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ABSTRACT

The studies of this dissertation are composed of two sections. The first one deals 

with the analysis of compositional monosaccharides of transgenic corn glycoproteins. 

The method used in this study involves derivatization of monosaccharides with two 

fluorophores followed by HPLC/fluorescence detection for quantitative studies, and by 

HPLC/SSI/MS for identification confirmation of individual monosaccharide. The 

derivatization process adds a moderate polar moiety to monosaccharides, changing their 

structures and improving the separation of derivatized monosaccharides on C-18 column, 

as well as increasing the detection sensitivity dramatically. Moreover, derivatization 

process also adds a proton receptor to monosaccharide molecules, making them much 

easier to be ionized by ESI, SSI, APCI, etc. The second section investigates the 

degradation processes of several pesticides including diazinon, fonofos and aldicarb in 

various oxidation systems. This oxidation process may result in the formation of 

oxidation byproducts from the parent pesticides, which could be more toxic than the 

parent pesticides. Diazoxon and 2-Isopropyl-6-methyl-4-pyrimidinol (IPMP) were 

detected as the degradation products of diazinon; fonofos oxygen analog was identified to 

be the degradation product of fonofos, while thiophenol and phenyl disulfide were 

identified as the alkaline hydrolysis products of fonofos; aldicarb sulfoxide, aldicarb 

sulfone and N-chloro-aldicarb sulfone were detected as the degradation products of 

aldicarb. Quantitative studies are also carried out to provide information for kinetics of 

these oxidation processes. 
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INTRODUCTION

Glycans or oligosaccharides are found in a wide variety of proteins, including

enzymes, immunoglobulins, carriers, hormones, toxins, lectins, and structural proteins. In 

recent years, glycoprotein research has drawn increasing interest in the fields of 

biotechnology, clinical chemistry, biochemistry, pharmaceutical and food sciences. 

Glycoprotein play important roles in biological processes including antigenicity, 

transport, folding, recognition, defense or decoy functions, cellular adhesion, blood 

clotting, immunological protection, structural support, and others. Glycosylation of 

proteins is one of the most common and important post-translational modifications found 

in secretory proteins.

Glycoproteins are a class of proteins that exhibit extraordinary complex structure 

due to the presence of the surface carbohydrates. The structure diversity is derived not 

only from different linkages between proteins and carbohydrates, but also from the 

composition and the structure of the carbohydrate units. Transgenic corn offers an 

attractive and cost effective mean for large-scale production of therapeutic glycoproteins 

suitable for pharmaceutical purpose. The particular glycoprotein produced by transgenic 

corn should not contain glycans because the glycosylation sites have been genetically 

altered. A sensitive and reliable analytical method is needed to determine the glycans and 

monosaccharides in the glycoproteins for quality control purposes.

To determine whether a protein is glycosylated, the first step is to identify and 

quantify the compositional monosaccharides in the glycoprotein. Several methods have 

been developed for analyzing monosaccharides derived from glycoproteins.
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High performance liquid chromatography (HPLC) with various detectors, such as

UV/vis, fluorescence, electrochemical and mass spectrometry (MS), has become a more

popular method for monosaccharide analysis. Reversed phase HPLC analysis of 

derivatized monosaccharide with UV/vis or fluorescence detection is one category, and 

anion exchange HPLC with different types of detection is another. For irrefutable 

identification of the monosaccharides released from glycoproteins, MS has also been 

used in conjunction with HPLC. Thermospray and electrospray were utilized as the 

ionization source for liquid chromatography/mass spectrometry (LC/MS) but reduced 

sensitivity is often encountered for direct sugar analysis. Sonic spray ionization (SSI) can 

be an alternative ionization source for LC/MS analysis of glycans and monosaccharides. 

SSI is a softer ionization technique compared to electrospray, therefore, it is more 

efficient in formation of molecular ions and provides a possibility of MS characterization 

of the monosaccharides. Since this ionization source operates with much lower 

temperature and no needle voltage, it is well suited for the analysis of thermally labile 

and unstable compounds like carbohydrate. So far it has been successfully applied only to 

a limited number of compounds in the environmental and bioanalytical field, and analysis 

of derivatized monosaccharides by LC-SSI-MS has not been reported.

In this study, the HPLC-fluorescence and LC/SSI/MS based techniques for 

compositional monosaccharide analysis of glycoproteins in transgenic corn are described. 

The monosaccharides are released from glycoproteins by acid hydrolysis and derivatized 

with a fluorophore, and a reversed-phase HPLC with fluorescence detection is used to 

identify and quantify these monosaccharides, and each monosaccharide is further 
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confirmed by LC/SSI/MS. This approach showed an advantage over others in that it is 

possible to perform HPLC with fluorescence and MS detection simultaneously.

Many organophosphorus compounds, either as esters or thioesters of phosphoric 

and thiophosphoric acid, are commonly used as herbicides non-specific insecticides (i.e., 

insectacetyl-cholinesterases). Organophosphours pesticides can also affect the nervous 

systems ofhumans.

The oxidation byproducts of these organic compounds may have a greater, 

similar, or lesser toxicity than the parent compound, depending on the specific 

modifications occurring in the chemical structure. Because of the exposure of humans to 

these degradates in drinking water, as well as to the environment through wastewater 

discharges, determination of the identity and nature of these compounds under different 

oxidative environments is crucial. Previous studies have primarily focused on the 

hydrolysis of organophosphorus pesticides at different pH levels and temperatures. The 

catalytic or inhibitory effects of oxides surfaces, dissolved metals and metal-containing 

surfaces, metal oxides and natural dissolved organic matter and mixing on the hydrolysis 

of organophosphorus pesticides have also been investigated.

Among these organophosphorus pesticides, diazinon has been commonly used as 

a pesticide since 1952 due to its inhibition of the acetylcholinesterases of most kinds of 

insects. It has been applied in different types of cultivation such as fruit trees, rice, 

sugarcane, corn, tobacco, and horticultural plants. Diazinon is considered moderately 

toxic with a fish-based LC50 (lethal concentration for 50% fish kill) of 4.4 mg/L in 

killifish within 48 hours. However, diazinon can deteriorate to harmful substances, 

including monothiotepp (O, S-TEPP) and sulfotepp (S, S-TEPP), at high temperature and 
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under certain other conditions. These degradates are known to be highly toxic and to have 

a strong inhibitory effect on cholinesterase enzyme systems. Preliminary studies have 

found that the half-life (t1/2) of diazinon hydrolysis was largely dependent on pH and 

temperature. In addition, some catalysts such as ferrihydrite, goethite, and hematite, were 

also found to have considerable influence on the rate of hydrolysis under different 

conditions. Previous studies identified 2-isopropyl-6-methyl-4-pyrimidinol (IPMP) as a 

major hydrolysis product under both acidic and basic conditions.

The oxidation of diazinon by free chlorine and ozone has been studied by several

research groups. For example, in one study, ozonation of diazinon produced diazoxon 

which was further hydrolyzed to diethyl phosphate and IPMP. It was also demonstrated 

that ozonation was feasible for achieving nearly complete degradation of diazinon within 

1 hour, and that the process was almost independent of pH, temperature, and alkalinity. 

Diazoxon has a LC50 of 0.22 mg/L in killifish in 48 hours, showing much higher 

toxicity than diazinon itself. Photocatalytic degradation of diazinon was also carried out 

with TiO2 as the catalyst; diazoxon and IPMP were also identified. In these studies, 

diazinon and its degradation products were separated and detected by a variety of 

analytical techniques such as gas chromatography with a nitrogen-phosphorus detector or 

a flame ionization detector, semi-micro liquid chromatography-mass spectrometry 

(LC/MS).

The use of oxidants in drinking water treatment is common for disinfection, 

oxidation of inorganic and organic contaminants, taste and odor control, and 

microflocculation. Based on a thorough literature search, there are no comprehensive 

and/or comparative studies that have investigated the oxidation systems most commonly 
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used in water treatment plants involving treatment of diazinon with free chlorine, ozone, 

monochloroame, and chlorine dioxide, as well as ultraviolet light (UV). Therefore, this 

study was conducted to investigate the oxidation products of diazinon with this wide 

array of oxidants and UV, including identification of byproducts. Diazinon and its 

oxidation products were separated with high performance liquid chromatography, and 

identified and quantified by using a sonic spray ionization ion trap mass spectrometer 

(HPLC/SSI/MS). This study provides important information regarding the formation of 

degradates from diazinon during disinfection and other oxidative processes. This 

information will be important from the perspectives of monitoring and exposure, human 

and environmental health, and development of treatment options.

Fonofos (fonofos, O-ethyl S-phenyl ethylphosphonodithioate; CAS 944229) is a

dithiophosphonate pesticide used to control lepidopterous insects in corn, potatoes, and 

peanuts. This highly toxic chemical interferes with the nervous system by inhibiting an 

enzyme, cholinesterase. Symptoms of fonofos exposure may be delayed for a few 

minutes after exposure to up to twelve hours. Early symptoms include blurred vision, 

headache, and dizziness. Skin contact often brings about sweating and muscle twitching. 

Eye contact causes tearing, pain, and blurring. Ingestion may cause nausea, abdominal 

cramps, and diarrhea.

Determination of fonofos residue has been accomplished by various approaches in

different matrices. Fonofos residue in honey and honeybees was determined by various 

extractions followed by liquid chromatography-atmospheric pressure chemical 

ionization-mass spectrometry (LCAPCI-MS), or electrospray ionization-mass 

spectrometry (LC-ESI-MS). Capillary electrophoresis with cyclodextrin chiral selectors 
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was also used to determine the enantiomers of fonofos in aerobic soil slurries. Solid 

phase micro-extraction, followed by gas chromatography with mass spectrometry, was 

used to determine various pesticides (including fonofos) in a confined atmosphere and 

whole human blood.

Determinations of biologically-derived fonofos were reported by some 

researchers. An off-line coupling of thin-layer chromatography (TLC) with ESI-MS for 

routine determination of pesticides in toxicology and forensic medicine was reported. A 

comprehensive two-dimensional gas chromatograph with flame ionization detection was 

constructed and evaluated for the fast separation and analysis of fonofos extracted from 

human serum. 

Determination of fonofos in water was also reported by using nano-HPLC 

coupled with direct-electron ionization mass spectrometry, and by using filtration and 

solid phase extraction, followed by gas chromatography/mass spectrometry (GC/MS) 

with large-volume injection. Fonofos, when used in agriculture, may transfer to the 

ground and underground water system, although a large part of it may have been 

absorbed and filtered by the soil or other absorbents. The fonofos residue can be 

degraded by free chlorine, the oxidant most frequently used by water treatment plants 

during the disinfection process, to produce oxidation byproducts. These byproducts may 

be more toxic than fonofos itself. Because of the potential human health implications, it is 

crucial that the oxidation byproducts of fonofos be identified and that both fonofos and its 

oxidation byproducts be monitored during in the water treatment process.

Studies on the metabolism of fonofos in biological systems have also been carried 

out. Peracid oxidation of fonofos in organic solvent systems has been studied by several 
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researchers. However, the free chlorine, H2O2 and permanganate oxidation of fonofos in 

water treatment plants have not yet been reported up to now. This study investigated the 

oxidation of fonofos by these oxidants in an aqueous buffer using HPLC coupled with 

quadrupole ion trap mass spectrometry, and the identified oxidation byproduct of fonofos 

was further confirmed using TLC and MS/MS. The results of this study can serve as a 

useful reference for water treatment plants.

Fonofos is fairly water insoluble but has a moderate persistence (40 day field 

half-life) in soil. Fonofos readily hydrolyses but transformation products were not 

identified. The method of spray application for fonofos has the potential for run-off 

contamination of surface water and the moderate persistence can cause groundwater 

contamination at certain sites. Fonofos has been found in groundwater at 0.01 to 0.1 

µg/L, surface water at 0.01 µg/L. 

A few studies have isolated transformation products of fonofos. However, both of 

these studies were in biological systems. The identification of transformation products of 

hydrolysis outside a biological tissue has not been investigated and is an important piece 

of information, particularly to water treatment facilities which utilize raised pH 

processes, where hydrolysis can become an important transformation reaction.

In this study, hydrolysis reactions were carried out at several high pH’s in 

phosphate buffered water systems to simulate treatment processes. Fonofos and two 

hydrolysis products were separated, identified and quantified using two hyphenated 

methods. Thiophenol was separated with high performance liquid chromatography and 

identified and quantified by sonic spray ionization ion trap mass spectrometry 

(HPLC/SSI/MS). Phenyl disulfide was separated using gas chromatography and 
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identified and quantified using mass spectrometry (GC/MS). This study was intended to 

investigate the hydrolysis products of fonofos, emphasizing on identifying transformation 

products, mechanism and relative reaction rate. 

Aldicarb [2-methyl-2(methylthio)propionaldehyde O-(methylcarbamoyl)oxime], 

an active ingredient in the pesticide TEMIK®, is a soil pesticide used in the agricultural 

sector worldwide for over 30 years for the control of insects, mites, and nematodes. Some 

of the most important uses of this product in the U.S.A. have included citrus, cotton, 

sugar beets, potatoes, pecans and peanuts. The commercial product is a granular 

formulation, which is incorporated into the soil at the time of application. After applied 

into the soil, it is solubilized and distributed by the groundwater, and absorbed by the 

roots and translocated throughout the plant and, and serves as a systemic pesticide. 

The discovery of aldicarb residues in drinking water on Long Island, New York, 

in 1979 and later in other  areas of the U.S.A. has resulted in many research and 

monitoring programs being conducted by university, regulatory agency and industry 

scientist. Such activities have included potable well monitoring studies, laboratory 

experiments, field research studies and computer modeling. Many of these activities have 

been conducted by or in cooperation with the producer and registrant of aldicarb. 

It was reported that aldicarb would degrade to produce aldicarb sulfoxide and 

aldicarb sulfone in a variety of soil types under both field and laboratory. Thus, studies 

on the degradation of aldicarb under various conditions became crucial in understanding 

the degradation mechanisms and pathways and monitoring and removing of aldicarb and 

its degradates from the environment. The metabolites were determined by assay for 

radioactivity. It was found that aldicarb produced aldicarb sulfoxide, aldicarb sulfone, 
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aldicarb sulfoxide oxime, aldicarb sulfoxide nitrile, aldicarb sulfone oxime, and two 

unknowns. On the other hand, aldicarb sulfone nitrile and aldicarb sulfone acid were 

detected as the two major degradates of aldicarb sulfone under aerobic and anaerobic 

soils. The aerobic and anaerobic degradation rates for aldicarb were measured in soil 

samples collected at different depths, and the concentration changes of its two toxic 

oxidation products, aldicarb sulfoxide and aldicarb sulfone were determined to estimate 

the first-order rate constants for concurrent oxidation and hydrolysis of aldicarb, aldicarb 

sulfoxide and aldicarb sulfone, and for the loss of total carbamate residues. Hydrolysis of 

aldicarb, aldicarb sulfoxide and aldicarb sulfone in Floridan groundwater was observed 

with the rates decreased in the order sulfone > sulfoxide >> aldicarb. In addition, 

hydrolysis rates of aldicarb, aldicarb sulfoxide and aldicarb sulfone were measured at ppb 

levels in aqueous solution by using liquid-liquid extraction followed by gas 

chromatography with flame ionization detector (FID) and nitrogen-phosphorus detector 

(NPD). Biotransformation of is another pathway for degradation of aldicarb. Kazumi et al 

[10] described the studies in which the aldicarb biotransformation happening in sediment 

was mainly via an oxidation pathway in the presence of O2, while in the absence of O2, 

the biodegradation took place through a hydrolytic pathway. It was also reported that not 

only aldicarb, aldicarb sulfoxide and aldicarb sulfone at the applied dose to soils did not 

inhibit microbial growth, but also the microbial component in soil had a significant role 

in the degradation of these compounds. In fact, some researchers reported the capability 

of soil microorganisms to use the carbamate pesticides as a source of carbon and nitrogen 

for growth. Other factors affecting chemical and microbial degradation of aldicarb was 
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investigated, and it was shown that temperature was the most important variable affecting 

the degradation rate of aldicarb and its carbamate metabolites in surface soils.

Other than gas chromatography, the analysis of aldicarb and its carbamate 

metabolites included RP-HPLC followed by post-column derivatization and fluorescence 

detection, UV detection and mass spectrometry.

The use of oxidants in drinking water treatment is common for disinfection, 

oxidation of inorganic and organic contaminants, taste and odor control, and 

microflocculation.  Due to the possibility of transporting aldicarb and its carbamate 

metabolites into drinking water via many different ways, the degradation byproducts and 

possible degradation mechanisms of aldicarb, aldicarb sulfoxide and aldicarb sulfone at 

different water treatment conditions must be systematically investigated to guide the

water treatment system, to minimize environmental and human health effects.   

However, no report was found through a thorough literature search to investigate 

the oxidation of aldicarb and its carbamate metabolites in water treatment plant involving 

treatment with monochloroamine, chlorine dioxide, permanganate, hydrogen peroxide, 

ozone and UV radiation. In this paper, a comprehensive study is conducted to analyze the 

oxidation byproducts of aldicarb in various oxidation systems by using HPLC/ESI/MS 

and to determine the removal of aldicarb by using HPLC/UV, as well as the oxidation 

reaction features in terms of brief mechanism and relative reaction rate. This study, along 

with our preliminary screening studies, provides practical information for understanding 

the kinetics and mechanism of the oxidation for different oxidants. Moreover, pesticides 

monitoring in water and control or choice of disinfection combination can be beneficial 

from this study. 
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PAPER

1. Compositional Monosaccharide Analysis of Transgenic Corn

Glycoproteins by HPLC with Fluorescence Detection and LC-

MS with Sonic Spray Ionization

Abstract

Transgenic corn offers an attractive cost effective mean for the large-scale 

production of engineered glycoproteins suitable for pharmaceutical purposes. A 

glycoprotein expressed in transgenic corn theoretically should not contain glycans 

because glycosylation sites have been genetically altered. A sensitive and reliable 

analytical method is developed to investigate this particular protein for the presence of 

glycans by monitoring the monosaccharide composition. Identification and quantitation 

of low-level monosaccharides in the glycoprotein hydrolyzate were accomplished by 

derivatization prior to high performance liquid chromatography (HPLC)-fluorescence and 

liquid chromatography- sonic spray ionization-mass spectrometry (LC-SSI-MS) analyses. 

LC-SSI-MS was used to confirm the results from HPLC-fluorescence analysis and to 

positively identify the compositional monosaccharides. N-Acetylglucosamine, glucose, 

mannose, arabinose, xylose, and sialic acid were found in the transgenic corn derived 

glycoprotein at less than one moiety per protein which indicated heterogeneity of the 

particular glycoprotein. In addition to the compositional analysis of low level 

monosaccharides in glycoprotein by HPLC fluorescence, the utility of SSI for the LC/MS 

analysis of derivatized monosaccharides was demonstrated in this paper.



12

Introduction

Glycans or oligosaccharides are found in a wide variety of proteins, including

enzymes, immunoglobulins, carriers, hormones, toxins, lectins, and structural proteins. 

The most commonly occurring monosaccharides in glycans include glucose, mannose, 

galactose, fucose, N-acetylglucosamine, N-acetylgalactosamine, and sialic acids [1].

In recent years, glycoprotein research has drawn increasing interest in the fields of 

biotechnology, clinical chemistry, biochemistry, pharmaceutical and food sciences [2-6]. 

Glycoprotein play important roles in biological processes including antigenicity, 

transport, folding, recognition, defense or decoy functions, cellular adhesion, blood 

clotting, immunological protection, structural support, and others. Glycosylation of 

proteins is one of the most common and important post-translational modifications found 

in secretory proteins [7-14].

Glycoproteins are a class of proteins that exhibit extraordinary complex structure 

due to the presence of the surface carbohydrates. The structure diversity is derived not 

only from different linkages between proteins and carbohydrates, but also from the 

composition and the structure of the carbohydrate units.

Transgenic corn offers an attractive and cost effective mean for large-scale 

production of therapeutic glycoproteins suitable for pharmaceutical purpose. The 

particular glycoprotein produced by transgenic corn should not contain glycans because 

the glycosylation sites have been genetically altered. A sensitive and reliable analytical 

method is needed to determine the glycans and monosaccharides in the glycoproteins for 

quality control purposes.
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To determine whether a protein is glycosylated, the first step is to identify and 

quantify the compositional monosaccharides in the glycoprotein. Several methods have 

been developed for analyzing monosaccharides derived from glycoproteins. Even though 

direct analysis of monosaccharides by gas chromatography (GC) has been reported [15,

16], derivatization of monosaccharides is preferred to enhance the volatility of 

monosaccharides for GC analysis [17-21]. However, the instability of some of the 

derivatives renders this method less than ideal for accurate quantification of 

monosaccharide content.

High performance liquid chromatography (HPLC) with various detectors, such as

UV/vis, fluorescence, electrochemical and mass spectrometry (MS), has become a more

popular method for monosaccharide analysis. Reversed phase HPLC analysis of 

derivatized monosaccharide with UV/vis or fluorescence detection is one category [22-

25], and anion exchange HPLC with different types of detection is another [25-28]. For 

irrefutable identification of the monosaccharides released from glycoproteins, MS has 

also been used in conjunction with HPLC [29-32]. Thermospray and electrospray were 

utilized as the ionization source for liquid chromatography/mass spectrometry (LC/MS) 

but reduced sensitivity is often encountered for direct sugar analysis [30, 33-35]. Sonic 

spray ionization (SSI) can be an alternative ionization source for LC/MS analysis of 

glycans and monosaccharides. SSI is a softer ionization technique compared to 

electrospray, therefore, it is more efficient in formation of molecular ions and provides a 

possibility of MS characterization of the monosaccharides [36, 37]. Since this ionization 

source operates with much lower temperature and no needle voltage, it is well suited for 

the analysis of thermally labile and unstable compounds like carbohydrate. So far it has 
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been successfully applied only to a limited number of compounds in the environmental 

and bioanalytical field [36, 37], and analysis of derivatized monosaccharides by LC-SSI-

MS has not been reported.

In this paper, the HPLC-fluorescence and LC/SSI/MS based techniques for 

compositional monosaccharide analysis of glycoproteins in transgenic corn are described. 

The monosaccharides are released from glycoproteins by acid hydrolysis and derivatized 

with a fluorophore, and a reversed-phase HPLC with fluorescence detection is used to 

identify and quantify these monosaccharides, and each monosaccharide is further 

confirmed by

LC/SSI/MS. This approach showed an advantage over others in that it is possible to 

perform HPLC with fluorescence and MS detection simultaneously.

Experimental

Materials

The glycoprotein was monoclonal antibody (IgG) expressed in corn and provided 

by Monsanto Protein Technologies (St. Louis, MO, USA). This transgenic corn protein 

(product designation PR 390) was determined to be homogeneous by SDS-PAGE. It was 

engineered in such a way that asparagine, normally N-glycosylated in mammalian cells, 

was substituted with alanine, therefore, the protein should not be glycosylated. 

Nevertheless, the protein is suspected to be O-glycosylated and non-enzymatically 

glycosylated as well. As a glycosylated reference standard, bovine fetuin of highest purity 



15

was obtained from Sigma Chemical Co. (St. Louis, MO, USA). Glucose (Glc), galactose 

(Gal), mannose (Man), arabinose (Ara), xylose (Xyl), fucose (Fuc), glucosamine (GlcN), 

galactosamine (GalN), N-acetylneuraminic acid (Neu5Ac), o-phenylenediamine (OPD) 

dichloride and anthranilic acid (2-aminobenzoic acid; AA) were purchased from Sigma 

Chemical Co. (St. Louis, MO, USA). Sodium cyanoborohydride was from Fluka Chemie 

GmbH (Steinbeim, Switzerland). Ultrafree-MC centrifugal filter devices with Biomax-30 

membrane was purchased from Millipore (Bedford, MA, USA). Ultra-pure water was 

prepared with Synergy 185 system (Millipore, Bedford, MA, USA). HPLC-grade 

acetonitrile and tetrahydrofuran were purchased from Fisher Scientific (Pittsburgh, PA, 

USA). Other reagents and solvents were of reagent grade.

Purification of glycoprotein samples

1.0 mL of transgenic corn glycoprotein (9.33mg protein/mL) or 5.1 mg of bovine 

fetuin (dissolved in 1.0 mL H2O) was filtered through the Biomax-30 membrane using an 

Ultrafree-MC Centrifugal Filter Device to remove constituents with molecular weight 

less than 30,000. The protein residues collected on the filter was washed with 2.0 mL of 

ultra pure water. The purified glycoprotein was recovered from the filter with 1-5 mL of 

ultra pure water.

Acid Hydrolysis of glycoprotein for neutral and basic monosaccharides analysis

A 100 μL aliquot of purified protein sample was mixed with 500 μL of 20% 

trifluoroacetic acid in a 2.0 mL screw-cap glass vial. The mixture was heated at 100ºC for 

hours. After the completion of hydrolysis, the sample was freeze-dried.
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Derivatization of neutral and basic monosaccharides with anthranilic acid

The neutral monosaccharides were derivatized by reductive amination with the

anthranilic acid following a procedure described previously [23]. First, a solution of 4%

sodium acetate⋅3H2O and 2% boric acid in methanol was prepared. Thirty mg of 

anthranilic acid and 20mg of sodium cyanoborohydride were then dissolved in 1.0 mL of 

this methanol-acetate-borate solution.

Lyophilized glycoprotein hydrolyzate or 10 μL monosaccharide standard 

(0.25~100 μg/mL) was dissolved in 40 μL of 1% freshly prepared sodium acetate·3H2O. 

The solution was mixed with 50 μL of the derivatizing reagent in a screw-cap glass vial 

and heated at 80ºC for 1 hour. After cooling to ambient temperature, the samples were 

centrifuged and 10 μL of the supernatants were injected onto the HPLC column.

HPLC-fluorescence analysis of AA-monosaccharide derivatives

A Hewlett-Packard 1090 HPLC instrument (Palo Alto, CA, USA) with a 

Shimadzu RF-551 fluorescence detector (Columbia, MD, USA) was used for analysis of 

anthranilic acid derivatives of monosaccharides. The separation conditions were similar 

to the reported method with some modifications 23. A Waters C18 column (300 × 3.9mm 

i.d., 5μm, Milford, MA, USA) was used at ambient temperature with a flow rate of 1.0 

mL/min. Solvent A consisted of 0.4% n-butylamine, 0.5% phosphoric acid, and 1.0% 

tetrahydrofuran in water, and solvent B consisted of 50% solvent A and 50% acetonitrile. 

The HPLC separation was performed at 5% B for 15 min followed by a linear gradient to 

15% B at 50 min. After each run, the column was washed with mobile phase B for 15 

minutes, and equilibrated with the initial mobile phase for 10minutes. Fluorescence 
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detection was carried out at an excitation wavelength of 230 nm and an emission 

wavelength of 425 nm.

LC/MS analysis of AA-monosaccharide derivatives

The Hitachi M-8000 3DQ LC/MSn system (San Jose, CA, USA) was used for the 

MS confirmation of monosaccharides released from hydrolysis of glycoprotein samples. 

The HPLC condition used for HPLC-fluorescence experiment was utilized with minor 

changes in mobile phase composition and gradient program. Solvent A consisted of 

0.12% n-butylamine, 0.12% formic acid, and 1.0% tetrahydrofuran in water, and solvent 

B consisted of 50% of solvent A and 50% of acetonitrile. The HPLC separation was 

performed at 100% A for 30 min followed by a linear increase to 20% B at 60 min. The 

1.0 mL/min effluent from the column was split through a tee connector and only 0.2 

mL/min was directed to the SSI/MS. A divert valve was placed right before the ionization 

source to remove the HPLC fractions containing salts and excess AA derivatizing reagent 

and prevent the contamination of ionization source and MS. The SSI parameters were set 

to the following optimized values: nitrogen sheath gas at 3 kgf/cm2, 0 kV capillary 

voltage, 45 V drift plate, 30 V focus plate, 200ºC cover plate temperature, 150ºC aperture 

1 temperature. Ion trap MS was operated at following conditions: 500 ms accumulating 

time, 0.072V accumulation voltage, 48.2 amu low mass cut off, 250-350 amu scan range. 

The remaining (0.8 mL/min) flow of the HPLC effluent was directed to a UV detector set 

at 250 nm.
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Mild-acid hydrolysis of glycoprotein for sialic acid analysis

A 50 μL aliquot of purified glycoprotein sample was mixed with 50 μL 0.5 M 

NaHSO4 in a screw-cap glass vial. The mixture was heated at 80 ºC for 20 min and 

allowed to cool to ambient temperature.

Derivatization of sialic acids with OPD

Sialic acids were labeled with OPD to produce fluorescent quinoxaline derivatives 

via an optimized procedure previously reported 23. An aliquot (0.1 mL) of standard sialic 

acid solutions (0.20 - 4.0 μg/mL) or mild-acid hydrolyzates of glycoprotein samples 

were mixed with 0.1 mL of the 20 mg/mL OPD in 0.25 M NaHSO4. The mixtures in 

glass screw-cap vials were heated at 80ºC for 40 min. After cooling to ambient 

temperature, the samples were centrifuged and 10 μL of the supernatants were injected 

onto the HPLC column.

HPLC-fluorescence analysis of sialic acid

A Hitachi L-7000 series HPLC system (San Jose, CA, USA) was used for the 

analysis of the OPD derivatives of sialic acid. The separation conditions were similar to 

the reported method with some modifications [23]. A Waters C18 column (300 × 3.9mm 

i.d., 5μm, Milford, MA, USA) was used at ambient temperature with a flow rate of 1.0 

mL/min. Solvent A consisted of 0.15% n-butylamine, 0.5% phosphoric acid, and 1.0% 

tetrahydrofuran in water, and solvent B consisted of 50% solvent A and 50% acetonitrile. 

HPLC separation of OPD derivatives of sialic acids was isocratic with a solvent mixture 

of 89%A + 11% B. After each run, the column was washed with mobile phase B for 15 
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minutes, and equilibrated with the initial mobile phase for 10 minutes. The excitation and 

emission wavelength for the fluorescence detector was 230 nm and 425 nm, respectively.

Results and Discussion

HPLC-fluorescence analysis of neutral and basic monosaccharides

Initially a mixture of eight monosaccharides commonly-occurring in 

glycoproteins was used in the optimization of method [38]. HPLC separation and 

fluorescence detection of AA-derivatized monosaccharide standards and 

monosaccharides hydrolyzed from transgenic corn glycoprotein are shown in Figure 1. A 

number of large peaks from excess derivatizing reagent and artifacts were present but 

separated clearly from monosaccharide peaks and did not interfere in the quantification. 

Glucosamine and neutral monosaccharides including mannose, glucose, arabinose and 

xylose were found in the glycoprotein sample. Galactosamine and galactose levels were 

below the detection limits of 0.25 and 1.0 ng, respectively. All of the AA-

monosaccharide peaks in the chromatogram were confirmed by standard addition 

method. Since the glycoprotein sample contained no galactosamine, it was employed as 

an internal standard for accurate quantitation of other monosaccharide constituents. 

Calibration curve of each AA-derivatized monosaccharide was generated using peak area 

ratio and the regression coefficients (r2) of all curves ranged between 0.9983 and 0.9999. 

The limit of detection was calculated as the minimum amount of monosaccharide giving 
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a signal to noise ratio of 3. The limits of detection on column for monosaccharides were 

as following: 0.25 ng for glucosamine and 1.0 ng for neutral monosaccharides.

Validation of the method was conducted by monitoring recoveries of spiked

monosaccharides. The results are shown in Table 1. The monosaccharide recoveries were 

relatively lower for the highest level in the study, most likely due to the insufficient

fluorescent labeling of monosaccharides. However, the specified derivatization condition

should be adequate for the transgenic corn glycoprotein whose monosaccharide 

concentrations are expected to be very low. The validity of the method was also 

evaluated with fetuin whose monosaccharide composition of glycoproteins is already 

well known. The fetuin monosaccharide content determined with the method is shown in 

Table 1 and the results are similar to the published data [39-43].

Figure 1. HPLC-fluorescence profiles of AA-derivatized neutral and basic 
monosaccharides from a standard mixture, a transgenic corn glycoprotein sample and a 
blank. Experimental conditions: C-18 column; Solvent A consisted of 0.4% n-
butylamine, 0.5% phosphoric acid, and 1.0% tetrahydrofuran in water, and solvent B 
consisted of 50% solvent A and 50% acetonitrile. The HPLC separation was performed at 
5% B for 15 min followed by a linear increase to 15% B by 50 min. Excitation 
wavelength: 230 nm; emission wavelength: 425 nm.
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The neural and basic monosaccharide contents in glycoprotein sample from 

transgenic corn are shown in Table 2. The contents of individual monosaccharides were 

measured in µg/mg protein sample. The number of monosaccharide molecules per 

glycoprotein molecule was calculated based on the molecular weight (150,426 dalton) of 

transgenic corn glycoprotein (number of GlcN molecule per glycoprotein = content 

×150,426/179; and number of neutral monosaccharide molecule = content 

×150,426/180). This molecular weight was determined previously from the 

deconvolution of positive ion ESI-MS spectrum obtained for the same glycoprotein [44].

Table 1. Recovery of different monosaccharides.

% Recovery (n=3)

Spiked amount (ng)  GlcN         Gal          Man         Glc         Ara         Xyl          Fuc
(amount injected)
          
          2 – 5                83.2          89.8         87.6          105        78.5        83.9         87.0
          RSD                     5.4            3.5           3.7            3.3         4.3          8.6           5.1

        10 – 20                  81.5          79.6         80.0          96.2       76.3        72.6         79.6
          RSD                     2.2            4.4           4.7            9.9         1.7          8.9           4.6

        50 – 100                66.4          66.5          65.9         75.8       62.0         54.6       65.3
          RSD                     4.8            5.0            6.6          10.0        5.1           7.9         6.6

        

Table 2.  Neutral and basic monosaccharide composition of transgenic corn glycoprotein 
determined as concentrations and numbers of monosaccharide per protein (n=3).

Glucosamine  Mannose Glucose   Arabinose Xylose
Monosaccharides content
(g/mg protein)

0.062 ± 
0.002

0.728 ± 
0.047

0.600 ± 
0.158

0.350 ± 
0.012

0.377 ±  
0.006

# monosaccharide 
molecules per glycoprotein 

0.052 ± 
0.001

0.609 ± 
0.039

0.502 ± 
0.132

0.293 ± 
0.009

0.316 ± 
0.005
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HPLC-fluorescence analysis of sialic acid

Representative HPLC-fluorescence chromatograms of sialic acid from standard 

and glycoprotein sample are shown in Figure 2. 

The calibration curve regression coefficient (r2) of sialic acid was 0.9998. The 

detection limit was 0.5 ng. The sialic acid content of the fetuin was determined to be 71.3 

μg/mg protein and agreed well with the expected value (Table 3). The sialic acid content 

of glycoprotein sample from transgenic corn was in average 0.072 µg/mg protein. The 

number of sialic acid molecules per protein molecule was then calculated to be 0.035 

based on the previously determined molecular weight of the particular transgenic corn 

glycoprotein.

Confirmation of the monosaccharides found in glycoprotein samples by LC-MS

For LC-MS analysis of AA-derivatized monosaccharides, the mobile phase

solvents and gradient used for HPLC-fluorescence separation were slightly modified to 

accommodate SSI-MS operation. The concentrations of buffers in the mobile phase were 

lowered and the length of initial isocratic condition was increased. Accordingly the total 

time necessary for complete separation of all eight monosaccharide derivatives was 

greatly increased as can be seen in the UV detected chromatogram in Figure 3. 
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Figure 2.  HPLC-fluorescence profiles of OPD-derivatized sialic acids from sialic acid 
(Neu5Ac) standard, a transgenic corn glycoprotein sample and a blank. Experimental 
conditions: C-18 column; Solvent A consisted of 0.15% n-butylamine, 0.5% phosphoric 
acid, and 1.0% tetrahydrofuran in water, and solvent B consisted of 50% solvent A and 
50% acetonitrile. The separation was performed at an isocratic (89%A + 11% B) elution. 
The excitation and emission wavelength for the fluorescence detector was 230 nm and 
425 nm, respectively.

Table 3.  Monosaccharide composition of fetuin determined with current method and 
compared with published data.
________________________________________________________________________
                                                     Monosaccharide Content (g/mg protein)
                                                   GlcN           GalN        Gal               Man           Neu5Ac

Current Method                       45.3-48.5     7.2-7.9    30.5-33.7     21.7-22.9      69.1-73.4

Reported [45, 46]                    26.7-56.0      5.4-7.0    34.9-45.9     23.0-30.5      70.0-76.0
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Figure 3. HPLC chromatogram of AA-monosaccharide derivatives with UV detector. 
Experimental conditions: The analytical column was the same as that for HPLC-
fluorescence experiments. Solvent A consisted of 0.12% n-butylamine, 0.12% formic 
acid, and 1.0% tetrohydrofuran in water, and solvent B consisted of 50% of solvent A and 
50% of acetonitrile. The HPLC separation was performed at 100% A for 30 min followed 
by a linear increase to 20% B by 60 min. The UV detector wavelength was set at 250 nm.

The 1/5 split of same LC effluent was directed to SSI-MS, but diverted to waste 

during the time segments when two large peaks corresponding to excess derivatization 

reagent and byproduct eluted. Non-retained solvent front segment was also diverted to 

waste to prevent the contamination of ionization source and MS from non-volatile buffer 

salt used in the derivatization of sample. Resulting total ion chromatogram of 

monosaccharide standards from LC-SSI-MS is shown in Figure 4. The extracted ion 

chromatograms corresponding to different monosaccharides are also displayed in Figure 

4 (a-d). Based on the derivatization reaction process involving reductive amination of

monosaccharides [45, 46], the positive ion SSI-MS should yield a protonated molecular 
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ion at m/z 301 for galactosamine and glucosamine derivatives which are optical isomers. 

Similarly a protonated molecular ion at m/z 302 is expected for AA-derivative of optical

Figure 4.  Reconstructed ion chromatograms of AA-derivatives of monosaccharide 
standards. Experimental conditions: HPLC condition was same as given in Figure 3. The 
SSI/MS parameters were optimized conditions stated in the Experimental section.

isomers; galactose, mannose and glucose. Another set of optical isomers, arabinose and 

xylose, should produce a protonated molecular ion at m/z 272. The protonated molecular 

ion of AA-derivatized fucose should have m/z 286.

The LC-SSI-MS analysis of the transgenic corn glycoprotein sample was 

performed with same conditions and the result is shown in Figure 5. Comparing the 
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retention time, standard addition, and mass spectra obtained for monosaccharide 

derivatives, glucosamine, mannose, glucose arabinose, and xylose in glycoprotein 

samples of transgenic corn were identified. Based on the concentrations of 

monosaccharides and the numbers of monosaccharide molecules determined per 

glycoprotein molecule, it is highly unlikely that the particular protein samples of 

transgenic corn contain any known N-linked or O-linked glycans. All of the N-linked 

oligosaccharides should have a common pentasaccharide core consisting of three 

mannose and two N-acetylglucosamine residues [45, 46]. Absence of any N-linked 

glycans in the particular transgenic corn derived glycoprotein was also confirmed by a 

previous hydrolysis study with an enzyme specific for N-linked glycans [44]. The protein 

also lacked the core structural component of O-linked glycans, N-acetylgalactosamine. 

Each sugar residue found in the transgenic corn glycoprotein was less than one unit per 

glycoprotein, which suggests the heterogeneous nature of this particular glycoprotein 

sample. It implies that not all of the glycosylation sites of protein molecules were 

genetically blocked, leading to the post glycosylation of some proteins. Another 

possibility could be the random linking of individual sugar to the amino acid residues by 

an unknown mechanism that require further investigation.



27

Figure 5.  Reconstructed ion chromatograms and selected mass spectra corresponding to
AA-derivatives of monosaccharides in transgenic corn glycoprotein sample. 
Experimental conditions were same as described in Figure 4.
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Conclusions

The compositional monosaccharides in glycoproteins of transgenic corn were

quantitatively determined and identified following derivatization of protein hydrolyzate

by reversed-phase HPLC with fluorescence detection and positively confirmed by 

LC/MS with SSI source. The numbers of individual monosaccharide molecules bonded to 

the transgenic corn glycoprotein were found to be less than one for each glycoprotein,

which indicated that these monosaccharides may come from the heterogeneous glycans in 

the glycoproteins or maybe randomly linked to some amino acid residues in the proteins. 

Although this phenomenon deserves further study, it implied that not all of the 

glycosylation sites in the protein molecules were genetically blocked.
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2. Comprehensive Investigation of Degradation Products of

Diazinon by Various Oxidation Systems Using High

Performance Liquid Chromatography Coupled with Ion Trap

Mass Spectrometer

Diazinon, an organophosphorus pesticide, is commonly used in agriculture resulting in 

their occurrence in drinking water supplies. The disinfection process using different 

oxidants for the treatment of water provides the opportunity to degrade diazinon to 

byproducts that may pose more or less risk than the parent. Based on the results of 

previous screening studies, a comprehensive study was performed involving diazinon 

treatment with free chlorine (FC), monochloramine (MCA), chlorine dioxide (ClO2), 

hydrogen peroxide, and UV radiation to identify its degradation products. FC exhibited 

strong oxidation capacity than the others studied, while MCA showed the weakest 

oxidation ability among them. Both IPMP and diazoxon were formed as the degradation 

products of diazinon by oxidation with free chlorine, MCA, and chlorine dioxide. 2-

Isopropyl-6-methyl-4-pyrimidinol (IPMP), but not diazoxon, was identified as an 

oxidative byproduct from treatment with UV light and hydrogen peroxide at very high

dosages. UV light and hydrogen peroxide only act as catalysts for the hydrolysis of 

diazinon, while the others function as both oxidants and catalysts.

Introduction

Many organophosphorus compounds, either as esters or thioesters of phosphoric and

thiophosphoric acid, are commonly used as herbicides non-specific insecticides (i.e., 
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insectacetyl-cholinesterases). Organophosphours pesticides can also affect the nervous 

systems ofhumans.

The oxidation byproducts of these organic compounds may have a greater, 

similar, or lesser toxicity than the parent compound, depending on the specific 

modifications occurring in the chemical structure. Because of the exposure of humans to 

these degradates in drinking water, as well as to the environment through wastewater 

discharges, determination of the identity and nature of these compounds under different 

oxidative environments is crucial. Previous studies have primarily focused on the 

hydrolysis of organophosphorus pesticides at different pH levels and temperatures [1-3]. 

The catalytic or inhibitory effects of oxides surfaces [4, 5], dissolved metals and metal-

containing surfaces [6-9], metal oxides [10, 11] and natural dissolved organic matter and 

mixing [12] on the hydrolysis of organophosphorus pesticides have also been 

investigated.

Among these organophosphorus pesticides, diazinon has been commonly used as 

a pesticide since 1952 due to its inhibition of the acetylcholinesterases of most kinds of 

insects. It has been applied in different types of cultivation such as fruit trees, rice, 

sugarcane, corn, tobacco, and horticultural plants. Diazinon is considered moderately 

toxic with a fish-based LC50 (lethal concentration for 50% fish kill) of 4.4 mg/L in 

killifish within 48 hours [13]. However, diazinon can deteriorate to harmful substances, 

including monothiotepp (O, S-TEPP) and sulfotepp (S, S-TEPP), at high temperature and 

under certain other conditions. These degradates are known to be highly toxic and to have 

a strong inhibitory effect on cholinesterase enzyme systems [14-16]. Preliminary studies 

have found that the half-life (t1/2) of diazinon hydrolysis was largely dependent on pH 
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and temperature [2, 3]. In addition, some catalysts such as ferrihydrite, goethite, and 

hematite, were also found to have considerable influence on the rate of hydrolysis under 

different conditions [10]. Previous studies identified 2-isopropyl-6-methyl-4-pyrimidinol 

(IPMP) as a major hydrolysis product under both acidic and basic conditions [1, 2, 17].

The oxidation of diazinon by free chlorine and ozone has been studied by several

research groups. For example, in one study, ozonation of diazinon produced diazoxon 

which was further hydrolyzed to diethyl phosphate and IPMP [18]. It was also 

demonstrated that ozonation was feasible for achieving nearly complete degradation of 

diazinon within 1 hour, and that the process was almost independent of pH, temperature, 

and alkalinity [19]. 

Diazoxon has a LC50 of 0.22 mg/L in killifish in 48 hours, showing much higher 

toxicity than diazinon itself [13]. Photocatalytic degradation of diazinon was also carried 

out with TiO2 as the catalyst; diazoxon and IPMP were also identified [20]. In these 

studies, diazinon and its degradation products were separated and detected by a variety of 

analytical techniques such as gas chromatography with a nitrogen-phosphorus detector 

[12] or a flame ionization detector [21], semi-micro liquid chromatography-mass 

spectrometry (LC/MS) [22].

The use of oxidants in drinking water treatment is common for disinfection, 

oxidation of inorganic and organic contaminants, taste and odor control, and 

microflocculation. Based on a thorough literature search, there are no comprehensive 

and/or comparative studies that have investigated the oxidation systems most commonly 

used in water treatment plants involving treatment of diazinon with free chlorine, ozone, 

monochloroame, and chlorine dioxide, as well as ultraviolet light (UV). Therefore, this 
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study was conducted to investigate the oxidation products of diazinon with this wide 

array of oxidants and UV, including identification of byproducts. Diazinon and its 

oxidation products were separated with high performance liquid chromatography, and 

identified and quantified by using a sonic spray ionization ion trap mass spectrometer 

(HPLC/SSI/MS). This study provides important information regarding the formation of 

degradates from diazinon during disinfection and other oxidative processes. This 

information will be important from the perspectives of monitoring and exposure, human 

and environmental health, and development of treatment options.

Experimental Section

Reagents and Chemicals. Diazinon (99.0%) was purchased from Riedel-deHaën 

(Germany). 2-Isopropyl-6-methyl-4-pyrimidinol (IPMP, 99.5%) and diazinon-O-analog 

(diazoxon, 96%) were purchased from ChemService (West Chester, PA, USA). Formic 

acid (96%, ACS grade), hydrogen peroxide solution (30%) and sodium hypochlorite 

solution (available chlorine ≥4%) were purchased from Sigma-Aldrich (St. Louis, MO, 

USA). Methanol (HPLC grade), acetonitrile (HPLC grade), water (HPLC grade), sodium 

hydroxide (98.3%), ammonium chloride (certified ACS, 99.5%), and sodium phosphate 

(dibasic, 99%) were purchased from Fisher Scientific (Pittsburgh, PA, USA). Sodium 

phosphate (monobasic, 99%) was purchased from Aldrich (Milwaukee, WI, USA). The 

pH for the experiments was adjusted with either 1 N H3PO4 or NaOH.

Methods. All pH measurements were obtained with an Accumet XL 15 pH meter 

using an Accumet AccuCap combination pH electrode from Fisher Scientific (Pittsburgh, 

PA). All oxidation and hydrolysis experiments were conducted at a constant temperature 
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(23.5 ± 1 °C). Oxidation of diazinon, diazoxon, and IPMP was carried out individually in 

the same manner, if not specified otherwise, with an initial concentration of 0.5 mg/L 

(1.64 μM), 0.47 mg/L (1.63 μM), and 0.25 mg/L (1.64 μM), respectively. Terbuthylazine 

was chosen as an internal standard when quantitation was performed. Before each 

injection for HPLC/MS analysis, 0.95 mL of the reaction medium was mixed with 0.05 

mL of an internal standard solution (4.0 mg/L, in pH 7.01 NaH2PO4 buffer).

A Hitachi M-8000 3DQ LC/MSn system with a sonic spray ion (SSI) source (San 

Jose, CA, USA) was used for the HPLC/MS analysis of diazinon and its degradation 

products. A Supelco C18 column (150 × 2.1mm i.d., 5μm, Bellefonte, PA, USA) was 

used for the separation, at an ambient temperature, with a flow rate of 0.25 mL/min 

Solvent A consisted of 0.1% formic acid in water (pH 2.70), and Solvent B was 

acetonitrile. The HPLC separation was performed at 10% B for 3 min followed by an 

increase to 95% B at 3.1 min for 6.9 min. After elution of 95% B, a drop to 10% at 10.1 

min for 14.9 min was carried out. A diversion valve was placed immediately before the 

ionization source to remove the HPLC fractions containing salts, and to prevent the 

contamination of the ionization source and MS. The SSI parameters were set to the 

following optimized values: nitrogen sheath gas at 3 kgf/cm2, 0 kV capillary voltage, 45 

V drift plate voltage, 30 V focus plate voltage, 150ºC cover plate temperature, and 120ºC 

aperture 1 temperature. Ion trap MS was operated at the following conditions: 500 ms 

accumulating time, 0.088V accumulation voltage, 44.53 amu low mass cut off, and 

44.53-450 amu scan range.

Free Chlorine (FC) Oxidation System. The concentration of free chlorine in a 

sodium hypochlorite stock solution was determined with the Hach DPD Method 8221 
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using AccuVac ampuls obtained from the Hach Company (Loveland, CO, USA). A 

twenty μL diazinon stock solution (in MeOH, 0.5 mg/mL) was spiked to 20 mL NaH2PO4 

buffer (pH 6.60) in a 100-mL bottle (reactor). The initial concentration of diazinon was 

0.5 mg/L (1.64 μM). 90 μL of 0.11 mg/mL hypochlorite solution was spiked to an initial 

FC concentration of 0.49 mg/L initiate a reaction. The reactor was wrapped with 

aluminum foil to prevent exposure to light, and was mixed at 150 rpm. Samples were 

taken at different times (and FC exposures) for analysis of diazinon, diazoxon, and IPMP 

by HPLC/MS analysis. FC oxidation of diazoxon and IPMP were carried out in the same 

manner as that of diazinon.

Monochloroamine (MCA) Oxidation System. MCA stock solutions were 

prepared from ammonium chloride and sodium hypochlorite at a molar ratio of 1.05:1 at 

pH 11 [23]. The concentration of a MCA stock solution was determined by using the total 

chlorine method (via Hach DPD Method 8167; Loveland, CO, USA) and confirming that 

no free chlorine concentration remained. This MCA stock solution was diluted 10 times 

to form a working stock solution. An amble glass reactor of containing 5 mL NaH2PO4 

buffer solution (at pH 7.01) and 0.5 mg/L diazinon (1.64 μM) was spiked with 25 μL of 

the MCA stock solution for an initial MCA concentration of 0.9 mg/L. Samples were 

taken at different times (and exposures) for HPLC/MS analysis of diazinon, diazoxon, 

and IPMP. MCA oxidation of diazoxon and IPMP was carried out in the same manner as 

for diazinon.

Chlorine Dioxide (ClO2) Oxidation System. Gaseous chlorine dioxide was 

produced using a Bench-Scale ClO2 Generator (CDG, Bethlehem, PA). The concentration 

of ClO2 in the generated saturated ClO2 solution was determined by a Cary 50 Conc UV-
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Visible Spectrophotometer (Varian Australia PTY LTD, Australia) at 360 nm. This ClO2 

solution was diluted 10 times to create the working stock solution. An amble glass vial 

(reactor) of 5 mL NaH2PO4 buffer solution (pH 7.01), which contained 0.5 mg/L diazinon 

(1.64 μM) was spiked with 48 μL working solution for an initial ClO2 concentration of 

3.0 mg/L. Samples were taken at different times (and ClO2 exposures), followed by 

HPLC/MS analysis of diazinon, diazoxon, and IPMP. ClO2 oxidation of diazoxon and 

IPMP was carried out individually in the same manner as that of diazinon.

Ozone (O3) Oxidation System. Ozone was generated using a Model GLS-1 PCI-

WEDECO (Environmental Technologies, West Caldwell, NJ, USA) ozone generator 

from compressed oxygen. The ozone gas stream was bubbled from a stone diffuser into 

buffered Milli-Q water with pH adjustment to 5.41. A Cary 50 Conc UV-Visible 

Spectrophotometer (Varian Australia PTY LTD, Australia) at 260 nm was then used to 

independently monitor the decay and concentration of the aqueous ozone. Four amble 

glass vials of 5.0 mL NaH2PO4 buffer solution (pH 5.41) containing 0.5 mg/L diazinon 

(1.64 μM), were each spiked with 0.5, 1.0, 2.5, or 10.0 mL of saturated O3 solution 

resulting in initial O3 concentration of 2.5, 4.6, 9.3, and 18.5 mg/L. The O3 oxidation of 

diazoxon was performed in the same way as that of diazinon, with an initial concentration 

of 0.47 mg/L (1.63 μM). The concentration of components in the reaction media was 

normalized in terms of the initial reaction medium volume.

Hydrogen Peroxide (H2O2) Oxidation System. An amble glass vial (reactor) of 

5 mL NaH2PO4 buffer solution (pH 7.01), which contained 0.5 mg/L diazinon (1.64 μM), 

was spiked with 224 μL H2O2 solution (30%) to initiate a reaction resulting in an initial 

H2O2= concentration of 13,000 mg/L. The reaction continued for 4 hours prior to 
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sampling and HPLC/MS analysis of diazinon, diazoxon, and IPMP. H2O2 oxidations of 

diazoxon and IPMP were carried out in the same manner.

UV Oxidation System. A 254-nm low-pressure mercury-vapor lamp (Pen Ray 

Model 90-0004- 01,254 nm, 1.0 W; UVP Inc., Upland, CA) was used for the UV photo-

degradation study. Three amble glass vials (reactors) of 5 mL NaH2PO4 buffer solution 

(pH 7.01), each containing 0.5 mg/L diazinon (1.64 μM), were exposed to the UV lamp 

for 10, 25, and 45 seconds, respectively, by placing the 0.9 cm diameter lamp down the 

centerline of the vial. The diameter of the reactor was 1.9 cm, and the length of the lamp 

in the liquid was 2.5 cm. Based on a volume weighted mean radius for the fluid, the 

fluence was 8.9 mW/cm2 for the system. The reaction medium was stirred with a small 

stirring bar during the UV exposure. The UV oxidation of diazoxon and IPMP were 

performed in the same manner as that of diazinon.

Results and Discussion

HPLC/MS. In order to confirm the two products observed in our study, standard 

diazoxon and IPMP were also analyzed by HPLC/MS. For example, Figure 1 showed the 

mass spectra of diazoxon and IPMP obtained from the total ion chromatogram for the 

free chlorine oxidation of diazinon. The same mass spectra patterns were obtained from 

diazoxon and IPMP standards as shown in their extracted ion chromatograms (Figure 2).
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Figure 1. Mass spectrum of (a) diazoxon (MW: 288) and (b) IPMP (MW: 152) in the
FC oxidation of diazinon system.

In order to assure that terbuthylazine was stable as an internal standard under the 

conditions in this study, terbuthylazine was treated with FC at pH 12.0 for 12 hours. The 

treated terbuthylazine solutions were then injected into LC/MS for analysis. The resulting 

relative standard deviations (RSD) of the peak areas before and after the treatment were 

less than 10%. Thus, terbuthylazine was determined to be a viable internal standard with 

the persistence at the experimental conditions, and also to have the characteristics of a 

similar retention time as that of the sample molecules (not shown), and an appropriate 

molecular weight (229 for the 35Cl containing molecule).
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Figure 2. Extracted ion chromatograms at (a) m/z 289 and (b) m/z 153.

In order to determine and quantify diazinon, diazoxon, and IPMP in the oxidation

reaction media, calibration curves were established for each of these components. 

Terbuthylazine was used as the internal standard with a spiked concentration of 2.0 mg/L. 

Terbuthylazine was also used for HPLC/MS analysis of diazinon oxidation systems. The 
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regression coefficient (R2) values of calibration curves for diazinon, diazoxon, and IPMP 

were all greater than 0.995. The method detection limits were 0.005 mg/L for both 

diazinon and diazoxon, and 0.01 mg/L for IPMP.

Free Chlorine (FC). A typical CT for 3-log Giardia cyst inactivation with FC is 

approximately 60 mg/L·min (pH 7, 20°C) [24]. Based on the results shown in Figure 3a, 

it was observed that diazinon was oxidized to produce diazoxon and IPMP with a free 

chlorine exposure much less than these typical values. Based on a molar balance, 

diazoxon and IPMP were effectively the only degradates formed (to a chlorine exposure 

of 28 mg/L·min), and were formed in approximately a 4:1 molar ratio, respectively 

(Figure 3a).

The diazoxon and IPMP concentrations were both relatively constant after 

formation suggesting that diazoxon and IPMP were much more resistant to FC oxidation 

than diazinon (Figure 3a). This observation was confirmed in separate experiments under 

the same conditions, but with diazoxon and IPMP as the initial reactants. In both 

experiments, diazoxon and IPMP were observed to be relatively nonreactive with FC 

(Figures 3b and 3c, respectively). This suggests that diazinon is readily converted to 

diazoxon and IPMP during chlorination which, once formed, may be resistant to further 

oxidation by chlorine.
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Figure 3. Free chlorine oxidation profiles of (a) diazinon system (initial concentration of
diazinon: 1.64 μM), (b) diazoxon (initial concentration of diazoxon: 1.63 μM), and (c) 
IPMP system (initial concentration of IPMP: 1.64 μM). The experimental conditions are 
stated in the experimental section.
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Monochloramine (MCA). A typical CT for 3-log Giardia cyst inactivation with 

MCA is approximately 1100 mg/L·min (pH 7, 20°C) [24]. Chloramination experiments 

of diazinon showed that diazinon could be oxidized to a limited degree to diazoxon and 

IPMP with MCA exposure several times greater than typical dosages (Figure 4a). 

Diazoxon and IPMP were formed in approximately a 3:1 molar ratio (Figure 4a). Both 

diazoxon and IPMP were relatively persistent to MCA oxidation during the experiments 

with their individual exposures (Figure 4b and 4c, respectively). Thus, while somewhat 

higher than typical MCA concentration appear to be needed to form appreciable diazoxon 

and IPMP, once formed they appear resistant to further oxidation by MCA.

Chlorine Dioxide (ClO2). A typical CT for 3-log Giardia cyst inactivation with 

ClO2 is approximately 15 mg/L·min (pH 7, 20°C) [24]. ClO2 oxidation experiments of 

diazinon were conducted with 30 and 480 minute contact times corresponding to 

approximately 90 and 1440 mg/L·min CT exposures. Even with these exposures of 6 and 

96 times typical disinfection exposures, only limited conversion of diazinon was 

observed (43 and 65%, respectively) (Table 1). Diazoxon was observed as a minor 

oxidation byproduct at both exposures, while a trace of IPMP was observed for the longer 

reaction time (Table 1).

Both diazoxon and IPMP were observed to be relatively stable and resistant to 

oxidation by ClO2 in the experiments in which they were individually oxidized (Table 1). 

These results suggest that diazinon would not be appreciable degraded in typical ClO2 

disinfection situations. Further, if formed or present in a source water, diazoxon and 

IPMP would not be degraded by ClO2.
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Figure 4. MCA oxidation profile of (a) diazinon (initial concentration: 1.64 μM), (b)
diazoxon system (initial concentration: 1.63 μM), and (c) IPMP system (initial
concentration: 1.64 μM).
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Table 1. Concentration of the components in ClO2 oxidation of diazinon system (initial
concentration of diazinon: 1.64 μM).

Ozone. A typical CT for 3-log Giardia cyst inactivation with O3 is approximately 

0.7 mg/L·min (pH 7, 20°C) (24). O3 oxidation experiments of diazinon showed that 

diazinon was readily reactive with ozone and formed both diazinon and IPMP (Figure 

5a). Additionally, oxidation of both diazinon and IPMP individually showed that both 

compounds were reactive towards ozone (Figure 5b and 5c). These results suggest that 

diazinon would be expected to be partially removed during ozonation, and that both 

diazinon and IPMP would likely be formed. However, with higher ozone dosages, the 

degradates concentrations may also be lowered through further oxidation by ozone.

Hydrogen Peroxide. H2O2 is not commonly used for drinking water disinfection. 

However, it is commonly used in water treatment for a wide variety of advanced 

oxidation and related processes. Thus, it was of interest to determine the reactivity of 

diazinon with H2O2. In there experiments, very high peroxide concentrations (e.g., 13,000 

mg/L) and a long exposure (4 hours) produced only a 47% conversion of diazinon (Table 

2). No diazoxon was observed, though a 14% yield of IPMP was observed. Oxidation of 

IPMP individually under the same conditions showed the IPMP was not reactive with
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Figure 5. Ozone oxidation profiles of (a) diazinon system (initial concentration of
diazinon: 1.64 μM), (b) diazoxon system (initial concentration of diazoxon: 1.63 μM), 
and (c) IPMP system (initial concentration: 1.64 μM).
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peroxide (Table 2). Similarly, oxidation of diazoxon individually showed that it too was 

relatively recalcitrant to peroxide oxidation (Table 2). These results suggest that all three 

compounds are relative stable in the presence of H2O2 at disinfection dosages.

Table 2. Concentration of the components in H2O2 oxidation of three systems determined
after 4 hours of treatment (initial concentration of diazinon: 1.64 μM; diazoxon: 1.63 μM; 
IPMP: 1.64 μM). Dosage: 4.25 × 105 (contact time min × concentration mg/L).

UV Radiation. A typical CT for 3-log Giardia cyst inactivation with UV 

radiation is approximately 11 mJ/cm2 (pH 7, 20°C) [24] though these exposures may 

range much higher (e.g., 40 mJ/cm2). High UV exposures much greater than typically 

used for disinfection were required to achieve any significant diazinon removal (Figure 

6a). Furthermore, only a very low concentration of IPMP was detected, and no diazoxon, 

was detected (Figure 6a). Separate experiments in which diazoxon and IPMP were 

exposed individually showed that these degradates were relatively stable during UV 

photolysis with high UV exposures (Figures 6b and 6c, respectively).

These experiments show that at very high UV dosages, diazinon may be degraded 

but that this is highly unlikely in a disinfection scenario. Further, if diazoxon and/or 

IPMP were formed by some other process (e.g., chlorination), subsequent UV 

disinfection would not be effective for their removal.
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Figure 6. UV radiation profiles of (a) diazinon system (initial concentration of diazinon: 
1.64 μM), (b) diazoxon system (initial concentration of diazoxon: 1.63 μM), and (c) 
IPMP system (initial concentration of IPMP: 1.64 μM).
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Conclusions

Diazinon appears likely to be oxidized to diazoxon during chlorine and ozone

disinfection, and possibly during chloramination (depending on the CT used). Little 

conversion of diazinon during typical ClO2, peroxide or UV contact in a drinking water 

treatment plant is likely. Diazoxon is formed by an oxidative process, while it is 

hypothesized that IPMP is formed in an oxidative-assisted hydrolysis reaction (Figure 7). 

Figure 7. Proposed pathway of oxidation of diazinon.

Log KOW values were estimated for diazinon, diazoxon and IPMP using KOWIN

software as 3.9, 2.1, and 2.2, respectively. These estimates suggest that both diazoxon 

and IPMP are much more hydrophilic than diazinon and would, therefore, be expected to 

behave differently than diazinon. While experimental validation is required for 

confirmations, the significantly lower Log KOW values would suggest the degradates 

would have a much lower propensity for adsorption to, for example, powdered or 
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granular activated carbon than diazinon. Baseline toxicity for fish estimates were also 

made using ECOWIN software which estimated LC50 concentrations (the concentration 

for 50% lethality) of 10, 317, and 134 mg/L for diazinon, diazoxon and IPMP, 

respectively. These estimates suggest that the degradates may be less toxic than the 

parent pesticide, at least to fish.
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3. Analysis of Oxidation Byproducts of Fonofos in Three

Oxidation Systems Using High Performance Liquid

Chromatography Coupled with Quadrupole Ion Trap Mass

Spectrometry

In this paper, oxidation of fonofos (fonofos ; CAS 944229) by free chlorine, H2O2, and 

permanganate in an aqueous buffer (pH 7) was performed to identify the oxidation 

byproducts for each oxidant. High pressure liquid chromatography/mass spectrometry 

(HPLC/MS) was employed to separate and analyze the byproducts. Thin layer 

chromatography (TLC) and nuclear magnetic resonance (NMR) were also used for 

structure confirmation of the byproduct that identified through HPLC/MS. One 

byproduct, fonofos oxygen analog (phosphonothioic acid, ethyl-, o-ethyl s-phenyl ester; 

CAS 944218) was identified as the primary oxidation byproduct for both free chlorine 

and H2O2 systems, and no byproduct was detected for the permanganate system.

Introduction

Fonofos (fonofos, O-ethyl S-phenyl ethylphosphonodithioate; CAS 944229) is a

dithiophosphonate pesticide used to control lepidopterous insects in corn, potatoes, and 

peanuts. This highly toxic chemical interferes with the nervous system by inhibiting an 

enzyme, cholinesterase. Symptoms of fonofos exposure may be delayed for a few 

minutes after exposure to up to twelve hours. Early symptoms include blurred vision, 

headache, and dizziness. Skin contact often brings about sweating and muscle twitching. 
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Eye contact causes tearing, pain, and blurring. Ingestion may cause nausea, abdominal 

cramps, and diarrhea [1].

Determination of fonofos residue has been accomplished by various approaches in

different matrices. Pang et al. reported the determination of fonofos in grain by 

accelerated solvent extraction then gas chromatography-mass spectrometry or liquid 

chromatographytandem mass spectrometry [2]. Hirahara et al. used gas chromatography 

to establish a screening method for 186 pesticides (including fonofos residue) in 11 

agricultural products [3]. Zhang et al. utilized a combination of gel permeation 

chromatography and Florisil column purification, and gas chromatography/mass 

spectrometry to simultaneously determine 109 pesticides (including fonofos) in 

unpolished rice [4].

Fonofos residue in honey and honeybees was determined by various extractions 

followed by liquid chromatography-atmospheric pressure chemical ionization-mass 

spectrometry (LCAPCI-MS), or electrospray ionization-mass spectrometry (LC-ESI-MS) 

[5-7]. Wong et al. used solid phase extraction, followed by capillary gas chromatography 

with electron impact mass spectrometry in the selected ion monitoring mode [GC-

MS(SIM)], to determine multiresidues of pesticides (including fonofos) in wines and malt 

beverages[8,9]. Capillary electrophoresis with cyclodextrin chiral selectors was also used 

to determine the enantiomers of fonofos in aerobic soil slurries [10]. Solid phase micro-

extraction, followed by gas chromatography with mass spectrometry, was used to 

determine various pesticides (including fonofos) in a confined atmosphere [11] and whole 

human blood [12].
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Determinations of biologically-derived fonofos were reported by some 

researchers. An off-line coupling of thin-layer chromatography (TLC) with ESI-MS for 

routine determination of pesticides in toxicology and forensic medicine was reported by 

Brzezinka et al. [13]. A comprehensive two-dimensional gas chromatograph with flame 

ionization detection was constructed and evaluated for the fast separation and analysis of 

fonofos extracted from human serum [14]. Russo et al. employed ethanol-ethyl acetate 

extraction followed by gel permeation chromatography clean-up step and capillary gas 

chromatography with negative chemical ionization mass spectrometry in the selected ion 

monitoring mode to analyze fonofos residue in human tissues [15].

Determination of fonofos in water was also reported by Cappiello et al. [16] using 

nano-HPLC coupled with direct-electron ionization mass spectrometry, and by Sabik et 

al. [17] using filtration and solid phase extraction, followed by gas chromatography/mass 

spectrometry (GC/MS) with large-volume injection. Tse et al. determined fonofos in 

water, sediment, and biota using dichloromethane or acetone/hexane extraction and 

micro-column silica gel chromatography cleaning-up, followed by dual capillary column 

gas chromatography with both nitrogen-phosphorus (NPD) and electron capture (ECD) 

detection [18].

Fonofos, when used in agriculture, may transfer to the ground and underground 

water system, although a large part of it may have been absorbed and filtered by the soil 

or other absorbents. The fonofos residue can be degraded by free chlorine, the oxidant 

most frequently used by water treatment plants during the disinfection process, to 

produce oxidation byproducts. These byproducts may be more toxic than fonofos itself. 

Because of the potential human health implications, it is crucial that the oxidation 
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byproducts of fonofos be identified and that both fonofos and its oxidation byproducts be 

monitored during in the water treatment process.

Studies on the metabolism of fonofos in biological systems have also been carried 

out. McBain et al. investigated the oxidation byproducts of fonofos in a microsomal 

oxidation system [19]. Onisko et al. identified the metabolites of fonofos in several plants 

by packed capillary flow fast atom bombardment tandem mass spectrometry [20]. 

Metabolic degradation of fonofos in potato plants was investigated by McBain et al. 

using chromatographic and autoradiographic methods [21].

Peracid oxidation of fonofos in organic solvent systems has been studied by 

several researchers [19, 22]. However, the free chlorine, H2O2 and permanganate 

oxidation of fonofos in water treatment plants have not yet been reported up to now. This 

paper investigated the oxidation of fonofos by these oxidants in an aqueous buffer using 

HPLC coupled with quadrupole ion trap mass spectrometry, and the identified oxidation 

byproduct of fonofos was further confirmed using TLC and MS/MS. The results of this 

study can serve as a useful reference for water treatment plants.

Experimental Section

Reagents and Chemicals. Fonofos (99.5%, CAS 944229) was purchased from 

ChemService (West Chester, PA, USA). Formic acid (96%, ACS grade), sodium 

hypochlorite solution (available chlorine ≥ 4%), and hydrogen peroxide solution were 

purchased from Sigma-Aldrich (St. Louis, MO, USA). Methanol (HPLC grade), 

acetonitrile (HPLC grade), water (HPLC grade), sodium hydroxide (98.3%), sodium 

phosphate (dibasic, 99%), potassium permanganate (ACS reagent), chloroform (HPLC 



62

grade, 99.8%), 2,2,4-trimethylpentane (ACS reagent), methylcyclohexane (99.9%), 

isoamyl alcohol (ACS reagent), paraffin oil, and acetone (HPLC grade) were purchased 

from Fisher Scientific (Pittsburgh, PA, USA). Thin layer chromatography plates (silica 

gel 60 Å with fluorescent indicator) were purchased from Whatman (Florham Park, NJ, 

USA).

Fonofos was dissolved in methanol, with concentrations of 10 mg/mL as the stock

solution, and stored in a freezer. Further dilutions of the stock solution were applied, 

depending on the individual experiments.

Sodium hypochlorite stock solution was prepared by diluting the sodium 

hypochlorite solution (available chlorine ≥ 4%) to a final concentration of 0.05% 

(0.5g/L). This stock solution was stored in a refrigerator.

Potassium permanganate stock solution was prepared by dissolving potassium

permanganate in water with a concentration of 1.0 g/L. This stock solution was stored in 

a refrigerator.

Instruments. The Hitachi M-8000 3DQ LC/MSn system with an electrospray ion 

source (San Jose, CA, USA) was used for the HPLC/MS analysis of fonofos and its 

degradation products. A Supelco C18 column (150 × 2.1mm i.d., 5µm, Bellefonte, PA, 

USA) was used for separation at an ambient temperature, with a flow rate of 0.25 

mL/min. Solvent A consisted of 0.1% formic acid in water (pH 2.70), and solvent B was 

acetonitrile. The HPLC separation was performed at 10% B for 3.5 min, followed by a 

jump to 95% B at 3.6 min. for 9.4 min. After elution of 95% B, a drop to 10% at 13.1 

min. for 14.9 min. was carried out. A divert valve was placed right before the ionization 

source to remove the HPLC fractions containing salts and to prevent contamination of the 



63

ionization source and MS. The ESI parameters were set to the following optimized 

values: nitrogen sheath gas at 3 kgf/cm2, 4 kV for ESI probe, 30 V for drift, 25 V for 

focus, 450 V for detector. 200ºC for assistant gas heater, 180ºC for desolvator, 160ºC for 

aperture 1, 120ºC for aperture 2. Ion trap MS was operated at the following conditions: 

500 ms for accumulating time, 0.069V for accumulation voltage, 41.78 amu low mass cut 

off, 41.78-450 amu for scan range.

Methods. All pH measurements were obtained with an Accumet XL 15 pH meter 

using an Accumet AccuCap combination pH electrode from Fisher Scientific (Pittsburgh, 

PA). All oxidation were conducted at an ambient temperature (23.5 ± 1 °C).

Free Chlorine (FC) Oxidation System. The concentration of free chlorine in 

sodium hypochlorite stock solution was determined with the Hach DPD Method 8221 

using AccuVac ampuls obtained from the Hach Company (Loveland, CO, USA). A 50 

μL aliquot of fonofos stock solution (10 mg/mL in methanol) was spiked into a 100 mL 

NaH2PO4 buffer (pH 7.01), forming an initial concentration of 5.0 mg/L (20.25 μM) for 

fonofos. A 1.0 mL sodium hypochlorite stock solution (free chlorine: 0.5 g/L) was spiked 

and the reaction was initiated. The reactor was wrapped with aluminum foil to prevent its 

exposure to light and was shaken at 150 rpm. Samples were taken after 2 hours, followed 

by HPLC/MS analysis.

Hydrogen Peroxide (H2O2) Oxidation System. A 50.0 μL aliquot of fonofos 

stock solution (10 mg/mL in methanol) was spiked into a 100 mL NaH2PO4 buffer (pH 

7.01), forming an initial concentration of 5.0 mg/L (20.25 μM) for fonofos. A 1.0 mL 

hydrogen peroxide solution (30%) was spiked and the reaction was initiated. The reactor 
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was wrapped with aluminum foil to prevent its exposure to light and was shaken at 150 

rpm. Samples were taken after 4 hours, followed by HPLC/MS analysis.

Permanganate (MnO4
-) Oxidation System. A 50 μL aliquot of fonofos stock 

solution (10 mg/mL in methanol) was spiked into a 100 mL NaH2PO4 buffer (pH 7.01), 

forming an initial concentration of 5.0 mg/L (20.25 μM) for fonofos. A 1.0 mL potassium 

permanganate stock solution (1.0 g/L) was spiked and the reaction was initiated. The 

reactor was wrapped with aluminum foil to prevent its exposure to light and was shaken 

at 150 rpm. Samples were taken after 4 hours, followed by HPLC/MS analysis.

Thin Layer Chromatography. The reaction matrix of free chlorine oxidation of 

fonofos was extracted with 1.0 mL chloroform. 30 μL of the extract was spotted on a thin 

layer chromatography plate (with fluorescent indicator), followed by developing with a 

solvent consisting of 2,2,4-trimethylpentane : methylcyclohexane : isoamyl alcohol : 

paraffin oil : acetone (4:2:2:3:1). Visualization was performed under a UV light with a 

wavelength of 254 nm.

Results and Discussion

Identification of Free Chlorine Oxidation Byproducts of Fonofos: Identification by 

HPLC-MS. HPLC/MS was performed to search for and identify the free chlorine 

oxidation byproducts of fonofos. Figure 1 shows the chromatograms of blank, sample, 

and control. The sample experiment was carried out as described above, and the blank 

experiment was conducted in the same way, except the 50 μL aliquot of fonofos stock 

solution was replaced by 50 μL of methanol. The control experiment was also carried out 
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in the same manner, except the 1.0 mL sodium hypochlorite stock solution with 1.0 mL 

water.

By comparing the total ion chromatogram of the control with that of the blank, a 

fonofos peak can be identified as labeled in Figure 1. An unknown peak was found for 

the sample, as labeled in Figure 1. In order to confirm the fonofos peak and to identify 

the unknown peak, the mass spectra for both peaks are shown in Figure 2.

Figure 1. Total ion chromatograms of free chlorine oxidation of fonofos at pH 7.0.

Figure 2 indicates that fonofos (MW: 246) produced a protonated ion, while the

unknown also produced a protonated ion with m/z 231. The extracted ion chromatograms 

for free chlorine oxidation of the fonofos system are presented in Figures 3 and 4, further 

confirming that the unknown peak readily reflected the oxidation product of fonofos.
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Figure 2. Mass spectra of (a) fonofos (MW: 230) and (b) unknown.

Figure 3. Extracted ion chromatograms of free chlorine oxidation of fonofos in pH 7.0 at 
m/z 231 (for the unknown).
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Figure 4. Extracted ion chromatograms of free chlorine oxidation of fonofos in pH 7.0 at 
m/z 247 (for fonofos).

Based on the m/z value and the results of other researchers [19], the unknown was 

proposed to be fonofos oxygen analog, as shown in Figure 5.

Figure 5. Proposed mechanism of free chlorine oxidation reaction of fonofos.
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Identification of Free Chlorine Oxidation Byproducts of Fonofos: 

Identification Confirmation by TLC-HPLC-MS. Before the TLC analysis, HPLC/MS 

analysis was performed to validate the efficiency of liquid-liquid extraction. A 

comparison of the chromatograms of free chlorine oxidation of fonofos before and after 

extraction showed that fonofos analog was completely extracted to chloroform (data not 

shown). TLC analysis of free chlorine oxidation products of fonofos showed a spot with 

an Rf value of 0.72, which was confirmed by scratching the spot and dissolving it in 

methanol, HPLC/MS analysis, indicating that the spot was really fonofos oxygen analog 

(data not shown). The measured Rf value was very close to the reported one [23], further 

confirming that the unknown in the free chlorine oxidation of fonofos is fonofos oxygen 

analog.

Identification of Free Chlorine Oxidation Byproducts of Fonofos: 

Identification Confirmation by Tandem MS. The spot obtained by TLC was dissolved 

in methanol, and was injected into mass spectrometer for tandem MS analysis with the 

continuous flow injection mode. The mass spectrum of daughter ions obtained by CID 

(0.150 V for CID voltage) was shown in Figure 6. The fragmentation reaction pathway 

was proposed in Figure 7. Tandem MS operation provided a positive evidence for the 

elucidation of structure of fonofos oxygen analog.

Figure 6. Mass spectrum of MS2 of fonofos oxygen analog.
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Figure 7. Proposed CID fragmentation reaction for fonofos oxygen analog.

Identification of H2O2 Oxidation Byproducts of Fonofos. H2O2 oxidation of 

fonofos was performed as described in the experimental section. Figure 8 shows that after 

4 hours’ reaction with H2O2, a certain amount of fonofos oxygen analog was found based 

on the retention time of the peak in the corresponding extracted ion chromatogram at m/z 

231, while 30% of fonofos remained in the system. This indicates that H2O2 possesses the 

oxidation ability for transferring fonofos into fonofos oxygen analog.

Identification of Permanganate Oxidation Byproducts of Fonofos. The results 

(chromatograms not presented) showed that after 4 hours’ reaction with KMnO4, no 

fonofos oxygen analog was detected, and that fonofos remained in the same 

concentration in the system. This indicates that KMnO4 is not able to oxidize fonofos 

under the experimental conditions in this study.
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Figure 8. Extracted ion chromatograms of H2O2 oxidation products of fonofos at m/z 231 
and 247.

Estimated Properties of Parent and Degradate. To estimate the fate and effects 

in the water treatment systems of the fonofos oxygen analog in comparison with the 

parent, fonofos, key chemical properties were estimated using chemical computational 

software and/or experimental literature values. First, potential dissociation constants were 

estimated using SPARC (SPARC Performs Automated Reasoning in Chemistry) software 

[24,25]. Neither fonofos nor its oxygen analog were estimated to have any ionized forms 

and, hence, no dissociation constants.

Log octanol-water partition coefficients (log KOW) were estimated using 

KOWWIN (ver. 1.65) to be 4.02 and 2.26 (both checks) for fonofos and its oxygen 

analog, respectively. These values compare well with literature values of 3.94 and 2.11

[26] (both checks), respectively. These values were used by WSKOW (ver. 1.36) to 

calculate estimated water solubilities of 10.7 and 479 (both checks) mg/L, for the parent 

and degradates, respectively. These data suggest that the degradates (the oxygen analog) 
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would most likely have a much higher affinity for the aqueous phase than the parent, 

fonofos. This would suggest that the degradates would have a much lower capacity to 

adsorb on activated carbon during water treatment or to sorb to other solids. Thus, the 

oxygen analog degradate would be anticipated to be significantly more difficult to treat 

(i.e., remove) the parent, fonofos, by either powdered activated carbon (PAC) or granular 

activated carbon (GAC) during water treatment.

To compare volatilities of the parent and oxygen analog degradate, HENRYWIN 

(ver. 3.04) was used to estimate Henry’s Law constants of 1.12(10-4) and 2.41(10-7) 

(checks) atm·m3·mole-1, respectively. These estimates would suggest that fonofos would 

be significantly more volatile than its oxygen analog. This is consistent with the 

estimated (and experimentally determined)

Estimates of fate in wastewater treatment plants were compared using EPIWIN 

(ver. 3.04). For fonofos, a total removal in a wastewater treatment plant of 27.6% was 

estimated based on a biodegradation removal of 0.3% and a 27.1% sorption rate to 

biosolids. For the oxygen analog degradates, a much lower removal of 2.4% was 

estimated, with biodegradation and sorption to biosolids accounting from 0.1 and 2.3%, 

respectively. These estimates suggest that neither the parent nor the degradate would be 

readily biodegradable. Furthermore, the degradate would be much less likely to be 

removed than fonofos during wastewater treatment, and thus, more likely to enter the 

environment. 

Finally, toxicity of the parent and degradate were estimated using ECOSAR (ver 

0.99e) which estimated a 14-day baseline toxicity LC50 (50-percent lethal concentration) 

of 5.7 and 184 mg/L, respectively. While the accuracy of computational software for 



72

chemical properties and toxicity varies, this estimate does suggest that the oxygen analog 

degradate is less toxic than the parent, at least to fish. Therefore, though the oxygen 

analog degradate may be formed in water (and wastewater) disinfection, and may be 

more difficult to treat with less removed, this is partially offset from a risk perspective by 

the degradate’s apparent lower toxicity.

Conclusions

The oxidation of fonofos in an aqueous buffer by free chlorine, H2O2, and permanganate 

was investigated. One oxidation byproduct, fonofos oxygen analog, was identified in free 

chlorine and the H2O2 system, while no oxidation byproduct was detected in the 

permanganate system. TLC, tandem MS and NMR experiments were performed to 

further confirm the identification of the free oxidation byproduct of fonofos. Due to the 

lower sorptive removal of degradates from water and wastewater, the exposure of 

humans could be greater for degradates than for the parents. However, the estimated 

toxicity of the degradate is lower than that of the parent. Thus, the risk associated with 

the degradates may be similar to that of the parents based on an exposure and toxicity risk 

assessment approach.
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4. Identification of HydrolyticC Metabolites of Fonofos in

Alkaline Aqueous Solutions by Using HPLC/UV and GC/MS

Organophosphorus compounds, becoming the most commonly used pesticides in 

agriculture, are garnering more interest toward environment and health issues associated 

with their usage. These compounds leach and run-off into surface and ground water 

supplies where they have been detected. Critical information on the transformation of 

these parent compounds into byproducts is lacking. In this study, fonofos hydrolysis at 

elevated pH’s, simulating a water treatment operation or similar process, was 

investigated. Fonofos, an organophosphorus insecticide used to treat infestations 

primarily on corn, was investigated due to its greater rate of hydrolysis observed during 

our screening studies. The hydrolysis of fonofos was investigated at pH 10, 11, and 12 in 

phosphate buffered water over the course of 7 days. Two hydrolysis products, thiophenol 

and phenyl disulfide, were detected. Thiophenol was detected using HPLC/SSI/MS, 

while phenyl disulfide was detected using GC/MS. The transformation mechanism and 

relative reaction rates are included.

Introduction

Organophosphorus and carbamate compounds are among the most commonly used 

pesticides and are on the verge of replacing organochloride compounds. The increased 

usage of these compounds, particularly organophosphorus pesticides, raises concerns 
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about their environmental and human health impact which to date are poorly addressed.  

Even less information is known regarding the pesticide transformation products as a 

result of biotic and abiotic processes that occur naturally in the environment or within a 

water treatment facility. Some of the abiotic processes that can affect organophosphorus 

compounds are photolysis, hydrolysis, oxidation-reduction, and other nonselective 

chemical reactions [1]. The real concern on the environmental and health impacts of 

pesticides and their transformation products is due to the mechanism of action for 

organophosphorus compounds not being specific just to insect acetyl-cholinesterases but 

having the ability to affect the human nervous system as well. Additionally, some 

transformation products may have greater toxicity than the parent compounds, as shown 

with DDT [2]. Thus it is imperative to study the transformation of specific pesticides and

identify their transformation products.

O-ethyl S-phenyl ethylphosphonodithioate, also known as fonofos or fonofos, is 

commonly applied to the soil as an insecticide for the control of aphids, corn borer, corn 

rootworm, corn wireworm, cutworms, white grubs, and some maggots on corn (95%), 

sugar cane, peanuts, tobacco, turf, and some vegetable crops. Fonofos is typically applied 

with a water carrier using ground spray equipment at 1 to 4 lb/acre. It is considered a 

Class I toxicity pesticide (highly toxic) based on acute oral, dermal, eye and inhalation 

effects [3]. Fonofos is readily absorbed through skin, gastrointestinal, and respiratory 

tracts [4].

Fonofos is fairly water insoluble but has a moderate persistence (40 day field 

half-life) in soil [5]. Fonofos readily hydrolyses but transformation products were not 

identified [5, 6]. The method of spray application for fonofos has the potential for run-off 
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contamination of surface water and the moderate persistence can cause groundwater 

contamination at certain sites. Fonofos has been found in groundwater at 0.01 to 0.1 µg/L 

[7, 8], surface water at 0.01 µg/L [9]. 

A few studies have isolated transformation products of fonofos [10, 11]. 

However, both of these studies were in biological systems. The identification of 

transformation products of hydrolysis outside a biological tissue has not been 

investigated and is an important piece of information, particularly to water treatment 

facilities which utilize raised pH processes, where hydrolysis can become an important 

transformation reaction.

In this study, hydrolysis reactions were carried out at several high pH’s in 

phosphate buffered water systems to simulate treatment processes. Fonofos and two 

hydrolysis products were separated, identified and quantified using two hyphenated 

methods. Thiophenol was separated with high performance liquid chromatography and 

identified and quantified by sonic spray ionization ion trap mass spectrometry 

(HPLC/SSI/MS). Phenyl disulfide was separated using gas chromatography and 

identified and quantified using mass spectrometry (GC/MS). This study was intended to 

investigate the hydrolysis products of fonofos, emphasizing on identifying transformation 

products, mechanism and relative reaction rate. 

Experimental Section

Reagents and Chemicals. Fonofos (99.5%) was purchased from ChemService (West 

Chester, PA, USA). 2-Nitro-m-xylene (99%), thiophenol (≥99%) and phenyl disulfide 
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(99%) were purchased from Aldrich (Milwaukee, WI, USA). Formic acid (96%, ACS 

grade) was purchased from Sigma-Aldrich (St. Louis, MO, USA). Methanol (HPLC 

grade), acetonitrile (HPLC grade), water (HPLC grade), sodium hydroxide (98.3%), and 

sodium phosphate (dibasic, 99%) were purchased from Fisher Scientific (Pittsburgh, PA, 

USA). D10-Phenanthrene (98 atom % D) was purchased from Sigma-Aldrich (St. Louis, 

MO, USA). The pH for the Na2PO4 buffer was adjusted with 1 M NaOH.

Fonofos, 2-Nitro-m-xylene, thiophenol and phenyl disulfide were dissolved in 

methanol with the concentrations of 10 mg/mL respectively as stock solutions and kept at 

-20 oC for storage. Further dilutions of these stock solutions were applied depending on 

the individual experiments.

Instruments. The Hitachi M-8000 3DQ LC/MSn system with an L-7400 UV 

detector (San Jose, CA, USA) and the Waters HPLC system with a PDA detector were 

used for the analysis of fonofos and one of its degradation products. A Supelco C18 

column (150  2.1mm i.d., 5m, Bellefonte, PA, USA) was used for the separation at 

ambient temperature with a flow rate of 0.25 mL/min. Solvent A consisted of 0.1% 

formic acid in water (pH 2.70), and solvent B was acetonitrile. The HPLC separation was 

performed at an isocratic elution with 50% A and 50% B. The UV detector was set in a 

programmed mode with the wavelength 236 nm from 0 to 10 minute and 240 nm from 

10.1 minute to 18 minute. Injection volume was 20 µL.

An Agilent 6893 Series gas chromatograph (GC) with a 5973 Mass Selective 

Detector and a 7673 autosampler (Palo Alto, CA, USA) was used for this study. The 

carrier gas is high purity helium from Airgas (Ozark, MO) flowing at a rate of 1 mL/min. 

A 2 μL sample is injected in a splitless mode at an injection temperature of 280°C into a 
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HP-5MS capillary column from Agilent (30 m × 0.25 mm i.d., 0.25 µm film thickness). 

The column has an inlet pressure of 13.5 psi, total flow of 54.1 mL/min, and injector 

purge flow of 50.0 mL/min at 0.3 minutes. The temperature gradient is programmed as 

follows: starting with an initial temperature of 100oC, ramping at 40oC/min to 170oC, 

then 3 oC/min to 185oC, 10 oC/min to 220oC, and finally 60 oC/min to 280oC where it is 

held for 7 minutes. The total method time is approximately 18 minutes. The samples were 

scanned from 50 to 300 amu after a 3 minute solvent delay.

Methods. All pH measurements were obtained with an Accumet XL 15 pH meter 

using an Accumet AccuCap combination pH electrode from Fisher Scientific (Pittsburgh, 

PA). All experiments were carried out in duplicate.

The hydrolysis experiments were conducted at constant temperature (23.5 ± 1 

°C). The hydrolysis of fonofos, thiophenol and phenyl disulfide were carried out 

individually under the same conditions, if not specified otherwise, with an initial 

concentration of 2.0 ppm (8.13 µM), 0.90 ppm (8.18 µM) and 0.45 ppm (2.06 µM), 

respectively. For HPLC/UV analysis, 2-Nitro-m-xylene was chosen as an internal 

standard when quantification was performed. Before each HPLC/UV injection, except 

for the calibration curve, 0.95 mL of the reaction medium was mixed with 0.05 mL 

internal standard solution (0.2 mg/mL, in methanol). This procedure will not be 

mentioned afterwards. 

For GC/MS analysis, D10-phenanthrene was chosen as an internal standard when 

quantitation was performed. Liquid-liquid extraction was preformed with 3.0 mL hexane

added into 20 mL of reaction mixture after the hydrolysis reaction was completed. A 0.9 
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mL aliquot of the extract was mixed with 0.1 mL of internal standard (10 mg/L in 

methanol) to conduct a GC/MS analysis. 

Hydrolysis of fonofos at pH 10 was performed as following: A 30 µL aliquot of 

fonofos stock solution (10 mg/mL in methanol) was spiked into 150 mL Na2HPO4 buffer 

(pH 10.02), forming an initial concentration of 2.0 mg/L (8.1 µM) for fonofos. An initial 

sample of 0.95 mL reaction media was taken and mixed with 0.05 mL internal standard 

solution (0.2 mg/mL, in methanol) as an initial control for HPLC/UV analysis. A 20 mL 

volume of reaction media was taken and mixed with 3.0 mL hexane to perform a liquid-

liquid extraction as an initial control for GC/MS analysis. The remaining reaction media 

was distributed evenly to 5 amble vials (reactors) with 20.95 mL reaction media in each

vial. Each vial was wrapped with aluminum foil to prevent light penetration and put on a 

shaker table at a speed of 200 rpm. At each desired time, 0.95 mL reaction media in each 

reactor was taken and mixed 0.05 mL internal standard solution for HPLC/UV analysis 

and the remaining solutions were used to conduct liquid-liquid extraction for GC/MS 

analysis. Hydrolysis at pH 11.00 and 12.01 was carried out using the same procedure.

The hydrolysis of thiophenol and phenyl disulfide at pH 10, 11 and 12 were 

carried out as the same way as that for fonofos, except that the stock solution 

concentrations of the thiophenol and phenyl disulfide were 4.5 mg/mL and 2.25 mg/mL, 

respectively.  The initial hydrolysis concentrations of thiophenol and phenyl disulfide 

were 0.90 mg/L (8.2 µM) and 0.45 mg/L (2.1 µM), respectively.

Blank experiments were performed as the similar way as the hydrolysis of 

samples except that the same volume of methanol was added to replace the stock sample 

solutions of fonofos, thiophenol and phenyl disulfide.
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Results and discussion

Identification of Hydrolysis Products of Fonofos. Hydrolysis reaction of fonofos at pH 

12 was analyzed by HPLC/UV after 7 days of reaction. Figure 1 showed the 

chromatograms of blank, reaction mixture, standard, and internal standard

(terbuthilazine). One of the hydrolysis products of fonofos had a same retention time as 

that of thiophenol. To confirm the identity of the product, HPLC with PDA detector was 

employed to provide the spectra for thiophenol peak and the product peak. Both spectra, 

as shown in Figure 2, are identical, implying that one of the hydrolysis products of 

fonofos is thiophenol.  It is worth mentioning that that identification of hydrolysis 

products of fonofos by LC/MS was not applied because none of the hydrolysis products 

can be ionized with the ionization sources we have in our laboratory including electro 

spray (ESI), sonic spray (SSI) and atmosphere pressure (API).  

Figure 1. UV chromatograms of blank, hydrolysis product of fonofos and other standards.
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Figure 2. UV spectra of fonofos hydrolysis product and thiophenol standard extracted at 
the retention time of the corresponding peak.

To identify and quantify other hydrolysis products of fonofos at different pHs, 

hexane liquid-liquid-extraction followed by GC/MS analysis was applied.  The aqueous 

layer was analyzed by HPLC/UV after liquid-liquid extraction of the hydrolysis of 

fonofos with hexane to determine the extraction efficiency. Both the fonofos and the 

thiophenol were no longer detectable after hexane extraction (chromatograms were not 

shown). This indicates that the efficiency of the liquid-liquid extraction system for both 

compounds was high enough for further identification. It was found that thiophenol 

generated at pH=12 was not ionizable either by using GC/MS.  It was interesting that the 

hydrolysis of fonofos at lower pH such as  11, a different unknown compound was 
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detected. Therefore, the hydrolysis of fonofos from pH’s 10-12 was systematically 

studied. 

The hexane extract of the hydrolysis of fonofos was analyzed by GC/MS, and the 

total ion chromatogram (TIC) of a fonofos hydrolysis sample at pH 11.00 was shown in 

Figure 3a. There were two main peaks in the TIC of fonofos hydrolysis sample with the 

retention times labeled in the figure. The Mass spectrum of each peak was obtained by 

scanning each of them, and the corresponding identity of them was carried out by 

matching the mass spectrum with that in the database, giving the chemical name of each 

peak, as shown in Figure 3b and 3c.

Based on the results from Figure 3b and 3c, the first peak is fonofos peak and the 

second peak corresponds to the phenyl disulfide (retention time: 7.168 min).  To further 

confirm the identity of the peak with retention time of 7.168 minute, standard phenyl 

disulfide was spiked to pH 7 NaH2PO4 buffer and extracted with hexane, followed by 

GC/MS analysis. The chromatogram and mass spectra were shown in Figure 4a and 4b, 

indicating that phenyl disulfide was the hydrolysis product of fonofos at pH 11.  

Combining the results in Figures 1-4, it is clear that the hydrolysis products of fonofos 

changes greatly with pHs.  The hydrolysis of fonofos as well as its hydrolytic products at 

different pHs, therefore, were studied to investigate the transformation mechanism.
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Figure 3. (a) GC/MS TIC of fonofos hydrolysis sample at pH 11.00; (b) Mass spectrum 
of the peak with retention time 6.442 minute and mass spectrum of fonofos in the 
database; (c) Mass spectrum of the peak with retention time 7.168 minute and mass 
spectrum of phenyl disulfide in the database. (Disulfide, diphenyl = phenyl disulfide). 

a

b

c
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Figure 4. (a) GC/MS TIC of phenyl disulfide standard and hydrolysis product of fonofos
at pH 11; (b) Mass spectrum of phenyl disulfide standard and mass spectrum of phenyl 
disulfide in the database. 

Time Response of the Hydrolysis of Fonofos, Thiophenol and Pheny 

Disulfide. A 200-hour time response study was performed.  Based on the results of 

quantitative determinations, the concentration profiles of the components in fonofos

hydrolysis reaction system were shown in Figure 5a, 5b, and 5c. We can conclude 

a

b
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Figure 5. Concentration profile of the components in hydrolysis of fonofos system at (a) 
pH12, (b) pH11, and (c) pH10.

a

b

c
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from the concentration profile in Figure 5a that fonofos is completely degraded at pH 12 

to form thiophenol after 48 hours. No other degradates were detected.

Figure 5b demonstrated that the levels of both fonofos and thiophenol were 

maintained constant after 96 hours, and no other degradates were detected.  The results 

demonstrate that these two components reach to an equilibrium state after a certain period 

of time and the hydrolysis rate is much slower compared with that at pH 12.  Figure 5c

showed that the concentration of fonofos was kept in a same level throughout the whole 

experiment at pH 10, and no degradates were detected. It indicates that fonofos is stable 

at pH 10.   

The concentration profile of thiophenol hydrolysis at pH’s from 10-12 was shown 

in Figure 6.  Figure 6a showed that thiophenol was very stable at pH 12. Neither fonofos

nor phenyl disulfide were detected, which is opposite to the situation of fonofos.  When 

solution pH was decreased to 11, as shown in Figure 6b, it was found that the level of 

thiophenol gradually decreased as time, while the concentration of phenyl disulfide, 

which was the degradate of thiophenol, increased slowly and then kept almost constant 

throughout the whole experiment. No fonofos was detected.   It was found interesting that 

the concentration of thiophenol decreased even faster at pH 10 than that of pH 11, which 

was shown in Figure 6c, while the concentration of phenyl disulfide, the degradate of 

thiophenol, increased faster accordingly than that at pH 11, then decreased slowly 

throughout the whole experiment.  These results indicate that thiophenol is less stable at 

pH 10 that that at pH 11, but quite stable at pH 12. No fonofos was detected in this 

experiment, which means that the degradation of fonofos to thiophenol was an 

irreversible reaction.
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Figure 6. Concentration profile of the components in hydrolysis of thiophenol system at 
(a) pH12, (b) pH11, and (c) pH10.

a

b

c
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Figure 7. Concentration profile of the components in hydrolysis of phenyl disulfide  
system at (a) pH12, (b) pH11, and (c) pH10.

a

b

c
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When phenyl disulfide was hydrolyzed at pH 11 and 12, it was found that phenyl 

disulfide degraded quickly and thiophenol was produced, as shown in figure 7a and 7b.  

No fonofos was detected. However, when phenyl disulfide was hydrolyzed at pH 10, no 

thiophenol and fonofos were detected, and the concentration of phenyl disulfide was 

maintained almost at the same level, as shown in figure 7, indicating that phenyl disulfide 

is rather stable at pH 10.

Based on the results above, we can see clearly that phenyl disulfide was not 

detected in the hydrolysis of fonofos at pH 11 (Figure 5b) but a significant amount of 

phenyl disulfide was detected in the hydrolysis of thiophenol at pH 11 and 10 (Figure 6b 

and 6c, respectively).  The reason was that the thiophenol concentration generated

through the fonofos hydrolysis was much lower than the initial thiophenol concentration 

in the thiophenol hydrolysis system, hence produced even lower level of phenyl disulfide, 

which was below the detection limit of this MS instrument for phenyl disulfide.

Pathway of the Degradation of Fonofos in Alkaline Aqueous Solution. Based

on the time response studies and mass balances of fonofos hydrolysis, a pathway of the 

degradation of fonofos in alkaline aqueous solution is proposed, which is shown in Figure 

8.  In an alkaline aqueous solution, fonofos will be hydrolyzed to produce thiophenol, as 

shown in our study. When the pH drops below 11, thiophenol will degradate and 

produce phenyl disulfide. Based on our best knowledge, the formation of phenyl 

disulfide during the hydrolysis of fonofos has not been reported.  A report indicated that 

phenyl disulfide can be reduced back to thiophenol using sodium borohydride followed 

by acidification [12].  However, formation of thiophenol from phenyl disulfide at a high 

pH aqueous solution (pH  11) was observed in our studies without any reducing agent in 
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the solution. According to this reaction type, it should be categorized as an oxidation-

reduction reaction. However there is no reducing agent being identified.  The mechanism 

of this reaction deserves further investigation.

     

Figure 8.  Proposed pathways of the degradation of fonofos in alkaline aqueous solution. 

Conclusions

A comprehensive study on the hydrolysis of fonofos and its degradation products in 

alkaline aqueous solution was conducted, and fonofos can be hydrolyzed to produce 

thiophenol at pH 11 or higher. The formed thiophenol will react with each other to 

produce phenyl disulfide at pH 11 or lower. The formed phenyl disulfide will degrade 

back to produce thiophenol at pH 11 or higher, and this reaction was discovered at the 
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first time based on our knowledge. Therefore, both thiophenol and phenyl disulfide could 

be detected simultaneously only at pH 11 with a more sensitive MS instrument or at 

higher fonofos concentrations.
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5. Comprehensive Studies on Aldicarb Degradation in Various

Oxidation Systems Using High Performance Liquid Chromatography

Coupled with Ion Trap Mass Spectrometry and UV Detection

ABSTRACT

Aldicarb, a carbamate pesticide, is commonly used in agriculture and can be naturally 

degraded to its carbamate metabolites, resulting in their occurrence in drinking water 

supplies. The disinfection process using different oxidants for the treatment of drinking 

water provides the opportunity to degrade aldicarb and its metabolites to byproducts that 

may pose more or less risk than the parents. Based on the results of previous screening 

studies, a comprehensive study was performed involving aldicarb and its carbamate 

metabolites treatment with free chlorine (FC), monochloramine (MCA), chlorine dioxide 

(ClO2), hydrogen peroxide, permanganate (MnO4
-) and UV radiation to identify their 

degradation products. Free chlorine, high dosage of UV radiation and permanganate 

exhibited stronger oxidation capacity than the others studied, while chlorine dioxide 

showed the weakest oxidation ability among them. Aldicarb sulfoxide was formed as the 

degradation products of aldicarb by oxidation with free chlorine, MCA, ozone and 

hydrogen peroxide. Aldicarb sulfone was identified as an oxidation byproduct of both 

aldicarb and aldicarb sulfoxide by permanganate. N-chloro-aldicarb sulfone was formed 

as an oxidation byproduct of aldicarb sulfone by free chlorine. 
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1. Introduction

Aldicarb [2-methyl-2(methylthio)propionaldehyde O-(methylcarbamoyl)oxime], an 

active ingredient in the pesticide TEMIK®, is a soil pesticide used in the agricultural 

sector worldwide for over 30 years for the control of insects, mites, and nematodes [1]. 

Some of the most important uses of this product in the U.S.A. have included citrus, 

cotton, sugar beets, potatoes, pecans and peanuts. The commercial product is a granular 

formulation, which is incorporated into the soil at the time of application. After applied 

into the soil, it is solubilized and distributed by the groundwater, and absorbed by the 

roots and translocated throughout the plant and, and serves as a systemic pesticide. 

The discovery of aldicarb residues in drinking water on Long Island, New York, 

in 1979 [2] and later in other  areas of the U.S.A. has resulted in many research and 

monitoring programs being conducted by university, regulatory agency and industry 

scientist. Such activities have included potable well monitoring studies, laboratory 

experiments, field research studies and computer modeling. Many of these activities have 

been conducted by or in cooperation with the producer and registrant of aldicarb. 

It was reported that aldicarb would degrade to produce aldicarb sulfoxide and 

aldicarb sulfone in a variety of soil types under both field and laboratory [3]. Thus, 

studies on the degradation of aldicarb under various conditions became crucial in 

understanding the degradation mechanisms and pathways and monitoring and removing 

of aldicarb and its degradates from the environment. Richey et al [4] carried out the 

laboratory studies on the degradation of aldicarb in soil by separately 14C labeling 

aldicarb at three positions (S-methyl, N-methyl, and tertiary carbon) in Norfolk sandy 
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loam, Lufkin fine sandy loam, and Lakeland fine sandy loam, followed by metabolizing 

under laboratory conditions in a metabolism chamber. The metabolites were determined 

by assay for radioactivity. Ou et al [5, 6] studied the aerobic and anaerobic degradation of 

aldicarb and aldicarb sulfone in soils. It was found that aldicarb produced aldicarb 

sulfoxide, aldicarb sulfone, aldicarb sulfoxide oxime, aldicarb sulfoxide nitrile, aldicarb 

sulfone oxime, and two unknowns. On the other hand, aldicarb sulfone nitrile and 

aldicarb sulfone acid were detected as the two major degradates of aldicarb sulfone under 

aerobic and anaerobic soils. The aerobic and anaerobic degradation rates for aldicarb 

were measured in soil samples collected at different depths, and the concentration 

changes of its two toxic oxidation products, aldicarb sulfoxide and aldicarb sulfone were 

determined to estimate the first-order rate constants for concurrent oxidation and 

hydrolysis of aldicarb, aldicarb sulfoxide and aldicarb sulfone, and for the loss of total 

carbamate residues [7]. Hydrolysis of aldicarb, aldicarb sulfoxide and aldicarb sulfone in 

Floridan groundwater was observed with the rates decreased in the order sulfone > 

sulfoxide >> aldicarb [8]. In addition, hydrolysis rates of aldicarb, aldicarb sulfoxide and 

aldicarb sulfone were measured at ppb levels in aqueous solution by using liquid-liquid 

extraction followed by gas chromatography with flame ionization detector (FID) and 

nitrogen-phosphorus detector (NPD) [9]. Biotransformation of is another pathway for 

degradation of aldicarb. Kazumi et al [10] described the studies in which the aldicarb 

biotransformation happening in sediment was mainly via an oxidation pathway in the 

presence of O2, while in the absence of O2, the biodegradation took place through a 

hydrolytic pathway. It was also reported [11] that not only aldicarb, aldicarb sulfoxide 

and aldicarb sulfone at the applied dose to soils did not inhibit microbial growth, but also 



98

the microbial component in soil had a significant role in the degradation of these 

compounds. In fact, some researchers reported the capability of soil microorganisms to 

use the carbamate pesticides as a source of carbon and nitrogen for growth [7, 12, 13]. 

Kök et al [14] reported the complete removal of aldicarb by using immobilized bacteria 

as a degradation site/source to decrease the environmental contamination caused by 

pesticides. Liu et al. [15] studied the effect of anion surfactant on degradation rate of 

aldicarb in soil, and found that sodium dodecylbenzenesulfonate (SDBS) could accelerate 

the degradation of aldicarb and there was a good linear relationship between degradation 

rate constant and the logarithm of SDBS concentration. Other factors affecting chemical 

and microbial degradation of aldicarb was investigated, and it was shown that 

temperature was the most important variable affecting the degradation rate of aldicarb 

and its carbamate metabolites in surface soils [16].

Other than gas chromatography [9, 17], the analysis of aldicarb and its carbamate 

metabolites included RP-HPLC followed by post-column derivatization and fluorescence 

detection [18, 19], UV detection [10, 11, 14, 20] and mass spectrometry [21].

The use of oxidants in drinking water treatment is common for disinfection, 

oxidation of inorganic and organic contaminants, taste and odor control, and 

microflocculation.  Due to the possibility of transporting aldicarb and its carbamate 

metabolites into drinking water via many different ways, the degradation byproducts and 

possible degradation mechanisms of aldicarb, aldicarb sulfoxide and aldicarb sulfone at 

different water treatment conditions must be systematically investigated to guide the 

water treatment system, to minimize environmental and human health effects.   
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However, no report was found through a thorough literature search to investigate 

the oxidation of aldicarb and its carbamate metabolites in water treatment plant involving 

treatment with monochloroamine, chlorine dioxide, permanganate, hydrogen peroxide, 

ozone and UV radiation. In this paper, a comprehensive study is conducted to analyze the 

oxidation byproducts of aldicarb in various oxidation systems by using HPLC/ESI/MS 

and to determine the removal of aldicarb by using HPLC/UV, as well as the oxidation 

reaction features in terms of brief mechanism and relative reaction rate. This study, along 

with our preliminary screening studies, provides practical information for understanding 

the kinetics and mechanism of the oxidation for different oxidants. Moreover, pesticides 

monitoring in water and control or choice of disinfection combination can be beneficial 

from this study. 

2. Experimental

2.1. Reagents and Chemicals  

Aldicarb (99.0%), aldicarb sulfoxide (98%), aldicarb sulfone (98%) were purchased from 

ChemService (West Chester, PA, USA). Formic acid (96%, ACS grade), hydrogen 

peroxide solution (30%) and sodium hypochlorite solution (available chlorine ≥4%) were 

purchased from Sigma-Aldrich (St. Louis, MO, USA). Methanol (HPLC grade), 

acetonitrile (HPLC grade), water (HPLC grade), sodium hydroxide (98.3%), potassium 

permanganate (certified ACS, 99.5%), and sodium phosphate (dibasic, 99%) were 

purchased from Fisher Scientific (Pittsburgh, PA, USA). Sodium phosphate (monobasic, 
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99%) was purchased from Aldrich (Milwaukee, WI, USA). The pH for the experiments 

was adjusted with either 1 N H3PO4 or NaOH.  

2.2. HPLC/ESI/MS and HPLC/UV Analysis  

The Hitachi M-8000 3DQ LC/MSn system with an electrospray ion source (San Jose, CA, 

USA) was used for the HPLC/MS analysis of aldicarb and its degradation products. A 

Supelco C18 column (150  2.1mm i.d., 5m, Bellefonte, PA, USA) was used for the 

separation at ambient temperature with a flow rate of 0.25 mL/min. Solvent A consisted 

of 0.1% formic acid in water (pH 2.70), and solvent B was acetonitrile. The HPLC 

separation was performed at an initial 10% B followed by a gradient elution to 40% B at 

15 min. then with a drop to 10% B at 15.1 min. A divert valve was placed right before the 

ionization source to remove the HPLC fractions containing salts and prevent the 

contamination of ionization source and MS. The ESI parameters were set to the following 

optimized values: nitrogen sheath gas at 3 kgf/cm2, 4 kV for ESI probe, 30 V for drift 

plate, 25 V for focus plate, 200ºC for desolvator temperature, 180ºC for assistant gas 

heater temperature, 160ºC for aperture 1 temperature. Ion trap MS was operated at 

following conditions: 500 ms for accumulating time, 0.069V for accumulation voltage, 

41.78 amu for low mass cut off, 41.78-400 amu for mass scan range. The UV wavelength 

for quantification was 200 nm.
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2.3. Methods

All pH measurements were obtained with an Accumet XL 15 pH meter using an Accumet 

AccuCap combination pH electrode from Fisher Scientific (Pittsburgh, PA). All oxidation 

experiments were conducted at constant temperature (23.5 ± 1 °C). Oxidation of aldicarb, 

aldicarb sulfoxide and aldicarb sulfone was carried out individually in a same way if not 

specified otherwise, with an initial concentration of 5 ppm for each. Quantification was 

accomplished by HPLC/UV with calibration curve and external standard operation.

2.4. Free Chlorine (FC) Oxidation System

The concentration of free chlorine in sodium hypochlorite stock solution was determined 

with the Hach DPD Method 8221 using AccuVac ampuls obtained from the Hach 

Company (Loveland, CO, USA). 50 µL aldicarb stock solution (in MeOH, 1.0 mg/mL) 

was spiked to 10.0 mL Milli-Q water in a 20 mL amber bottle (reactor). 25 µL sodium 

hypochlorite stock solution (free chlorine: 4.0 mg/mL) was spiked and the reaction was 

initiated. The initial concentration of aldicarb was 5.0 ppm (26.3 µM). The reactor was 

put on a shaker for shaking at 150 rpm. Samples were taken after 2 hours, followed by 

HPLC/MS and HPLC/UV analysis.  FC oxidation of aldicarb sulfoxide and aldicarb 

sulfone were carried out in a same way as that of aldicarb.
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2.5. Ozone (O3) Oxidation System

Ozone was produced using a Model GLS-1 PCI-WEDECO (Environmental 

Technologies, West Caldwell, NJ, USA) ozone generator and compressed oxygen. The 

ozone gas stream was bubbled from a stone diffuser into Milli-Q water. A Cary 50 Conc 

UV-Visible Spectrophotometer (Varian Australia PTY LTD, Australia) at 260 nm was 

then used independently to monitor the decay and concentration of aqueous ozone (initial 

29.7 ppm was used in our experiments). The amber glass vial containing 5.0 mL 15 ppm 

aldicarb (78.8 µM) was spiked with 10.0 mL saturated O3 solution (29.7 ppm). The 

concentration of aldicarb and ozone when reaction was initiated was 5.0 (26.3 µM) and 

9.9 ppm, respectively. The reaction continued for 4 hours before HPLC/MS and 

HPLC/UV analysis. The O3 oxidation of aldicarb sulfoxide and aldicarb sulfone were 

performed in a same way as that of aldicarb, with an initial concentrations of 5.0 ppm 

(24.2 µM) and 5.0 ppm (22.5 µM), respectively. 

2.6. UV Oxidation System

A 254-nm low-pressure mercury-vapor lamp (Pen Ray Model 90-0004- 01,254 nm, 1.0 

W; UVP Inc., Upland, CA) was used for the UV photo-degradation study. Three amble 

glass vials (reactors) of 5 mL Milli-Q water, each containing 5.0 mg/L aldicarb (26.3 

μM), were exposed to the UV lamp for 2 seconds (low dosage), 10 seconds (medium 

dosage), and 60 seconds (high dosage), respectively, by placing the 0.9 cm diameter lamp 

down the centerline of the vial. The diameter of the reactor was 1.9 cm, and the length of 
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the lamp in the liquid was 2.5 cm. Based on a volume weighted mean radius for the fluid, 

the fluence was 8.9 mW/cm2 for the system. The reaction medium was stirred with a 

small stirring bar during the UV exposure. The UV oxidation of aldicarb sulfoxide and 

aldicarb sulfone were performed in the same manner as that of aldicarb, with the 

concentration of 5.0 ppm (24.2 µM) and 5.0 ppm (22.5 µM), respectively. 

2.7. Chlorine Dioxide (ClO2) Oxidation System 

Gaseous chlorine dioxide was produced using a Bench-Scale ClO2 Generator (CDG, 

Bethlehem, PA). The concentration of ClO2 in the generated saturated ClO2 solution was 

determined by a Cary 50 Conc UV-Visible Spectrophotometer (Varian Australia PTY 

LTD, Australia) at 360 nm (initial 3.987 g/L was used in our experiments). An amber 

glass vial (reactor) of 10.0 mL Milli-Q water, which contained 5.0 mg/L aldicarb (26.3 

μM), was spiked with 25 μL saturated ClO2 solution. The initial concentration of ClO2

was 9.97 mg/L. Samples were taken at after 4 hours of reaction, followed by HPLC/MS 

and HPLC/UV analysis. ClO2 oxidation of aldicarb sulfoxide and aldicarb sulfone was 

carried out individually in the same manner as that of aldicarb with the concentration of 

5.0 ppm (24.2 µM) and 5.0 ppm (22.5 µM), respectively.

2.8. Hydrogen Peroxide (H2O2) Oxidation System

An amber glass vial (reactor) of10.0 mL Milli-Q water, which contained 5.0 mg/L 

aldicarb (26.3 µM), was spiked with 1.0 mL H2O2 solution (30%) to initiate a reaction 
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resulting in an initial H2O2 concentration of 27,273 mg/L. The reaction continued for 4 

hours prior to sampling and HPLC/MS and HPLC/UVanalysis. H2O2 oxidations of 

aldicarb sulfoxide and aldicarb sulfone were carried out in the same manner with the 

concentration of 5.0 ppm (24.2 µM) and 5.0 ppm (22.5 µM), respectively. 

2.9. Monochloroamine (MCA) Oxidation System

MCA stock solutions were prepared from ammonium chloride and sodium hypochlorite 

at a molar ratio of 1.05:1 at pH 11 [22]. The concentration of a MCA stock solution was 

determined by using the total chlorine method (via Hach DPD Method 8167; Loveland, 

CO, USA) and confirming that no free chlorine concentration remained. An amber glass 

reactor of 10.0 mL Milli-Q water containing 5.0 mg/L aldicarb (26.3 μM) was spiked 

with 50 μL of the MCA stock solution for an initial MCA concentration of 2000 mg/L.

Samples were taken after 4 hours of initiation of reaction for HPLC/MS and HPLC/UV 

analysis. MCA oxidation of aldicarb sulfoxide and aldicarb sulfone was carried out in the 

same manner with the concentration of 5.0 ppm (24.2 µM) and 5.0 ppm (22.5 µM), 

respectively. 

2.10. Permanganate (MnO4
-) Oxidation System

A 50 μL aliquot of fonofos stock solution (1.0 mg/mL in methanol) was spiked into 10.0 

mL Milli-Q water, forming an initial concentration of 5.0 mg/L (26.3 μM) for aldicarb. A 

32 μL potassium permanganate stock solution (3158 mg/L) was spiked and the reaction 
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was initiated. Samples were taken after 4 hours of initiation of reaction for HPLC/MS 

and HPLC/UV analysis. Permanganate oxidation of aldicarb sulfoxide and aldicarb 

sulfone was carried out in the same manner with the concentration of 5.0 ppm (24.2 µM)

and 5.0 ppm (22.5 µM), respectively.

3. Results and Discussion

3.1. Identification of Oxidation Byproducts of Aldicarb in Different Oxidation Systems

HPLC/MS was the major tool for identification of oxidation byproduct of aldicarb in 

different oxidation systems. Under the chromatographic and mass spectrometric 

conditions described in the Experimental Section, total ion chromatograms of aldicarb 

standard and oxidation byproducts of aldicarb in free chlorine, monochloroamine, ozone, 

permanganate and hydrogen peroxide systems were shown in Fig. 1.  From the 

chromatograms, it can be observed that aldicarb peak was totally gone in these five 

oxidation systems, among them the peak for permanganate oxidation byproduct of 

aldicarb showed a retention time different from that for other oxidants. Other four 

oxidation systems produced the byproduct with same retention times. 70% of aldicarb 

was removed after high dosage of UV radiation, but no degradates were detected by 

current method (chromatogram not shown). No significant  removal (< 15%) of aldicarb 

was observed and no degradates were detected by current method for chlorine dioxide as 

well as medium and low dosage of UV radiation (chromatogram not shown).
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The mass spectrum of standard aldicarb in Fig. 1 was obtained to confirm the 

identification of aldicarb peak. The m/z 213 ion is the sodiated molecular ion, while the 

m/z 116 ion is one of the fragment ions, as shown in Fig. 2. The m/z 157 and 175 ions 

have not been interpreted yet. This kind of fragmentation is proposed to take place with 

an in-source ionization mechanism.

Fig. 1 - TICs of Aldicarb standard and byproducts under various oxidation systems.
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Fig. 2 - Mass spectrum of Aldicarb (MW: 190) standard

In order to identified the degradation products of aldicarb, standard aldicarb 

sulfoxide and aldicarb sulfone, the two carbamate metabolites of aldicarb, were analyzed 

by HPLC/MS, and the chromatograms of these two standards and representatives of 

aldicarb oxidation byproducts were shown in Fig. 3. The retention times for the standard 

aldicarb sulfoxide and the oxidation byproduct of aldicarb in free chlorine, 

monochloroamine, ozone, hydrogen peroxide systems are the same, while the retention 

times for the standard aldicarb sulfone and the permanganate oxidation byproduct of 

aldicarb are the same. 

In order to confirm the identification of the oxidation byproducts of aldicarb, the 

mass spectrum of aldicarb sulfoxide and free chlorine oxidation byproduct of aldicarb 

was obtained, while the mass spectrum of aldicarb sulfone and permanganate oxidation 

byproduct of aldicarb was obtained, as shown in Fig. 4 and 5, respectively.
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Fig. 3 - TICs of aldicarb sulfoxide and aldicarb sulfone standard, and representative 
byproducts of aldicarb under FC and KMnO4 oxidation systems.

Fig. 4 - Mass spectrum of aldicarb sulfoxide (MW: 206) standard and the oxidation 
byproducts of aldicarb under FC, MCA, O3 and H2O2 oxidation systems.
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Fig. 5 - Mass spectrum of aldicarb sulfone (MW: 222) standard and the oxidation 
byproducts of aldicarb under KMnO4 oxidation systems.

The mass spectra of aldicarb sulfoxide standard and the oxidation byproduct of 

aldicarb in free chlorine, monochloroamine, ozone, hydrogen peroxide systems are 

identical, so only one mass spectrum is presented, as shown in Fig. 4. The ion with m/z 

206 is molecular ion, which is rarely observed in ESI mass spectrum. The ion with m/z 

229 is the sodiated molecular ion, while the m/z 132 ion is the in-source fragment ion. 

Similarly, the mass spectra of aldicarb sulfone standard and the permanganate oxidation 

byproduct of aldicarb are identical, so only one mass spectrum is presented, as shown in 

Fig. 5. The ion with m/z 245 is molecular ion, while the ion with m/z 245 is the sodiated 

molecular ion. From Fig. 4 and 5, it can be concluded that aldicarb will be oxidized to 

produce aldicarb sulfoxide in free chlorine, monochloroamine, ozone, hydrogen peroxide 

systems, while aldicarb sulfone will be produced as an oxidation byproduct of aldicarb in 

permanganate system.
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In order to fully understand the property of aldicarb, a comprehensive 

investigation of oxidation of aldicarb sulfoxide, one of the metabolites of aldicarb, was 

conducted, and the corresponding total ion chromatograms are shown in Fig. 6.

Fig. 6 - TICs of aldicarb sulfone, aldicarb sulfoxide standard and its oxidation byproduct 
under KMnO4 oxidation system.

In Fig. 6, it can been observed that aldicarb sulfoxide was all gone after oxidation 

in permanganate system, and a new byproduct peak, which showed the same retention 

time as aldicarb sulfone peak, was presented. No degradation byproducts were detected in 

all other oxidation systems, despite hydrogen peroxide and high dosage of UV radiation 

resulted in the aldicarb sulfoxide removal with 40% and 50%, respectively. This 

observation shows that hydrogen peroxide oxidation and UV photodegradation of 

aldicarb sulfoxide are different from permanganate oxidation regarding the reaction 
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mechanism. The mass spectrum of the permanganate oxidation byproduct of aldicarb 

sulfoxide was observed to be identical to the one shown in Fig. 5, indicating that aldicarb 

sulfone is the permanganate oxidation byproduct of aldicarb sulfoxide.

Fig. 7 - TICs of aldicarb sulfone standard and its oxidation byproduct under FC oxidation 
system.

Additionally, the comprehensive investigation of oxidation of aldicarb sulfone, 

another metabolite of aldicarb, was also carried out in various oxidation systems, and the 

corresponding total ion chromatograms are shown in Fig. 7. Aldicarb sulfone was 

partially oxidized to produce an unknown peak by free chlorine, while other oxidants 

except for free chlorine and high dosage of UV radiation, which removed 60% and 30% 

of aldicarb sulfone, respectively, did not show significant removal (<20%) of aldicarb 

sulfone, and no oxidation byproducts were detected.
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Fig. 8 - Mass spectrum of the unknown in the oxidation of aldicarb sulfone under FC 
oxidation system.

As usual, the mass spectrum of the unknown is shown in Fig. 8. Based on the 

literature [21] and the observation in this study, it is proposed that the unknown 

byproduct of aldicarb sulfone under free chlorine oxidation system is N-chloro-aldicarb 

sulfone, with the structure shown in the figure. The m/z 246 ion is interpreted to be the 

molecular ion, and the m/z 279 to be the sodiated molecular ion. The m/z 273 ion has not 

been interpreted yet. 

Based on the comprehensive investigation of oxidation for aldicarb and its two 

carbamate metabolites, the degradation pathways are proposed, as shown in Fig. 9.
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Fig. 9 - Proposed degradation pathways of aldicarb.

3.2. Quantification of Oxidation of Aldicarb and Its Carbamate Metabolites in Different 

Oxidation Systems

On the basis of qualitative analysis of aldicarb and its carbamate metabolites in various 

oxidation systems, quantification studies of aldicarb and its carbamate metabolites were 

performed by using HPLC/UV, as shown in Fig. 10, 11 and 12. In Fig. 10, it can be seen 

that all aldicarb was removed by free chlorine, monochloroamine, ozone, permanganate 

and hydrogen peroxide, and 70% removed by high dosage UV radiation. In Fig. 11, free 

chlorine, permanganate, hydrogen peroxide and high dosage of UV radiation demonstrate 

significant removal of aldicarb sulfoxide, but only aldicarb sulfone



114

Fig. 10 - Quantification of aldicarb in terms of percentage removal in different oxidation 
systems.

Fig. 11 - Quantification of aldicarb sulfoxide in terms of percentage removal in different 
oxidation systems. 
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was detected as the permanganate oxidation byproduct of aldicarb sulfone, no other 

oxidation byproducts were detected.

In Fig. 12, only free chlorine and high dosage of UV radiation demonstrate 

significant removal (>80% for free chlorine and >30% for high dosage of UV radiation) 

of aldicarb sulfone, while other oxidants do not show significant removal (<20%). 

Moreover, no oxidation byproducts were detected for high dosage UV radiation of 

aldicarb sulfone.

Fig. 12 - Quantification of aldicarb sulfone in terms of percentage removal in different 
oxidation systems. 

Not only the removal of aldicarb, but also the concentrations of components in the 

aldicarb oxidation reaction matrices in various oxidants were determined, as shown in 

Fig. 13. It can been seen that only free chlorine and high dosage of UV radiation showed 
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an unbalanced mass, indicating that there could be other degradates existed in these two 

oxidation systems. Other systems showed that the detected degradates were the major 

degradates without other significant degradates.

Fig. 13 - Concentration of components for aldicarb oxidation in various oxidants. 

4. Conclusions

Based on the results of qualitative and quantitative analysis of oxidation byproducts of 

aldicarb and its carbamate metabolites in various oxidation systems, it can be concluded 

that aldicarb is prone to be oxidized to produce aldicarb sulfoxide by free chlorine, 

monochloroamine, ozone and hydrogen peroxide, and to produce aldicarb sulfone by 

permanganate, indicating that aldicarb is not stable in these oxidation systems. Aldicarb 

sulfoxide will be oxidized to produce aldicarb sulfone by permanganate, and to produce 

an unknown byproduct by free chlorine, meaning that aldicarb sulfoxide is more stable 

than aldicarb. Aldicarb sulfone is prone to be oxidized to produce N-chloro-aldicarb 
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sulfone by free chlorine, showing that aldicarb sulfone is more resistant to oxidants than 

aldicarb sulfoxide. High dosage of UV radiation displays a significant removal for 

aldicarb and its two carbamate metabolites, providing an ideal way of water treatment 

strategy.
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