑆]
𝐾m+[𝑆]

                                          Equation 4.1 
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where V is the initial velocity of catalysis at a given concentration, [S] is substrate concentration, 

Vmax is theoretical maximum velocity, and Km is the substrate concentration of an estimate for 

the equilibrium constant for S binding to an enzyme.  Though there was error between the 

individual replicates, the averages for each assay produced quality data for fitting to Equation 

4.1.  Comparison of all Vmax values showed low calculated error from the least squares fit 

equation, with 12% error or less.   

           

            

Figure 4.3.  Michaelis-Menten kinetics plot of hNQO1 (0.5 µg) towards Q3PA in different 
solvent systems.  Solvent systems in PBS are: 5% DMSO (A), 10% DMSO (B), 5% EtOH (C), 
10% EtOH (D), 5% ACN (E), 10% ACN (F).   
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Figure 4.3 Continued 
 

              

 
Table 4.1.  Kinetic parameters for the reduction of Q3PA by hNQO1 in different solvent-PBS 
systems. 
 

  
% 

Solvent Km (µM) Vmax (µmol·min-1·mg-1 
hNQO1 k cat  (sec-1) k cat /Km (M-1·sec-1) 

  0 158 ± 41 38 ± 5 19.6 ± 2.6 (1.2 ± 0.4) × 105 

DMSO 
5 55 ± 5 12.3 ± 0.3 6.33 ± 0.15 (1.1 ± 0.1) × 105 

10 26 ± 3 2.54 ± 0.08 1.31 ± 0.00 (5.8 ± 0.6) × 104 

EtOH 
5 180 ± 20 37 ± 2 19.1 ± 1.0 (1.1 ± 0.1) × 105 

10 264 ± 54 20.4 ± 2.5 10.5 ± 1.3 (4.0 ± 0.2) × 104 

ACN  
5 94 ± 9 25 ± 1 5.4 ± 0.5 (5.7 ± 0.6) × 104 

10 115 ± 8 9.9 ± 0.3 5.1 ± 0.2 (4.4 ± 0.4) × 104 

 

 When compared to the Vmax obtained for hNQO1 towards Q3PA in buffer only (38 

µmol·min-1·mg-1), measurement of the solvent in all cases appears to cause an inhibition of the 

enzyme.  It is also seen that increasing the amount of solvent in the assay environment 

substantially decreases the Vmax for hNQO1, Figure 4.5.  For all three solvents at 10%, hNQO1 is 
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inhibited by 93% in DMSO, 46% in EtOH, and 74% in ACN.  As for the 5% systems, hNQO1 

has 68%, 3%, and 34% lower Vmax in DMSO, EtOH, and ACN, respectively.  It is clear that 

DMSO has the most detrimental effect on hNQO1 catalysis when compared to ACN and EtOH, 

and ACN has more of an effect than EtOH.  As stated above, more polar solvents can penetrate 

into enzymes further creating a more perturbed state.  The order of polarity for the three solvents 

is: DMSO > ACN > EtOH.22  Also stated above is the fact that solvents with higher dielectric 

constants produce more electrostatic interactions causing the enzyme to be more rigid.  The order 

of increasing dielectric constants is: DMSO (46.7) > ACN (37.5) > EtOH (24.3).14  This order of 

polarity and dielectric constants correlates well with the Vmax values decreasing from EtOH, to 

ACN, and then to DMSO.  From this analysis, it is clear that ethanol provides the best organic 

solvent when a substrate needs to be dissolved before introduction into an assay.  Even at just a 

5% solvent amount, DMSO and ACN considerably reduced the ability of hNQO1 to catalyze the 

reaction, while hNQO1 remains essentially completely active in ethanol.  The same cannot be 

said for assays containing 10% organic solvent, where hNQO1 retains only 54% of its activity or 

less.   

 

Figure 4.4.  Comparison of the Vmax values calculated for hNQO1 towards Q3PA in different 
solvent-PBS systems.   
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Using the molecular weight of 31,000 g/mol for the hNQO1 monomer, catalytic activity 

(k cat ) was calculated from the Vmax values.23  From this, catalytic efficiencies (k cat /Km) were 

calculated for hNQO1 in each solvent-PBS system, Table 4.1.  When comparing these values, it 

was noticed that hNQO1 was actually least efficient in ACN and was similarly efficient in 

DMSO and EtOH.  For the 5% solvent systems, ACN was only 46% as efficient as hNQO1 in 

only buffer; while EtOH and DMSO were 85% and 93% as efficient, respectively.  But, the 

ability of hNQO1 to work properly was significantly reduced to 36%, 32%, and 47% for ACN, 

EtOH, and DMSO, respectively, when the assay was performed in 10% solvent-PBS.  This 

comparison demonstrates that even though the enzyme loses a majority of its activity in DMSO 

at 5%, its efficiency is relatively close to that of an assay with no organic solvent.  This is 

possible even though Vmax is substantially reduced, Km is also reduced by a large amount 

indicating a tighter substrate binding to the enzyme.  An increase in organic solvent from 5% to 

10% produces an enzyme that maintains less than half of its catalytic efficiency.   

 

Figure 4.5.  Comparison of the k cat/Km values calculated for hNQO1 towards Q3PA in different 
solvent-PBS systems.   
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4.4 Conclusions 

 Here, it was demonstrated the effect of three different organic solvents (ACN, EtOH, and 

DMSO) had on the ability of hNQO1 to catalyze the reduction of Q3PA to a hydroquinone.  

These three solvents produced results using Michaelis-Menten kinetics that followed previous 

trends of more polar solvents penetrating deeper into enzymes causing a more drastic change in 

the 3D shape of the enzyme and solvents with higher dielectric constants producing more rigid 

enzymes.9  DMSO has been previously used to study the overall and secondary structures of 

proteins because it strongly perturbs proteins.24-25  While the two methyls in DMSO are thought 

to interact with the hydrophobic residues in proteins, the strong proton-accepting nature of the 

sulfoxide is thought to be the driving force behind the ability of DMSO to strongly denature 

proteins.25  This strong affinity for protons leads to the disruption of hydrogen-bonding and 

weakening the hydrophobic interactions throughout the protein and its secondary structures, 

leading to a more unfolded state as the concentration of DMSO is increased.24, 26  Alcohols have 

also been used to study the structures of proteins because they have not only been found to 

denature proteins in some cases, but also stabilized helixes, β-sheet hairpins, and other secondary 

structures.27-29  This stabilization effect can be partially explained by the decrease in polarity in 

the ethanol-water solvent system where ethanol preferentially associates with protein surface 

hydrophobic sites, which weakens the hydrophobic interactions and strengthens the hydrogen-

bonds in helixes and other secondary structures.27-28  Though ethanol is a proton donor, it has 

been shown to bind to hydrogen donors (amides) and hydrogen acceptors (carbonyls) equally.27  

Though enzyme properties in the presence of DMSO vary from enzyme-to-enzyme, with some 

being activated and other having negligible catalytic differences30, NQO1 is greatly inhibited 

when in the presence of DMSO.  From the results above, it was found that DMSO and ACN 
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drastically reduced the enzymes Vmax by 68% and 34%, respectively, at only a 5% solvent level.  

On the other hand, hNQO1 retained all of its activity in 5% EtOH.  But, the shift from 5% 

solvent to 10% solvent created a poorly catalyzing hNQO1 which had 54% of its activity in 

EtOH, 7% in DMSO, and 26% in ACN.  With the sharp reduction of Vmax in DMSO, hNQO1 

retains a majority of its efficiency at 5% DMSO.  This was due to the concurrent reduction in 

Km, which demonstrates tighter binding substrates along with slower turnover.  From the three 

solvents tested, EtOH is superior to ACN and DMSO at 5% levels, allowing the enzyme to retain 

97% of its Vmax and remain 87% efficient.  Though DMSO is most commonly used to dissolve 

substrates for assays, ethanol is now shown to be the better option to obtain kinetic values which 

should more closely resemble those obtained in 100% buffer. 
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CHAPTER 5 

CONCLUSIONS AND OUTLOOK 

5.1 Summary 

 The overall goal of this research was the development and implementation of an 

activatable latent fluorophore for intracellular NQO1 detection.  The fluorescent probe was 

designed to be sensitive by having a nearly non-fluorescent quenched state and a highly 

fluorescent free dye.  The probe’s receptor unit needed to be highly selective for NQO1 2-

electron reduction catalysis and undergo rapid lactonization from the probe to reveal the dye’s 

fluorescent signal.  The probe was analyzed by determining the quantum yield of each free dye 

and capped dye, determining enzyme kinetic parameters, imaging the probe in different cell lines 

using fluorescence microscopy, and determining the ability to differentiate between hNQO1-

positive and hNQO1-negative cell lines using flow cytometry.   

 Quantum yield values for rhodamine110-based latent fluorophores in pH 7.4, 0.1 M PBS 

yielded 0.005 for Q3-Rho-Morph and 0.48 for Rho-Morph, which leads to a 96-fold increase in 

fluorescence.  Rho-Morph excitation and emission maxima were measured to be λex  = 490 nm 

and λem = 520 nm.  Q3-Rho-Morph was found to be rapidly activated with the release of Rho-

Morph by sodium dithionite and was highly stable in the presence of high concentrations of 

glutathione, ascorbic acid, and dithiothreitol.  Along with sodium dithionite, it was observed that 

Q3-Rho-Morph was activated by NQO1 in the presence of NADH and was very stable while in a 

solution of NADH only.  The kinetic parameters were measured to be 0.00214 ± 0.00013 µmol 

min-1 mg·NQO1-1 for Vmax and 46.4 ± 7.4 M-1 sec-1 for k cat /Km.  The low catalytic efficiency for 

NQO1 towards Q3-Rho-Morph is most likely due to the steric hindrance of the rhodamine 

species in close proximity to the quinone substrate, thus preventing the probe from effectively 
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entering the active site.  Using fluorescence and absorbance spectroscopy, it was found that the 

Rho-Morph species was readily reduced by a low concentration in NADH in a pH 7.4, 0.1 M 

PBS solution.  The reduction led to a rapid loss of absorbance at λ = 485 nm and, coincidentally, 

a loss of fluorescence.  This catalytic inefficiency and reduction by NADH led to the inability to 

image the probe intracellularly in two NQO1-positive cell lines (HT-29 and A549).  Images 

obtained for the positive cell lines looked very similar to the negative cell line (H596), where all 

three contained a faint fluorescent intracellular signal.  This signal most likely derived from the 

background of the capped probe.  It has also been reported that a Rho-Morph analogue switches 

to a cell permeant lactone form in polar media, which can also lead to a loss of intracellular 

signal.1  This inability to image the probe was found to occur even after adjusting the probe 

concentration and a wide range of incubation times.   

  Q3NN was designed to attach the quinone to the fluorophore via a short ethylene spacer 

as to minimize the steric hindrance and allow the probe to freely enter the enzyme active site, 

which in turn should increase the Vmax and catalytic efficiency.  The fluorophore used was a 

naphthalimide-butyl species that has a large Stokes shift of 116 nm and was measured to excite 

at 374 nm and emit at 490 nm.   Quantum yields for Q3NN and NN were calculated at 0.23 and 

0.007, with a 33-fold fluorescence enhancement.  Where Q3-Rho-Morph was quenched by a 

structural change of the Rho-Morph species, Q3NN possessed a much different quenching 

mechanism.  It used a photoinduced electron transfer (PeT) process, prior to and post-reduction 

of the quinone, to prevent the excited electron in the fluorophore from relaxing and emitting a 

photon.  To determine if this PeT process between the naphthalimide dye and the quinone was 

possible, the PeT free energy change was calculated using the Rehm-Weller equation.  To 

accomplish this, the oxidation and reduction potentials were measured for NN and the trimethyl-
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quinone acid.  ∆GPeT  for the oxidative electron transfer prior to quinone reduction was calculated 

to be -0.35.  Post-reduction was calculated at -2.69 for the reductive electron transfer.  Both are 

sufficiently negative to give nearly complete quenching of the fluorophore.  Only after the 

quinone is removed by lactonization is the fluorophore’s signal revealed.  Similar to Q3-Rho-

Morph, Q3NN was rapidly activated in the presence of sodium dithionite.  As a control to ensure 

PeT is the quenching mechanism after hydroquinone formation, a second probe (Q 1NN) was 

synthesized that contained a similar quinone without the trimethyl-lock.  This probe was also 

mixed with sodium dithionite, of which the fluorescence signal was revealed at a much slower 

rate.  By conjugating the quinone to a short linker, the enzymatic efficiency was raised when 

compared to Q3-Rho-Morph, where Vmax = 0.037 ± 0.002 µmol min-1 mg·NQO1-1 and k cat /Km = 

4.9 (± 1.0) x 103 M-1 sec-1.  And of high importance, NADH caused a minimal decrease in the 

fluorescence signal of NN in pH 7.4, 0.1 M PBS.  To determine if it was possible to visually 

observe the difference between cell lines with and without NQO1, HT-29, A549, and H596 cells 

were incubated with 20 µΜ Q3NN for 10 minutes.  These cells were then observed under a 365 

nm lamp, where HT-29 and A549 were easily distinguishable from H596.  The NQO1-positive 

cells emitted a blue light and H596 cells were colorless.  The same cell lines were also analyzed 

using flow cytometry and widefield imaging.  In both cases, the two NQO1-positive cell lines 

were easily differentiated from H596 with a very short incubation period of 10 minutes.  

Fluorescence imaging was also performed using two-photon confocal microscopy.  The three 

cell lines used previously were used again, along with a second negative cell line (H446).  As 

before, the negative and positive cell lines were differentiated with only a 10 minute incubation 

period.  It was calculated that the average cytosolic fluorescence signal was 13-fold higher in 

A549 compared to H596 and 3.66 x 104-fold higher than H446 cells.  Similar results were 
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obtained with the HT-29 cell line, with the cytosolic intensity being 15-fold higher compared to 

H596 and a 4.51 x 104 increase compared to H446.  The released dye, NN, was colocalized with 

a lysotracker dye in the HT-29 cells and it was determined that the free dye preferentially 

accumulated in acidic compartments.  Important to future applications of the probe for in vivo 

analysis is the effect it has on cell health.  After one hour, cell viability for HT-29, A549, and 

H596 was 97.7%, 98.8%, and 100%, respectively, and 97.7%, 98.7%, and 98.4%, respectively, 

after one day. 

 To develop better enzyme assay conditions that should be more reliable and consistent 

between compound testing, solvent effects were determined on the ability of NQO1 to catalyze 

the reduction of a simple quinone trimethyl-lock system.  One effect that is rarely taken into 

account is the solvent in which the substrate is dissolved.  These solvents can perturb the 

enzyme’s 3D structure by altering the hydrogen bonding of water to the protein or by changing 

the polarity of the medium.  To determine how different solvents can affect the ability of NQO1 

to catalyze a reaction, acetonitrile (ACN), ethanol (EtOH), and dimethyl sulfoxide (DMSO) were 

used in assays at 5% or 10%.  While each solvent percentage was changing, the buffer (0.1 M 

PBS), salt (0.1 M potassium chloride), and pH 7.4 stayed constant.  The results revealed that the 

high polar solvents (DMSO) negatively affected NQO1 more than the less polar solvents (ACN 

and EtOH).  This trend was reasonable because higher polar solvents have the ability to penetrate 

deeper into the enzyme structure.  This further penetration would create a larger shift in the 3D 

structure of the enzyme, specifically the active site.  It was found that DMSO and ACN 

drastically reduced the enzyme’s Vmax by 68% and 34% when compared to an assay with no 

solvent, respectively, and NQO1 retained all of its activity in 5% EtOH.  However, the shift from 

5% solvent to 10% solvent was more detrimental to hNQO1 and had 54% of its activity in 
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ethanol, 7% in DMSO, and 26% in ACN.  Catalytic efficiencies (k cat /Km) were calculated for 

each solvent-PBS system and compared to each other.  For the 5% solvent systems, NQO1 in 

ACN was only 46% as efficient as compared to 100% buffer, while EtOH and DMSO were 85% 

and 93% as efficient, respectively.  The k cat /Km was significantly reduced to 36%, 32%, and 47% 

for ACN, EtOH, and DMSO, respectively, when the assay was performed in 10% solvent-PBS.  

From the solvents tested, it was apparent that NQO1 assays containing 5% EtOH would be 

preferable for future assays since NQO1 retained all of its activity.  Though DMSO is more 

commonly used in vitro, due to its minimal effect on cells, it is not as suitable for enzymatic 

assays involving NQO1. 

5.2 Conclusions 

 The results demonstrated in this research outline the development and use of off-on latent 

fluorophores for the detection of hNQO1.  Though the rhodadamine110-based probe was 

unsuccessfully used in vitro, it was found to be activated by hNQO1 in a timely manner and was 

stable towards biological reductants such as glutathione, ascorbic acid, and even dithiothreitol.  

The probe’s main failures for in vitro imaging were associated with the fluorescent dye itself.  

Though the rhodamine-morpholino urea species was highly fluorescent, it was also susceptible to 

reduction by low concentrations of NADH.  Along with the loss of fluorescence from reduction, 

it has been previously reported by a different research group that it forms a membrane permeant 

lactone form.1  These two factors appeared to be detrimental in the ability of the probe to be 

fluorescently imaged in cell lines with hNQO1 activity.    

A second probe was synthesized in which the quinone receptor group was attached to a 

short ethylene linker and attached to a naphthalimide dye.  This probe exhibited a unique off-on 

type activation in that the quinone acted as an electron acceptor in a photoinduced electron 
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transfer quenching mechanism.  By studying a negative control type dye that did not contain the 

trimethyl-lock and by using cyclic voltammetry to determine oxidation/reduction potentials in 

order to calculate the free energy change uing the Rehm-Weller equation, it was determined that 

the naphthalimide-based probe actually underwent a two-stage quenching mechanism.  The first 

stage was prior to reduction, in which the quinone acts as the electron acceptor for the excited 

dye and caused a quenching effect.  The second state was post-reduction, where the 

hydroquinone acted as an electron donor to the excited fluorophore, also causing quenching until 

cyclization and lactone release.  This probe was found be a better NQO1 substrate substantially 

better than the rhodamine110-based probed.  This would be most likely due to the bulky 

rhodamine-110 group attached directly to the quinone, rather than a much smaller ethylene 

linker.  The naphthalimide probe was also found to be effective in tumor cell differentiation 

between cells known to contain NQO1 activity and cells with no enzyme activity.  This was 

proved by performing widefield fluorescence imaging, confocal and multiphoton microscopy, 

and flow cytometry.  Most importantly, the probe was rapidly activated in the NQO1-positive 

cells (<10 minutes) and did not show to be cytotoxic to any of the cell lines studied.  It was also 

demonstrated that the type and percentage of solvent used in the NQO1 enzyme assay can be 

detrimental to the enzyme activity.  Here, it was found that DMSO at only 5% reduced the 

enzyme activity by 68%, while EtOH and ACN only reduced the activity by 3% and 34%, 

respectively.   

5.3 Outlook  

 With fluorescence-based optical imaging for the diagnosis and treatment of diseases still 

in its infancy, there is much work left to be accomplished to have a greater impact in the clinic.  

This development of fluorescent probes has the potential to aid in the design of drugs by 
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obtaining pharmacokinetic and biodistribution information, along with aiding in fields such as 

diagnosis and real-time surgical guidance.  The goal of all fluorogenic probes for disease 

detection and analysis is to have high selectivity and sensitivity.  This is attainable by obtaining a 

better understanding of the macro- and microenvironments of the tissue being studied, and 

utilizing the unique features that differentiates them from healthy tissues.   

 With the amount of previously reported information on the design and implementation of 

drug molecules that are selectively activated by NQO1, it is rather surprising NQO1 has not been 

used in the detection and treatment of cancer using biomedical imaging.  Information in this 

dissertation provides an excellent starting point towards the design of next generation NQO1-

activatable fluorophores.  The probe structure contains two moieties, quinone and fluorophore, 

that can readily be changed to increase the substrate efficiency and allow adjustment of the 

optical properties to obtain a more biologically useable fluorophore.  These properties can be 

adjusted while maintaining the selectivity for activation and still maintain a high signal-to-

background ratio.  The naphthalimide probe possesses the capability to conjugate the probe to 

different entities, such as other fluorophores and nanomaterials.  By attaching fluorophores 

which emit in the red, there is the ability to create a pseudo-dual color probe using Förster 

resonance energy transfer (FRET) and giving the user more quantitative information.  This could 

be accomplished by observing the red-emitting fluorescence and the change in fluorescence 

through FRET by exciting the naphthalimide probe as it is activated.  These probes can also be 

attached to biomaterials, such as dextrans, to determine if there is any NQO1 activity in 

endosomes or lysosomes.  One could easily attach lipids to the naphthalimide probe to create a 

probe-capped liposome system to observe the kinetics of activation and release of the vesicle’s 

contents.  More recently, reports have been published about the development of multimodal 
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probes that contain an optical imaging motif and a nuclear or magnetic resonance imaging 

motif.2,3  This combination of incorporating a biomedical imaging technique commonly used 

clinically with an optical imaging agent allows for the development of a two function probe.  

One can be used to locate disease sites prior to surgery and a second can give real-time 

information during intraoperative procedures.  Whether it’s creating a second generation probe 

system or utilizing the probes presented here for in vivo analysis, there is still a large amount of 

research left to be performed to develop an NQO1-selective fluorophore which is capable for 

clinical applications.   
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