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ABSTRACT 

 Future increases in global surface temperature threaten those worldwide who depend on 

rice production for their livelihoods and food security. Past analyses of extreme heat effects on 

rice production have focused on paddy yield and have not accounted for the detrimental impact 

of extreme heat on milling quality outcomes which ultimately determine edible (marketable) rice 

yield and value. Using rice yield and milling quality data on six popular rice cultivars from 

Arkansas, USA, combined with on-site, half-hourly and daily temperature observations, this 

study finds a nonlinear effect of extreme heat exposure on yield and milling quality. A 1 °C 

increase in average growing season temperature reduces paddy yield and producer revenue by 

8.2%; total edible rice yield by 9 to 9.9%; high-quality edible rice yield (kg ha-1) by 10.4 to 

15.6%; and total milling revenue by 11.1 to 38.7% across genotypes. Utilization of the 

significant annual and locational temperature variability in the dataset allows examination of 

further mean growing season temperature increases of 2 and 4 °C. Results show that failure to 

account for changes in milling quality leads to significant understatement of the impacts of 

extreme heat on rice production outcomes. 
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I.  INTRODUCTION 

Current climate change models project mean global temperature increases between 1.8 

°C and 4 °C by the end of the century (IPCC 2007). Increases of even the lower magnitude 

could result in current notions of extreme temperatures becoming the norm, and future extreme 

temperatures becoming catastrophic to rice production. Climate change therefore threatens 

roughly one billion people who depend on rice cultivation as their primary source of income, 

and the food security of roughly 3.5 billion people who depend on rice for more than 20 percent 

of their daily caloric intake (IRRI 2012). Impacts of climate change on rice production could 

devastate rural Asian economies where average farm size ranges from less than half a hectare in 

China, Indonesia, and Vietnam, to over two hectares in Thailand, Myanmar, the Punjab in India, 

and Cambodia (Toriyama, Heong, and Hardy 2005). Rice provides nearly 50 percent of daily 

caloric intake in South East Asia, 30 percent in South Asia, and over 25 percent in East Asia. In 

contrast, rice production plays a relatively small role in U.S. food security with rice 

consumption accounting for less than three percent of daily caloric intake (IRRI 2012). 

Despite being the world’s 10th largest rice producer by volume and area (FAO 2012), the 

relatively low domestic demand for rice allows the U.S. to export around half of domestic 

production, making it the fourth largest rice exporter (USDA-ERS 2012). Thus, the United 

States plays a substantial role in a very thin international market where global trade of milled 

rice accounts for roughly 6.8 percent of worldwide consumption and less than five percent of 

worldwide production (USDA-FAS 2012). The thin nature of the international rice market 

means that shocks to U.S. rice production from extreme heat can dramatically impact 

international price levels, sending ripples through the Asian rice markets where stable supply is 

critical to meet daily demand. 
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The economic value of rice production is determined at the field, mill, and market 

stages. Production shocks in any given stage affect value creation in later stages. Producer 

welfare depends on the sale of rough (unprocessed) rice to millers and miller welfare depends 

on sale of milled rice to domestic and international markets. Extreme heat, defined as the 

cumulative exposure to day and night temperatures above critical thresholds, can decrease rough 

rice yield and milling quality. The affected milling quality outcomes most important to 

economic and nutritional outcomes of rice producers and consumers are milled rice yield 

(MRY) – the mass ratio of milled kernels to initial rough rice kernels; and head rice yield 

(HRY) – the mass ratio of milled kernels ≥ three-quarters the length of an unbroken (whole) 

milled kernel to initial rough rice kernels; and broken rice yield (BKY) – the mass ratio of 

milled kernels < three-quarters the length of an unbroken (whole) milled kernel to initial rough 

rice kernels; and chalk content (CHK) – defined experimentally as the ratio of total chalky to 

non-chalky area of 100 brown rice kernels or in the market as the ratio of chalky to non-chalky 

kernels in a sample of milled rice, where chalky kernels are one-half or more chalky. 

Broken kernels sell for roughly 60-70 percent of the value of whole kernels in the United 

States, depending on broken kernel dimension (USDA-ERS Rice Yearbook). Other milling 

quality aspects affected by extreme heat include premature (green) kernels, kernel dimension, 

amylose content and amalyopectin chain length. Chalk reduces HRY and can decrease the 

market value of head rice by up to 25 percent (Lisle et al. 2000). Recent research at the field and 

mill levels has shown modest increases in daily maximum and minimum temperatures can 

decrease rough rice yields by as much as 10 percent (Peng et al. 2004), dramatically alter the 

distribution of head and broken rice, and greatly increase the proportions of chalky kernels 

(Ambardekar et al. 2011; Lanning et al. 2011; Fitzgerald and Resurreccion 2009).  
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Despite the substantial amount of agronomic and physiological literature correlating 

extreme heat effects to reduced rice yield and quality outcomes at the plant and field levels 

(Wassmann 2009), very few studies have estimated heat effects in a predictive framework that 

quantify reductions in paddy yield quality given increases in temperature (Peng et al. 2004; 

Welch et al. 2010), and no such model exists for milling quality. Thus, the popular estimate of a 

10 percent reduction in rough rice yield given a 1°C increase in mean growing season minimum 

temperature does not account for likely decreases in MRY and HRY and increase in chalk 

content that  further reduce the yield and value of milled, edible rice (Peng et al. 2004). 

 To begin filling this gap in the literature, this study estimates effects of extreme heat on 

rough rice yield and the major determinants of milling quality using field-level experimental 

data from Arkansas, USA. Rough rice yield is estimated using a linear fixed effects model 

accounting for growth-stage specific, diurnal-temperature effects. Growth stage-specific effects 

of extreme heat on milling yield and chalk content are estimated using a system-of-equations 

model. Milling quality and chalk estimates are cultivar-specific, but data availability prohibits 

varietal specific estimation of the rough rice model. Data on varieties included in the milling 

model are pooled to estimate the rough rice model. Varietal-specific fixed-effects are estimated 

in the rough rice model. Together these models provide comprehensive, practical estimates of 

reductions in paddy and milling yield and quality attributable to growth stage specific, diurnal 

extreme heat events. Changes in mean paddy yield, milled yield, and chalk content are estimated 

given 1, 2, and 4 °C warming and economic implications are discussed. Expected future 

warming and the global economic importance of rice production necessitate this discussion.  
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II.  LITERATURE REVIEW 

 Explaining the relationship between extreme heat and rough rice yield and milling 

quality outcomes requires identification of growth stages sensitive to extreme heat exposure, the 

definition of “extreme,” and how these differ across rice cultivars. Sensitive stages and the 

definition of extreme differ among yield and quality attributes across cultivars and existing 

literature often focuses on a specific element for a specific cultivar. The following analysis of 

this vast, disjointed body of literature focuses seperately on the documented relationships 

between extreme heat and rough rice yield and milling quality. 

A.  ROUGH RICE YIELD 

Paddy yield responses to temperature differ among developmental stages and depend on 

the magnitude and diurnal distribution of heat. Physiological processes affected by extreme 

temperatures can be divided into three broad developmental stages: vegetative, reproductive, 

and ripening (Wassman et al. 2009; Welch et al. 2010). Extreme day temperatures during the 

vegetative stage have been shown to reduce plant height, tiller quantity and dry weight (Yoshida 

et al. 1981). Reproductive processes surrounding anthesis are sensitive to day temperatures 

above 33 °C (Satake and Yoshida 1978). Daytime temperatures above 33 °C have been linked to 

decreased paddy yield by reducing spikelet sterility (Prasad et al. 2006). Jagadish et al. (2010) 

found varietal differences in response to extreme temperatures (38 °C) at anthesis with spikelet 

fertility varying between 18 and 71 percent. Baker (2004) reported constant growing season 

temperatures of 36 °C resulted in zero grain yield for three U.S. cultivars.  

Night temperatures have also been shown to negatively affect reproductive processes 

and reduce yield. Night temperatures above 29 °C during anthesis increase susceptibility to 

sterility and sterility inhibits seed-set and reduces yield (Satake and Yoshida 1978; Ziska et al. 
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1996). Mohammed and Tarpley (2009) exposed rice to extreme night temperatures (32 °C) from 

20 days after emergence to harvest and reported decreased crop growth duration, percent pollen 

germination and spikelet fertility. Nagarajan et al. (2010) identified 22-23 °C as the critical 

night temperature threshold and attributed significant reductions in grain yield to 1-2 °C 

increases in night temperatures above the threshold during the flowering and grain filling 

period. It is unclear whether vegetative temperature variability is controlled for in Nagarajan et 

al. (2010)’s analysis of night temperatures during the flowering and grain filling stage. Kanno 

and Makino (2010) observed night temperatures of 27 °C lead to a decline in grain yield relative 

to night temperatures of 22 °C. They attributed this decline to a reduction in grain weight and 

ratio of filled spikelets. Vegetative stage temperatures were held constant in their experiment 

and they reported no difference in number of panicles or spikelets. Recent econometric analysis 

of farmer and experimental field data correlate increases in average daily minimum 

temperatures (Tmin) during the vegetative stage with decreases in rough rice yield (Welch et al. 

2010; Peng et al. 2004). 

Recent econometric analyses of extreme temperature effects on rough rice yields 

estimate the marginal effects of diurnal temperature variability. Peng et al. (2004) use 

experimental field data and find a significant inverse relationship between Tmin and rough rice 

yield, and conclude a 1 °C increase in minimum temperature is associated with a 10 percent 

reduction in paddy yield. Peng et al. (2004) is a benchmark study of the relationship between 

rice yields and extreme heat because it presents the link between nighttime temperatures and 

rough rice yield, and uses field-level data to establish the link. Welch et al. (2010) find a similar 

link between nighttime temperatures and paddy yield using a field level dataset. The study 

expands on Peng et al. (2004) by looking at the effects of temperatures and solar radiation in 
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three growth periods: vegetative, reproductive, and ripening; and, by estimating the effects using 

more sophisticated multiple regression models. Dixon et al. (1994) use a similar approach to 

estimate climatic effects on maize yields in the central United States. Welch et al. (2010) 

conclude minimum temperatures decrease yield during the vegetative and ripening stages; 

maximum temperatures increase yield during the vegetative stage; and, solar radiation decreases 

and increases yield during the vegetative and ripening stages, respectively. Dixon et al. (1994) 

find a similar negative effect of solar radiation on maize yields during the vegetative growth 

stage. Similar approaches are used to estimate the effects of temperature variability on wheat, 

soybeans, corn, and cotton (Lobell et al. 2011; Schlenker and Roberts 2009). 

B.  MILLING QUALITY 

Milling quality refers to the many aspects of milled rice affecting cooking quality, visual 

appearance, and value. Often reported quality aspects include chalk content, grain dimensions, 

immature kernel content, amylose content, and/or amylopectin chain lengths. Temperature 

variability during the reproductive and ripening stages affects all of these qualities to some 

degree, but chalk content has been a primary focus of experimental research because it is easily 

detected visually and consequent reduction of the market value of milled rice (Asaoka et al. 

1985; Patindol and Wang 2003; Naranjan et al. 2010; Hayashi et al. 2011). Chalk manifests as 

an opaque or milky white region in part or all of the endosperm resulting from air spaces 

between loosely packed and poorly-developed starch granules (Tashiro and Wardlaw 1991). 

Extreme temperatures at various stages of endosperm development are thought to be responsible 

for the various types of chalk; hot temperatures during early endosperm development (grain 

filling) cause milky-white and white-core chalk development at the center of the endosperm; hot 
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temperatures during later grain filling can cause white-back and basal white chalk development 

on the outer portions of the endosperm (Tashiro and Wardlaw 1991; Tsukaguchi and Ida 2008).  

 Recent research suggests the irregularly packed starch granules responsible for chalk 

formation result from curtailed substrate (nutrient) availability during grain filling in hot 

temperatures. The decreased nutrient availability is especially detrimental to grain development 

among inferior spikelets. Inferior spikelets begin grain development up to seven days later than 

spikelets on the primary panicle branch, leading these spikelets to fill in nutrient-sparse 

conditions if temperatures have shortened the substrate availability window (Fitzgerald and 

Resurreccion 2009). This research suggests spikelets located on inferior branches, even on the 

main stem panicle, will have relatively high chalk contents and thus decreased grain weight. 

Elevated temperatures decrease kernel dry weight during the grain filling stage and 

extreme heat during early grain filling can interfere with the development of a fertilized 

endosperm and lead to abortion of kernel development (Tashiro and Wardlaw 1991). High day 

and night temperatures increase the rate of grain dry weight accumulation, final grain weight 

decreases due to reduced endosperm size (Morita et al. 2005). Elevated day and night 

temperatures also decrease grain length, width, and thickness (Yamakawa et al. 2007). 

A substantial body of literature focuses on the inverse relationship between HRY and 

elevated night temperatures. Counce et al. (2005) find elevated night temperatures during late 

grain filling reduce HRY, but do not control for nor test effects of elevated day temperatures. 

The study suggests elevated night temperature inhibit the production/function of enzymes 

responsible for starch synthesis and is supported by Cheng et al. (2005). Using a historical data 

set from Arkansas, USA, Cooper et al. (2006) correlate mean daily minimum and maximum 

temperatures occurring during reproductive growth stages (using methodology developed in 
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Counce et al. (2000)) to HRY and find high night temperatures during the R8 stage – defined as 

one grain on the main stem panicle having developed a brown hull – explain 26 percent of the 

variability in HRY for two long-grain cultivars grown in Arkansas over a 17 year period and 

increased minimum temperatures throughout the latter two-thirds of grain filling explain 50 

percent of HRY variability.  A follow-up, phytotron study by Cooper et al. (2008) using 

controlled night temperatures of 18, 22, 26, and 30°C from midnight to 5 a.m. found that HRYs 

of both pure-line and hybrid cultivars are negatively related, with the exception of two cultivars 

generally known for their stable milling quality. Neither Counce et al. (2005), Cheng et al. 

(2005), Cooper et al. (2006), nor Cooper et al. (2008) hold day temperatures constant during 

their analyses of night temperature effects, nor do they use statistical methods (e.g. multiple 

regression) capable of ceteris parabus analyses.  

Ambardekar et al. (2011) evaluate night temperature effects on six pure-line and hybrid 

cultivars grown across various locations from northern to southern Arkansas.  The study reports 

that the 95th percentile of night temperature observations for a given variety/location/year is 

significantly correlated to HRY and chalk.  Increased NT95 results in decreased HRY and 

increased chalk for the majority of cultivars.  Lanning et al. (2011), using field trials on the 

same varieties used in Ambardekar et al. (2011), confirms the detrimental impact of elevated 

night temperatures. Addition of the historically high temperatures observed in 2010 reveals that 

even the varieties with previously stable HRY and CHK (Ambardekar et al. 2011) exhibit a 

positive correlation of CHK and a negative correlation of HRY when exposed to extreme 

temperatures during grain-filling. 
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III.  METHODOLOGY 

Understanding the economic impacts of increasing temperatures on rice production at 

the farm and mill level requires modeling the relationship between high temperature events, 

rough rice yield, milling quality, and rice prices. At the farm level, producer revenue per unit 

area harvested depends on rough rice yield and rough rice price, where rough rice price is a 

function of both milling quality and exogenous market forces. Mill revenue from a unit area of 

harvested rough rice delivered to the mill is a function of the mass quantities of milled rice and 

byproducts obtained from the initial quantity of rough rice and the associated prices of milled 

rice and byproducts.  

Cost functions associated with revenue at the farm and mill levels include variables that 

are functions of the temperature parameters, such as flood depth and/or duration (Hayashi et al. 

2011), crop nutrient application (Fitzgerald and Resurreccion 2009), and other production 

decisions that influence temperature related outcomes. To maximize profits given these costs 

functions would thus require balancing input costs and expected returns. Due to data limitations, 

mitigation of the detrimental effect of high temperatures is not a subject of this article so the 

discussion of economic implications is limited to changes in revenue at the farm and mill levels 

given changes in temperature parameters, holding constant any heat damage mitigation 

responses. Furthermore, data is not available on the relationship between expected rough rice 

yield quality and rough rice prices so in this analysis rough rice prices will be assumed constant 

given changes in growing season temperature conditions.  

Despite lacking data to estimate high temperature mitigation response functions and 

resulting profit implications, the interrelated nature of rough rice yield and milling quality given 

the mill’s reliance on rough rice input and the dependence of rough rice price on milling quality 
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necessitates modeling the implications of increasing growing season temperatures on both rough 

rice yield and milling quality. 

A.  ANALYTICAL FRAMEWORK 

 This analysis models the effects of extreme heat events on    , MRY, HRY, and CHK 

to examine implications of increases in mean growing season air temperatures on rice producer 

and miller returns. Assume that rough rice output is given by   ( )  where H denotes a general 

term representing growing season temperatures with producer decisions affecting    held 

constant. Let    denote the price of rough rice. The farm revenue maximization problem is:   

(1)  max             ( )   

 
As mass percentages, MRY and HRY serve as useful experimental and market measures 

of the quality of a sample of rough or milled rice, but alone they do not provide enough 

information to estimate mill revenue implications of a change in H. Given   ( ),    ( ), and 

   (     ( )) the mass quantities of milled head rice (   ) and broken rice (   ) can be 

approximated as       and   (       ), respectively. Chalky head rice is discounted by 

separating     into chalky (    ) and non-chalky (     ) head rice given by        and 

   (     ), respectively. Let   and    denote the prices of high quality (non-chalky head) 

and low quality (chalky head and broken) rice, respectively. Mill revenue per acre of harvested 

rice is: 

(2)                       (        )   
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 Changes in equations (1) and (2) given changes in H provide the primary results of this 

analysis. Holding constant     the implications of a change in H on total farm revenue are 

straightforward: 

(3)         

  
   

   ( )

  
   

 

Implications of a change in H on mill revenue are less straightforward because 

            and     are functions of the endogenous variables                      As a 

result, changes in H have less clear effects on mill revenue than on farm revenue. Breaking 

            and     into their component functions, a change in H has the following effects on 

milling revenue: 

(4)         
  

   
      
  

   (
     
  

 
    
  

)  
 

 
where changes in             and     are given by: 
 

(5)  

      
  

 
   ( )   (     ( ))(     ( ))

  

 
   
  

   (     )    [
    

  
 
    

    

    

  
] (     )

      
    

  
   

 

(6)  

     
  

 
   ( )   (     ( ))   ( )

  

    
   
  

      [
    

  
 
    

    

    

  
]         
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(7)  

    
  

 
   ( )[   ( )     (     ( ))]

  

 
   
  

[       ]    [
    

  
 
    

  
 
    

    

    

  
]    

Equations (5), (6), and (7) describe the cumulative change in both quantity and distribution of 

mill outputs given a change in growing season temperature conditions (H) in terms of changes 

in rough rice yield and milling quality.  

An ideal empirical model of the economic implications of a change growing season 

temperature conditions would specify rough rice and milling quality as a system of equations; 

however, in this study data limitations prevent such a specification and rough rice yield must be 

modeled separately from the milling quality system. As a result, equations (5), (6), and (7) are 

calculated using outcomes from the separate rough rice yield and milling quality models 

described below. 

B.  ROUGH RICE YIELD 

Rough rice yield is estimated using a fixed-effects OLS multiple regression model of the 

form: 

(8)                                 

 
where   ( )      is the natural logarithm of rough rice yield (kg ha-1) for trial i at station 

s and variety j;        is a vector of weather variables for that trial-location-variety combination; 

  is a vector of weather coefficients;    is a vector of station intercepts to control for spatially 

invariant unobserved effects such as soil type;    is a vector of variety intercepts to capture 

genetic yield differences across varieties; and      is a vector of error terms. Under this 

specification         represents the growing season conditions (H) for a given observation. 
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Previous literature agrees neither on the appropriate set of weather variables to include 

in    – suppressing trial, location and variety subscripts – nor on the best method of 

aggregating weather data. Appropriate weather variable aggregation method and variable 

selection has been shown to depend on weather data availability, frequency, variability and 

correlations (Peng et al. 2004; Sheehy et al. 2006; Welch et al. 2010; and Lobell and Monasterio 

2007, 2011). Considering these factors, this study estimates equation (8) using three methods of 

weather data aggregation to define variables in   (denoted        , and    ), and for each 

aggregation method multiple combinations of weather variables are included.  Weather data is 

aggregated in     across the entire growing season following Peng et al. (2004); in     across 

the vegetative, reproductive, and ripening growth stages (Figure 1) following Welch et al. 

(2010); and in     combining the growth stage with a novel approach using narrower windows 

(Figure 1) for especially sensitive growth periods. Sets of weather variables are selected for each 

aggregation method following the previous modeling literature. 

Figure 1. Rice (Oryza sativa L.) developmental stages 

 

Vegetative, reproductive and ripening growth stages are defined relative to the observed 

50 % heading and emergence dates at each station. The vegetative, reproductive, and ripening 

stages are defined as the intervals [emergence, H – 30), [H – 30, H + 5], (H + 5, harvest], 

 

5 22 
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respectively, where H denotes 50 % heading. The ripening stage is divided into early and late 

grain filling denoted by W2 and W3 to account for the differential effects of temperature on the 

physiological processes occurring during these periods.  

Harvest dates are not available for the rough rice yield data so harvest is approximated as 

40 days after 50% heading. Harvest dates are available for the milled rice yield and quality data, 

but some plots were not harvested at maturity to allow harvest moisture content (HMC) to 

decrease. To avoid inclusion of temperatures beyond maturity, min {H + 40, harvest} is used as 

the harvest date for milling quality trials. 

Correlations among weather variables are especially important when selecting the proper 

model because collinearity can confound statistical estimates of day versus night temperatures 

on crop yields and omission of correlated weather factors may produce biased parameter 

estimates (Sheehy et al. 2006; Lobell and Monasterio 2007; Welch et al. 2010). Multiple 

regression analysis can sort out partial marginal effects of mutually correlated independent 

random variables, but high correlations among two or more independent variables can lead to 

near perfect multicollinearity and result in highly unreliable parameter estimates characterized 

by inflated standard errors and unexpected signs and/or magnitudes (Verbeek 2008, 43). 

Correlations among weather variables in each model are examined and colliniarity diagnostics 

are preformed to identify potentially misleading parameter estimates and/or standard error 

inflation. 

Specification of yield as a function of growing-season (emergence to harvest) weather 

variables precludes observation of growth stage specific weather effects, but eliminates 

uncertainty associated with stage definition and requires only one-third of the parameters of a 

stage specific model and thus reduces the potential parameter instability associated with 
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multicollinearity. Weather data aggregated over the entire season may provide a parsimonious 

specification of the yield equation, but it does not allow a sophisticated physiological 

explanation for extreme heat impacts on yield. Furthermore, the predictive power of season 

aggregated variables depends on the distribution of growing season temperatures in future years. 

Future extreme temperature observations may occur at times when plant growth is not 

susceptible to heat (or cold) damage, but annual weather variables could appear no different 

from in-sample observations of yield reduction, thus leading to incorrect prediction of out of 

sample observations. Stage-specific definitions of weather variables reduce this likelihood 

because they are capable of capturing the various harmful effects of extreme temperatures 

discussed above. Growth stage specific estimates as in Welch et al. (2010) can provide more 

interesting or insightful results, but often come at the cost of multicollinearity (Sheehy et al. 

2006; Lobell and Monasterio 2007). For both season and growth stage aggregation methods 

eight definitions of    are used to estimate equation (8). The eight definitions are described in 

Table 1. 

Table 1. Specifications of        and definition of weather variables 

Specification        = {  } 
1 Mean daily minimum temperature (Tmin) 
2 Tmin, Solar radiation (SR)  
3 Mean daily maximum temperature (Tmax) 
4 Tmax, SR 
5 Tmin, Tmax, SR 
6 Mean daily average temperature (Tavg) 
7 Tavg, SR 
8 Vapor Pressure Deficit (VPD) 

 
The third aggregation method utilizes the high frequency (30-minute interval relative to 

daily) temperature data available during sensitive growth periods (W1, W2, and W3 in Figure 

1). To utilize the higher-frequency data, a thermal time approach is used to capture the extreme 
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heat accumulation during growth stages similar to thermal accumulation methodologies 

implemented in previous studies (Jagadish et al. 2009; Lobel et al. 2011; Lobell et al. 2012). 

Unlike previous studies these variables are generated separately for day and night temperature 

observations allowing a diurnal approach shown important in Welch et al. (2010). 

Harmful thermal day and night thermal time variables are defined for the following 

windows (W): W1, the early-flowering stage from 10 days before 50-percent heading to 5 days 

after 50-percent heading; W2, the early-grain filling window from 6 days after 50-percent 

heading to 22 days after 50-percent heading; and, W3, the late grain-filling stage from 23 days 

after 50-percent heading to the earlier of 40 days after 50-percent heading or harvest. W3 is 

capped at the earlier of 40 days after 50-percent heading or harvest to avoid inclusion of weather 

observations during periods shown non-responsive to weather fluctuation (Figure 1). Harmful 

day and night thermal time are defined using 33°C and 22 °C as the day and night temperature 

thresholds. Daytime exposure above 33 °C is defined as: 

(9)      ∑      
      

   

 
for k = W1, W2, and W3, where       is the temperature at time   on day d at station s in year t, 

and    {                                              }, where     and    

start and end day of k, respectively. 

The variable describing thermal nighttime above 22 °C is defined as: 

(10)      ∑      
      

   

 
for k = W1, W2, and W3, where        is the temperature at time   at station s in year t, and 

   {                                              }, where     and    start 
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and end day of k, respectively. Daily sunrise and sunset estimates were calculated for each 

day/station/year combination using the National Oceanic and Atmospheric Administration’s 

(NOAA) solar calculator (www.srrb.noaa.gov/highlights/sunrise/sunrise.html).  

C.  MILLING QUALITY 

 No predictive models of the relationship between extreme temperatures and milling 

quality currently exist. Previous experimental correlations of the relationships between extreme 

heat and milling quality guide the specification of a model capable of isolating diurnal and stage 

specific temperature effects. Following previous literature, this study focuses on extreme heat 

effects during the early (W2) and late (W3) grain filling periods (Counce et al. 2005; 

Ambardekar et al. 2010; Lanning et al. 2010). Controlling for harvest moisture content (HMC) 

is important as HMC proxies for immature and fissured kernels for which data is unavailable in 

this study; rice harvested at high HMC is prone to immature kernels and rice harvested at low 

HMC is highly susceptible to fissured kernels (Siebenmorgen et al. 2007).  

Effects of extreme heat on milling quality are estimated using a system of linear-fixed 

effects equations: 

(11)                        

(12)                                       
             

(13)                                  

 
where      ,      , and       denote to chalk, head rice yield, and milled rice yield, 

respectively, for trial i at station s;     is the vector of the same weather variables in equations 

(11), (12), and (13); and   ,   , and    are the vectors of coefficients associated with the 

weather variables in    .       appears on the right hand side (RHS) of equation (12) as an 

endogenous explanatory variable;   is the slope parameter for       in equation (12);       
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represents harvest moisture content (HMC) in equations (12) and (13);          and      are the 

slope parameters associated with HMC and HMC2 in equations (12) and (13);    is a vector of 

station intercepts; and,      ,      , and       are error terms for each observation. Weather 

variables in     include TDNW2 and TDNW3 to capture temperature effects during early (W2) 

and late (W3) grain filling (Figure 1). HMC is included on the RHS of equations (12) and (13) 

to control for reductions in HRY due to fissured and immature kernels and to disentangle 

reductions in HRY and MRY attributable to extreme heat from those due to early or late harvest 

(Siebenmorgen, Bautista, and Counce 2007).  

Both direct and indirect effects of extreme heat on HRY are estimated by including 

      and     on the RHS of equation (12), calculating the vector of indirect effects of 

extreme heat on HRY as    , the product of the effect of extreme heat on chalk and the effect 

of chalk on HRY. The vector of direct effects of extreme heat is   , thus the vector of total 

effects of extreme heat on HRY is calculated as       . Including       on the RHS of (12) 

makes the system recursive. Because     is included on the RHS of (13) with      , unbiased 

estimation of RHS parameters in (12) requires the error term of (12) be pairwise uncorrelated 

with the error term in equation (11). If  ov(           )   , equation (12) includes an 

explanatory variable correlated with the error term and ordinary least squares (OLS) estimates 

will be biased (Wooldridge 2010). Omitting chalk content from equation (12) and regressing  

      and        on the weather and control variables would only provide unbiased estimates 

of the temperature coefficients if chalk content formation depended only on temperature 

conditions. Experimental research suggests at least some component of chalk formation is 

genetic (Fitzgerald and Resurreccion 2009), so       should be included on the right hand side 

of equation (12) to control for variation in HRY. Thus, it is necessary to test the null hypothesis 
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 0   ov(           )    to determine whether an instrumental variables approach should be 

used to estimate equations (11) – (13). 

Testing the endogeneity hypothesis requires additional exogenous variables correlated 

with chalk content, but uncorrelated with the error term of the HRY equation. For each 

observation, lagged mean daily minimum and maximum W2 and W3 temperatures are used as 

instruments to test the null hypothesis that       is endogenous in equation (12). This 

hypothesis is tested using a two stage procedure known as the Durbin-Wu-Hausman test 

(Wooldridge 2010). In the first stage of the test, a stepwise procedure was used to select the 

strongest instruments for inclusion in equation (12). Instrument strength was determined by F-

tests of the joint significance of the coefficients associated with the included instruments where 

F-statistics greater than 10 signify a strong set of instruments (Verbeek 2008, 157). The first 

stage residuals are then included in the HRY equation as an explanatory variable. A t-test of the 

null hypothesis that the estimated coefficient of the residuals equals zero determines whether or 

not inclusion of       on the RHS of equation (12) requires an estimator that is consistent in 

the presence of an endogenous explanatory variable. 
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IV.  DATA 

 
Experimental data on six rice cultivars came from six University of Arkansas experiment 

stations in Arkansas over a four year period (2007 – 2010). Three long-grain (Wells, LaGrue 

and Cypress), two medium-grain (Bengal and Jupiter) and one long grain-hybrid (XL723) 

cultivar were grown in each location-year combination. However, data were not available from 

each location throughout the four year period. Table 2 describes data availability by location and 

model. Three randomized plots of each cultivar were planted in each location-year combination 

and cultivated for under conditions for “near optimal” yields and grain quality (Ambardekar et 

al. 2011). 

Table 2.  Characteristics of study sites 
       Observations 
Station Abbreviation Latitude/longitude Years Rough Milled 
Corning COR 36.4 °N / 90.6 °W 2007 - 2008 34 133 
Kieser KSR 35.7  °N / 90.1 °W 2009 - 2010 29 36 
Newport NPT 35.6 °N / 91.3 °W 2007 , 2010 43 75 
Pine Tree PT 35.1 °N / 90.9 °W 2008 - 2010 44 93 
Rohwer RWR 33.8 °N / 91.3 °W 2007 - 2010 62 157 
Stuttgart STGT 34.5 °N / 91.4 °W 2007 - 2010 76 215 
Totals -- -- -- 288 709 

 
In 2007, 2008 and 2009 the cultivars were harvested over a range of harvest moisture 

contents (HMC) and milled in duplicate. In 2010, the cultivars were harvested at targeted 

moisture contents based on optimal harvest moisture content levels defined in Siebenmorgen et 

al. (2007) and milled in duplicate. The change in harvest procedure resulted in fewer 

observations for each cultivar in 2010 than in 2007, 2008 and 2009. In each year, HMC and 

chalk were recorded for each harvest repetition and MRY and HRY was recorded for each 

milling repetition. Therefore, given two milling repetitions for each harvest repetition, there 

exist two unique HRY observations for each harvest repetition and associated chalk and HMC 
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observations. Only the MRY and HRY observations associated with the measured chalk content 

were used in the current analysis. 

MRY is calculated as the mass percentage polished head and broken kernels remaining 

after the milling of a 150 gram sample of rough rice: 

(14)      (
                       ( )

           ( )
)        

 
HRY is calculated as the mass percentage polished whole kernels remaining after milling a 150 

gram sample of rough rice and separation of broken kernels using a double-tray sizing device 

(Seedburo Equipment Co., Chicago, IL): 

(15)      (
           ( )

           ( )
)        

 
Chalk content represents the percentage chalky area of a 100 kernel sample: 
 

(16)      (
            

          
)        

 
This experimental definition of chalk content differs from the common market definition. 

Marketers define chalk content as the ratio of chalky to non-chalky kernels in a sample and a 

chalky kernel is defined as consisting of 50 percent or more chalk (USDA Grain Standards, 

2009). Experimental definitions of chalk content are usually defined as the ratio of chalky to 

non-chalky area of a sample of kernels. The inconsistent nature of definitions makes difficult the 

task of extrapolating experimental data to the market level because, for example, an 

experimental measurement of 25 percent chalk content does not necessarily mean that 25 

percent of a sample of rice kernels has at least 50 percent chalky content.  

Ambient air temperature and relative humidity recordings were collected at each location 

in 30-minute intervals using two temperature sensors (HOBO Pro/Temp Data Logger, Onset 
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Computer Co., Bourne, MA). The sensors were placed amid the 18-plot block of rice cultivars 

grown at each station. Given the randomized block design of cultivar location within each field, 

this study uses the set of means of each pair of 30-mintue temperature observations as the set of 

temperatures associated with a given year-location combination. Vapor pressure deficit (VPD) 

(kPa) was calculated using these data following Howell and Dusek (1995): 

(17)            
(
        
        

)
(  

   
   

)   

 
Half-hourly weather data were not available prior to 50 percent heading at any 

experiment stations because the researchers were concerned only with high temperatures during 

grain filling.  So other sources were used for temperature data during the early reproductive and 

vegetative growth stages. Daily mean minimum and maximum temperatures (°C) from nearby 

weather stations were used in place of these measurements. These data were obtained from 

National Oceanic and Atmospheric Administration (NOAA) weather stations within 50 km, but 

usually much closer to each experiment station. Daily averaged insolation on horizontal surface 

(mJ m-2 ) (solar radiation) data for 2007-2010 and daily minimum and maximum air 

temperatures at two meters for 2006 data were obtained from the NASA Climatology Resource 

for Agroclimatology (NASA 2012). 

 Arkansas rice price, acreage, and export data used for economic analysis were obtained 

from USDA-ERS (2012) and USDA-FAS (2012). National averages of rough long- and 

medium-grain rice prices were used because Arkansas rough rice prices are not available. 

International production estimates were obtained from FAO (2012). 
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V.  RESULTS 

A.  ROUGH RICE YIELD 

 Estimates of the regressions of RRY on weather variables are grouped by method of 

weather data aggregation: growing season, growth-stage, and stage-window combination.  

1.  GROWING SEASON SPECIFICATION 

Aggregation of weather data across growing seasons serves as a logical starting point 

given the trajectory of existing literature relating weather events to rough rice yield. Peng et al. 

(2004) provided the landmark estimate of a 10 percent decline in rough rice yield given a one 

degree increase in season average minimum temperature. Sheehy et al. (2006) critiqued this 

approach arguing the researchers had not controlled for solar radiation and minimum 

temperature in a multiple regression framework and thus overestimated the impact of an 

increase in minimum (night) temperatures. Sheehy et al. argued their estimate of a five to six 

percent decline in rough rice yield given a one degree increase in season average minimum 

temperature served as a more robust estimate. 

Data used to follow the approach of Peng et al. (2004) and Sheehy et al. (2006) are 

described in Table 3. These statistics are representative of the pooled cultivar-rough rice yield 

and weather data. Pooling the high yielding hybrid (XL723) and medium grain (Jupiter) with 

lower yielding medium and long grain conventional varieties explains the large standard 

deviation of yield. These cultivar-specific differences are accounted for with cultivar fixed-

effects (not shown in following results but available in Appendix A. 
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Table 3. Descriptive statistics for rough rice yield and weather variables aggregated by 

season 

  Yield Tmin Tmax Tavg SR VPD 

 
kg ha-1 °C °C °C mJ m-2 kPa 

Mean 9,478 19.9 31.5 25.7 22.8 0.7 
Std. Dev. 1,932 1.1 1.1 1.0 1.7 0.1 
Min 5,569 18.1 29.0 23.8 20.6 0.5 
Max 15,353 22.1 33.6 27.7 28.8 1.1 

 
Results from the regressions of yield on the sets of weather variables listed in Table 1 

are presented in Table 4. Tmin is negative and statistically significant (p < 0.01) in 

specifications (1) and (2) suggesting a one degree increase in average daily minimum 

temperature is associated with a four percent decrease in rough rice yield, ceteris paribus (Table 

4). In specification (2), SR is positive and marginally significant (p < 0.10). In specifications (3) 

and (4), Tmax and SR follow the direction and statistical significance of Tmin and SR in 

specifications (1) and (2), but the marginal effect of Tmax is roughly half the magnitude of the 

effect of Tmin. Including Tmin, Tmax, and SR in specification (5) (Table 4), Tmin remains 

negative and statistically significant (p < 0.05), Tmax becomes statistically insignificant, and SR 

remains positive and statistically significant at the 0.10 level. In this specification, the marginal 

effect of Tmin increases by roughly one percentage point. 
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Table 4 (1/2). Marginal effects (p-values) of weather variables aggregated across growing 

season on rough rice yield* 
 

 Specification 
Variable (1) (2) (3) (4) 
Tmin -0.035 (0.000) -0.037 (0.000) -- -- -- -- 
SR -- -- 0.009 (0.075) -- -- 0.010 (0.071) 
Tmax -- -- -- -- -0.021 (0.005) -0.022 (0.003) 
Tavg -- -- -- -- -- -- -- -- 
VPD -- -- -- -- -- -- -- -- 
Adjusted R2 0.554   0.558   0.547   0.551   
F-statistic 33.4  31.2  32.5  30.3  

*Harvest moisture content (HMC) and cultivar and station fixed-effects estimates have been 
excluded but are available in Appendix A. P-values calculated using heteroskedasticity robust 
standard errors are in parentheses. 
 

Table 4 (2/2). Marginal effects (p-values) of weather variables aggregated across growing 

season on rough rice yield* 
 
 Specification 
Variable (5) (6) (7) (8) 
Tmin -0.047 (0.034) -- -- -- -- -- -- 
SR 0.009 (0.085) -- -- 0.010 (0.069) -- -- 
Tmax 0.008 (0.597) -- -- -- -- -- -- 
Tavg -- -- -0.028 (0.001) -0.029 (0.001) -- -- 
VPD -- -- -- -- -- -- 0.297 (0.002) 
Adjusted R2 0.557   0.551   0.555   0.550   
F-statistic 28.7   33.0   30.8   32.9   

*Harvest moisture content (HMC) and cultivar and station fixed-effects estimates have been 
excluded but are available in Appendix A. P-values calculated using heteroskedasticity robust 
standard errors are in parentheses. 

 
Marginal effects of Tavg in specifications (6) and (7) are positive, statistically 

significant, and slightly larger than the marginal effects of Tmax in specifications (3) and (4), 

indicating that a one degree increase in average daily temperature is associated with a nearly 

three percent decline in rough rice yield. Specification (8) includes VPD, describing the 

relationship between rough rice yield and the interaction of temperature and relative humidity, 
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which previous studies have ignored (Peng et al. 2004; Sheehy et al. 2006; Welch et al. 2010). 

The positive, statistically significant (p < 0.01) sign is expected (Jagadish et al. 2010) suggesting 

a one (kilopascal) change is associated with a 30 percent change in rough rice yield, ceteris 

paribus. It is important to note that given the very small variance (1.2) and range (0.6) of VPD 

(Table 3) makes it much more likely to observe smaller changes in this variable. 

2.  GROWTH STAGE SPECIFICATION 

 Variables used for estimating growth stage-specific impacts are summarized in Table 5. 

Table 5. Means (standard deviations) of weather variables aggregated by growth stage 

 

  Tmin Tmax Tavg SR VPD 
  °C °C °C mJ m-2 kPa 

Vegetative 19.3 30.3 24.8 22.9 0.8 
  (1.8) (1.5) (1.6) (1.5) (0.1) 
            

Reproductive 21.1 32.1 26.6 22.0 0.6 
  (1.4) (1.4) (1.4) (1.5) (0.2) 
            

Ripening 19.7 32.6 26.2 20.3 0.7 
  (2.7) (3.1) (2.8) (3.0) (0.3) 

 
 The stage-specific specifications presented in Table 6 marginally better fit the rough rice 

yield data than to the season specifications presented in Table 4. Adjusted R-squared values 

from these regressions indicate that around five percent more of the variability in rough rice 

yield than the season specifications. Across specifications within the stage-specific group in 

Table 6 there is little variation in adjusted R-squared as values range from 0.58 (8) to 0.65 (5). 

Coefficient directions and statistical significances across stages are similar to the season 

specifications, but the individual coefficients become less stable across specifications.  

Tmin has a statistically significant, negative effect on rough rice yield in at least one 

growth stage, but the coefficient magnitudes change dramatically as additional regressors are 
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included. Similarly, in specifications (3) and (4) vegetative and reproductive stage Tmax is 

negative and statistically significant (p < 0.01 and p < 0.10, respectively), but for both stages 

Tmax becomes statistically insignificant (p > 0.1) upon inclusion of Tmin in specification (5). In 

specifications (6) and (7), Tavg has a negative, statistically significant effect on rough rice yield 

during the vegetative stage, but only in specification (6), before the addition of SR does Tavg 

have a statistically significant, negative effect during the reproductive stage. 

Table 6 (1/3). Marginal effects (p-values) of growth stage weather variables on rough rice 

yield* 

 

  Specification 
Growth Stage Variable (1) (2) (3) 
Vegetative Tmin -0.056 (0.000) -0.044 (0.002) -- -- 
  Tmax -- -- -- -- -0.035 (0.000) 
  SR -- -- 0.018 (0.062) -- -- 
  Tavg -- -- -- -- -- -- 
  VPD -- -- -- -- -- -- 
Reproductive Tmin -0.003 (0.747) -0.049 (0.000) -- -- 
  Tmax -- -- -- -- -0.015 (0.084) 
  SR -- -- 0.040 (0.006) -- -- 
  Tavg -- -- -- -- -- -- 
  VPD -- -- -- -- -- -- 
Ripening Tmin -0.005 (0.487) -0.025 (0.014) -- -- 
  Tmax -- -- -- -- 0.010 (0.008) 
  SR -- -- 0.028 (0.000) -- -- 
  Tavg -- -- -- -- -- -- 
  VPD -- -- -- -- -- -- 
  Adjusted R2 0.614   0.648   0.608   
  F-statistic 36.1   34.0   35.3   

*Harvest moisture content (HMC) and cultivar and station fixed-effects estimates have been 
excluded but are available in Appendix A. P-values calculated using heteroskedasticity robust 
standard errors are in parentheses.
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Table 6 (2/3). Marginal effects (p-values) of growth stage weather variables on rough rice 

yield* 
 

  Specification 
 Growth Stage Variable (4) (5) (6) 
Vegetative Tmin -- -- -0.055 (0.003) -- -- 
  Tmax -0.031 (0.009) -0.001 (0.929) -- -- 
  SR 0.019 (0.054) 0.023 (0.033) -- -- 
  Tavg -- -- -- -- -0.042 (0.000) 
  VPD -- -- -- -- -- -- 
Reproductive Tmin -- -- -0.080 (0.015) -- -- 
  Tmax -0.029 (0.079) 0.045 (0.141) -- -- 
  SR 0.008 (0.670) 0.025 (0.179) -- -- 
  Tavg -- -- -- -- -0.014 (0.158) 
  VPD -- -- -- -- -- -- 
Ripening Tmin -- -- -0.028 (0.093) -- -- 
  Tmax 0.012 (0.131) -0.004 (0.796) -- -- 
  SR 0.000 (0.997) 0.037 (0.034) -- -- 
  Tavg -- -- -- -- 0.007 (0.199) 
  VPD -- -- -- -- -- -- 
  Adjusted R2 0.617   0.649   0.613   
  F-statistic 29.9   29.0   36.0   

*Harvest moisture content (HMC) and cultivar and station fixed-effects estimates have been 
excluded but are available in Appendix A. P-values calculated using heteroskedasticity robust 
standard errors are in parentheses. 
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Table 6 (3/3). Marginal effects (p-values) of growth stage weather variables on rough rice 

yield* 
 

    Specification 
Growth Stage Variable (7) (8) 
Vegetative Tmin -- -- -- -- 
  Tmax -- -- -- -- 
  SR 0.020 (0.044) -- -- 
  Tavg -0.028 (0.022) -- -- 
  VPD -- -- 0.215 (0.106) 
Reproductive Tmin -- -- -- -- 
  Tmax -- -- -- -- 
  SR 0.018 (0.281) -- -- 
  Tavg -0.043 (0.006) -- -- 
  VPD -- -- -0.304 (0.006) 
Ripening Tmin -- -- -- -- 
  Tmax -- -- -- -- 
  SR 0.015 (0.051) -- -- 
  Tavg -0.002 (0.853) -- -- 
  VPD -- -- 0.311 (0.000) 
  Adjusted R2 0.630   0.579   
  F-statistic 31.5   31.4   

*Harvest moisture content (HMC) and cultivar and station fixed-effects estimates have been 
excluded but are available in Appendix A. P-values calculated using heteroskedasticity robust 
standard errors are in parentheses. 
 

 Unlike season specification (8) (Table 4), the only statistically significant effect of VPD 

in Table 6 is negative, not positive (specification (8)). The lack of variation in relative humidity, 

one of two components of the VPD function, across trial/site/years can explain this nonsensical 

result. The instability of Tmax and Tmin coefficient estimates in Table 6 is likely due to 

multicollinearity caused by high correlations among weather variables within and across stages. 

Correlations between Tmin, Tmax, and SR greater than 0.8 (Table 7) are cause for concern and 

may explain some of the parameter instability exhibited in Table 6.
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Table 7. Pairwise correlations of growth stage-specific weather variables 

 

    Vegetative Reproductive Ripening 
    Tmin Tmax SR Tavg VPD Tmin Tmax SR Tavg VPD Tmin Tmax SR Tavg VPD 

V
eg

et
at

iv
e Tmin 1                             

Tmax 0.83 1                           
SR 0.52 0.39 1                         
Tavg 0.97 0.95 0.48 1                       
VPD -0.18 0.08 -0.27 -0.07 1                     

R
ep

ro
du

ct
iv

e Tmin 0.21 0.21 0.43 0.22 -0.35 1                   
Tmax 0.21 0.33 0.26 0.27 -0.09 0.85 1                 
SR 0.04 -0.01 0.28 0.02 -0.26 0.69 0.61 1               
Tavg 0.22 0.28 0.36 0.26 -0.23 0.96 0.96 0.68 1             
VPD -0.03 -0.20 0.50 -0.11 -0.35 0.70 0.60 0.74 0.68 1           

R
ip

en
in

g 

Tmin -0.52 -0.45 -0.10 -0.51 -0.07 0.55 0.43 0.63 0.51 0.52 1         
Tmax -0.61 -0.41 -0.29 -0.54 0.15 0.38 0.37 0.41 0.39 0.39 0.86 1       
SR -0.69 -0.58 -0.32 -0.67 0.01 0.37 0.25 0.38 0.32 0.43 0.80 0.92 1     
Tavg -0.59 -0.44 -0.21 -0.55 0.05 0.47 0.41 0.53 0.46 0.46 0.96 0.97 0.90 1   
VPD -0.45 -0.43 0.19 -0.46 -0.09 0.48 0.38 0.57 0.45 0.76 0.77 0.81 0.80 0.82 1 

Note: dotted lines separate growth stages. All correlations greater than 0.01 are statistically significant at the 0.05 level. 

 



 

31 
 

Variance inflation factors associated with weather parameters in specifications (1) – (8) 

(Appendix A) support the hypothesis that multicollinearity has affected the estimates in Table 6. 

Only in specifications (3), (6), and (8) are all weather parameter VIFs less than 10. In 

specification (5), VIFs associated with temperature parameters reach 86, implying essentially all 

of the variation in those parameters can be explained by variation in other regressors. 

Multicolliniarity of this degree inhibits meaningful analysis of the individual parameter 

estimates produced by the stage-specific estimation. 

 Inclusion of Tmin and Tmax in the above specifications has resulted in a 

multicolliniarity problem due to the lack of diurnal variability in this data. Replacing Tmin 

and/or Tmax with Tavg lessens the multicollinearity problem, but does not add to the ongoing 

discussion in the literature of whether increasing day or night temperatures have the greater 

effect on rough rice yield. Additionally, Tavg serves as a crude measure of temperature given 

intraday weather fluctuations and the possible nonlinear relationship between extremity of 

temperature and rough rice yield response. These questions require a more advanced 

aggregation of weather data. 

3.  STAGE & WINDOW SPECIFICATION 

 Results from the regression of rough rice yield on harmful thermal accumulation are 

presented in Table 8. Vegetative stage Tavg is included in all three specifications to account for 

the effect of high temperature on rough rice yield documented above in Table 6 and found 

previously Welch et al. (2010). Specification (1) includes only thermal time and solar radiation 

variables in addition to vegetative stage Tavg, (2) includes window-specific average VPD in 

place of thermal time and (3) includes both VPD and thermal time variables.
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Table 8. Effects of harmful thermal accumulation
* 

on rough rice yield 

 

  Specification 
Variable (1) (2) (3) 
V. Tavg -0.025 (0.101) -0.056 (0.000) -0.033 (0.069) 
V. SR 0.032 (0.005) 0.006 (0.671) -0.024 (0.188) 
TDNW1 -0.003 (0.000) -- -- -0.001 (0.118) 
TDNW2 -0.001 (0.474) -- -- -0.001 (0.641) 
TDNW3 0.000 (0.884) -- -- 0.000 (0.987) 
VPDW1 -- -- 0.012 (0.927) 0.211 (0.132) 
VPDW2 -- -- -0.045 (0.737) -0.118 (0.480) 
VPDW3 -- -- 0.161 (0.087) 0.305 (0.088) 
SRW123 0.034 (0.001) -- -- -- -- 
Adjusted-R2 0.642   0.627   0.642   
F-statistic  33.2   33.2   29.6   

*Harvest moisture content (HMC) and cultivar and station fixed-effects estimates have been 
excluded but are available in Appendix A. P-values calculated using heteroskedasticity robust 
standard errors are in parentheses. 
 

In specification (1), Tavg is statistically insignificant, but negative and TDNW1 is 

statistically significant (p < 0.01) and negative. W1 corresponds with early flowering and late 

panicle development, a time period found extremely sensitive to extreme heat events in the 

experimental literature (Wasserman 2009). TDNW2 and TDNW2 are highly insignificant, but 

inspection of the VIF associated with these parameters reveals that nearly all of the variation in 

these regressors can be explained by variation in other regressors in the equation (Appendix A). 

This is unexpected given the pairwise correlation coefficient for these variables is 0.57, much 

smaller than the coefficients for pairs responsible for multicollinearity in the stage-specific 

model. Multicollinearity, unsurprisingly becomes a significant problem in specification (3) 

given the inclusion of window specific VPD and TDN variables. 

The benefit of specifications (1) and (3) in Table 8 relative to alternative specifications 

discussed in the season and growth stage-specific sections is that thermal accumulation 
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measures allow nonlinear responses to temperature increases without having to add additional 

terms (quadratic, cubic, etc.). Addition of such terms would likely increase multicollinearity and 

require additional assumptions about the functional form of the general relationship between 

temperatures and rough rice yield. For these reasons and for consistency with the milling quality 

specifications discussed below and later used to estimate economic implications of changes in 

average growing season temperature, specification (1) in Table 8 will be used to estimate the 

changes in rough rice yield that will serve as a baseline for the economic analysis.  

B.  MILLING QUALITY 

Results from the system of equations estimation of CHK, HRY, and MRY by 

Generalized Method of Moments (GMM) are presented in this section. GMM estimation was 

selected for its ability to account for potential problems caused by the endogeneity of CHK in 

the HRY response function and unknown forms of heteroskedasticity in the system (Wooldridge 

2010). GMM also allows easy calculation of the indirect and direct effects characteristic of this 

recursive milling quality system of equations. Extreme heat effects on CHK, HRY, and MRY 

differ across growth windows, day and night, and varieties. 

1.  ENDOGENEITY TEST 

 Results from the two-stage DWH test described in the methods section are presented in 

Table 9. Results from the joint test of instrument strength are presented in the first two columns 

of data where  ̂  represents the vector of instrument coefficients in the first stage regression of 

CHK on all exogenous variables in the milling quality system. F-statistics greater than 10 

suggest strong instruments. Strong instruments are thus available for Jupiter, LaGrue, and XL23 

with Wells on the borderline (F = 8.88). Residuals from the first stage regression are saved and 

included in the second stage regression: HRY on all variables in equation (9) plus the saved first 
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stage residuals. The coefficient estimate of the residuals serves as the test statistic where the null 

hypothesis is that the coefficient equals zero. T-tests performed on these residuals give the p-

values in the rightmost column of Table 9, where rejection indicates that including CHK in the 

HRY equation will bias the estimator, that is, the residuals from equation (9) affect HRY, ceteris 

paribus. 

Table 9. Two-stage test of       (     )    

 

  First stage   Second stage 
      ̂          ̂ ̂    
  F-statistic p-value    ̂ ̂  p-value 
Bengal 5.07 (0.026)   0.88 (0.753) 
Jupiter 13.7 (0.000)   2.26 (0.084) 
Cypress 4.84 (0.010)   -0.21 (0.893) 
LaGrue 19.6 (0.000)   -0.13 (0.827) 
Wells 8.88 (0.003)   -0.08 (0.951) 
XL723 22.0 (0.000)   -0.94 (0.068) 
 

Only in Jupiter can the null be rejected at the 0.1 level and for no cultivar can the 

coefficient be rejected with more confidence. Given the very weak evidence of an endogeneity 

problem in only one of six cultivars, this study does not utilize additional instruments to 

estimate the milling quality system. GMM is utilized despite the lack of additional instruments 

to account for heteroskedasticity of unknown forms. Seemingly unrelated regression (SUR) was 

implemented but provided very small efficiency gains. 

2.  SYSTEM ESTIMATES  

Recent attention to the effects of night temperatures on milling quality (Ambardekar et 

al. 2010; Lanning et al. 2010) warrants discussion of results from system estimation first using 

only day thermal accumulation variables, then only night, then day and night in the same model, 

and finally day and night combined. All four of these sets include only W2 and W3 thermal 
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accumulation variables following previous literature on the relationship between high 

temperatures and milling quality development (Ambardekar et al. 2010; Lanning et al. 2010).  

2.1  CHALK CONTENT 

 esults from the regression of   K  on day, night, and both day and night (“full” 

specification) thermal accumulation variables are presented in Table 10. Coefficients associated 

with the same temperature variable have been placed next to one another for ease of comparison 

across cultivars and varieties. Across all cultivars except Bengal, adjusted R-squared values are 

between 1.5 and 2.5 times larger in the night and full specifications than in the day specification. 

Similar results have led previous research to conclude that night temperatures drive chalk 

formation (Counce 2007; Ambardekar et al. 2011; Lanning et al. 2011); however, it is important 

to note that day temperatures alone are capable of explaining between 37 and 51 percent of the 

variability in CHK.  

In the “day” and “night” specifications, the magnitude of the W3 variables are 

significantly larger than the magnitudes of the W2 variables. Effects of TDW2 and TNW2 in these 

models, respectively, are largest for XL723 and LaGrue. This agrees with the consensus that 

XL723, a hybrid variety, is susceptible to chalk formation given even modest increases in 

temperature during grain filling. The same is true of the magnitudes of the effects of TDW3 and 

TNW3. Importantly, in the “day” and “night” specifications, all coefficient estimates, statistically 

significant or not, are positive. Negative, statistically significant coefficients on these variables 

would suggest that high day and/or night temperatures reduce chalk formation during the grain 

filling phase. Such a result would disagree with every experimental result presented above in the 

literature review and is in fact what happens in this study when both day and night thermal 

accumulation variables are included in the system of equations (Table 10).  
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Table 10. Coefficients (p-values) from regression of chalk on day, night, and day and night thermal accumulation variables 

  TDW2   TDW3   TNW2   TNW3   Adjusted R2 
  Day Full   Day Full   Night Full   Night Full   Day Night Full 

Bengal 0.013 -0.052   0.045 0.061   0.011 0.028   0.016 -0.008   0.37 0.38 0.45 
  (0.332) (0.015)   (0.000) (0.001)   (0.030) (0.001)   (0.001) (0.375)         
Jupiter 0.004 -0.079   0.138 0.039   0.018 0.043   0.078 0.059   0.37 0.82 0.84 
  (0.859) (0.019)   (0.000) (0.085)   (0.001) (0.000)   (0.000) (0.000)         
Cypress 0.034 -0.089   0.104 0.113   0.032 0.060   0.055 -0.002   0.42 0.65 0.69 
  (0.011) (0.001)   (0.000) (0.000)   (0.000) (0.000)   (0.000) (0.909)         
LaGrue 0.108 -0.239   0.253 0.344   0.085 0.164   0.130 -0.009   0.51 0.80 0.85 
  (0.000) (0.000)   (0.000) (0.000)   (0.000) (0.000)   (0.000) (0.717)         
Wells 0.064 -0.211   0.172 0.146   0.060 0.123   0.127 0.046   0.43 0.72 0.76 
  (0.038) (0.000)   (0.000) (0.000)   (0.000) (0.000)   (0.000) (0.019)         
XL723 0.165 -0.115   0.247 0.107   0.088 0.121   0.141 0.098   0.42 0.79 0.80 
  (0.000) (0.080)   (0.000) (0.002)   (0.000) (0.000)   (0.000) (0.000)         

Note: only daytime thermal accumulation variables were included in the “day” specification, only nighttime thermal accumulation 
variables were included in the “night” specification, and both were included in the “full” specification. 
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Including both TD and TN in the CHK equation leads to nonsensical, statistically 

significant parameter estimates similar to those in the rough rice yield model encountered above 

in Tables 5 and 7 and only marginally increases the goodness of fit relative to the specification 

only including TN (Table 10). Unexpected, nonsensical coefficients in Table 10 are those which 

are statistically significant and negative. That is to say that more time spent at temperatures 

above the optimal decreases chalk content, increasing milling quality, ceteris paribus. For TDW2, 

this occurs in Wells, LaGrue, Cypress, Bengal, and Jupiter with significance at the 0.05 level 

and in XL723 at the 0.1 level (Table 10). This estimated reduction in CHK given larger values 

of TDW2, the early grain filling stage, is in direct contradiction to Fitzgerald and Ressureccion 

(2009) who found that under controlled growing conditions, hot temperatures during early grain 

filling have the largest impact on chalk formation due to increased assimilate demand and a 

shortened window of assimilate supply. The combination of multicollinearity and over fitting 

appears to cause these nonsensical estimates. 

The nonsensical estimates in the full model and the relatively small improvement in 

goodness of fit between the full and TN specifications compared to the full and TD specification 

might lead one to drop the day temperature variables and proceed with only night variables. 

Ambardekar et al. 2011 and Lanning et al. 2011 follow this approach, despite their complete 

lack of attention to day temperatures. An alternative is adding the TD and TN variables is to 

create a measure of total daily exposure to hot temperatures, diurnally defining “hot.” Table 11 

presents the results of this specification.  
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Table 11. Marginal effects (p-values) of TDNW2 and TDNW3 on CHK  

  Bengal Jupiter Cypress LaGrue Wells XL723 
TDNW2 0.007 0.014 0.022 0.063 0.043 0.068 
  (0.049) (0.004) (0.000) (0.000) (0.000) (0.000) 
TDNW3 0.015 0.057 0.039 0.096 0.081 0.105 

  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Adjusted R2 0.412 0.620 0.769 0.787 0.676 0.772 

  
This specification provides stable parameter estimates across all six cultivars and 

goodness of fit statistics nearly if not as high as those in the night and full specifications 

provided in Table 10. Across all cultivars the estimated effects of high temperatures are largest 

for the late grain filling temperature variables (TDNW3). Similar to the day and night 

specifications, XL723 appears most susceptible to chalk formation given high temperature 

exposure while Bengal and Cypress are least susceptible, ceteris paribus. Both the order of 

magnitudes across cultivars and the larger impact of high temperatures during late grain filling 

supports the results of Ambardekar et al. 2011 and Lanning et al. 2011, who found the strongest 

pairwise correlation between 95th percentile temperature and CHK during late grain filling, 

labeled “ 8” in their study following the growth staging procedure of  oun ce et al. (2000).  

2.2  HEAD RICE YIELD 

Correct specification of the CHK equation is particularly important because of its impact 

on HRY. In their studies of the relationship between high night temperatures and milling 

quality, Ambardekar et al. (2011) and Lanning et al. (2011) correlated 95th percentile to HRY, 

but in doing so did not control for the detrimental effect of CHK on HRY (Bautista and 

Siebenmorgen 2007). In this study, HRY has been specified as a function of CHK in addition to 

weather variables to separate the indirect and direct effects of high temperatures on HRY; the 

indirect effects being those which occur as a result of the change in CHK associated with a 
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change in HRY and the direct being the impact of high temperatures on HRY through other, 

unobserved processes. Including CHK in the HRY model worsens the parameter stability 

problem discussed above in the chalk section because temperature variation can explain so 

much of the variation in CHK. Use of the TDN variables instead of both day and night allows 

stable estimation of indirect and direct effects of temperature on HRY. Results from the day, 

night and full specifications are in Appendix B.  

Estimated marginal effects of TDNW2, TDNW3, and CHK on HRY are presented in 

Table 12. The effects of TDNW2 are negative and statistically significant across all cultivars. The 

effects of TDNW3 on HRY are statistically insignificant (p > 0.1) for Bengal, Jupiter, LaGrue, 

and Wells, but are significant at the 0.05 and 0.10 levels for Cypress and XL723, respectively, 

ceteris paribus. Unexpectedly, the estimated effect on Cypress is positive but this may be 

explained by strong correlation between TDNW3 and CHK discussed above (Table 11). TDNW2 

and TDNW3 explain nearly 80 percent of the variation in CHK for Cypress and this combined 

with  ypress’ inherent resistance to chalk formation likely lead to both the statistical 

insignificance of the CHK coefficient for Cypress in Table 12 and the misleading direction of 

TDNW3.   

Table 12. Marginal effects (p-values) of extreme heat and CHK on HRY 

  Bengal Jupiter Cypress LaGrue Wells XL723 
TDNW2 -0.096 -0.043 -0.137 -0.155 -0.101 -0.133 
  (0.000) (0.065) (0.000) (0.000) (0.000) (0.000) 
TDNW3 -0.039 -0.025 0.079 0.041 0.020 -0.048 
  (0.078) (0.429) (0.039) (0.398) (0.418) (0.064) 
CHK -0.045 -1.177 -0.314 -1.140 -1.859 -0.478 
  (0.921) (0.019) (0.508) (0.000) (0.000) (0.021) 
Adjusted R2 0.451 0.450 0.521 0.779 0.788 0.693 
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Other than the TDNW3 coefficient for Cypress, all statistically significant coefficients 

follow expected direction. Surprisingly given the susceptibility of XL723 to CHK formation, the 

estimated effect of CHK on HRY is smaller than the statistically significant CHK coefficients 

for other cultivars. For XL723, a one percentage point increase in CHK is associated with a 0.48 

percentage point reduction in HRY, ceteris paribus, where similar increases in CHK for Jupiter, 

LaGrue, and Wells are associated with 1.2, 1.1, and 1.9 percentage point declines in HRY, 

respectively, ceteris paribus. 

 Total effects of TDNW2 and TDNW3 on HRY are a function of their effects on CHK and 

HRY and the effect of CHK on HRY. For   = TDNW2 and TDNW3, let    and    be the effects of 

i on CHK and HRY and let   be the effect of CHK on HRY. The sum of indirect     and direct 

   effects yields the total effect        of a one unit change in i on HRY, ceteris paribus. 

Figure 2 presents these total effects. Total effects presented in Figure 2. are later used to 

calculate the impact of changes in growing season temperatures on HRY. 

Figure 2. Total effects of TDNW2 and TDNW3 on HRY
*
   

 
*Error bars represent 95% confidence intervals calculated using the Delta Method. 
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2.3.  MILLED RICE YIELD 

Table 13 presents the effects of extreme heat during W2 and W3 on MRY. Across 

cultivars, the TDNW2 coefficients are statistically significant (p < 0.01), negative, and larger (in 

absolute value) than the corresponding TDNW3 coefficients. Furthermore, only Wells and 

XL723 have statistically significant (p < 0.05) TDNW3 coefficients and they are approximately 

one half and one quarter the magnitude of the corresponding TDNW2 coefficients, respectively.  

Table 13. Marginal effects (p-values) of extreme heat on MRY 

 
  Bengal Jupiter Cypress LaGrue Wells XL723 
TDNW2 -0.039 -0.052 -0.054 -0.062 -0.049 -0.068 
  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
TDNW3 -0.008 -0.004 0.014 -0.007 -0.021 -0.021 
  (0.266) (0.586) (0.166) (0.458) (0.000) (0.011) 
Adjusted R2 0.593 0.724 0.606 0.690 0.591 0.555 

 
Estimated declines in MRY given increases in temperature suggest the total mass percentage of 

milled rice obtained from milling a sample of rough rice decreases as temperatures increase. 

This implies that the increased quantity of broken kernels obtained under a high temperature 

scenario will not entirely compensate for the mass quantity of head rice lost, ceteris paribus. 

Without data on the breakdown of other byproducts – hulls and bran – obtained during milling, 

it is difficult to say what happens to the total quantity of marketable milling outcomes given 

increased temperatures. 

C.  ECONOMIC IMPACTS 

Economic impacts of changes in milling quality depend on the impacts of temperature at 

the rough rice yield level. Total milled output depends on the amount of rough rice available for 

milling and its milling quality. Because temperatures affect rough rice production, using 

previously published cultivar yields to estimate the economic impacts of temperature effects on 

milling quality would likely underestimate the total impacts of extreme heat on milled rice 
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quantity. Sample means of rough rice yield and milling quality variables presented in Table 14 

serve as baselines for the economic analysis. 

Table 14. Sample means (standard deviations) of rough rice yield and milling quality 

variables 

  
  Rough Rice Yield   Milling Quality (%) 
Cultivar t ha-1 Obs.   MRY HRY BKR CHK Obs. 
Bengal 9.0 60   72.0 66.6 5.4 3.5 118 
  (1.6)     (2.2) (5.0) (3.6) (1.0)   
Jupiter 9.9 78   71.3 66.0 5.3 2.3 112 
  (1.8)     (2.8) (5.2) (4.0) (1.8)   
Cypress* 8.0 22   69.9 64.9 5.1 3.3 117 
  (1.3)     (2.5) (5.9) (3.9) (1.7)   
LaGrue 9.0 45   68.7 58.5 10.2 4.9 100 
  (1.7)     (2.6) (9.4) (7.4) (4.3)   
Wells 8.9 58   71.3 58.9 12.3 4.5 137 
  (1.6)     (2.5) (9.6) (8.4) (3.2)   
XL723 10.6 47   70.4 61.9 8.5 7.6 125 
  (2.5)     (2.8) (6.8) (5.0) (4.2)   

*Rough rice yield data for Cypress was not available for this analysis, so the latest available 
Arkansas Rice Performance Trial data (2004) experimental yield observations provided the 
baseline for reductions in mass quantities of milled rice outcomes given changes in milling 
quality. 

 
Changes in baseline mean rough rice yield milling quality estimates (Table 14) given 1, 

2 and 4°C increases in growing season (emergence to harvest) temperatures are estimated using  

specification (1) of the rough rice yield model presented in Table 8 and the milling quality 

model in Tables 12, 13, and 14. Total effects of the temperature changes are calculated for 

rough rice yield and milling quality estimates. To estimate these changes, 1, 2 and 4 °C are 

added to each observed temperature datum. TDNW1 (only included in the rough rice yield 

model), TDNW2 and TDNW3 are then recalculated for each hypothetical scenario. Finally, the 

hypothetical sample means of each of these variables are recalculated and used to predict 

changes in YR, HRY, (MRY – HRY = BKN), and CHK. 
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Rough rice yield mean responses to 1, 2, and 4 °C increases in growing season 

temperature are illustrated in Figure 3. These estimates represent the total effects of increased 

TDN during W1, W2, and W3, and corresponding increases to vegetative stage Tavg. 

Coefficients associated with these variables are listed in Table 8.  

Figure 3. Rough rice yield response to 1, 2, and 4 degree increases in growing season 

temperature
* 

 

 
*Second order polynomial trend included to highlight nonlinearity of rough rice yield response 
to increased growing season temperature. Error bars represent 95% confidence intervals 
calculated using heteroskedasticity robust standard errors. 
 
 Milling quality responses to increased temperatures are estimated based on the TDN 

system estimates presented in Tables 12, 13, and 14. Estimates of BKN are presented because 

there is no obvious valuation of MRY – it represents the sum of HRY and BKN. Figure 4 

illustrates the estimated changes in CHK given 1, 2, and 4 °C increases in mean growing season 

temperature. Despite XL723 having a relatively large baseline mean CHK content (Table 14), 

it’s response to increased temperatures is very similar to that of LaGrue and Wells, cultivars 

with relatively small baseline mean CHK. 
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Figure 4. Chalk content (CHK) response to 1, 2, and 4 °C increases in mean growing 

season temperature
* 

 

 
*Error bars represent 95% confidence intervals calculated using heteroskedasticity robust 
standard errors. 
 

HRY and BKR responses to increased growing season temperatures are presented in 

Figures 5 and 6. 

Figure 5. Head rice yield (HRY) responses to 1, 2, and 4 °C increases in mean growing 

season temperature
* 

 

 

*Error bars represent 95% confidence intervals calculated using heteroskedasticity robust 
standard errors. 
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Figure 6. Broken rice yield (BKR) response to 1, 2, and 4 °C increases in mean growing 

season temperature
* 

 

 *Error bars represent 95% confidence intervals calculated using heteroskedasticity robust 
standard errors. 
 
Estimated changes in RRY, CHK, HRY, and BKR presented in Figures 3, 4, 5, and 6 are used to 

estimate changes in mean rough rice yield (YR) and mass milled rice outputs (t ha-1). Milled rice 

outputs include non-chalky (high quality) milled head rice (YNCHR), chalky head rice (YCHR) and 

broken rice (YBK) as described and defined in equations (5), (6), and (7) of the methodology 

section. Again, let YHR refer to the total mass quantity (t) of head rice expected from one hectare 

of harvested rough rice.  

Cultivar specific changes in chalky and non-chalky head rice and broken rice (t ha-1) 

across temperature increases are presented in Figure 7. The blue sections represent non-chalky 

head rice (YNCHR), the red sections represent chalky head rice (YCHR) and the green sections 

represent broken rice (YBK). Figure 7 illustrates XL723’s susceptibility to chalky kernel 

formation while maintaining high non-chalky head rice potential per hectare due to its high 

yield and its resistance to breaking during the milling process. Cypress, the relatively low-

yielding, high quality long-grain variety (Table 14) compares very well in non-chalky head rice 

production despite having a baseline yield disadvantage. 
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Figure 7. Effects of increased growing season temperatures on long-grain cultivar milling 

outcomes 

 

 
 

The baseline estimate of XL723’s non-chalky milled head rice is higher than  ypress’ 

because of XL723’s 31 percent rough rice yield advantage over Cypress (Table 14). The relative 

proportions of non-chalky and chalky head rice, and broken rice change as average growing 

season temperature increases from the baseline level by 1, 2 and 4 °C. Given an increase of 4 

°C, Cypress is estimated to produce over 0.7 t ha-1 more non-chalky head rice than XL723 and 

roughly 1.2 t ha-1 more than LaGrue or Wells.  

Among medium grains, yields a greater quantity of milled chalky and non-chalky head 

rice and broken rice per hectare than Bengal due to its relatively high paddy yield. Despite its 

relative susceptibility to chalk, the higher rough rice yield potential of Jupiter enables 
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production of more non-chalky head rice per hectare than Bengal across all three-temperature 

increases. As temperatures increase, it becomes less clear which cultivar a mill would rather 

producers plant if the goal is maximization of quantity delivered per hectare, all else held 

constant, across both long- and medium-grain cultivars. 

Total milling revenues across cultivars do not follow the same pattern as milled rice 

quantity because the quantities of broken and chalky kernels are valued less than the quantities 

of non-chalky kernels. Normalizing the price milled non-chalky head rice to 1 $ t-1 and setting 

the price of broken and chalky kernels to the market price ratio of broken to whole kernels 

allows comparison across long- and medium-grains. Average monthly broken-to-whole kernel 

price ratios over the August 2007 – February 2012 period are 0.51 (s.d. = 0.11) and 0.64 (s.d. = 

0.12) for medium- and long-grain cultivars, respectively, where lower ratio for medium grains 

reflects the higher value of milled medium grain rice and the price of milled brewers rice serves 

as the price of broken rice (USDA-ERS 2012). Normalized mill revenue ($ ha-1) for all six 

cultivars is presented in Figure 8. 

Medium-grain cultivars follow the same patterns as they did in Figure 7 because of their 

relatively stable milling quality. Jupiter maintains the revenue per hectare advantage given its 

high yield potential relative to Bengal, despite Bengal’s narrow quality advantage. Long-grain 

cultivars, however, experience changes in relative appeal from a mill standpoint because of 

dramatic variations in milling quality across cultivars which leads to substantial differences in 

revenue because of the discounted chalky and broken kernels. 
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As temperatures increase, revenue per hectare from Cypress overtakes that of LaGrue 

and Wells because of  ypress’ resistance to breaking (Figure 8). Broken rice revenue from 

LaGrue and Wells is larger than that of any other cultivar, including XL723, but XL723 

generates the largest proportion of revenue from chalky head rice. 

Figure 8. Normalized milling revenue by quality 

 

The scale of Figure 8 makes difficult the observation of changes in relative total revenue across 

long-grain cultivars, especially between Cypress, LaGrue, and Wells. Figure 9 graphically 

represents these changes for each temperature scenario. LaGrue and Wells have less than 10% 

revenue advantages over Cypress in the base scenario and that advantage shrinks and becomes a 

disadvantage (+4 °C) of up to 5% for LaGrue.  
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Figure 9. Milled long-grain total revenue relative to Cypress 

 

 

Figure 9 illustrates indirectly the tradeoff between yield and quality. The 11-12% RRY 

advantage of LaGrue and Wells in the base scenario (Table 14) shrinks to 6-9% total revenue 

advantages. Any increase in average growing season temperatures further shrinks these 

advantages to negligible and likely statistically insignificant figures. 
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VI.  CONCLUSIONS 

Climate change necessitates the development of cultivar-specific models capable of 

simultaneously estimating the relationship between extreme temperatures and rice yield and 

milling quality. Omission of rough rice yield or milling quality inevitably leads to 

underestimation of the true extent of extreme heat effects on rice production. Figure 10 

illustrates the average impacts of increased temperatures on rough rice yield, total milled rice 

quantity, and total mill revenue. Effects of increased growing season temperatures are neither 

linear nor constant across rough rice yield, milling quality, and milled revenue potential. 

Producer (farm) revenue has been excluded from this analysis due to lack of quantitative data on 

the relationship between price and milling quality, but since mills set rough rice prices based on 

expected quality one would expect understated implications of extreme heat on producer 

revenue beyond yield loss. For these reasons, changes in rough rice yield depicted in Figure 10 

are equivalent to reductions in producer revenue. 

Figure 10. Average impact of increased temperatures across cultivars  
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Understanding cultivar-specific responses to extreme heat is critical to assessing the best 

course forward as climate change threatens the status quo of rice production in the United States 

and the world. Medium and long grain cultivars exhibit variable milling quality responses to 

extreme temperatures and variation exists within grain length among cultivars. Among medium 

grains, Jupiter’s high yield potential gives it a higher revenue potential than Bengal, despite 

larger quantities of chalky and broken rice per hectare. Cypress has the lowest yield potential of 

all cultivars, including medium grains, but under hot conditions will deliver more high quality, 

non-chalky head rice per hectare than any of the other long grain cultivars.  

 XL723 offers a long grain with high yield potential and low-susceptibility to breaking 

relative to LaGrue and Wells, but loses value due to high chalk content. Despite high chalk 

content, XL723 delivers more non-chalky head rice than LaGrue or Wells because the relative 

rough rice yield advantage outweighs the higher percentage of chalky kernels. Currently stable 

yields of non-chalky, conventional cultivars such as LaGrue and Wells offer mills easy 

avoidance of the problem of color sorting, but this will likely not be the case as temperatures 

increase. Mills will likely either turn to lower-yielding, high-quality varieties such as Cypress or 

invest in infrastructure capable of separating the high- and low-quality milled rice for sale to 

disaggregate markets. Yet even the conclusions of this study only tell part of the story. 

The robustness of rough rice models estimated in this study rely on pooling cultivars to 

accurately estimate effects of extreme heat on paddy yield. As a result, the only source of 

variability among cultivars throughout the temperature scenarios is the baseline, cultivar-

specific yields. Cultivar-specific rough rice yield models would eliminate the need for the likely 

naive assumption that susceptibility to rough rice yield loss under hot growing season conditions 

is the same across all cultivar types. Furthermore, the efficiency and accuracy of season- and 
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stage-specific coefficient estimates could be further improved using one dataset for both rough 

rice yield and milling quality. And finally, multicollinearity makes difficult the accurate 

separation of diurnal and stage-specific extreme heat effects. 

 Despite these weaknesses, this study provides insight where previous experimental and 

econometric analyses of rice production outcomes have not – first, rough rice yield and milling 

quality models are simultaneously examined, if not estimated; second, extensive treatment of 

collinearity issues among explanatory weather variables in econometric models; and third, the 

economic motivation of these innovations. Continued observation the effects of increasingly 

variable temperature conditions on rice production outcomes will allow refinement and 

enhancement of this modeling approach to hopefully provide plant breeders, agricultural policy 

makers, and private enterprise important direction for rice production in an increasingly hot 

future.
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VI. APPENDIX 

 

A.   ROUGH RICE YIELD 

 

Table A1 (1/2). Regression results:
*
 weather data aggregated over growing season  

  Specification 
Variable (1) (2) (3) (4) (5) 
Tmin -0.035 (0.000) 3.1 -0.037 (0.000) 3.4 -- -- -- -- -- -- -0.047 (0.034) 12.5 

SR -- -- -- 0.009 (0.075) 2.0 -- -- -- 0.010 (0.071) 2.0 0.009 (0.085) 2.0 

Tmax -- -- -- -- -- -- -0.021 (0.005) 1.8 -0.022 (0.003) 1.9 0.008 (0.597) 6.5 

Tavg -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

VPD -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

ln(HMC) -0.108 (0.014) 1.3 -0.120 (0.007) 1.4 -0.184 (0.000) 1.6 -0.199 (0.000) 1.6 -0.096 (0.127) 2.7 

XL723 0.183 (0.000) 1.8 0.181 (0.000) 1.8 0.167 (0.000) 1.7 0.164 (0.000) 1.6 0.185 (0.000) 1.8 

Jupiter 0.117 (0.000) 2.2 0.114 (0.000) 2.3 0.117 (0.000) 2.2 0.115 (0.000) 2.2 0.113 (0.000) 2.3 

Bengal 0.037 (0.156) 1.9 0.037 (0.164) 1.9 0.033 (0.219) 1.8 0.032 (0.230) 1.8 0.037 (0.158) 2.0 

Wells 0.019 (0.484) 2.0 0.017 (0.523) 1.9 0.013 (0.633) 1.9 0.011 (0.679) 1.8 0.018 (0.502) 1.9 

COR 0.240 (0.000) 2.4 0.259 (0.000) 3.3 0.280 (0.000) 1.9 0.300 (0.000) 2.6 0.247 (0.000) 5.2 

KSR 0.160 (0.000) 1.8 0.159 (0.000) 1.8 0.160 (0.000) 1.9 0.159 (0.000) 1.9 0.161 (0.000) 1.8 

NPT 0.330 (0.000) 3.9 0.343 (0.000) 4.7 0.379 (0.000) 2.3 0.395 (0.000) 2.9 0.329 (0.000) 6.9 

PT 0.041 (0.138) 2.8 0.041 (0.142) 2.8 0.069 (0.009) 2.2 0.069 (0.009) 2.3 0.034 (0.275) 3.7 

STGT 0.168 (0.000) 2.2 0.173 (0.000) 2.7 0.184 (0.000) 2.5 0.190 (0.000) 3.1 0.167 (0.000) 3.8 

Intercept 9.902 (0.000) -- 9.742 (0.000) -- 10.02 (0.000) -- 9.882 (0.000) -- 9.635 (0.000) -- 

Adjusted R2 0.554     0.558     0.547     0.551     0.557     
F-statistic 33.4     31.2     32.5     30.3     28.7     

*Marginal effects, p-values (parentheses) and VIFs (italics) are included for each variable and cultivar and station fixed-effects. 



 

59 
 

Table A1 (2/2). Regression results:
*
 weather data aggregated over growing season 

  Specification 
Variable (6) (7) (8) 
Tmin -- -- -- -- -- -- -- -- -- 

SR -- -- -- 0.010 (0.069) 2.0 -- -- -- 

Tmax -- -- -- -- -- -- -- -- -- 

Tavg -0.028 (0.001) 2.0 -0.029 (0.001) 2.1 -- -- -- 

VPD -- -- -- -- -- -- 0.297 (0.002) 3.1 

ln(HMC) -0.154 (0.000) 1.4 -0.168 (0.000) 1.4 -0.197 (0.000) 1.8 

XL723 0.174 (0.000) 1.8 0.171 (0.000) 1.7 0.146 (0.000) 1.6 

Jupiter 0.117 (0.000) 2.2 0.115 (0.000) 2.3 0.099 (0.000) 1.9 

Bengal 0.035 (0.186) 1.8 0.034 (0.195) 1.9 0.016 (0.553) 1.7 

Wells 0.015 (0.559) 2.0 0.014 (0.601) 1.9 -0.003 (0.905) 1.6 

COR 0.264 (0.000) 2.0 0.284 (0.000) 2.7 0.260 (0.000) 2.0 

KSR 0.159 (0.000) 1.9 0.158 (0.000) 1.9 0.204 (0.000) 1.9 

NPT 0.359 (0.000) 2.8 0.374 (0.000) 3.5 0.371 (0.000) 2.1 

PT 0.058 (0.032) 2.4 0.057 (0.032) 2.4 0.118 (0.000) 3.2 

STGT 0.178 (0.000) 2.4 0.184 (0.000) 2.9 0.166 (0.000) 2.3 

Intercept 10.02 (0.000) -- 9.869 (0.000) -- 9.214 (0.000) -- 

Adjusted R2 0.551     0.555     0.55     
F-statistic 33.0     30.8     32.9     

*Marginal effects, p-values (parentheses) and VIFs (italics) are included for each variable and 
cultivar and station fixed effects.  



 

60 
 

Table A2 (1/4). Regression results:
*
 weather data aggregated over vegetative, 

reproductive, and ripening growth stages  

  Specification 
Growth stage Variable (1) (2) 
Vegetative Tmin -0.056 (0.000) 17.2 -0.044 (0.002) 20.0 

  Tmax -- -- -- -- -- -- 

  SR -- -- -- 0.018 (0.062) 4.7 

  Tavg -- -- -- -- -- -- 

  VPD -- -- -- -- -- -- 

Reproductive Tmin -0.003 (0.747) 3.9 -0.049 (0.000) 8.7 

  Tmax -- -- -- -- -- -- 

  SR -- -- -- 0.040 (0.006) 12.1 

  Tavg -- -- -- -- -- -- 

  VPD -- -- -- -- -- -- 

Ripening Tmin -0.005 (0.487) 8.1 -0.025 (0.014) 21.0 

  Tmax -- -- -- -- -- -- 

  SR -- -- -- 0.028 (0.000) 12.9 

  Tavg -- -- -- -- -- -- 

  VPD -- -- -- -- -- -- 

  ln(HMC) -0.085 (0.040) 1.3 -0.117 (0.007) 1.7 

  XL723 0.181 (0.000) 2.1 0.153 (0.000) 2.2 

  Jupiter 0.098 (0.000) 2.4 0.089 (0.000) 2.5 

  Bengal 0.025 (0.323) 2.3 0.008 (0.738) 2.8 

  Wells 0.019 (0.434) 2.1 0.015 (0.532) 2.0 

  COR 0.144 (0.000) 3.4 0.015 (0.803) 9.6 

  KSR 0.266 (0.000) 3.1 0.195 (0.000) 5.6 

  NPT 0.226 (0.000) 7.8 0.199 (0.000) 11.1 

  PT 0.065 (0.025) 3.0 0.021 (0.462) 3.8 

  STGT 0.130 (0.000) 2.6 0.103 (0.000) 3.0 

  Intercept 10.43 (0.000) -- 9.845 (0.000) -- 

  Adjusted R2 0.614     0.648     
  F-statistic 36.1     34.0     

*Marginal effects, p-values (parentheses) and VIFs (italics) are included for each variable and 
cultivar and station fixed effects.
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 Table A2 (2/4). Regression results:
*
 weather data aggregated over vegetative, 

reproductive, and ripening growth stages 

  Specification 
Growth stage Variable (3) (4) 
Vegetative Tmin -- -- -- -- -- -- 

  Tmax -0.035 (0.000) 5.2 -0.031 (0.009) 4.6 

  SR -- -- -- 0.019 (0.054) 9.2 

  Tavg -- -- -- -- -- -- 

  VPD -- -- -- -- -- -- 

Reproductive Tmin -- -- -- -- -- -- 

  Tmax -0.015 (0.084) 2.6 -0.029 (0.079) 15.2 

  SR -- -- -- 0.008 (0.670) 10.0 

  Tavg -- -- -- -- -- -- 

  VPD -- -- -- -- -- -- 

Ripening Tmin -- -- -- -- -- -- 

  Tmax 0.010 (0.008) 3.7 0.012 (0.131) 17.8 

  SR -- -- -- 0.000 (0.997) 18.5 

  Tavg -- -- -- -- -- -- 

  VPD -- -- -- -- -- -- 

  ln(HMC) -0.198 (0.000) 1.4 -0.247 (0.000) 2.5 

  XL723 0.154 (0.000) 2.1 0.144 (0.000) 2.2 

  Jupiter 0.102 (0.000) 2.2 0.100 (0.000) 2.3 

  Bengal 0.022 (0.357) 2.2 0.018 (0.436) 2.5 

  Wells 0.013 (0.583) 1.9 0.009 (0.711) 1.9 

  COR 0.185 (0.000) 2.9 0.201 (0.000) 6.7 

  KSR 0.242 (0.000) 2.4 0.250 (0.000) 5.5 

  NPT 0.302 (0.000) 5.1 0.353 (0.000) 7.4 

  PT 0.119 (0.000) 2.6 0.115 (0.000) 3.0 

  STGT 0.158 (0.000) 2.8 0.167 (0.000) 3.2 

  Intercept 10.66 (0.000) -- 10.44 (0.000) -- 

  Adjusted R2 0.608     0.617     
  F-statistic 35.3     29.9     

*Marginal effects, p-values (parentheses) and VIFs (italics) are included for each variable and 
cultivar and station fixed effects.
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Table A2 (3/4). Regression results:
*
 weather data aggregated over vegetative, 

reproductive, and ripening growth stages 

  Specification 
Growth stage Variable (5) (6) 
Vegetative Tmin -0.055 (0.003) 33.6 -- -- -- 

  Tmax -0.001 (0.929) 5.7 -- -- -- 

  SR 0.023 (0.033) 16.2 -- -- -- 

  Tavg -- -- -- -0.042 (0.000) 9.3 

  VPD -- -- -- -- -- -- 

Reproductive Tmin -0.080 (0.015) 51.0 -- -- -- 

  Tmax 0.045 (0.141) 20.7 -- -- -- 

  SR 0.025 (0.179) 40.9 -- -- -- 

  Tavg -- -- -- -0.014 (0.158) 3.3 

  VPD -- -- -- -- -- -- 

Ripening Tmin -0.028 (0.093) 56.9 -- -- -- 

  Tmax -0.004 (0.796) 84.7 -- -- -- 

  SR 0.037 (0.034) 85.3 -- -- -- 

  Tavg -- -- -- 0.007 (0.199) 5.1 

  VPD -- -- -- -- -- -- 

  ln(HMC) -0.035 (0.588) 4.3 -0.157 (0.000) 1.2 

  XL723 0.162 (0.000) 2.1 0.165 (0.000) 2.1 

  Jupiter 0.080 (0.001) 2.9 0.100 (0.000) 2.3 

  Bengal 0.006 (0.776) 2.8 0.022 (0.361) 2.3 

  Wells 0.018 (0.465) 2.0 0.016 (0.508) 2.0 

  COR 0.002 (0.976) 11.1 0.170 (0.000) 3.0 

  KSR 0.214 (0.000) 5.5 0.251 (0.000) 2.7 

  NPT 0.113 (0.086) 18.2 0.276 (0.000) 6.0 

  PT 0.012 (0.713) 5.0 0.104 (0.000) 2.5 

  STGT 0.076 (0.011) 4.7 0.148 (0.000) 2.7 

  Intercept 9.32 (0.000) -- 10.59 (0.000) -- 

  Adjusted R2 0.649     0.613     
  F-statistic 29.0     36.0     

*Marginal effects, p-values (parentheses) and VIFs (italics) are included for each variable and 
cultivar and station fixed effects.
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Table A2 (4/4). Regression results:
*
 weather data aggregated over vegetative, 

reproductive, and ripening growth stages 

  Specification 
Growth Stage Variable (7) (8) 
Vegetative Tmin -- -- -- -- -- -- 

  Tmax -- -- -- -- -- -- 

  SR 0.020 (0.044) 20.0 -- -- -- 

  Tavg -0.028 (0.022) 4.7 -- -- -- 

  VPD -- -- -- 0.215 (0.106) 4.4 

Reproductive Tmin -- -- -- -- -- -- 

  Tmax -- -- -- -- -- -- 

  SR 0.018 (0.281) 8.7 -- -- -- 

  Tavg -0.043 (0.006) 12.1 -- -- -- 

  VPD -- -- -- -0.304 (0.006) 4.6 

Ripening Tmin -- -- -- -- -- -- 

  Tmax -- -- -- -- -- -- 

  SR 0.015 (0.051) 21.0 -- -- -- 

  Tavg -0.002 (0.853) 12.9 -- -- -- 

  VPD -- -- -- 0.311 (0.000) 6.4 

  ln(HMC) -0.211 (0.000) 1.7 -0.054 (0.408) 3.3 

  XL723 0.143 (0.000) 2.2 0.173 (0.000) 2.0 

  JUP 0.097 (0.000) 2.5 0.098 (0.000) 2.1 

  BENG 0.014 (0.559) 2.8 0.022 (0.358) 2.0 

  WELLS 0.011 (0.652) 2.0 0.007 (0.784) 1.7 

  COR 0.143 (0.012) 9.6 0.223 (0.000) 2.9 

  KSR 0.232 (0.000) 5.6 0.250 (0.000) 2.3 

  NPT 0.320 (0.000) 11.1 0.382 (0.000) 2.9 

  PT 0.086 (0.002) 3.8 0.131 (0.000) 3.7 

  STGT 0.150 (0.000) 3.0 0.166 (0.000) 2.4 

  Intercept 10.20 (0.000) -- 8.862 (0.000) -- 

  Adjusted R2 0.630     0.579     
  F-statistic 31.5     31.4     

*Marginal effects, p-values (parentheses) and VIFs (italics) are included for each variable and 
cultivar and station fixed effects.
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Table A3. Regression results:
*
 weather data aggregated over vegetative stage

†
 and 

windows 1, 2, and 3 

  Specification 
Variable (1) (2) (3) 
Veg. Tavg -0.025 (0.101) 15.3 -0.056 (0.000) 7.1 -0.033 (0.069) 22.0 

Veg. SR 0.032 (0.005) 6.0 0.006 (0.671) 8.1 -0.024 (0.188) 18.1 

TDNW1 -0.003 (0.000) 6.2 -- -- -- -0.001 (0.118) 7.6 

TDNW2 -0.001 (0.474) 41.6 -- -- -- -0.001 (0.641) 91.5 

TDNW3 0.000 (0.884) 47.5 -- -- -- 0.000 (0.987) 130.9 

VPDW1 -- -- -- 0.012 (0.927) 17.3 0.211 (0.132) 23.6 

VPDW2 -- -- -- -0.045 (0.737) 28.5 -0.118 (0.480) 51.4 

VPDW3 -- -- -- 0.161 (0.087) 12.3 0.305 (0.088) 48.1 

SRW4 0.034 (0.001) 20.1 -- -- -- -- -- -- 

ln(HMC) -0.124 (0.003) 1.6 -0.136 (0.005) 2.2 -0.119 (0.022) 2.6 

XL723 0.143 (0.000) 2.0 0.159 (0.000) 2.0 0.165 (0.000) 1.9 

Jupiter 0.089 (0.000) 2.5 0.089 (0.000) 2.2 0.099 (0.000) 2.5 

Bengal 0.009 (0.671) 2.6 0.013 (0.580) 2.3 0.023 (0.316) 2.7 

Wells 0.016 (0.499) 2.0 0.009 (0.714) 2.0 0.017 (0.487) 2.1 

COR 0.145 (0.000) 3.7 0.149 (0.000) 4.9 0.114 (0.010) 5.8 

KSR 0.292 (0.000) 2.9 0.277 (0.000) 3.2 0.249 (0.000) 4.1 

NPT 0.302 (0.000) 8.0 0.236 (0.000) 10.6 0.188 (0.002) 18.7 

PT 0.102 (0.000) 2.7 0.085 (0.001) 2.8 0.107 (0.000) 3.3 

STGT 0.159 (0.000) 3.7 0.127 (0.000) 3.7 0.132 (0.000) 5.4 

Intercept 8.43 (0.000) -- 10.21 (0.000) -- 10.31 (0.000) -- 

  0.642     0.627     0.642     

  33.2     33.2     29.6     
*Marginal effects, p-values (parentheses) and VIFs (italics) are included for each variable and 
cultivar and station fixed effects. 
†Vegetative stage variables include average daily temperature (Tavg) and average daily solar 
radiation (SR) because high frequency (half-hourly) data is not available for this period as it is 
for windows 1, 2, and 3. 
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B.   MILLING QUALITY 

 
Table B1 (1/3). GMM system estimation results: full (TD, TN) specification 

 

Eq. 1: CHK Bengal Jupiter Cypress LaGrue Wells XL723 
Intercept 2.768 (0.000) 0.241 (0.078) 1.720 (0.000) 0.340 (0.186) 0.956 (0.000) 2.392 (0.000) 
TDW2 -0.052 (0.015) -0.079 (0.019) -0.089 (0.001) -0.239 (0.000) -0.211 (0.000) -0.115 (0.080) 
TDW3 0.061 (0.001) 0.039 (0.085) 0.113 (0.000) 0.344 (0.000) 0.146 (0.000) 0.107 (0.002) 
TNW2 0.028 (0.001) 0.043 (0.000) 0.060 (0.000) 0.164 (0.000) 0.123 (0.000) 0.121 (0.000) 
TNW3 -0.008 (0.375) 0.059 (0.000) -0.002 (0.909) -0.009 (0.717) 0.046 (0.019) 0.098 (0.000) 
COR 0.080 (0.696) 0.273 (0.111) -0.553 (0.068) 0.844 (0.257) -0.526 (0.120) -0.278 (0.580) 
KSR 0.887 (0.037) 0.340 (0.177) -0.459 (0.091) 0.023 (0.954) 0.365 (0.200) 0.846 (0.242) 
RWR 0.521 (0.010) -0.037 (0.851) 1.152 (0.000) 1.561 (0.000) 0.386 (0.163) 0.479 (0.236) 
PT 0.067 (0.782) 0.442 (0.006) -0.248 (0.457) -0.494 (0.288) -0.282 (0.422) 0.561 (0.245) 
NPT -1.245 (0.000) -1.020 (0.000) -2.125 (0.000) -5.699 (0.000) -2.775 (0.000) -1.014 (0.082) 
Adjusted R2 0.448   0.837   0.690   0.854   0.756   0.799   

Note: p-values are in parentheses. 
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Table B1 (2/3). GMM system estimation results: full (TD, TN) specification 

 

Eq. 2: HRY Bengal Jupiter Cypress LaGrue Wells XL723 
Intercept 44.561 (0.000) 55.749 (0.000) 52.145 (0.000) 39.846 (0.000) -4.141 (0.760) 53.203 (0.000) 
TDW2 0.251 (0.000) 0.101 (0.508) -0.014 (0.820) 0.144 (0.130) 0.396 (0.006) -0.186 (0.098) 
TDW3 0.004 (0.963) 0.091 (0.332) 0.593 (0.000) 0.304 (0.021) -0.068 (0.572) 0.194 (0.000) 
TNW2 -0.202 (0.000) -0.101 (0.023) -0.191 (0.000) -0.337 (0.000) -0.372 (0.000) -0.144 (0.000) 
TNW3 -0.050 (0.101) -0.152 (0.001) -0.257 (0.000) -0.238 (0.000) -0.147 (0.041) -0.227 (0.000) 
HMC 2.399 (0.010) 1.316 (0.053) 2.044 (0.015) 3.353 (0.002) 7.283 (0.000) 1.905 (0.035) 
HMC2 -0.053 (0.014) -0.029 (0.059) -0.052 (0.010) -0.087 (0.001) -0.168 (0.000) -0.049 (0.031) 
COR 2.517 (0.000) 1.709 (0.044) 0.597 (0.401) -3.809 (0.044) -2.796 (0.020) -0.672 (0.496) 
KSR -6.923 (0.000) -7.540 (0.000) -6.901 (0.000) -10.938 (0.000) -12.534 (0.000) -8.062 (0.000) 
RWR -0.250 (0.776) 0.918 (0.313) -0.440 (0.588) -3.291 (0.000) -2.658 (0.050) -1.134 (0.107) 
PT 2.141 (0.002) 1.731 (0.026) 3.048 (0.000) 1.439 (0.095) 0.430 (0.751) 0.708 (0.385) 
NPT 1.518 (0.469) 0.399 (0.845) -6.077 (0.000) -4.395 (0.124) -0.752 (0.714) -1.466 (0.187) 
Adjusted R2 0.576   0.499   0.769   0.883   0.771   0.738   
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Table B1 (3/3). GMM system estimation results: full (TD, TN) specification 

 
Eq. 3: MRY Bengal Jupiter Cypress LaGrue Wells XL723 
Intercept 76.164 (0.000) 78.229 (0.000) 73.486 (0.000) 74.124 (0.000) 76.090 (0.000) 76.494 (0.000) 
TDW2 0.151 (0.000) 0.163 (0.000) 0.032 (0.218) 0.055 (0.093) 0.140 (0.000) -0.013 (0.749) 
TDW3 -0.008 (0.687) -0.009 (0.780) 0.139 (0.000) 0.014 (0.731) 0.002 (0.951) 0.132 (0.000) 
TNW2 -0.098 (0.000) -0.121 (0.000) -0.081 (0.000) -0.096 (0.000) -0.109 (0.000) -0.076 (0.000) 
TNW3 -0.002 (0.850) 0.010 (0.519) -0.063 (0.001) -0.021 (0.242) -0.037 (0.033) -0.087 (0.000) 
HMC -0.140 (0.000) -0.239 (0.000) -0.089 (0.010) -0.176 (0.000) -0.148 (0.000) -0.169 (0.000) 
COR 2.077 (0.000) 1.386 (0.000) 1.327 (0.000) 1.521 (0.003) 2.094 (0.000) 1.342 (0.000) 
KSR -3.549 (0.015) -5.949 (0.000) -3.420 (0.030) -2.140 (0.019) -3.003 (0.002) -2.887 (0.073) 
RWR 0.198 (0.528) -0.379 (0.270) 0.445 (0.087) -0.057 (0.876) 0.246 (0.396) -0.806 (0.033) 
PT 1.389 (0.000) 1.173 (0.000) 2.314 (0.000) 1.715 (0.000) 2.014 (0.000) 0.880 (0.001) 
NPT 0.895 (0.066) 0.135 (0.813) -0.572 (0.394) 0.227 (0.771) 0.688 (0.168) 0.292 (0.486) 
Adjusted R2 0.733   0.827   0.765   0.782   0.736   0.702   

Note: p-values are in parentheses.



 

 
 

68 

Table B2 (1/2). GMM system estimation results: day (TD) specification 

 

Eq. 1: CHK Bengal Jupiter Cypress LaGrue Wells XL723 
Intercept 3.03 (0.000) 1.38 (0.000) 2.25 (0.000) 2.15 (0.000) 2.60 (0.000) 4.82 (0.000) 
TDW2 0.013 (0.332) 0.004 (0.859) 0.034 (0.011) 0.108 (0.000) 0.064 (0.038) 0.165 (0.000) 
TDW3 0.045 (0.000) 0.138 (0.000) 0.104 (0.000) 0.253 (0.000) 0.172 (0.000) 0.247 (0.000) 
COR 0.145 (0.489) 0.631 (0.009) 0.041 (0.895) 2.957 (0.002) 0.894 (0.054) 1.022 (0.107) 
KSR 0.977 (0.009) 0.492 (0.379) -0.112 (0.798) 0.460 (0.383) 0.092 (0.844) 1.132 (0.442) 
RWR 0.697 (0.003) 0.731 (0.182) 1.680 (0.001) 2.428 (0.029) 1.506 (0.137) 1.562 (0.079) 
PT 0.140 (0.569) 0.344 (0.187) 0.011 (0.964) -0.194 (0.476) -0.025 (0.930) 0.682 (0.254) 
NPT -1.089 (0.000) -1.394 (0.000) -1.655 (0.000) -3.546 (0.000) -1.968 (0.005) -0.247 (0.696) 
Adjusted R2 0.374   0.366   0.418   0.514   0.430   0.423   
                          
Eq. 2: HRY Bengal Jupiter Cypress LaGrue Wells XL723 
Intercept 63.03 (0.000) 54.30 (0.000) 87.32 (0.000) 84.94 (0.000) 32.20 (0.011) 74.32 (0.000) 
TDW2 -0.159 (0.053) -0.093 (0.332) -0.273 (0.000) -0.302 (0.001) -0.255 (0.000) -0.361 (0.000) 
TDW3 0.059 (0.407) 0.104 (0.088) 0.501 (0.000) 0.557 (0.000) 0.199 (0.000) 0.161 (0.002) 
CHK -1.678 (0.008) -1.947 (0.000) -2.174 (0.000) -2.136 (0.000) -2.423 (0.000) -1.249 (0.000) 
HMC 0.890 (0.425) 1.536 (0.015) -1.360 (0.235) -1.348 (0.294) 4.049 (0.002) 0.134 (0.892) 
HMC2 -0.020 (0.445) -0.036 (0.011) 0.027 (0.335) 0.027 (0.403) -0.097 (0.002) -0.012 (0.642) 
COR 1.664 (0.056) 1.946 (0.026) -0.554 (0.614) -4.795 (0.015) -4.981 (0.000) -1.417 (0.179) 
KSR -4.873 (0.066) -7.114 (0.000) -7.355 (0.001) -9.985 (0.000) -10.613 (0.000) -5.349 (0.003) 
RWR -0.523 (0.631) 0.287 (0.787) 1.362 (0.242) 0.489 (0.725) -1.930 (0.120) -0.847 (0.335) 
PT 2.476 (0.002) 2.543 (0.003) 3.827 (0.000) 1.482 (0.224) -0.049 (0.967) 2.647 (0.004) 
NPT 0.053 (0.983) -1.392 (0.501) -7.942 (0.000) -11.336 (0.000) -6.197 (0.001) -2.231 (0.134) 
Adjusted R2 0.255   0.437   0.484   0.776   0.776   0.661   

Note: p-values are in parentheses.
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Table B2 (2/2). GMM system estimation results: day (TD) specification 

 

Eq. 3: MRY Bengal Jupiter Cypress LaGrue Wells XL723 
Intercept 77.18 (0.000) 79.11 (0.000) 75.66 (0.000) 75.11 (0.000) 78.41 (0.000) 79.38 (0.000) 
TDW2 -0.065 (0.093) -0.103 (0.002) -0.099 (0.001) -0.095 (0.001) -0.065 (0.006) -0.126 (0.001) 
TDW3 0.031 (0.187) 0.133 (0.000) 0.150 (0.000) 0.146 (0.000) 0.072 (0.000) 0.121 (0.000) 
CHK -0.431 (0.109) -0.812 (0.000) -0.817 (0.000) -0.493 (0.000) -0.566 (0.000) -0.488 (0.000) 
HMC -0.189 (0.000) -0.291 (0.000) -0.178 (0.000) -0.239 (0.000) -0.263 (0.000) -0.296 (0.000) 
COR 1.667 (0.000) 1.419 (0.000) 0.563 (0.194) 1.349 (0.010) 1.375 (0.000) 0.963 (0.013) 
KSR -3.249 (0.079) -6.216 (0.000) -3.616 (0.053) -1.853 (0.117) -2.525 (0.034) -1.962 (0.269) 
RWR -0.234 (0.586) -0.985 (0.012) 1.022 (0.009) 0.659 (0.142) 0.118 (0.731) -0.760 (0.133) 
PT 1.358 (0.000) 1.177 (0.002) 2.265 (0.000) 1.562 (0.000) 1.777 (0.000) 1.460 (0.001) 
NPT 0.144 (0.828) -1.341 (0.058) -2.096 (0.007) -2.434 (0.001) -0.941 (0.087) -0.253 (0.687) 
Adjusted R2 0.420   0.735   0.520   0.671   0.602   0.510   
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Table B3 (1/2). GMM system estimation results: night (TN) specification 

 

 
Bengal Jupiter Cypress LaGrue Wells XL723 

Intercept 2.723 (0.000) 0.238 (0.106) 1.239 (0.000) -0.499 (0.238) 0.154 (0.678) 2.283 (0.000) 
TNW2 0.011 (0.030) 0.018 (0.001) 0.032 (0.000) 0.085 (0.000) 0.060 (0.000) 0.088 (0.000) 
TNW3 0.016 (0.001) 0.078 (0.000) 0.055 (0.000) 0.130 (0.000) 0.127 (0.000) 0.141 (0.000) 
COR 0.120 (0.559) 0.367 (0.061) 0.075 (0.801) 1.847 (0.048) 0.093 (0.819) -0.264 (0.622) 
KSR 0.908 (0.032) 0.440 (0.136) -0.119 (0.646) 1.152 (0.009) 1.157 (0.002) 1.028 (0.183) 
RWR 0.738 (0.001) 0.158 (0.513) 1.480 (0.000) 2.251 (0.000) 1.667 (0.000) 0.654 (0.160) 
PT 0.160 (0.493) 0.587 (0.003) 0.158 (0.635) 0.454 (0.397) 0.555 (0.202) 0.793 (0.142) 
NPT -0.617 (0.007) -0.646 (0.001) -0.766 (0.016) -1.143 (0.052) -0.962 (0.028) -0.672 (0.268) 
Adjusted R2 0.380   0.824   0.647   0.805   0.720   0.788   
                          
HRY Bengal Jupiter Cypress LaGrue Wells XL723 
Intercept 41.279 (0.000) 53.586 (0.000) 56.435 (0.000) 59.781 (0.000) 19.911 (0.113) 53.541 (0.000) 
TNW2 -0.132 (0.000) -0.068 (0.018) -0.226 (0.000) -0.278 (0.000) -0.162 (0.000) -0.191 (0.000) 
TNW3 -0.070 (0.007) -0.098 (0.033) -0.007 (0.895) -0.084 (0.098) -0.033 (0.423) -0.137 (0.000) 
CHK 0.146 (0.771) -0.455 (0.414) 0.893 (0.036) -0.320 (0.151) -1.442 (0.000) -0.085 (0.712) 
HMC 2.645 (0.005) 1.570 (0.016) 1.084 (0.238) 1.256 (0.237) 5.152 (0.000) 1.898 (0.037) 
HMC2 -0.058 (0.011) -0.036 (0.016) -0.024 (0.285) -0.036 (0.169) -0.121 (0.000) -0.050 (0.032) 
COR 2.338 (0.001) 1.748 (0.041) 1.574 (0.109) -4.246 (0.023) -4.156 (0.000) -0.654 (0.507) 
KSR -7.326 (0.000) -7.663 (0.000) -7.046 (0.000) -10.946 (0.000) -11.595 (0.000) -7.586 (0.000) 
RWR -0.548 (0.526) 0.705 (0.477) -2.394 (0.013) -2.082 (0.079) -1.682 (0.137) -0.767 (0.349) 
PT 1.649 (0.030) 1.621 (0.055) 3.397 (0.000) 1.468 (0.084) -0.107 (0.915) 1.188 (0.166) 
NPT 1.270 (0.519) 0.450 (0.827) -0.390 (0.842) -1.526 (0.430) -3.292 (0.047) -0.941 (0.402) 
Adjusted R2 0.531   0.482   0.609   0.837   0.798   0.723   
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Table B3 (2/2). GMM system estimation results: night (TN) specification 

 

MRY Bengal Jupiter Cypress LaGrue Wells XL723 
Intercept 74.129 (0.000) 78.857 (0.000) 71.564 (0.000) 74.432 (0.000) 77.091 (0.000) 75.384 (0.000) 
TNW2 -0.058 (0.000) -0.068 (0.000) -0.084 (0.000) -0.079 (0.000) -0.060 (0.000) -0.102 (0.000) 
TNW3 -0.023 (0.012) 0.017 (0.283) -0.013 (0.409) -0.012 (0.356) -0.027 (0.028) -0.073 (0.000) 
CHK 0.374 (0.022) -0.301 (0.071) 0.339 (0.011) -0.034 (0.588) -0.126 (0.127) 0.230 (0.016) 
HMC -0.092 (0.002) -0.266 (0.000) -0.030 (0.479) -0.192 (0.000) -0.187 (0.000) -0.142 (0.001) 
COR 1.972 (0.000) 1.311 (0.000) 1.327 (0.000) 1.312 (0.006) 1.554 (0.000) 1.229 (0.001) 
KSR -4.068 (0.003) -6.067 (0.000) -3.564 (0.022) -2.199 (0.022) -3.179 (0.003) -3.243 (0.060) 
RWR -0.220 (0.521) -0.739 (0.042) -0.391 (0.276) 0.019 (0.965) 0.039 (0.903) -1.016 (0.023) 
PT 1.045 (0.001) 0.971 (0.015) 2.190 (0.000) 1.615 (0.000) 1.556 (0.000) 0.579 (0.074) 
NPT 0.799 (0.084) -0.347 (0.569) 0.567 (0.329) 0.139 (0.735) 0.108 (0.825) 0.440 (0.246) 
Adjusted R2 0.672   0.780   0.689   0.763   0.680   0.650   
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Table B4 (1/2). GMM system estimation results: TDN specification 

 

Eq. 1: CHK Bengal Jupiter Cypress LaGrue Wells XL723 
Intercept 2.745 (0.000) 0.371 (0.027) 1.400 (0.000) -0.133 (0.761) 0.636 (0.097) 2.510 (0.000) 
TDNW2 0.007 (0.049) 0.014 (0.004) 0.022 (0.000) 0.063 (0.000) 0.043 (0.000) 0.068 (0.000) 
TDNW3 0.015 (0.000) 0.057 (0.000) 0.039 (0.000) 0.096 (0.000) 0.081 (0.000) 0.105 (0.000) 
COR 0.073 (0.727) 0.393 (0.040) 0.089 (0.767) 2.002 (0.021) 0.442 (0.284) -0.015 (0.977) 
KSR 0.953 (0.021) 0.481 (0.134) -0.037 (0.898) 1.180 (0.004) 1.017 (0.005) 1.182 (0.161) 
RWR 0.655 (0.002) 0.234 (0.402) 1.616 (0.000) 2.153 (0.000) 1.503 (0.007) 0.847 (0.079) 
PT 0.197 (0.402) 0.629 (0.001) 0.218 (0.476) 0.466 (0.344) 0.586 (0.127) 1.005 (0.054) 
NPT -0.823 (0.000) -0.980 (0.000) -1.073 (0.003) -2.101 (0.002) -1.350 (0.009) -0.474 (0.434) 
Adjusted R2 0.412   0.769   0.620   0.787   0.676   0.772   
                          
Eq. 2: HRY Bengal Jupiter Cypress LaGrue Wells XL723 
Intercept 44.526 (0.000) 55.053 (0.000) 69.842 (0.000) 65.206 (0.000) 5.818 (0.662) 61.281 (0.000) 
TDNW2 -0.096 (0.000) -0.058 (0.004) -0.144 (0.000) -0.229 (0.000) -0.187 (0.000) -0.162 (0.000) 
TDNW3 -0.040 (0.097) -0.092 (0.000) 0.068 (0.028) -0.063 (0.134) -0.115 (0.000) -0.096 (0.000) 
HMC 2.308 (0.021) 1.382 (0.032) -0.165 (0.871) 0.535 (0.652) 6.230 (0.000) 1.002 (0.299) 
HMC2 -0.050 (0.035) -0.032 (0.031) 0.005 (0.852) -0.017 (0.573) -0.142 (0.000) -0.027 (0.270) 
COR 2.056 (0.006) 1.428 (0.116) 0.502 (0.634) -6.843 (0.005) -5.531 (0.000) -1.259 (0.256) 
KSR -7.041 (0.000) -7.848 (0.000) -7.207 (0.000) -11.696 (0.000) -13.483 (0.000) -7.578 (0.000) 
RWR -0.690 (0.461) 0.310 (0.771) -1.802 (0.115) -3.182 (0.024) -4.475 (0.005) -1.491 (0.076) 
PT 1.707 (0.028) 1.314 (0.125) 3.626 (0.000) 1.324 (0.183) -1.244 (0.311) 1.098 (0.194) 
NPT 1.388 (0.530) 1.199 (0.576) -2.749 (0.166) -1.670 (0.496) -2.615 (0.161) -1.272 (0.256) 
Adjusted R2 0.456   0.416   0.523   0.726   0.684   0.679   
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Table B4 (2/2). GMM system estimation results: TDN specification 

 

Eq. 3: MRY Bengal Jupiter Cypress LaGrue Wells XL723 
Intercept 75.617 (0.000) 78.654 (0.000) 72.491 (0.000) 74.216 (0.000) 76.228 (0.000) 76.932 (0.000) 
TDNW2 -0.039 (0.000) -0.052 (0.000) -0.054 (0.000) -0.062 (0.000) -0.049 (0.000) -0.068 (0.000) 
TDNW3 -0.008 (0.266) -0.004 (0.586) 0.014 (0.166) -0.007 (0.458) -0.021 (0.000) -0.021 (0.011) 
HMC -0.129 (0.000) -0.270 (0.000) -0.066 (0.099) -0.191 (0.000) -0.161 (0.000) -0.210 (0.000) 
COR 1.856 (0.000) 1.105 (0.000) 0.932 (0.012) 0.808 (0.154) 1.204 (0.001) 0.947 (0.018) 
KSR -3.652 (0.018) -6.303 (0.000) -3.613 (0.029) -2.307 (0.024) -3.281 (0.002) -2.703 (0.117) 
RWR -0.077 (0.821) -1.009 (0.013) -0.167 (0.649) -0.151 (0.720) -0.338 (0.435) -1.111 (0.020) 
PT 1.124 (0.000) 0.735 (0.064) 2.188 (0.000) 1.559 (0.000) 1.453 (0.000) 0.876 (0.013) 
NPT 0.622 (0.260) -0.194 (0.763) -0.289 (0.665) -0.044 (0.936) 0.063 (0.904) 0.074 (0.872) 
Adjusted R2 0.593   0.724   0.606   0.690   0.591   0.555   
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C. RICE PRICES 

 

Figure C1. Milled long- and medium-grain and broken
*
 rice monthly prices 

 
Source: Stuttgart, Arkansas milled rice prices, f.o.b. (USDA-ERS) 
*Arkansas milled brewers rice used as the price of broken kernels. 
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Figure C2. Ratio of broken
*
 to medium- and long-grain milled rice monthly prices 

 
Source: Stuttgart, Arkansas milled rice prices, f.o.b. (USDA-ERS) 
*Arkansas milled brewers rice used as the price of broken kernels. 
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