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ABSTRACT 

A novel microfluidic device was developed for bacterial cell culturing using mass spectrometry 

as the detector. One of the challenges in proteomics is to achieve high sensitivity in the 

identification of proteins in complex samples with widely varying concentrations. The main 

limitations for proteomic studies are relatively slow and labor-intensive steps such as cell 

culturing and protein digestion of small sample quantities. Microfluidics is a promising approach 

to increase throughput and to reduce the time-consuming steps that are necessary for proteomics. 

When an analytical detection method is combined with microfluidics it can overcome limitations 

that are important in the analysis of biological samples. In this work a microfluidic device was 

constructed from poly(methyl methacrylate) PMMA using hot embossing from a brass metal 

mold prepared from micro-milling and combined with off-line matrix assisted laser desorption-

mass spectrometry mass spectrometry (MALDI-MS) for analysis. In this work, E. coli K12 strain 

was selected as a model for performing the analysis. Microfluidic devices were used to process 

the sample and mass spectrometry was used as detection method. The microfluidic device used 

in this study consists of three modules, capture, culture, and digestion chamber, integrated onto a 

single platform. The cells are captured on the microfluidic chip using polyclonal goat antibody 

on a modified PMMA surface, and are released using 0.25% trypsin, and transferred to the 

culture cell, which is filled with the growth medium. The temperature of the culture cell is 

maintained at 37 ºC using a heater and a PDMS cover slip was used for air perfusion. Samples 

collected at different culturing durations (4 h, and 10 h) are transferred to a micro-post bioreactor, 

which contains immobilized trypsin. The effluent from the microfluidic device was spotted onto 

a MALDI target and analyzed using MALDI time-of-flight mass spectrometry.
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CHAPTER 1.   INTRODUCTION 

The goal of the research described in this thesis was to develop a microfluidic device with 

off-line matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-

TOF MS) for bacterial culturing and detection of bacterial proteins. The system has potential 

applications in the detection of bacteria and in medical diagnostics in the detection of circulating 

tumor cells (CTC) and other rare cells. We designed and fabricated a microfluidic device with 

isolation, culturing, and digestion components integrated on a single poly(methylmethacrylate) 

(PMMA) surface with micromilling and hot embossing. E. coli K12 strain were used. E. coli 

cells are first captured in curvilinear channels immobilized with polyclonal goat antibody. Cells 

are released and perfused into culturing chamber, which is the important component of this 

device. Cell culturing was performed on a PMMA chip with PDMS cover slip. This 

microfluidic-culturing format was equipped with heater and PDMS cover slip in place of an 

incubator to maintain temperature and air perfusion. After incubation of E. coli in the 

microfluidic culturing device at 37 ºC for 4 h, 10 h, and 20 h, the cultured cells were analyzed 

with MALDI-TOF MS. 

This device integrates steps for proteomic research with MALDI-TOF MS such as isolation, 

culturing and digestion, which reduce the total processing time.  

1.1 PROTEOMICS 

Proteomics is the large-scale study of proteins, particularly their structure and function.1 

Proteomics plays a vital role in areas such as chemistry, biology and medicine. The study of 

proteins has been a scientific focus for decades because it generates insight on how proteins 

affect cells and how cell processes affect proteins. Protein analysis also helps in investigating the 

relationship between disease states and the protein compliment for clinical diagnostics. A goal of 
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proteomics is to analyze the varying proteome in an organism at different times, for example; 

protein content of a healthy cell varies from diseased (e.g. cancerous) cells.2 Identification of 

these different proteins (biomarkers) helps in targeting for treatment. Both purification and 

identification of proteins plays an important role in achieving this goal.1  

There are two general strategies for proteomic analysis; bottom-up and top-down.3 Bottom-

up strategies involve cleaving the parent protein into peptide fragments that are smaller but 

sufficiently distinctive to allow protein identification. This approach is based upon mass 

measurement of peptide fragments.3 In this method, peptide fragments unique to each protein are 

created and the resulting peptides are analyzed by peptide mass fingerprinting or by tandem mass 

spectrometry for peptide sequence tags.4 A different approach to bottom-up sequencing is 

shotgun sequencing, which uses multi-dimensional separations such as strong cation exchange 

chromatography (SCX) and reverse phased liquid chromatography (RPLC) to separate the 

proteolytic fragments generated from mixture of intact proteins. On the other hand, an intact 

protein identification method, the top-down approach, can be employed in which proteins are 

separated first and then ionized with fragmentation occurring in the mass-spectrometer, without 

the need for prior chemical or enzymatic proteolysis.5 This approach helps in obtaining useful 

information on protein masses, structures and modifications. 

1.2 CELL CULTURING 

Cell culturing is an essential tool in biological science, clinical science, and biotechnology.6 

This method is important in identification of bacteria, which is important for diagnosis. Proper 

care should be taken during cell culturing because cellular events mainly depend on extracellular 

stimuli from the surrounding environment.6 Cell-based assays are capable of providing valuable 

information on potential drug targets such as peptides and proteins as well as advancing cell 
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biology. Major drawbacks of large surface area vessel cell culture formats are variation in cell 

seeding densities, nutrient delivery, and waste removal.7 These drawbacks are the major sources 

of stress on cell cultures that introduces intracellular variations such as protein secretion and 

concentration of intracellular components.  

Many research groups are working towards improving the throughput for culturing 

methods.7-9 Development of multiplexed devices such as microtiter plates and array bioreactors 

has been used for large scale screening applications and improved throughput.6  

The major limitations of these conventional cell culturing methods include, but not limited 

to, high cost, technical expertise, specialized facilities for harvesting, media exchanging, inability 

to continuously monitor cells over long period of time, and sub-culturing procedures 

(transferring some cells from primary culture into a fresh culture device/medium, which is done 

in case of culturing adherent cells and in also lyophilized cells). To overcome these limitations, a 

new technology, microfluidics, was introduced in the area of cell biology.10 Microfluidics has 

many advantages when compared to conventional cell culturing methods. First, microfluidics 

enables experiments on analyte cells in well-defined chemical and physical environments. 

Second, these devices can reduce the number of cells needed for experiments. Third, 

microfluidics can be used in experiments that require continuous monitoring. Last, these devices 

permit experiments to be performed parallel and with high throughput. Microfluidics is also 

important due to increased fluid control, ability to address cellular length scale, controlling cell 

culture environment and improved culture efficiency.6  

Due to these advantages, microfluidic technologies are used in a large number of areas with 

promising applications in cell-based biosensors and drug screenings.11-14 Many research groups 

have performed cell culture on different microfluidic array with different type of cells.15-19  
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1.3 MICROFLUIDICS 

Microfluidics is defined as the manipulation of fluids in channels with dimensions of tens of 

micrometers.20 Microfluidic devices are manufactured by fabricating microstructures on a planar 

substrate (glass or polymer), which are advantageous for manipulating small sample volumes, 

rapidly processing materials, and integrating sample pretreatment and separation strategies. The 

ease with which materials can be manipulated and the ability to fabricate structures with 

interconnecting channels that have low dead volume contributes to the high quality analysis done 

using these devices.  

Over the past decade there has been an increased interest in the area of micro total analysis 

systems (µ-TAS), which is also known as microfluidics.21-25 Focusing on miniaturization of 

analytical chemical methods leads to increased interest in the area of microfabrication research. 

Application of microfabrication techniques has entered the life sciences field because of the 

increasing interest in the analysis of complex biological samples such as cells.26-28 

The use of microfluidic devices in the field of biomedical research has a number of significant 

advantages.29, 30 First, because of the low volume of samples and reagents this is significant in 

cases of rare samples and expensive reagents. The fabrication materials and techniques used to 

construct microfluidics devices are relatively inexpensive and are very useful in mass production 

of multiplex devices. 

1.4 FABRICATION MATERIALS 

Microfluidic devices fabricated on polymer surfaces are advantageous for manipulating small 

sample volumes and rapid sample processing by integrating sample pretreatment and separation 

on a single device.31-36 Materials that are used as substrates also play a major role in the analysis. 
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Earlier microfluidic devices were fabricated on silicon,37 glass,38 and quartz.39 These materials 

are used because they are well established and easily fabricated. Microelectronic fabrication 

technologies such as lithography, wet chemical etching, and thermal bonding are used with these 

substrates.40 In the case of these devices, the cost of the substrate and fabrication process, which 

often involves harmful chemicals, increases the overall cost of the device. Surface properties can 

also be problematic for these substrates.  

Mass production of disposable devices is important and useful, which includes low cost raw 

materials and development of suitable polymer fabrication technologies. The use of polymers 

increased rapidly in developing microfluidic devices due to their low cost, fair mechanical 

properties, good optical characteristics and good chemical resistance, which are advantages with 

respect to substrates such as glass and silicon.41 Some of the physical properties of polymers are 

shown in table below.42 

Table 1: Physical properties of commonly used polymer materials. 

 

Some of the polymers used in fabricating microfluidic devices are PMMA, poly(methyl 

methacrylate); PDMS, poly(dimethyl siloxane); PC, poly(carbonate); COC, (cyclic olefin 

copolymer); PE, poly(ethylene); PS, poly(styrene); and PA, poly(amide). These polymers have 

different chemical, optical, and biological characteristics. When choosing polymers, care should 

be taken in selecting the properties, fabrication methods, and analysis types. PMMA, PC, and 

COC, are the most popular polymer substrates used for microfabrication by means of hot 

embossing.40,43  
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The key goal in development of these devices is the ability to control and manipulate the 

surface chemistry of polymers for proteomic analysis. PMMA and PDMS are hydrophobic44,45 

but hydrophobicity is not favorable for protein analysis due to protein absorption by hydrophobic 

interaction. In this case, both PMMA and PDMS have good surface properties, which can be 

modified either chemically or by UV or oxygen plasma.46 PMMA when exposed to UV or 

oxygen plasma creates carboxylic acid groups on the surface that make it hydrophilic.41 A PDMS 

surface can also be manipulated using chemical modification such as APTES, [(3-aminopropyl) 

triethoxysilane] or GPTES, (3-glycidoxypropyltriethoxysilane).47,48  

In order to form a closed channel network, microfluidic devices are bonded with a cover slip. 

There are several different methods for bonding thermoplastics: thermal bonding, lamination, 

adhesives, solvent, and surface modification.49-52 All of these methods are based on the 

properties of the substrate and the size of the channels, for example thermal bonding is based on 

the transition glass temperature of the polymer, but this method is not suitable for bonding of 

structured microfluidic substrates with small channel sizes due to deformation of the channel 

during heating.  

Bonding two different polymers (e.g. PMMA and PDMS) is not straightforward due to their 

surface properties. Chemical assisted bonding of thermoplastics and elastomers was described by 

Gu et al.53 In this method, a PMMA surface was treated with a corona discharge, which oxidizes 

the surface through the formation of polar groups on the reactive sites. The PDMS was prepared 

by spin coating onto a topaz film and curing thermally. Activated PMMA was suspended in 3-

(trimethoxy silyl) propyl methacrylate (TMSPMA) for 20 minutes. Thermal annealing (90 ºC 

overnight) was then performed to facilitate the formation of chemical bonds. The bonding 
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strength of this method was measured by peeling force (the force required to peel the cover slip 

from the substrate), which was found to be 24 ± 2 N. 

Tang et al.54 proposed chemical gluing of thermoplastics and elastomers at room 

temperature. In this method a PMMA substrate was treated with 3-amino propyltriethoxysilane 

(APTES) and the PDMS cover slip was treated with 3-glycidoxy propyltriethoxysilane (GPTES). 

Amine terminated silane on one substrate and epoxy terminated silane on the other surface were 

coupled via a silane coupling reaction followed by amino epoxy bond formation at room 

temperature. Bonding between these two polymers was achieved at room temperature (25 ºC for 

1 h). 

1.5 MASS SPECTROMETRY 

Mass spectrometry is an essential tool for characterization of biomolecules by revealing their 

mass and structure.55-57 Proteomics is the major field where mass spectrometry is extensively 

used. The principle involved in mass spectrometry is ionizing sample compounds to measure 

their mass to charge ratio (m/z). There are two general types of ionization techniques known as 

soft ionization and hard ionization. Hard ionization results in breaking of chemical bonds and the 

formation of fragment ions. In hard ionization techniques, the sample is vaporized and ions are 

generated from the volatile sample. The high energy used for ionization removes valence 

electrons, which is normally accompanied by fragmentation of the molecule. Hard ionization 

techniques, such as electron ionization (EI), spark ionization, thermal ionization, glow discharge, 

and inductively coupled plasma (ICP) are routinely used for small, volatile molecules. In case of 

soft ionization, ions are typically formed without breaking any chemical bonds. All the covalent 

interactions are kept intact because low energy is used for ionization, for example by adding a 
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proton to the analyte molecule. Soft ionization methods include chemical ionization, desorption 

ionization, and spray ionization.   

Soft ionization techniques such as ESI (electrospray ionization), and MALDI (matrix assisted 

laser desorption ionization) are necessary methods for large, nonvolatile, polar molecules such as 

proteins, peptides, lipids, polymers, and oligonucleotides.58 

In 1968 Dole recognize the generation of gas phase ions of macromolecules by spraying a 

solution from the tip of an electrically charged capillary. Fenn and co-workers developed 

electrospray as an interface for mass spectrometry.59 Electrospray is a method by which a liquid 

is dispersed into a small-charged droplet by applying a high electric potential between a capillary 

tip and a counter electrode. The resultant droplets are dried by a countercurrent flow of a drying 

gas.60 The mechanism of ESI includes three main steps; formation of charged droplets, solvent 

evaporation, and gas phase ion formation.61  

Many proteins that are disease biomarkers are low abundance and are difficult to isolate from 

complex samples.62-64 Application of these technologies in bacterial analysis can be applied to 

clinical and food samples for high sensitivity and speed.65, 66 MALDI is used in identification of 

bacteria based on expressed protein profiles.67, 68 This is based on the ionization of high 

abundance proteins, which are often characteristic of different bacterial species. MALDI MS has 

been identified as a rapid high-throughput identification method.69-74 It has been extensively 

employed in the analysis of different microbial isolates due to the fact that it can be used for un-

purified extracts and complex peptide mixtures.75, 76 
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1.6 MATRIX-ASSISTED LASER DESORBTION IONIZATION MASS 
SPECTROMETRY 
 

Matrix assisted laser desorption ionization mass spectrometry (MALDI MS) was introduced 

in 1985 by Karas and Hillenkamp and demonstrated for large molecule ionization in 1988.77,78 

This technique involves mixing the sample with a matrix, which has a strong absorption at the 

laser wavelength. The energy from the laser ionizes the matrix; this spares sample molecules 

from being exposed to excessive energy, which would lead to decomposition. The laser irradiates 

the sample spot and leads to excitation of matrix molecules, which causes both the matrix and 

analyte to be desorbed from the surface. Protons are transferred to the analyte, forming analyte 

ions.79  

MALDI when combined with a TOF analyzer can be used in two different modes, linear and 

reflectron.60, 80 These TOF analyzers are commonly associated with MALDI due to high data 

acquisition rate and sensitivity. The linear TOF analyzer is simple and basic in configuration (as 

shown in Figure 1), which makes it less expensive. Reflectron is the common term used for an 

ion mirror and was developed by Mamyrin and co-workers.80, 81 A schematic of a reflectron is 

shown in Figure 2. In a time-of-flight mass spectrometer, ions are accelerated at a fixed kinetic 

energy with an electric potential and passed through field free region (drift region), where they 

are separated based on their mass-to-charge ratio.  

Matrices are typically small organic acids that can form crystals and have strong absorption 

at the laser wavelength of choice.82 The matrix plays several roles in the process and must meet 

number of requirements such as absorbing energy from laser radiation, isolating analyte 

molecules, and (in positive ion mode) providing a proton for analyte ionization. The choices of 

matrix and sample preparation are important in obtaining spectra; nevertheless the choice of 

matrix is also important for the control of fragmentation.83 
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Figure 1: Schematic of a linear time-of-flight mass spectrometer. 

 

Figure 2: Schematic of a reflectron time-of-flight mass spectrometer. 

The matrix should also be soluble with solvents compatible with the analyte and should be 

vacuum stable. Commonly used matrices for proteins and peptides are sinapinic acid (SA), 2,5 

dihydroxy benzoic acid (DHB), α-cyano-4-hydroxy-cinnamic acid (CHCA).83, 84 

In the sample preparation step, both matrix and analyte are mixed prior to the deposition on 

to target surface or deposited individually and mixed on the surface, at a matrix to analyte molar 

ratio approximately 100 to 10,000.60 Some of the MALDI-MS sample preparation techniques are 

the dried droplet method,85 vacuum drying method,85 fast solvent evaporation,86 two-layer 
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method,87 and sublimation method.88 Of these, the most commonly used sample preparation 

method is dried droplet, which involves deposition of analyte and matrix onto the target plate and 

drying at room temperature. This lets the matrix to crystallize and incorporate analyte molecules 

thereby reducing aggregation of analyte molecules. It is also advantageous to use volatile 

solvents, as rapid evaporation increases the homogeneity of the crystallized sample.83 

1.7 MICROFLUIDICS-MASS SPECTROMETER INTERFACING 

The precise and accurate determination of chemical or biological parameters has always been 

the major concern in scientific research. In the real world, an analyte of interest is present in 

smaller quantities of a complex mixture.21 This means discrimination of the analyte from critical 

interferences is a major concern. Typically an integrated microfluidic device can perform all 

major processes required for complete analysis of complex samples. Improvement in overall 

analytical performance can be achieved by minimizing the scale on which analysis is performed. 

The major factor that concerns the overall assay is the detection method. Some of the commonly 

used detection methods for microfluidics are fluorescence, amperometry, and mass 

spectrometry.89  

Optical detection is one of the prominent detection methods in microfluidics and 

fluorescence is a routine optical detection method.90, 91 The ease and simplicity of microfluidic 

devices has led to coupling them to fluorescent detection schemes. Recent advances in optical 

detection methods are fluorescence lifetime imaging (FLIM),91 high throughput single molecule 

imaging,92 multicolor analysis,93 surface enhanced Raman spectroscopy,94 and surface-plasmon 

resonance detection.95  

Electrochemical methods have high sensitivity and ease of miniaturization. These methods 

are necessary for detecting low concentrations of analyte in complex samples. Amperometric 
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detection is a popular technique implemented in field-portable devices.96 Conductivity detection 

is also a common means of detecting inorganic ions in solution.97 Single and multi-walled carbon 

nanotubes are a new group of nanomaterial’s that have been widely used in electro analysis.98 

Microelectrodes are easily integrated into portable microfluidic devices allowing in-field sample 

analysis.  

Mass spectrometry is an essential tool for the characterization of biological samples, 

revealing mass and structure. Identification of low abundance species from limited sample 

requires a powerful analytical technique to obtain better resolution and detection sensitivity. 

Coupling microfluidics to MS is attractive because of the ease of parallel and multiple analyses. 

ESI and MALDI are the most commonly used methods for ionization of biomolecules.99-101  

Though the coupling of MS to microfluidics is difficult this analysis method can provide 

substantial information. In the early stages of this development, ESI MS is the most preferred 

method because ESI can be used with flowing liquids and its simple approach for interfacing 

microfluidics to MS, while not compromising sensitivity, mass accuracy and reproducibility. The 

first integration was demonstrated by the groups of Ramsey, Karger and Aebersold in 1997; ESI 

has become the choice of ionization for proteins and peptides.102,103-105 Various schemes for 

coupling microfluidics to MS have been developed.106,107 Coupling MS to online ESI is 

straightforward. In particular, the nanoliter and microliter per minute flow rate used in 

microfluidics is a good match to that used in nanoflow ESI sources. Many approaches for 

coupling ESI-MS to microfluidic chips have been developed. One of them is creating 

electrospray directly from chip.108 The spray can be done by either pressure driven flow or 

electrokinetically driven flow. An alternate approach is to attach a capillary to the microfluidic 

device.109 This method has difficulties in alignment and limited sample infusion into the 
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instrument. To overcome these difficulties sprayers can be directly fabricated in the fluidic 

device.110 

Several groups have developed multiple processing components on a single platform. Dahlin 

and coworkers111 developed and integrated microfluidic platform on a PDMS substrate. This 

device was fabricated in a two-level cross design consisting of solid-phase extraction (SPE) and 

capillary electrophoresis (CE) followed by ESI/TOF MS. The inner channels were cross-linked 

with polystyrene beads for (SPE) and the upper level channel performs CE. The device was 

equipped with an emitter tip coated with graphite to build electrical contact for ESI. A 

femtomole limit of detection was achieved with a mixture of six standard peptides. Gao and 

coworkers described an integrated microfluidic system for rapid and sensitive protein 

identification.112 In this work the device was coupled with capillary zone electrophoresis (CZE) 

and analyzed with ESI MS.  

There are several advantages of using MALDI-MS as a detection source for low abundant 

analyte molecules.107 MALDI has higher tolerance for impurities such as salts, buffers, and other 

additives. MALDI predominantly generates single protonated analyte ions for simpler spectra. A 

major potential advantage of MALDI is multiplexing using laser desorption to read out multiple 

devices. Based on these advantages, integrating microfluidics with MALDI-MS is highly 

beneficial in the bioanalysis field. This integration reduces analysis time, contamination, and 

cost, and improves data acquisition. These platforms provide high sensitivity MS analysis from 

limited samples. Integration of all the steps required for proteomic analysis on a single device 

will improve process automation. 

Compared to ESI, MALDI is more tolerant of salts, chemicals and other sample 

contaminants,113,114 which can be a limitation when coupling to microfluidics. Though MALDI is 
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not directly suitable for an on-line approach, several novel approaches have been described. For 

example, a rotating quartz wheel was used as a target plate.107 Liquid samples are transported 

into the mass spectrometer through a capillary and deposited onto a quartz wheel where the 

sample dries and is rotated into position for laser desorption.115 A similar approach was made 

using a rotating stainless steel ball.116, 117 Solutions containing sample and matrix are deposited 

onto a rotating ball, which rotates several times per minute. In this case, the solutions are 

deposited on the ball and dried. After rotation the sample spot is set in position for laser 

desorption and analyzed using MALDI-TOF-MS.118 Off-line MALDI coupling to microfluidics 

can be accomplished by depositing the analyte directly onto a MALDI target plate. The rapid 

open access channel electrophoresis (ROACHE) technique was used for electrophoretic 

separation in an open channel.119 Another approach using a removable cover plate for MALDI 

analysis is a capillary isoelectric focusing with a removable resin tape was developed.120 Another 

group developed a direct coupling of thin layer chromatography to infrared MALDI for the 

analysis of gangliosides from cultured cells.121 Similarly a porous polymer monolith layer 

attached to a glass plate has been used for TLC separations of peptides and proteins as well as 

small molecules with subsequent direct detection by MALDI.122 A commercial approach such as 

compact disc (CD) microfluidic chip for parallel processing of protein digests for MALDI has 

also been developed.107, 123  

Offline MALDI-MS analysis also provides a powerful method for coupling multiplexed 

parallel on chip analysis with MS detection, while multiple micro channels are not practically 

possible for ESI-MS.106 Samples that are processed through microfluidic devices are deposited 

onto MALDI target area matching to the laser spot size. Analyzing a large number and broad 

concentration of proteins present in a typical organism requires separation step before mass 
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spectrometry analysis. Xu et al. reported the fabrication and performance of a gel microfluidic 

chip interfaced to off-line IR MALDI MS.124 A poly(methylmethacrylate) chip along with a 

poly(dimethyl siloxane) cover slip was used in this study. The sieving gel was introduced into 

the microchannel and was polymerized. Peptide and protein samples were loaded into the 

microchannel by applying voltage across the separation channel. After electrophoresis the PDMS 

cover slip was peeled from PMMA chip and either the coverslip or the chip was analyzed using 

an IR MALDI-TOF mass spectrometer.  

Lee et al. published a work in which a solid-phase bioreactor was coupled with off-line 

MALDI-TOF MS.125 The solid-phase bioreactor was immobilized with trypsin using EDC-NHS 

coupling chemistry. The effluent collected from the chip was continuously deposited onto a 

nitrocellulose coated MALDI target using a motor-driven xyz stage. Protein standards were used 

to test the digestion performance of the device. The results obtained from the continuous 

deposition interface were compared to spot deposition with a minimum sample volume of 1 nL. 

A minimum concentration of 300 pL and a better sequence coverage was reported for the 

continuous deposition interface.  

Developing fully integrated multi-functional microfluidic system for the automated analysis 

of complex samples has significant importance in a number of application areas such as protein 

biology, biomarker discovery and diagnosis. 

1.8 MALDI ANALYSIS OF BACTERIA 

The minimal sample preparation, sample acquisition, and speed of the data acquisition 

combined with its potential for high throughput sample automation make MALDI-TOF-MS a 

valuable technique for screening and rapid identification of bacteria.126,75, 127 Despite advantages 

of using MALDI for bacterial analysis there are few limitations that need to be addressed. In 
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order to produce a reproducible spectrum for the same species, care must be taken during 

selecting sample preparation methods, matrix solutions, organic solvents, acquisition methods 

and analysis methods.128 Using these parameters, species or strain specific information can be 

obtained from a MALDI mass spectrum.129-131 Many research groups have demonstrated 

different sample preparation methods for analyzing different bacterial samples.132-134  

Lindsay et al. reported a method for identification of bacteria from positive blood cultures by 

MALDI MS.135 Bacteria recovered from positive cultures from patient samples were analyzed 

using MALDI MS and the spectra were analyzed with MALDI fingerprinting software;136 162 of 

170 bacterial isolates were correctly identified.  

Veloo et al. reported the identification of anaerobic bacteria using MALDI-TOF MS.133 This 

group compiled a database for the identification of gram-positive anaerobic bacteria. A database 

was created by well-characterized reference strains and sequenced clinical strains. This database 

was used to identify 107 unknown clinical strains of gram-positive anaerobic bacteria. The 

MALDI-TOF MS identification was compared with the genotyping identification, which was 

either 16S rRNA gene sequencing or fluorescent in situ hybridization. Of 107 tested strains, only 

3 samples were unidentified. This group reported that mass spectra resembled the data obtained 

from the 16S rRNA sequencing. This might be due to the fact that many of the peaks in the 

spectra are derived from ribosomal proteins.137  

MALDI-TOF MS also plays an important role in the identification of bacteria that are 

difficult to culture or slow-growing bacteria, such as anaerobic and fastidious bacteria. Several 

groups reported the identification of anaerobic bacteria using MALDI-TOF MS.138-140 Recently 

the reliability of MALDI-TOF MS for the identification of anaerobic bacteria from clinical 

isolates was studied compared to 16S rRNA sequencing.141 
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Ferreina et al. evaluated direct analysis of bacteria from urine samples.142 Out of 260 urine 

samples it was found that correct identification obtained at species and genus level by MALDI 

was comparable to cell cultured detection methods. This study suggests that a high bacterial 

count is required to obtain a reliable score from MALDI.  

Effective identification of bacteria can be achieved by MALDI-TOF-MS. Several studies 

have shown that its use is not only limited to routine samples136, 143, 144 but can also be applicable 

to blood cultures.142, 145, 146 It is also currently recognized as the fastest technique to accurately 

identify microorganisms at genus and species level.147  

1.9 AFFINITY CAPTURE  

Isolation and separation of a particular analyte from a large sample is important in rare cell 

analysis. Rare cells can be defined as cells that are less than 1000 /mL, such as circulating tumor 

cells, stem cells and in some cases bacterial cells. Several major E. coli water-borne outbreaks 

have been reported in aquatic systems ranging from freshwater to marine.148,149 Better 

understanding of E. coli ecology and monitoring over large time scales can be enhanced by 

studying its proteomics. Understanding the changes in protein expression affected by the 

environment150 helps in protecting human populations from major E. coli outbreaks.151-153 

Monitoring techniques that have low detection thresholds for extremely rare cells and have rapid 

processing times are needed.  

The U.S EPA allowable levels of E. coli are 0, 200, and 1000 colony forming units (CFU) 

per 100 mL of drinking, swimming, and recreational waters respectively.154 In order to achieve 

these levels, pre-enrichment of cells is required. There are different isolation technologies for 

rare cells in heterogeneous sample volumes, such as fluorescence assisted cell sorting,155 flow-
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through filtration,156 ELISA,157 and immuno-magnetic assisted cell sorting.158 The major 

drawbacks of these particular techniques are time-consuming protocols and expensive reagents.  

Recent work has shown that cells can be accumulated using microfluidic devices.2, 159, 160 The 

surfaces of micro-channels or beads trapped within a micro channels are used for cell selection. 

Liu et al. generated a device for processing E. coli cells from input volumes of 1 mL with a limit 

of detection of 1 CFU/µL.161 Beyer et al. reported a microfluidic device that can process a large 

sample volume of approximately 50 µL for search of target analytes such as K-12 or O157:H7 

with a limit of detection of 0.2 CFU/µL. These results are important in rare cell analysis due to 

the probability of securing minimal target cells. Therefore microfluidic devices with larger input 

volumes are required to provide higher confidence in selecting target cells. 

Affinity-based separation mainly depends on certain molecules recognizable on the cells of 

interest that selectively bind to a substrate.2, 162-164 Sorting of cells from a heterogeneous sample 

is achieved by binding the cells of interest to molecules that are immobilized on the microfluidic 

device. In such a situation, unwanted cells can be removed. This technique is highly specific to 

those cells that express the complementary group of molecules that has the ability to separate 

cells of similar size and density. In this technique, antibodies are immobilized onto the capture 

surface either by covalent bonds or absorption.165,166 An antibody recognizes different cell 

subpopulations, which have the ability to obtain high purity (when the concentration of the target 

cells in the suspension are low) in separating analyte cells from the mixed suspension. The 

sensitivity of the system is based on the binding at various shear rates. The major limitation of 

this technique is specificity of the biomarkers. For example CTCs are reported to be a good 

measure of cancer prognosis but, for instance, Nagrath et al. demonstrated the methodology for 

isolating CTCs from peripheral blood samples using anti EpCAM antibody, which is used for 
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separation of CTCs in breast cancer.2 Effective isolation was achieved in a single processing 

step. Optimization of parameters needs to be considered for achieving sufficient binding 

capacity. To achieve sufficient interaction time, flow should be maintained for the binding of 

targeted cells to occur. Two parameters that need to be considered in this technique are selecting 

suitable markers and surface area to volume ratio for optimum binding. 

1.10  MICROFLUIDIC CELL CULTURING  

Microfluidic systems have significant advantages and applications in cell biology and cell-

based assays due to their automated and high throughput approaches. Cell culturing is a key step 

in cell biology, tissue engineering, and drug development. Conventional cell cultures are done 

either in vitro or in vivo. Due to inconsistencies between in vitro and in vivo environments such 

as cell-cell interactions and differences in microenvironment, a novel approach was 

established.167, 168 It was found that microfluidics systems provide an in vivo like environment for 

cell culturing. This is because microfluidic systems can be used to supply nutrients, buffers, and 

even oxygen along with draining waste products by cellular activities in a way resembling 

human circulatory systems.169-175 Many researches had developed different patterned devices for 

different cell types.  

One of the first studies on adherent cell culture in microfluidic channels was performed by 

Tilles, et al.176 The author developed a microsystem with a culturing area 25 mm wide and 75 

mm long made from polycarbonate and glass. Primary rat hepatocytes were seeded in co-culture 

with fibroblasts (cells that synthesizes extra cellular matrix and collagen). Cell viability and 

hepatocyte function was observed and compared between the gas exchange membrane top and 

polycarbonate cover slip. The author also reported that an increased flow rate led to decreased 

viability.  
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Li et al. developed a microfluidic method to study the concentration of a single cardiac 

myocytes.177 This was an integrated device consisting of all necessary operations such as cell 

selection and retention, chemical stimulation, and a quantitative analysis of intracellular calcium 

concentration. 

Walker et al. developed a device for ovary cells.178 This device consisted of microfluidic 

channels patterned on a PDMS surface, which were used as culture vessels. Hediger et al. 

developed a microsystem for epithelial cells.179 The main goal was to achieve cell culturing and 

potentiometric characterization of cells on a single platform. Heischkel et al. presented a 

microchip with buried microchannels for culture, stimulation, and recording of neural cells.180 

Raty et al. used embryo cells in a microfluidic device and observed a higher proliferation rate 

with regular media changes compared to conventional culture methods.181  

It was found that the proliferation rate was higher in a microfluidic environment when 

compared to conventional methods. Microfluidic cell culturing has become a basic tool for many 

cell-based applications. Recent reports have shown that many novel microfluidic cell culturing 

systems are worthy of attention, because microfluidic cell culture studies are used in many cell-

based applications including toxicological studies, drug discovery, cell, and tissue 

engineering.175,182, 183  
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1.11  RESEARCH OBJECTIVES 

In our work a novel integrated microfluidic device fabricated on a PMMA substrate for 

bacterial cell culturing was designed and fabricated. This integrated chip consisted of 

components for isolation of analyte molecules from a complex sample using affinity selection; 

these isolated cells were amplified by on-chip cell culture and digested on a trypsin-immobilized 

bioreactor. This processed sample was deposited onto a MALDI target and analyzed using a 

MALDI TOF mass spectrometer.  
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CHAPTER 2. EXPERIMENTAL 

In this work, an integrated microfluidic device was fabricated on a poly(methyl 

methacrylate) (PMMA) surface and matrix assisted laser desorption ionization (MALDI) time of 

flight mass-spectrometry (TOF-MS) was used as the detector. A detailed description of the 

microfluidic chip design, fabrication, and assembly with MALDI detection is presented.  

2.1 MICROFLUIDIC DEVICE AND DESCRIPTION 

In this work, a novel integrated microfluidic-MALDI device for bacterial cell culture was 

designed and tested. This device has three components fabricated on a single substrate as shown 

in Figure 3: a cell isolation component, where the cells of interest are isolated from the cell 

suspension using an antigen-antibody interaction; a cell culture chamber, where the isolated cells 

are cultured under suitable conditions (37 ºC temperature and air perfusion); and a micropost 

bioreactor for digestion, which contains trypsin immobilized on the micro-pillars. Cultured cells 

are digested in this latter component and deposited on a MALDI target. 

The isolation chamber was 9.5 mm long and contained 16 curvilinear channels that were 15 

µm in wide and 80 µm in depth with a radius of curvature of 120 µm as shown in Figure 6. The 

surface area of the 16 channels was 40 mm2 wide with a volume of 250 nL. The chip output was 

directed into chamber B for culturing the isolated cells. Waste was collected through the waste 

reservoir using a syringe pump. 

The culture chamber consisted of a 3 mm diameter and 300 µm deep circular microfluidic 

chamber with a volume of 2.1 µL. It comprised 2 reservoirs: one for the sample input and the 

other for nutrients. It also had two waste reservoirs one for sample waste and the other for 

nutrient waste. Cultured cells are transferred to bioreactor. 

The bioreactor consisted of a 4 cm long, 200 µm wide and 50 µm deep microfluidic channel 

populated with an array of 50 µm in diameter micro-posts with a 50 µm inter post spacing. It had 
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2 reservoirs one for the sample input and the other for output. There were approximately 570 

posts in the bioreactor, which gives a total volume of 340 nL with a 22 mm2 surface area. 

2.2 FABRICATION AND ASSEMBLY 

Fabrication of the microfluidic device involved the following four steps: i) mold fabrication 

using high precession milling, ii) replication of the design on a PMMA substrate, iii) post 

processing including drilling of reservoirs, oxygen plasma and UV activation of fabricated 

device and cover plate assembly, and iv) immobilization of antibody and trypsin. Microstructures 

were designed using computer software Autocad (Autodesk, San Rafael, CA). The design was 

transferred to a micromilling machine (NMP 2522, KERN, Frankfurt, Germany), where high 

precision micromilling of a 6.3 mm thick brass metal plate (alloy 353 engravers brass, 

McMaster-Carr, Atlanta, GA, USA) was performed.43 PMMA was used as substrate and both 

PMMA (0.5 mm thickness, Good Fellow, Berwyn, PA) and PDMS (0.1 mm thickness) were 

used as cover slips for different portions of the chip.  

The microstructures were transferred to the chip substrate using hot embossing via micro-

replication from the brass mold master. Before the final assembly, the chips were washed with 

approximately 0.5 % isopropyl alcohol and ultrasonically cleaned for 10 minutes in deionized 

water. After cleaning, the chip was air-dried and stored it in oven for 30 minutes to remove the 

moisture from the polymer.  

The PMMA substrate was masked with aluminum foil at the culture chamber and the rest, 

including PMMA cover slip, were exposed to UV radiation at 254 nm for 10 minutes at 15 

mW/cm2 irradiance, resulting in the formation of carboxylate moieties only in the UV exposed 

area. PMMA cover slips were co-axially arranged on the substrate and clamped between two 

borosilicate glass plates using binder clips, applying equal pressure throughout. 
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Figure 3: a) Schematic representation of the integrated microfluidic device: b) multiple 
processing units on a single polymer surface and c) a single processing unit showing isolation 

module, culturing chamber, and micro-post bioreactor. 
 

This setup was placed in a convection oven at 102 ºC, slightly above transition glass temperature 

of the UV modified materials. Cover slips were bonded thermally to the substrate. The 

temperature was increased from 50 ºC to 102 ºC at a rate of 20 ºC /min and held at 102 ºC for 15 

minutes. The culture chamber was covered with PDMS cover slips made by thermal curing as 

described above. The chip assembly, after annealing cover slips to the substrate, was completed 

by gluing PEEK tubing to the inlet and outlet reservoirs, providing an interconnected chip 

assembly. 
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2.3 BONDING TWO DIFFERENT POLYMERS 

In order to form a closed channel network, these devices were bonded with a cover slip. 

PMMA and PDMS are the two polymers that were used in this work. Bonding these two 

polymers is not straightforward due to their properties. In our work, we describe a simple method 

for bonding PMMA to PDMS at room temperature. The robust bonding method used chemical 

modification.  

The PMMA microchip was fabricated by hot embossing microstructures onto the substrate 

from the mold master. The chip was then cleaned with distilled water followed by isopropyl 

alcohol and placed in an ultrasonic bath for 2 minutes. It was then dried in an oven at 50 ºC for 

30 minutes. The dried substrate was treated with a 60 W oxygen plasma for 1 minute and placed 

in an aqueous solution of 1% v/v APTES (amino propyl triethoxysilane) for 20 minutes. The 

PDMS cover slips were made by mixing PDMS base and curing agent (Dow Corning, Midland, 

MI) in a 10:1 w/w ratio. This pre-polymer solution was poured into a Petri dish and subjected to 

degasing by placing it in a desiccator connected to a vacuum pump. After removing the air 

bubbles from the pre polymer, it was cured thermally in an oven at 85 ºC overnight. The 

thermally cured PDMS cover slips were treated with a 60 W oxygen plasma for 1 minute. The 

PMMA substrate, after suspension in APTES, was washed with water and dried under a stream 

of air. Both the thermoplastic and the PDMS were kept in contact at room temperature for 1 

hour. 
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2.4 CELL ISOLATION 

In our work, isolation of E. coli cells from sample volumes was demonstrated using high 

aspect ratio capture beds immobilized with a monoclonal antibody (mAbs) specific for the 

antigen membrane proteins expressed by E.coli K-12 (see Figure 4). The advantages of this 

method include pre-selectivity, which is important in case of a low number of pathogens of 

interest, cell purification, where cells are washed while attached to the surface, which is 

important for further processing and rapid analysis. 

 

Figure 4: SEM images of the cell capture module showing the curvilinear isolation channels. 

2.5 REAGENTS 

E. coli ATCC 35218 (American Type Culture Collection, Manassas, VA, USA) was used. 

Goat anti E. coli antibody was purchased from US Biological (Swampscott, MA, USA). 

Reagents for cleaning and surface modification, including reagent grade isopropyl alcohol, 1-

ethyl-3-[3-dimethyl amino propyl] carbodimide hydrochloride (EDC), N-hydroxy succinimide 

(NHS), 2-[4-morpholino]-ethane sulfonic acid (MES) and trypsin, were purchased from Sigma 

Aldrich (St. Louis, MO, USA). 
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2.6 ANTIBODY IMMOBILIZATION  

Immobilization of the antibody was carried out in a 2-step process: EDC-NHS treatment and 

antibody attachment. The UV treated PMMA microchip was treated with a solution containing 

60 mg EDC and 6 mg NHS (10:1) in a 500 mL of 0.1 M MES (2-(N-morpholino)ethanesulfonic 

acid) buffer (pH 5.05) and kept for 30 min at room temperature to obtain succinimidyl ester 

intermediate. After incubation, the excess EDC-NHS was removed by flushing with nuclease-

free water. A solution of 100 µL of antibody mixed with 100 µL HEPS buffer (pH 7.2-7.4) was 

prepared. An aliquot of 10 µL was introduced into the channels and incubated at 4 ºC overnight. 

The device was then rinsed with phosphate buffered saline (pH 7.4) to remove any non-

specifically bound antibodies. A cell suspension of approximately 1000 cells/mL was prepared 

and approximately 500 µL of the cell suspension was introduced into the device using a syringe 

pump. 

 

Figure 5: Schematic representation of antibody immobilization and E. coli captured on the 
PMMS substrate. 
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2.7 CELL CULTURING  

Captured cells were washed with PBS then released from the channels by treating with 

0.25 % trypsin in tris buffer. This solution helps in detaching the cells from the surface. 

The culturing chamber was fabricated on a PMMA surface. The culturing bed consisted of 3 

mm diameter and 300 µm deep circular chambers with an active volume of 2.1 µL. The device is 

shown in Figure 6.  

Microchannel A was 100 µm deep and micro-channel C was 300 µm deep with the intent that 

the sample cells settle at the top of the nutrient medium. The 8 g/mL nutrient broth culture 

medium was prepared by autoclaving at 121 ºC for 1 h. This culture medium was infused into the 

culturing bed through nutrient input channel C – D. when the culture bed is filled, waste is 

collected through reservoir D. Captured cells are released and passed through channel A–B. 

Since the depth of microchannel A is less than microchannel C, the cells float to the top and care 

should be taken not to disturb these cells. The procedure for filling the culture bed with nutrients 

and sample is shown in the Figure 6. 

After introducing E. coli into the culture chamber, the temperature was maintained at 37 ºC 

using a home-built heater. Using double-sided adhesive tape, the heating strip was attached to the 

polymer device. Since the culture bed was covered with the PDMS cover slip, perfusion of air 

can be achieved and no separate incubators are required.9 The setup was left at room temperature 

and monitored for 12 h using an inverted optical microscope. 
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Figure 6: The top image shows a schematic of adding culture medium and E. coli cells (shown 
as black dots) to the culturing chamber and the bottom image shows the microfluidic cell-
culturing component. The schematic shows the three-step process: culture chamber before 
introducing growth medium, filling with nutrient medium from nutrient inlet, and sample 

introduction. The microfluidic cell-culturing module consists of analyte inlet A, analyte outlet B, 
nutrient inlet C, and outlet D. 

 
2.8 DIGESTION 

Efficient digestion of proteins is an indispensable component of the system and will 

ultimately be required for protein identification. Digestion efficiency in a solid phase micro-

reactor depends on the bioreactor geometry.184, 185 The higher surface to volume ratio, the greater 

the interaction between the cells and the immobilized enzymes.  

The bioreactor (shown in Figure 7) consist of a 4 cm long, 200 µm wide and 50 µm deep 

channel populated with 50 µm diameter micro-posts with a 50 µm internal spacing between the 

posts. The UV activated PMMA device was annealed to a PMMA cover slip using a thermal 

bonding technique at 102 ºC for 20 minutes. The microfluidic device was then rinsed with 

deionized water and air-dried. A solution of 60 mM EDC and 6 mM NHS was prepared in a 0.1 

M MES buffer and infused into the bioreactor for 30 minutes, while the trypsin solution was 
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prepared by mixing 20 µM trypsin in a 100 mM PBS buffer (pH 7.0) and infused into the 

bioreactor using syringe pump for 2 h. The device was then covered with aluminum foil and 

stored at 4 ºC overnight for future use. A schematic representation of the process of trypsin 

immobilization is shown in Figure 8. 

 

Figure 7: Components of the micropost bioreactor: a) Schematic of the micropost bioreactor, b) 
Photograph of the bioreactor for digesting using immobilized trypsin on to the microposts. The 

image shows three reservoirs: two inlets for sample and reagents and one outlet for both reagents 
and processed sample. 
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Figure 8: Schematic representation of trypsin immobilization on a PMMA substrate. 

2.9 SAMPLE HANDLING  

To control reagents and sample solutions in a microfluidic device, fluids are delivered 

through microchannels by positive displacement. In our experiments, the microfluidic device 

was operated by pressure driven flow to ensure completely laminar flow without any turbulence. 

A syringe pump (Model 11, Harvard Apparatus, Holliston, MA, USA) was used to infuse 

reagents and sample solutions into the device at various flow rates. 

2.10  MICROSCOPY 

Observation of cell capture and cell culturing in the microfluidic device was accomplished 

using an inverted optical microscope (Axiovert 200M, Zeiss, Oberkochen, Germany). The 

microscope was fitted with a JAI CV 252 monochrome video camera. Adobe premiere 6.0 

(Adobe, San Jose, CA) was used for image acquisition and processing. 
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Figure 9: A) Inverted optical microscope, B) Image showing the syringe pump connected to the 
microscope for monitoring experimental steps. 

 
2.11  MALDI-TOF MS 

MALDI TOF MS analysis was carried out using a Bruker UltrafleXtreme MALDI TOF/TOF 

mass spectrometer. This instrument is designed for automated MS and MS/MS high throughput 

identification of proteins and peptides. This instrument is equipped with linear and reflectron 

detectors. It consists of a 4 GHz digitizer, a mass resolution of 40,000 from 700-5000 m/z, and a 

mass accuracy of 1 ppm and 5 ppm for internal and external calibration, respectively. This 

system is equipped with 1 KHz frequency tripled 335 nm Nd:YAG laser with a computer 

controlled laser spot size in the range of 10-100 µm.  

Ions formed in the source region are accelerated by a delayed electrical field and focused by 

a lens system before they leave the source. The most commonly used MALDI target has 384 

deposition spots for high-throughput analysis. 

In this work, MALDI MS was calibrated with a peptide standard II (Bruker), which is a mix 

of nine standard peptides, m/z ranging from 757 (bradykinin 1-7) to 3147 (somatostatin). The 

matrix solution and external calibration mixture were mixed in a 1:1 (v/v) ratio. MALDI-TOF 
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analysis was performed in reflectron mode at 25 kV. Mass spectra were averaged over 100-200 

individual laser shots and collected at a laser setting of approximately 40-50% of the maximum 

pulse energy of the laser. 

 

 



 34 

CHAPTER 3. RESULTS AND DISCUSSION 

 

3.1 OVERVIEW 

Microfluidic and MALDI-TOF-MS experiments were performed on E. coli cells. The capture 

efficiency of the device was calculated and cell culture data at different culturing durations were 

compared. Cultured cells were digested on the microfluidic device and analyzed with MALDI-

TOF-MS. 

3.2 CELL ISLOATION  

A stock solution was prepared by weighing approximately 30 µg of E. coli cells suspended in 

1 mL of PBS buffer solution. The number of cells in the stock solution was calculated using a 

hemocytometer and found to be 6 x 104 cells/mL. Figure 10 shows a hemocytometer slide 

containing cells. After serial dilutions, approximately 1000 cells/mL solutions were prepared. 

Approximately 500 µL of input volume was infused into the capture channels and immobilized 

with monoclonal goat antibody (3 mg/mL) at a flow rate of 3 µL/min.  

 

Figure 10: Hemocytometer slide showing E. coli cells marked with black circles. E. coli 
cells/mL were quantified by counting cells on a hemocytometer slide. 

 
The capture efficiency was found to be 45 % ± 3% for the device. In our approach, immuno 

capture of E. coli cells followed by a wash and release from the capture bed shows sufficient 

efficiency for further sample processing steps. In addition, the use of a microfluidic device 
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provides high pre-concentrated factors due to the small selection bed volume. Figure 11 shows E. 

coli cells captured on the polymer surface. Captured cells were monitored using an inverted 

optical microscope. After capture, cells were washed with PBS solution at a flow rate of 5 

µL/min to remove any impurities or non-specific binding materials. 

 

Figure 11: Inverted optical microscope images showing cells captured on the antibody 
immobilized PMMA surface. The black circle shows the cells attached to the walls of the 

curvilinear channels. 
 

3.3 E. COLI RELEASE FROM CHANNEL SURFACE 

Following washing, the channels were treated with 0.25% trypsin solution at a flow rate of 1 

µL/min to dislodge cells from the polymer surface. The process was monitored continuously 

under a microscope until the cells were detached. All of the perfusions were controlled using a 

programmable syringe pump. 
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3.4 CELL CULTURING 

Cells released from the capture bed were moved onto the culture bed, which was filled with 

nutrients as indicated above. Approximately 224 cells that were captured were released and 

perfused into the culture device. Proper care should be taken to let the cells settle at the top of the 

nutrient medium. As mentioned earlier, this device consisted of a circular microfluidic chamber 

and four fluidic channels for introducing and collecting sample and nutrients into the chamber. 

As shown in Figure 6, A and B channels are used to input and collect cells, respectively, and are 

referred to as sample inlet and outlet reservoirs. Similarly C and D are nutrient inlet and waste 

reservoirs. The main stages of the device operation are loading cells into the device, perfusion of 

nutrients for cell culturing, and passage of cells. Figure 6 shows the schematic indicating adding 

nutrients and loading cells into the culture chamber. After filling the device with nutrients, cells 

released from the capture bed are loaded onto the nutrient bed.  

Flow rate plays an important role in loading the cells and allowing them to settle at the top. 

Since trypsin is used in low concentration, it does not affect the cell growth. Initially the device 

was flushed with PBS to remove dead volume and air bubbles. In the case of off-chip cell 

culturing, the device was placed inside an incubator for humidity and temperature control. The 

chip-culturing device was equipped with a PDMS cover slip, which was chemically annealed. 

The PDMS is gas permeable and has a good diffusion of oxygen. From the preloading of the 

nutrient and to the final culture, the microfluidic device was monitored under the microscope. 

Data was collected at four different times, before loading the cells, four hours after loading E. 

coli cells on to the nutrient medium, after 10 hours of incubation, and after 20 hours of 

incubation. Images and video of the cell culturing were recorded using the inverted optical 

microscope. It was observed that initially, when the cells were loaded, it was difficult to focus 
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due to the low number of cells. After four hours of incubation, colony formation was clearly seen 

as shown in Figure 12b. The cells were seen alive, moving inside the circular fluidic chamber.  

After continuous monitoring, data was collected at 10 hours as shown in Figure 12c. A major 

change in the cell density was observed after 10 hours of culturing: the entire fluidic chamber 

was populated with the E. coli. The viability of the cells after 10 hours viability started 

decreasing due to the decrease in area available to the cells, which in turn reduces the availability 

of nutrients for cell growth. With prolonged monitoring (20 hours) it was observed that the 

density of the cells didn’t change: comparing Figure 12c and Figure 12d, it was observed that the 

density of the cells didn’t change with time. The major change with prolonged culturing in the 

fluidic device is the viability: when observed after 20 hours, the population of cells in the 

microfluidic chamber was found to be static. There was no further growth found from 10-20 

hours duration. The data collected at 20 hours was used only to monitor changes in the culturing 

chamber and the sample collected was not used further. 

3.5 DIGESTION 

Cultured samples, collected after 10 hours, were used for further processing. After 10 hours 

of incubation, all waste reservoirs were blocked and a pressure driven flow (syringe pump) was 

applied to remove cultured cells from the culturing chamber and the cells were then flowed into 

the bioreactor, which was immobilized with trypsin as described above. A flow rate of 15 

µL/min was used initially for at least 15-20 seconds to remove cells from the dried nutrient bed 

followed by a 10 µL/min flow rate that was used to move the cultured material through the 

bioreactor. The cultured cells, when passed through the bioreactor, come in contact with the 

immobilized enzyme and underwent digestion. 
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Figure 12: Optical microscope images of the microfluidic culture chamber from top right to left 
(a, b) culturing chamber before infusion of nutrients and sample, and image collected after 4 

hours of culturing. Images c and d shows cell culturing for 10 and 20 h respectively. 
 

3.6 MALDI-TOF MS 

Samples processed in the microfluidic chip were analyzed using MALDI-TOF MS. Samples 

collected from the microfluidic device were mixed with a CHCA matrix solution in a 1:1 (v/v) 

ratio. A 1 µL volume of the sample was placed on the MALDI target plate along with 1 µL of 

CHCA matrix which was prepared by mixing 10 mg of CHCA in 700 mL of acetonitrile and 300 

mL of 0.1% TFA. The sample and matrix were mixed and air-dried. Analysis was carried out 

using MALDI-TOF MS and a mass range of 400 m/z to 2000 m/z was selected, which avoids low 

mass matrix peaks. 
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Figure 13: Laser desorption ionization mass spectrum of CHCA matrix. 

 

Figure 14: Mass spectrum of blank cell culture medium. 
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Figure 15: Mass spectrum of E. coli cells cultured for 10 hours and digested with trypsin in the 
microfluidic chip. 
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Figure 16: Mass spectrum of E. coli cells cultured for 4 hours and digested with trypsin in the 
microfluidic chip. 

 

 

Figure 17: Mass spectrum of E. coli cells cultured and digested off-chip. 
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Mass spectra were collected for blank matrix and culture medium (shown in Figure 13 and 

14 respectively) without any sample. Mass spectra of E. coli cultured and digested on the chip at 

different culture times (4 hours and 10 hours) along with the E. coli cultured and digested off-

chip (which is considered a reference) were also collected.  

A mass spectrum of E. coli cells cultured for 10 hours and digested on the microfluidic 

device is shown in Figure 15. The spectra collected from different sample spots (n>10) are 

similar for all the samples (n>10). In each case the base peak was located at m/z 440. Some of 

the peaks in the spectra that are reproducible are labeled in Figure 15 and Figure 16. It is known 

that same species could give different spectra, due to different growth conditions or different 

chemicals that are used during sample processing techniques.186, 187 For example use of TFA or 

formic acid creates different spectra with significant differences in relative intensities.128 Despite 

many variations in spectra due to experimental conditions certain peaks that are reproduced are 

labeled. These peaks might be peptides or lipids but cannot be assigned with confidence unless 

further processing such as separation or better mass accuracy (which can be achieved with an 

internal standard) are done. The mass spectrum of E. coli cells cultured for 4 hours and digested 

on chip is shown in Figure 16. Peaks greater than m/z 1000 showed a greater difference in the 

intensities, shown in inset spectrum of Figure 16. The mass spectrum of the sample processed 

off-chip by culturing the cells on a Petri dish and performing in-solution digestion is shown in 

Figure 17. 

Since sensitivity and dynamic range limitations dictate the need for effective separation of 

protein or peptide species prior to analysis by mass spectrometry, we are still working on 

integrating a separation step on a microfluidic device. The data obtained from mass spectrometry 

cannot be used for bacterial identification until further processing is done.  
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CHAPTER 4.  CONCLUSION 

We have described the construction and operation of an integrated microfluidic chip for 

bacterial cell culturing with off-line MALDI MS for detection. This integrated system 

demonstrated cell isolation, cell culturing, and digestion of bacteria. The small surface area and 

volumes of the microfluidic device minimized the quantity of reagent and sample size. 

Incorporation of MALDI MS for identification reduces the overall analysis time and sample 

quantities. Isolation of analyte from complex samples can be achieved with our device and the 

culture chamber produced good results for culturing bacteria in a microenvironment. The capture 

efficiency of our device was found to be 45 ± 3% and the smallest time required to observe the 

growth of bacterial cells was found to be around 4 hours. This can confirm that microfluidic 

culturing devices can reduces the overall time compared to bench top culturing. The bioreactor 

requires less volume of analyte and duration for digestion. Peaks that are reproduced are labeled 

in the mass spectra obtained from on-chip and off-chip processing. Integration of on chip 

separation will make this device a complete proteomic chip.  

We are still working on integrating capillary electrophoretic separation on chip to get better 

information from the mass spectra data obtained from the complex samples such as bacterial 

cells.  
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