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Abstract  
 

Due to rice’s wide geographic distribution, extending from 50°N to 35°S, rice is 

forecasted to be the most vulnerable crop to warming global climates. Previous studies have 

predicted lower rice yields and increasing rice yield variability due to higher frequencies of heat 

stress events, and a higher variability in precipitation patterns due to global warming. As such, 

understanding the effects of drought and heat stress intensity and frequency on rice yields is of 

upmost importance to feeding the growing global population. 

Given that drought and high-temperature stress often occur together, it is essential to 

disaggregate the two individual stressors and examine possible interactions by modeling them 

simultaneously. A reliable and robust temperature and drought threshold inducing rice spikelet 

sterility under field conditions involving cultivars with highly varying phenology has been a 

major limitation for devising adaptation strategies for rice breeders and to estimate heat stress 

and drought impacts by the climate and crop modeling communities. It is in this spirit that this 

study was designed. This study examines and quantifies the individual marginal effects of 

drought and heat stress occurring simultaneously under field conditions by means of a regression 

analysis. Moreover, a cardinal threshold is found for drought as well as for heat in relation to 

spikelet fertility. This study utilizes canopy temperature threshold instead of the more commonly 

found ambient temperature thresholds in the literature. The canopy temperature threshold is more 

precise since canopy temperature has a more direct connection to spikelet temperature and 

therefore spikelet fertility than ambient temperature. Another contribution of this thesis is from 

modeling the relationship between ambient temperature, drought and canopy temperature as a 

recursive system which will allow future research to estimate the effects of changes in global 

ambient temperature to spikelet fertility. The results of this study found that exposure to a 



 

 

canopy temperature over a threshold of 33°C causes a severe increase in rice spikelet sterility. 

An estimated drought threshold of 12 kPa (kilopascal) was found to be the most detrimental to 

spikelet fertility. This is important given two of the largest pressures facing future rice 

production are heat and drought stress. Another related finding is that in the presence of heat 

stress the availability of adequate water during flowering can decrease sterility by 14.16 %. The 

results of this study, which are variety specific, can allow for understanding the properties of 

combined heat and drought stress, which can provide information to rice breeders on how to 

promote reproductive-stage drought tolerance through improved germplasm and attempt to help 

mitigate the effects of a global climate change.  
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Chapter 1 

Introduction  

Rice (Oryza sativa L.) is the staple food for more than half of the global population, with 

over 200 million households in the low-income world alone depending on it as their primary 

staple source of income and calories (Muthayya et al., 2014; Khush, 2005). However, future rice 

production will have to take place in warmer and drier environments (Kadam et al., 2014). Due 

to its wide geographic distribution, extending from 50°N to 35°S, rice is forecasted to be the 

most vulnerable crop to warming global climates (Jagadish et al., 2012, Jagadish et al., 2011, 

FAO). Recent studies (IPCC, 2013, Jagadish et al., 2012) have predicted lower rice yields and 

increasing rice yield variability due to higher frequencies of heat stress events, and a higher 

variability in precipitation patterns due to global warming. As such, understanding the effects of 

drought and heat stress intensity and frequency on rice yields is of upmost importance to feeding 

the growing global population. 

1.1 Heat Stress in Rice 

  

In tropical environments, heat stress is emerging as a major environmental constraint in 

rice production. Heat stress during the rice flowering period, a temperature sensitive time for 

fertilization, has been documented to cause extensive yield damage throughout the rice growing 

world (Ishimaru et al., 2010, Rezaei et al., 2015). A heat wave of daytime ambient temperatures 

above 38 ̊C for more than 20 straight days resulted in 5.18 million tons paddy rice loss in 2003 in 

the Yangtze River Region in China (Li et al., 2004). Gourdji et al. (2013) predicted the 

percentage of cultivated rice that will suffer from at least 5 days of heat stress (>36̊C) during 

flowering to be 16% by 2013 and increase to 27% by 2050.  



2 

 

The Intergovernmental Panel on Climate Change (IPCC) (2013) predicts that mean global 

temperatures will rise 2̊C from 2046 to 2065 and as such the mean global temperature increase 

could increase the probability and frequency of heat stress events during rice flowering. 

Furthermore, it is probable that heat stress events will occur not only with a higher frequency but 

also with a higher duration. In terms of rice spikelet fertility, and subsequent yield, the 

reproductive stage includes a sequence of sensitive developmental events that have little 

flexibility or compensatory capacity against heat stress (O'Toole and Chang, 1979). Among these 

processes are anther dehiscence (the release of the pollen from the anthers 

by natural bursting open of the anthers for the discharge of the pollen on the stigma which 

enables fertilization), pollination – the deposit of the pollen on the stigma -, pollen germination 

and pollen tube growth (Jagadish et al., 2010; Matsui, 2002). Spikelet fertility is directly related 

to spikelet temperature and the tolerance of a rice variety to high air-temperature induced 

spikelet sterility depends directly on the temperature inside the spikelet itself (Weerakoon et al., 

2008). Shi et al. (2015) found a significant negative relationship between spikelet tissue 

temperature and spikelet sterility. There is a difference between air temperature (recorded 2 m 

above the canopy) - temperature around the panicle, tissue temperature (measured inside the rice 

panicle) and ambient air temperature and each effects sterility at different temperature 

thresholds. Canopy temperature is typically lower than ambient temperature due to stomatal 

conductance which is referred to as canopy temperature depression (CTD) below air temperature 

as canopy temperature is cooler than the air, under well-watered, dry conditions (Amani et al., 

1996). CTD varies significantly for different genotypes (Shi et al., 2015) indicating that some 

genotypes are more efficient at cooling themselves under high temperatures. The driver for 

spikelet sterility induced by heat stress at flowering can be attributed to anther indehiscence, 
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because the swelling of the pollen grains, the driving force behind anther dehiscence in rice, is 

inhibited, whereas the female reproductive organ is not damaged when exposed to heat stress 

(Jagadish et al., 2014, Matsui et al., 1999, Yoshida 1981). In the light of the susceptibility of rice 

fertility to heat stress  (Downton & Slatyer, 1972) and global warming predictions (IPCC, 2013) 

future heat stress events could provide a challenge to global food security.       

1.2 Drought Stress in Rice 

 

Apart from extreme heat events, climate change, for instance in terms of possible 

precipitation decrease in some regions of the world has already caused warning impacts on water 

resources. Global warming is one of the greatest pressures on water availability together with 

pollution, population growth, land use changes and others (Kang et al., 2009). Similar to heat 

stress events, drought stress during critical developmental stages in rice is among the major 

challenges to sustained rice production, in terms of yield, its stability and quality (S. V. K. 

Jagadish et al., 2012, Porter & Semenov, 2005). In the wake of increasing mean global surface 

temperature, extreme variability in precipitation events over most of the mid-latitude land masses 

and over wet tropical rice growing regions will likely increase by the end of this century (IPCC, 

2013). Burke et al. (2006) predicts that the percentage of land under severe drought will increase 

from 10% at the beginning of the 21st century to about 40% by the end. Mean duration of the 

droughts is forecasted to increase by the factor five under the same time period (Burke et al., 

2006). Pandey et al. (2008) claim that at least 23 million ha of rice area (20% of the total rice 

area) in Asia are prone to drought of varying intensities, using a deficit from the long-term 

rainfall average of 20% or more as a definition for drought stress. Water scarcity during critical 

rice development periods such as flowering, as a consequence of climate change are currently 

unfolding in large parts of the rice growing world (Pandey et al., 2008; Raman et al., 2012) . 
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Like heat stress, flowering is considered the most sensitive development stage to drought 

(Krishna Jagadish et al., 2011, Jagadish et al., 2010, Liu et al., 2006, Cruz & Toole, 1984, 

Matsui, 2002). Peduncles, the panicle stalks, in drought stressed rice plants were shown to be 

shorter than in the controls, trapping the basal part of the panicle in the sheath flag leaf and 

causing lower fertility in unexserted (trapped) spikelets (Jagadish et al., 2011; Ji et al., 2005).   

Currently, mild and severe droughts frequently take place in predominantly rain- fed rice 

areas, like north-east Thailand, Laos, central Myanmar and east and north- east India (Wassmann 

et al., 2009). O’Toole (2004) stated that rice is the most vulnerable crop to drought stress as it 

currently relies heavily on water supply through irrigation. He asserts that Asia cannot continue 

depending on both the quantity and quality of freshwater resources the way it currently does, 

because competition for the resource increases. By 2025, 15–20 million ha of irrigated rice are 

expected to undergo some form of water scarcity; an estimated 2.5 million ha of wet-season 

irrigated rice areas in north China, 2.1 million ha in Pakistan and 8.4 million ha in north and 

central India will experience ‘physical water scarcity’ by 2025 (Bouman et al., 2007; Tuong and 

Bouman, 2003). Dropping groundwater tables in major groundwater-depletion arenas in the 

North China Plain, in the Indian states of Punjab, Haryana, Rajasthan, Maharashtra, Karnataka 

and northern Gujarat in Tamil Nadu and hard-rock southern India has led to increasing water 

scarcity affecting rice production in northern India, Pakistan and China (Bouman et al., 2007). 

Given previous studies (Cruz & Toole, 1984; Liu et al., 2006; Jagadish et al., 2011) have shown 

that drought stress during flowering can lead to large increases in sterility and thus decreases in 

yield, increased frequency and severity of drought in these rice production areas could pose a 

threat to global food security in a warming climate.  
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1.3 Combined Heat and Drought Stress in the Rice Literature  

 

Given the high correlation of heat and drought stress simultaneously occurring many 

studies have modeled the total effect of both (Ayeneh et al., 2002; Baker et al., 1997; Boonjung 

& Fukai, 1996; Challinor et al., 2007; Coast et al., 2014; Eyshi Rezaei et al., 2015; Ferris et al., 

1998; Gourdji et al., 2013; Heinemann et al., 2008; Jagadish et al., 2010; Jagadish, Craufurd, & 

Wheeler, 2007). But to our knowledge none have modeled them simultaneously disentangling 

the marginal effect of each. Often times heat stress induces drought stress and it is important to 

take into account that plant tissue temperatures can be significantly warmer than ambient air 

under dry conditions or cooler than air under suitable soil water conditions  and, as such, eliciting 

the effect of each individually can be problematic (Hatfield et al., 2011).    

Heat stress with regard to its effects on spikelet fertility is well documented by Jagadish 

et al. (2007, 2008, 2010) and Matsui (2002) and many attempts to find or establish critical 

thresholds have been made (Laborte et al., 2012, Satake and Yoshida, 1978, Prasad et al., 2006, 

Gourdji et al., 2013, Ishimaru et al., 2010, Rang et al. , 2011, Sánchez et al., 2014, Welch et al., 

2010, Nakagawa, 2002, Yoshida 1981, Zou et al., 2009). Yet, Challinor et al. (2007) claim that 

the quantification of heat impacts on future crop yields as regards climate predictions is still in its 

infancy, since quantitative studies on spikelet fertility are mostly based on controlled conditions 

experiments with determined thresholds and there is no consensus on a heat threshold in the 

literature.  

Other studies have concentrated exclusively on drought and its effects on spikelet fertility 

during flowering concluding that, similar to heat stress drought affects the reproductive organs 

and therefore anther dehiscence, pollen shedding and germination (Wassmann et al., 2009). 

These and other studies on drought stress in rice failed, however, to appropriately express their 
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findings on plant damage in relation to appropriate actual drought measurements or establish 

definitive thresholds, e.g. Bouman et al. (2007); Tuong & Bouman (2003), Pandey et al. (2004), 

Heinemann et al. (2008), Bates et al. (2008). In contrast to these past studies, this research 

attempts to find critical heat and drought thresholds simultaneously. 

Spatial analysis has shown that heat stress during the susceptible reproductive stage is 

likely to coincide with periods of water scarcity in rice growing regions of Bangladesh, the 

eastern part of India, southern Myanmar and the north of Thailand (Wassmann et al., 2009). 

Jagadish et al. (2011), Liu et al. (2006) and Rang et al. (2011) conducted studies on combined 

heat and drought stress in rice at International Rice Research Institute (IRRI). In general, 

however, literature and in-depth understanding of combined heat and drought stress is currently 

lacking (Rizhsky et al., 2004; Rizhsky, Liang, & Mittler, 2002), but are important where crop 

losses are a product of multiple stressors (Jagadish et al., 2012). Combined heat and drought 

stress can lead to additive detrimental effects on growth physiology during different phenological 

stages of the rice plant, leading to significantly lower productivity (Kadam et al., 2014; Porter & 

Semenov, 2005).  

In terms of key physiological processes determining spikelet fertility during abiotic 

stress, in their experiment, imposing 38ºC for five consecutive days during anthesis and drought 

stress causing 50-60% decrease in flag leaf water content, Rang et al. (2011) detected that heat 

stress caused an 8% reduction in peduncle length, i.e. the length of the panicle stalk, water stress 

24% reduction in peduncle length and combined heat and water stress a 27% reduction in 

peduncle length. The number of germinated pollen on the stigma was reduced when exposed to 

heat (81%), drought (59%) and concomitant stress (84%). Spikelet fertility declined more under 
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heat stress alone (77%) and combined stress (71%) than due to water stress conditions (21%) 

(Rang et al., 2011).  

 Given that drought and high-temperature stress often occur together, it is essential to 

disaggregate the impacts of the two individual stressors and examine possible interactions by 

modeling their impacts simultaneously. A reliable and robust temperature and drought threshold 

inducing rice spikelet sterility under field conditions involving cultivars with highly varying 

phenology has been a major limitation on rice breeders to devise adaptation strategies and on the 

climate and crop modeling communities to estimate heat stress and drought impacts.  This study 

is designed to overcome these limitations. Using field data from experiments conducted at Los 

Baños, Philippines, in 2012, 2013 and 2014, this study estimates spikelet fertility under field 

conditions which is crucial because the majority of existing studies, e.g. Abeysiriwardena et al. 

(2002), Matsui et al. (1997), Shi et al. (2015), Weerakoon et al. (2008), Rang et al., 2011 on 

combinations of abiotic stress, were performed under controlled, laboratory conditions, featuring 

a considerable gap between their findings and the actual situation in the field (Merquiol et al., 

2002; Mittler, 2006; Wassmann et al., 2009). Furthermore, this study explores the important 

relationship of canopy temperature to ambient temperature and drought because they are all 

interrelated. Ambient temperature is often used by climate modelers because of readily available 

data. However; canopy temperature is a larger driver of sterility temperature events than ambient 

air temperature.  Thus by using regression analysis on spikelet fertility under abiotic stressful 

(drought and heat) growing conditions, this study provides estimates on how each abiotic stress 

affects sterility. Given the assumption that canopy temperature is affected by atmospheric 

temperature as well as water stress conditions in rice cultivars, the findings of this study can help 
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to advance a holistic predictive model of global warming in a differentiated manner, i.e. 

adjusting for drought occurrence.  

In addition to estimating the marginal effects of the two abiotic stress effects, a further 

contribution of this research is the simultaneous estimation of thresholds for both heat and 

drought stress on sterility. A lack of consensus on an appropriate threshold under field conditions 

has resulted in a wide range of critical temperature thresholds (35 to 41 ˚C) used for experimental 

and modeling exercises (Rezaei et al., 2015, Sánchez et al., 2014). One objective of the study is 

to find a canopy heat threshold in terms of spikelet fertility rather than more commonly used 

ambient temperature threshold. Typically, ambient temperature data are mostly obtained from 

controlled chambers or weather stations not located on the actual experimental side. However, 

there can be large variations in ambient and rice plant tissue temperatures, e.g. depending on 

relative humidity. In the underlying experiment, canopy temperatures were measured for each 

replicate under field conditions. Because canopy temperature is more closely linked to the tissue 

or panicle temperature than ambient temperature - it represents the surrounding micro climate of 

the spikelets. Thus, revised thresholds for canopy temperature can assist climate modelers to 

better predict the critical ambient temperatures that could jeopardize food security 

(Abeysiriwardena et al., 2002; Porter & Semenov, 2005; Prasad et al., 2006, Rezaei et al., 2015, 

Siebert et al., 2014). In the same manner, this study estimates a drought threshold beyond which 

the severity in sterility increases, which would be a first in the literature. Our study provides a 

robust threshold that can be effectively used by breeders, physiologists, and climate and crop 

modelers.  The objectives of this study are to: 1) estimate the individual effects of heat and 

drought stress simultaneously on sterility 2) calculate a canopy heat stress threshold where 

significant sterility occurs and 3) calculate a drought stress threshold where significant sterility 
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occurs. Our objectives address the lack of a reliable and robust critical canopy temperature and 

drought thresholds that triggers damage under field conditions, which could be used for large 

scale phenotyping to help rice adapt to a rapidly changing climate.   
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Chapter 2  

Methodology 

1.4 Combined Drought and Heat Stress - Experiment Setup  

 

The underlying database comes from a field experiment conducted at the International 

Rice Research Institute (IRRI), Los Baños, (14º11’N, 121º15’E, 21m), Philippines in April and 

May of 2012, 2013 and 2014. Three indica rice cultivars – Nagina 22 (N22), Anjali and Dular – 

were used to test the effects of combined heat and drought stress during flowering on spikelet 

fertility in rice and examine the relationship between canopy temperature, ambient temperature 

and drought. The three varieties have varying degrees of  tolerance to drought and heat stress, as 

recommended for this type of investigation by Torres et al. (2012). Anjali, a variety released by 

CRURRS (Central Rainfed and Upland Rice Research Station), India, in 2002, is a semi-tall (85-

90 cm) and early maturing (95-95 days) variety (Kumar et al., 2014), developed for drought 

prone upland regions of Odisha, Jharkhand, Bihar, Assom and Chhattigarh states of eastern 

India. Anjali is moderately tolerant to drought and its ecosystem is rainfed upland, direct seeded, 

yield expectations are 2-3 t/ha (Diwakar & Kumar, 2012).  Dular is a landrace cultivar from 

India (Wang et al., 1998) that belongs to group O. sativa type aus genotypes that is characterized 

by a greater ability to exploit soil moisture when water stressed which is attributed to a favorable 

root distribution along the soil profile, i.e. advantageous deep root length (Gowda et al., 2012). 

N22, an upland variety from India, is recognized to be tolerant to both, water and heat stress at 

the flowering stage (Selote & Khanna-Chopra, 2004, Prasad et al., 2006, Satake & Yoshida, 

1978, Rang et al., 2011, Ishimaru, 2010, Jagadish et al., 2010, 2012,  Bahuguna et al., 2014). An 

important factor making N22 tolerant to heat is resilience of the germinating pollen over a very 

large temperature range from 5.6-45.4 ̊C (Coast et al., 2014). Although N22 is favorable in heat 
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prone areas of rice production it is criticized for its poor agronomic performance and poor 

combining attributes (Bahuguna et al., 2014).    

The experimental data were obtained during the end of April until the beginning of May of 2012, 

2013 and 2014. Each of the three varieties had three replications per year, organized as 

randomized complete block design (RCBD), shown for the three years of the experiment Figure 

A1, A2, A3. Dormancy of the seeds was broken by an exposure to 50 ̊C for a period of three 

days, followed by pre-germination and sowing in seeding trays. Fourteen days after germination, 

the seedlings were transplanted at a spacing of 20*15 cm with two seedlings per hill.  

Table 1 shows the seeding and transplanting dates and other important phenological 

events for each year and variety. Potassium (40kg K ha-1 as KCl), Phosphorus (30kg P ha-1 as 

single superphosphate), Zinc (5kg Zn ha-1 as zinc sulfate heptahydrate) were applied on the plots 

one day before transplanting. Nitrogen fertilizer in the form of urea was applied in three steps 

(60kg ha-1as basal, 45kg ha-1 at mid tillering, and 45kg ha-1 three days before panicle initiation). 

Pre-emergence herbicide was used to control weeds in the plots and manual weeding was 

employed when needed. 
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Table 1: Summary of Phenological Events 

Variable 2012 2013 2014 

Location  International Rice Research Institute (IRRI), Los Baños, (14º11’N, 

121º15’E, 21m), Philippines 

Cultivars Dular, Anjali, N22        Dular, Anjali, N22        Dular, Anjali, N22 

Seeding Date 

Dular 

Anjali 

N22 

 

23 Feb  

28 Feb  

4 March 

 

21 Feb  

21 Feb 

26 Feb 

 

21 Feb  

21 Feb 

26 Feb   

Transplanting 

Dular 

Anjali 

N22 

 

8 March  

13 March  

18 Mar 

 

7 March 

7 March 

12 Mar  

 

7 March 

7 March 

12 Mar 

Draining  16 April  10 & 23 April 21 April 

Re-water   5 May 4 May 3 May 

50% Flowering 

Dular 

Anjali 

N22 

 

24/25 Apr  

30Apr/1 May  

4-6/9-11 May  

 

23-25 Apr  

23-27 Apr  

25-28 Apr  

 

29 Apr 

26-27 Apr 

26-27 Apr 

Panicle 

Maturity/Harvest 

Dular 

 

Anjali 

 

N22 

 

Number of 

Observations 

 

 

21/24/29 May 

2/8 June 

21/24/29 May 

2/8 June 

21/24/29 May 

2/8 June 

18 

 

 

 

15/21 May 

 

11/15/21 May 

 

21/27 May  

 

18 

 

 

19/22 May 

 

15/19 May 

 

15 May 

 

18 

 

 

2.2 Environmental Conditions  

 

IRRI is located in a humid, tropical, lowland environment which allows for two to three 

rice crops per year. Approximately 45% of the rice area in Southeast Asia is under irrigation, 

thus, under similar conditions as the test plots of this experiment; the largest areas being found in 

Indonesia, Vietnam, the Philippines and Thailand (Mutert & Fairhurst, 2002; Redfern et al., 

2012). Worldwide, about 93 million hectares of rice are represented by irrigated lowland 

systems, providing 75% of the world’s rice production (IRRI., 2013) 



13 

 

Heat stress was induced by scheduling the transplanting and thus flowering so that it would 

coincide with naturally high temperatures during late April and early May which represent the 

hottest period of the year at IRRI. To ensure the occurrence of the anthesis of the three varieties 

simultaneously, Dular, which had the longest vegetative stage, was transplanted ahead of the 

shorter duration varieties N22 and Anjali (Table 1). 

In order to impose drought and heat stress simultaneously, the experimental format included a 

drought stress treatment (where water was drained from the paddy during flowering) and an 

irrigated control treatment. Before starting the drought treatment, all experimental plots were 

uniformly and completely irrigated, followed by opening the bunds and water outlets around the 

stress plots to drain them. The drainage for the drought stress plots started at the booting stage, 

about 10 days before flowering, to ensure that all of anthesis stage for each variety took place 

under drought stress (Table 1). Daily visual inspections served for determination of the dates 

when each phenological stage was achieved; the stages were panicle initiation, heading, 50% 

flowering, 100% flowering and panicle maturity. To ensure the exclusion of rainfall, rainout 

shelters were used on the drought stress plots when stress was induced. The drought stressed and 

the control replications were established in separate field blocks to avoid problems with seepage, 

following Torres et al. (2012).  

Throughout the experiment, no incidences of pest or disease were observed.  After 19, 11 

and 12 days of stress in 2012, 2013 and 2014 respectively, the stressed plots were re-flooded in 

order to guarantee that drought stress occurred only during the flowering period and 

subsequently the crop grew under optimum conditions until it was harvested. The experimental 

design was aimed at quantifying sterility, which is determined during flowering, drought stress 

was only induced then. At the termination of the drought period for stressed plots, the soil 
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moisture contents were similar in the three years, 50 – 60 kPa, and the plants had to have passed 

the target stage to reinstate post-flowering optimal water conditions.   

Cardinally, an extreme heat threshold is determined by exposure-level above which 

substantial yield losses start to accumulate, which are strongly driven by spikelet sterility 

induced during the flowering stage (Bheemanahalli et al., 2015). Spikelet fertility was examined 

at harvest where empty spikelets were counted post-harvest and regarded as sterile. The panicles 

were hand-threshed, filled and unfilled grains (including half-filled grains and empty grains) 

were separated by submerging them in tap water, a seed blower was used to divide half-filled 

and empty grains. Sub-samples were taken to count the total number of filled, half-filled and 

empty grains to determine seed-set manually (percentage of number of filled and half-filled 

grains over the total number of spikelets on the panicle).  

1.5 Experimental Measurements and Statistical Analysis 

 

An important aspect for modeling abiotic stress effects on crops, is to examine the effects 

at particular developmental stages, since temperature thresholds can be more detrimental at 

specific periods of development (Ferris et al., 1998; Porter & Semenov, 2005). As such the 

regression format used here examines spikelet fertility caused by abiotic stress during flowering, 

cumulating the number of hours spent above a specific canopy temperature threshold, since it is 

assumed that temperature effects are cumulative over time. Whereas numerous studies impose a 

specific level of temperature stress to quantify heat effects on fertility (Abeysiriwardena et al., 

2002; Matsui et al., 1997; Weerakoon et al., 200), here, a threshold is estimated from the field 

experimental data themselves.  Canopy temperature measured by plot, variety, and year is used 

for measuring the effects of heat stress. Canopy temperature observations are a better proxy of 

panicle temperature than the ambient temperature recorded at weather stations that are often 
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distant from the experimental sites and as such provide a practical alternative to ambient 

temperatures (Fukuoka et al., 2012). Canopy temperature measurements were recorded every 10 

minutes but only temperatures from 8:30 am to 2:00 p.m. were utilized in this study, since they 

represent the time of the day in which the rice spikelets complete flowering within a particular 

day and the sensitive reproductive organs are exposed to heat stress (Bahuguna et al., 2014). 

Canopy temperature was averaged over 10 minutes using MINCER (Micrometeorological 

Instrument for the Near-Canopy Environment of Rice) (Fukuoka et al., 2012).  Ambient 

temperature data are not plot specific and were derived from the weather station at IRRI, 

recorded every 15 minutes.  

Plot specific soil moisture was measured by a tensiometer which does not directly sense 

soil water content, but rather soil water/moisture tension which has the advantage of being 

independent from the soil type and reflecting the actual water requirements of the crop. 

Tensiometer measurements were recorded daily between 11am and 12pm on the stressed plots 

with the porous cup at 30 cm soil depth, the unit of measurement is kilopascals (kPa). Soil 

moisture tension measures suction, so it is correct to be reported as negative numbers. 

Henceforth in this study, the absolute value of the tensiometer readings are used in the statistical 

analysis which is a common procedure (MEA, 2015). Table A1 shows adjustments (primarily for 

missing observations) made to the data before it could be used in the regression analyses. 

Figure 1 illustrates the daily tensiometer measurements for all three years of the study 

after the stress period was initiated. 
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Figure 1: Tensiometer Readings after Stress Initiation Averaged over Variety for each Year in 

the Study.   
 

            

The thresholds for drought as well as for canopy temperature are found through 

regression analyses using varying threshold levels and choosing the thresholds that give the 

highest explanatory power. The drought stress variable is constructed as the sum of the number 

of days spent under drier conditions than a given kPa threshold value. Likewise, the canopy 

temperature variable is the sum of the number of hours spent above a given canopy temperature 

threshold during flowering over stress period i. The given thresholds are varied from 12 to 52 for 

kPa and from 26̊C to 40C̊ for canopy temperature.  The two optimal thresholds for drought and 

heat stress are first identified in separate grid search analyses – one for drought and one for heat 

stress.  For draught a series of regression models are estimated where the draught variable differs 
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by the assumed threshold.   The optimal draught stress threshold is identified by that model in the 

grid search that has the highest R2. A similar search is done to identify the optimal canopy 

temperature threshold. Once ranges for the local optima are determined, a grid search is 

employed in two dimensions (drought and heat stress) to get the optimal threshold pair for 

explaining spikelet variability. In the one-dimensional as well as later in the two-dimensional 

grid search, the optimal canopy temperature exposure thresholds range from 26̊C to 40̊C – in 

increments of 1̊C - to find the best fit with regards to sterility. The range chosen for possible 

canopy temperature thresholds relied on existing literature on temperature – mostly ambient 

temperature – thresholds (Coast et al., 2014; Gourdji et al., 2013). To estimate a drought 

threshold above which losses in spikelet fertility become severe, thresholds between 12 and 52 

kPa were analyzed in the separate drought model and the two-dimensional grid search. This 

range of possible thresholds was considered as reasonable because 10 to 25 kPa reflects a soil at 

field capacity (Schwankl et al., 1992) and plants should be re-watered when soil tensiometers 

installed at 30 cm depth register soil water tension of about -50 to -70 kPa to help plants survive 

as these levels are extremely severe and can lead to 100 % sterility and if extended can result in 

plant death (Torres et al., 2012).  

The model for measuring the direct impact of canopy temperature and draught stress on 

spikelet fertility and that was used in the grid search for the optimal canopy temperature and 

drought thresholds is a multivariate regression model specified as:  

y���� = �� + �
 + ��c + ��kPa + u����      (1) 

where yspik is spikelet fertility at harvest in percent for observation i, αc is a vector (two 

components) of fixed effects for cultivar type, αy a vector (two components) of fixed effects for 

year, �� is the coefficient of c, the number of hours during the stress period the crop spent above 
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the specified canopy temperature threshold d, and  �� is the coefficient of the drought variable 

kPa, the number of days the crop spent above the specified kPa threshold.  The term uspik is a 

random error term representing the impacts of unobserved factors on spikelet fertility. Specifying 

spikelet fertility as a function of canopy temperature (c) and drought (kPa) allows for estimating 

and testing for the impact of amount of time spent under more severe conditions beyond certain 

thresholds. In the experiment data are observed in each year for each variety under both draught 

and non-draught conditions. 

According to Eyshi Rezaei et al. (2015) it remains unclear if heat stress only arises above 

some threshold or is exclusively the accumulation of heat that affects in spikelet fertility. Several 

crop modeling studies, like Schlenker & Roberts (2009), use growing degree days (GDD) in 

combination with cardinal temperature thresholds. So, we modeled a piece-wise linear regression 

model to detect breakpoints and nonlinearities in the effect of drought and temperature on 

spikelet fertility. It was applied with one single threshold, implying two temperature variables. 

Night time temperature, from 6pm to 6am, and the Vapor Pressure Deficit (VPD), an 

environmental factor composed of Relative Humidity (RH) and temperature, were also part of 

possible alternative multivariate regression models. To ensure a comprehensive approach, 

different models were estimated, e.g. amount of hours above the threshold, a weighted sum of 

hours by how much the threshold was exceeded, nonlinear functions of drought and canopy 

temperature exposures (Table 3). 

Given the IPCC estimates that mean global temperatures are expected to increase by up 

to 2̊C from 2046 to 2065, results from equation 1 could be used to predict the impact of warming 

scenarios on spikelet fertility in rice. Hence, apart from establishing temperature and drought 

thresholds, this research can help to predict the effects of a warming rice growing world. 
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Because most warming scenarios (IPCC, 2013) look solely at changes in ambient temperature 

and canopy and panicle temperature have been established as the drivers of sterility, a 

relationship between the two temperatures (ambient and canopy) must be estimated. This is 

confounded by the fact that ambient temperature also affects the soil moisture condition which in 

turn can also affect canopy temperature. This structure implies a recursive model with three 

equations.  The first equation in the system specifies kPa as a function of ambient temperature, 

the second equation specifies canopy temperature as a function of ambient temperature and kPa, 

and the third equation specifies spikelet fertility as a function of canopy temperature (c) and kPa 

as given in equation (1).   

Assuming ambient temperature has a statistically significant impact on kPa, soil water 

potential is regressed on ambient temperature in the following manner: 

����� = η� + ƞ
2
���� !" + #$%�    (2) 

Where ykpa is daily average soil water tension in kPa for observation i in year t, ƞ�is the 

coefficient of ambient, daily average of mean ambient temperature and ukpa is a random error 

term. Equation 2 accounts for the indirect effect of ambient temperature on draught, since 

drought is intensified by an increase in ambient air temperature and Equation 3, specified below, 

shows how drought and ambient temperature directly influence canopy temperatures.  

As such, we model canopy temperature as a function of ambient temperature (c) and 

draught (kPa) 1) direct effect on canopy temperature and 2) an indirect effect via increased kPa. 

We model this by 

��� = &' + μ�) + μ�$%� + #�    (3) 



20 

 

where yci is the ten-minutes-mean canopy temperature in ̊C (Celsius) for observation i, recorded 

every 10 minutes, αv is a fixed effect for cultivar v, μ�	is the coefficient of c, the ten-minutes-

mean ambient temperature in ̊C Celsius and μ�	is the coefficient of kpa, the average tensiometer 

measurement in kPa every 10 minutes.  ui is a random error term that represents other impacts on 

10-minutes canopy temperature that were unobserved. Equation 3 accounts for the direct effect 

of ambient temperature on canopy temperature. The coefficients in αv reflect the differences in 

genotype in cooling canopy temperature at given drought and ambient temperature stress levels. 

Equation 1 represents the direct effect of drought and canopy temperature on spikelet fertility.  
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Chapter 3 

Results 

3.1 Regression Results  

 

Table 2 shows the summary statistics of the experiment by stress/non-stress, variety and 

year. Table 3 contains the results of alternative specifications of Equation (1) that were estimated 

but not used in the subsequent analysis. Table 4 shows the results of the preferred model. The 

preferred model for spikelet fertility (equation 1) resulted in an adjusted R-square of 67.34%. 

This model and all subsequent models were estimated using robust standard errors. The preferred 

model includes a linear functional form of hours above the canopy temperature threshold, which 

was determined to be 33˚C and a logarithmic function of days above the drought threshold, 

which was determined to be 12 kPa.  
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Table 2: Summary Statistics of Spikelet Fertility, Heat Stress Exposure and Drought Stress 

Exposure  

 

 Spikelet Fertility (%) Count of Hours 

exceeding 

Temperature 

Threshold 33˚C 

Count of Days 

exceeding Drought 

Threshold 12 kPa 

All Data 

Stress 

 

Control 

 

41.91 

(13.19) 

64.99 

(10.66) 

 

29.80 

(6.48) 

18.02 

(20.24) 

 

9.96 

(3.78) 

0.00 

(0.00) 

Dular 

Stress 

 

Control 

 

40.77 

(11.73) 

64.64 

(11.83) 

 

29.11 

(7.57) 

18.06 

(21.21) 

 

10.56 

(3.40) 

0.00 

(0.00) 

Anjali 

Stress 

 

Control 

 

40.86 

(13.77) 

60.51 

(7.60) 

 

30.67 

(6.66) 

18.00 

(21.26) 

 

9.44 

(4.59) 

0.00 

(0.00) 

N22 

Stress 

 

Control 

 

 

44.09 

(15.18)  

69.83 

(11.06) 

 

29.61 

(5.81) 

18.00 

(20.72) 

 

9.89 

(3.62)  

0.00 

(0.00) 

                           2012 

                         Stress 

  

                      Control  

 

35.59 

(12.38) 

66.096 

(12.32) 

 

24.056 

(3.63)  

0.44 

(0.30) 

 

13.67 

(1.32) 

0.00 

(0.00) 

2013 

Stress 

 

Control 

 

36.27 

(11.13) 

57.67 

(5.84) 

 

29.17 

(5.38) 

7.83 

(0.00) 

 

5.22 

(1.30) 

0.00 

(0.00) 

2014 

Stress 

 

 Control 

 

53.86 

(6.85) 

71.21 

(8.84) 

 

36.17 

(3.40) 

45.78 

(0.33) 

 

11.00 

(1.00)  

0.00 

(0.00) 
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Table 3: Alternative Multivariate Regression Specifications of Equation (1) 

 
Variable M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

 Threshold  

kPa 

C 

 

12 

-  

 

 

32 

 

12 

32 

 

12 

32 

 

14 

 

 

32 

 

14 

32 

 

12 

 

12 

32 

 

12 

33 

 Intercept 

 
68.80** 

(3.56) 

67.74** 

(3.40) 

75.61** 

(4.72) 

75.72** 

(4.83) 

65.98** 

(3.43) 

78.10** 

(12.09) 

80.05** 

(13.66) 

78.28** 

(7.49) 

78.11** 

(7.54) 

69.78** 

(3.31) 

 Year 2013 -12.85** 

(3.56) 

-2.03 

(3.40) 

-9.26** 

(3.84) 

-9.11** 

(4.00) 

-5.60 

(3.79) 

-0.88 

(4.42) 

-0.139 

(6.29) 

-4.31 

(6.92) 

-6.85 

(8.01) 

-6.009* 

(3.45) 

 Year 2014  8.86** 

(3.41) 

20.19** 

(5.71) 

17.77** 

(5.66) 

18.36** 

(6.58) 

12.98** 

(3.40) 

18.91** 

(5.24) 

21.77** 

(5.06) 

21.48** 

(9.43) 

17.64 

(11.21) 

20.52** 

(4.91) 

 Anjali 6.74*  

(3.39) 

-6.11* 

(3.24) 

-6.75** 

(3.28) 

-6.69* 

(3.34) 

-6.88** 

(3.31) 

-6.60** 

(3.28) 

-7.11** 

(3.20) 

-5.53* 

(3.46) 

-6.17* 

(3.63) 

-6.631** 

(2.69) 

 Dular -3.54  

(3.39) 
-4.32 

(3.24) 

-4.08 

(3.29) 

-4.23 

(3.45) 

-3.86 

(3.31) 

-4.38 

(3.29) 

-4.21 

(3.21) 

-2.79 

(3.40) 

-3.18 

(3.47) 

-3.987 

(3.03) 

 kPa  

 

-2.13**  

(0.26) 
 

-1.69** 

(0.33) 

-1.21 

(2.99) 

-5.48** 

(0.97) 
 

-4.84** 

(1.06) 

-1.86** 

(0.32) 

-2.61** 

(1.21) 
 

 kPa2 

    
0.29** 

(0.081) 
 

0.261** 

(0.078) 
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*, ** level of significance at the 10 and 5% levels respectively

 

 

 

  

 

 

 

 

Table 3:  Alternative Multivariate Regression Specifications of Equation (1) – Continued 

 

 

 

 

  

 Variable M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

 Klog          -8.61** 

(1.06) 

 Drought 

Stress 

(binary) 

 -19.60** 

(3.27) 

   -17.24** 

(4.60) 

    

 c  -0.30* 

(0.16) 

-0.35** 

(0.17) 

-0.36* 

(0.18) 

 0.80 

(1.02) 

-0.96 

(1.23) 

  -0.34** 

(0.13) 

 VPD 
 

       -14.46** 

(10.08) 

-12.34 

(10.66) 

 

 kPa*c 

 

   -0.010 

(0.065) 

      

 K* VPD         0.553 

(0.86) 

 

 R2 0.6612 0.7020 0.6903 0.6905 0.6846 0.7035 0.7036 0.6754 0.6730 0.7104 

 Adjusted 

R2 

0.6259 0.6640 0.6508 0.6367 0.6444 0.6584 0.6743 0.6340 0.6223 0.6734 
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Table 4: Results of Preferred Estimates of Equation (1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Parameter 

Estimate 

Intercept 69.781** 

(3.312) 

Year2013 -6.009* 

(3.446) 

Year2014 20.519** 

(4.915) 

Anjali -6.631** 

(2.692) 

Dular -3.987 

(3.030) 

Canopy 

(hours) 

-0.3398** 

(0.126) 

Kpalog 

(days) 

-8.608** 

(1.055) 

Number of 

observations 

54 

R-Square 

 

0.7104 

 

Dependent 

Mean 

53.44864 

Adj R-Sq 0.6734 
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3.2 Drought Effects under Preferred Model  

 

The preferred logarithmic function for the drought variable and a threshold of 12 kPa 

result in the highest explanatory power in line with the physiological characteristics of rice and is 

therefore included into the preferred combined model with the heat variable (Tables 3 and 4).1 

Alternative specifications for estimating drought were also considered: a reciprocal function of 

the tensiometer-based data, a spline or piece-wise linear function similar to Schlenker & Roberts 

(2009)– including a linear function representing the number of days above the threshold and a 

second linear variable representing the days spent under stress conditions (kPa > 0), but less 

severe than the more harmful threshold.  All resulted in a lower R2 and in some cases resulted in 

non-sensical results and thus the logarithmic specification was chosen (Table 3). 

 

 

 

 

 

 

 

 

                                                           
1 The decision for the preferred model in terms of specification and appropriate threshold for kPa 

was made based on r-squares, however, shows that the combined model with squared terms of 

the number of days above the drought threshold and the number of hours spent above the canopy 

temperature threshold lead to a slightly higher adjusted R-square than the preferred specification. 

Yet, the squared term of kPa would mean at first a decreasing fertility and, after an accumulation 

of more dry days, again increasing fertility happening within the the experiment observed range 

of days above the drought threshold which is physiologically not consistent and was not 

observed in the experiment.   
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Figure 2: Estimated Fertility under the Logarithmic and Linear Functional Foms of the Drought: 

Using Days over 12 kPa Threshold under the Average Growing Year for N22 

 

    
 

Previous studies have investigated rice’s responses to drought stress in terms of a control-

stress comparison or linear functions (Henry et al., 2011; Liu et al., 2006). Alternative 

specifications for estimating drought were also considered: a reciprocal function of the 

tensiometer-based data, a spline or piece-wise linear function similar to Schlenker & Roberts 

(2009)– including a linear function representing the number of days above the threshold and a 

second linear variable representing the days spent under stress conditions (kPa > 0), but less 

severe than the more harmful threshold.  All resulted in a lower R2 and in some cases resulted in 

non-sensical results and thus the logarithmic specification was chosen (Table 3). 
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Figure 2 shows the differences in estimated spikelet fertility when using a linear 

functional form of the days spent above the estimated optimal 12 kPa threshold and using the 

preferred logarithmic form, using an average year and the variety N22.2  

 

 

 

 

Figure 2 illustrates that the linear function gives very different impacts of drought on 

spikelet fertility, throughout. Since the logarithmic function gives a better fit than the linear, we 

conclude that results relying on a linear model might give misleading predictions.  This is an 

important finding as a linear function, like used by Boonjung & Fukai (1996), Cruz & Toole 

(1984) and Kumar & Panu (1997) could overestimate the effects of drought on fertility during a 

growing season.  

The statistically significant (p < 0.01) drought coefficient (kpa) of -8.608 (Table 4), 

measured in days above the 12kPa threshold, has to be interpreted taking into account the 

                                                           
2 The average year is computed by multiplying the intercept (Table 4) by three - for the three trial years - and adding 

the two respective year dummy variable coefficients for 2013 and 2014, before dividing by three again. 
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logarithmic functional form. The coefficient (-8.608) can be interpreted as the relative change of 

spikelet fertility with increasingly severe drought conditions depending on the level of drought 

that a variety has already experienced. To find the change in spikelet fertility for a change in 

number of days under drought conditions, 
+,-.

+���
=	

/0

���
 is employed. On average the drought 

stressed plots spend 13.67 days above the threshold of 12kPa in 2012. At this level, fertility 

decreases by 0.635% for an additional day spent above the 12kPa threshold. In 2013, at its 

sample mean for varieties under drought stressed conditions of 5.22 days, an additional day 

above 12kPa caused a 1.66% decrease in fertility, and in 2014, by 0.783% as an additional day of 

drought is faced by the crop at the sample mean of 11 days of drought stress on the stressed 

plots. The estimates indicate a decreasing marginal effect due to the logarithmic drought 

specification. These findings are important because it appears that droughts do not need to be 

prolonged to have large negative effects on fertility. That is, the majority of fertility damage 

happens quickly after reaching the 12kPa threshold as depicted in Figure 2.    

 

3.3 Heat Effects on Spikelet Fertility  

 

 While some studies (Ayeneh et al., 2002; Baker et al., 1997; Boonjung & Fukai, 1996; 

Challinor et al., 2007; Coast et al., 2014; Eyshi Rezaei et al., 2015; Ferris et al., 1998; Gourdji et 

al., 2013; Heinemann et al., 2008; Jagadish et al., 2010; Jagadish, Craufurd, & Wheeler, 2007) 

look at heat and drought stress in isolation from each other, this study estimates their impact 

letting the two forces interact with each other simultaneously. Previously in this study, when 

estimating the thresholds independently the drought threshold was estimated to be 12kPa and the 

canopy to be 32 ̊C (Table A2 and Table A3). While the essence of this study is to estimate both 

parameters simultaneously, it is important to estimate them independently first and compare the 
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results to previous literature. Wassmann et al. (2009) use 33 ̊C as a critical ambient temperature 

threshold to identify rice growing areas that are vulnerable to heat stress. Likewise, Tack et al. 

(2015) used an ambient temperature threshold of 33 ̊C for their yield modeling approach in terms 

of salinity and high temperatures in rice. Matsui et al. (1997) established heat thresholds for 

spikelet sterility in two japonica rice cultivars by means of high air temperature treatments on 

rice plants at middle heading stage as flowering time temperatures causing 50% of decrease in 

spikelet fertility. They report 36 ̊C and 38.0-38.5̊C respectively for two japonica cultivars. 

Sánchez et al. (2014) conclude from their literature review that 37 ̊C would be an appropriate 

heat threshold for spikelet fertility during anthesis in rice. The threshold found in our research is 

consistent with the range of previously established thresholds. That being said, the previous heat 

thresholds were determined for ambient, not canopy temperature. When we do our two-

dimensional grid search over the threholds of canopy heat and drought simultaneously, we arrive 

at the same kPa threshold as for the individual approach (12 kPa) and a slightly higher canopy 

threshold of 33 ̊C (Table A4). Thus, in our data set there appear to be no large differences 

between estimating the thresholds independently or simultaneously.  This robustness of this 

result needs to be explored further in other data sets.  

The preferred specification of canopy temperature in equation (1) was a linear form, and 

as such the coefficient of -0.340 (p < 0.01) represents the marginal effect, indicating that every 

additional hour spent above 33 °C during the flowering window from 8:30am – 2:00pm, results 

in a decrease in spikelet fertility of 0.340% (Table 4).  Unlike the estimated effects of drought, 

which were found to be the most detrimental in the first few days, canopy temperature stress, 

given its preferred linear form, has a constant negative effect on spikelet fertility throughout the 

flowering period. Thus, the length of the heat stress appears to be the driving factor in sterility. 
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3.4 Fixed Effects 

 

The interpretation of each of the cultivar fixed effects is the cultivar’s resilience to both 

heat and drought is important in terms of its possible implications for rice breeding and screening 

for heat and drought stress tolerance. Anjali was estimated to have lower average spikelet 

fertility than N22 by 6.63% (p < 0.05), including stressed and control plots, whereas Dular is not 

statistically different (P> 0.1) than N22 (Table 4). This is consistent with existing literature as 

N22 is recognized to be drought as well as heat tolerant whereas drought tolerance is expressed 

in Dular and Anjali is susceptible to both heat and drought stress (Gowda et al., 2012, Selote & 

Khanna-Chopra, 2004, Prasad et al., 2006, Satake & Yoshida, 1978, Rang et al., 2011, Ishimaru, 

2010, Jagadish et al., 2010, 2012, Bahuguna et al., 2014).  Not surprisingly when heat and 

drought stress are imposed Anjali is estimated to have the largest reduction from its non-stressed 

fertility. The results in Table 5 provide evidence that N22 is the most resilient, in terms of 

fertility, of the three lines to both heat and drought stress.  

Table 5: Average Spikelet Fertility under Non-Stressed and Stress (Heat and Drought) Stressed 

Conditions for all Three Trial Years  

 Anjali  Dular  N22 

Non-Stressed 61.87 64.50 68.50 

Stressed    49.17 51.93 55.99 

% Change*  21% 19% 18% 

* % Change compared to baseline Sterility (non-stressed)  

The fixed effects for years were also statistically significant for all years in the study. 

Spikelet fertility was 20.52% higher in 2014 when compared to 2012 (P<0.01) and 6.01% lower 

in 2013 than in 2012 (P<0.1) (Table 4). A possible explanation for the heightened fertility in 



 

31 

 

2014 was the length of the imposed drought stress period. In 2012, the stressed plots were 

exposed to 19 days of stress whereas only 13 days in 2014. As stated above, the drought 

treatment was ended when the kPa reached a range of 50 – 60 kPa and when flowering was 

completed. Re-watering occurred later in 2012, as ambient temperatures were lower 2012 and as 

such the flowering period took longer to complete (Table 1).   

 

3.5 Warming scenarios  

 

The parameter estimates of the two models (Equation 2, 3) that are used in the calculation 

of the impacts of climate warming on sterility are presented on Table 9. The total effect of a 

marginal increase in ambient temperature on the spikelet fertility is composed of several steps 

consisting of a direct and indirect effect. First, the ambient temperature has a direct effect on kpa 

(Equation 2). Second, ambient temperature and kpa both have a significant effect on canopy 

temperature (Equation 3). Therefore, ambient temperature has a direct and an indirect effect on 

canopy temperature:  the indirect is through the increase kpa and then the direct effect of ambient 

temperature on canopy temperature. As such, across the varieties increasing ambient temperature 

by 1̊C was found to have a direct effect in raising canopy temperature by 0.969 ̊C (p < 0.01), all 

else equal (Table 6). This makes intuitive sense as the rice plant has the capability of cooling 

itself and as such the increase should be under 1˚C.  Because kPa (drought) is known to effect 

canopy temperature as well  it was estimated (Equation 2) that an increase in soil water potential 

by 1 kPa, increased average canopy temperature by 0.0230 ̊C (p < 0.01), for all three varieties 

(Table 6).  

Previous literature has shown that there are differences amongst genotypes’ ability to 

lower canopy temperature during stress (Selote & Khanna-Chopra, 2004;  Prasad et al., 2006; 
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Satake & Yoshida, 1978; Rang et al., 2011; Jagadish et al., 2010; Jagadish et al., 2012). Similar 

results are apparent in our estimates as Anjali, for stressed and non-stressed plots, was estimated 

to have an average canopy temperature 0.137̊ C higher than N22 (P < 0.01), ceteris paribus 

(Table 6). Dular was not estimated to have a different canopy temperature (P>0.1), under the 

assumption of the same level of drought stress and ambient temperature. This most likely reflects 

function of Anjali’s lower ability to keep its tissue temperature low as ambient temperature and 

drought increase, since it is susceptible to both abiotic stresses. The model specifications with 

logarithmic and reciprocal specifications for average ambient temperature were not used because 

they led to slightly lower R-squares than in the preferred linear model (Table A5 and Table A6).      

  

In terms of the indirect effect of ambient temperature on canopy temperature (equation 2) 

it was found that an increase of daily ambient temperature by 1̊C was statistically significant (p < 

0.05) in increasing daily kPa by 2.98 for all three varieties (Table 7).  

Table 6: Results of Preferred Regression Model on Canopy Temperature 

Variable Parameter 

Estimate 

Intercept 0.2115 

(0.2604) 

ambient10 0.9689** 

(0.0082) 

kpa 0.02958** 

(0.00080) 

Anjali 0.13693** 

(0.04029) 

Dular -0.04332 

(0.0415) 

 Number of 

observations 

8767  

Dependent 

Mean 

31.88226 
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R-Square 0.5334 

Adj R-Sq 0.5332 

 

 

Table 7: Results of Preferred Regression Model on Drought (kPa) 

Variable Parameter 

Estimate 

Intercept -66.72790* 

(33.965) 

ambient 2.98038** 

(1.0548) 

 Number of 

observations 

387 

Dependent 

Mean 

29.19889 

R-Square 0.0203 

Adj R-Sq 0.0178 

 

To calculate the effects (direct and indirect) of an ambient temperature increase we 

averaged the year fixed effects. Increases of ambient temperature from 0.25°C to 2.0°C, given 

IPCC estimates indicate a 2.0°C in ambient temperature is plausible, in steps of 0.25°C were 

estimated. To each observed tensiometer reading in each year, we add the respective ambient 

temperature increase (depending on the warming scenario) and derive the marginal effect of 

ambient temperature estimated in equation 2, as follows.  

12���34567.
= 8�9 :; <	$%�	;�=# + 	>���� !" ∗2.98038   (4) 

Then new canopy temperature input datasets for Equation 1, the regression on spikelet fertility, 

are computed for the different warming scenarios as hours above the threshold 33 ̊C are re-

estimated via Equation 2:   

   12��@A�,34567�
= 8�9 :; <	)�!8%�	;�=# 9 + 	>���� !" ∗ (.96885+2.98038*0.02958)     (5) 
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The	dependent	variable	12��@A�,34567.
	is the estimated ten minutes average for canopy 

temperature for variety i. The ambient temperature increase >���� !" is according to the 

respective scenarios analyzed. For the combined direct and indirect effect (.969+2.980*.0296) of 

ambient temperature on canopy temperature, the coefficients can be found on Table 6 and Table 

7. As ambient temperature is increased by 1 ºC, canopy temperature is estimated to increase by 

0.969 ºC. The indirect effect is expressed as the increase in kPa as ambient temperature is 

increased by 1 ºC (2.980 kPa) if combined with the increase in canopy temperature (0.0296 ºC) 

for a 1kPa increase in soil water potential. Table 8 represents the effect of a 1 ºC increase in 

ambient temperature on the canopy temperature increase for the rice variety N22.  

 

Table 8: Direct and Indirect Effects of a 1ºC Increase in Ambient Temperature on Canopy 

Temperature for the Rice Variety N22  

Effect  

Increase in kPa 

(kPa)  

Increase in Canopy 

(ºC) 

Marginal Effect on 

Canopy (ºC)  

Direct  0.97 0.97 

Indirect (via kPa 

increase) 2.98 0.029* 0.030*2.98 

Total (Direct + 

Indirect)     (0.97+0.030*2.98) = 1.06 

* As derived from Equations 2 and 3 

* Given that canopy temperature is modeled as variety specific, the fixed effect coefficients for 

Anjali and Dular are 0.13693 and - 0.04332 respectively   

 

The results of Equation 5 lead to the updated canopy temperature values which are then 

plugged into Equation 1. Likewise, a new kPa input data set, updated by the global warming 

scenarios, is created following Equation 4, due to the fact that kPa changes as ambient 

temperature increases. Tables A7 and A8 show the new canopy temperature and kPa inputs for 
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Equation 1 under each of climate change scenarios. The effects of warming scenarios on fertility 

are illustrated on Figures 3 and 4 and can be found more in detail in Table 9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: The Effects of Ambient Temperature Warming on Spikelet Fertility - under Flooded 

Non-Drought Stress Condition 
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Figure 4:  The Effects of Ambient Temperature Warming on Spikelet Fertility - under Drought 

Stress Conditions 
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Figures 3 and 4 and Table 9 show the decrease, by variety, under warming scenarios for 

both drought and fully flooded conditions. When combining the system of equations (equations 

1-5) the connection between drought and heat stress becomes clear. The decrease in percent 

spikelet fertility – as an average across the varieties - with an associated ambient temperature 

increase of 0.25 °C is 14.39 % in the presence of drought stress – compared to 0.67 under 

flooded conditions. For an increase of 1.25 °C, average fertility decreases by 19.77% under stress 

and only 5.55% in the flooded control, for an increase of 2.0 °C, average fertility decreases by 

23.65% under stress and only 9.49% in the flooded control. This would seem to indicate that 

drought stress is more detrimental to spikelet fertility than heat stress, or at the very least heat 

stress can be partially mitigated through the presence of a flooded paddy. Figures 3 and 4 also 
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indicate large genotype differences in fertility under both types of abiotic stresses as indicated by 

the statistical significance of the varietal fixed effects discussed before.  

The three varieties show - in terms of spikelet fertility - a very similar response to the 

warming scenarios. For the most extreme warming scenario in our study (2.0 °C) we find that 

without the presence of water fertility drops 23.02 % for N22 (from 68.50% to 45.48%), 23.13% 

for Dular (from 64.49% to 41.36%) and 24.79 % for Anjali (from 61.87% to 37.08) – compared 

to the observed fertility under flooded conditions. Under that same warming scenario if water is 

available (no drought stress) fertility only drops by 9.89, 8.76 and 9.82%, respectively.   
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Table 9: Absolute and Relative Cultivar Effects of Warming Scenarios on Average Spikelet 

Sterility  

   Spikelet 

Fertility 

Estimated  

Absolute % Fertility and Absolute Change in % 

Fertility under different Scenarios 

   (%) observed 0.25 0.5 0.75    1.0 

Control  N22  68.50A 68.50 

0.00* 

67.86 

-0.64 

66.59 

-1.91 

65.44 

-3.06 

64.01 

-4.49 

 Dular  64.50A 64.50 

0.00 

64.03 

-0.47 

63.19 

-1.30 

62.17 

-2.32 

60.89 

-3.61 

 Anjali  61.87B 61.87 

0.00 

60.97 

-0.91 

60.00 

-1.87 

58.83 

-3.04 

57.36 

-4.51 

 Average  64.96 64.96 

0.00 

64.28 

-0.67 

63.26 

-1.69 

62.15 

-2.81 

60.75 

-4.20 

Stress N22  55.99A 55.99 

-12.51** 

54.14 

-14.36 

52.84 

-15.67 

51.19 

-17.31 

50.13 

-18.37 

 Dular  51.93A 51.93 

-12.57 

50.57 

-13.93 

49.34 

-15.16 

48.12 

-16.38 

46.70 

-17.79 

 Anjali  49.17B 49.17 

-12.70 

46.99 

-14.88 

45.49 

-16.38 

43.82 

-18.05 

42.52 

-19.36 

 Average  52.36 52.36 

-12.59 

50.57 

-14.39 

49.22 

-15.73 

47.71 

-17.25 

46.45 

-18.51 

    1.25 1.5 1.75    2.0  

Control  N22   62.59 

-5.91 

61.50 

-7.00 

59.97 

-8.53 

58.61 

-9.89 

 

 Dular   59.61 

-4.89 

58.32 

-6.17 

57.10 

-7.40 

55.74 

-8.76 

 

 Anjali   56.02 

-5.85 

54.59 

-6.93 

53.56 

-8.31 

52.05 

-9.82 

 

 Average   59.41 

-5.55 

58.25 

-6.70 

56.88 

-8.08 

55.47 

-9.49 

 

Stress N22   49.04 

-19.46 

47.57 

-20.93 

46.54 

-21.97 

45.48 

-23.02 

 

 Dular   45.53 

-18.96 

44.19 

-20.30 

42.95 

-21.55 

41.36 

-23.13 

 

 Anjali   40.99 

-20.88 

39.36 

-22.51 

38.36 

-23.51 

37.08 

-24.79 

 

 Average   45.19 

-19.77 

43.71 

-21.25 

42.61 

-22.34 

41.31 

-23.65 

 

Note: Means followed by the same letter are not different at P <0.05 using adjusted Tukey mean 

comparison.* difference between spikelet fertility (in %) resulting from respective non-stress (in 

terms of water) climate change scenario and the observed non-stress spikelet fertility (in %) in 

the experiment. ** Difference between spikelet fertility (in %) resulting from respective stress 

(drought) climate change scenario and the observed non-stress spikelet fertility (in %) in the 

experiment 
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Chapter 4 

Discussion 

 

 The results of this study found that exposure to a canopy temperature over a threshold of 

33°C causes a statistically significant increase in rice spikelet sterility. This is unique in that 

most previous research has focused on ambient temperature, not the more relevant canopy 

temperature for impacts on sterility. Results indicate that the canopy threshold of 33°C would be 

equivalent to an ambient temperature threshold of 33.97°C which is in the range of the 

previously reported threshold of 33 ˚C (Wassmann et al., 2009; Tack et al., 2015).  

  An estimated drought threshold of 12 kPa was found to be the most detrimental to 

spikelet fertility. While robust in this study, given the lack of drought thresholds in the literature, 

this threshold level should be explored further in future research.  A large contribution of this 

study is estimating the threshold and marginal effects of canopy temperature on rice sterility. 

While most existing climate models forecast ambient temperature, existing physiology literature 

suggests that it is canopy—not ambient—temperatures that affect sterility. That being said, it is 

important to also include ambient temperature because it affects canopy temperature, but since 

canopy temperature is a function of genotypes and drought, canopy temperature is not all 

encompassing. As such we specify an ambient-canopy temperature relationship and use it to 

estimate how increased ambient temperatures affects sterility via canopy temperature. Secondly, 

for the first time, we estimate a drought stress threshold where severe sterility is induced. This is 

important given two of the largest pressures facing future rice production are heat and drought 

stress. Historically, it has been difficult to disentangle heat and drought stress because they often 

occur simultaneously and are endogenous. In this sense, this study was able to model each effect 

separately, given the experimental set up, but then able to use the two effects; direct-
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ambient/canopy and indirect-ambient/kPa/canopy effects to estimate the effects of warming 

ambient temperatures on rice sterility.   

The relationship between spikelet fertility and drought defined by a logarithmic kPa 

specification shows that most of the drought damage to fertility occurs quickly, after only few 

days over 12kPa. We conclude that not the length, but rather the frequency and severity of 

drought may be the important factors influencing rice yields.  

It seems apparent from the ambient temperature warming scenarios simulated here that 

the presence of water greatly reduces sterility in the face of heat stress. Besides, the differences 

in spikelet fertility in terms of varieties found in the underlying experiment go along with the 

findings from previous studies, e.g. on drought resistance by Gowda et al. (2012) showing the 

highest drought tolerance for N22 and the lowest for Anjali. Especially with regard to the 

warming scenarios, and when drought stress is present, the greater ability of N22 to cope with 

combined stress becomes clear, followed by Dular and the consistently less drought and heat 

tolerant Anjali.       

Under a warming scenario of 2.0 ˚C, average sterility was found to decrease by -9.49% 

with the presence of flooded conditions and -23.65% under drought stress. This suggests that 

heat stress can partially be mitigated by the presence of water in the field. Future research should 

therefore be especially focused on the aforementioned important rice-growing regions of 

Bangladesh, the eastern part of India, southern Myanmar and the north of Thailand (Wassmann 

et al., 2009, Jagadish et al., 2011, Liu et al., 2006, Rang et al., 2011) that are prone to experience 

combined heat and water stress during the susceptible reproductive stage.  Large breeding efforts 

should be oriented towards adapting varieties to better cope with drought stress.  
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Generally, crop modeling efforts can be improved by higher spatial resolution (Kang et 

al., 2009) and future research could be improved by large field studies, using hourly instead of 

daily kPa measurements and spikelet temperature instead of canopy temperature, as done by 

Maruyama et al. (2013). Furthermore, more varieties should be included across a wide range of 

drought and heat susceptibility ratings. Adaptation strategies, e.g. in terms of agronomical 

management, can offset some of the negative effects of climate change in the near future, but in 

the longer run, the development of suitable varieties will become essential (Soora et al., 2013; 

Wassmann et al., 2009). Tolerance to individual stresses as well as multiple stress tolerance have 

to be a goal of breeding effects (Wassmann et al., 2009). In this sense, understanding the 

properties of combined heat and drought stress can provide information to breeders on how to 

promote reproductive-stage drought tolerance through improved germplasm (Liu et al., 2006).  
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 Chapter 6 

Appendix 

Figure A1: Design of Experiment on the Effect of Heat and Drought Stress on Spikelet Fertility 

during Flowering in Rice: IRRI, 2012 
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Figure A2: Design of Experiment on the Effect of Heat and Drought Stress on Spikelet Fertility 

during Flowering in Rice: IRRI, 2013 
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Figure A3: Design of Experiment on the Effect of Heat and Drought Stress on Spikelet Fertility 

during Flowering in Rice: IRRI, 2014 
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Table A1: Adjustments made to the Experiment Data prior to the Regression Analysis 

Data Set  Computation /Measurement Data Gap  Adjustment  

Canopy 

Temperature 

Measured with MINCER  In 2013, only 

control 

measurement for 

N22 

Used 2013, N22 

control canopy 

temperature data 

for all three 

varieties   

  Anjali Stress and 

Dular Stress 2013, 

4/24/2013 only 

data from 10 am 

Used data from 

N22 stress 2013 for 

4/24/2013, until 10 

am 

  No control data for 

Dular Control 2012 

Used average of 

Anjali & N22 

  No control data for 

Anjali Control 

2014 

Used average of 

Dular & N22 

 

Soil Water 

Potential 

Measured with Tensiometer In 2012, only one 

measurement per 

variety (stress) 

Used data from 

Plot with 

measurement in the 

same replication  

  No measurements 

for flooded plots 

Assume they 

always have 0 kPa, 

because they are 

saturated  

 

  No tensiometer 

readings for the 

4/17/2012, 

4/18/2012, 

4/19/2012, 

4/22/2012, 

4/24/2012, 

4/25/2012,  

4/28/2012,  

4/29/2012,  

5/2/2012,  

5/4/2012, 

4/24/2013 

Interpolated 

between the 

measurement of 

previous and the 

following day of 

the missing day 
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Table A2: Ranking of R-squares with Drought Thresholds (Spikelet Fertility regressed on log of 

Number of Days over Threshold) 

Obs. R2 Threshold 

(kPa) 

R2 Threshold 

(kPa) 

     

   1 0.681 12 0.562 35 

2 0.667 13 0.562 30 

3 0.660 14 0.562 31 

4 0.659 15 0.557 32 

5 0.649 16 0.557 33 

6 0.649 17 0.551 36 

7 0.637 18 0.551 37 

8 0.637 19 0.544 41 

9 0.626 20 0.540 40 

10 0.626 21 0.538 38 

11 0.618 22 0.538 39 

12 0.618 23 0.538 43 

13 0.613 26 0.533 42 

14 0.612 25 0.516 44 

15 0.611 24 0.516 45 

16 0.609 27 0.516 46 

17 0.571 28 0.516 47 

18 0.571 29 0.496 48 

19 0.562 34 0.466 49 

20   0.422 50 

21   0.339 52 

22   0.336 53 
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Table A3:  Ranking of R-squares with Canopy Temperature Thresholds (Spikelet Fertility 

regressed on Number of Hours over Threshold) 

Obs R2 Threshold 

(ºC) 

1 0.702 32 

2 0.698 33 

3 0.692 31 

4 0.687 34 

5 0.685 29 

6 0.683 30 

7 0.682 39 

8 0.682 40 

9 0.681 38 

10 0.679 35 

11 0.678 28 

12 0.678 27 

13 0.677 37 

14 0.677 36 

15 0.677 26 
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Table A4: Top Ten Highest R-squares with Canopy Temperature and Drought Thresholds 

(Spikelet Fertility regressed on Number of Hours over Temperature Threshold and Log of 

Number of Days over kPa Threshold) 

R2 ºC kPa 

0.7105 33 12 

0.7082 32 12 

0.7066 32 51 

0.7050 32 43 

0.7048 32 52 

0.7047 32 44 

0.7047 32 45 

0.7047 32 46 

0.7047 32 47 

0.7045 33 44 

 

 

 

Table A5: Results of Regression Model on Canopy Temperature - Logarithmic Ambient 

Temperature 

Variable Parameter 

Estimate 

Intercept -73.52** 

(1.125) 

ambientlog 30.23** 

(0.324) 

kpaabs 0.030** 

(0.00086) 

Anjali 0.137** 

(0.041) 

Dular -0.043 

(0.041) 

 Number of 

observations 

8767  

Dependent 

Mean 

31.88 

R-Square 0.5334 

Adj R-Sq 0.5332 
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Table A6: Results of Regression Model on Canopy Temperature - Reciprocal Ambient 

Temperature 

 

Variable Parameter 

Estimate 

Intercept 60.44** 

(0.315) 

ambientrecip -932.04** 

(10.06) 

kpaabs 0.0294** 

(0.00086) 

Anjali 0.13680** 

(0.041) 

Dular -0.04315 

(0.0416) 

 Number of 

observations 

8767  

Dependent 

Mean 

31.88226 

R-Square 0.5303 

Adj R-Sq 0.5301 
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Table A7: Global warming Scenarios and their Impact on Hours spent above 33˚C Canopy 

Temperature 

Var. Stress Scenario Hours 

above 

33̊C 

Var. Stress Scenario Hours 

above 

33̊C 

Anjali 0 Estimated 18.00 N22 0 Estimated 18.00 

  0.25 ̊C increase 20.67   0.25 ̊C increase 19.89 

  0.50  ̊C increase 23.50   0.50  ̊C increase 23.61 

  0.75   ̊C increase 26.94   0.75   ̊C increase 27.00 

  1.0   ̊C increase 31.28   1.0   ̊C increase 31.22 

  1.25   ̊C increase 35.22   1.25   ̊C increase 35.39 

  1.50  ̊C increase 38.39   1.50  ̊C increase 38.61 

  1.75   ̊C increase 42.44   1.75   ̊C increase 43.11 

  2.00   ̊C increase 46.89   2.00   ̊C increase 47.11 

 1 Estimated 30.67  1 Estimated 29.61 

  0.25 ̊C increase 36.33   0.25 ̊C increase 34.22 

  0.50  ̊C increase 40.50   0.50  ̊C increase 37.94 

  0.75   ̊C increase 43.89   0.75   ̊C increase 41.50 

  1.0   ̊C increase 47.72   1.0   ̊C increase 44.61 

  1.25   ̊C increase 52.22   1.25   ̊C increase 47.72 

  1.50  ̊C increase 56.50   1.50  ̊C increase 51.56 

  1.75   ̊C increase 59.44   1.75   ̊C increase 54.61 

  2.00   ̊C increase 63.11   2.00   ̊C increase 57.61 

Dular 0 Estimated 18.06 

  0.25 ̊C increase 19.44 

  0.50  ̊C increase 21.89 

  0.75   ̊C increase 24.89 

  1.0   ̊C increase 28.67 

  1.25   ̊C increase 32.44 

  1.50  ̊C increase 36.22 

  1.75   ̊C increase 39.83 

  2.00   ̊C increase 43.83 

 1 Estimated 29.11 

  0.25 ̊C increase 32.67 

  0.50  ̊C increase 36.06 

  0.75   ̊C increase 39.22 

  1.0   ̊C increase 43.39 

  1.25   ̊C increase 46.72 

  1.50  ̊C increase 50.17 

  1.75   ̊C increase 53.83 

  2.00   ̊C increase 58.39 
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Table A8: Global Warming Scenarios and their Impact on Hours spent above 12 kPa 

 

 

 

 

 

Var. Variable Days 

above 12 

kPa  

Var. Variable Days 

above 

12 kPa  

Anjali Estimated 9.44 N22 Estimated 9.89 

 0.25 ̊C increase 10.11  0.25 ̊C increase 10.67 

 0.50 ̊C increase 10.33  0.50 ̊C increase 10.78 

 0.75 ̊C increase 11.89  0.75 ̊C increase 12.11 

 1.00 ̊C increase 11.89  1.00 ̊C increase 12.11 

 1.25˚C increase 11.89  1.25 ̊C increase 12.22 

 1.50 ̊C increase 12.44  1.50 ̊C increase 12.78 

 1.75 ̊C increase 12.44  1.75 ̊C increase 12.78 

 2.00 ̊C increase 12.56  2.00 ̊C increase 12.89 

Dular Estimated 10.56 

 0.25 ̊C increase 11 

 0.50 ̊C increase 11.22 

 0.75 ̊C increase 11.67 

 1.00 ̊C increase 11.67 

 1.25 ̊C increase 11.78 

 1.50 ̊C increase 12.33 

 1.75 ̊C increase 12.33 

 2.00 ̊C increase 12.44 
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