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Abstract 

This thesis is comprised of two studies examining the effects of price signal based herd 

size management strategies on profitability of cow-calf operations. Herd size management 

strategies were evaluated across the previous two cattle cycles, 1990-2014, using a fixed land 

resource and included a variety of production scenarios. These scenarios varied in terms of 

stocking rates, fertilizer applications rates, and calving season. Each scenario was also analyzed 

both with and without weather effects on forage production. Weather effects were simulated 

using a production index derived from satellite imagery across the observed 25-year period. 

Three herd size management strategies: i) constant herd size; ii) dollar cost averaging; and iii) price 

signal-based, anticipatory counter-cyclical expansion/contraction, were evaluated on the basis of 

net present value of cash operating profits as well as on the basis of risk in terms of range of 

yearly cash operating profit. This analysis revealed fall calving herds with increased forage 

production and hay sales through medium fertilizer application in conjunction with a counter-

cyclical herd size strategy to be the profit-maximizing management choice regardless of 

inclusion/exclusion of weather effects or time period. However, a constant herd size strategy was 

shown to create little regret in terms of net present value of cash operating profit. The second 

study attempts to rank causal variables that drive the differences in profitability across herd size 

strategies as well as land use intensities revealed in the first study. Two techniques, linear 

regression and artificial neural networks (ANNs), were compared and contrasted on the basis of 

relative variable impact rankings as well as goodness-of-fit. This analysis showed cattle price 

and head sold to be the largest drivers of profitability across the study period. In addition, fall 

calving was reinforced as the profit-maximizing decision while optimal choices regarding 

fertilizer application and stocking rate were not apparent. While ANNs were shown to be 



 

 

superior in terms of goodness-of-fit, linear regression provided coefficients, which allowed for 

more meaningful examination of tradeoffs between calving seasons, stocking rates, and fertilizer 

rates. 
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Chapter I. Introduction 

A. Problem Statement and Study Justification 

Many cattle producers are aware of the cattle price cycle, but often accept price 

fluctuations as an unavoidable reality of cattle production. In cow-calf production specifically, 

producers often respond to low prices by contracting herd size by either selling breeding stock 

or more commonly, retaining fewer heifers. This strategy helps stabilize cash flows and appears 

to be logical given the expectation of continued low prices in the short-term. Additionally, this 

producer behavior perpetuates the cycle. As producers retain fewer heifers and reduce herd size, 

markets are inundated with supply and prices continue to fall until the resulting smaller 

breeding stock is unable to meet demand. This reduced supply, over time, thus results in prices 

beginning to rise and a new cycle is started.  

The nature of the cattle cycle and observation of producer behavior raises questions 

about a counter-cyclical strategy that attempts to capitalize on the high prices experienced 

during a cycle while mitigating cash flow risk during the low price period of the cycle. Little 

research has been dedicated to answering this question, especially under real-world conditions 

experienced by producers. Land and forage constraints are a reality for many producers such 

that expansion and contraction of herd size leads to either excess hay production or the need to 

purchase hay. Additionally, weather risk as it pertains to forage growth is an important factor in 

cow-calf production that is almost impossible to forecast or predict. Using the Forage and Cattle 

Planner (FORCAP) tool, counter-cyclical herd size management (HSM) strategies were 

examined under simulated production risk and spring and fall calving seasons across the 1990-

2003 and 2004-2014 cattle cycles. In addition to examining HSM strategies across multiple 

cycles and calving seasons, several levels of fertilizer use were evaluated where added forage 
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production was either sold or stocking rate of cattle was increased resulting in three scenarios 

with different land-use intensities (LUI) entailing use of fertilizer and stocking rate. 

Comparisons of HSM strategies across multiple cycles as well as manipulating calving seasons 

and LUI’s enhanced the ability to generalize results from this research. This analysis made a 

unique contribution to research involving cow-calf herd management strategies and provided 

useful insights to producers interested in increasing profitability through implementation of a 

price-based HSM strategy. 

The analysis mentioned above yielded extensive data on simulated cow-herd 

performance statistics that spanned 25 years for a variety of HSM × LUI strategies. While 

profitability differences between HSM strategies were analyzed, the driving factors behind the 

profitability differences were not identified in Chapter II. Hence, two modeling techniques, 

standard multiple linear regression and artificial neural network analyses were compared and 

contrasted to determine which of cattle price, number of cattle sold, hay price, number of hay 

bales bought or sold, calving season, weather, and fertilizer use had the largest impact on cow 

herd profitability.  

B. Objectives 

Chapter II analyzes the profitability of cow-calf HSM strategies across the previous two 

cattle cycles under forage production risk from weather effects, by calving season, and LUI. 

Weather effects were captured using an index developed from satellite imagery. The null 

hypothesis was that price-signal based HSM strategies have the same level and risk of annual 

cash operating profits as a cow-calf operation were the breeding herd size was held constant. 
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Chapter III compares and contrasts two modeling techniques in an attempt to rank the 

impact of explanatory variables on cow-calf profitability. Predictive performance was evaluated 

across the two previous cattle cycles, separately, and across the entire period. The null 

hypothesis was that rankings of the impacts of explanatory variables are the same across 

modeling technique.  A second null hypothesis was that the goodness-of-fit (R2) of the modeling 

techniques does not vary by modeling technique.   

C.   Overview of Methods 

The analysis presented in Chapter II was made possible by utilizing the FORCAP tool 

(available at http://agribusiness.uark.edu/decision-support-software.php#forcap). To perform 

the analysis needed for this research, the tool was modified to include price data from 1990 

forward. Also, FORCAP was modified to model weather risk by using a weather index to adjust 

monthly forage production. Varying forage production drives hay and corn feeding needs of the 

herd during winter months or for periods when forage production on pastures is insufficient 

during the growing season to meet herd nutrition requirements. Hay and corn feeding impact 

production cost and thereby profitability of the cow herd. In total, 1,800 individual model runs 

resulted in cow herd performance statistics that could be compared by HSM, calving season, 

cattle cycle, and LUI. Multiple linear regression and artificial neural networks (ANNs) were 

used to compare and contrast their goodness-of-fit and to rank the impact of explanatory 

variables on annual cash operating profitability. Chapter III was written in a manner that 

assumes the reader has some familiarity with the function and application of ANNs. A literature 

review of ANNs, presented next, sheds some light on important aspects of different ANN 

modeling techniques deemed relevant for Chapter III’s analysis. 
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D. Review of Artificial Neural Networks  

ANNs are a method of machine learning that mimics the function of the human brain 

with the purpose of determining complex relationships within data (Palisade, 2015). In biological 

neural networks, neurons are capable of sending and receiving information from many other 

neurons. This manner of interconnection is also the foundation of ANNs. This analytical 

technique is capable of identifying relationships and trends within data that are not apparent 

using traditional statistical analysis tools. The algorithms used in ANNs are not fixed and rigid to 

one problem as many traditional statistical techniques are. ANNs utilize flexible algorithms that 

are self-organizing in a manner that makes them useful for solving non-linear or non-stationary 

problems (Graupe, 2007). The flexibility of ANNs extends to data that are both categorical and 

numeric in form for both explanatory and dependent variables. In an ANN, connections between 

explanatory variables can be seen as neurons, which are the foundation of ANNs.  

The algorithm behind the network is tasked with exploring varieties of connections 

between the variables or neurons. The algorithm tests both varying combinations of connections 

as well as varying weights on those connections. In biology, connections between neurons are 

not equal in that some connections take priority over others. Additionally, some connections 

inhibit transmission while others promote transmission of information. Artificial neural networks 

are designed in much the same manner. As in the biological model, some connections are 

modeled as inhibitory, meaning that they decrease the impact on the outcome or dependent 

variable, while other connections are weighted as excitory, meaning they increase the impact on 

the dependent variable (Olden and Jackson, 2002). This flexibility and exploratory aspect is the 

driver behind ANN’s capability to identify complex relationships and patterns. To identify these 

relationships the network must be “trained” on a portion of the input data that is randomly picked 
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from observations. Hence, with different model runs, different solutions are attained that ideally 

converge on similar outcomes. The fact that different solutions are obtained from multiple 

analyses on an identical data set as a result of the random nature of selecting training 

observations is distinctively different from regression analysis.  

Training involves iteratively changing the weights or patterns placed upon variables to 

find the combination that minimizes the sum of squared errors. This approach opens the door to 

settling on a local minimum and not on the global minimum in applications using weights 

instead of patterns. Artificial neural networks mitigate this problem by starting with large weight 

changes and reducing them slowly in an effort to hone in on the global minimum. This process is 

the driver behind the long processing time associated with ANNs. Compared to many other 

computer driven analysis methods, ANNs require significantly more time to analyze data 

(Graupe, 2007). 

After a network has been trained, the next step is to “test” the network. To test a network, 

the portion of the input data that was not used during training is predicted based upon the neural 

net developed during training. Known explanatory variable values are used as input for the 

trained net to make predictions. These predicted values are then compared to the actual value to 

test the accuracy and predictive capacity of the ANN within sample. Typically, the training and 

testing process is performed several times as the user can stipulate different percentages of the 

initial data set to use. As such, trained neural networks can be compared to showcase the 

accuracy and consistency of predictions (Palisade, 2015) using several different approaches 

described next. 

Since their inception in the 1950’s, ANNs have grown rapidly and spread through many 

fields of research. As such, they have taken on a variety of forms or configurations that tailor the 
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network to certain problems (Graupe, 2007). This review focuses on three modeling 

configurations; multi-layer feed forward networks, probabilistic neural networks, and 

generalized regression neural networks, that are referenced in Chapter III.  

1. Multi-layer Feed-forward Networks 

Multi-layer Feed Forward (MLF) Neural Networks are a type of supervised training 

process that work through back propagation (Svozil, Kvasnicka, & Pospichal, 1997). Supervised 

networks are networks in which the desired output or dependent variable value is known and the 

network adjusts connection weights between explanatory variables and nodes in a hidden layer 

as well as those nodes and the explanatory variable to achieve the configuration that yields the 

closest approximation or best outcome prediction. Backpropagation is a method for examining 

the effect that weights have upon the output function. By taking the partial derivative of the 

output function with respect to the connection weights, the network can determine how changing 

a weight affects the output value. This enables the network to manipulate the weights to move 

towards the known desired output value and, therefore, minimize the sum of squared errors. The 

name “backpropagation” stems from the fact that the process begins with the error term of the 

output value and then examines weights backward throughout the network to find the source of 

the error and then minimize it (Nielsen, 2018). This backpropagation occurs throughout the 

foundation of MLF networks, which are layers. In MLF configurations, there is the input layer, 

the output layer, and a varying number of hidden layers (Figures 1.1 & 1.2). These hidden layers 

are comprised of nodes that are used to define the relationships between inputs and outputs. In 

MLF networks, all nodes from one layer are connected to every node in the forward layer. Each 

connection is then assigned an associated weight. Palisade’s (2015) Neural Tools® uses one 

hidden layer and a choice of 2 to 6 nodes.    
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2. Probabilistic Neural Networks 

Probabilistic Neural Networks (PNN) are structured in somewhat the same way as MLF 

networks, but their function is significantly different. As shown in Figure 1.3, PNNs are designed 

with four layers: input, pattern, summation, and output (Specht, 1990). The input and output 

layers function in the same way as MLF networks, but the divergence occurs in the two hidden 

layers. Pattern layers are designed to use each input and apply a set pattern to that input. Each 

pattern unit represents a pattern gathered from one observation of the training data. These 

patterns are then grouped into categories that are designated using the Bayes Strategy for Pattern 

Classification. The Bayes Strategy utilizes probability distribution functions (PDFs) to define 

categories that minimize the expected risk of making a poor prediction. Probability density 

functions can be estimated using a small set of training data although larger data sets serve to 

minimize expected error (Specht, 1990). Pattern units calculate the conditional probability of the 

given inputs fitting well into that specific pattern which was observed in the previous training 

data (Kubat, 2017). Once the probability of fit is calculated, it is sent to the summation unit 

where probabilities from all pattern units are evaluated and the best choice for that set of input 

data is selected. The output value is a category specification that results from the chosen pattern 

and its associated category based upon the Bayes Strategy (Specht, 1990). Categories are 

comprised of patterns with the highest probability of fit or minimum expected error. Because 

PDFs can be estimated from a small data set, PNNs are able to classify data faster than 

backpropagation techniques such as MLF networks. Additionally, because patterns and pattern 

classifications are learned and defined within the system, new inputs can be quickly analyzed 

and categorized when compared to back propagation techniques which require retraining of the 

network. Numerical outcome prediction using PNN are organized in the same manner.  
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3. Generalized Regression Neural Networks 

Generalized regression neural networks (GRNN) are a subset of (PNNs) and similarly 

require much less training data when compared to MLF networks. All training data values 

contribute to every prediction, but those observations closest to the desired output value are 

given more predictive power (Figures 1.4 & 1.5) using a smoothness parameter. From this 

property, the network gathers its explanatory power. A smoothness parameter of one implies that 

all training values are weighted equally regardless of distance from the desired value. Therefore, 

a small smoothness parameter implies that training values with explanatory values in close 

proximity to those of the predicted value are weighted higher than those farther away (Figure 

1.4). Whereas MLF networks require very large data sets to obtain a prediction through 

backpropagation, a GRNN is able to make predictions with fewer training values by utilizing 

input from all training points and manipulating the smoothness parameter to minimize the sum of 

squared errors (University of Wisconsin, nd; Specht, 1991). 

D. Overview of Chapters 

Chapter II details a 25-year analysis of three HSM strategies utilizing fall and spring 

calving herds with and without weather effects by calving season and LUI. Chapter III builds on 

Chapter II by describing the relative impact of explanatory variables on the profitability 

differences using two different modeling frameworks. Chapter IV concludes by summarizing 

findings and suggests areas for future research.  
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F. Tables and Figures 

 

 

 

 

 

 

Source:  Svozil, Kvasnicka, & 

Pospichal, 1997. 

 

 

 

Figure 1.1. Diagram of Feed-forward Neural Network with One Hidden Layer                                                          

 

 
Figure 1.2. Multi-layer Feedforward Neural Network Diagram 
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Source: University of Wisconsin, nd 

 

 

 

 

Figure 1.3. Diagram of a Probabilistic Neural Network  
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Figure 1.4. Generalized Regression Neural Network Diagram with Low Smoothness Parameter 

Note:  Dot size represents contribution to predicted value. Therefore larger dots represent 

training observations with higher contributions to predictions closer in proximity to the level of 

X at the prediction (▲) while smaller dots represent those observations that contribute relatively 

less. Weighting is a function of horizontal distance between observations and a particular 

predicted outcome’s X value. 
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Figure 1.5. Generalized Regression Neural Network Diagram with High Smoothness Parameter 

Note:  Dot size represents contribution to predicted value. Therefore larger dots represent 

training observations with higher contributions to predictions closer in proximity to the level of 

X at the prediction (▲) while smaller dots represent those observations that contribute relatively 

less. Weighting is a function of horizontal distance between observations and a particular 

predicted outcome’s X value. 
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Chapter II. Impact of Weather and Herd Size Management on Beef Cow Profitability  

A. Introduction 

Cattle production is an important industry to agriculture in many U.S. states as aggregate 

U.S. agricultural commodity cash receipts in 2015 totaled $78.2 billion with cattle and calf sales 

contributing 21% of that total (NASS 2016). Changes in the U.S. herd size, attributed to weather 

(specifically drought), macro-economic factors, and varying cattle and feed prices, can have 

large economic repercussions for the livestock sector. For example, with the expanded use of 

corn for ethanol production over the course of the last twenty years, U.S. corn prices eventually 

increased enough to make it the most valuable commodity in terms of total production value 

rather than cattle and calves in 2005 (Park and Fortenberry, 2007). The national drought in 2011-

12 led to large-scale herd liquidation resulting in subsequent, record cattle prices for 2012-2015. 

These record cattle prices, in turn, caused the eventual rebuilding of the U.S. herd to end the 

2004-2014 cattle cycle.  

The average cattle cycle, defined as the time span between sequential inventory lows, 

typically lasts from 8 to 12 years (Matthews et al., 1999) as a function of i) beef export/import 

conditions with fluctuating exchange rates, disease outbreaks and/or trade restrictions; ii) cattle 

and feed prices; iii) weather events; iv) producer credit constraints (Bierlen et al. 1998); and, v) a 

biological production lag where an added heifer retained at 7 months of age and bred at 15 

months of age leads to an extra calf born and finished as early as 36 months after the retained 

heifer was born. Hence, national herd expansion is slow compared to possible contraction via the 

slaughter of mature cows (Hughes, 1987). Furthermore, Hamilton and Kastens (2000) show that, 

in addition to the exogenous factors mentioned above, market timing attempts by producers are a 

significant determinant of cattle price cycles. Also, cow-calf production occurs mainly on 



15 

 

pastures and encompasses a majority of the time needed from birth to slaughter. Pasturing cattle 

is characterized by production uncertainty due to drought, flooding, fires, and snow events that 

affect cost of production to a larger extent than confined animal feeding conditions for 

competing meat products of pork and poultry (Matthews et al., 1999). As such, exogenous 

factors such as weather introduce uncertain forage production. Rosen (1987) proposes that 

producers capitalize on these factors by selling (retaining) calves when the exogenous shock 

results in an increase (decrease) in the market price, thus perpetuating the price cycle.  

Careful planning and flexibility to manage these price cycles by way of herd size 

expansion/reduction and/or on-farm forage production and acquisition of supplemental feed is 

required to maintain adequate cash flow, to manage income tax repercussions, and to manage 

price and production risks (Hughes, 2000). Further, the larger a producer’s herd size, the larger 

the potential financial implications. The average U.S. cow-calf operation has approximately 40 

head (Jones, 2017), and operations of this size or smaller are often non-intensive labor 

enterprises on small parcels of grassland providing a source of supplemental income. Operations 

of less than 100 head encompass 91% of operations but represent less than half of the total cattle 

inventory (USDA ERS, 2016). On the other hand, operations with over 100 head account for 

51% of U.S. cattle inventories, while only 9% of total operations (Jones, 2017). It is this latter 

size category where herd size management begins to play a more noticeable role on profitability 

in dollar terms rather than rates of return to resources employed when compared to smaller 

operations.  

Generally, producers expand herd size when prices and producers’ returns are high 

resulting in an increased beef supply several years later (Bentley and Shumway, 1981). However, 

with expansion of beef supply comes the inevitable decline in prices, and hence, the decision to 
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expand the herd in years past, was potentially counterproductive. Expanding the herd when 

prices are high and liquidating when prices turn low is contrary to the old adage of “buy low, sell 

high” and thus it may be beneficial for producers to counter-cyclically expand production when 

prices are low and decrease herd size when prices are high (Griffith et al., 2017). Along the same 

line, Hamilton and Kastens (2000) show that a counter-cyclical strategy outperforms constant 

herd size and cyclical strategies over a 25 year period. Thus a herd size management strategy that 

anticipates future price trends is encouraged (Bentley and Shumway, 1981; Trapp, 1986; and 

Lawrence, 2002) as herd size management strategies that react to price signals can lead to greater 

returns when compared to strategies that assume constant herd sizes. In that regard, Lawrence 

(2002), compared a constant herd size (CHS) strategy to i) a strategy where sales receipts from 

heifer sales are constant and thereby more/fewer heifers are sold during low/high price years, 

respectively; and ii) a dollar cost averaging (DCA) strategy where replacement heifer 

reinvestment is held constant by again changing the number of heifers retained with changing 

cattle prices (selling more/fewer when prices are high/low). Lawrence (2002) encouraged the 

DCA strategy.  However, weather effects were excluded and extra land resources were rented 

when needed and assumed to be available. A study by Lutes and Popp (2015), showed the 

impacts of weather to increase ten-year income risk under both constant and changing herd size 

scenarios when land resources are held constant. Herd size changes followed state cattle 

inventory changes reflecting average producer choices.  They used a cow/calf simulation tool, 

the Forage and Cattle Planner (FORCAP) and analyzed the effect of alternative grazing methods 

and associated stocking rates (Popp et al., 2014).  

Using FORCAP, the objective of this research was to examine cow/calf cash operating 

profitability with a fixed land resource and three herd size management strategies both with, and 
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without weather effects over the course of the last two cattle cycles. Since cow-calf operations 

can modify calving season and amount of fertilizer use, we compare CHS and DCA herd size 

management strategies along with a strategy based on moving average prices (MA). The MA 

strategy involves the use of a price ratio of a short- to a longer-run moving average to signal an 

up- or downtrend in cattle prices, thereby allowing an anticipatory countercyclical herd 

expansion/contraction reaction to profit from price changes. Results quantify to what extent 

profit-maximizing, long-term calving season, fertilizer use, and herd size management strategy 

choices are affected by i) simulated weather effects on forage production generated using 

satellite imagery;  and, ii) time period or cattle cycle analyzed.    

B. Materials and Methods 

1. FORCAP 

The Forage and Cattle Planner (FORCAP), (available at http://agribusiness.uark.edu/ 

decision-support-software.php#forcap) is a decision tool that allows comparison of a plethora of 

different cattle production practices, using either default or operation-specific production 

parameters, by summarizing profitability and production efficiency changes in an automated 

spreadsheet application.1 Smith et al. (2016) used the tool in an optimization framework, but this 

was not possible for this work as the multi-year framework to analyze cattle cycles required 

hundreds of annual FORCAP model runs. Farm size, as measured by stocking rate and land use 

(dedicated to pasture or hay production), is a key parameter as are calving season, use of 

fertilizer inputs, and forage production as affected by weather. Cash operating profits (π) are 

estimated annually and result from sale of cattle and excess hay after accounting for feed and 

supplements, seed, fuel, fertilizer, twine, chemicals, medication, vaccines, veterinary services, 

operating interest, repairs, and maintenance as shown for a sample year in Table 2.1. Different 
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calving seasons lead to changes in exposure to fescue toxicity and thereby a lower breeding 

failure rate with fall calving than spring calving (Caldwell et al., 2013).  Hence, fewer head of 

calves were sold with spring calving at seasonally lower annual calf and cull cattle prices as 

reflected in the lower gross receipts and lower direct costs associated with lesser sales when 

compared to fall calving. Forage production uncertainty as highlighted in Figure 2.1 and evident 

in feeding statistics in Tables 2.2 and 2.3, led to monthly changes in forage production that in 

turn affected hay production and supplemental feed needs given herd nutrition requirements that 

are impacted by cow gestation and lactation needs estimated from month to month.  Noticeable 

for 2004 was the need for purchased hay given less than expected forage production throughout 

the year except July (Figure 2.1), which translated to a need for purchased hay as most major 

forage production months were impacted negatively and more so under spring calving conditions 

in that year. By the same token, supplemental feeding of corn during the winter months was 

higher with fall calving than spring calving as nutritional needs of the cows peak in the winter 

months when lactating to support calves that were born in fall.  

Capital ownership charges including depreciation, insurance, property taxes and 

opportunity cost of capital are excluded as land, equipment, and building resources used did not 

change across production practices discussed next. The exception is a set of model runs 

involving a higher stocking rate that did require added capital investment in breeding stock. 

Ramifications of these added capital recovery charges and property taxes are discussed below.  

2. Land Use Intensity 

For each of the three herd size management strategies (CHS, DCA, and MA), three levels 

of fertilizer application rates are analyzed to showcase the impact of varying cattle and hay 

output on profitability while holding pasture and hay land constant over time (Table 2.4). 
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Further, these nine herd size strategy × land use intensity combinations are analyzed i) by calving 

season (fall vs. spring); ii) with and without weather effects on forage and attendant hay 

production; and, iii) over two cattle cycles.  

As summarized in Table 2.4, land use intensity is increased from left to right by 

increasing fertilizer application that translates to greater forage production in the middle column 

and greater stocking rate in the right most column.  Least fertilizer use yields a small hay surplus 

that is indicative of an operation that relies mainly on cattle revenue for income. Adding fertilizer 

on pasture allows greater opportunity to harvest excess hay from pasture and diversifies revenue 

streams given added hay sales. Adding even more fertilizer increases forage production 

sufficiently to allow a higher cattle stocking rate with hay sales similar to the least fertilizer 

outcome. Forage productivity with different fertilizer application rates is uncertain, however, as 

weather impacts production and thereby hay and corn feeding results. While the impact of 

weather uncertainty on supplemental feed and hay sale information is highlighted in Tables 2.1-

2.3 for least fertilizer use. Greater fertilizer use amplifies weather effects on forage production as 

discussed next.  

3. Production Index 

Monthly forage production is tracked historically using imagery and associated NDVI 

(Normalized Difference Vegetation Index) data collected by LANDSAT. LANDSAT typically 

reports two NDVI values per month for a specific location (30 m spatial resolution). Chosen for 

this analysis were six pasture/hayland areas in Washington County in Northwest Arkansas as the 

researchers were familiar with the history of those fields from casual observation over time. The 

fields were also identified using historical cropland data layer data available through NASS 

(National Agricultural Statistics Service, 2017) as far back as 2008, to have at least partial 
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assurance that the fields were in pasture or hayland production throughout the analyzed period, 

1990-2014. Therefore, twelve NDVI values per month (two each for six locations), except for 

some missing observations with data collection problems like cloud cover, for example, were 

available to create a time-varying vegetation index that would lend itself to capture weather 

impacts on forage production.2 To capture changes in forage production, the ratio of an 

individual month’s average NDVI value for all six fields for a given year to its twenty five-year 

average (1990-2014) for a particular month indicated deviations from long-term conditions 

observed for each month. Note that these fields likely had different forage species mixes over 

time but those trends are not discernable from either the crop data layer or satellite imagery. 

Hence, average NDVI values of six fields were used to remove variability in forage species crop 

mix that might occur on a single field. These ratios were further divided by the average of the 

examined period ratio values to create a production index that would average to 100% over the 

period as follows: 

(2.1) 𝑅𝑃𝐼𝑖𝑗 =
𝑁𝐷𝑉𝐼𝑖𝑗

(
(∑ 𝑁𝐷𝑉𝐼𝑖𝑗𝑗 )

25
)

         ∀    𝑖 = Jan. − Dec. and ∀ 𝑗 = 1990 − 2014  

(2.2) 𝑃𝐼𝑖𝑗𝑘
=

𝑅𝑃𝐼𝑖𝑗𝑘

(
(∑ 𝑅𝑃𝐼𝑖𝑗𝑘𝑗𝑘

)

𝑌𝑘
)

  ∀    𝑖 = Jan. − Dec. , and {

∀ 𝑗𝑘 = 1990 − 2003 𝑤ℎ𝑒𝑟𝑒 𝑌𝑘 = 14, 𝑜𝑟
∀ 𝑗𝑘 = 2004 − 2014 𝑤ℎ𝑒𝑟𝑒 𝑌𝑘 = 11, 𝑜𝑟
∀ 𝑗𝑘 = 1990 − 2014 𝑤ℎ𝑒𝑟𝑒 𝑌𝑘 = 25      

       

where RPI is the raw production index, NDVI is the six-field average for a particular 

month i in year j, and PI is the standardized production index that varies by production period, 

Yk.                                

A PI value above (below) one indicates a relatively productive (poor) forage production 

month, respectively. Multiplying PI by average monthly forage production as a percent of total 
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annual yield, weather induced impacts on forage production could be estimated. Note that 

increased fertilizer application leads to increased monthly forage production that in turn is 

affected by the production index for simulation of weather effects. The monthly default 

distribution of forage production used in FORCAP (Tables 2.2 and 2.3) is based on expert 

opinion of John Jennings (2013) and Charles West (2013) and is similar to values found in 

Gadberry (2015) and Huneycutt et al. (1988). Adding weather effects by using the production 

index, a modification to FORCAP, impacted grazing capacity and attendant need to supplement 

herd nutrition requirements with hay and corn as shown in Tables 2.2 and 2.3 for 2004 as an 

example. In turn, hay sales or purchases were a result of on-farm hay production on both hay 

land and pastures and the amount of hay fed to the herd. Weather effects on ability to harvest hay 

(e.g. excessively wet conditions could preempt harvest) were not addressed. 

Monthly variability in the forage PI values by select years from 1990-2014 are shown in 

Figure 1 to demonstrate how forage production was impacted on a monthly basis. As mentioned 

earlier, 2012 was a drought year that impacted summer forage availability nationwide and also 

on the fields analyzed here. However, early spring and late fall conditions for forage production 

were above average in 2012. Forage production in 2004, by contrast, only had one above average 

forage PI value in July. Figure 2.1 thus demonstrates the amount of risk cow-calf producers face 

in terms of forage and hay availability with direct implications for cow-calf profitability as 

FORCAP automatically supplements with hay and corn when nutrition requirements are not met 

by forages growing on pasture.  

Prices, in part driven by supply uncertainties and time of transaction in a particular year, 

were modeled at the state level and annual time step given data availability for hay, corn, 

fertilizer, fertilizer application costs, seed cost for winter annuals, and diesel fuel for 1990-2014 
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(Figure 2.2). For fertilizer and fuel prices, data was gathered from NASS (2014) for 1990-2008 

and from Mississippi State University (2014) for 2009-2014. Hay and feed prices were collected 

from NASS (2014). When data was not readily available for these inputs, similar inputs with 

available price data, were used to estimate a value for that year (Tester, 2017).  

4. Baseline Model Parameters 

For each level of fertilizer use, a baseline set of parameters was used to resemble a fall- 

or spring calving, Arkansas cow-calf operation. This baseline used 80 acres of hay land and 320 

acres of pasture that was rotationally grazed to allow the producer to harvest excess forage from 

pasture when available. Additionally, 80 acres of winter wheat were sod seeded yearly on pasture 

in the fall for graze out in spring months to model forage production of winter annuals in 

FORCAP. Fertilizer application is varied and described in Table 4. As is common in Northwest 

Arkansas, pasture forage species consisted of 25% Bermuda grass, 65% fescue, and 10% clover 

by area. Hay forage species consisted of 50% Bermuda grass, 45% fescue, and 5% clover by 

area. Forage production for a species was thus calculated as acres in production multiplied by 

annual grazing potential of a pure stand of the species. This calculation was then adjusted by 

month for seasonal forage availability and was further adjusted by weather effects if desired. 

FORCAP defaults were used for mature/young cow weights, birth weight, weaning weight, and 

age. When necessary, FORCAP calculates supplemental feed needs in the form of corn and hay 

to ensure adequate crude protein and total digestible nutrient intake for maintaining cow body 

condition. The fall calving season, where calves are born in October, was selected to enhance 

breeding success compared to spring calving, where calves are born in April and fescue toxicosis 

leads to a greater likelihood of breeding failure (Caldwell et al., 2013). One herd sire is utilized 

for every thirty cows. Therefore, for the two observed cattle cycles, 100 cow herd operations 
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with least or intermediate fertilizer use required four herd sires while highest fertilizer use with 

160 cows required six herd sires. Over the cattle cycle, five revenue streams were available 

annually and included the sale of: i) weaned steer calves; ii) weaned heifer calves; iii) cull cows; 

iv) cull herd sires; and v) excess hay produced on farm.  

5. Herd Sire and Calving Management 

All 100-cow scenarios began with a herd consisting of 83 mature cows and 17 young 

cows that were exposed to the herd sires each year and 18 replacement heifers needed for herd 

replenishment given one cow death loss. All 160-cow scenarios, began with a herd consisting of 

133 mature cows, 27 young cows, and 29 replacement heifers to allow for two cow death losses. 

Average Arkansas prices, as reported by USDA AMS, were used each year and adjusted for 

seasonal differences in prices between fall and spring calving herds. All cows and heifers were 

assumed to be bred in January and July of each year for the fall and spring calving herds, 

respectively. Heifers were bred at 15 months of age to calve for the first time at 24 months of 

age. Culling and heifer retention decisions were made in May and November of each year, for 

fall and spring calving herds, respectively, and occurred at the same time calves were weaned 

and sold. One sixth of the breeding herd was culled yearly based upon the expectation of 

weaning six calves from a cow over their useful lives. Cows that were open as a result of 

breeding failure were also culled.  The FORCAP default rate of six and twenty percent breeding 

failures, for fall and spring calving herds, respectively, along with one and three percent death 

losses for cows and calves, respectively, were used (Smith et al., 2012; Ritchie and Anderson, 

1994). The number of replacement heifers needed to maintain the herd size was thus a result of 

cull cows sold either due to age or for being open and cow death losses. FORCAP v.2 2014 was 

modified to allow retention numbers to be manipulated by the user to grow or shrink the herd 
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from year to year. A separate model run was performed each year, by herd size management 

strategy, fertilizer application rate, calving season, and inclusion or exclusion of weather effects.  

A total of 1,800 annual herd performance measures were collected which included cash 

operating profit, hay sold, and head sold as estimated in FORCAP. 

6. Herd Size Changes across Strategies 

The CHS strategy simulates a producer who maintains a constant herd size despite 

changing weather and cattle prices as hay and corn are considered available for purchase as 

needed. This strategy is considered the least management intensive.  

For the countercyclical MA strategy, the simulation assumes the same starting herd size 

as the CHS strategy. However, herd size subsequently grows or declines given heifer retention 

decisions that are based on the price ratio of 10- to 27-month moving average steer prices at the 

time of breeding each year (January and July, for fall & spring calving herds, respectively). A 

price ratio above one, signals the sale of added heifer calves to reduce herd size in anticipation of 

eventual downward pressure on prices when otherwise retained heifers would lead to added 

weaned calf sales.  A price ratio below one, signals herd expansion in anticipation of an eventual 

upward trend in prices.  For both signals, two or three additional heifers, pending 100- or 160-

cow herd size, respectively, are sold or added in comparison to maintaining the herd at the size 

of the prior year. Prices for steers were used for signals, as they make up the majority of cattle 

sales (Table 2.1). The 27-month period was chosen as a second rebreeding of retained heifers 

would occur at that time and the shorter-term, 10-month period, captures the time period from 

the start of breeding to calving with an average one-month period for breeding. Using a larger 

increment or decrement for extra heifers to retain was not undertaken in this study as herd sire 

needs would change over time.  
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The constant dollar reinvestment DCA strategy uses constant yearly reinvestment in the 

herd. Producer heifer retention reactions to market conditions are simulated by using nominal 

prices. Yearly herd reinvestment was determined by finding the value of an 800 pound heifer in 

the herd size adjustment or calf sale month (Eq. 2.3) and multiplying by the number of 

replacement heifers needed based on herd size (Eq. 2.4). These annual reinvestment values were 

then averaged across cycles (1990-2003 and 2004-2014) to find the target constant yearly 

average dollar reinvestment (Eq. 2.5) needed to determine the annual number of replacement 

heifers to retain given that year’s replacement heifer value (Eq. 2.6) as follows:  

(2.3) 𝑃𝑅𝐻𝑗𝑠 =  𝑃𝐻𝑗𝑠 ∙ 8   𝑗 = 1990 − 2014 𝑎𝑛𝑑 {
𝑠 = 𝑀𝑎𝑦 ∀ 𝑓𝑎𝑙𝑙 𝑐𝑎𝑙𝑣𝑖𝑛𝑔 ℎ𝑒𝑟𝑑𝑠                  
𝑠 = 𝑁𝑜𝑣𝑒𝑚𝑏𝑒𝑟 ∀ 𝑠𝑝𝑟𝑖𝑛𝑔 𝑐𝑎𝑙𝑣𝑖𝑛𝑔 ℎ𝑒𝑟𝑑𝑠

   

 (2.4) 𝑅𝑗𝑠𝑙 = 𝑃𝑅𝐻𝑗𝑠 ∙ {
𝑙 =  18 ∀ 100-cow scenarios

𝑙 =  29 ∀ 160-cow scenarios
      

(2.5) 𝑅𝑠𝑙𝑘
̅̅ ̅̅ ̅ = ∑ 𝑅𝑗𝑠𝑙/𝑌𝑘𝑗𝑘

  {
∀ 𝑗𝑘 = 1990 − 2003 𝑤ℎ𝑒𝑟𝑒 𝑌𝑘 = 14, 𝑜𝑟
∀𝑗𝑘 = 2004 − 2014 𝑤ℎ𝑒𝑟𝑒 𝑌𝑘 = 11      

     

(2.6) 𝑄𝑅𝐻𝑗𝑠𝑙𝑘 = �̅�𝑠𝑙𝑘/𝑃𝑅𝐻𝑗𝑠  rounded to the nearest head     

where j again represents a year in the cattle cycle, PRHjs is the yearly value of an 800 

pound replacement heifer in $/head by calving season, s, PHjs is the annual price in $/cwt of a 7-

800 pound heifer, Rjsl represents the value of replacement heifers given l head of replacement 

heifer needs associated with cow herd sizes of 100- or 160-cows, 𝑅𝑠𝑙𝑘
̅̅ ̅̅ ̅ is the average yearly 

reinvestment that depends on calving season, herd size over the analyzed period, k, and QRHjslk 

is the annual number of heifers retained by year, calving season, land use intensity, and period 

analyzed. For the 25-year analysis, the same herd sizes as in each cycle were used except for 

2003 when heifer retention returned the herd to 100 or 160 cows for the start of the second cycle.  
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7. Analysis 

Cash operating profit risk over time was analyzed using box and whisker plots for each 

herd size management strategy for each level of land use intensity, with and without simulated 

weather effects, by calving season, and for each cattle cycle or time period. Rather than 

developing a model that selects the optimal producer choice in terms of cash operating profit, 

given an array of risk aversion levels, the reader is thus expected to visually assess the inherent 

risk differences across the management options presented.  

Aside from annual cash operating profits, the number of bales of hay and cattle sold, 

provided insight about the primary sources of revenue for a herd size management strategy × 

land use intensity combination. Hay and head sold describe performance implications of 

management choices in terms of physical production units rather than dollar terms.  

Finally, profits were examined using the minimum regret rule. Regret was calculated 

using net present value (NPV) of annual cash operating profits across the entire cattle cycle(s) to 

account for inflation and risk. Regret is defined as the loss a producer would incur over the 

course of a cattle cycle(s) as a result of choosing a sub-optimal herd size management strategy 

for a particular level of land use intensity. Regret was calculated for each cattle cycle(s), with 

and without simulated weather effects, and by calving season and was termed HSM regret. 

Regret numbers thus quantify differences across the herd size management options evaluated. 

These regret numbers easily allow for assessment of consistency of herd size management 

strategy choice across periods analyzed and/or whether simulated weather effects were included 

or not. Also calculated were regret values for the choice of land use intensity pursued within a 

given herd size management strategy. Again these numbers were calculated by cattle cycle(s) 

and weather effects combinations and were termed LUI regret. NPV was calculated using a 
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nominal discount rate of 8% (Hardie, 1984) that reflects common, agricultural lending rates over 

the period analyzed.3  

C. Results 

Described below are herd size changes as a function of the chosen herd size management 

strategy followed by a discussion on attendant profitability and risk implications by calving 

season in order of cattle cycle(s). Effects of weather on risk and profitability are discussed 

throughout. 

1. Herd Size Fluctuations 

Breeding herd size changes over time for operations starting with 100 cows are shown in 

Figure 2.3.  For the 1990-2003 cycle, the MA strategy had the largest herd in 1998, while the 

DCA strategy peaked at a higher level in 1997 and led to greatest total cattle output when 

compared to the other two herd size management strategies. During this cycle, the lowest cattle 

prices were encountered in 1996 (Figure 2.2) and led to noticeably rapid herd size expansion for 

the DCA strategy in particular. In comparison to the CHS strategy, both the MA and DCA 

strategies had larger overall average herd sizes when cattle prices were on the rise (Figures 2.2 

and 2.3).   

 For the second cattle cycle, the DCA and MA strategies led to more pronounced 

differences in herd size changes over time (Figure 2.3). The MA strategy led to three years of 

herd reduction followed by four years of expansion before reverting back to three more years of 

reduction to end the cycle. The DCA strategy steadily expanded the herd until 2012 when further 

retention was too costly given high cattle prices.  
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Since the DCA strategy maintained the largest herd throughout the observed periods, this 

strategy consistently yielded the lowest hay sold and the highest number of head sold (Tables 2.5 

and 2.6). Although achieving the goal of selling more cattle during the period of high cattle 

prices, lower hay sales and/or greater hay purchases more than offset added cattle revenue. 

2. Fall Calving 

For the 1990-2003 cycle, our results indicated that the addition of weather effects on 

forage production increased risk in terms of range (max. – min.) of annual cash operating profit 

(π) regardless of land use intensity or herd size management strategy (Figure 2.4). Additionally, 

increased land use intensity, decreased profitability regardless of herd size management strategy.  

This was especially so, since added capital recovery charges of approx. $3,500 and added 

property taxes summed to nearly $3,800 per year. Table 2.5 reflects these costs in the larger 

breeding herd strategy outcomes with highest land use intensity. According to LUI regret, low 

land use intensity was the profit-maximizing choice in the first cycle in the absence of weather 

effects for all herd size management strategies. Once weather effects were included, profit-

maximizing land use intensity increased to medium for CHS and MA, whereas for DCA, least 

fertilizer use was profit-maximizing. With least fertilizer use, including weather effects led to 

hay purchases on average for the DCA strategy. For all herd size management strategies, hay 

sales were lower on average and exhibited much larger variation in part because of different 

cattle output, but also because of changes in forage production when weather effects were 

included. Choosing, medium land use intensity as profit-maximizing, the MA strategy emerged 

as the least HSM regret choice regardless of weather effects. Choosing least fertilizer use, the 

MA strategy was profit-maximizing without weather effects and the DCA strategy was profit-
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maximizing when weather was included. Finally, range of π was highest with highest fertilizer 

use. 

During the second cycle, the range in π did not increase with the addition of weather 

(Figure 2.4) regardless of land use intensity. Nonetheless, the distance from the 25th to 75th 

percentile observations increased. Given the observation of lesser range in π for the second cycle 

compared to the first, weather had a lesser effect on income variability. This change in weather 

effects on income variability was, in part, a function of the period-specific adjustment effects on 

forage production. As shown in Figure 2.1, forage production index values during winter 

months, showed forage production to be lower than the long term average in the second cycle 

whereas forage production was higher than the long term average in the first cycle. In slight 

contrast to the previous cycle, π increased with greater land use intensity regardless of herd size 

management strategy as hay prices were high enough to offset heightened input cost by selling 

excess hay (Figure 2.2). For the management option with greatest fertilizer use and added cattle 

sales, added cost of fertilizer and added ownership charges for extra breeding herd investment 

could not be offset except using CHS in the scenario with weather effects. Hence, medium 

fertilizer use had least LUI regret, and at that level of fertilizer use, NPV of π was highest for 

MA regardless of weather. Finally, as shown in Figure 4, the most intensive land use 

management choice showed the greatest range in π. 

As expected, results for both cycles, spanning production years 1990-2014, exhibited 

similar trends as observed across each cycle individually. Range of π increased with the addition 

of weather, as expected, regardless of herd size management strategy or land use intensity 

(Figure 2.4). As land use intensity increased, NPV of π increased for the 100-cow herds and 

subsequently fell for the 160-cow herd (Table 2.5). As such, the medium fertilizer option was 
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profit-maximizing given zero LUI regret across all herd size management options. Medium land 

use intensity also exhibited approximately the same level of income risk as the low land use 

intensity option (Figure 2.4). At that level of fertilizer use, the MA strategy showed least HSM 

regret regardless of weather (Table 2.5). When taking profit-maximizing land use intensity 

choice into account for each period of analysis, the addition of weather for the longest run did 

not impact herd size management strategy choice which was different from the results for the 

previous two cycles.   

Given the objective of examining long term impact of weather and time period on 

management choices4, it was noticeable that the size of HSM regret values over the 25 year 

period were quite small. Choosing CHS, the least management intensive herd size management 

option, with medium fertilizer use, for example, and assuming that weather simulation was 

reasonable, only led to a regret of $2,840 dollars over 25 years and even less when using least 

fertilizer. There are differences across cycles as discussed above and adding weather effects 

increased income risk as uncertain forage production led to changes in sales above and beyond 

variation caused by changes in cattle prices and number of head sold. Nonetheless, HSM regret 

values did not consistently increase or decrease when weather effects were added for 

comparisons within individual land use intensity × cattle cycle combinations. Under low land use 

intensity in the first cycle for example, regret increased for the CHS choice when weather was 

added while it declined for the same cycle with medium fertilizer use. As such, and as might be 

expected, weather played an uncertain role as to what herd size management strategy to pursue. 

The same can be said for cattle cycle impacts on herd size management strategy choice. 
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3. Spring Calving 

Similar to fall calving, adding weather effects on forage production for spring calving 

operations increased range in π, as did an increase in stocking rate (Figure 2.5). Also, for the 

period 1990-2003, the CHS strategy was dominant in terms of HSM regret regardless of land use 

intensity (Table 2.6) and by more compelling regret amounts in comparison to numbers 

presented for fall calving in Table 2.5 for the same cycle. Compared to fall calving, increased 

breeding failure rate led to less income as was already demonstrated for a sample year in Table 

2.1. Adding weather uncertainty weakened profitability as hay sales declined along with added 

variation in forage production (Table 2.6). In contrast with fall calving, hay sales were higher 

given different seasonal nutrition needs as demonstrated in Tables 2.2 and 2.3 for 2004 as an 

example.  Added hay revenue was insufficient to offset lower cattle revenue given lesser beef 

production with greater breeding failure rates for spring calving when compared to fall calving. 

Hence least fertilizer was the profit-maximizing, least LUI regret choice regardless of weather 

effects inclusion. 

Over the second cycle, the CHS strategy was once again profit-maximizing by having 

least HSM regret values for both low and medium land use intensity. With high fertilizer use, the 

MA strategy had $9.81 more NPV than the CHS strategy. Further, in terms of LUI regret, highest 

profitability was achieved using the medium level of fertilizer use in the second cycle as was the 

case for fall calving. Hence higher cattle prices in the second cycle did generate sufficient 

revenue to offset the marginal cost of added fertilizer which also traded at higher prices (Figure 

2.2). As with fall calving, the range of π was smaller when weather risk was added in the second 

cycle. The 25th and 75th percentile range increased but to a lesser extent when compared to fall 

calving. However, weather effects manifested themselves in a greater range of π and in a more 
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positively skewed fashion in comparison to fall calving (Figures 2.4 & 2.5). The second cycle 

proved more profitable than the first cycle given higher cattle and hay prices (Figure 2.2) that 

were sufficient to offset greater fertilizer, seed, and corn prices.  

The 25-year analysis for spring calving led to the same profit-maximizing herd size 

management strategy, CHS, and again, regardless of land use intensity, or weather effects. 

Medium fertilizer use was profit-maximizing with least LUI regret. High land use intensity was 

not justifiable and led to highest income risk (Figure 2.5).  

In comparison to fall calving, the optimal herd size management strategy was clearly the 

CHS strategy as that choice did not vary by cycle or with weather effects. Profit-maximizing 

fertilizer use was a less obvious choice as the first cycle with lower cattle and input prices 

offered less opportunity to recover added input cost.   

D. Conclusions 

This study examined the profitability of three herd size management strategies under a 

variety of production conditions (fall vs. spring calving and land use intensity) with and without 

simulated weather effects. Under fall calving, the MA strategy did show higher NPV of cash 

operating profit and minimum regret when compared to DCA and CHS strategies for the 

majority of land use intensity × cattle cycle × weather effects combinations summarized in Table 

2.5. Instituting a MA strategy, however, requires additional time devoted to management in 

comparison to the CHS strategy and thus producers should weigh this trade-off when considering 

the use of a MA strategy. For fall calving, looking at the optimal fertilizer use for each cycle 

(low or medium for the 1st cycle pending weather effects inclusion; medium or high for the 2nd 

cycle, again, pending weather effects inclusion; and medium for the entire period), regret with 
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the CHS strategy was less than $4,250 for any of the periods whether weather effects were 

included or not. For spring calving operations, this research showed the CHS herd size 

management strategy to exhibit least regret regardless of land use intensity, weather effects, or 

cattle cycle. As with fall calving, the highest level of fertilizer use to increase stocking rate, was 

least profitable and could be discouraged. For both fall and spring calving, LUI regret 

observations suggested that medium land use intensity, to ensure greater hay sales in comparison 

to least fertilizer use, was both profit-maximizing in general and led toward the lowest range in 

cash operating profit. Over the entire period, the above analysis suggested that a producer would 

have maximized profit, without heightened exposure to income risk, if they had chosen i) fall-

calving; ii) not increased stocking rate but added fertilizer to increase hay sales; and, iii) chose 

the MA herd size management strategy. Noteworthy was that the CHS strategy was a close 

second choice. This advice held for that period but may well differ for the future.     

In contrast to Lawrence (2002), a DCA strategy was not found to be superior to a CHS 

strategy when examined under a fixed land constraint and resulting on-farm forage limitations. 

Similar to previous findings (Bentley and Shumway, 1981; Trapp, 1986; Hamilton and Kastens 

2000), a counter-cyclical (MA) strategy was found to be more profitable on average than a 

constant herd size strategy under fall calving conditions with greater cattle output (fewer 

breeding failures than spring calving). Additionally, previous cow-calf herd management 

research had not examined a moving average strategy as a method to increase profitability. This 

research thus contributes to literature on counter-cyclical herd size management strategies by 

quantifying estimated impacts of capitalizing on cyclical market behavior using a popular 

investment technique. 
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While this research examined various management decisions related to fertilizer 

application, stocking rates, and heifer retention, it was analyzed at relatively small scale and 

holding land resources constant. At larger scale, marginal gains using the MA strategy are 

expected to be greater. Further, a 10- to 27-month moving average price ratio was used to signal 

price trend changes. Different-length moving average prices would lead to different timing of 

signals and larger increments or decrements in herd size may lead to different outcomes. Finally, 

FORCAP modeling of weather risk was performed for Northwest Arkansas conditions. These 

conditions will be different for other regions of the country. Finally, results may differ with year-

round calving season management and weather may also impact cattle performance (weight gain 

and reproductive performance) which was not attempted here. 
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Footnotes 

1       A multitude of other parameters include: grazing method (continuous vs. rotational), use of 

stockpiling and/or winter annuals, selection of forage species on pasture and hay land, level 

of fertilizer use, choice of herd genetics, animal weights at different growth stages, 

supplemental feed, heifer breeding age, breeding failure rates and death losses, calving 

season, weaning age, year of input and output price, vaccination program, veterinary, and 

transport charges. While the program tracks ownership charges for equipment, buildings, 

fence, and watering facilities, these costs are excluded in this analysis as they do not vary 

significantly when a change in land resources was not considered. Note that changes in 

breeding stock between 100 and 160 cows were modeled, but effects of minor cow herd 

changes across time that exist with MA and DCA strategies in comparison to the CHS 

strategy were excluded. The value of breeding stock was constant over time at long term 

average prices as effects of timing of industry entry and exit were also not examined.   

2   Fewer than 2% of observations were missing likely due to snow cover as they occurred in 

December, January, February and April. Missing observations were assigned a value of one, 

meaning monthly average forage growth was assumed for missing observations. 

3  Higher and lower interest rates of 10% and 5%, respectively, led to similar results. 

4 It is cost prohibitive for a producer to change calving season from year to year. As such, 

calving season choice is a long-term decision. Also, fertilizer use decisions, while annually 

flexible, are complex as weather conditions can affect fertilizer productivity (e.g. applying 

fertilizer before a drought is ineffective as is a killing frost in late spring or early fall). Hence, 

the land use intensity choice is considered a long-term decision, especially in the scenario 

where the breeding herd is expanded. 
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F.  Tables and Figures 

Table 2.1.  Sample of Estimated Gross Receipts and Direct Costs of a 100-Cow Herd by Calving 

Season and Weather Effects in 2004 using Least Fertilizer. 

 

Calving Season Fall Spring 

Weather Effects Excluded Included Excluded Included 

  GROSS RECEIPTS (% of TOTAL RECEIPTS) 

Steer Calves $27,900 (51.2) $27,900 (52.2) $24,288 (50.7) $24,288 (52.7) 

Heifer Calves $15,079 (27.7) $15,079 (28.2) $9,913 (20.7) $9,913 (21.5) 

Cull Cows $9,267 (17.0) $9,267 (17.3) $10,679 (22.3) $10,679 (23.2) 

Cull Herd Sire $1,169 (2.1) $1,169 (2.2) $1,177 (2.5) $1,177 (2.6) 

Excess Hay (if any) $1,107 (2.0) $0 (0.0) $1,853 (3.9) $0 (0.0) 

TOTAL RECEIPTS $54,522 (100) $53,414 (100) $47,909 (100) $46,056 (100) 

 DIRECT COST (% of TOTAL RECEIPTS) 

Fertilizer Costs $12,972 (23.8) $12,972 (24.3) $12,972 (27.1) $12,972 (28.2) 

Forage Maint. (400 ac) & 

Winter Annuals (80 ac) $9,123 (16.7) $9,123 (17.1) $9,123 (19.0) $9,123 (19.8) 

Purchased Hay $0 (0.0) $5,630 (10.5) $0 (0.0) $3,864 (8.4) 

Salt and Minerals $4,420 (8.1) $4,420 (8.3) $4,340 (9.1) $4,340 (9.4) 

Veterinary & Drug 

Charges $3,140 (5.8) $3,140 (5.9) $3,068 (6.4) $3,068 (6.7) 

Repair and Maintenance $2,217 (4.1) $2,217 (4.2) $2,217 (4.6) $2,217 (4.8) 

Replacement Herd Sire $2,000 (3.7) $2,000 (3.7) $2,000 (4.2) $2,000 (4.3) 

Sales commission $1,870 (3.4) $1,870 (3.5) $1,612 (3.4) $1,612 (3.5) 

Fuel for feeding and 

checking cattle $1,327 (2.4) $1,390 (2.6) $1,324 (2.8) $1,389 (3.0) 

Farm Vehicle ($1 per bred 

cow per month) $1,200 (2.2) $1,200 (2.2) $1,200 (2.5) $1,200 (2.6) 

Twine $459 (0.8) $314 (0.6) $463 (1.0) $352 (0.8) 

Yardage, Ins. & Checkoff $248 (0.5) $248 (0.5) $215 (0.4) $215 (0.5) 

Custom Hauling $225 (0.4) $225 (0.4) $225 (0.5) $225 (0.5) 

Corn $222 (0.4) $336 (0.6) $155 (0.3) $257 (0.6) 

Cattle Purchasing Costs $75 (0.1) $75 (0.1) $75 (0.2) $75 (0.2) 

TOTAL DIRECT COSTS 

(TDC) $39,497 (72.4) $45,159 (84.5) $39,989 (81.4) $42,909 (93.2) 
         

OPERATING INTEREST $938 (1.7) $1,073 (2.0) $926 (1.9) $1,019 (2.2) 
         

CASH OPR. PROFIT (π) $14,087 (25.8) $7,183 (13.4) $7,994 (16.7) $2,128 (4.6) 

 

 



40 

 

Table 2.2. Sample Monthly Herd Nutrition Needs along with Feeding and Harvesting Statistics as Affected by Weather for a Fall-

Calving 100-cow Herd with Least Fertilizer Applied in 2004.  

 

  
M

o
n
th

 

Forage Requirement in cwta to meet Nutrition 

Needs by Cattle Type 

  

Feeding Statistics in cwt to meet Herd Needs  

  

Est. Days 

with Feed 

Supplement 

  

Excess Hay 

Bales 

Harvested 

from 

Pasturef 

Cowsb Bulls Repl.c 

Heifer 

calvesd 

Steer 

calvesd Total 

Grazing 

  

Hay Fed 

  

Corn Fed 

Excl.e Incl. Excl. Incl. Excl. Incl. Excl. Incl. Excl. Incl. 

Jan 914 43    957 73 3 884 954 27 40 29 31   

Feb 788 39  24 25 875 356 198 519 677 15 31 17 22   

Mar 828 43  62 61 994 787 740 207 254   6 8   

Apr 767 41  97 103 1008 1008 1008         

May 665 43  143 152 1002 1002 1002       45  

Jun 655 41 77   773 773 773       48  

Jul 689 43 84   815 815 815       44 39 

Aug 721 43 89   853 465 360 388 464   14 17   

Sep 692 41 94   827 327 270 500 557   18 20   

Oct 730 43 104   877 683 560 194 318   7 11   

Nov 839 41    880 607 201 273 679   9 23   

Dec 908 43       951 165  115 786  836     26 27     

Notes: 
a Forage requirements are calculated on the basis of drymatter intake needs of the different animal types and their weights given 

monthly available forage and hay resources. In months where total digestible nutrient intake is insufficient to maintain cow body 

condition, supplemental corn is fed to cows, replacement heifers and bulls as needed. Crude protein intake is also measured but 

usually not limiting.  

 
b Cows are culled as a function of age or if open.  All animals culled are sold in May when cows wean their calves that were born 

the previous October. 

 

4
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c Replacement heifers are calves fed to replace cull animals and become part of the nutrient 

needs of the cow herd once 13 months of age. 

 
d Heifer and steer calves begin grazing at 4 months of age thereby reducing cow nutrition 

needs. 

 
e Weather affects forage production and thereby grazing as well as haying activities.  The 

columns titled ‘Excl.’ show expectations for an average weather year, whereas the column 

titled ‘Incl.’ demonstrates the impact of adjusting monthly forage production by the 

production index as shown in Figure 2.1.  Forage quality changes due to weather are not 

included. 

 
f In an average weather year, 137 bales, 1,200-lb in weight as is, are harvested from the 320 ac 

of pasture and 321 bales from 80 acres of hayland. Of the total 458 bales, 409 bales are fed to 

the herd.  In 2004, only 39 and 274 bales are produced on pasture and hayland, respectively, 

and 517 bales are fed to the herd. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



42 

 

Table 2.3. Sample Monthly Herd Nutrition Needs along with Feeding and Harvesting Statistics as Affected by Weather for a Spring-

Calving 100-cow Herd with Least Fertilizer Applied in 2004.  

 

  
M

o
n
th

 

Forage Requirement in cwta to meet Nutrition 

Needs by Cattle Type 

  

Feeding Statistics in cwt to meet Herd Needs  

  

Est. Days 

with Feed 

Supplement 

  

Excess Hay 

Bales 

Harvested 

from 

Pasturef 

Cowsb Bulls Repl.c 

Heifer 

calvesd 

Steer 

calvesd Total 

Grazing 

  

Hay Fed 

  

Corn Fed 

Excl.e Incl. Excl. Incl. Excl. Incl. Excl. Incl. Excl. Incl. 

Jan 661 43 98   802 73 2 729 800 18 29 28 31   

Feb 626 39 94   758 356 135 402 623 8 28 15 23   

Mar 687 43 113   842 787 637 56 205 
  

2 8 
  

Apr 679 41 118   838 838 838   
      

May 832 43    875 875 875   
    60 36 

Jun 844 41    
885 885 885   

  
  59 30 

Jul 878 43    921 792 867   
    24 22 

Aug 838 43  23 24 927 465 355 463 572   15 19   

Sep 770 41  52 51 914 327 256 587 658 
  

19 22 
  

Oct 761 43  86 92 982 683 486 299 496   9 16   

Nov 618 41  120 128 906 607 144 300 762   10 25   

Dec 650 43 93     786 165 80 621 705     25 28     

Notes: 
a Forage requirements are calculated on the basis of drymatter intake needs of the different animal types and their weights given 

monthly available forage and hay resources. In months where total digestible nutrient intake is insufficient to maintain cow body 

condition, supplemental corn is fed to cows, replacement heifers and bulls as needed. Crude protein intake is also measured but 

usually not limiting.  

 
b Cows are culled as a function of age or if open.  All animals culled are sold in November when cows wean their calves that were 

born in April. 

 

4
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c Replacement heifers are calves fed to replace cull animals and become part of the nutrient 

needs of the cow herd once 13 months of age. 

 
d Heifer and steer calves begin grazing at 4 months of age thereby reducing cow nutrition 

needs. 

 
e Weather affects forage production and thereby grazing as well as haying activities.  The 

columns titled ‘Excl.’ show expectations for an average weather year, whereas the column 

titled ‘Incl.’ demonstrates the impact of adjusting monthly forage production by the 

production index as shown in Figure 2.1.  Forage quality changes due to weather are not 

included. 

 
f In an average weather year, 141 bales, 1,200-lb in weight as is, are harvested from the 320 ac 

of pasture and 321 bales from 80 acres of hayland. Of the total 462 bales, 380 bales are fed to 

the herd.  In 2004, only 77 and 274 bales are produced on pasture and hayland, respectively, 

and 491 bales are fed to the herd.
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Table 2.4. Summary of Ranch Productivity by Calving Season as Impacted by Fertilizer 

Application Using a Constant Herd Size Management Strategy Without Weather Effects. 

 

Land Use Intensity Low Medium High 

Hayland Fertilizer:    

   Ammonium Nitrate in lbs/acre 100 100 300 

   Poultry Litter in tons/acre 2 2 3 

Pasture Fertilizer: Low Medium High 

   Ammonium Nitrate in lbs/acre 0 0 100 

   Poultry Litter in tons/acre 0.5 1 2 

# of Cows Bred Annually 100 100 160 

Hay Sales - Falla 49 171 46 

Hay Sales - Springa 87 221 119 

    

Note:  
a Hay sales are the number of surplus 1,200-lb round bales sold. Hay sales or purchases are a 

function of seasonal forage production and herd nutrition needs.  Weather effects are 

excluded here but forage production detail is shown in Figure 2.1 as well as Tables 2.1-2.3, 

2.5, and 2.6. 
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Table 2.5.  Performance Statistics for Fall Calving Herds by Weather Effects, Cattle Cycle(s), 

Land Use Intensity and Herd Size Management Strategy. 

Notes: Statistical comparisons across annual average outcomes were not performed as a 

deterministic model was used with the same exogenous price and weather data across herd size 

strategy × land use intensity outcomes.  

 
a Land use intensity is described in Table 2.4. Added ownership charges for larger breeding 

herds under high land use intensity equated to 31, 27, and 40 thousand dollars of NPV over 

first, second, and both cycles, respectively.  

 
b Herd size strategies are: CHS = Constant herd size, MA = counter-cyclical herd size strategy 

using a moving average price ratio, and DCA = Constant dollar herd reinvestment as described 

in Eqs. 2.3 – 2.6.  

 
c Net present value of period-specific, average annual cash operating profits (π) expressed in 

thousands of dollars or 𝑁𝑃𝑉 =  ∑
𝜋𝑗

(1+𝑑)𝑗
𝑘
𝑗=1 , where j is the year in the cycle, d is the discount 

rate and k is the number of years in the cycle. Please see Table 1 for cost and revenue items 

included. 

P
er

io
d

 

 

Land Use Intensity 

(LUI)a 
 Low  Medium  High 

 
Performance 

Metric 

 
Weather 

Effects 

 Herd Size Management (HSM) Strategyb 

CHS MA DCA  CHS MA DCA  CHS MA DCA 

1
9
9
0
-2

0
0
3
 

 

NPV of πc 
 excl.  45.0 46.3d 45.0  41.0 43.1 42.7  -1.6 -4.4 -3.5 

  incl.  35.9 38.2 38.9  37.6 38.7 37.9  -6.2 -10.6 -9.3 

 
HSM Regrete 

 excl.  13.0 0.0 12.9  20.9 0.0 4.0  0.0 28.0 19.0 

  incl.  31.0 7.9 0.0  10.9 0.0 8.6  0.0 43.6 31.3 

 

# of Hay 

Bales Soldf 

 excl.  49(0) 22(20) 3(61)  171(0) 148(18) 129(55)  46(0) 8(25) -10(98) 

  incl.  36(146) 6(140) -9(131)  168(157) 140(150) 127(146)  56(222) 13(207) -11(196) 

 Head Sold  either  90(0) 93(3) 94(7)  90(0) 93(3) 94(7)  146(0) 148(5) 150(11) 

 
LUI Regretg 

 excl.  0.0 0.0 0.0  39.9 32.1 23.2  466.3 507.3 485.4 

  incl.  17.7 5.6 0.0  0.0 0.0 10.9  438.3 492.9 482.9 

2
0
0
4
-2

0
1
4
 

 
NPV of π 

 excl.  133.1 136.3 132.2  147.4 151.4 151.2  133.6 136.3 126.2 

 

 incl.  131.2 135.4 131.8  135.3 153.6 137.7  138.9 138.2 128.6 

 
HSM Regret 

 excl.  32.3 0.0 40.8  39.9 0.0 2.2  27.2 0.0 100.7 

  incl.  42.0 0.0 36.7  182.5 0.0 158.5  0.0 6.8 102.9 

 
Hay Sold 

 excl.  49(0) 33(33) -36(46)  171(0) 157(28) 95(42)  46(0) 44(48) -76(72) 

 

 incl.  40(102) 26(94) -42(80)  171(100) 150(92) 89(74)  61(142) 48(136) -72(113) 

 

Head Sold  either  90(0) 92(4) 98(6)  90(0) 92(4) 98(6)  146(0) 147(6) 157(8) 

 

LUI Regret 
 excl.  143.5 151.1 189.7  0.0 0.0 0.0  138.4 151.2 249.8 

 

 incl.  76.2 181.4 59.6  35.3 0.0 0.0  0.0 153.9 91.6 

1
9
9
0
-2

0
1
4

 

 
NPV of π 

 excl.  90.3 93.5 90.7  91.2 95.4 94.8  43.8 43.1 40.3 

 

 incl.  76.1 78.9 77.4  83.1 85.9 84.4  32.7 29.0 26.8 

 

HSM Regret 
 excl.  32.5 0.0 28.4  42.5 0.0 6.3  0.0 7.7 35.9 

  incl.  27.4 0.0 14.6  28.4 0.0 15.5  0.0 37.1 59.0 

 

Hay Sold 
 excl.  49(0) 33(33) -36(46)  171(0) 157(28) 95(42)  46(0) 44(48) -76(72) 

  incl.  38(149) 16(145) -24(126)  170(156) 148(152) 107(132)  58(216) 28(210) -38(175) 

 Head Sold  either  90(0) 93(4) 96(7)  90(0) 93(4) 96(7)  146(0) 147(6) 157(8) 

 
LUI Regret 

 excl.  8.9 19.0 41.0  0.0 0.0 0.0  473.5 523.6 545.5 

  incl.  69.6 70.5 69.5  0.0 0.0 0.0  503.3 568.8 575.1 
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 d Bold face indicates optimal herd size management strategy choices on the basis of highest 

NPV of π for a particular land use intensity level × period × weather effects combination. 

 
e HSM Regret for a herd size management choice c for a particular land use intensity level × 

period × weather effects combination is the difference between the highest NPV across herd 

size management options (as highlighted in bold) and the NPV for the cth herd size 

management option. Regret is expressed in hundreds of dollars and zero regret identifies the 

profit-maximizing herd size management strategy for a particular land use intensity level × 

period × weather effects combination.  

 
f The average annual number of 1,200-lb bales. Negative numbers indicate purchases. Numbers 

in parentheses represent the standard deviation over the period analyzed. Head sold are # of 

cull cattle and weaned calves. 

 
g LUI Regret identifies the regret (in hundreds of dollars) for a given herd size management 

strategy across land use intensities for a particular period × weather effects combination. Zero 

LUI regret therefore identifies the profit-maximizing land use intensity level by period and 

weather effects and is again highlighted in bold. 
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Table 2.6.  Performance Statistics for Spring Calving Herds by Weather Effects, Cattle Cycle(s), 

Land Use Intensity and Herd Size Management Strategy. 

Notes: Statistical comparisons across annual average outcomes were not performed as a 

deterministic model was used with the same exogenous price and weather data across herd size 

strategy × land use intensity outcomes.  

 
a Land use intensity is described in Table 2.4. Added ownership charges for larger breeding 

herds under high land use intensity equated to 31, 27, and 40 thousand dollars of NPV over 

first, second, and both cycles, respectively.  

 
b Herd size strategies are: CHS = Constant herd size, MA = counter-cyclical herd size strategy 

using a moving average price ratio, and DCA = Constant dollar herd reinvestment as described 

in Eqs. 2.3 – 2.6.  

 
c Net present value of period-specific, average annual cash operating profits (π) expressed in 

thousands of dollars or 𝑁𝑃𝑉 =  ∑
𝜋𝑗

(1+𝑑)𝑗
𝑘
𝑗=1 , where j is the year in the cycle, d is the discount 

rate and k is the number of years in the cycle. Please see Table 2.1 for cost and revenue items 

included. 

 

P
er

io
d

 

 Land Use Intensitya  Low  Medium  High 

 
Performance 

Metric 

 
Weather 

Effects 

 Herd Size Management Strategyb 

CHS MA DCA  CHS MA DCA  CHS MA DCA 

1
9
9
0
-2

0
0
3
 

 

NPV of πc 
 excl.  -7.5 -17.7d -13.8  -9.0 -18.1 -14.6  -95.5 -104.9 -102.4 

  incl.  -13.3 -22.4 -19.5  -14.8 -24.0 -20.3  -104.2 -113.6 -110.8 

 
HSM Regrete 

 excl.  0.0 102.2 63.2  0.0 90.8 56.2  0.0 93.8 68.9 

  incl.  0.0 90.4 61.4  0.0 91.8 54.3  0.0 94.2 66.6 

 

# of Hay 

Bales Soldf 

 excl.  87(0) 52(46) 44(68)      221(0) 191(41) 180(66)  119(0)   79(56) 43(107) 

  incl.  75(147) 46(142) 34(137)  205(159) 176(158) 166(150)  105(223) 66(220) 28(217) 

 Head Sold  either  78(0) 78(4) 80(7)  78(0) 78(4) 80(7)  124(0) 125(6) 128(12) 

 
LUI Regret 

 excl.  0.0 0.0 0.0  14.9 3.5 7.9  899.9 891.5 905.6 

  incl.  0.0 0.0 0.0  15.1 16.5 8.0  908.3 912.0 913.6 

2
0
0
4
-2

0
1
4
 

 
NPV of π 

 excl.  74.4 71.4 51.7  92.7 90.7 72.7  29.5 28.1 -2.5 

 

 incl.  71.8 70.7 50.9  91.0 89.5 73.4  27.4 27.4 -1.7 

 
HSM Regret 

 excl.  0.0 30.7 227.2  0.0 19.7 199.2  0.0 13.6 320.0 

  incl.  0.0 10.8 209.0  0.0 15.5 176.6  0.0 0.0 290.9 

 
Hay Sold 

 excl.  87(0) 84(35) -50(78)  221(0) 222(29) 86(78)  119(0) 127(48) -94(118) 

 

 incl.  76(93) 79(93) -58(64)  212(101) 213(100) 82(75)  111(140) 124(159) -98(141) 

 

Head Sold  either  78(0) 77(3) 86(10)  78(0) 77(3) 86(10)  124(0) 122(5) 137(17) 

 

LUI Regret 
 excl.  182.3 193.3 210.3  0.0 0.0 0.0  631.9 625.8 752.8 

 

 incl.  192.2 187.5 224.6  0.0 0.0 0.0  636.4 620.8 750.6 

1
9
9
0

-2
0
1
4
 

 
NPV of π 

 excl.  17.8 6.6 3.0  22.5 12.8 9.4  -85.5 -94.6 -103.0 

 

 incl.  5.6 -3.7 -7.9  10.4 1.1 -1.4  -102.2 -112.4 -118.1 

 

HSM Regret 
 excl.  0.0 112.6 147.8  0.0 97.5 131.4  0.0 91.2 175.4 

  incl.  0.0 92.7 134.8  0.0 92.5 118.1  0.0 101.7 158.5 

 

Hay Sold 
 excl.  87(0) 66(45) 3(86)  221(0) 204(39) 138(85)  119(0) 99(57) -19(130) 

  incl.  78(147) 64(150) -5(112)  206(156) 192(163) 129(127)  109(211) 88(227) -27(185) 

 Head Sold  either  78(0) 78(4) 82(9)  78(0) 78(4) 82(9)  124(0) 124(5) 132(15) 

 
LUI Regret 

 excl.  47.2 62.3 63.6  0.0 0.0 0.0  1080.3 912.4 1030.4 

  incl.  48.1 48.3 64.9  0.0 0.0 0.0  1126.1 1135.3 1166.5 
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 d Bold face indicates optimal herd size management strategy choices on the basis of highest 

NPV of π for a particular land use intensity level × period × weather effects combination. 

 
e HSM Regret for a herd size management choice c for a particular land use intensity level × 

period × weather effects combination is the difference between the highest NPV across herd 

size management options (as highlighted in bold) and the NPV for the cth herd size 

management option. Regret is expressed in hundreds of dollars and zero regret identifies the 

profit-maximizing herd size management strategy for a particular land use intensity level × 

period × weather effects combination.  

 
f The average annual number of 1,200-lb bales. Negative numbers indicate purchases. Numbers 

in parentheses represent the standard deviation over the period analyzed. Head sold are # of 

cull cattle and weaned calves. 

 
g LUI Regret identifies the regret (in hundreds of dollars) for a given herd size management 

strategy across land use intensities for a particular period × weather effects combination. Zero 

LUI regret therefore identifies the profit-maximizing land use intensity level by period and 

weather effects and is again highlighted in bold. 
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Figure 2.1.  Forage production index values by month and year for select years using 25-year 

and period specific (P) averages in the denominator for the production index. 

Notes:  Percentage values represent standardized production index values as specified in Eqs. 2.1 

and 2.2 for select years shown. A production index value of 100% represents an expected 

production year. Using period specific production indexes (top two panels), as opposed to 

the long run production index (bottom panel), impacts forage production adjustments 

mainly for winter months. Noticeably, and not isolated to the select years shown, forage 

production is slightly higher using the period specific index compared to the long run 

index in the first cycle and the obverse is true for the second cycle.    
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Figure 2.2. Nominal prices for major input and output prices, 1990-2014. 
 

Notes:  Only one weight category of calf prices is exhibited due to calf prices by weight category 

moving in a similar direction over time. 7-800lb heifer prices are shown as a reference for 

heifer replacement costs. Cattle prices shown are annual averages but are higher for fall 

calving operations than spring calving operations once adjusted for monthly seasonal 

differences. 
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Figure 2.3. Breeding Herd Sizes by Strategy and Period Analyzed for Fall and Spring Calving 

Herds.  

 

Note:  The constant herd size (CHS) strategy leads to no change in cow herd size. The moving 

average (MA) strategy uses a ratio of two moving averages of feeder steer prices to signal 

an up- or downtrend in cattle prices with herd expansion/liquidation on 

downtrend/uptrend signal. The dollar cost averaging (DCA) strategy as described in Eqs. 

2.3 – 2.6 keeps replacement heifer investment constant over time. 160-cow herd sizes are 

not shown as same trends are evident. 
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Figure 2.4.  Minimum, Median, Maximum, and 25th and 75th Percentiles of Cash Operating 

Profita for Fall Calving Herds by Land Use Intensity, Herd Size Management Strategy, and 

Cattle Cycle or Time Period With Weather Effects Excluded and Included.

 

Notes:  
a Cash operating profits are averages, period-specific, and are calculated as the sale of 

cattle and hay less costs for supplements, seed, fuel, fertilizer, twine, chemicals, vet 

services, op. interest, repairs and medicine in $/year.  

 
b Land use intensity is described in Table 2.1. 

2004-2014 

1990-2003 

1990-2014 
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c Herd size strategies are: CHS = Constant herd size cow herd size, MA = cow herd size 

strategy using a ratio of two moving averages of feeder steer prices to signal an up- or 

downtrend in cattle prices, and DCA = dollar cost averaging strategy as described in Eqs. 

2.3 – 2.6.  

 
d See Figure 2.1 for production index adjustment due to weather conditions. 
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Figure 2.5.  Minimum, Median, Maximum, and 25th and 75th Percentiles of Cash Operating 

Profita for Spring Calving Herds by Land Use Intensity, Herd Size Management Strategy, and 

Cattle Cycle or Time Period With Weather Effects Excluded and Included. 
 

Notes:  
a Cash operating profits are averages, period-specific, and are calculated as the sale of cattle 

and hay less costs for supplements, seed, fuel, fertilizer, twine, chemicals, vet services, op. 

interest, repairs and medicine in $/year.  

 
b Land use intensity is described in Table 2.1. 
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c Herd size strategies are: CHS = Constant herd size cow herd size, MA = cow herd size 

strategy using a ratio of two moving averages of feeder steer prices to signal an up- or 

downtrend in cattle prices, and DCA = dollar cost averaging strategy as described in Eqs. 

2.3 – 2.6.  

 
d See Figure 2.1 for production index adjustment due to weather conditions.
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Chapter III. Profitability Impact Analysis of Price Variables and Herd Management Decisions 

in Cow-calf Operations   

A. Introduction 

Tester et al. (2019) provided a 25-year analysis of three herd size management (HSM) 

strategies in terms of relative profitability and risk across the two most recent cattle cycles with 

and without simulated weather effects on forage production. Their analysis revealed that when 

employing a fall calving season, a price signal-based, counter-cyclical herd size management 

strategy involving a ratio of two different-length moving average prices, was able to generate 

larger net present value of cash operating profits than a constant herd size strategy. Under spring 

calving conditions, on the other hand, a constant herd size management strategy was profit-

maximizing. Across calving seasons, fall calving was shown to be the profit-maximizing 

decision due to decreased breeding failure rates when compared to spring calving. Additionally, 

Tester et al. (2019) suggested a medium level of fertilizer use (Table 2.4) to be profit-

maximizing as that level of input use i) led to more hay sales than a lesser fertilizer use strategy 

with the same number of cattle; or ii) was less expensive than a strategy with more fertilizer and 

added cattle output. They also noted that the medium fertilizer use level was less risky than using 

more fertilizer and similar in risk compared to lesser fertilizer use because added hay sales led to 

less reliance on cattle sales. For both analyses, land resources and equipment were held constant. 

As a result, weather impacts on forage production either created conditions of excess hay sales or 

required purchase of hay to meet herd nutrition requirements. With many variables impacting 

profitability of cow-calf operations over time, quantifying the relative impact of key variables on 

profitability was left unanswered. Since different econometric and neural network techniques 

exist and can rank the relative impact of choice of HSM strategy, level of fertilizer use, stocking 
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rate, and calving season on cow-calf profitability, this paper examines two different modeling 

techniques.  

The objective of this research is to examine the relative impact of explanatory variables 

on cow-calf operations’ profitability across the previous two cattle cycles when production is 

managed using different HSM strategies, calving seasons, fertilizer input and stocking rate. Two 

modeling techniques, ANN and regression, are used to determine whether these techniques lead 

to the same ranking of explanatory variables based on their relative impact as calculated using 

Eq. 3.1 and how the modeling techniques compare in terms of goodness-of-fit (R2).   The point 

of the comparison is to determine if using the more interpretable and computationally easier 

regression approach comes at the cost of sacrificing considerable explanatory power.  As such, 

quantifying the magnitude and consistency of this tradeoff is needed.  

 Traditionally, regression analysis has been the foundational statistical technique for data 

analysis in economics. Regression analysis allows examination of the effects of one or more 

explanatory variables on a dependent variable where variables can be continuous, discrete, or 

categorical (Weisberg, 2013). These techniques allow assessment of statistical significance of 

relationships observed and then quantifies those relationships using parameter estimates that can 

ultimately be used to make predictions. 

With the growth of big data and advanced artificial learning, artificial neural network 

(ANN) analyses are becoming more popular as a viable alternative to traditional regression 

analysis. Despite demonstrated superior goodness-of-fit in many applications, ANNs are not 

easily interpretable and provide less insight when compared to regression analysis. Parameter 

estimates of explanatory variable effects on the dependent variable are not revealed in a 

structured, user-defined manner but instead estimated as a neural network of cause and effect 



58 

 

relationship that are iteratively determined by weighting a myriad of functional forms (Olden and 

Jackson, 2002) and/or a variety of ANN configurations. Multi-Layer Feedforward Networks 

(MLF) and Generalized Regression Neural Nets (GRNN) are described here as they are relevant 

ANN configurations using Neural Tools v 7.5® (NT) software (Palisade, 2015). MLF networks 

function through a backpropagation algorithm and include one or more hidden layers that specify 

the relationships between explanatory variables (Figures 1.1 and 1.2). These relationships are 

weighted to minimize the sum of squared errors using a training process, involving large 

numbers of iterations that require significant processing time. The inclusion of more than one 

hidden layer increases complexity and often increases processing time. To make predictions, the 

user requires NT software as parameter estimates are hidden. 

Generalized regression neural net configurations are distinctly different from MLFs. 

Rather than manipulating relationships between explanatory variables and their connection to the 

dependent variable, GRNNs adjust the smoothness parameter to minimize the sum of squared 

errors (Figures 1.4 and 1.5) The smoothness parameter determines the influence of observations 

on the predicted value as a function of their proximity to the desired output value obtained from 

the training set (University of Wisconsin, n.d.). Again, NT software is required for predictions. 

Further, NT and similar software exist to assist with the choice of i) ANN framework to 

use (GRNN vs MLFs with varying levels of nodes in a single hidden layer); and, ii) the 

percentage of the original data set to use for training of the neural net vs. the percentage used for 

testing predictions of the neural net. The user specifies the number of iterations used to minimize 

error in the training runs and the program picks random observations for training the neural net 

(Palisade, 2015). As such, ANN outcomes vary with the percentage of the data set used for 

training, the type of ANN (GRNN vs. MLF), and because the training data are chosen randomly 
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although at the same percentage. Once a neural net is trained, however, ‘live’ predictions are 

based on the estimated neural network for a given training percentage and given set of random 

training values. However, a different training on the data set, leads to different predictions, even 

with the same percent of observations used for training. Much like regression analysis ANNs use 

R2 to measure explanatory power. Further, NT, an Excel Addin, reports relative impacts of 

explanatory variables on the dependent variable as follows: 

(3.1) 𝐼𝑖 = ∆𝑖/ ∑ ∆𝑖
𝑛
𝑖=1  

where ∆i is the difference between predicted maximum and minimum outcomes when changing 

the explanatory variable i across observations in the training data set holding all other 

explanatory variables constant and n is the number of explanatory variables. The ith impact on 

the dependent variable is then compared to the sum of all n explanatory variables’ impacts, 

calculated the same way, to yield relative impacts for each explanatory variable that sum to 

100% across all explanatory variables. This same formula can be used with outcomes from 

regression analysis as described below.  

It should be noted that an exact measure of variation explained could be determined in 

alternative fashion. The cow/calf simulation tool, the Forage and Cattle Planner (FORCAP), that 

generated the data analyzed within (Tester et al. (2019); Popp et al., 2014), uses a large set of 

parameters in input values to estimate profit over time, i.e. the costs of all relevant inputs, all 

relevant output prices and the implicit technology (production function) that, in this case, also 

includes the role of weather.  Dixon et al. (1987) demonstrate that conventionally estimated 

profit functions do not always results in good replications of underlying technology so that it is 

useful and informative to investigate alternative approaches.  The underlying technologies in 
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Dixon et al. (1987) are smoothly continuous but those in FORCAP, are not, further motivating 

the need to explore alternative methods for ranking variable importance. 

 In the applications that follows, ANNs and regression methods are used in a curve-fitting 

exercise. As noted earlier, conventional economic theory leads to profits and optimal derived 

demand levels that are determined from conventional profit functions. The models estimated 

below include output prices for both outputs (cattle and hay) as well as their prices. In the case of 

hay, its price serves as both an output price and an input price. Fertilizer price and other input 

prices are not included since they play a minor role (Table 2.1). By including output of hay and 

cattle as well as fertilizer input use, both exogenous and endogenous variables in relation to 

profit are being included.  Hence it is not possible to impute any causal or behavioral 

relationships but simply measure via regression or ANN how profit varies as the explanatory 

variables (production, cattle prices and input use) change.  In essence regression and ANNs are 

being used to estimate the shape of a more complex function and derive information about that 

more complex function.  The analysis is thus intended to showcase what variables drive most of 

the variability in profit and thereby which variables are most important for a producer to monitor. 

B. Materials and Methods 

1. Data  

 Profitability estimates of 1,800 annual cow/calf operation simulations as described in 

Tester et al. (2019) were used to measure the relative impact of a variety of explanatory variables 

such that: 

 (3.2) 𝑌𝑗 =  𝛼0 + 𝛼1𝐻𝑎𝑦𝑄𝑗 + 𝛼2𝐻𝑎𝑦𝑃𝑗 + 𝛼3𝐶𝑎𝑡𝑡𝑄𝑗 + 𝛼4𝐶𝑎𝑡𝑡𝑃𝑗 + 𝛼5𝐹𝑒𝑟𝑡𝑀𝑗 

       +𝛼6𝐹𝑒𝑟𝑡𝐻𝑗 + 𝛼7𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑗 + 𝛼8𝑆𝑒𝑎𝑠𝑜𝑛𝑗 +  𝜀𝑗 



61 

 

where 𝑌𝑗 is cash operating profits in year j defined as the revenue generated from cattle and 

excess hay sales less production costs, HayQj is the annual number of 1200-lb bales sold/bought, 

HayPj is the annual price of hay in dollars per ton, CattQj is the yearly number of calves, cull 

cows, and cull bulls sold, CattPj is the nominal 4-500 lb steer price that varied by calving season, 

FertMj and FertHj were binary (zero/one) variables denoting intermediate and highest fertilizer 

use (Table 2.4) in comparison to the least fertilizer use of the baseline, respectively, Weatherj is a 

weather index indicating above/below cattle cycle or period-specific annual forage production 

that averages to 1 for a particular cattle cycle or period, Seasonj represents whether or not the 

operation utilizes a spring or fall calving season in a particular year, and εj is the error term. 

Equation 3.2 was then estimated for each of the three time periods, the 1990-2003 cattle cycle, 

the 2004-2014 cattle cycle, and finally over both time periods.   

2. Explanatory Variable Selection 

Since the variables initially identified to model operating profitability were likely to be 

correlated leading to multicollinearity (causing point estimates to be imprecise), principal 

component analysis was used to determine the appropriate number of explanatory variables to 

use. Four principal components were able to explain roughly 98% of the variation in the 

explanatory variables (Figure 3.1). This suggests the potential to eliminate several explanatory 

variables i) by using their statistical significance/contribution to model performance such that 

explanatory variables with |t-stat| < 1 were dropped (the adjusted R2 criterion); and, ii) by 

examining the extent of correlation among explanatory variables to avoid redundancy due to 

strong multicollinearity. The results suggested that hay price was statistically insignificant in 

every period analyzed, and hay sold was highly correlated with weather as expected since the 

weather index drove forage production. Hay sold remained in the model given it’s ease of 
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interpretation relative to the weather index and it’s larger |t-stat|. Finally, calving season was 

removed because the primary effect of a spring calving season is higher expected breeding 

failures that result in fewer head sold. Therefore, head sold captured the majority of calving 

season effects while cattle price captured seasonal price effects resulting from selling calves in 

the fall rather than the spring.  

Additionally, ANN analysis was conducted using the initial set of explanatory variables. 

Similar to the regression results, the ANN model’s variable impact analysis revealed calving 

season, weather, and hay price to have little impact. Fertilizer was also shown to have little 

impact in the ANN, but provided substantial explanatory power in the regression and therefore 

was included. Using these results, the final model specification included cattle price, hay sold, 

head sold, and fertilizer application level as follows:  

(3.3) 𝑌𝑗 =  𝛽0 + 𝛽1𝐻𝑎𝑦𝑄𝑗 + 𝛽2𝐶𝑎𝑡𝑡𝑄𝑗 + 𝛽3𝐶𝑎𝑡𝑡𝑃𝑗 + 𝛽4𝐹𝑒𝑟𝑡𝑀𝑗 + 𝛽5𝐹𝑒𝑟𝑡𝐻𝑗 + 𝛾𝑗 

where γj was the error term and other variables were as described for Eq. 3.2. Selection of 

explanatory variables was held constant across cycle or time period as well as modeling 

technique.   

3. Artificial Neural Network Analysis 

 Neural network analysis was conducted using NT (Palisade, 2015). The “Best Net 

Search” tool was used to select the configuration that resulted in the lowest root mean square 

error for data sets that were separated by time period with the following results -- GRNN for the 

1990-2003 cycle; MLF with 5 nodes for the 2004-2014 cycle; MLF with 6 nodes for the 1990-

2014 period.  

To test for the consistency of ANN modeling outcomes across cattle cycle and for the 

entire period, ANN analyses were repeated 10 times using randomly selected observations from 
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training data sets that differed in size -- two training runs each with 80%, 75%, 70%, 65%, and 

60% of the data. This led to ten observations of variable impacts and ten estimates of R2 to 

determine if the ranking of relative variable impacts would change across model runs and also by 

cattle cycle or time period analyzed.  

4. Regression Analysis 

To allow comparison of R2 and variable impact analyses between regression models and 

ANNs, randomly selected training data used in the ANN analyses were also used as the data set 

for regression analysis. For example, 403 random observations of the 504 observations in the 

1990-2003 cycle were used in each of the two 80/20 training/testing runs of the ANN. For each 

corresponding regression model, these same 403 observations were used. Statistical significance 

of input variables was computed using heteroskedastic consistent standard errors using the 

coeftest function of the lmtest package for R (Zeileis and Horton, 2002). Finally, while R2 was 

automatically reported for regression output, R2 of ANN models were calculated using: 

(3.3)  𝑅2 = 1 −
∑(𝑌�̂�−𝑌𝑖)2

∑(�̅�−𝑌𝑖)2  

where �̅� is the mean annual cash operating profitability (Yi) in the randomly selected training 

data set for which a prediction 𝑌�̂� was made. 

Further, regression coefficients for each explanatory variable were used to determine 

their impact on profitability for direct comparison to ANN analysis results.  As such,  

 (3.4) 𝐼𝐻𝑎𝑦𝑄  =  
𝛽1∙[𝐻𝑎𝑦𝑄𝑚𝑎𝑥− 𝐻𝑎𝑦𝑄𝑚𝑖𝑛]

∑ ∆𝑖
𝑛
𝑖=1

 

was the relative impact of variable HayQ on Y or IHayQ, ∆HayQ was calculated as shown in the 

numerator and represented the maximum change in �̂� with changes in HayQ using coefficient 

estimates of Eq. 3.3 and holding other variables constant, and i represented the ith of n 
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explanatory variable impacts.  Note that for the fertilizer effect, a binary zero/one variable, the 

maximum change �̂� is reflected in the coefficient estimate of the highest fertilizer use dummy 

variable and as such the fertilizer impact was calculated as follows: 

(3.5) 𝐼𝐹𝑒𝑟𝑡  =  
 𝛽5

∑ ∆𝑖
𝑛
𝑖=1

 

C. Results 

 ANN models outperformed regression in every instance by the R2 criterion. This was not 

surprising as neural networks examine a host of linear and non-linear combinations of 

explanatory variables’ impacts on the outcome whereas a linear functional form was used in the 

regression models (Eq. 3.3). Across all three cycles or periods, ANN models had average R2 

values between 96.9% and 98.5%. In comparison, regression models generated average R2 

values of 90.4% to 92.1% using identical, randomly selected training data sets (Table 3.1).  

 For the 1990-2003 cycle, the ANN models identified cattle price as the most impactful 

variable by a significant margin, 14.7%, over the second most impactful variable, number of hay 

bales sold. Cattle price had an average impact of 43.2% compared to 28.5% for hay sold and was 

followed by head sold and fertilizer, respectively (Figure 3.2).  

In the regression analysis, all variables were significant at the p=0.001 level for all ten 

model specifications. In terms of variable impacts, head sold was the most impactful variable and 

was followed by hay sold, fertilizer, and cattle price. Hay sold showed a slightly higher average 

impact over cattle price and fertilizer, but also had a much larger range of impact estimates. 

Fertilizer and cattle price impacts were separated by 0.3% across the 1990-2003 cycle (Figure 

3.2).  

For all four variables, ANN models had a larger range of variable impacts compared to 

the regression models. This suggested that ANN modeling of dependencies between explanatory 
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variables and the predicted outcome varied more by randomly selected data sets used in 

comparison to changes in effects observed when a simple linear fit was imposed as with the 

regression model. 

 For the 2004-2014 cycle, cattle price remained the most impactful variable in every ANN 

model and garnered a larger average impact with smaller range of impacts when compared to the 

1990-2003 cycle. In opposition to the previous cycle, head sold was more important than hay 

sold while fertilizer remained the least impactful variable (Figure 3.2). In the regression analyses, 

all variables were statistically significant at p=0.001 with the exception of the effect of medium 

fertilizer application, which was significant at p=0.01 or p=0.05 depending upon the model run. 

When examining regression results, variable impact rankings were similar but not identical to 

ANN rankings. ANNs showed hay sold to be slightly more impactful than fertilizer, while 

regression revealed the opposite (Figure 3.2).  

 For the 25 year period, 1990-2014, cattle price was consistent as the most impactful 

variable under all ANN model runs. The margin between cattle price and the second most 

impactful variable, head sold, was the largest, 20.5% on average, across the 25-year period when 

compared to the individual cycles. The two least impactful variables, hay sold and fertilizer, 

were consistent with the second cycle (Figure 3.2). In accordance with the previous cycle, all 

five coefficients were highly statistically significant (p<0.001) and variable impact rankings were 

identical to the previous cycle. Average variable impacts were separated by less than 2% across 

techniques and hence rankings between ANNs and regression were the most similar of any of the 

periods analyzed.   
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D. Conclusions  

1. Variable Impacts 

Artificial neural network analysis revealed cattle price to be the most impactful variable 

in every model and analysis period, but this result was only the same for regression analysis in 

the 2004-2014 cycle and the 25-year period. Head sold was the second most impactful variable 

in ANN analysis for the 2004-2014 cycle and 25-year period, whereas head sold ranked third for 

the 1990-2003 cycle. This result was accompanied with a large range of variable impact 

observations, 17.2%, for hay sold over the first cycle.  Hence hay sold was not always the second 

most impactful variable. Variable impacts calculated using linear regression coefficients resulted 

in similar results as those observed with ANN results as cattle price was the most impactful 

variable over the 2004-2014 cycle and the 25-year period. During the first cycle, observed cattle 

prices varied less in comparison to other periods (Figure 2.2), and hence head sold was shown to 

have a larger impact over the first cycle. Fertilizer application level was consistently the least 

impactful variable for ANNs and third most impactful for regression analysis. Artificial neural 

networks generated larger range of impacts in every model period when compared to regression 

analysis. This highlights the criticism of ANNs as random selection of observations and size of 

training set led to a large range of results even when using a consistent network configuration 

(BestNet Search was not employed for each model run). 

2. Producer Management Decisions 

 Results were consistent across both modeling techniques in that cattle price and head sold 

were the most impactful revenue variables impacting cash operating profits. Cattle producers are 

price takers and therefore cattle price cannot be influenced by producer’s management decisions 

outside of modifying calving season to potentially capture a seasonal price advantage in the 
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spring months when selling calves born in fall and forage production is plentiful. Fall calving 

herds are thus able to capture an advantage over spring calving operations by selling at 

seasonally higher prices and modeling supported this conclusion. With respect to head sold, a 

positive regression coefficient (β2) suggested that increasing the number of head of cattle sold 

increased profits. This suggested that lower breeding failure rates or larger herd size would be 

profit-maximizing (Table 3.1). However, more cattle will consume more forage and hence 

greater cattle output leads to lower hay sales or requires more fertilizer. One method to increase 

head sold without creating large increases in forage requirements is to use fall calving with fewer 

breeding failures than spring calving. Results from this analysis therefore reinforce Tester et al.’s 

(2019) conclusion that fall calving was the profit-maximizing choice for producers regardless of 

cattle cycle.  

Adding more fertilizer, to increase forage production and thereby cattle or hay sales, on 

the other hand showed pronounced negative effects (β4 and β5) in Table 3.1 which could be 

offset by greater cattle and/or hay sales (β1, β2, and β3). However, those impacts are not easily 

discernable from the variable impacts reported by ANNs (Fig. 3.2). Regression coefficients lend 

themselves more to examining this tradeoff than ANN results, although NT users can use ‘live’ 

predictions. Neither ANNs or regression analysis portray clearly that fertilizer at the medium 

level was profit-maximizing as shown in Chapter II. Using live predictions in NT would allow a 

user with the software to develop predictions for certain management practices that may 

eventually lead them to that profit-maximizing choice.  

Tester et al. (2019) also pointed out that dollar cost averaging and countercyclical herd 

size contraction and expansion decisions based on price signals led to more head sold than a 

management practice of maintaining the herd at a constant size over time.  Results from ANN 
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and regression analysis indicate that head sold is an important factor in terms of profitability. 

From a perspective of herd size management strategy, a dollar cost average strategy which led to 

the largest amount of cattle sales could thus erroneously be interpreted as the profit-maximizing 

decision when using ANN or regression results. Reduced excess hay sales with more cattle, 

offset such a recommendation which is not easily shown using the variable impact results.    

3. Modelling Technique Limitations 

In terms of model performance, ANNs were shown to be a superior predictive technique 

in terms of R2. This result is similar to the findings of Lek et al. (1996) in an alternate application 

regarding brown trout nesting rate. This superior goodness-of-fit did not come without cost, 

however, as hidden layers are not revealed given the complexity of describing the relationships 

of a trained neural network. As such, model results for making predictions are useful only to 

those with access to software like NT. Retraining the network also leads to changing results. 

Without an explicit description of relationships between explanatory variables and the dependent 

variable, as is available with regression analysis in the form of size and sign of parameter 

estimates (Table 3.2), it is therefore difficult to interpret results of a trained neural network in the 

absence of having access to ‘live’ predictions in NT. Employing the live prediction capability of 

ANNs does allow examination of marginal changes in projected profitability. Specifying a set of 

inputs and varying for example, fertilizer application rate or number of head sold is a viable 

alternative to analyzing regression coefficients. This approach would allow for a variety of 

scenarios to be examined quickly, but also would require access to large amounts of data as well 

as software such as NT. This investment may be deemed appropriate by large producers whose 

management decisions have large financial implications, but for many producers, knowledge of 

regression coefficients, may present sufficient information for making more informed decisions.  
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4. Study Limitations and Future Research  

Future research is needed to determine if the results and conclusions of this paper are 

consistent across further time periods and geographic regions. This analysis was Northwest 

Arkansas-specific and encompassed only the previous two cattle cycles. As such results may be 

different for future cattle cycles. Additionally, as the use of ANNs becomes more prevalent, 

software may allow for more detailed analysis of the trained network results. Development of 

more transparent software would lend itself to more regression analysis comparisons in the 

future.  

  



70 

 

E. References  

 

Dixon, B., Garcia, P., and M. Anderson. 1987. “Usefulness of Pretests for Estimating Underlying 

Technologies Using Dual Profit Functions.” International Economic Review. 28(3): 623-

633. 

 

Lek, S., Delacoste, M., Baran, P., Dimopoulus, I., Lauga, J., and S. Aulagnier. 1996. 

“Application of Neural Networks to Modelling Nonlinear Relationships in Ecology.” 

Ecological Modelling. 90(1): 39-52. 

 

Olden, J. and D. Jackson. 2002. “Illuminating the black box: a randomization approach for 

understanding variable contributions in artificial neural networks.” Ecological Modelling. 

154 (1): 135-150.  

 

Palisade Corporation. 2015. “Calculation and Use of Variable Impacts.” Retrieved on October 

16, 2018, from http://kb.palisade.com/index.php?pg=kb.page&id=225.  

 

Palisade Corporation. 2015. “Neural Tools User Guide: Version 7.” Retrieved on October 16, 

2018, from 

http://www.palisade.com/downloads/documentation/7/EN/NeuralTools7_EN.pdf.  

 

Popp, M., S.A. Smith, D. Keeton, and W. Maples. 2014. “Forage & Cattle Planner (FORCAP v 

2).” University of Arkansas. Department of Agricultural Economics and Agribusiness. 

Accessed May 5, 2014. Available at: http://agribusiness.uark.edu/decision-support-

software.php. 

 

Tester, C., Popp, M., Nalley, L. and N. Kemper. 2019. “Impact of Weather and Herd Size 

Management on Beef Cow Profitability.” Journal of Agricultural and Applied 

Economics. In Press. 

 

University of Wisconsin. n.d. “General Regression Neural Network.” Retrieved on October 18, 

2018, from 

https://minds.wisconsin.edu/bitstream/handle/1793/7779/ch2.pdf?sequence=14.  

 

Weisberg, S. 2013. “Applied Linear Regression.” Minneapolis: John Wiley and Sons. 

 

Zeileis, A. and T. Hothorn 2002. “Diagnostic Checking in Regression Relationships.” R News    

2(3): 7-10. https://CRAN.R-project.org/doc/Rnews.  

 

  



71 

 

F. Tables and Figures 

Table 3.1. Estimation of the Effects of Hay Production, Cattle Sales, and Fertilizer Use on 

Annual Estimates of Cow-calf Cash Operating Profits using Linear Regression and Comparing 

Goodness-of-Fit with Artificial Neural Network Techniques of Generalized Regression Neural 

Networks (GRNN) for 1990-2003, Multilayer Feed Forward Neural Networks (MLF) with 5 

nodes for 2004-2014 and 6 Nodes for 1990-2014 Across 10 Model Runs per Time Period. 
 

Time 

Period: 

 Regression Coefficients 

Variable  Minimuma Average Maximum 

1
9

9
0

-2
0

0
3
 

HayQb β1
c 27 29***,d 30 

CattQ β2 370 388*** 398 

CattP β3 419 432*** 447 

FertM β4 -4,086 -3,818*** -3,432 

FertH β5 -25,081 -24,742*** -24,087 

R2  0.899 0.904 0.910 

  GRNN 

R2  0.979 0.985 0.993 

 
Time 

Period: 

 Regression Coefficients 

Variable  Minimuma Average Maximum 

2
0

0
4

-2
0

1
4
 

HayQb β1
c 42 44*** 49 

CattQ β2 657 706*** 730 

CattP β3 432 449*** 462 

FertM β4 -3,822 -3,041*/** -2,614 

FertH β5 -36,234 -34,469*** -31,836 

R2  0.916 0.921 0.928 

  MLF 5 Nodes 

R2  0.981 0.985 0.987 

 
Time 

Period: 

 Regression Coefficients 

Variable  Minimuma Average Maximum 

1
9
9

0
-2

0
1

4
 

HayQb β1
c 30 32*** 35 

CattQ β2 516 549*** 562 

CattP β3 388 407*** 421 

FertM β4 -3,723 -3,054*** -2,579 

FertH β5 -30,720 -29,921*** -28,630 

R2  0.915 0.920 0.927 

  MLF 6 Nodes 

R2  0.965 0.969 0.972 

Notes: 
a Modeling was performed 10 separate times for each time period using different randomly 

selected subsamples of the data with different proportions used for training the neural net 

(60%-80%). Randomly chosen observations were the same for regression vs. ANN analyses 

for each model run. 
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b HayQ was the annual number of 1200-lb bales sold/bought, CattQ was the yearly number of 

calves, cull cows, and cull bulls sold, CattP was the nominal, Arkansas average 4-500-lb 

price for medium and large frame No. 1 steers that varied by calving season and served as a 

proxy for all types of cattle sold, FertM and FertH were binary zero/one variables denoting 

intermediate and highest fertilizer use in comparison to the least fertilizer use of the baseline, 

respectively. 

 
c See Eq. 3.3. 

 
d * =  p< 0.05 level, ** =  p< 0.01 level, and *** = p< 0.001 level. 
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Figure 3.1. Principal Component Analysis for Variable Selection to Explain Cow-calf Cash 

Operating Profits using Hay and Cattle Sales, Fertilizer Use, Calving Season and Weather over 

1990-2014. 

Note: The dependent variable was 𝑌𝑗 or cash operating profits in year j defined as the revenue 

generated from cattle and excess hay sales, HayQj was the annual number of 1200-lb bales 

sold/bought, HayPj was the annual price of hay in dollars per ton, CattQj was the yearly number 

of calves, cull cows, and cull bulls sold, CattPj was the nominal 4-500 lb steer price that varied 

by calving season, FertMj and FertHj were binary zero/one variables denoting intermediate and 

highest fertilizer use in comparison to the least fertilizer use of the baseline, respectively, 

Weatherj is a weather index indicating above/below cattle cycle or period-specific annual forage 

production that averages to 1 for a particular cattle cycle or period, Seasonj represents whether or 

not the operation used a spring or fall calving season in a particular year.  
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Figure 3.2. Comparison of Variable Impact Analyses: Minimum, Average, and Maximum 

Variable Impacts as Estimated Repeated across Cycle or Period Using Different Randomly 

Selected Training Sets of Varying Size. 

Note: HayQ was the annual number of 1200-lb bales sold/bought, CattQ was the yearly number 

of calves, cull cows, and cull bulls sold, CattP was the nominal, Arkansas average 4-500-lb price 

for medium and large frame No. 1 steers that varied by calving season and served as a proxy for 

all types of cattle sold, FertM and FertH were binary zero/one variables denoting intermediate 

and highest fertilizer and their effect was combined using Eq. 3.5.
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Chapter IV. Summary of Conclusions and Considerations for Future Research 

A. Summary of Results and Conclusions 

In Tester et al. (2019), three herd size management strategies were evaluated on the basis 

of cash operating profit across two cattle cycles, 1990-2003 and 2004-2014 as well as two 

calving seasons. This analysis examined a variety of production scenarios utilizing a fixed land 

base both with and without weather effects on forage production. The null hypothesis was that 

price-signal based herd management strategies would not increase profitability or decrease 

income risk when compared to a constant herd size strategy. Results from this analysis 

demonstrated that a countercyclical herd expansion/contraction strategy involving a price signal, 

based on the ratio of two different length moving average steer prices, did lead to slightly higher 

profit using fall calving regardless of weather effects on forage production. That strategy also did 

not deleteriously affect income risk. However, a constant herd size strategy was shown to be the 

profit-maximizing and income risk neutral strategy when calves are born in the spring. The 

above strategies exhibited highest returns using a medium level of fertilizer with added hay sales 

in lieu of greater stocking rates for both fall and spring calving herds. In the opinion of the 

author, marginally larger profits generated by the countercyclical strategy were not large enough 

to recommend this strategy to producers. Larger operations, with larger herds may turn to this 

strategy as greater profitability ramifications to changing herdsize management strategy are 

expected.  

Chapter III employed two modeling techniques to describe the relative impact of hay and 

cattle sales, calving season, weather, and fertilizer use on cow-calf operating profits using 

performance observations as estimated in Tester et al. (2019). Artificial neural networks were 

compared and contrasted with regression analysis on the basis of goodness-of-fit (R2) and 
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ranking of relative impacts of explanatory variables. The null hypothesis was that relative impact 

rankings would be the same across techniques. A second null hypothesis was that model 

predictive performance was the same across techniques. Results from this analysis demonstrated 

that ANNs possessed greater R2 for modeling cow-calf profitability than regression analysis. 

However, regression analysis results were more interpretable and easily accessible to users. In all 

three time periods, ANN analysis revealed cattle price to be the most important driver of 

profitability. Variable impact results using either modeling technique led to similar rankings in 

most cases. Coefficient signs and magnitudes from the regression analysis reinforced the 

conclusions presented in Tester et al. (2019). However, both linear regression coefficients and 

ANN do not easily point to profitability implications when tradeoffs among variables need 

interpretation. Medium fertilizer use showed a negative coefficient, for example, but was the 

profit-maximizing choice. For ANNs, variable impacts do not describe whether changes in a 

variable lead to a positive or negative impact but rather only indicate relative impact in 

comparison to other variables. A user of ANNs needs to employ live prediction capabilities of 

ANNs to analyze marginal changes in profitability as a result of changing production decisions 

such as fertilizer application rate or stocking rate. As highlighted in the analysis, these marginal 

changes are sensitive to training and testing data sets and therefore are unlikely to yield 

consistent conclusions. Live prediction analysis would require significant investment in software 

and data collection and, in the opinion of the author, would only be justifiable for large-scale 

operations.  

B. Study Limitations and Future Research 

This research examined three herd size management strategies under a fixed land 

resource over a 25-year period. The marginal gains in profitability generated using a 
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countercyclical rather than constant herd size strategy may be large enough to constitute 

implementation at a larger scale. Additionally, results presented in this research were specific to 

the previous two cattle cycles and may not hold in future cycles. Simulated weather conditions 

were also specific to northwest Arkansas and will differ based upon the region of analysis. 

Results presented in chapter III were generated using a specific functional form or network 

configuration as well as a limited set of explanatory variables. Results and conclusions are 

subject to change with changes in modeling technique or selection of explanatory variables.    

Future research may examine these research questions under a larger land constraint as 

well as different regions using different forages and price series. Additionally, non-linear 

functional forms of regression analysis as well as differing network architectures for ANNs 

could be explored. As ANN analysis techniques continue to improve, greater transparency of 

relationships may be possible.  
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