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ABSTRACT 

Alpha hydroxy acids (AHAs) – carboxylic acids with a hydroxyl substitution on the alpha 

carbon are an important class of molecules. Hydroxy Methyl Thiobutanoic Acid 

(HMTBA) is an α-hydroxy analog of essential amino acid methionine; it finds extensive 

use as a feed supplement for avian and bovine species.  Efficacy of alpha hydroxy acid 

uptake is important for nutritional studies and such studies rely on accurate and precise 

methods for determination of these chemicals in biological samples.  Several methods for 

AHAs determination have been reported, however, the methods are tedious, requiring 

multiple sample preparation steps. Experiments reported in this thesis were aimed at 

development of a method that is simple, accurate and precise.  The method involved 

lyophilization of sample matrices (bovine blood serum or seawater), extraction of the 

residues with solvents such as acetone or methanol, and reconstitution of the extracts in a 

suitable solvent system.  The solvent system was dependent on the instrumental method 

used for final determination.  The reconstituted extracts were then analyzed with liquid or 

the gas chromatography interfaced to mass spectrometry (HPLC-MS, GC-MS) or directly 

with electrospray ionization mass spectrometry (ESI-MS).  Validation experiments with 

fortified synthetic seawater and bovine blood serum samples showed that analyte 

recoveries were consistently in the 90-100% range and  analytes were readily monitored 

over a 0.01 – 50 parts per million concentration range.  Improved selectivity was 

achieved through S – methylation of HMBTA to the sulfonium chloride cation.  The 

cation was readily detected through direct introduction into ESI-(MS)
2
 and monitoring 

for a fragment  ion at m/z 103 resulting from  molecular ion m/z 165  with the loss of 

dimethyl sulfide as the neutral species.   
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1. INTRODUCTION AND REVIEW OF LITERATURE 

 

 

 

1.1 ANIMALS AND NUTRITION 

Nutrition is defined as the sum of the processes by which an animal or plant takes 

in and utilizes food substances (1).  Plants produce nutritive molecules, such as proteins, 

carbohydrates, and fats, through the uptake of carbon dioxide from the air, inorganic 

chemicals from the soil, and energy derived from sunlight in a process called 

photosynthesis.  This process starts the nutrient cycle, which corresponds to the passing 

of energy from organism to organism up the food chain.  The nutrient cycle is brought 

full circle through the death and decay of all plants and animals, which in turn facilitates 

the release of nutrients back into the soil that ultimately sustains plant life.  Humans fit 

into the food chain as an omnivore consuming both plants and animals, and rely largely 

on agriculture to fulfill their nutritive needs (1). 

1.1.1 Amino Acid Requirements of Mammalian Species.  The amino acid 

requirements of most mammalian species are met through direct absorption of 

hydrolyzed amino acids from the GI tract or transamination of precursor molecules - α-

keto acids.  Ruminants can meet some of the amino acid requirements through conversion 

of nonprotein nitrogen (NPN) to amino acids and proteins by rumen microflora (2).  

Ruminant protein requirements are divided into two categories the fermentable, or total 

digestible nitrogen (TDN), and ruminally undegradable protein (RUP) (3).   Microbial 

fermentation results in deamination of amino acids with the release of ammonia and 

organic acids.    The rumen microorganisms can utilize the ammonia and acids as energy 

sources and/or precursors for the synthesis of new amino acids and proteins (2).  Thus 
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microbial metabolism alters amino acid composition of the dietary proteins.  Proteins that 

escape rumen degradation are known as the RUP and are directly available to the 

animals, such proteins are often referred to as the “by-pass” protein (2, 3, 4).  The by-pass 

characteristic is dependent on the type of feed used and the preconditioning steps used 

during feed preparation.   

The essential amino acid  requirements particularly that of methionine can be met 

via the supplementation of amino acid hyrdroxy analogs, such as the hydroxy analog of 

methionine; hydroxy methyl thio butanoic acid (HMTBA).  The hydroxy acid supplement 

can be utilized efficiently through its conversion to the keto acid and subsequent 

transamination to an amino acid.  An amino acid is classified as an essential amino acid if 

the animal cannot successfully synthesize the α-keto acid precursors of the amino acids.  

Examples of amino acids that are not synthesized by aminals are Lysine, histidine, 

leucine, isoleucine, valine, methionine, threonine, tryptophan, and phenylalanine.  

Literature shows that these nine amino acids are essential for most all animal species (4, 

5, 6). Therefore, protein requirement of animals depends on the essential amino acid 

requirements, while the bioavailability of an essential amino acid depends on digestibility 

of the proteins present in the feed and absorbability of a particular essential amino acid 

(4, 7). 

 1.1.2 Supplementation of Synthetic Amino Acids and Non-protein Nitrogen 

Sources.  High-protein fish meal is a good source of proteins for livestock, but it is too 

costly to be used as a regular supplement (8).  Therefore, amino acids obtained through 

microbial fermentation or chemical syntheses have been produced; these large scale 

production routes yields crystalline amino acids that are added to animal feed.  Large 
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scale production of amino acids has been shown to be cost effective.  Fermentation is a 

better process because it can provide a product comprised only of the L-amino acids, 

which can be used directly by the animal.  However, due to extensive deamination of 

crystalline essential amino acids efficacy of crystalline amino acid as supplements in 

ruminants and aves is low (2, 4, 8, 9).   

 1.1.3 Supplementation of Amino Acid Analogs.  Amino acid analogs include α-

keto acids and α-hydroxy acids can be used as supplements.  The amino acid analogs can 

be used for supplementation only if these can be enzymatic converted to L-amino acids 

(4). Bioavailability of the amino acid analogs is also dependent on their survival and 

subsequent absorption in the GI track (10, 11).  In ruminants, absorption depends on the 

rumen by-pass and the active transport through the intestine membrane (4, 5).  Common 

reactions that are known to compete with bioconversion reaction include catabolic 

oxidation of the α-keto acids as well as their direct use as an energy source.  Analogs that 

are not absorbed are excreted though the GI tract, while absorbed analogs that cannot be 

metabolized are excreted through the urinary tract.   
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Figure 1.1 Structures of methionine, HMTBA, alanine and lactic acid. 

 

 1.1.4 Use of HMTBA as Methionine Supplement.  Different approaches for 

protection of methionine from degradation in rumen have been attempted.  In one method 

of L-methionine hydrochloride was encapsulated in a pH sensitive polymer matrix.  

Polymer matrix was stable around neutral pH and allowed transport of encapsulated 

amino acid through the rumen to the abomassum, where the polymer degrades because of 

the acidic environment.  However, the approach was not commercially viable because of 

problems with the bioavailability of the encapsulated L-methionine and the high cost of 

the polymer coating (12, 13). 
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 Studies have shown that the most effective means of methionine supplementation 

is through the use of HMTBA in ruminants and poultry.  Monsanto Company (St. Louis, 

MO) introduced a commercial form of D,L-HMTBA as the calcium salt under a trade 

name name, MHA® (Methionine Hydroxy Analog) in 1956.  In 1979, a liquid form of 

D,L-HMTBA was introduced under a new trade name  Alimet®, which consisted of 88% 

(w/w) HMTBA and 12 % water. Alimet® is manufactured by Novus International, Inc., 

St. Charles, MO (14).  The biological efficacy of HMTBA supplementation has been 

somewhat controversial with some researchers questioning the actual bioavailability of 

HMTBA, while others have reported that the introduction of HMTBA of cattle does not 

effectively increase the production of milk (15, 16).  However, of late a consensus has 

emerged that HMTBA supplementation is in fact a good source of methionine in some 

animal species (9, 17, 18, 19, 20, 21).  Studies with Carbon-14 labeled HMTBA have 

shown that HMTBA is more resistant to degradation in rumen fluid than methionine (20).  

Radioactive labeled methionine was detected in the blood, milk, and urine of the cows 

demonstrating that HMTBA was in fact bio-transformed to methionine (20).  Patterson 

and Kung have reported the benefits of using HMTBA feed supplementation with cows 

by showing that both MHA® and Alimet® showed greater resilience in ruminal fluid 

compared to methionine (21).   It was shown that while only 5% of the L-methionine 

added as supplement survived through the rumen nearly 60 to 80% of HMTBA added as 

the supplement survived passage through the rumen. Results also showed that 

supplementation of HMTBA increased L-methionine in tissues (21).  
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1.2 ANALYTICAL METHODS FOR ALPHA HYDROXY ACID DETECTION 

 Alpha hydroxy acids have been a focus in an array of industrial applications from 

the food industry to the cosmetic industry.  Common applications in the cosmetic 

industry include a number of skin care products such as wrinkle removing creams, facial 

cleansers, anti-aging products, etc.  Also, AHA’s are found throughout the food industry 

with common applications in candy, energy drinks, fruit drinks, and most items that 

include fruits.  Fruits are the most common natural sources of AHA’s, for this reason 

AHA’s are commonly referred to as the fruit acids.  AHA’s have also become significant 

as animal feed supplements.  The most common commercially synthesized AHA is the 

HMTBA, which has been used extensively over the past 30 years.  The widespread use of 

AHA has lead to a need for improved methods for monitoring these acids in a number of 

difficult matrices.      

 1.2.1 HPLC Methods Used for the Detection of Alpha Hydroxy Acids.  A 

variety of methods have been developed for the detection of AHA.  Due to the polar 

nature of these molecules commonly used methods employ High Pressure Liquid 

Chromatography (HPLC), but methods using Capillary Electrophoresis (CE) and 

Spectrophotometry have also been used.   

Couch and Howard describe a HPLC based method for the detection of glycolic 

acid in cosmetic products.  The method involved suspension of cosmetic products in a 

water: acetonitrile mixture. The extract was concentrated and basified to ensure 

deprotonation of the carboxylic functionalities and passed through a strong anion 

exchange (SAX) resin cartridge.  Gycolic acid was retained on the anion exchange 

column through ionic interaction was eluted with an acidic solution.  The SAX cartridge 
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proved to be an efficient means for the elimination of background noise through selective 

retention of glycolic acid. The method avoided the use of heated columns or ion-pairing 

reagents and permitted good recoveries of glycolic acid from the samples comprised of 

lotions and creams.  Average recoveries from the cosmetic media were reported to be 

~100.0% (22).   

 A method reported by Nicoletti et al. describes a procedure for the detection of a 

number of AHAs extracted from cosmetic products.  The method employed a narrow 

bore HPLC column and yielded an enhanced sensitivity and higher efficiency. In addition 

use of narrow bore column lowered the mobile phase volume utilized for separation; it 

also reduced sample volume required for analysis.  The authors describe a procedure that 

does not employ tedious sample preparation or clean ups steps that are often needed for 

reliable sample analysis.  Despite the simplified sample preparation described by the 

authors the method required the use of ion-pairing reagents for chromatographic 

separations. The method was considered a reliable, reproducible, and effective means for 

the determination of a variety of AHAs in cosmetic products with recoveries between 96 

and 100%; the relative standard deviation of the method was reported to be 3%. (23). 

 A method reported by Tanabe et al. also afforded the convenience of a greatly 

reduced sample clean up procedure but relied on the use of ferric perchlorate as a 

complexing agent for lactic acid.  The authors described a procedure that focused on the 

extraction of lactic acid and pyruvic acid from heparinized blood. They speculated that 

the method can be used as a general procedure for the detection of a number of alpha keto 

and AHAs.  The method was used for detection of a limited number of analytes however 

the sensitivity of the method was generally was lower than that of other methods (24).  
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Other drawbacks were the use of expensive, non-conventional columns such as, strong 

cation exchange (SCX) and SAX columns that are not widely used for routine analysis 

(24). 

 1.2.2 Other Methods Used for the Detection of Alpha Hydroxy Acids.  

Methods that employ CE, modified HPLC techniques, spectrophotometers, and thin layer 

chromatography (TLC) are not used for routine analysis for a number of reasons; these 

include the use of expensive reagents, reduced method sensitivity, reduced method 

reliability, reduced reproducibility, and complicated sample and instrument preparation 

procedures. 

 Reportedly reliable methods for the detection of AHAs in cosmetic products and 

fruits have been produced.  These methods allow for a very simplified sample preparation 

by requiring only dilution steps.  A method described by Dutra et al. describes a CE 

technique for the determination of AHAs in cosmetic products.  Their method used 

indirect ultraviolet detection with potassium phthalate as a background electrolyte.  The 

authors also employed cetyltrimethylammonium bromide (CTAB) as an electrophoretic 

modifier to optimize analyte resolutions and to decrease analyte retention time.  They 

reported that recoveries of 99 to 100% could be achieved with an analysis time of 3 

minutes with good sensitivity showing limits of quantitation ranging from 0.4 to 1.0ppm.  

Combining the speed of analysis with the greatly reduced sample preparation time, this 

method could be truly considered rapid.  Also, a method very similar to the previously 

discussed one was developed by Vorarat et al. included the use of the long-chain cationic 

surfactant CTAB, but opted for direct ultraviolet detection instead of indirect detection.  

Their method had similar results when compared to the previously mentioned one but the 
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direct detection suffered in sensitivity with limits of detection ranging from 2.5 to 

5.0ppm.  Even though these methods employ a very easy sample preparation they are not 

used nearly as often as HPLC methods because CE is not commonplace in today’s 

laboratories (25, 26). 

   Modified HPLC techniques have gained use in recent years with an increased 

availability of technologies and techniques.  Yokota et al. describe an HPLC technique 

that utilizes a post column addition of a ruthenium complex to take advantage of 

chemiluminescence detection.  The method was developed for hydroxy acids and 

dicarboxylic acids to take advantage of the reactive characteristics of hydroxy acids.  This 

method is possible because the ruthenium complex reacts with oxalic acid, which is 

produced from the oxidation of the hydroxy acid.  The use of ultraviolet irradiation to 

promote the reactions was also described.  The method showed good precision with 

relative standard deviations ~ 5% but was not able to match detection limits that were 

achieved by other methods with detection limits close to 2 nmoles (27). 

 A method developed by Matulis and Guyon describe a spectrophotometric 

technique used for the determination of citric acid.  The technique relied on the AHAs 

ability to have a bleaching effect on the blue hue of a reduced molybdenate solution. The 

study showed consistent results but with many major drawbacks in comparison to already 

established methods for AHA detection.  The study used a relatively complicated sample 

preparation and was not established for analytes extracted from a matrix.  Also, the 

method was shown to have relatively poor detection limits with the lowest concentration 

of analyte studied at 50ppm.  In comparison to other methods this would not be suitable 

for trace analysis (28).   
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 1.2.3 Methods Used for the Detection of 2-Hydroxy-4-(Methylthio) Butanoic 

Acid (HMTBA).  Due to HMTBA’s widespread use as a supplement in animal feed, 

there is a need for a rapid, reliable, and precise method for its determination.  However, a 

review of the literature showed that very few methods for such determination have been 

established.  Published methods are based on gas chromatography with flame 

photometric detection (GC-FPD) and HPLC. 

 The method employing GC-FPD relied on the derivitization of the HMTBA with 

a silyating reagent, N, O-bis(trimethylsily) acetamide (BSA).    The method was 

established for the determination of HMTBA extracted from cow’s milk, urine, and 

tissue.  Relatively complicated sample preparation steps were needed these often led to 

reduced recoveries and poor precision. The analysis yielded good detection limits with 

varied matrices 50ppb for milk, 80ppb for the urine, and 200ppb for the tissue samples.  

However, the method did show great variation from sample to sample throughout their 

study with recoveries ranging from 70 to 140% in the milk analysis, 80 to 150% in the 

tissue analysis, and 50 to 120% in the urine analysis.  The inconsistency in the analyte 

recoveries for this method leaves it in need of further study and improvement to be used 

for routine analysis (29). 

 An HPLC method developed by Ontiveros et al. describes a procedure for the 

detection of HMTBA in an animal feed matrix.  The method employs the use of a 

reversed phase amine column and ultraviolet detection.  The method also takes advantage 

of a relatively simple sample preparation with only an extraction of the feed with an 

aqueous solution of 10% acetonitrile and the addition of base and acid before dilution for 

HPLC analysis.  Good results were found with the analysis showing recoveries between 
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96 and 99% along with good precision showing relative standard deviations between 3 

and 4%.  The method also afforded relatively good sensitivity with a detection limit close 

to 1.5ppm.  Even though the described method showed good results, an analysis that 

could provide greater sensitivity with a procedure that has a simpler sample preparation 

and a more simple instrumental approach was warrented (30). 
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2. STATEMENT OF OBJECTIVES 

The objective of this work was to develop a rapid, accurate and precise method 

for determination of alpha hydroxy acids in general and HMTBA in particular at trace 

levels (parts per million – parts per billion) in particular in biological and environmental 

matrices such as blood serum and seawater. To meet the overall objective a series of 

experiments were carried out to: 

1. Optimization HMTBA recovery from saline solutions and bovine blood 

serum. 

2. Evaluation and optimization liquid chromatography separation of AHAs. 

3.  Evaluation and optimization of ESI-MS parameters. 

4. Esterification of AHAs with different alcohols. 

5. Evaluation and optimization of gas chromatography separation of AHAs 

esters. 

6. Selection of predominant ions for quantification of AHAs esters. 

7. Evaluation and optimization of HMTBA S-methylation. 

8. Evaluation and optimization of ESI-MS-MS parameters for S-methyl 

HMTBA.  
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3. EXPERIMENTAL 

A systematic approach was used to characterize methods for the detection of 

alpha hydroxy acids in two matrices i.e. synthetic seawater and bovine blood serum.  

Methods were developed for three different types of instrumentation that include reverse 

phase High Performance Liquid Chromatography with UV detection (HPLC), Gas 

Chromatography with Mass Spectrometry (GC-MS), and direct injection Electrospray 

Ionization with Mass Spectrometry (ESI-MS).  The methods were developed with 

accuracy, precision, ease, and speed as our main criteria for evaluation.  A method that is 

quick, accurate, and precise with relative ease of performance was sought and achieved.  

Details of experiments and instrumental parameters carried out to achieve the stated 

objectives are given in the sections that follow. 

 

 

 

3.1 MATERIALS 

 

 Tartaric acid, Malic acid, and Mandelic were all purchased from Sigma Aldrich, 

St. Louis, MO.  The methanol, acetonitrile, acetone, anhydrous methanol, anhydrous 

ethyl alcohol, 2-propanol, 1-propanol, iso-octane, ethyl acetate, hexane, and ammonium 

hydroxide were all purchased from Fisher Scientific, St. Louis, MO.  Hydrochloric acid 

gas was obtained from Scott Specialty Gas, Plumsteadville, PA.  Nitrogen gas was 

obtained from Ozarc Gas, Rolla, MO.  D,L-HMTBA (Alimet®) was procured from 

Novus International, Inc., St. Louis, MO.  The salt used for the production of synthetic 

seawater was Instant Ocean, which is manufactured by Spectrum Brands, Inc., Atlanta, 

GA.  The 25cm x 4.6mm i.d., 5µm particle size C-18 column for the HPLC analysis and 
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the DB-5MS 30m x 0.25mm, 0.25µm film thickness column for the GC-MS analysis 

were purchased from P.J. Cobert Associates, Inc., St. Louis, MO.  The nano-pure water 

used in the experimentation was generated using a Synergy 185 filtration system from 

Millipore Corporation, Billerica, MA.    

 

3.2 RECOVERY OF HMTBA FROM SALT SOLUTION AND BOVINE BLOOD 

SERUM 

Approaches for quantitative recovery of HMTBA residues from a relatively clean 

and simple matrix – synthetic seawater and a more complex biological matrix (bovine 

blood serum) were evaluated and optimized.  The two matrices posed different challenges 

in extracting a hydrophilic analyte from the water based matrices.  Details of approaches 

evaluated during the study are discussed below. 

 3.2.1 AHA Extraction Procedure from a Synthetic Seawater Matrix.  Alpha 

hydroxy acids (AHA) were spiked to a solution of used synthetic seawater.  The synthetic 

seawater was drawn from an existing mature reef aquarium with the salinity at 3.65% or 

specific gravity of 1.025.  The AHAs were spiked to 1mL of salt solution at 

concentrations ranging from 10 parts per billion up to 1 part per million.  The solutions 

were then prepared for lyophilization by placement in a -30°C freezer and allowed to 

freeze for 4 to 6 hours.  Once frozen, the sample were moved to the freeze dryer and 

allowed to concentrate for 12 to 24 hours.  Extraction was then carried out with Acetone 

(3 x 2mL).  Each extraction step included brief vortex stirring and a 15 minute sonication 

followed by a 15 minute centrifugation.  The extracts were then dried under a gentle 

stream of nitrogen gas (4.8 Grade).  Depending on the next step the dried residues were 
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either picked up in a 50% solution of methanol in water for HPLC analysis or prepared 

for derivitization.    

 3.2.2 AHA Extraction Procedure from Bovine Blood Serum Matrix.  Alpha 

hydroxy acids were spiked to a solution of bovine blood serum.  The serum was provided 

to us from colleagues at the University of Missouri at Columbia.  The AHAs were spiked 

to 1mL of blood serum at concentrations ranging from 50 parts per billion up to 2 part per 

million.  The solutions were then prepared for lyophilization by placement in a -30C 

freezer and allowed to freeze for 4 to 6 hours.  Once frozen, the sample were moved to 

the freeze dryer and allowed to concentrate for 12 to 24 hours.  Extraction was then 

carried out with Methanol (3 x 2mL).  Each extraction step included brief vortex stirring 

and a 15 minute sonication followed by a 30 minute centrifugation.  The extracts were 

then dried under a gentle stream of nitrogen gas (4.8 Grade).  Depending on the next step 

the dried residues were either picked up in a 50% solution of methanol in water for HPLC 

analysis or prepared for derivitization.    

 

3.3 ANALYTICAL METHODS USED FOR DETECTION 

Three different methods were developed for the detection of alpha hydroxy acids.  

Methods for HPLC, GC-MS, and ESI-MS were developed and carried out for a number 

of alpha hydroxy acids.  The HPLC and GC-MS methods encompassed all AHAs while 

the ESI-MS method was used only for 2-Hydroxy-4-(Methylthio) butanoic acid 

(HMTBA).  The other AHAs studied include Tartaric acid (TarA), Malic acid (MalA), 

and Mandelic acid (ManA).  The HMTBA was supplied from Novus International Inc. 

out of St. Louis, Missouri in the form of Alimet®.  Alimet® is a highly viscous, brown 
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liquid that is 85% HMTBA.  All other AHAs were obtained from Sigma Aldrich out of 

St. Louis, Missouri. 

 3.3.1 Reversed Phase High Performance Liquid Chromatography.  The 

instrument used for liquid chromatographic analysis was a Hitachi 2000 series (Hitachi 

Instruments, Inc., San Jose, CA).  The system consisted of a piston pump (L-2100), a 

column oven (L-2300), an autosampler (L-2200) with a 50µL injection loop, and a diode 

array detector (DAD, L-2450).  The separations were carried out using a reversed phase 

C18 column (25cm x 4.6mm i.d., 5µm particle size).  The data was recorded using 

EZChrom Elite version 3.1.3 software.  

 The dried residues from sample preparation were used for the analysis.  The dried 

residues were reconstituted in a 50% solution of methanol in water.  A volume of 1 or 

2mL was generally used.  The solutions were then agitated using vortex stirring for 30 

seconds followed by filtration through 0.22µm membrane filters and transferred to 2mL 

autosampler vials.  The samples were then placed in the autosampler for analysis. 

 The separation was carried out using DAD detector with the monitoring 

wavelength at 210nm.  The mobile phase used was a combination of water with 0.1% 

trifluoroacetic acid and acetonitrile.  An injection volume of 10µL was used for each 

sample with a mobile phase flow rate of 1.0mL per minute. 

 3.3.2 Direct Injection Electrospray Ionization.  The instrument used of the ESI-

MS analysis was a Varian 1200L Quadrupole MS/MS (Varian, Inc., Palo Alto, CA).  It 

was fitted with a solvent pump (ISCO SFC-500 Microflow Pump) for the introduction of 

a 50:50 mixture ofmethanol and water.  The flow rate was set at 250µl per minute with 

injections using a 5µL sample loop.  The system was run in MS/MS mode with the 
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collision energy at -15eV with the Q2 pressure at approximately 1.00 mtorr.  The MS/MS 

analysis was done at m/z 165 and the daughter ion monitored was at m/z 103.  The 

detector voltage was held at 1500V with the needle voltage at 3500V.  The nebulizing gas 

was nitrogen and the drying gas was held at 100°C. 

 If ESI-MS analysis was to be done the sample extracts were transferred to 10mL 

ampoules for derivitization.  After the samples from the blood serum and seawater were 

extracted and transferred to the ampoules they were brought to dryness under a gentle 

stream of nitrogen while being heated at 30-40°C.  The ampoules were then fitted with 

stir bars and an alcohol, hydrochloric acid solution was added.  The alcohol with 

hydrochloric acid solution was prepared by taking a known mass of alcohol and bubbling 

hydrochloric acid gas through the solution until enough had been added to produce a 

mixture that was approximately 10-12M.  The molarity of the solution was determined by 

using a w/w ratio of the components.  Immediately after the alcohol with hydrochloric 

acid solution was added to the reactions the ampoules were sealed using a torch and 

heated to 70-75°C for 1 hour.  After heating the reactions were placed in a freezer to cool 

for at least 4 hours.  Once sufficiently cooled the reactions were dried under a gentle 

stream of nitrogen while heating to 35-40°C.  Once dried the reactions were prepared for 

analysis.       

The samples were prepared by reconstitution in a water solution containing 0.01% 

ammonium hydroxide.  The reactions were agitated using a vortex stirrer for 30 seconds 

and filtered into 2mL autosampler vials using 0.22µm membrane filters.  They were then 

allowed to sit at room temperature for at least 1 hour for the seawater samples and at least 
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4 hours for the serum samples.  Injections were done in triplicate for each sample over a 2 

minute period with an injection every 30 seconds.   

 3.3.3 AHA Analysis with Gas Chromatography and Mass Spectrometry.  The 

gas chromatographic analysis used a Thermo instrument (Thermo Fisher Scientific, 

Waltham, MA).  The GC oven was a Trace Ultra series with a TriPlus AS autosampler.  

The mass spectrometer was a PolarisQ MS.  The software used for data analysis was 

Xcaliber.  The injector was held at 240°C with the transfer line at 260°C.  Each injection 

was done with the autosampler and used 1µL injections.  The oven was started at 50°C 

and held for 1 minute, ramped at 8°C per minute to a final temperature of 240°C.  The 

final temperature was held for 4 minutes giving a total run time of 20 minutes.  Helium 

was used at the carrier gas with a flow rate of 1.2mL per minute.  Chromatographic data 

was visualized in an Extracted Ion Chromatogram view.  The chromatograms were 

extracted with the most abundant 3 to 4 ions in each compound specific mass spectrum.     

 For GC-MS analysis the sample extracts were transferred to 10mL ampoules for 

derivitization.  After the samples from the blood serum and seawater were extracted and 

transferred to the ampoules they were brought to dryness under a gentle stream of 

nitrogen while being heated at 30-40°C.  The ampoules were then fitted with stir bars and 

an alcohol, hydrochloric acid solution was added.  The alcohol with hydrochloric acid 

solution was prepared by taking a known mass of alcohol and bubbling hydrochloric acid 

gas through the solution until enough had been added to produce a mixture that was 

approximately 1-2M.  The molarity of the solution was determined by using a w/w ratio 

of the components.  Immediately after the alcohol with hydrochloric acid solution was 

added to the reactions the ampoules were sealed using a torch and heated to 70-75°C for 
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1 hour.  After heating the reactions were placed in a freezer to cool for 30 minutes.  Once 

sufficiently cooled the reactions were dried under a gentle stream of nitrogen while 

heating to 35-40°C.  Once dried the reactions were prepared for analysis. 

 The samples were prepared by reconstituting the dried residues in 1-2mL of 

isooctane.  The reaction mixtures were agitated for 30 seconds using a vortex stirrer.  

After agitation the solutions were transferred to 2mL autosampler vials for analysis.   

 

3.4 HMTBA PURIFICATION 

All experiments using 2-hydroxy-4-(methylthio) butanoic acid (HMTBA) took 

advantage of the purified form of the compound.  The Alimet® that was provided was 

exposed to a purification method that incorporated a bulb to bulb distillation similar to a 

Kugelrohr distillation apparatus.  The purified compound was a yellowish color with a 

transition temperature close room temperature.  The crystalline state of the compound 

was achieved with refrigeration.  Details of the procedure are given below. 

 Bulb to Bulb HMTBA Distillation.  The raw Alimet® was transferred to a round 

bottom flask.  The round bottom flask placed inside an oven and was fitted with a double 

ended collection bulb.  Underneath the collection bulb was an ice bath and jack stand.  

The collection bulb was connected to a vacuum hose which was connected to a rotating 

motor.  The motor was connected inline to a high vacuum pump.  The oven was heated to 

180-220°C while the vacuum achieved being close to 1mtorr.  The HMTBA was heated 

and distilled to the collection bulb, where it was collected and later transferred to vials for 

refrigerated storage.  
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3.5 PREPARATION OF STANDARDS 

 All standards used for calibrating the instrument response were prepared from 

pure chemicals obtained from commercial vendors.  Calibration standards of HMTBA 

were prepared from the vacuum distilled form. 

 3.5.1 Preparation of HMTBA Ester Standards.  The HMTBA esters were all 

prepared using the same procedure with differing alcohols.  In each case a known amount 

of HMTBA was added to a round bottom flask, fitted with a stir bar and condesor, with 

enough alcohol (methanol, ethanol, n-propanol, and i-propanol) to make the reaction 

mixture approximately 1.0 Molar.  The reactions then had HCl gas bubbled through them 

for 10 minutes.  After the addition of HCl the reactions were heated to reflux while 

stirring until no starting material was observed.  Reactions were monitored by Thin Layer 

Chromatography (TLC) using a 70:30 mixture of Hexane:Ethyl acetate.  Once the 

reaction had gone to completion they were removed from the heat and brought to dryness 

under vacuum.  The product was then reconstituted in Ethyl acetate (100mL), washed 

with water (2 x 50mL), and brine (2 x 50mL).  The Ethyl acetate layer was then dried 

with anhydrous Sodium sulfate and filtered.  It was then brought to dryness under 

vacuum and solvent removal was completed under high vacuum for 1 hour.  

Approximately 9 grams of each ester was prepared with each reaction having a yield 

close to 65%.    

3.5.2 Preparation of Other Alpha Hydroxy Acid Ester Standards.  The other 

AHAs (Tartaric acid, Malic acid, and Mandelic acid) were prepared in a similar fashion 
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to the HTMBA ester standards.  For the reactions a large batch of i-propanol with HCl 

was produced just prior to the start.  The i-propanol was produced by bubbling HCL gas 

through the solution for 20 minutes.  Each AHA was added to a round bottom flask that 

was fitted with a stir bar and condenser.  Enough i-propanol with HCl was added to bring 

the reaction to approximately 1.0 Molar.  They were then heated to reflux while stirring 

until no starting material was observed.  The reactions were monitored by TLC using a 

50:50 mixture of Hexane:Ethyl acetate.  Once complete the reactions were removed from 

the heat and concentrated under vacuum.  The product was then reconstituted in Ethyl 

acetate (50mL), washed with water (2 x 25mL), and brine (2 x 25mL).  The Ethyl acetate 

layers were then dried with anhydrous Sodium sulfate and filtered.  It was then brought to 

dryness under vacuum and solvent removal was completed under high vacuum for 1 

hour.  Approximately 6 grams of each ester was prepared with each reaction having a 

yield close to 85%.  

3.5.3 Preparation of S-Methyl HMTBA Standard.  The standard of sulfur 

methylated salt of HMTBA was prepared in the same manner as the small scale reactions.  

A known amount of HMTBA (100mg or less) was added to a 20mL ampoule fitted with a 

stir bar.  The methanol was prepared by bubbling HCl gas through the solution until 

enough HCl had been added to produce a solution of approximately 11 to 12 Molar.  The 

alcohol (no more than 3mL) was then added to the ampoule, which was then sealed.  The 

ampoule was then heated to 70 to 75°C for 4 hours.  It was then removed from the heat 

and allowed to cool in a freezer for 2 hours.  The ampoule was then unsealed and the 

reaction brought to dryness under a stream of nitrogen while heated to 35 to 40°C.  The 
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dried residue, which was a brown colored, highly viscous liquid, was then extracted with 

dried acetone (2 x 5mL) and reconstituted in water (10mL).  The water layer was then 

placed in a -30°C freezer for 6 hours and then freeze dried for 48 hours.  The dried 

residue, which at this point was a slightly brownish crystal, was again extracted with dry 

acetone (2 x 2mL).  The resulting product was a white crystal.  The reaction produced 

approximately 1.2mg of material with a reaction yield close to 90%. 
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4.  RESULTS AND DISCUSSION 

 

 

4.1 HPLC DETERMINATION OF HMTBA IN SEAWATER AND BOVINE 

BLOOD SERUM 

 4.1.1 Method LOD and LOQ Determination.  The 2-Hydroxy-4-

(methylthio)butanoic acid (HMTBA) was spiked to a 100% water matrix and instrument 

sensitivity was determined.  The HMTBA was analyzed using diode array detection 

while monitoring at 210nm.  Identity of peaks was established with standards as reference 

samples.  The instrument was found to have a minimum detection limit (MDL or LOD) 

of approximately 0.2 parts per million with a limit of quantitation (LOQ) of 

approximately 1.0 parts per million.  The instrument performance was also tested with a 

seawater matrix (5% salts) with similar results.  Instrumental performance for HMTBA 

spiked to blood serum matrix was also tested with a MDL of approximately 0.5 parts per 

million and a LOQ of approximately 2.0 parts per million.  Typical HPLC 

chromatograms for each method are shown below in Figure 4.1. 
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(A) 

 

(B) 

 

(C) 

Figure 4.1 A typical reversed phase HPLC chromatograms obtained for the 

standard (A), sea water extract (B) and the bovine blood serum extract (C).   
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4.1.2 HPLC Method Performance for Seawater.   The results for the seawater 

determinations were quite consistent.  Our method was validated using samples prepared 

by ourselves as well as blind analysis samples provided to us.  My validation was done 

over approximately one month testing the reproducibility over many trials and varying 

HMTBA concentrations.  Typical results from my validations are shown below in Table 

4.1.  After the results from the validation experiments showed good, consistent data, 

blind analysis samples were done.  The samples were prepared and given to us from 

Novus International.  The samples underwent the same extraction procedure and analysis 

conditions that were used for our validations.  The blind analysis samples also showed 

good, consistent data with typical recoveries falling between 85 and 93%.  The samples 

and data are shown below in Table 4.2.             
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Table 4.1 Results of Method Validation Simulated Seawater Samples. 

Laboratory Simulated Seawater Validation Samples 

Sample Date Done 
Area 

(HMB) 

Amount of 

HMTBA (µg) % 

Recovery 
Std Dev 

Detected Spiked 

HMTBA 25 ppm 7-Jun-07 211292 21.0 25 84 

4.2% 

HMTBA 25 ppm 7-Jun-07 227002 22.4 25 90 

HMTBA 5 ppm 26-Jun-07 86684 4.8 5 96 

1.4% 

HMTBA 5 ppm 26-Jun-07 88868 4.9 5 98 

HMTBA 10 ppm 2-Jul-07 106440 8.6 10 86 

1.4% 

HMTBA 10 ppm 2-Jul-07 108451 8.8 10 88 
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Table 4.2 HPLC results from blind HMTBA analysis extracted from seawater. 

Seawater Samples 

Sample code Area of HMB 
Detected HMB 

(ppm) 

Target HMB 

(ppm) 
% Recovery 

NBP-1  1071163 46.0 49.4 93.2 

NBP-2  49376 3.7 4.9 75.2 

NBP-3  ND ND 0 NA 

NBP-4  496423 22.2 24.6 90.3 

NBP-5  477242 21.4 24.6 87.0 

NBP-6  476125 21.4 24.6 86.9 

  

 

 4.1.3 HPLC Method Performance for Blood Serum.  The serum analysis was a 

problem for us even though it started off working.  Our validations were done using 

bovine blood serum that we acquired from colleagues at the University of Missouri-

Columbia.  All initial testing and analysis was performed using this serum.  The results 

obtained from this seemed to show good recoveries that were consistent.  The blood 

serum samples also used the same method used for the seawater analysis.  The initial 

validations showed good data with typical recoveries between approximately 90 and 

120%.  The problem arose when blind analysis samples were provided.  The samples 

showed a marked increase in background interference that could not be removed from the 

samples.  The analysis was repeated many times and no solution could be found.  For this 
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reason, other methods were sought for the analysis of HMTBA in blood serum.  The 

results from the blood serum validation study are shown below in Table 4.3. 

 

Table 4.3 Results of Method Validation Samples for HMTBA in Bovine Serum. 

Blood Serum Validation Samples 

Sample code Date Done 
Area 

(HMB) 

Amount of HMB (µg) 
% 

Recovery 

Std 

Dev Detected Calculated Spiked 

HMTBA 10ppm 7-Jun-07 213772 10.6 10.6 10 106 

 

5.9% 

HMTBA 10ppm 7-Jun-07 214978 10.7 10.7 10 107 

HMTBA 10ppm 7-Jun-07 243267 11.9 11.9 10 119 

HMTBA 10ppm 7-Jun-07 226994 11.2 11.2 10 112 

HMTBA 25ppm 23-Jun-07 269087 13.1 26.2 25 105 

6.6% 
HMTBA 25ppm 23-Jun-07 262328 12.8 25.6 25 102 

HMTBA 25ppm 23-Jun-07 230598 11.4 22.8 25 91 

HMTBA 25ppm 23-Jun-07 240017 11.8 23.6 25 94 

HMTBA 10ppm 2-Jul-07 260646 12.1 12.1 10 121 

3.5% 

HMTBA 10ppm 2-Jul-07 271364 12.6 12.6 10 126 
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4.2 GC-MS DETERMINATION OF HMTBA IN SEAWATER AND BOVINE 

BLOOD SERUM 

The alpha hydroxy acids (AHAs) were studied with Gas Chromatography using 

Mass Spectrometric detection because of the instruments capability to achieve relatively 

high sensitivity.  A method was desired to analyze the compounds in a matrix at the sub 

parts per million levels.  This was accomplished using this method for four AHAs, which 

include HMTBA, Tartaric acid, Malic acid, and Mandelic acid.  Tartaric acid and Malic 

acid each have two carboxylic acid functionalities so as esters they exist as diesters, while 

mandelic acid only has one carboxylic acid group and is a monoester.  Structures of the 

compounds can be seen in Figure 4.2. 
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Figure 4.2 Structures of the alpha hydroxy acids studied. 

 

The chromatography for the analytes was visualized as Extracted Ion 

Chromatograms (EIC) for all analyses performed.  This was done to maximize sensitivity 

of the analysis as well as make the analyte peaks easier to identify.  To determine the m/z 
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ratios used for analysis, standards were used to obtain each compounds mass spectrum, 

with the standards for each compound being mixed to 20 parts per million. The most 

abundant ions were then chosen for extraction.  Each compounds mass spectrum showing 

the ions used for the EICs is shown below in Figure 4.3.   

 

 

(A) 

 

(B) 

 

(C) 

 

(D)

Figure 4.3 EI Mass spectra of HMTBA isopropyl ester (A), Isopropyl Mandelate 

(B), Diisopropyl Tartrate (C), and Diisopropyl Malate (D). 

 

 4.2.1 Method LOD and LOQ Determination.  The AHAs were tested for 

instrument sensitivity using ester standards that were prepared.  The ester standards were 

prepared in iso-octane for all trials.  The HMTBA was tested as a methyl, ethyl, and 
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isopropyl ester while the other AHAs were only determined as isopropyl esters.  The 

HMTBA showed almost the same sensitivity for all the esters.  Each ester was 

determined to have a MDL of approximately 5 parts per billion with a LOQ of 

approximately 25 parts per billion.  The MDL and LOQ for Diisopropyl tartrate were 

found to be approximately 20 and 100 parts per billion.  Diisoproply malate was found to 

have an MDL and LOQ of approximately 5 and 50 parts per billion while Isopropyl 

mandelate had an MDL and LOQ of approximately 3 and 10 parts per billion.  

Instrumental performance was then established for each compound over a range that 

included the LOD up to 500 parts per billion.  The linearity of the instrument over the 

concentration was very good with each compound having an R
2
 value greater than 0.997.  

This can be seen below in Figure 4.4. 

 

 

Figure 4.4 Graph showing the linearity of GC-MS response  for the AHAs over a 

the 10 to 500 parts per billion concentration range. 
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 4.2.2 Esterification of HMTBA.  The esterification reaction efficiency was 

tested using a matrix free sample of HMTBA.  The analyte was spiked to acetone as a 

standard solution. The solution was then transferred to the reaction ampoule, dried under 

nitrogen, and the dried residues were reconstituted in the reaction media.  The reaction 

was tested using a variety of alcohols, which include methanol, ethanol, n-propanol, and 

isopropanol.  Mass Spectra of the HMTBA ester standards can be seen in Figure 4.5. 
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Figure 4.5 Mass spectra of HMTBA esters; (A) methyl ester, (B) ethyl ester, (C) 

n-propyl ester, (D) isopropyl ester. 

 

 

 

Initial experimentation was done using methanol but it was found that methanol 

lead to inconsistent results with reaction yields varying between 5 and 98%.  The cause of 

this variation was thought to arise from the presence of water in the alcohol as well as the 

water generated from the reaction.  Due to this result a product with greater stability was 

sought while maintaining the integrity of our esterification method.  After testing the 

previously mentioned alcohols, the most consistent data was achieved with isopropanol.  

Over many trials a reaction yield between 50 and 75% was achieved, but a yield greater 

than 70% could not be reached.  Reaction results are shown in Table 4.4. 

 

Table 4.4 Esterification efficiency of HMTBA with different alcohols 

(Esterification was done under identical conditions). 

HMTBA 

Esters 

Reaction 

Yield 

Methyl ester 22% 

Ethyl ester 36% 

n-propyl ester 27% 

i-propyl ester 70% 

 

 

 It was found by testing reaction media; the acidic environment produced from the 

addition of HCl gas in a sealed ampoule was harsh enough to generate the alkyl chloride 

from the alcohol.  The formation of the alkyl chloride promoted the sulfur alkylation, 

which was the leading cause for a reduced reaction yield.  This reaction was observed in 

both the case for the methanol and isopropanol.  Other alcohols were not tested but were 
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assumed to undergo similar side reactions.  It was concluded from these results that the 

side reaction arising from alkyl chloride formation left the analysis inconsistent.  

Therefore, another approach was desired.             

 4.2.3 Esterification of Other Alpha Hydroxy Acids.  The same procedure was 

followed in an attempt to perform esterification on the other AHAs that were extracted 

from seawater and bovine blood serum.  In blank trials the AHAs worked relatively well 

with yields close to 70%.  In all cases the yields were found to be very inconsistent when 

extraction from blood serum and seawater was introduced for all the AHAs studied.  The 

analysis from the seawater showed an increase in the amount of analyte detected as the 

amount spiked increased but the yields were all relatively low.  In the case of the blood 

serum samples the analysis showed a significant interference for both Tartaric acid and 

Malic acid but did not affect the Mandelic acid reactions.  Even though the Mandelic acid 

reactions did not show a significant amount of interference, the reactions yields were 

again found to be low.  These trends are shown in Figures 4.6 and 4.7.  
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(A) 

 

(B) 

Figure 4.6 Graphs showing the concentration spiked versus the concentration 

detected from the esterification reactions from both matrices (A) Seawater, and 

(B) Bovine blood serum. 
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(A) 

 

(B) 

Figure 4.7 Graphs showing the detected percent recovery versus the concentration 

spiked from the esterification reactions from both matrices (A) Seawater, and (B) 

Bovine blood serum. 
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Findings from the esterification study of Tartaric acid, Malic acid, and Mandelic 

acid suggested that the method developed provided a reaction environment that was too 

acidic, leading to the formation of alkyl chlorides that caused side reactions to occur that 

inhibited the desired esterification. 

 

4.3 ESI-MS/MS DETERMINATION OF HMTBA IN SEAWATER AND BOVINE 

BLOOD SERUM 

 The development of a direct injection with ESI-MS/MS method afforded us many 

advantages.  The most important advantage is that the method allowed us an easy way of 

derivatizing HMTBA for detection.  The sulfur methylation reaction could be done 

quantitatively using a very similar approach done with the esterification with the only 

difference in methods being a much higher acidity.  The sulfur methylation reactions 

utilized an HCl concentration close to 12 Molar in methanol.  Acidity was kept high to 

ensure the reaction was completed quantitatively in 1 hour.  The only issue that needed to 

be resolved with this approach was the production of one product. 

 The MS/MS capabilities allowed us to be more selective.  For this reason, it was 

thought that direct injection with ESI would afford the selectivity needed to eliminate 

background from the matrix.  Also, the MS/MS gave greater sensitivity with a LOD 

nearing what was achieved using GC-MS, which was 5 parts per billion.   

 4.3.1 Sulfur Methylated HMTBA Stabiltiy and Ester Conversion.  Due to the 

high acidity of the reaction two products initially form.  The sulfur methylated HMTBA 

existed both as the free acid and the methyl ester.  This problem was resolved easily by 
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the solvent used to reconstitute the dried samples.  The slightly basic solution and a brief 

resting period was enough to convert the methyl ester product to the free acid.  In our 

case, a solution of 0.01% ammonium hydroxide in water solution with a 1 hour resting 

period was enough for complete conversion.  The sulfur methylated HMTBA also 

showed good stability in the basic solution.  The speed of conversion to the free acid 

product and its stability is expressed in Table 4.5 and Figure 4.8. 

 

Table 4.5 Stability of the S-Methyl HMTBA in a basic solution. 

Hours 
Percent 

HMB 

Percent 

Ester 

Percent 

FA 

0.0 3.75 64.8 35.2 

1.0 4.20 0.8 99.2 

12.0 5.55 0.0 100.0 

13.0 5.20 0.0 100.0 

36.0 9.35 0.0 100.0 

48.0 12.7 0.0 100.0 
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Figure 4.8 Graph showing the data from Table 4.5.  S-Methyl HMTBA stability in a basic 

solution and conversion of the ester to the free acid. 

 

 The methyl ester form of the S-Methyl HMTBA salt was converted to the free 

acid form at 99.2% after only 1 hour.  The reaction yield was good over a relatively long 

period of time.  The reaction yield at time zero was close to 96% and only fell to just over 

90% yield after 36 hours.  The stability of the product assured that the analysis could be 

done without the worry of product degradation skewing analysis results. 

 4.3.2 S-Methyl HMTBA Method Validation.  The validation study utilized the 

same reaction conditions as the method described previously as well as employing a 1 

hour waiting period while the reactions were left to rest in a basic water solution.  These 

reactions were done without extraction from a matrix to ensure the method was 

consistent.  The experiment showed that over the concentration range all the reactions 

had yields greater than 92%.  This data can be seen in Table 4.6.  The data from the 

experiments can be seen below in Table 4.7. 
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Table 4.6 Reaction yields from validation of conversion of HMTBA to the S-Methyl salt. 

Sample 

HMB 

Avg 

Area 

HMB 

Concentration 

(ppm) 

Percent 

HMB 

Rxn 

Yield 

HMB-S-Me 1ppm T1 61095 0.0446 4.5% 95.5% 

HMB-S-Me 1ppm T2 54661 0.0399 4.0% 96.0% 

HMB-S-Me 500ppb T1 17281 0.0362 3.6% 96.4% 

HMB-S-Me 500ppb T2 30222 0.0632 6.3% 93.7% 

HMB-S-Me 100ppb T1 5081 0.0735 7.3% 92.7% 

HMB-S-Me 100ppb T2 2893 0.0418 4.2% 95.8% 

HMB-S-Me 50ppb T1 0 0.0000 0.0% 100.0% 

HMB-S-Me 50ppb T2 0 0.0000 0.0% 100.0% 

HMB-S-Me 10ppb T1 0 0.0000 0.0% 100.0% 

HMB-S-Me 10ppb T2 0 0.0000 0.0% 100.0% 

 

 

Table 4.7 Results of the S-Methylation of HMTBA method validation. 

 Injection Statistics Tial Statistics 

Sample 

Area 

Avg Std Dev %RSD 

Area 

Avg 

Std 

Dev %RSD 

HMB-S-Me 1ppm T1 1.6E+06 85135 5.3% 
1.7E+06 202704 11.7% 

HMB-S-Me 1ppm T2 1.9E+06 68712 3.7% 

       

HMB-S-Me 500ppb T1 9.5E+05 174947 18.4% 
9.8E+05 41166 4.2% 

HMB-S-Me 500ppb T2 1.0E+06 128097 12.7% 

       

HMB-S-Me 100ppb T1 2.1E+05 11505 5.5% 
2.1E+05 6065 2.8% 

HMB-S-Me 100ppb T2 2.2E+05 24217 11.1% 

       

HMB-S-Me 50ppb T1 3.0E+04 2640 8.9% 
3.4E+04 6521 19.1% 

HMB-S-Me 50ppb T2 3.9E+04 5422 14.0% 

       

HMB-S-Me 10ppb T1 1.1E+04 2639 24.7% 
1.0E+04 327 3.1% 

HMB-S-Me 10ppb T2 1.0E+04 1225 12.0% 

 

 

 The study also showed a linear reaction response across the concentration range.  

The linear response lead us to believe that even at the instruments minimum detection 
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limit, which is near10 parts per billion, the reactions were going to near 100% 

completion.  Although no HMTBA starting material was observed below 100 parts per 

billion because of the instrument detection limits, the reactions were assumed to be 

quantitative.  The linearity response of the Sulfur methylation reactions can be seen 

below in Figure 4.9.   

 

 

Figure 4.9 Graph showng the linearity of the S-Methylation of HMTBA over a 

 concentration ranging from 10 ppb up to 1ppm. 

 

 4.3.3 Seawater Extracted HMTBA S-Methylation.  At this step in the process 

the entire method was tested for extraction from a seawater matrix.  The HMTBA spiked 

seawater samples were extracted and brought through the derivatization process.  The 

reactions were done at five different concentrations ranging from 10ppb up to 1ppm.  In 

all cases the reactions were observed to have yields greater than 97%.  This can be seen 

below in Table 4.8.  The instrument responses were about 17% of the reactions done 

without a matrix.  The reactions were known to go to completion so this discrepancy was 
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attributed to the salt effect on the ionization efficiency of the ESI source.  The acetone 

extractions also pulled a small amount of salt through as well, which lead to the 

decreased ionization efficiency of the samples analyzed.  Although the extractions 

showed a 17% recovery they showed good linearity across the concentration range.  The 

linearity trend can be seen below in Figure 4.11. 

 

Table 4.8 Recovery of HMTBA Extracted from Seawater. 

Sample 

HMB 

Avg 

Area 

PAR 
Percent 

HMB 

Rxn 

Yield 

HMB-S-Me 1000ppb T1 0 0.0000 0.0% 100.0% 

HMB-S-Me 1000ppb T2 0 0.0000 0.0% 100.0% 

HMB-S-Me 1000ppb T3 0 0.0000 0.0% 100.0% 

     

HMB-S-Me 500ppb T1 0 0.0000 0.0% 100.0% 

HMB-S-Me 500ppb T2 9328 0.0224 2.2% 97.8% 

HMB-S-Me 500ppb T3 10033 0.0241 2.4% 97.6% 

     

HMB-S-Me 100ppb T1 0 0.0000 0.0% 100.0% 

HMB-S-Me 100ppb T2 0 0.0000 0.0% 100.0% 

HMB-S-Me 100ppb T3 0 0.0000 0.0% 100.0% 

     

HMB-S-Me 50ppb T1 0 0.0000 0.0% 100.0% 

HMB-S-Me 50ppb T2 0 0.0000 0.0% 100.0% 

HMB-S-Me 50ppb T3 NA NA NA NA 

     

HMB-S-Me 10ppb T1 0 0.0000 0.0% 100.0% 

HMB-S-Me 10ppb T2 0 0.0000 0.0% 100.0% 

HMB-S-Me 10ppb T3 NA NA NA NA 

  

 

 Even though the analysis showed a decrease in respone it did show a good 

response for all samples with no interference from background noise.  An example of a 
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spectrum from the analysis can be seen below in Figure 4.10.  The reactions were deemed 

quantitative and with no interference the analysis would be a viable means for detection. 

The linearity of the reactions was good with good precision.  The analysis statistics are 

shown below for all samples in Table 4.9. 

 

 

Figure 4.10 Spectrum of S-Methyl HMTBA from seawater extracted sample. 

 

 

Figure 4.11 Response Linearity for S-Methyl HMTBA extracted from simulated seawater 

samples. 
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Table 4.9 Results of S-Methylation of HMTBA from seawater extracted samples. 

 Injection Statistics Tial Statistics 

Sample 

Area 

Avg 

Std 

Dev %RSD 

Area 

Avg 

Std 

Dev %RSD 

HMB-S-Me 1ppm T1 434040 7264 1.7% 

356626 130319 36.5% HMB-S-Me 1ppm T2 206168 42851 20.8% 

HMB-S-Me 1ppm T3 429670 38791 9.0% 

       

HMB-S-Me 500ppb T1 324318 28154 8.7% 

225528 89014 39.5% HMB-S-Me 500ppb T2 151558 15818 10.4% 

HMB-S-Me 500ppb T3 200707 25489 12.7% 

       

HMB-S-Me 100ppb T1 193179 18700 9.7% 

103279 77879 75.4% HMB-S-Me 100ppb T2 56402 12203 21.6% 

HMB-S-Me 100ppb T3 60257 1921 3.2% 

       

HMB-S-Me 50ppb T1 185967 30145 16.2% 

163628 100602 61.5% HMB-S-Me 50ppb T2 53734 10254 19.1% 

HMB-S-Me 50ppb T3 251182 4319 1.7% 

       

HMB-S-Me 10ppb T1 180490 5074 2.8% 

93407 77831 83.3% HMB-S-Me 10ppb T2 30627 3397 11.1% 

HMB-S-Me 10ppb T3 69104 10179 14.7% 

 

 

Because the analysis showed a 17% recovery from the matrix free standard, the 

effect of salt on the instrument was tested.  This experiment utilized S-methyl HMTBA 

standard at 500ppb with varying concentrations of salt.  Salt solutions of 0.01, 0.05, 0.1, 

1, and 5mM were used.  Figure 4.12 shows the instrumental response from this analysis 

with very small amounts of salt having a positive effect on ionization but reaches a 

tipping point close to 1mM of salt.  At a salt concentration of 5mM was shown to 

decrease the ionization efficiency by close to 50%.  A concentration of 5mM of salt in 

water corresponds to 290ppm and natural seawater has approximately 3.65% salts, which 



45 
 

 
 
 
 

would correspond roughly to 36,500ppm of salts.  The extraction of HMTBA from a 

seawater matrix could be drastically effected by the extraction of any salt from the 

matrix.  It would take less than 1% of the seawater salt matrix to be extracted to reduce 

the method efficiency by 50%.  For this reason, calibration standards extracted from an 

identical sample matrix must be used for the analysis. 

 

 

Figure 4.12 Graph showing the effect of salt on the ionization efficiency of an ESI 

source. 
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residual HMTBA was detected the reactions were assumed to be quantitative.  These 

results are shown below in Table 4.10.  

   

Table 4.10 Results from HMTBA extracted from bovine blood serum with derivatization 

to the S-Methyl salt. 

Sample 

HMB 

Avg 

Area 

PAR 
Percent 

HMB 

Rxn 

Yield 

HMB-S-Me 2000ppb T1 0 0.0000 0.0% 100.0% 

HMB-S-Me 2000ppb T2 0 0.0000 0.0% 100.0% 

HMB-S-Me 2000ppb T3 0 0.0000 0.0% 100.0% 

     

HMB-S-Me 1000ppb T1 0 0.0000 0.0% 100.0% 

HMB-S-Me 1000ppb T2 0 0.0000 0.0% 100.0% 

HMB-S-Me 1000ppb T3 0 0.0000 0.0% 100.0% 

     

HMB-S-Me 500ppb T1 0 0.0000 0.0% 100.0% 

HMB-S-Me 500ppb T2 0 0.0000 0.0% 100.0% 

HMB-S-Me 500ppb T3 0 0.0000 0.0% 100.0% 

     

HMB-S-Me 100ppb T1 0 0.0000 0.0% 100.0% 

HMB-S-Me 100ppb T2 0 0.0000 0.0% 100.0% 

HMB-S-Me 100ppb T3 0 0.0000 0.0% 100.0% 

     

HMB-S-Me 50ppb T1 0 0.0000 0.0% 100.0% 

HMB-S-Me 50ppb T2 0 0.0000 0.0% 100.0% 

HMB-S-Me 50ppb T3 0 0.0000 0.0% 100.0% 

  

 

 When comparing the response for the serum extracted samples with the sample 

done with no matrix, the recovery appears to be 13%.  It was thought that the same issue 

was occurring as seen with the seawater extracted samples.  The methanol used for 

extraction was also extracting a portion of the serum solids.  The dissolved serum solids 

are in turn causing a decreased ionization efficiency that misrepresents the methods true 
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HMTBA recovery.  Even though, it appeared the recoveries were low the reactions 

showed good linearity over the concentration range tested.  The linearity response can be 

seen in Figure 4.13. 

 

 

Figure 4.13 Linearity response from the detected S-Methyl HMTBA from bovine blood 

 serum extracted samples. 
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showed a decrease in response the background noise was completely eliminated.  The S-

Methylation of HMTBA was done quantitatively and suffered no interference.  An 

example spectrum is shown if Figure 4.14 below. 

 

Table 4.11 Results of HMTBA S-Methylation reactions from serum extracted 

samples. 

 Injection Statistics Trial Statistics 

Sample 

Area 

Avg 

Std 

Dev %RSD 

Area 

Avg 

Std 

Dev %RSD 

HMB-S-Me 2ppm T1 246776 11751 4.8% 

232651 17482 7.5% HMB-S-Me 2ppm T2 213099 24257 11.4% 

HMB-S-Me 2ppm T3 238079 16226 6.8% 

       

HMB-S-Me 1ppm T1 91226 8820 9.7% 

107103 18334 17.1% HMB-S-Me 1ppm T2 102915 26358 25.6% 

HMB-S-Me 1ppm T3 127169 2981 2.3% 

       

HMB-S-Me 500ppb T1 54422 6328 11.6% 

66529 11694 17.6% HMB-S-Me 500ppb T2 67402 6457 9.6% 

HMB-S-Me 500ppb T3 77762 15730 20.2% 

       

HMB-S-Me 100ppb T1 30400 6586 21.7% 

27781 7755 27.9% HMB-S-Me 100ppb T2 19055 1792 9.4% 

HMB-S-Me 100ppb T3 33887 4649 13.7% 

       

HMB-S-Me 50ppb T1 29833 9699 32.5% 

14817 9372 63.3% HMB-S-Me 50ppb T2 8189 2089 25.5% 

HMB-S-Me 50ppb T3 21444 2591 12.1% 
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Figure 4.14 Spectrum of S-Methyl HMTBA from serum extracted sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



50 
 

 
 
 
 

5. CONCLUSIONS 

   Animal growth studies have shown that HMTBA is a very efficient methionine 

supplement in animal nutrition.  However, no detailed studies on its uptake and presence 

in blood have been reported in open literature.  Absence of such studies is in part 

attributed to the lack of a validated analytical methodology for detection of HMTBA in 

blood. One of the principle goals of the present study was to develop and validate 

chemical analysis methodology for detection of HMTBA in bovine blood serum.   

 Three methodologies for the detection of HMTBA in various matrices were 

developed and validated with varied results.  The first methodology was based on HPLC 

detection.  It was shown that HPLC can be successfully employed for detection of 

HMTBA in relatively simple matrices such as seawater. The methodology yielded an 

MDL of 0.2ppm and LOQ of 1ppm, however, such methodology could not be used for 

determination of HMTBA in blood serum because of high interference stemming from 

this matrix.   

 Methodologies with better sensitivity and selectivity were therefore investigated 

for this complex matrix.  One such methodology involved esterification of HMTBA and 

other hydroxy acids followed by the GC-MS determination. HMTBA was esterified with 

different alcohol including the methyl alcohol, ethyl alcohol, n-propyl alcohol, and i-

propyl alcohol. It was discovered that all esters yielded essentially the same detection and 

quantification limits 5ppb and 25ppb respectively.  However, interference problems were 

still observed.  In addition variation in the yield of ester were observed, these variations 

in part resulted from methylation (alkylation) of the sulfide moiety.   The S-methylation 
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reaction was therefore examined.  It was discovered that under suitable conditions S-

methylation can done with yields ≥ 90%. The resulting S-methyl HMTBA cation was 

monitored directly with ESI-(MS)
 
at m/z 165, improved selectivity and sensitivity was 

obtained with by monitoring fragment ion at m/z 103  that results from CID. This method 

not only involved minimal sample manipulations but also yielded the best sensitivity and 

selectivity for HMTBA determination in bovine serum.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



52 
 

 
 
 
 

BIBLIOGRAPHY 

 

1.  Mish, F.C. et al Eds.  Merriam-Webster’s Collegiate Dictionary, 10
th

 ed., Houghton 

Mifflin Company:  Boston, MA, 1999. 

2.  Asplund, J.M.  Principles of Protein Nutrition of Ruminants; CRC Press:  Boca Raton, 

FL, 1994. 

3.  Satter, L., Roffler, R.E.  Nitrogen requirement and utilization in dairy cattle.  J. of 

Dairy Sci. 1975, 58, 1219-1237. 

4.  Pond, W., Church, D., Pond, K.  Concepts of nutrition.  In Basic Animal Nutrition and 

Feeding, 4
th

 ed.; Pond, W., Church, D., Pond, K., Eds; John Wiley and Sons, Inc.:  

N.Y., 1995. 

5.  Stryler, L.  Biochemistry; 2
nd

 ed.; W.H. Freeman and Company:  N.Y., 1981. 

6.  Lehninger, A.L.  Principles of Biochemistry; 1
st
 ed.; Worth Publications:  N.Y, 1982. 

7.  Cheeke, P.R.  In Applied Animal Nutrition:  Feeds and Feeding; Cheeke, P.R. Ed., 

Prentice Hall:  Upper Saddle River, NJ, 1999. 

8.  Schwab, C.G., Bozak, C.K., Whitehouse, N.L., Meshbah, M.M.A.  Amino acid 

limitation and flow to duodenum at four stages of lactation. 1. Sequence of lysine 

and methionine limitation.  J. Dairy Sci., 1992, 75, 3486-3502. 

9.  Perry, T.W., Cullison, A.E, Lowrey, R.S.  In Feeds and Feeding. 5
th

 Ed; Prentice Hall:  

Upper Saddle River, NJ, 1999. 

10.  Baker, D.H.  Amino acid nutrition in the chick.  In Advances in Nutrition Research; 

Draper, H.H. Ed; Plenum Press:  N.Y. 1977; Vol. 1, pp 299-335. 

11.  Baker, D.H.  Utilization of precursors for L-amino acids.  In Amino Acids in Farm 

Animal Nutrition; D’Mello, J.P.F. Ed., CAB International:  Oxon, U.K., 1994; pp 

37-62. 

12.  Schwab, C.G.  Protected proteins and amino acids for ruminants.  In Biotechnology 

in Animal Feeds And Animal Feeding; Wallace, R.J., Chesson, A. Eds.; V.C.H. 

Press:  Weinheim, Germany, 1995; pp 115-141. 

13.  Bach, A., Stern, M.D.  Measuring resistance to ruminal degradation and 

bioavailability of ruminally protected nethionine.  Anim. Feed Sci. Technol. 2000, 

84, 23-32. 

14.  URL:  http://www.novusint.com 



53 
 

 
 
 
 

15.  Pas Bernard, J.K.  Supplemental animal-marine protein blend and a rumen protected 

methionine hydroxy analog for lactating dairy cows.  The Professional Animal 

Scientist. 1997, 13, 149-154. 

16.  Stokes, M.R., Clark, J.H., Steinmetz, L.M.  Performance of lactating dairy cattle fed 

methionine or methionine hydroxy analog at two different concentrations of 

dietary crude protein.  J. Dairy Sci., 1981, 64, 1686-1694. 

17.  Koenig, K.M., Rode, L.M., Knight, C.D., McCullough, P.R.  Ruminal escape, 

gastrointestinal absorption, and response of serum methionine to supplementation 

of liquid methionine analog in dairy cows.  J. Dairy Sci. 1999, 82, 355-361. 

18.  Knight, C.D., Atwell, C.A., Wuelling, C.W., Ivey, F.J., Dibner, J,J.  The relative 

effectiveness of 2-hydroxy-4-(methylthio)butanoic acid and D,L-methionine in 

young swine.  J. Anim. Sci. 1998, 76, 781-787. 

19.  Hosogai, S., Yamanoguchi, K., Iriki, T., Abe, M.  Administration of methionine 

hydroxy analog to ruminants:  Effects of lipip metabolism. Azabu Daigaku 

Juigakubu Kenkyu Hokoku. 1991, 13, 13-17. 

20.  Belasco, I.J.  Fate of carbon-14 labeled methionine hydroxy analog and methionine 

in the lactating dairy cow.  J. Dairy Sci., 1980, 63, 775-784. 

21.  Patterson, J.A., Kung, Jr. L.  Metabolism of D,L-methionine and methionine hydroxy 

analogs by rumen microorganishs.  J. Dairy Sci. 1988, 71, 3292-3301. 

22.  Couch, L.H., Howard, P.C.  Quantification of glycolic acid in cosmetic products 

using reversed phase high performance liquid chromatography.  Inter. J. Cosmetic 

Sci. 2002, 24, 89-95. 

23.  Nicoletti, I., Corradini, C., Cogliandro, E., Cavazza, A.  Determination of alpha-

hydroxy acids in cosmetic products by high-performance liquid chromatography 

with a narrow-bore column.  Inter. J. Cosmetic Sci.  1999, 21, 265-274.  

24.  Tanabe, S., Toida, T., Kawanishi, T., Togawa, T., Imanari, T.  Determination of α-

keto and hydroxy acids by high performance liquid chromatography using ferric 

perchlorate as a detection reagent.  Anal. Sci. 1985, 1, 281-284. 

25.  Dutra, E.A., Santoro, M.I., Micke, G.A., Tavares, M.F., Hackmann, E.R.  

Determination of α-hydroxy acids in cosmetic products by capillary 

electrophoresis.  J. Pharm. and Bio. Anal. 2006, 40, 242-248. 

26.  Vorarat, S., Aromdee, C., Podokmai, Y.  Determination of alpha hydroxy acids in 

fruits by capillary electrophoresis.  Anal. Sci. 2002, 18, 893-896. 

27.  Yokota, K., Saito, K., Murakami, S., Muromatsu, A., Yamazaki, S.  Detection of 

hydroxy acids with chemiluminescence using ruthenium complex.  

Chromatography 1998, 19(2), 128-129. 



54 
 

 
 
 
 

28.  Matulis, R.M., Guyon, J.C., Spectrophotometric determination of alpha-hydroxy 

carboxylic acids.  Anal. Chem. 1964, 36(1), 118-120. 

29.  Pease, H.L., Prince, J.L., Johnston, E.F.  Gas chromatographic method for 

determining methionine hydroxy analogue residues in cow milk, urine, and tissues 

using a flame photometric detector.  J. Agric. Food Chem.  1978, 26(2), 331-334. 

30.  Ontiveros, R.R., Shermer, W.D., Berner, R.A.  An HPLC method for the 

determination of 2-hydroxy-4-(methylthio)butanoic acid (HMB) in supplemented 

animal feeds.  J. Agric. Food Chem. 1987, 35, 692-694. 

     

 

 

 

 

 

 

 

 

 

 

 

 

 



55 
 

 
 
 
 

VITA 

 

 My name is Ryan Lee Schwiderski and I was born in Olivia, Minnesota on 

August 8, 1981.  I attended Gustavus Adolphus College for my undergraduate studies 

where I received my Bachelor of Arts degree in chemistry in 2006.  I then attended the 

Missouri University of Science & Technology where I received a Master of Science 

degree in chemistry in 2008.   

 

 

 

 

 

 

 

 

 

 


	A rapid method for determination of alpha hydroxy acids in seawater and biological fluids at trace levels
	Recommended Citation

	tmp.1412690765.pdf.JMUkD

