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Abstract 

Herbicide-resistant Palmer amaranth [Amaranthus palmeri (S.) Wats.] has been identified 

as one of the most troublesome weeds, specifically for corn (Zea mays L.), cotton (Gossypium 

hirsutum L.), and soybean [Glycine max (L.) Merr.] producers in the southern United States. The 

use of herbicide technology remains the most widely used method of weed control, despite the 

evolution of herbicide-resistant Palmer amaranth. Therefore, a need currently exists for research 

and extension education to encourage the adoption of Integrated Pest Management (IPM) to 

address the problem of herbicide-resistant Palmer amaranth in the southern United States. By 

equipping crop producers, educators, and weed management consultants with tools to evaluate 

the long-run biological and economic implications of different Palmer amaranth weed control 

practices, producers are expected to realize the benefits of adopting IPM strategies. As such, the 

Palmer Amaranth Management (PAM) software was developed to help producers, educators and 

researchers, and weed management consultants analyze long-run implications of chemical and 

non-chemical weed control options in crop production in the mid-southern United States. In 

addition to promoting the regional adoption of IPM techniques, PAM is expected to improve 

coordination among researchers, educators, and extension agents, and help producers to realize 

the economic and environmental benefits of IPM adoption, such as improved crop yields and 

increased profitability, preservation of the long-term efficacy of available herbicides, and 

minimized environmental risks. Therefore, the research objective of this project was to develop a 

decision support software program to highlight the long-term effects of management practices on 

soil seedbank and economics to encourage the adoption of IPM methods for Palmer amaranth. 
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I. Introduction 

A. Problem Statement 

Palmer amaranth’s Effects on Agricultural Production 

Palmer amaranth [Amaranthus palmeri (S.) Wats.] is an invasive species, commonly 

known as “pigweed”, that is considered one of the most prevalent and problematic weed species 

in the southern United States (US) with negative economic effects on crop production (Ward et 

al. 2013). Palmer amaranth has shown increasing resistance to several herbicide technologies, 

including but not limited to glyphosate, acetolactate synthase (ALS)-inhibiting herbicides, and 

triazines (Ward et al. 2013). As such, Palmer amaranth is one of the most challenging herbicide-

resistant weeds causing great losses to cotton (Gossypium hirsutum L.), corn (Zea mays L.), and 

soybean [Glycine max (L.) Merr.] production in the southern United States (Webster and Nichols 

2012; Riar et al. 2013a; Riar et al. 2013b). In addition, Palmer amaranth has recently caused 

increased concern in other agriculturally significant regions in the United States, mainly in the 

Southern (Webster and Nichols 2012; Riar et al. 2013a-b) and Midwestern (Jhala et al. 2014) 

regions.  

This rapid proliferation has caused Palmer amaranth to be regarded as the “most 

troublesome” weed in crop production in the United States (Van Wychen 2016) threatening the 

profitability and sustainability of U.S. agriculture. Moreover, its i) ability grow rapidly; ii) have 

extensive genetic diversity; iii) adaptation to poor growing environments; and iv) tendency for 

progressive herbicide resistance have further allowed for the invasion of Palmer amaranth in 

agricultural systems (Ward et al. 2013). The inability to effectively control Palmer amaranth can 

have severe negative effects on crop production and the attendant economic viability thereof. 

With seed production occurring within two to three weeks of seedling emergence (Keeley et al. 
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1987), Palmer amaranth is highly competitive with many row-crops. Even a few uncontrolled 

escapes may cause severe crop yield reductions, as one female Palmer amaranth plant may 

produce nearly 600,000 seeds (Keeley et al. 1987) which can lead to an invasion of Palmar 

amaranth within the first three years of crop production (Norsworthy et al. 2014). If left 

uncontrolled, it has been shown that one Palmer amaranth plant may lower yield by up to 68 

percent (Klingaman and Oliver 1994) in soybean production, more than 50 percent in cotton 

yields (Morgan et al. 2001), and up to 91 percent in corn production (Massinga et al. 2001).  

The Threat of Herbicide-resistant Palmer Amaranth 

Herbicides remain the primary tools for effective weed management, but over-reliance on 

few herbicide options has resulted in the evolution of herbicide-resistant weeds. Prevalent to the 

southern US, glyphosate-resistant Palmer amaranth is one such weed (Webster and Nichols 

2012; Ward et al. 2013). Moreover, Palmer amaranth has evolved resistance to an increasing 

number of herbicides, often showing multiple resistances (Ward et al. 2013). The first 

documented incidence of glyphosate-resistant Palmer amaranth in the US occurred in Georgia in 

2005 (Culpepper et al. 2006), and 2006 marked the first Palmer amaranth population with 

resistance to both glyphosate and the ALS-inhibitor, pyrithiobac-sodium (Sosnoskie et al. 2011). 

A survey conducted in the Mississippi Delta region of Arkansas in 2012 confirmed 

approximately 89 and 73 percent had Palmer amaranth populations that demonstrated survival 

rates of more than 90 percent to the herbicides, pyrithiobac and glyphosate, respectively 

(Bagavathiannan and Norsworthy 2016). Initially used in combination with other herbicides for 

burndown and management of perennial species in soybean production, glyphosate grew in 

popularity after the introduction of Roundup Ready crop technologies in 1996 due to its low 

price and the ability to apply the herbicide in-season (Owen 2016). Palmer amaranth resistance 
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to other important herbicide groups, such as triazines and 4-hydroxyphenylpyruvate dioxygenase 

(HPPD)-inhibitors, has also been documented in the mid-western US (Ward et al. 2013; Jhala et 

al. 2014). If appropriate measures are not implemented, producers will continue to lose herbicide 

options for controlling Palmer amaranth. The rapid evolution and spread of herbicide resistance 

in Palmer amaranth poses significant threats to successful crop production. 

Economic and Environmental Significance of Herbicide Resistance 

Severe yield losses and growing weed management costs in row-crop production systems 

have resulted from the proliferation of Palmer amaranth particularly in the southern and mid-

western regions of the US. Cotton, corn, and soybean are major agricultural commodities in the 

mid-southern states of Arkansas, Louisiana, Mississippi, and Tennessee with respective $500 

million, $1.4 billion, and $3.8 billion in total annual producer revenues of (USDA-NASS 2016a-

t). Given the above production values and previously reported yield reductions resulting from an 

infestation of Palmer amaranth (Morgan et al. 2001; Massinga et al. 2001; Klingaman and Oliver 

1994), the resultant estimated economic loss could equal as much as $250 million, $1.3 billion, 

and $2.5 billion for cotton, corn, and soybean producers in the mid-southern US in 2015, 

respectively, for a total estimated loss of over $4 billion. That estimate however excludes cost 

and effect of weed control efforts farmers have employed.  As such, the estimate is likely on the 

high end. 

Furthermore, Palmer amaranth has contributed to increased weed management costs such 

as use of herbicides, tillage, and hand weeding (Sosnoskie and Culpepper 2014). A 2011 survey 

conducted by Riar et al. (2013b) showed that producers in the midsouthern region spent from 

$114 ha-1 to $137 ha-1 in weed control costs in ‘Roundup Ready’ and ‘LibertyLink’ cotton, 

respectively. In addition to the increasing costs of weed management of Palmer amaranth that 
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comes with increased herbicide use, environmental effects are also of concern, consequently, 

contributing to the use of mechanical methods such as tillage (DeVore et al. 2013). Although 

tillage remains an economically viable method of mechanical weed control (Popp et al. 2001, 

DeVore 2013), glyphosate-resistant Palmer amaranth further poses a severe threat to the 

sustainability of conservation tillage systems (Price et al. 2011). Many producers have therefore 

returned to hand weeding to control Palmer amaranth in the southern US (Price et al. 2011; Riar 

et al. 2013b).  

Significance of an IPM Approach to Palmer Amaranth Control 

Many agricultural producers tend to seek to reduce Palmer amaranth resistance using 

“reactive” weed control methods to combat herbicide resistance after it has already occurred 

(Mueller et al. 2005, Owen 2016). Conversely, a “proactive” approach focuses on preventing the 

onset of herbicide resistance in the first place (Mueller et al. 2005) and promotes more 

diversified management options. “Proactive”, integrated weed management strategies might 

seem more expensive than a single-herbicide based weed management strategy; however, such 

integrated weed management practices are more economical and sustainable in the long-run 

(Mueller et al. 2005). Therefore, integrated pest management (IPM) techniques that integrate 

chemical and non-chemical weed control options are vital for abating the selection pressure 

imposed by any single management technology for successful and sustainable Palmer amaranth 

management (Owen 2016).  

Management of the Palmer amaranth soil seedbank management is one such “proactive” 

resistance management method (Dekker 1999). The soil seedbank can be defined as the number 

of “reserves of viable seeds” in the soil (Dekker 1999). Simulation models have shown that the 

risk of herbicide “resistance evolution” is associated with soil seedbank size (Neve et al. 2011; 
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Bagavathiannan and Norsworthy 2013). However, traditional weed management methods are 

based on the economic threshold (ET) method that only promotes the employment of 

management technologies when weed densities exceed a yield loss threshold resulting in 

economic implications (Norris 1999; Bagavathiannan and Norsworthy 2012). However, the ET 

method fails to adequately address the likelihood of weed seed production and subsequent higher 

seedbanks that increase weed management expenses and thereby further elevate the risk of 

resistance evolution (Klingaman and Oliver 1994; Norris 1999; Bagavathiannan and Norsworthy 

2012). This is particularly true for Palmer amaranth which can produce hundreds of thousands of 

seeds (Keeley et al. 1987). Therefore, the allowance of a sub-threshold level of Palmer amaranth 

escapes may have negative effects on the ability to control this species in the future and 

importance must be placed on minimizing soil seedbank levels by eradicating Palmer amaranth 

escapes through IPM techniques (Bagavathiannan and Norsworthy 2012). Norris (1999) 

suggested abandoning the ET method for a “no seed threshold” (NST) in which no weed escapes 

are allowed. Norsworthy et al. (2014) found evidence of the need for a “zero-tolerance 

threshold” method of control for Palmer amaranth due to its high proliferation and resistance 

evolution after introducing 200,000 glyphosate-resistant Palmer amaranth seeds into a square 

meter in four different cotton fields with no infestation of Palmer amaranth. Within the first two 

years, 20 percent of each field was infested; within three years, 95 to 100 percent of the fields 

were infested with Palmer amaranth (Norsworthy et al. 2014). 

Obstacles to IPM Adoption 

Best management practices (BMPs) and innovative management techniques that promote 

the IPM approach to herbicide resistance have been developed as a collective effort between the 

USDA-APHIS and the Weed Science Society of America (Norsworthy et al. 2012). Many BMP 
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techniques focus on herbicide rotation, timeliness of herbicide use at the recommended label 

rates, as well as non-chemical approaches such as crop rotation and burning (Norsworthy et al. 

2012). Norsworthy et al. (2012) stress the importance of the diversification of BMPs and 

producer knowledge of herbicide modes of action.  

While producers are willing to adopt some BMPs, producers show a higher willingness to 

adopt BMPs that promise short-term gain but may be less effective in the long-term over those 

that are more effective in the long-term but require more effort and short-term costs.  Hence, the 

overall level of adoption of the most effective weed control BMPs still remains low (Owen 

2016). A 2011 survey by Riar et al. (2013b) showed that one constraint to producer BMP 

adoption is lack of education on the long-term benefits of BMP adoption. Producer management 

options are often based on short-term economic benefits rather than methods that promote long-

term weed control and thereby long-term economic benefits (Norris 1999). However, as 

previously discussed, weed control programs that do not include IPM approaches may be 

economical in the short-term, but will lead to the evolution of resistance and therefore create 

greater weed control costs in the long-term. Furthermore, convincing producers of the economic 

viability of a proactive, IPM approach to Palmer amaranth management remains a substantial 

challenge to extension personnel (Owen 2016).  

The use of seedbank modeling that estimates appropriate timing of weed management 

options based on the timing of a weed’s life cycle combined with information on the economic 

implications of such options can provide a solution by better equipping producers with the 

knowledge necessary to make better management decisions (Dekker 1999). Although several 

BMPs for management of Palmer amaranth were established with direction from simulation 

modeling work by Neve et al. (2011), this modeling was designed as a research tool for 
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educational and extension purposes, not as a decision-support software (DSS) tool. Hence the 

need among extension personnel and other educators for an effective, user-friendly, DSS tool to 

demonstrate the long-term biological and economic viability of IPM strategies for Palmer 

amaranth. 

B. Research Objective 

The research objective of this project was to develop a DSS program to promote IPM 

approaches to Palmer amaranth management with emphasis on long-term effects on soil 

seedbank and economics. This objective supports the goal of the National IPM Roadmap, in 

particular the employment of IPM methods to protect “human health and the environment” while 

increasing economic benefits (USDA 2013). 

C. Rationale 

The rationale that underlies the development of the DSS, Palmer Amaranth Management 

(PAM) software, is that by providing crop producers and weed management educators and 

consultants the means to evaluate the long-term biological and economic implications of 

different Palmer amaranth management practices, producers will realize the value of employing 

a “proactive” management strategy (Mueller et al. 2005). This will lead to wider adoption of 

IPM strategies.  

Stakeholder-identified Needs 

The PAM model was developed based on several stakeholder-identified needs. 

Norsworthy et al. (2007) conducted a survey to learn crop consultant perceptions on the needs 

among cotton producers in Arkansas. The survey showed that Palmer amaranth was one of the 

most problematic weeds for cotton producers in Arkansas and resistance management was 

therefore identified as the top research and education need (Norsworthy et al. 2007). Two 2011 
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regional surveys stressed the need for research and extension efforts to address the problem of 

herbicide-resistant Palmer amaranth among cotton and soybean in southern states (Riar et al. 

2013a; Riar et al. 2013b). Webster and Nichols (2012) further emphasize the importance of 

focusing on ways to preserve the efficacy of herbicides.  

D. Project Goals 

It is anticipated that the PAM software program will encourage the adoption of 

comprehensive IPM techniques for effective Palmer amaranth management among corn, cotton, 

and soybean producers. The DSS will serve as an instrumental tool for the guidance of integrated 

management of Palmer amaranth through the use of existing research information to demonstrate 

the long-term biological (seedbank size and resistance) and economic consequences of several 

management options. Further, the software will promote the regional adoption of IPM 

techniques, improve coordination among researchers, educators, and extension agents, and help 

stakeholders realize the economic and environmental benefits of IPM adoption. Finally, PAM 

will help producers improve crop yields and profitability through the adoption of IPM 

techniques, preserve the long-term efficacy of available herbicides, and minimize the 

environmental risks associated with increased herbicide use. The expected benefits of PAM 

directly support the goals of the National IPM Roadmap, in promoting the employment of IPM 

methods to lower “human health risks” and negative “environmental” consequences associated 

with weed control methods and improving crop production and profitability (USDA 2013). 

E. Thesis Overview 

Chapter II provides a general introduction to the PAM software that may be downloaded 

at http://agribusiness.uark.edu/decision-support-software.php along with a detailed user manual.  

Chapter II serves as a management guide that will help users to better understand how they might 
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use PAM to implement IPM methods of weed management. This chapter provides a discussion 

on the comparison of alternative strategies to highlight the economic and biological implications 

of those alternative strategic decisions. Note that these management decisions are designed to 

represent a typical production situation and the approaches a producer may wish to consider; 

they are not, however, intended as management recommendations. Finally, Chapter III provides 

a brief summary of the PAM project with a discussion of its intended purpose as well as software 

use caveats and limitations. Chapter III will also discuss future research and ways to improve 

future modeling efforts. 

  



 

10 

F. References 

Bagavathiannan, M.V. and J.K. Norsworthy. 2012. “Late-Season Seed Production in Arable 

Weed Communities: Management Implications.” Weed Science 60(3):325-334. DOI: 

http://dx.doi.org/10.1514/WS-D-11-00222.1. 

Bagavathiannan, M.V. and J.K. Norsworthy. 2013. “Postdispersal Loss of Important Arable 

Weed Seeds in the Midsouthern United States.” Weed Science 61(4):570-579. DOI: 

http://dx.doi.org/10.1614/WS-D-13-00065.1. 

Bagavathiannan, M.V. and J.K. Norsworthy. 2016. “Multiple-Herbicide Resistance Is 

Widespread in Roadside Palmer Amaranth Populations.” PLOS ONE, April 12, 2016.  

DOI: http://dx.doi.org/10.1371/journal.pone.0148748. 

Culpepper, S.A., T.L. Grey, W.K. Vencill, J.M. Kichler, T.M. Webster, S.M. Brown, A.C. York, 

J.W. Davis, and W.W. Hanna. 2006. “Glyphosate-Resistant Palmer amaranth 

(Amaranthuss palmeri) Confirmed in Georgia.” Weed Science 54(5):620-626. DOI: 

http://dx.doi.org/10.1614/WS-06-001R.1. 

Dekker, J. 1999. “Soil Weed Seed Banks and Weed Management” in “Expanding the Context of 

Weed Management.”  D.D. Bulher, ed. New York: NY.  The Hawthorne Press, pp. 139-

159. 

DeVore, J.D., J.K. Norsworthy, and K. Brye. 2013. “Influence of Deep Tillage, a Rye Cover 

Crop, and Various Soybean Production Systems on Palmer Amaranth Emergence in 

Soybean.” Weed Technology 27(2):263-270. DOI: http://dx.doi.org/10.1614/WT-D-12-

00125.1.  

Duke S.O., J. Lydon, W.C. Koskinen, T.B Moorman, R.L. Chaney, and R. Hammerschmidt. 

2012. “Glyphosate Effects on Plant Mineral Nutrition, Crop Rhizophere Microbiota, and 

Plant Disease in Glyphosate-Resistant Crops.” Journal of Agricultural and Food 

Chemistry 60(42):10 375-10 397. DOI: http://dx.doi.org/10.1021/jf302436u. 

Jhala, A.J., L.D. Sandell, N. Rana, G.R. Kruger, and S.Z. Knezevic. 2014. “Confirmation and 

Control of Triazine and 4-Hydroxyphenylpyruvate Dioxygenase-Inhibiting Herbicide 

Resistant Palmer Amaranth (Amaranthus palmeri) in Nebraska.” Weed Technology 

28(1):28-38. DOI: http://dx.doi.org/10.1614/WT-D-13-00090.1. 

Klingaman, T.E. and L.R. Oliver. 1994. “Palmer amaranth (Amaranthus palmeri) Interference in 

Soybeans (Glycine max).” Weed Science 42(4):523-527. URL: 

http://www.jstor.org/stable/4045448. 

Massinga, R.A., R.S. Currie, M.J. Horak, and J Boyer Jr. 2001. “Interference of Palmer amaranth 

in Corn.” Weed Science 49(2):202-208. DOI: http://dx.doi.org/10.1614/0043-

1745(2001)049[0202:IOPAIC]2.0.CO;2. 

Morgan, G.D., P.A. Bauman, and J.M. Chandler. 2001. “Competitive Impact of Palmer 

Amaranth (Amaranthus palmeri) on Cotton (Gossypium hirutum) Development and 



 

11 

Yield.” Weed Technology 15(3):408-412. DOI: http://dx.doi.org/10.1614/0890-

037X(2001)015[0408:CIOPAA]2.0.CO;2. 

Mueller, T.C., P.D. Mitchell, B.G. Young, and A.S. Culpepper. 2005. “Proactive Versus 

Reactive Management of Glyphosate-Resistant or -Tolerant Weeds.” Weed Technology 

19(4):924–933. DOI: http://dx.doi.org/10.1614/WT-04-297R.1. 

Neve, P., J.K. Norsworthy, K.L. Smith, and I.A. Zelaya. 2011. “Modeling Glyphosate Resistance 

Management Strategies for Palmer amaranth (Amaranthus palmeri) in Cotton.” Weed 

Technology 25(3):335-343. DOI: http://dx.doi.org/10.1614/WT-D-10-00171.1.  

Norris, R.F. 1999. “Ecological Implications of Using Thresholds for Weed Management” in 

“Expanding the Context of Weed Management.”  D.D. Bulher, ed. New York: NY.  The 

Hawthorne Press, pp. 31-58. 

Norsworthy, J.K., G. Griffith, T. Griffin, M. Bagavathiannan, and E.E. Gbur. 2014. “In-Field 

Movement of Glyphosate-Resistant Palmer Amaranth (Amaranthus palmeri) and Its 

Impact on Cotton Lint Yield: Evidence Supporting a Zero-Threshold Strategy.” Weed 

Science 62(2):237-249. DOI: http://dx.doi.org/10.1614/WS-D-13-00145.1. 

Norsworthy, J.K., K.L. Smith, R.C. Scott, and E.E. Gbur. 2007. “Consultant Perspectives on 

Weed Management Needs in Arkansas Cotton.” Weed Technology 21(3):825–831. DOI: 

http://dx.doi.org/10.1614/WT-D-13-00070.1. 

Norsworthy, J.K., S.M. Ward, D.R. Shaw, R.S. Llewellyn, R.L. Nichols, T.M. Webster, K.W. 

Bradley, G. Frisvold, S,B. Powles, N.R. Burgos, W.W. Witt, and M. Barrett. 2012. 

“Reducing the Risks of Herbicide Resistance: Best Management Practices and 

Recommendations.” Weed Science 60(sp1):31-62. DOI: http://dx.doi.org/10.1614/WS-D-

11-00155.1. 

Owen, M.D.K. 2016. “Diverse Approaches to Herbicide-Resistant Weed Management.” Weed 

Science 64(sp1):570-584. DOI: http://dx.doi.org/10.1614/WS-D-15-00117.1. 

Popp, M.P., T.C. Keisling, C.R. Dillon, and P.M. Manning. 2001. “Economic and Agronomic 

Assessment of Deep Tillage in Soybean Production on Mississippi River Valley Soils.” 

Agronomy Journal 93(1):164-169. DOI: http://dx.doi.org/ 10.2134/agronj2001.931164x. 

Price, A.J., K.S. Balkcom, S.A. Culpepper, J.A. Kelton, R.L. Nichols, and H. Schomberg. 2011. 

“Glyphosate-Resistant Palmer amaranth: A Threat to Conservation Tillage.” Journal of 

Soil Water Conservation 66(4):265-275. DOI: http://dx.doi.org/10.2489/jwsc.66.4.265. 

Riar, D.S., J.K. Norsworthy, L.E. Steckel, D.O. Stephenson, T.W. Eubanks, and R.C. Scott. 

2013. “Assessment of Weed Management Practices and Problem Weeds in the Midsouth 

United States-Soybean: A Consultant’s Perspective.” Weed Technology 27(3):604-611. 

DOI: http://dx.doi.org/10.1614/WT-D-12-00167.1. 

Riar, D. S., J.K. Norsworthy, L.E. Steckel, D.O. Stephenson, and J.A. Bond. 2013. “Consultant 

Perspectives on Weed Management Needs in Midsouthern United States Cotton: A 



 

12 

Follow-Up Survey.” Weed Technology 27(4):778-787. DOI: 

http://dx.doi.org/10.1614/WT-D-13-00070.1. 

Sosnoskie, L.M., J.M. Kichler, R.D. Wallace, and A.S. Culpepper. 2011. “Multiple Resistance in 

Palmer Amaranth to Glyphosate and Pyrithiobac Confirmed in Georgia.” Weed Science 

59(3):321-325. DOI: http://dx.doi.org/10.1614/WS-D-10-00132.1. 

Sosnoskie, L.M. and A.S. Culpepper. 2014. “Glyphosate-Resistant Palmer Amaranth 

(Amaranthus palmeri) Increases Herbicide Use, Tillage, and Hand-Weeding in Georgia 

Cotton.” Weed Science 62(2):393-402. DOI: http://dx.doi.org/10.1614/WS-D-13-

00077.1. 

United States Department of Agriculture (USDA), National Agricultural Statistics Service 

(NASS). 2016. “2015 Arkansas, Louisiana, Mississippi, and Tennessee Corn, Cotton and 

Soybean Production in US Dollars.” Accessed January 2017. 

https://quickstats.nass.usda.gov. 

United States Department of Agriculture (USDA), National Institute of Food and Agriculture 

(NIFA). 2013. “National Roadmap for Integrated Pest Management.” Accessed January 

2017. 

https://nifa.usda.gov/sites/default/files/resources/National%20Road%20Map%20for%20I

ntegrated%20Pest%20Management.pdf. 

Van Wychen, L. 2016. “2015 Survey of the Most Common and Troublesome Weeds in the 

United States and Canada.” Weed Science Society of America National Weed Survey 

Dataset. Accessed December 2016. http://wssa.net/wp-content/uploads/2015-Weed-

Survey_FINAL1.xlsx. 

Ward, S.M., T.M. Webster, and L.E. Stekel. 2013. “Palmer amaranth (Amaranthus palmeri): A 

Review.” Weed Technology 27(1):12-27. 

Webster, T.M. and R.L. Nichols. 2012. “Changes in the Prevalence of Weed Species in the 

Major Agronomic Crops of the Southern United States: 1994/1995 to 2008/2009.” Weed 

Science 60(2):145-157. 

  



 

13 

II. Decision Support Software for Palmar Amaranth Management 

A. Introduction  

The decision-support software (DSS), Palmer Amaranth Management (PAM) model 

(Bagavathiannan et al. 2017), was developed using the Microsoft Excel® software to help cotton, 

corn, and/or soybean producers, educators, and extension agents with implementing integrated 

pest management (IPM) techniques for Palmer amaranth control to promote long-term economic 

sustainability of crop production (Lindsay et al. 2017). The software and manual may be 

downloaded from http://agribusiness.uark.edu/decision-support-software.php as of January 11, 

2017. The PAM software integrates agronomic, biological, and economic information to help the 

end user recognize the magnitude of long-term implications of adopting various management 

strategies to help make more informed management decisions. Specifically, this software 

provides decision-support for IPM of Palmer amaranth by using existing research (Neve et al. 

2011) to facilitate a better understanding of the long-term biological and economic benefits of 

different management options (Mueller et al. 2005). This will help producers realize increased 

crop yields and profitability through implementation of IPM techniques that preserve the long-

term efficacy of existing herbicide options and further reduce the attendant human health risks 

and environmental effects of resistance to herbicide use (USDA 2013). Since PAM was 

specifically developed as a planning and educational tool to assist producers and educators 

generate comparison of several Palmer amaranth management options for their effect on long-

term Palmer amaranth seedbank levels and economic returns, it is important to note that while 

this software does account for pre-existing resistance and the probability of growing resistance 

under any chosen strategy, it is not intended for use as an herbicide resistance simulation model 

(Bagavathiannan et al. 2017). 
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The basic framework for PAM is based on the Ryegrass Integrated Management (RIM) 

software model which was developed at the University of Western Australia (AHRI 2013) to 

assist producers and researchers with management of the invasive species, annual rigid ryegrass 

(Lolium rigdum), within the Southern regions of Australia (Lacoste and Powles 2014; Lacoste 

and Powles 2015; Lacoste and Powles 2016).  

Like the RIM model, PAM utilizes the Microsoft Excel® platform because it is available 

to most users who likely have some experience with the software, making PAM a more user-

friendly and powerful educational tool by reaching a greater audience. Although Excel® is 

powerful enough to perform necessary calculations, its toolbars and menu options are thought to 

distract the end user, and therefore, improvements were made using Visual Basic for 

Applications (VBA) programming language to create more software-like features and appealing 

visuals within the software platform. To protect the integrity of PAM’s calculations, the software 

is locked in the execution mode and only input cells and userforms are activated to allow for the 

selection of user-specific parameter values that reflects their situation.  

The PAM model consists of three fundamental components: 1) Palmer amaranth 

population dynamics; 2) management; and 3) economics. The population dynamics and 

management components were designed using expert opinion of weed scientists, Drs. M. 

Bagavathiannan and J. Norsworthy, along with review of existing literature. These components 

work together to provide output for the comparison of alternate strategies, including annual 

seedbank size, annual crop yield potential, annual net returns, and net present value (NPV). The 

NPV represents the sum total of annual net returns over a ten-year planning horizon of crop 

production and is defined as follows: 

 (1) NPV= ∑
ACNRi

(1+k)
i

10
i=1  
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where NPV is the sum total of economic returns to crop production over a ten-year period 

expressed in today’s dollars (Robison and Barry 1996), ACNRi  are economic returns to crop 

production for cotton, corn, or soybean production that depend on yield, crop price, and 

production costs as specified by the user and substantiated by default values using University of 

Arkansas Cooperative Extension crop cost of production estimates (Flanders et al. 2015; Scott et 

al. 2016), and k is the annual risk-adjusted, real discount or amortization rate set at 5% to 

represent a mid-range estimate of discount rates to convert future costs and revenue flows to 

today’s dollars. This discount rate ranges from 3 to 10% in agricultural production analyses as 

reported by Hardie (1984), although higher values may also be used for very uncertain 

cashflows. A ten-year planning horizon was chosen to allow the program to cycle through a full 

3-year rotation. 

The population dynamics component of PAM is designed to simulate the life cycle of 

Palmer amaranth from the spring seedbank through seedbank replenishment at the end of the 

growing season to estimate the size of the soil weed seedbank and aboveground Palmer amaranth 

density at varying stages in a growing season (Bagavathiannan et al. 2017). The software 

measures expected seed production as a factor of “seedling emergence”, crop competition, and 

“density-dependence” (Jha 2008). Palmer amaranth “seedling emergence” occurs from April 

through September in the Southern region (Jha 2008). The aboveground seedbank population is 

consequently organized into “cohorts” (Neve et al. 2011) to characterize crop competitiveness, 

fecundity levels, and the effects of density-dependence on survival, growth, and fecundity of 

Palmer amaranth (Jha 2008; Massinga et al. 2001).  

The management sub-model is designed to characterize different crop and weed control 

options that have potential direct or non-direct effects on weed population dynamics that may 
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produce different outcomes on dispersal of the seedbank and successive seedling emergence. 

These weed management options affect long-term weed population dynamics and economic 

benefits. To estimate these direct and/or non-direct effects on weed populations, efficacies were 

allocated for each management option based on their effects on overall ability to control Palmer 

amaranth. 

The economics component of PAM is designed to replicate southern US crop production 

practices using crop budgeting and discounting techniques to determine overall profitability 

among strategies surrounding Palmer amaranth management (Kay et al. 2015). One important 

feature of the PAM model is its ability to demonstrate the magnitude of long-term benefits 

(NPV) vs. potential short-term losses (ACNRi). Specifically, the NPV represents the economic 

value of “proactive” resistance management strategies to highlight the savings that would 

otherwise be spent on additional weed control options if Palmer amaranth resistance was allowed 

to evolve (Mueller et al. 2005). This type of analysis helps producers to maximize the sum of all 

earnings over a 10-year period in today’s dollars and select the strategy with the highest NPV. 

Further, the user has the ability to specify discount rates to reflect differences in risk and/or 

different crop yield improvement over time shows the level of sensitivity to interest rate and 

yield growth expectations (Lindsay et al. 2017). 

The objective of this chapter is thus to describe how a user can develop and interpret a 

comparison among alternative management strategies to combat Palmer amaranth with hopes to 

maximize profitability while at the same time minimizing Palmer amaranth seedbank and 

managing risk. Note that further detailed operating instructions are available in the user manual 

and tutorials of the software (Lindsay et al. 2017) and not shown here to minimize redundancy. 
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B. Materials and Methods 

General Comments about PAM 

The model flow chart provided in Figure 2.1 is designed to assist with understanding the 

flow of information between the PAM user-interface worksheets, ‘Systems’, ‘Strategy’, and 

‘Output’ (Lindsay et al. 2017). The user may define their current operation(s) in the ‘Systems’ 

worksheet which will be used to generate a default 10-year strategy in the ‘Strategy’ worksheet. 

From the ‘Strategy’ worksheet, the user may make a number of modifications to the strategy and 

save up to six strategies for comparison in the ‘Output’ worksheet. 

The PAM model is an Excel® program with an ‘.xlsm’ file extension. Because PAM 

operates in full-screen mode, the user is prompted upon exit (by left-clicking the ‘X’ button in 

the upper, right corner of the screen) to either save the file, close the file without changes, or 

return back to the program to restore Excel® back to the default settings that were disabled to 

ensure proper function of the full-screen mode.  The user is, therefore, instructed to run PAM 

without other Excel® spreadsheets open simultaneously. In the event that PAM is closed without 

following the above prompts, the user should reopen PAM and re-exit the program as previously 

described. 

The PAM user interface operates through the use of several ‘controls’ including 

command buttons, userforms, drop-down lists (data validation), and conditional formatting 

(Lindsay et al. 2017). Command buttons operate via VBA event procedures to automate the 

processes that permit the user to navigate across worksheets, operate userforms, enter operation 

parameters or revert to default values, and compare strategies. Userforms allow the user to make 

parameter specifications based on their current operation. Data validation (via drop-down lists) 

limits user-specifications to a pre-selected group of options, where necessary, to safeguard the 
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integrity of the software. Lastly, conditional formatting (error checking) notifies the user if a 

modification to a cell could potentially lead to errors by modifying the appearance of the cell 

temporarily until the user corrects the error.  

Model Design and Implementation 

The PAM model follows three steps to modify operation parameters and develop multiple 

IPM strategies for comparison: 1) “define” the current (default) system(s) to specify the user’s 

current operation parameters or use default values; 2) “build” various management strategies 

through the modification of crop production and weed management options given attendant crop 

trait technologies; and 3) “compare” side-by-side output results of various saved strategies 

(Bagavathiannan et al. 2017). 

Parameter Value Settings 

 While user input for values that vary considerably across location and various operations 

is allowed, other parameter values, such as herbicide prices and efficacy values related to the 

ecology and biology of Palmer amaranth were sourced from literature and/or based on expert 

opinion and, therefore, cannot be modified. A significant portion of these parameter values were 

attained from a previously developed Palmer amaranth resistance simulation model (Neve et al. 

2011) as well as publications cited by Ward et al. (2013). Default parameters pertaining to some 

of the economic calculations such as expected prices received and yields as well as weed control 

and other input costs are based on recommendations provided by University of Arkansas 

Cooperative Extension Service publications and expert opinion (Flanders et al. 2015; Scott et al. 

2016). 

(1) Step 1: Define the Current Production System using the ‘Systems’ Worksheet in PAM 

Upon left-clicking the ‘START’ command button on the ‘Title’ worksheet that appears 
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when the software is first opened, the user will be taken to the ‘Systems’ worksheet where the 

user will define their current system by customizing a set of production variables, such as crop 

rotation, crop traits, yield, expected prices received, and total specified expenses that are further 

broken down into subcategories as well as current weed densities and herbicide resistance levels. 

The ‘Calculate Total Specified Expenses’ userforms, accessed by left-clicking the gray 

‘Calculate Total Specified Expenses’ command button (Figure 2.2(1)), allow for the 

customization of acre-based input and yield-specific harvest expenses as well as operating 

interest for each crop. As previously noted, these default values are based on recommendations 

provided by University of Arkansas Cooperative Extension Service publications (Flanders et al. 

2015). Note, the total specified expenses calculated do not include weed control and seed costs at 

expected yield. The ‘Specify Fall Options’ userform, accessed by left-clicking the gray ‘Specify 

Fall Options’ command button (Figure 2.2(2)), allows the user to specify fall options, such as 

cost and quantity for field practices, including moldboard ploughing, use of cereal rye and/or 

cover crop mix, and windrow burning. Broadcast or drill-seed planting methods for fall cover 

crops may also be specified. Default values for the ‘Fall Options’ are based on recommendations 

provided by expert opinion. The user may also modify herbicide application costs, such as labor, 

fuel, and the amortization (discount) rate and define the level of pre-existing resistance to 

different herbicides or modes of action as well as the initial weed density. The initial weed 

density represents the number of Palmer amaranth escapes (in plants per 250 square ft) that were 

observed during the previous production year (Year 0) for the existing system. 

For the purpose of demonstration, two different systems (Figures 2.2 and 2.3) have been 

defined to show how existing conditions will affect future production cycles. The expected yield, 

price, total specified expenses, labor and fuel rates, and fall option prices and rates are set at 
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default for both systems and are held constant for the ten-year analysis framework; therefore, the 

model does not account for changes in yield and prices over time except by way of the discount 

or amortization rate (Figure 2.2(3)). Setting a higher discount rate than 5%, for example, would 

represent a higher level of risk for yield and price estimates. Whereas, setting a very low 

discount rate would represent greater yield growth potential and/or lesser risk.  

The differences among these two initial production systems demonstrate their effect on 

outcomes. The ‘Corn/Cotton/Soybean’ system (Figure 2.2) begins its rotation with corn, 

followed by cotton and full-season soybean. Note that the user is expected to (Figure 2.2(4)) 

define a typical crop rotation by selecting from one to three crops and also select up to four crop 

traits for each crop. These selections form the default settings for the ‘Strategy’ worksheet 

(Figure 2.4) and may be changed when building various strategies for comparison. In the 

‘Corn/Cotton/Soybean’ system, which can be renamed when saving systems, corn production 

will use crop traits of: ‘Roundup Ready’ in Year 1, ‘Roundup/LibertyLink’ in Year 4, ‘Enlist’ in 

Year 7, and ‘Conventional’ in Year 10. Likewise, cotton production will use ‘Roundup Ready’ in 

Year 2, ‘LibertyLink’ in Year 5, and ‘Enlist’ in Year 8. The full-season soybean rotation will use 

‘LibertyLink’ in Year 3, ‘Roundup Ready’ in Year 6, and ‘Enlist’ in Year 9. The weed density is 

set at 16-25 plants per 250 square ft (Very High). The expected (pre-existing) resistance levels 

for Roundup (glyphosate) and acetolactate synthase (ALS) inhibitors are set at ‘High’ and the 

expected resistance level for protoporphyrinogen oxidase (PPO) inhibitors is set at ‘Moderate’. 

The ‘Diverse Traits’ system, as shown in Figure 2.3 begins its rotation with cotton, 

followed by corn and full-season soybean. Further, cotton production will use: 

‘Glytol/LibertyLink’ in Year 1, ‘LibertyLink’ in Year 4, ‘Glytol/LibertyLink’ in Year 7, and 

‘Enlist’ in Year 10. Corn production will use ‘Roundup Ready’ in Year 2, ‘Conventional’ in 
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Year 5, and ‘Roundup/LibertyLink’ in Year 8. The full-season soybean rotation will use ‘Xtend’ 

in Year 3, ‘Enlist’ in Year 6, and ‘Xtend’ in Year 9. Note that the weed density (Figure 2.3(1)) is 

set at 8-15 plants per 250 square ft (High). Like the ‘Corn/Cotton/Soybean’ system, the expected 

resistance levels for Roundup, ALS- and PPO-inhibiting technology are set at ‘High (Figure 

2.3(2)) and are set at ‘Moderate’. The ‘Diverse Traits’ system will be used to generate the default 

strategy (Figure 2.4) to be used as a starting point for building strategies for comparison. Note 

that monocrop or two-crop rotations are also possible but not demonstrated here. 

(2) Step 2: Build Appropriate Strategies using the ‘Strategy’ Worksheet in PAM using 

Observable Measures of Biological and Economic Efficacy 

Upon left-clicking the blue next arrow in the ‘Systems’ worksheet (Figure 2.3(3)), the 

user will be taken to the ‘Strategy’ worksheet and the aforementioned ‘default’ strategy (Figure 

2.4) will be loaded based on the user specifications provided in the ‘Diverse Traits’ system 

(Figure 2.3). The user may either use the default strategy or customize and save up to six 10-year 

strategies for later comparison in the ‘Output’ worksheet. Each strategy should be given a 

specific name and saved for later recall (Figure 2.4(1)). The user may return to the default 

strategy at any time by left-clicking the blue ‘Reset Strategy’ in the top, left corner of the 

worksheet (Figure 2.4(2)). Recall, the default strategy shown in Figure 2.4 uses the ‘Diverse 

Traits’ system to set the crop rotation and crop trait options.  

During modifications, two important points to remember when working in the ‘Strategy’ 

page are that: 1) the ‘Reset Strategy’ button provides a starting point based on user-specifications 

in the ‘Systems’ page but does not necessarily generate a good default strategy recommendation 

that requires no attention from the user; and 2) conditional formatting is added to the bottom 

portion of the worksheet to guide the user in making appropriate management decisions (Figure 
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2.4(3)). The warning messages in the top row of the bottom section of the page are color-coded 

to help the user locate the inefficiencies within the strategy. The remaining two rows use gray 

with bolded yellow font. These rows provide direction about the current strategy and advise the 

user to look to the ‘Crop rotation’ and ‘Specific crop trait’ selection cells near the top of the 

strategy to make improvements. The error checking in the default strategy (Figure 2.4(3)) 

indicates the use of an inappropriate tank mix (yellow highlighting with bolded, italicized font) 

and a high frequency of ‘Round up/LibertyLink’ varieties planted (gray highlighting with 

bolded, yellow font). 

As the user makes strategy modifications, they should make note of changes in NPV 

(Figure 2.4(4)) as defined in Equation 1. A higher NPV represents a more profitable strategy 

than a lower NPV associated with another strategy. As previously noted, sensitivity analyses 

may be performed by specifying various amortization rates to show differences in risk and/or 

crop yield improvements over time and/or expected changes in yield. These changes would be 

initiated in the ‘Systems’ page. Similar sensitivity analyses using different input cost and output 

price trend expectations may also be performed. Note that a strategy is thereby linked to a system 

and strategy changes always involve linkage to a particular system and attendant input 

assumptions. 

When monitoring changes in the NPV, it is helpful to make note of changes in the blue 

output cells provided above the strategy selection cells. These values include weed control costs, 

spring seedbank, yield, and net returns (Figure 2.4(5)). Weed control costs (US dollars per acre) 

are the sum of estimated costs for selected herbicides technologies and applications, spring soil 

preparation, row spacing, and fall weed management options. Weed control costs are calculated 

using estimates provided by University of Arkansas Cooperative Extension Service publications 
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(Scott et al. 2016). The spring seedbank (000’ seeds per 250 square ft) is the number of seeds in 

the soil in the spring and is estimated by adjusting the number of uncontrolled Palmer amaranth 

escapes late in the previous production year for possible overwintering seed losses 

(Bagavathiannan and Norsworthy 2012). Calculations for seedbank modifications are based on 

factors, such as user-specified weed density, fecundity, and post-dispersal seed loss (Massinga et 

al. 2001; Jha 2008; Neve et al. 2011; Bagavathiannan and Norsworthy 2012), seedling 

emergence (Jha 2008; Neve et al. 2011), and estimated “late-season” Palmer amaranth escapes 

(Neve et al. 2011; Bagavathiannan and Norsworthy 2012) as well as expert opinion. Note that 

seedling emergence does not equal the spring seedbank for a given year; rather, it is just a 

portion of the expected total seed in the soil. Yield (per acre) is calculated as the user-specified 

expected yield multiplied by the percent reduction in yield based on initial user-specified weed 

density and seedbank changes over time that are affected by management practices selected. 

Estimates of yield effects with varying Palmer amaranth pressure, is again based on literature 

(Klingaman and Oliver 1994; Morgan et al. 2001; Massinga et al. 2001; Ward et al. 2013) and 

expert opinion.  Net returns (US dollars per acre) are calculated as the product of yield and the 

expected price received, less total specified expenses as modified from default values in the 

‘Systems’ page and weed control costs.  

In addition to the above measures, the user should pay attention to the risk of evolution 

resistance using the ‘Risk Assessment’ feature (Figure 2.4(6) and Figure 2.5) as well as monitor 

the timing of escapes using the ‘Palmer Amaranth Escapes’ feature (Figures 2.4(6) and 2.6). The 

estimated risk of resistance evolution evaluated on a 100 point scoring system using a weighted, 

23-parameter model with higher scores indicating a greater risk of developing resistance 

evolution. Risk assessment parameters include but are not limited to seedbank size as well as 
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user-specified parameters, such as crop rotations and crop traits in rotation, diversity of herbicide 

selections, and fall management options, and are based on expert opinion. Certain parameters 

receive a higher weighted value for the first four production years than the remaining years of 

production (Bagavathiannan et al. 2017). The ‘Risk Assessment’ shown in Figure 2.5 is based on 

the default strategy using the ‘Diverse Traits’ system. The default strategy appears to have a low 

risk of resistance evolution with a low score of 24 points (Figure 2.4(6)), however the user is 

reminded that diversified management is “key for preventing/managing resistance” (Norsworthy 

et al. 2012). Palmer amaranth escapes are the number of uncontrolled plants (per 250 square ft) 

at the indicated time during the production season (Bagavathiannan and Norsworthy 2012). The 

number and timing of Palmer amaranth escapes (Figures 2.4(6) and 2.6) provide additional 

information to help the user to determine when to make changes in management practices to 

eliminate or reduce the number of escapes occurring in any of the ten years in a strategy. For 

example, should escapes be high early in the production season, seedbed preparation, row 

spacing in soybean, burn down herbicide options, and fall options employed in the prior year 

may be most helpful in preventing future escapes.  

For the purpose of demonstration, four different strategies have been defined to show 

how different types of changes can be made to the strategy options to affect the observable 

measures discussed above. These strategies are gradually built off the previous strategy, 

beginning with the default strategy to simulate how a user might use the software to pay attention 

to observable measures as changes are made to strategies. These changes are discussed in greater 

detail below and expressed in Table 2.1. 

The ‘Non-Diverse Options’ strategy (Figure 2.7(1-4)) is built using the default strategy 

with the following modifications: 1) the ‘Soil preparation’ across all 10 years of production is 



 

25 

changed from ‘Shallow Till’ to ‘No-till’ to reflect a strategy concerned with tillage conservation; 

2) the ‘Specific crop traits’ for Years 2 through 6 and 9 through 10 have been changed to reflect 

a strategy that relies heavily on herbicide technologies rather than non-chemical control; and 3) 

all Fall options, including mouldboard ploughing, cover cropping, and windrow burning during 

years of soybean production have been removed from the strategy, again to reflect a strategy that 

relies heavily on herbicide technologies; and 4) inappropriate tank mixes have been adjusted to 

ensure the operation is using legal mixes. As a result of these changes, the NPV has fallen by 

more than $1,600 per acre from $1,585 with the default strategy to -$87 per acre (Figure 2.7(5)). 

The risk of resistance evolution increased from 24 points with the default strategy to 53 points 

(Figure 2.7(6)). Furthermore, the risk feedback provided via the ‘Risk Assessment’ feature 

(Figure 2.8) highlights high seedbank size and inadequate herbicide-resistant trait rotations and 

lack of fall practices as risk factors associated with the strategy and suggests reducing seedbank 

size by diversifying the strategy with fall options, increasing herbicide-tolerant crop trait 

rotations, and using cover crops in the fall to reduce the risk of evolution resistance. The number 

of Palmer amaranth escapes can easily be identified using the ‘Palmer Amaranth Escapes’ 

feature (Figure 2.9) which shows several escapes occurring within this strategy from mid-June in 

Year 1 and continuing to occur very frequently throughout the remaining periods of all 

remaining years of production.   

The ‘No Till Poor Seedbank’ strategy (Figure 2.10(1-2)) is built using the ‘Non-Diverse 

Options’ strategy with the following modifications: 1) the herbicide, ‘Gramoxone’, is added to 

premergence periods for full-season soybean crops in Years 6 and 9; and 2) the herbicide, 

‘Liberty’, is removed from the post emergence periods when corn is planted in Years 2, 5, and 8. 

Like the previous strategy, the ‘Soil preparation’ across all 10 years for the ‘No Till Poor 
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Seedbank’ strategy also uses the ‘No-till’ option and the ‘Specific crop traits’ and ‘Fall options’ 

continue to reflect a strategy that relies heavily on herbicide technologies. As a result of these 

changes, the NPV has increased more than $1,000 per acre from -$87 per acre with the ‘Non-

Diverse’ strategy to $981 per acre (Figure 2.10(3)). Similar to the previous strategy, the risk 

feedback suggests high seedbank size and inadequate herbicide trait rotations and lack of fall 

practices as risk factors associated with the strategy and suggests reducing seedbank size by 

diversifying the strategy with fall options to reduce the risk of evolution resistance. As expected, 

the risk of resistance evolution remains high with a score of 52 points (Figure 2.10(4)). Palmer 

amaranth escapes first occur from mid-June in Year 1 and continue to occur very frequently until 

the eighth year of production and occur a few more times in Year 9, during early-May and early- 

to mid-June. 

The ‘Diverse Options’ strategy (Figure 2.11(1-2)) is built using the ‘No Till Poor 

Seedbank’ strategy with the following modifications: 1) ‘Soil preparation’ is changed from ‘No-

till’ to ‘Shallow Till’ in Years 1 and 3; and 2) MB Plough is added to ‘Fall’ options in Year 1. 

The resulting NPV has increased from $981 to $2,008 per acre (Figure 2.11(3)). The risk 

feedback suggests inadequate herbicide trait rotations and lack of fall practices as risk factors 

associated with the strategy and suggests increasing herbicide-resistant trait rotation and 

including fall cover crops to reduce the risk of evolution resistance. This is reflected with a lower 

risk of resistance evolution score of 38 points, down from 52 points with the ‘No Till Poor 

Seedbank’ strategy (Figure 2.11(4)). This strategy also shows improvement with the first Palmer 

amaranth escapes occurring from mid-June in Year 1 until early-June in Year 3. 

The ‘Fall Option with Shallow Till’ strategy (Figure 2.12(1-3)) is built using the ‘Diverse 

Options’ strategy with the following modifications: 1) ‘Soil preparation’ for Year 1 is changed 
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back from ‘Shallow Till’ to ‘No-till’; and 2) a ‘Cover Crop Mix’ is added to ‘Fall’ option for 

Year 2 and, subsequently, ‘the herbicide, ‘Dicamba’, is automatically added to ‘Burn Down’ in 

the following year. The resulting NPV has decreased slightly from $2,008 per acre with the 

‘Diverse Options’ strategy to $1,977 per acre (Figure 2.12(3)). Again, the risk feedback suggests 

inadequate herbicide trait rotations and lack of fall practices as risk factors associated with the 

strategy and suggests increasing herbicide-resistant trait rotation and including more fall cover 

crops to reduce the risk of evolution resistance. The risk of resistance evolution increased from 

38 to 40 points (Figure 2.12(4)); however, Palmer amaranth escapes continue to decrease to 

minimal levels with the first Palmer amaranth escapes still occurring from mid-June in Year 1 

but only continuing to until early-June in Year 2. 

(3) Step 3: Compare Output Results using the ‘Output’ Worksheet in PAM 

Upon left-clicking the blue next arrow in the ‘Systems’ worksheet, the user will be taken 

to the ‘Output’ worksheet. This worksheet provides a graphical visualization for easy 

comparison among strategies saved in the ‘Strategy’ worksheet. These visual comparisons allow 

for a 10-year comparison of spring ‘Seedbank’ (000’s of Palmer amaranth seeds per 250 square 

ft), annual yield potential, and annual ‘Net Returns’ (US dollars per acre) as well as the NPV 

(US dollars per acre) and risk of developing herbicide resistance as a percentage for each of the 

two strategies selected for comparison. 

For the purpose of demonstration, Figure 2.13 and Table 2 provide a side-by-side 

comparison of the ‘Non-Diverse Options’ and ‘Diverse Options’ strategies (Figures 2.7 and 2.11) 

to demonstrate how changes made to the strategy options may affect seedbank size, crop yields, 

net returns, and risk of resistance. Notice that the spring ‘Seedbank’ (000’s per 250 square ft) is 

quite volatile for the ‘Non-Diverse Options’ strategy (Figure 2.13(1)). Conversely, the ‘Diverse 
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Options’ strategy has low seedbank levels in the first few years of production with seedbank 

levels at zero in the remaining Years, 4 through 10 (Figure 2.13(1)). Moreover, the ‘Yield 

Potential’, as a percentage, for the ‘Non-Diverse Traits’ strategy shows some volatility, however, 

for the ‘Diverse Options’ strategy ‘Yield Potential’ remains relatively constant at 100 percent for 

most years with only a slight drop in Year 2 (Figure 2.13(2)). ‘Net Returns’ (US dollars per acre) 

show some fluctuation, but remain in the positive range of $168 to $356 per acre with the 

‘Diverse Options’ strategy (Figure 2.13(3)). Conversely, the ‘Non-Diverse Options’ strategy 

achieves net returns of at least $168 per acre for the first two years of production only with the 

remaining years of production experiencing very low net returns or negative net returns as low as 

-$167 per acre occurring in Years 3, 6, and 9 (Figure 2.13(3)). The risk of evolution resistance 

scored 53 points for ‘Non-Diverse Options’ compared to 38 points with the ‘Diverse Options’ 

strategy (Figure 2.13(4)). The NPV for the ‘Non-Diverse Options’ strategy is very low at -

$87/acre compared to $2,008/acre for the ‘Diverse Options’ strategy (Figure 2.13(5)). 

C. Results and Discussion 

Using the steps described above, PAM demonstrates how users may compare their 

current production environment to a strategic 10-year production approach to manage Palmer 

amaranth weed control. Various strategies were developed and described to reveal that even 

when holding crop rotation and crop trait packages constant, spring soil preparation and fall 

cultural practices can improve the efficacy of commonly employed herbicide-based weed control 

methods. Error checking and other automated producer advice along with information on the 

timing of Palmer amaranth escapes helps the user to quickly pinpoint areas to improve methods 

of weed prevention in a given strategy. Output comparisons further quantify changes in strategies 

to assist producers with making complex herbicide management decisions. 
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This software helps to illustrate how excessive reliance on a single mode of action in 

herbicides show negative seedbank and economic repercussions that were quite large when 

comparing initial strategies that relied more heavily on chemical methods to later strategies 

whose approach to weed control had greater diversity through the integration of chemical and 

non-chemical methods (Norsworthy et al. 2012). This comparison further helps to highlight the 

positive relationship between the diversity within a management strategy and the long-run 

economic implications. Conversely, this comparison also shows the negative consequences of 

using a strategy with fewer modes of action or one that relies heavily on chemical weed control 

methods with Palmer amaranth weeds escapes and poor soil seedbank values.
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3
0
 

D. Tables 

Table 2.1. Strategy Modifications 

Strategy Default Non-Diverse Options No Till Poor Seedbank Diverse Options 

Fall Option  

with Shallow Till 

Soil Preparation 

[Year(s)] 
Shallow Till [1-10] No-till [1-10] No Change Shallow Till [1&3] No -till [1] 

Specific 

Crop Trait 

Uses 'Diverse Traits' 

system 

Heavy reliance on 

Roundup and 

LibertyLink 

No Change No Change No Change 

Herbicide Options 

[application period – 

Year(s)] 

Uses 'Diverse Traits' 

system 
No Change 

+ Gramoxone  

[pre – 6&9] 

– Liberty  

[post – 2,5,&8] 

No Change 

+ Dicamba  

[burndown – 3] 

(following fall Cover 

Crop Mix in Year 2) 

Fall Options 

[Year(s)] 

MB Plough [1] 

Windrow Burn 

[3,6,&9] 

Cover Crop Mix [1] 

Cereal Rye [2-10] 

 No fall options to 

reflect reliance on 

herbicides only 

No Change + MB Plough [1] + Cover Crop Mix [2] 

Error Checking 

[Year(s)] 

Tank Mix errors  

[3,6,&9] 

Roundup/LibertyLink 

planted too frequently 

– Tank mix errors 

+ Roundup planted too 

frequently 

+ LibertyLink planted 

too frequently 

No Change No Change No Change 

NPV ($/acre)  $1,585  –$87  $981  $2,008  $1,977 

Risk Assessment 

Score (1-100)  
24 points 53 points 52 points 38 points 40 points 

Risk Assessment 

Factors 

Low resistance 

evolution risk; no 

recommendations 

Seedbank size, poor crop 

rotation and fall 

practices 

No Change 
Poor crop trait rotations 

and fall practices only 
No Change 

Palmer amaranth 

Escapes (plants/250 

sqft) [Year(s)] 

Mid-June to early July 

[1] 

Mid-May to early July 

[2&3] 

Mid-June [1] and 

continues frequently 

through [2-10] 

Less frequent from 

early-May and early- 

to mid-June [9] 

Less frequent [1-6] 
Mid-June [1] to early-

June [2] only 
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Table 2.2. Output Comparison of ‘Non-Diverse Options’ versus ‘Diverse Options’ Strategies 

Strategy Non-Diverse Options Diverse Options 

Annual spring Seedbank 

(000’s/205 sqft) 

[Year(s)] 

High seedbank levels [4, 7, & 10]  
Low seedbank levels [1-3]; 

Seedbank levels at zero (0) [4-10] 

Yield Potential 

(percent) 

[Year(s)] 

Volatility across [1-10];  

Lowest yield potential [3, 6, & 9] 
Steady near 100% [1-10];  

Net Returns 

($/acre) 

Net returns  $188/acre [1-2]; 

Very low [3-10]; with 

Negative returns ≤ –$167 [3, 6, & 9] 

Net returns $168/acre [1-10] 

Risk of Resistance 

Evolution Score 

(100 point scale) 

53 points 38 points 

NPV ($/acre) -$87 $2,008 
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E. Figures 

Figure 2.2. Model Flow Chart 

 
Source: PAM User Manual (Lindsay et al. 2017)  
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Figure 2.2. ‘Corn/Cotton/Soybean’ System 

 
Source: PAM (Bagavathiannan et al. 2017) 

Notes:  

1. The user may enter appropriate expenses for crop rotation using the ‘Calculate Total 

Specified Expenses’ command buttons. 

2. The user may enter appropriate expenses for fall management options using the ‘Specify 

Fall Options’ command button. 

3. The user may enter amortization rate based on anticipated level of risk associated with the 

operation. 

4. The user may define a typical production rotation to generate default settings for the 

‘Strategy’ worksheet.  

4. 

1. 

2. 

3. 



 

34 

Figure 2.3. ‘Diverse Traits’ System 

 
Source: PAM (Bagavathiannan et al. 2017) 

Notes:  

1. Weed density is set at High (8-15 plants per 250 square ft). 

2. Pre-existing resistance to Roundup, ALS- and PPO-inhibiting herbicides is set at high. 

3. Left-click the ‘Next’ arrow (command button) to navigate to the ‘Strategy’ worksheet.  

1. 

3. 

2. 
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Figure 2.4. Default Strategy 

 
Source: PAM (Bagavathiannan et al. 2017) 

Notes:   

1. The user may save and assign names for up to six strategies for later comparison. 

2. The user may recall default strategy by left-clicking the ‘Reset Strategy’ command 

button. 

3. The user may use the conditional formatting (error checking) provided to identify 

potential errors or inefficiencies within the current strategy. 

4. The user may use the net present value (NPV) as a guide to evaluate the long-run 

economic implication of strategic decisions. 

5. The user may use biological and economic values in the blue output cells above the 

strategy selection cells as a guide to making appropriate modifications to the current 

strategy. 

6. The user may monitor the risk of evolution resistance by left-clicking the ‘Risk 

Assessment’ button as well as monitor the timing of escapes by left-clicking the ‘Palmer 

Amaranth Escapes’ button.  

1. 

2. 

3. 

 

5. 

6. 

4. 
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Figure 2.5. Risk Assessment for the Default Strategy 

 
Source: PAM (Bagavathiannan et al. 2017) 

Note: The default strategy has a generally low risk of evolution resistance, however, 

diversified management is encouraged.  
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Figure 2.6. Palmer Amaranth Escapes by Year for the Default Strategy 

 
Source: PAM (Bagavathiannan et al. 2017) 

Note: Initial Palmer amaranth escapes (plants per 250 square ft) occur during Year 1 from mid-

June to early July. Escapes reoccur during Years 2 and 3 from mid-May through early July.  
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Figure 2.7. ‘Non-Diverse Options’ Strategy 

 
Source: PAM (Bagavathiannan et al. 2017) 

Notes:   

1. The ‘Soil preparation’ is changed from ‘Shallow Till’ to ‘No-till’ to reflect a strategy 

using tillage conservation. 

2. The ‘Specific crop traits’ have been changed to reflect a strategy that relies heavily on 

herbicide technologies. 

3. All ‘Fall’ options have been removed from the strategy to reflect a strategy that relies 

heavily on herbicide technologies. 

4. Inappropriate tank mixes have been adjusted to ensure the operation is using legal mixes.  

5. Net present value (NPV) decreased from $1,585 per acre with the default strategy to -$87 

per acre. 

6. The risk of resistance evolution increased from 24 points with the default strategy to 53 

points.  

1. 

2. 

3. 

4. 

 5. 

6. 
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Figure 2.8. Risk Assessment for the ‘Non-Diverse Options’ Strategy 

  
Source: PAM (Bagavathiannan et al. 2017) 

Note: The risk feedback provided highlights high seedbank size and inadequate fall practice as 

risk factors associated with the strategy and suggests reducing seedbank size by diversifying 

the strategy with fall options, increasing herbicide-tolerant crop trait rotations, and using cover 

crops in the fall to reduce the risk of evolution resistance.  
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Figure 2.9. Palmer Amaranth Escapes for the ‘Non-Diverse Options’ Strategy 

 
Source: PAM (Bagavathiannan et al. 2017) 

Note: Palmer amaranth escapes (plants per 250 square ft) occur within this strategy from mid-

June in Year 1 and continue to occur very frequently throughout the remaining periods of all 

remaining years of production.  
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Figure 2.10. ‘No Till Poor Seedbank’ Strategy 

 
Source: PAM (Bagavathiannan et al. 2017) 

Notes:  

1. ‘Gramoxone’ is added to preemergence periods for full-season soybean crops in Years 6 

and 9. 

2. ‘Liberty’ is removed from the postemergence periods when corn is planted in Years 2, 5, 

and 8. 

3. Net present value (NPV) increased from -$87 with the ‘Non-Diverse Options strategy to 

$981 per acre. 

4. The risk of resistance evolution decreased slightly from 53 points with the ‘Non-Diverse 

Options’ strategy to 52 points.  

1. 

2. 

 3. 

4. 
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Figure 2.11. ‘Diverse Options’ Strategy 

 
Source: PAM (Bagavathiannan et al. 2017) 

Notes:  

1. ‘Soil preparation’ is changed from ‘No-till’ to ‘Shallow Till’ in Years 1 and 3. 

2. Mouldboard plough is added as a ‘Fall’ options in Year 1. 

3. Net present value (NPV) has increased from $981 per acre with the ‘No Till Poor 

Seedbank’ strategy to $2,008 per acre. 

4. The risk of resistance evolution decreased from 52 points with the ‘No Till Poor 

Seedbank’ strategy to 38 points.  

1. 

 
3. 

3. 

2. 
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Figure 2.12. ‘Fall Option with Shallow Till’ Strategy 

 
Source: PAM (Bagavathiannan et al. 2017) 

Notes:  

1. ‘Soil preparation’ is changed back from ‘Shallow Till’ to ‘No-till’ for Year 1 only. 

2. ‘Cover Crop Mix’ is added as a ‘Fall’ option in Year 2 and Dicamba is automatically 

added to ‘Burn Down’ in Year 3. 

3. Net present value (NPV) has decreased from $2,008 per acre with the ‘Diverse Options’ 

strategy to $1,977 per acre. 

4. The risk of resistance evolution increased slightly from 38 points with the ‘Diverse 

Options’ strategy to 40 points.  

1. 

2. 

2. 

 3. 

4. 
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Figure 2.13. Output Comparison of ‘Non-Diverse Options’ and ‘Diverse Options’ Strategies 

 
Source: PAM (Bagavathiannan et al. 2017) 

Notes:  

1. Spring ‘Seedbank’ (000’s per 250 square ft) is volatile for the ‘Non-Diverse Options’ 

strategy. The ‘Diverse Options’ strategy has low seedbank levels in the first few years of 

production with seedbank levels at zero in the remaining Years, 4 through 10. 

2. ‘Yield’ potential, as a percentage, for the ‘Non-Diverse Options’ strategy shows some 

volatility. The ‘Diverse Options’ strategy yield levels are at 100% for most years with 

only a slight drop in Year 2. 

3. ‘Net Returns’ (US dollars per acre) show some fluctuation, but remains in the positive 

range of $168 to $356 per acre with the ‘Diverse Options’ Strategy. The ‘Non-Diverse 

Options’ strategy achieves net returns of at least $168 per acre for the first two years of 

production with the remaining years of production experiencing very low net returns or 

negative net returns as low as -$167 per acre. 

4. The risk of evolution resistance the ‘Non-Diverse Options’ strategy scored 51 points out 

of 100 compared to the ‘Diverse Options’ strategy at 35 points. 

5. The NPV for the ‘Non-Diverse Options’ strategy is experiencing a loss at -$87 per acre 

compared to $2,008 per acre for the ‘Diverse Options’ strategy.  

1. 

2. 
3. 

4. 

5. 
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III. Conclusion 

A. Project Summary 

The objective of the PAM model was to develop a DSS program to encourage the use of 

IPM methods of Palmer amaranth weed control, specifically to improve long-term soil seedbank 

levels and economic benefits (Lindsay et al. 2017). The software was developed as an 

educational tool to provide producers, crop consultants, and educators affected by herbicide-

resistant Palmer amaranth with a better understanding of IPM methods to realize long-term 

biological and economic sustainability by improving the long-term effectiveness of current 

herbicide technologies and reduce the human health risks and environmental effects associated 

with resistance to herbicide use (USDA 2013). Importantly, the model provides estimates that 

quantify the effect of various chemical and non-chemical weed control options that are easily 

tailored to a user-specific situation. 

Model Use Caveats 

This model uses default values that are based on existing literature and expert opinions in 

addition to user-specifications. The output results generated are strictly estimates and users are 

cautioned to “use their own judgment” when determining whether the output results are 

appropriate for their operation prior to making production changes (Lindsay et al. 2017).  

Model Limitations 

The PAM software is designed as an educational tool for use by corn, cotton, and 

soybean producers, extension agents, crop consultants, and other educators and researchers who 

wish to learn the advantages of various IPM methods. Several customizable input parameters are 

used to generate a default management strategy based on a user-specified situation as a starting 

point from which to build several IPM strategies for comparison. However, this default strategy 
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does not represent a recommended management program. The main purpose of this software is 

to educate the user on the advantages/disadvantages of using different combinations of IPM 

techniques using what-if analyses. Note that PAM is not designed as a forecast model; rather, it 

is strictly meant to be a “demonstration-based” DSS to show potential changes in biology and 

economics in the long-term with changes in weed management options. Likewise, although PAM 

considers herbicide-resistance levels present and the possibility of evolution resistance, PAM 

should not be used to simulate herbicide resistance associated with a specified strategy. 

Moreover, PAM is a deterministic model and therefore does not provide information on 

variations across years and/or production parameters. The model is only expected to provide an 

average response for a given strategy. Fixed costs, such as equipment and other capital costs, are 

excluded from economic measures because the software is designed for existing operations that 

are with this capital already in use (Lindsay et al. 2017). Finally, PAM is intended to track the 

effect of selected management options on Palmer amaranth only; therefore, any observed 

changes in biological or economic output with respect to the deletion of or changes in herbicide 

options in strategy selections do not reflect the effect of those changes on other invasive species 

that may be present in the production area.  

B. Future Modeling 

The PAM model may be expanded to include other crops affected by Palmer amaranth, 

such as peanuts (Arachis hypogaea L.) (Culpepper et al. 2006; Ward et al. 2013), rice (Oryza 

sativa L.) (Norsworthy et al. 2013), and wheat (Triticum aestivum L.) (Webster and Nichols 

2012). In Arkansas, Norsworthy et al. (2013) identified Palmer amaranth and barnyardgrass 

[Echinochloa crus-galli (L.) Beauv.] as the “most troublesome” weeds among rice crop 

consultants. Future modeling may, therefore, be developed for the purpose of educating those 
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involved in the production of crops that are affected by other invasive species in the southern 

US. Such invasive species include but are not limited to morning glory [Ipomoea (spp.)] among 

corn, cotton, and soybean production or nutsedges [Cyperus (spp.)] for cotton and soybean 

production (Webster and Nichols 2012). Along with Palmer amaranth, Riar et al. (2013) also 

identified morning glory [Ipomoea (spp.)] as the most troublesome weeds across Arkansas, 

Louisiana, Mississippi, and Tennessee in addition to barnyardgrass and horseweed [Conyza 

canadensis (L. Cronq.)] in Arkansas and Tennessee, and Italian ryegrass [Lolium perenne (L. 

ssp.) multiflorum (Lam.)] in Louisiana and Mississippi.  

Furthermore, modifications to the user interface may be made more efficient if future 

modeling was designed with default settings in Microsoft Excel® rather than full-screen mode. 

Although PAM was initially designed in full-screen mode to enhance the user experience and 

provide added securities, this feature comes at the expense of slower run times and the need for 

additional display alerts on entry and exit to ensure Excel® is returned to default settings prior to 

exit. These issues may lead to user frustration and could limit the software’s ability to achieve its 

objectives. In addition, the software may be locked and password protected without the 

application of full-screen mode. One possible solution to the above mentioned programming 

needs and pitfalls that come with the existing software platform could be to work with an 

internet-based platform in the future. This would eliminate the need for file sharing and the 

associated security implications while still providing the desired enhanced user experience and 

ease of access; however, a web-based platform may be too limited for a program that consists of 

a multitude of complex calculations and allows as much flexibility as PAM. 
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