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Abstract 

Sequestration of atmospheric carbon in forested lands offsets carbon emissions from 

other industries. Conversion of private lands, particularly agricultural tracts in marginal areas, to 

forests can bolster carbon abatement. The United States government agencies administer some 

voluntary, incentive-based programs to encourage landowners to adopt production practices with 

positive environmental outcomes. This policy stream can be used to increase transition of 

marginal agricultural land to forests, thereby creating new carbon sinks. We analyze an eleven-

county study area in the Arkansas Delta to determine feasibility for a subsidy focused on carbon 

abatement through afforestation. This study area is significant for two reasons: the long growing 

season and humid climate is ideal for fast growing trees such as loblolly pine, and groundwater 

depletion dynamics factor heavily into future optimal land use patterns. A spatially-explicit 

optimization programming model will determine the pattern of land use that maximizes 

discounted economic returns to landowners and explore responsiveness of optimal land use to 

government subsidies on forest activities. The result of this effort will assist policymakers in 

allocating limited resources to programs for greenhouse gas mitigation.  
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Introduction 

Increasing accumulation of anthropogenic carbon in the atmosphere is the primary driver 

of climate change (Pachauri and Meyer). Mitigating increasing levels of carbon in the 

atmosphere requires a reduction in emissions and/or escalation in sequestration. Emissions 

reduction is achieved through increased energy efficiency: a combination of lower energy 

demand via behavior change and cleaner energy supply by improved technology or renewable 

sources. While the most effective way to mitigate climate change may be to reduce emissions, 

that strategy does little to account for the pollution stock already present. Carbon sequestration, 

either engineered or natural, can offset damages from the existing state. In this paper, we will 

focus on afforestation as a cost-effective approach to policy-driven carbon sequestration. 

Previous literature on forest carbon abatement is divided into two methodological 

strands: econometric models and programming models. In econometric models of land use 

decisions, researchers make future projections based on historical activities. Considerations in 

this revealed-preference model include accounting for non-pecuniary returns of land use to 

landowners and “decision-making inertia” that affects how quickly landowners make changes 

based on economic analysis (Stavins).  Stavins (1999) followed by (Newell and Stavins) 

estimated costs of carbon sequestration associated with converting marginal agricultural land to 

loblolly pine plantations in the Delta states (Arkansas, Louisiana and Mississippi) by an 

econometric approach. (Lubowski, Plantinga and Stavins) also conducted an econometric 

estimation of carbon sinks with national coverage. 

In programming models of land use decisions, researchers make future projections based 

on time-matched data related to exogenous parameters such as production costs, expected 

revenues, spatial yield potential and market prices. By lessening the tie to the past, this method 
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allows a fuller representation of what may happen if landowners are strict maximizers of net 

returns. (Moulton and Richards) and (Sohngen and Brown) have previously used optimization 

programming models for the estimation of afforestation cost-effectiveness.  

In this tradition, we employ a spatially-explicit optimization programming model that 

leans on engineering cost methods of alternative land uses. We seek to contribute to the literature 

by modifying the programming model’s representation of the hydrologic state and broadening 

options for forest management by the landowner. The hydrologic state can be depicted in two 

ways, bathtub or spatial. In the bathtub portrayal, groundwater is depleted uniformly across the 

entire aquifer as if no barriers existed between sites. In the spatial portrayal, the aquifer is 

envisioned to be divided into site-specific wells that are non-uniformly depleted based on site-

specific withdrawals. For forest management, we allow the programming model to determine the 

optimal rotation length for harvestable forests endogenously. This model and these features were 

selected in part due to the unique circumstances in the Arkansas Delta. 

The Arkansas Delta is a good afforestation candidate for two reasons: it boasts an ideal 

environment for tree growth and has an increasingly tenuous groundwater situation affecting 

agricultural production profitability. The long growing season and humid climate in the Arkansas 

Delta is compatible with fast growing tree species such as loblolly pine, creating a favorable 

scenario for rapid carbon sequestration. While much of the land in the study area is highly valued 

for traditional agricultural production, the continuing depletion of groundwater in the area is 

shifting more land into a “marginal” category. As irrigation costs increase, it may be more 

profitable for landowners to adopt less water-intensive land cover, making afforestation 

attractive.  
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Methods 

Land cover  

There are n possible land covers include annual land uses, harvested forest types, and 

permanent forest types.  The area of annual land uses s, harvested forest types f, and permanent 

forest types p for site i and period t are denoted by,,, respectively. The k possible annual land 

uses include furrow-irrigated corn and soybeans, dryland soybeans, flood irrigated rice, and 

fallow land. The l possible harvestable forest types are loblolly pine and mixed hardwood 

plantations, and the m possible permanent forest types are loblolly pine and mixed hardwood 

forest.   The area of land chosen for annual uses, harvestable forest, and permanent forest in 

period t equals the area of all land covers j in period t, which must equal the initial land available 

at each site (Eq. 1),   

0
k l m n n

ist ift ipt ijt ijs f p j j
L L L L L+ + = =∑ ∑ ∑ ∑ ∑ .            (1) 

Any annual land use can become another land cover in the subsequent period within the 

boundaries of the minimum and maximum amount of land for that land cover based on historical 

patterns.  A permanent forest type remains in that forest type for perpetuity.  The area of land 

planted to permanent forest type p at site i in period t is iptFP .  The area in permanent forest type 

p in period t at site i is then (Eq. 2),   

( 1)ipt ip t iptL L FP−= + .                                       (2)   

A harvestable forest type f must follow certain rules about forest rotation through time.  

The area of harvestable forest type f planted at site i at period t and harvested at any period t  

after period t, is ifttF  .  Likewise, the area of harvestable forest type f harvested at site i in period t 
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and planted at any period t  before period t, is ifttF .  The area in harvestable forest type f in 

period t at site i is as follows (Eq. 3): 

( 1)
T T

ift if t ifttifttt t
L L F F−= + −∑ ∑

.               (3) 

The area in harvestable forest type f at the end of period t is the area in forest type f in the 

previous period plus the net change of harvestable forest cover f during the period t.  The net 

change in the harvestable forest type f is the land planted in harvestable forest in period t and 

harvested at a later period t , T
ifttt

F∑ 
, that includes any period to end of the study horizon, T, 

less the land harvested from harvestable forest in period t and planted at an earlier period t , 

T
ifttt

F∑ .  

A constraint on the harvest of forest type f after planting in period t ensures forest 

products can only be harvested at a period after planting in the case when the rotation length is 

chosen within the model, known as flexible rotation length (Eq. 4), or at a fixed time after 

planting in the case when the rotation length is fixed for forest type f (Eq. 5): 

0
n

ijiftt tt j
F m L≤ ∑  ,                     (4) 

0
n

ijiftt ttf j
F m L≤ ∑  .                      (5) 

where ttm   in Eq. 4 takes a value of zero if t t< , meaning harvest occurs in a period before 

planting, and a value of one if t t>  which indicates that harvest occurs in a period after planting.  

Eq. 4 says that the planting of harvestable forest type f in period t is only possible if the harvest 

of the planted trees occur in a later period.  The ttfm   in Eq. 5 takes a value of one if ft t k− = , 

where fk  is an integer that indicates the length of the fixed rotation for forest type f, and a value 
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of zero otherwise.  Eq. 5 says that the planting of harvestable forest type f in period t is only 

possible if the harvest occurs fk  periods later.  

Irrigation and the model of the aquifer  

The average annual irrigation that land cover j receives to supplement precipitation is 

wdj.  Irrigation water comes from groundwater pumping from wells, GWit.  The irrigation water 

applied to the crops at each site equals the water extracted from the wells at each site (Eq. 6), 

n
j ijt itj

wd L GW=∑ .                (6) 

 Farmers apply a constant wdj to land cover j every period rather than deficit irrigate 

since, even in the long run, there is empirical evidence of a perfectly inelastic demand for 

irrigation water (Wang and Segarra). 

If groundwater flows laterally without resistance across all sites, known as a bathtub 

aquifer, then the change in the depth to the aquifer, AQt, is the same at all sites in response to the 

collective groundwater extraction of all producers, w
iti

GW∑ , across the w sites on the 

landscape, and the sum of the site level natural recharge, w
ii

nr∑ , that occurs from precipitation, 

streams, and underlying aquifers (Eq. 7), 

 1
w w

t t it ii i
AQ AQ GW nr−= − +∑ ∑ .               (7) 

The cost of pumping groundwater at a site, GCit, depends on the cost to lift a unit of 

water by a unit of length, cp, and the initial depth of the well, dpi.  The depletion of the bathtub 

aquifer volume, 0 tAQ AQ− , divided by the area of the landscape, 0
w n

iji j
L∑ ∑ , indicates how much 
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the depth to the aquifer increases at all sites each period.  Capital costs per unit of water to 

account for new well drilling and pumps in response to the aquifer decline is cc (Eq. 8).   

  
( )0

0

tc p
it i m n

iji j

AQ AQ
GC c c dp

L

 − = + +
 
 ∑ ∑

.             (8) 

A spatial aquifer, where there is no lateral groundwater flow, has uneven aquifer 

depletion and regions of groundwater depression due to the variable intensity of well pumping 

across the landscape.  The volume of a flat-bottomed aquifer beneath site i at the end of the 

period t is AQit.  The change each period in the aquifer volume at site i is difference of the natural 

recharge and the groundwater pumping (Eq. 9).  The depletion of the aquifer volume, 0i itAQ AQ−

, divided by the area of the site, 0
n

ijj
L∑ , indicates how much the depth to the aquifer changes for 

each site (Eq. 10).   

( 1)it i t it iAQ AQ GW nr−= − + .               (9) 

( )0

0

i itc p
it i n

ijj

AQ AQ
GC c c dp

L

 − = + +
 
 ∑

 .            (10) 

The initial well depth for any given site in the bathtub and the spatial aquifer models is 

the same to examine how spatial differences in groundwater availability and depletion influence 

the model runs.  Due to limited groundwater availability, a profit maximizing farmer might 

switch land out of irrigated crops into non-irrigated crops, fallow or forest land covers at a 

particular period.  

Greenhouse gas (GHG) net sequestration 
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The GHG emissions in carbon equivalents come from the following sources: 1) a life 

cycle assessment (LCA) up to the farm gate of the j land covers, 2) fuel combustion associated 

with irrigation as groundwater levels decline, 3) carbon losses due to wood  processing, and  4) 

the release of GHGs from the decay of wood products after the harvest of forest type f.    

The GHG emissions Es per unit of annual land cover s from the LCA are associated with 

fuel, the manufacture of chemicals and fertilizer, methane releases from rice production, and 

nitrous oxide emissions from nitrogen fertilizer application to the soil.  The GHG emissions Ef 

per unit of harvestable forest land are calculated for chemicals used in site preparation, chemicals 

used for herbaceous weed control, fertilizer for growth promotion, and fuel for those applications 

plus thinning and harvest activities. The GHG emissions Ep per unit of permanent forest land are 

associated with site preparation and weed control.  The emissions up to the farm gate for the 

annual and forested land covers, ELit, for each site i depend on how much land is in each cover 

and the emissions per unit of land cover (Eq. 11).    

 
k l T m

it s ist f p iptiftts f t p
EL E L E F E FP= + +∑ ∑ ∑ ∑

           (11) 

Fuel combustion emissions from well pumping, EGit, at site i depend on changing depth to the 

aquifer and the volume of water pumped from the well in period t (Eq. 12),  

( )0

0

i it
it it i gn

ijj

AQ AQ
EG GW dp

L
σ

 − = +
 
 ∑

,             (12) 

where gσ  is a scalar that converts the diesel fuel combustion required to lift a unit of water up a 

unit of distance into carbon emissions. 
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The GHG emissions from forest product processing has two components. At harvest time 

t, a proportion, vf, of the woody material with carbon  planted at time for each unit of land in 

harvestable forest type f is taken off site for processing. At the processing facility, a proportion, 

uf, of the carbon in the wood material releases during the transformation of industrial roundwood 

to primary wood products. Eq. 13 indicates the carbon emission, EPit, from the processing of 

harvestable forest types at time t and site i.   

l T
it f f ftt ifttf t

EP u v TC F=∑ ∑ .                                                (13) 

Primary wood products eventually take the form of end-use products such as houses, 

furniture or paper. At the end of these products’ lifespan, a proportion of the carbon stored in 

them is emitted back into the atmosphere. The proportions fx  and fz  represent the present value 

of the proportion of carbon emitted to the atmosphere from the decay of pulp and sawtimber 

products of industrial roundwood in the South Central region, respectively, over the one hundred 

years since harvest (see Table 6 in Smith et al. 2005). The proportion of the harvested wood that 

becomes pulp products is fπ  and saw timber products is fλ . Eq. 14 indicates the value of carbon 

emission in time t, EDit, from decay of end-use wood products for harvestable forest types 

planted at time  and site i.  

( )( ) 1l T
it f f f f f f ftt ifttf t

ED x z u v TC Fπ λ= + −∑ ∑ .           (14)   

Eq. 15 indicates the present value of emissions, ETit, from all land covers at time t and 

site i. 

( )it t it it it itET EL EG EP EDδ= + + + ,                          (15) 
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where the discount factor, , to obtain the present value of GHG emissions is the same as the 

discount factor for finding the present value of monetary flows (Lubowski et al. 2006). 

For the sequestration of carbon, this occurs with annual land covers due to aboveground 

biomass and belowground biomass according to the plant residue, soil texture, and tillage 

practices (Popp et al. 2011).  The carbon sequestered by aboveground biomass per acre for crop 𝑗𝑗 

in site, ijAGB , is 

1(1 ) 1ijij jj j j j
j

Y
H

AGB λ α κ η β
 

= − −  
 

,      (16) 

where ijY  is the grain or fiber yields in conventional units per acre for crop 𝑗𝑗 in site 𝑖𝑖, and yield 

is  converted to tons per acre using jλ , and then to dry mass using the moisture content for the 

(wet) yield of the crop j with jα  (Eq. 16).  The harvest index, jH , uses the crop yield to 

determine the aboveground biomass such as stems and leaves that remain on the field after 

harvest.  The harvested grain or fiber once beyond the farm gate does not affect GHG reduction 

although products such as clothing from cotton can store carbon as effectively as soil.  To 

convert the aboveground biomass into tons of carbon sequestrated, the proportion of plant 

residue incorporated in the soil depends on tillage methods for crop j, jκ , and tillage affects the 

fraction, jη , of carbon from incorporated plant residue remaining in the soil after microbial 

decomposition.  The estimated carbon concentration of aboveground biomass is jβ . 

The carbon sequestrated from the belowground biomass per acre for crop 𝑗𝑗 in site 𝑖𝑖, 

ijBGB , is estimated by 
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(1 ) j
ij j jij j j

j

Y
H

BGB α
φ

λ η χ
 

−   
 

= ,       (17) 

where, like in equation (8), the dry mass of the yield in tons per acre is determined with ijY , jλ , 

and jα  (Eq. 17).  The shoot/root ratio jφ  divided by the harvest index jH  converts the yield to 

belowground biomass of which only a fraction, jη , with tillage affecting microbial 

decomposition of incorporated plant residue with an estimated carbon concentration of jχ . 

The soil factor, iξ , which is the fraction of carbon lost to respiration due to soil related 

microbial activity is a weighting of soil textures at each site i. Porous soil (i.e. sandy) encourages 

microbial activity and respiration due to more intense wetting and drying cycles compared to 

finer textured soils (i.e. clay). Eq. 18 indicates the carbon sequestration for annual land covers, in 

period t carbon values, in period t and site i ( itSA ).  

( )k
it is is i ists

SA AGB BGB Lξ = + ∑             (18) 

The rise in carbon sequestration from woody material in time t since the previous period 

associated with trees planted in time t   is ( 1)ftt ft tTC TC −−  for a unit of land in harvestable forest 

type f.  We track this annual sequestration in time t for any harvestable forest land with trees 

planted at an earlier time t  and harvested at the current or later period, t , and the land that meets 

this criteria is tt ifttm F  .  Eq. 19 indicates the carbon sequestration, in planting period t  values, 

from harvestable forest types in period t and site i ( itSF ).  

( )( 1)
l T T

it ftt ft t tt ifttf t t
SF TC TC m F−= −∑ ∑ ∑  

.            (19) 



 11 

The carbon sequestration increase from additional woody material for a unit of land in 

permanent forest type p in time t since the previous period associated with forest planted in time 

t is ( 1)ptt pt tTC TC −− .  Eq. 20 indicates the carbon sequestration, in planting period t  values, from 

permanent forest in period t and site i ( itSP ). 

( )( 1)
m T

it ptt pt t iptp t
SP TC TC FP−= −∑ ∑             (20) 

Eq. 21 indicates carbon sequestration for all land covers in present values in period t and 

site i (Sit), 

( )it t it t it itS SA SF SPδ δ= + + .              (21) 

The discount factor, tδ , to obtain the present value of GHG emissions discounts from the 

planting period t  rather than period t because the carbon sequestration from harvestable and 

permanent forest types is in planting period  t  carbon values.  

Forest in permanent type p can continue to grow and sequester carbon after the end of the 

study horizon, T, and this gain in sequestration counts toward the sequestration that occurs due to 

forest planting during the study period.  A permanent forest type p eventually reaches a 

maximum steady state amount of carbon sequestered, where the emissions from the decay of 

trees in the old growth forest are exactly offset by the sequestration from the growth of new trees 

in the forest, pTCM .  The carbon sequestered in permanent forest type p between the planting 

period t  and the end of study horizon is ptTTC .  Eq. 22 indicates the carbon sequestration, in 

planting period t  values, from permanent forest that occurs after the end of the study horizon at 

site i ( iSPM ). 
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( )m T
i p ptT iptp t

SPM TCM TC FP= −∑ ∑ .            (22) 

Farm returns objectives 

 We suppose no change over time in the yield of an annual crop s at site i, yis. The cost to 

produce an annual crop per unit of land excluding the irrigation cost is Cs, and the price per unit 

of an annual crop s is ps, which are both constant in real terms. The net return for annual crop s 

before irrigation cost is s is sp y C−  . Fallow land has an annual maintenance cost and no revenue.   

The yield for harvestable forest planted in period t  and harvested in period t is ftty .  The 

price per unit of harvested wood from forest type f is the weighted stumpage price of pulpwood, 

fpp , and saw timber, fpt , based on the proportions of wood that go to pulp and saw timber 

shown in Eq. 12, respectively, f f f fpp ptπ λ+ .  The revenue from forest harvested in period t 

but planted in a period t  before period t is ( )l T
f f f f ftt ifttf t

pp pt y Fπ λ+∑ ∑ .  The production 

cost per unit of land in harvestable forest type f is Cf, and the total production cost from forest 

planted in period t and harvested at a later period t  is l T
f ifttf t

C F∑ ∑ 
.  The production cost per 

unit of land in permanent forest type p is Cp, and the total production cost from permanent forest 

planted in period t is 
m

p iptp
C F∑ .  There is no revenue from the land planted to permanent forest. 

The objective is to maximize the present value of profits from farm production over the 

horizon T by choosing for each site and each period t the amount of land in an annual use, istL , 

the amount of land harvested from, ifttF , and planted to, ifttF  , forest type f , the amount of land 
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planted to permanent forest type p, iptFP , and the amount of groundwater pumped for the 

irrigation of crops, itGW  (Eq. 23): 

( ) ( )
, , , 1 1
max :

ist iftt iftt
ipt it

k l T
T w s is s ist f f f f ftt iftts f t

t l T mL F F t iFP GW f p ipt it itifttf t p

p y C L pp pt y F

C F C FP GC GW

π λ
δ

= =

  − + +  
   − − −   

∑ ∑ ∑
∑ ∑

∑ ∑ ∑






.      (23) 

A time horizon T is chosen to balance the study of the long run accumulation of carbon in 

harvestable and permanent forests, as well as the long run depletion of the aquifer, with the 

relevance of past prices, crop yields, and production costs.  Optimization occurs subject to 

constraints on the spatial dynamics of land and irrigation from Equations 1 to 10 in addition to 

non-negativity constraints on land, groundwater pumping, and the aquifer.  The carbon emissions 

and sequestration shown in Equations 11 to 22 are not constraints on the optimization but 

respond to the producer’s choices to maximize profits.  This problem is non-linear in the 

groundwater extraction costs, and the CONOPT solver in the Generalized Algebraic Modeling 

System (GAMS) 23.5.1 identifies the solution. 

Subsidies and cost-effectiveness 

We propose a government-funded scheme to increase sequestration via forests through 

subsidizing landowners. We take two approaches, one encouraging harvestable forests and the 

other encouraging permanent forests. The subsidy regimen considered in this paper is divided 

into three methods: cost share on production cost for harvestable or permanent forests (subf or 

subp), one-time flat-rate transfer to landowner at planting for permanent forest (trp) and one-time 

flat-rate transfer to landowner at harvest for harvestable forest (trf). The subsidy at harvest is 

limited to the amount of land that remains in forest for a minimum number of years (25 years) 

before harvest.  
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The subsidy regimen adjusts to have the change in net carbon sequestration from the 

subsidy roughly equal for all scenarios so that the cost-effectiveness is comparable across 

scenarios. Subsidies are applied per unit of land; they can be applied for either harvestable forest 

or permanent forest, but not both in the same scenario. The preferred subsidy is defrayed full or 

partial planting costs before moving to one-time flat-rate transfers. Eq. 24 shows the subsidies as 

part of the economic objective function Eq. 23 section relevant to forests

( ) ( )
, 1 1

max : ...[ (1 ) ] [(1 ) ]
ijt it

T m

t ifw fw ift ft f f f ift p p ift pL GW t i
y p y p tr sub C L sub C L trδ

= =

 
+ + − − + − − 

 
∑ ∑             (24) 

The average cost of carbon is the sum of the increase in farm net returns with the subsidy 

minus the total subsidy (which is a cost to taxpayers) divided by the increase in the net carbon 

sequestration with the subsidy. The marginal cost of carbon is the increase in in farm net returns 

with the subsidy minus the total subsidy for sequestration of one additional unit of carbon.  

Sensitivity analysis 

Our model is dependent on many parameters that are subject to change in the future. 

After determining the initial results, we conduct sensitivity analyses of multiple exogenous 

variables using the most cost-effective treatment. These variables are crop margins (variance in 

annual land state revenues and/or outlays), groundwater aquifer depth, harvestable forest product 

prices, and harvestable forest product mix between pulpwood and saw timber.  
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Data 

The study area consists of three eight-digit hydrologic unit code watersheds within eleven 

counties in the Arkansas portion of the Lower Mississippi River Basin (Fig. 1). We exclude land 

not under cultivation, such as public land and urban areas, from the study area (Johnson and 

Mueller).  Spatial heterogeneity of crop production, yield, and below ground hydrologic 

conditions on the landscape are preserved by dividing the study area into 2,000 sites.  Initial 

acreage for the annual crops of interest (corn, rice and soybeans) by site are drawn from the 2017 

Cropland Data Layer (USDA NASS). Soybean acreage by site is divided into irrigated and non-

irrigated categories using county level statistics over the past five years (USDA NASS).  A real 

discount rate of 2% is set based on the yield of a 30-year Treasury Bond over the past thirty 

years (US Treasury). 

 

Figure 1. Three eight-digit hydrologic unit code watersheds and the eleven Arkansas counties 
wherein define the study area. Public lands and urban areas are excluded. The location of the 
study area within the State of Arkansas is shown. 
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Land cover production and irrigation 

Annual crop yields at each site come from a county centroid interpolation of a five-year 

average of county yields from 2014 to 2018  (USDA NASS). Annual crop production costs 

(excluding irrigation) and crop irrigation requirements come from state level five-year averages 

from 2014 to 2018 (Flanders, Baker and Barber). Annual crop prices are fifty-year averages from 

1969 to 2018 for harvest time contracts in the state (USDA NASS).  Labor, fuel, lube and oil, 

and poly pipe for border irrigation plus the levee gates for the flood irrigation of rice all 

contribute to the costs of irrigation (Hogan et al., 2007).  The wells, pumps, gearheads, and 

power units have purchase and maintenance costs that raise the per cubic-meter costs of 

irrigation water.  The depth to the water table and the corresponding fuel needed to raise water 

determines the fuel cost per cubic meter from the aquifer.  A 50 meter well requires about 65.5 

liters of diesel per 1,000 cubic meters of water, and a 100 meter well requires about 131 liters of 

diesel per 1,000 cubic meters of water (Hogan et al., 2007).  About 18 liters of diesel are 

necessary to pump 1,000 cubic meters of water to and from a reservoir (Hogan et al., 2007).  EIA 

(2019) indicates $1 per liter of diesel and we add 10% to the fuel costs to account for oil and lube 

for irrigation equipment (Hogan et al., 2007).  The majority of wells in the regions are diesel, but 

the proportion of electric wells is rising (USDA-NASS, 2014).   

   The estimate of biomass growth of forest  uses  the net merchantable bole volume of 

growing-stock trees per acre of timberland from 2013 to 2017  by forest type and stand age in 

five-year intervals (Forest Inventory EVALIDator web-application).  Volume of biomass 

converts  to weight with  the specific gravity of each tree type (Wagner Meters) and the biomass 

goes  into pulpwood and saw timber based on  the estimates of the biomass quality in the study 

area (Self).  A cubic function estimates the biomass weight by five-year interval of stand age, 
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and the coefficients for the cubic function for each forest type are shown in Table 1.  Fixed 

rotations are 25 years for pine and 50 years for hardwood.  

Forest production costs for loblolly pine are from a 2016 survey of the costs of forestry 

practices across the southeastern United States (Maggard and Barlow), and for mixed hardwood 

forests from estimates of projects by the USDA Natural Resource Conservation Service 

(Childress). Stumpage prices, which account for harvesting costs, for pulpwood and saw timber 

are a twenty-five year average from 1992 to 2016 of the southern Arkansas region (Prestemon) 

with adjustments for the Delta region (Pelkki). Finally, the ratio of pulpwood and saw timber for 

each forest type were set at conservative estimates for the growing region. 

Carbon Emissions and Sequestration 

For forests, emissions from production and decay of wood products from harvested land 

are modeled in the manner adopted by (Smith, Heath and Skog). Parameters for the proportion of 

carbon emitted at each step of processing relate to Table 6 in Smith et al.  
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Table 1 Economic and Hydrologic Data and Parameters for Forest Land States 

Parameter Definition Value 

pppine, ptpine  Stumpage price of pine [pulpwood, saw timber] ($/ton) 5, 20 
pphardwood, 
pthardwood 

Stumpage price of hardwood [pulpwood, saw timber] ($/ton) 7, 33.86 

a3, a2, a1, a0 
for ftty  

Coefficients for cubic function estimate of pine biomass 
growth as function of the stand age, and the coefficient number 
refers to the corresponding power of the term in the 
polynomial  

0.002, -0.0318, 
2.0564, -6.0942 

b3, b2, b1, b0 
for ftty  

Coefficients for cubic function estimate of hardwood biomass 
growth as function of the stand age, and the coefficient number 
refers to the corresponding power of the term in the 
polynomial 

0.00006, -0.0054, 
0.8096, -2.8753  

fπ , fλ   Ratio of [pulpwood, saw timber] in growing stock volume for 
pine and hardwood 0.7, 0.3 

Cf  andCp  for 
pine, hardwood 

Production cost of harvestable and permanent [pine, 
hardwood] ($/ac)a 305, 348 

kpine, khardwood 
Fixed rotation length of [pine, hardwood] in periods and, 
shown in brackets, in years 5 [25], 10 [50] 

Ef, Ep 
Carbon emissions per acre from production of [harvestable, 
permanent] forest for pine and hardwood (tons/ac) 0.46, 0.31 

vpine, vhardwood 
Proportion of total carbon in [pine, hardwood] taken off site for 
processing  0.74, 0.835 

upine, uhardwood 
Proportion of carbon in [pine, hardwood] released at 
processing off site 0.186, 0.606 

xpine, xhardwood  Proportion of the present value of carbon released from the 
decay of pulp products from [pine, hardwood] 0.756, 0.741 

zpine, zhardwood 
Proportion of the present value of carbon released from the 
decay of saw timber products from [pine, hardwood] 0.568, 0.624 

TCMpine, 
TCMhardwood   

Maximum carbon sequestration by permanent [pine, 
hardwood] forest (tons/ac)  55.54, 81.38 

a Production cost of pine is generated from the following production practices: hand planting of 
bareroot loblolly pine at the specified rate and seedling cost over all land types for the entire 
study area; chemical application for site preparation via aerial methods for the Northern Coastal 
Plain; chemical application for herbaceous weed control via all methods for the Northern Coastal 
Plain; fertilization via all methods and all fertilizer types for the entire study area; timber cruising 
via all methods for the Northern Coastal Plain; and custodial management for boundary line 
maintenance and/or road construction/maintenance for the Northern Coastal Plain.  

 

Soil carbon sequestration from above- and below-ground biomass is influenced by 

county-level annual crop yields, the ratio of root-to-shoot biomass, carbon content in residues, 

and carbon content in roots (Popp, Nalley and Fortin). The soil carbon adjusts according to local 
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tillage practices and soil texture (Popp, Nalley and Fortin).  Tables A1 – A3 in the appendix have 

the parameters for the carbon emission and sequestration for the annual land states.   

The carbon emissions from the fuel, fertilizer and chemical applications for annual crops 

come from the translation of  production practices in the crop enterprise budgets between 2012 to 

2018 (Flanders, Baker and Barber) to carbon equivalents (DataSmart 2016 Life Cycle 

Inventory).  Additional emissions come from production practices identified through interviews 

with crop specialists (Roberts & Norsworthy 2019; Purcell & Norsworthy, 2019; Norman, 2019).  

Methane byproduct emissions from rice cultivation come from the weighted prevalence of 

specific production practices (EPA).  Emissions from irrigation fuel combustion change in 

response to the model outcome for the depth to the aquifer.    

Aquifer  

The initial water table depth and saturated thickness of the Alluvial aquifer is from the 

Arkansas Natural Resources Commission (2014; 2015).  The aquifer volume at site i comes from 

multiplying the site acreage by the saturated thickness of the aquifer. Natural recharge (nri) 

comes from the precipitation and the contributions by local streams and connected aquifers 

(Reed).  

 

Results 

The study contains results from eight core model structures. There are two options each 

for three structural components: forest rotations can be fixed or flexible, aquifer depletion can be 

bathtub or spatial, and carbon subsidy preference can be for harvestable forests or permanent 

forests. These options are represented in Fig. 2 below.  
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Figure 2. Representation of the eight core models for which cost-effectiveness of carbon 
sequestration is calculated in this study.  

 

Table 2 shows results for all combinations of the fixed rotation treatment after application 

of subsidies to achieve ~100 million more tons of carbon sequestered over the study period. All 

net returns were constant between baseline and treatment for each aquifer depletion type. The 

optimal solution for bathtub aquifer depletion with harvestable subsidy showed $1,057 billion in 

net returns (present value) and 130 million metric tons of carbon sequestered over 50 years. 

Comparing to the baseline seen in Table A4, ~1,600 acres shifted from irrigated soybeans to 

harvestable pine to increase overall sequestration. The subsidy rate required for this transition 

was full defrayed planting cost ($305 per acre for pine) and an additional one-time payment at 

harvest of $4,659 per acre for all harvestable forest acreage. The present value of all carbon 

subsidies was $9,236,000, leading to an average cost of additional carbon abated of $92.12 per 

ton.  

Rotation: 
Fixed (or Flexible)

Aquifer: 
Bathtub

Subsidy: 
Harvestable

Subsidy: 
Permanent

Aquifer: 
Spatial

Subsidy: 
Harvestable

Subsidy: 
Permanent
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 The optimal solution for bathtub aquifer depletion with permanent subsidy showed 

$1,057 billion in net returns and 133 million metric tons of carbon sequestered over 50 years. 

Comparing to the baseline, ~480 acres moved from irrigated soybeans to permanent pine (92%) 

and permanent hardwood (8%) to increase overall sequestration. The subsidy rate required for 

this transition was full defrayed planting cost and an additional one-time payment at planting of 

$732.50 per acre for all permanent forest acreage. The present value of all carbon subsidies was 

$1,866,000, leading to an average cost of additional carbon abated of $18.08 per ton. 

 The optimal solution for spatial aquifer depletion with harvestable subsidy showed 

$1,053 billion in net returns and 1,955 million metric tons of carbon sequestered over 50 years. 

Comparing to the baseline, significant acreage shifted from permanent pine forest to harvestable 

pine forest and from dryland soybeans to corn to increase overall sequestration. The subsidy rate 

required for this transition was full defrayed planting cost and an additional one-time payment at 

harvest of $1,500 per acre for all harvestable forest acreage. The present value of all carbon 

subsidies was $55,348,000, leading to an average cost of additional carbon abated of $557.32 per 

ton. 

 The optimal solution for spatial aquifer depletion with permanent subsidy showed $1,053 

billion in net returns and 1,953 million metric tons of carbon sequestered over 50 years. 

Comparing to the baseline, significant acreage moved from fallow and harvestable pine to 

permanent pine to increase overall sequestration. The subsidy rate required for this transition was 

10% defrayed planting cost for all permanent forest acreage. The present value of all carbon 

subsidies was $911,000, leading to an average cost of additional carbon abated of $9.37 per ton. 
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Table 2 Crop, environmental, and economic conditions for landscape with harvestable or 
permanent subsidies and with bathtub or spatial aquifer depletion under fixed rotation treatment 

Land use, environmental, 
and economic conditions 

Bathtub  
aquifer with 
harvestable 

subsidy 

Bathtub  
aquifer with 
permanent 

subsidy 

Spatial 
aquifer with 
harvestable 

subsidy 

Spatial 
aquifer with 
permanent 

subsidy 
Land use conditionsa  
(acres) 
Rice 273,200 273,200 272,250 272,250 
Irrigated corn  202,400 202,400 193,300 192,640 
Irrigated soybeans  534,700 535,820 480,300 481,060 
Non-irrigated soybeans  - - 25,966 27,935 
Fallow  - - 3,938 2,304 
Harvestable pine 1,639 - 30,123 5,348 
Harvestable hardwood - - - - 
Permanent pine - 445 6,107 30,434 
Permanent hardwood - 38 - - 
Environmental  
conditionsb   
(million tons of carbon) 
Net carbon sequestration  130 133 1,955 1,953 
Change in net carbon 
sequestration from the 
subsidyc  

100 103 99 97 

Aquifer stock (thousand 
acre-feet) 32,157 32,099 35,544 35,544 

Economic conditions     
Present value farm net 
return ($ billions) 1,057 1,057 1,053 1,053 

Subsidy for percentage of 
planting costs 100% 100% 100% 10% 

Subsidy at planting ($) N/A 732.5 N/A - 
Subsidy at harvest ($) 4,659 N/A 1,500 N/A 
Present value of carbon 
subsidy ($ thousands) 9,236 1,866 55,348 911 

Average cost of carbon 
($/ton)d 92.12 18.08 557.32 9.37 

a Land uses are annual averages.  b Net carbon sequestration is a present value total in millions of 
tons and the aquifer stock is the level in the final period. c The subsidy adjusts to have the change 
in net carbon sequestration from the subsidy roughly equal for all scenarios so that the cost-
effectiveness is comparable across scenarios.  d The average cost of carbon is the sum of the 
increase in farm net returns with the subsidy minus the total subsidy (which is a cost to 
taxpayers) divided by the increase in the net carbon sequestration with the subsidy. 
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Table 3 shows results for all combinations of the flexible rotation treatment after 

application of subsidies to achieve ~100 million more tons of carbon sequestered over the study 

period. All net returns were constant between baseline and treatment for each aquifer depletion 

type. The optimal solution for bathtub aquifer depletion with harvestable subsidy showed $1,057 

billion in net returns (present value) and 132 million metric tons of carbon sequestered over 50 

years. Comparing to the baseline seen in Table A5, ~1,600 acres shifted from irrigated soybeans 

to harvestable pine to increase overall sequestration. The subsidy rate required for this transition 

was full defrayed planting cost and an additional one-time payment at harvest of $4,675 per acre 

for all harvestable forest acreage. The present value of all carbon subsidies was $9,366,000, 

leading to an average cost of additional carbon abated of $92.41 per ton.  

 The optimal solution for bathtub aquifer depletion with permanent subsidy showed 

$1,057 billion in net returns and 134 million metric tons of carbon sequestered over 50 years. 

Comparing to the baseline, ~400 acres moved from irrigated soybeans to permanent pine (50%) 

and permanent hardwood (50%) to increase overall sequestration. The subsidy rate required for 

this transition was full defrayed planting cost and an additional one-time payment at planting of 

$731 per acre for all permanent forest acreage. The present value of all carbon subsidies was 

$1,595,000, leading to an average cost of additional carbon abated of $15.45 per ton. 

 The optimal solution for spatial aquifer depletion with harvestable subsidy showed 

$1,053 billion in net returns and 1,561 million metric tons of carbon sequestered over 50 years. 

Comparing to the baseline, significant acreage shifted from permanent pine and fallow to 

harvestable pine forest to increase overall sequestration. The subsidy rate required for this 

transition was 45% defrayed planting cost for all harvestable forest acreage. The present value of 
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all carbon subsidies was $6,688,000, leading to an average cost of additional carbon abated of 

$50.39 per ton. 

 The optimal solution for spatial aquifer depletion with permanent subsidy showed $1,053 

billion in net returns and 1,525 million metric tons of carbon sequestered over 50 years. 

Comparing to the baseline, significant acreage moved from fallow and harvestable pine to 

permanent pine to increase overall sequestration. The subsidy rate required for this transition was 

15% defrayed planting cost for all permanent forest acreage. The present value of all carbon 

subsidies was $104,000, leading to an average cost of additional carbon abated of $1.08 per ton. 

Table 4 shows results for sensitivity analysis of crop margins (doubled and halved) and 

groundwater depth (doubled and halved) for the most cost-effective option from the previous 

results (flexible rotation of spatial aquifer depletion with permanent forest subsidy preference). 

All treatments were less cost-effective than the baseline, but still well below the average cost of 

additional carbon abated for the seven other core model structures.  

Table 5 shows results for sensitivity analysis of forest product prices and forest product 

mixes for the most cost-effective option from the previous results. The final treatment (adjusting 

product mix to 85% pulpwood and 15% timber) lead to a lower average cost. The optimal 

solution for product mix 85/15 showed $1,053 billion in net returns and 1,515 million metric 

tons of carbon sequestered over 50 years. Comparing to the baseline in appendix Table (11), 

significant acreage moved from fallow and harvestable pine to permanent pine to increase 

overall sequestration. The subsidy rate required for this transition was 6% defrayed planting cost 

for all permanent forest acreage. The present value of all carbon subsidies was $41,000, leading 

to an average cost of additional carbon abated of $0.40 per ton. This was the overall lowest 

average cost of any model structure. 
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Table 3 Crop, environmental, and economic conditions for landscape with harvestable or 
permanent subsidies and with bathtub or spatial aquifer depletion under flexible rotation 
treatment 

Land use, environmental, 
and economic conditions 

Bathtub  
aquifer with 
harvestable 

subsidy 

Bathtub  
aquifer with 
permanent 

subsidy 

Spatial 
aquifer with 
harvestable 

subsidy 

Spatial 
aquifer with 
permanent 

subsidy 
Land use conditionsa  
(acres) 
Rice 273,200 273,200 272,250 272,250 
Irrigated corn  202,400 202,400 192,740 192,720 
Irrigated soybeans  534,700 535,900 480,940 480,980 
Non-irrigated soybeans  - - 27,889 27,934 
Fallow  - - 5,857 5,588 
Harvestable pine 1,639 - 32,293 31,002 
Harvestable hardwood - - - - 
Permanent pine - 203 - 1,510 
Permanent hardwood - 203 - - 
Environmental  
conditionsb   
(million tons of carbon) 
Net carbon sequestration  132 134 1,561 1,525 
Change in net carbon 
sequestration from the 
subsidyc  

101 103 133 97 

Aquifer stock (thousand 
acre-feet) 32,157 32,095 35,544 35,544 

Economic conditions     
Present value farm net 
return ($ billions) 1,057 1,057 1,053 1,053 

Subsidy for percentage of 
planting costs 100% 100% 45% 15% 

Subsidy at planting ($) N/A 731 N/A - 
Subsidy at harvest ($) 4,675 N/A - N/A 
Present value of carbon 
subsidy ($ thousands) 9,366 1,595 6,688 104 

Average cost of carbon 
($/ton)d 92.41 15.45 50.39 1.08 

a Land uses are annual averages.  b Net carbon sequestration is a present value total in millions of 
tons and the aquifer stock is the level in the final period. c The subsidy adjusts to have the change 
in net carbon sequestration from the subsidy roughly equal for all scenarios so that the cost-
effectiveness is comparable across scenarios.  d The average cost of carbon is the sum of the 
increase in farm net returns with the subsidy minus the total subsidy (which is a cost to 
taxpayers) divided by the increase in the net carbon sequestration with the subsidy. 
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Table 4 Crop, environmental, and economic conditions for landscape with or without permanent 
forest subsidies, spatial aquifer depletion, and flexible rotation for crop margin and groundwater 
depth variance 

Land use, environmental, 
and economic conditions 

Crop  
margin  
double 

Crop  
margin  

half 

Groundwater 
depth 

 double 

Groundwater 
depth 
half 

Land use conditionsa  
(acres) 
Rice 272,250 272,250 272,250 272,250 
Irrigated corn  192,230 193,300 193,100 192,390 
Irrigated soybeans  481,750 401,200 447,830 481,560 
Non-irrigated soybeans  27,388 107,250 60,836 27,590 
Fallow  4,032 5,772 5,322 5,723 
Harvestable pine 27,697 29,991 30,870 30,908 
Harvestable hardwood - - - - 
Permanent pine 6,610 2,204 1,753 1,534 
Permanent hardwood - - - - 
Environmental  
conditionsb   
(million tons of carbon) 
Net carbon sequestration  1,771 1,522 1,538 1,521 
Change in net carbon 
sequestration from the 
subsidyc 

95 98 96 94 

Aquifer stock (thousand 
acre-feet) 35,532 39,498 37,178 35,532 

Economic conditions     
Present value farm net 
return ($ billions) 2,109 525 1,052 1,054 

Subsidy for planting costs 10% 43% 16% 16% 
Subsidy at planting ($) - - - - 
Present value of carbon 
subsidy ($ thousands) 275 344 117 109 

Average cost of carbon 
($/ton)d 2.89 3.50 1.21 1.15 

a Land uses are annual averages.  b Net carbon sequestration is a present value total in millions of 
tons and the aquifer stock is the level in the final period. c The subsidy adjusts to have the change 
in net carbon sequestration from the subsidy roughly equal for all scenarios so that the cost-
effectiveness is comparable across scenarios.  d The average cost of carbon is the sum of the 
increase in farm net returns with the subsidy minus the total subsidy (which is a cost to 
taxpayers) divided by the increase in the net carbon sequestration with the subsidy. 
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Table 5 Crop, environmental, and economic conditions for landscape with permanent forest 
subsidies, spatial aquifer depletion, and flexible rotation for tree price and product mix variance 

Land use, environmental, 
and economic conditions 

Tree price  
alternative 

Tree product 
mix  

(45 p/55 t) 

Tree product 
mix 

(85 p/15 t) 
 

Land use conditionsa  
(acres) 
Rice 272,250 272,250 272,250  
Irrigated corn  192,730 192,720 192,720  
Irrigated soybeans  480,950 480,980 480,980  
Non-irrigated soybeans  27,897 27,912 27,944  
Fallow  5,452 5,516 5,588  
Harvestable pine 31,161 30,947 30,838  
Harvestable hardwood - - -  
Permanent pine 1,527 1,661 1,665  
Permanent hardwood - - -  
Environmental  
conditionsb   
(million tons of carbon) 
Net carbon sequestration  1,537 1,549 1,515  
Change in net carbon 
sequestration from the 
subsidyc 

101 101 104  

Aquifer stock (thousand 
acre-feet) 35,544 35,544 35,544  

Economic conditions     
Present value farm net 
return ($ billions) 1,053 1,053 1,053  

Subsidy for planting costs 28% 26% 6%  
Subsidy at planting ($) - - -  
Present value of carbon 
subsidy ($ thousands) 197 193 41  

Average cost of carbon 
($/ton)d 1.94 1.92 0.40  

a Land uses are annual averages.  b Net carbon sequestration is a present value total in millions of 
tons and the aquifer stock is the level in the final period. c The subsidy adjusts to have the change 
in net carbon sequestration from the subsidy roughly equal for all scenarios so that the cost-
effectiveness is comparable across scenarios.  d The average cost of carbon is the sum of the 
increase in farm net returns with the subsidy minus the total subsidy (which is a cost to 
taxpayers) divided by the increase in the net carbon sequestration with the subsidy. 

The model shows that aquifer levels are largely dependent upon the structure (bathtub or 

spatial) used to define them, yet some changes occur with the addition of other treatment options, 

such as crop margin and depth variance. 
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Discussion and Conclusion 

The results suggest that the landscape can sequester additional carbon through 

afforestation of marginal agricultural land. This transition is enticed by the presence of subsidies 

for harvestable or permanent forests to keep farm net returns on par with traditional agricultural 

crops. This comes at an overall cost to society in the amount of the subsidy to change landowner 

decisions. The most cost-effective regimen was the flexible rotation scheme with spatial aquifer 

depletion and permanent forest subsidy preference. Moreover, multiple regimens gave average 

cost values well below the results from previous studies (van Kooten, Eagle and Manley). While 

this may be an indicator that the model is too optimistic, and future iterations could include more 

nuance in assumptions of landowner willingness to transition based purely on economic analysis, 

this may also be attributed to addressing the issue from new treatment perspectives.  

A key motivation for the study area was the rapidly depleting groundwater levels in the 

Arkansas Delta. The model tracked aquifer levels through the baseline, eight core model 

structures and sensitivity analyses. Even in the baseline results, we see a dramatic difference in 

aquifer levels. When the landowner is asked to consider their access to water as spatially-limited, 

she conserves more water than in the version where the aquifer is common property. This 

follows from what we know of resource management in private versus common property 

scenarios. Since the landowner is already more water conscious in spatial aquifer depletion, the 

addition of a subsidy does not change the aquifer totals. The situation is different when bathtub 

aquifer depletion is assumed: landowners are enticed to switch land from irrigated agricultural 

crops to non-irrigated forests and thus see a decrease in water usage overall. Future work could 

address the combination of gains from additional carbon sequestered and water conserved via 

forest subsidies.  



 29 

The flexible rotation scheme with spatial aquifer depletion and permanent forest subsidy 

preference is the most cost-effective option for multiple reasons. First, the landowner is already 

more prone to non-irrigated options due to an intrinsic desire to conserve water. Second, the 

landowner is more likely to allocate land to harvestable forests because they are allowed to 

choose the rotation length. We find landowners mostly choose to extend the rotation length past 

25 years; while it is seen, few choose a shorter time span. Finally, the presence of the permanent 

forest subsidy pulls more land into permanent forests where carbon is sequestered indefinitely, as 

opposed to the re-emission that happens for a large share of harvested wood end-use products.  

This model can be extended and further refined. As with annual crops, forest yield would 

be better approximated by including site-specific information in the calculations. As biomass 

yield estimates improve, so will carbon sequestration and emissions information by site. Other 

considerations in forest sequestration are natural disasters that disrupt the landscape; examples 

are wildfires (where stored carbon is released through combustion) and hurricanes (where 

growing trees die and start to decay). Other research opportunities include changing the scope to 

investigate how the time horizon impacts land use decisions and ultimately the average cost of 

additional carbon abated.  

As carbon emissions continue to accumulate in the atmosphere, policies aimed at 

offsetting pollution will increase in importance. Developing a spatially-explicit optimization 

programming model for carbon sequestration through afforestation provides insight into optimal 

policymaking decisions.  
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Appendix 

Table A1 Economic and Hydrologic Data and Parameters for Annual Land States 

Parameter Definition Value 

prrice Price of rice ($/cwt) 17.48 
prcorn Price of corn ($/bushel) 5.25 
prsoy Price of soybeans ($/bushel) 12.68 
carice Annual production cost of rice ($/ac) 459 
cacorn Annual production cost of corn ($/ac) 485 
cairr soy  Annual production cost of irrigated soybeans ($/ac) 354 
cadsoy Annual production cost of non-irrigated soybeans ($/ac) 328 
 Annual production cost of fallow ($/ac) 22 
wdrice Annual irrigation per acre of rice (acre-feet) 2.7 
wdcorn Annual irrigation per acre of corn (acre-feet) 1.17 
wdisoy   Annual irrigation per acre of soybeans (acre-feet) 1.0 
cp Cost to raise an acre-foot of water by one foot ($/foot) 0.55 

tδ  Discount factor 0.95 

iξ ,  Soil factor, fraction of carbon lost to respiration due to soil 
related microbial activity 0.72 
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Table A2 Carbon Sequestration Data and Parameters for Annual Land States 

Parameter Definition Value 

𝜆𝜆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 Yield conversion for rice from cwt/ac to kg/ac 45.5 
𝜆𝜆𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐 Yield conversion for corn from bu/ac to kg/ac 25.4 
𝜆𝜆𝑟𝑟𝑖𝑖𝑐𝑐𝑖𝑖 Yield conversion for irrigated soybeans from bu/ac to kg/ac 27.2 
𝜆𝜆𝑑𝑑𝑖𝑖𝑐𝑐𝑖𝑖 Yield conversion for non-irrigated soybeans from bu/ac to kg/ac 27.2 
𝜆𝜆𝑑𝑑𝑖𝑖𝑐𝑐𝑟𝑟𝑑𝑑 Yield conversion for non-irrigated sorghum from bu/ac to kg/ac 25 
𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 Moisture content (wet basis) of rice 0.13 
𝛼𝛼𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐 Moisture content (wet basis) of corn 0.155 
𝛼𝛼𝑟𝑟𝑖𝑖𝑐𝑐𝑖𝑖 Moisture content (wet basis) of irrigated soybeans 0.13 
𝛼𝛼𝑑𝑑𝑖𝑖𝑐𝑐𝑖𝑖 Moisture content (wet basis) of non-irrigated soybeans 0.13 
𝛼𝛼𝑑𝑑𝑖𝑖𝑐𝑐𝑟𝑟𝑑𝑑 Moisture content (wet basis) of non-irrigated sorghum 0.14 
𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 Harvest index (grain weight to aboveground biomass) of rice 0.45 
𝐻𝐻𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐 Harvest index (grain weight to aboveground biomass) of corn 0.43 

𝐻𝐻𝑟𝑟𝑖𝑖𝑐𝑐𝑖𝑖 Harvest index (grain weight to aboveground biomass) of 
irrigated soybeans 0.45 

𝐻𝐻𝑑𝑑𝑖𝑖𝑐𝑐𝑖𝑖 Harvest index (grain weight to aboveground biomass) of non-
irrigated soybeans 0.45 

𝐻𝐻𝑑𝑑𝑖𝑖𝑐𝑐𝑟𝑟𝑑𝑑 Harvest index (grain weight to total aboveground biomass) of 
non-irrigated sorghum 0.39 

𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 Crop residue C content of rice (g/kg) 360 
𝛽𝛽𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐 Crop residue C content of corn (g/kg) 410 
𝛽𝛽𝑟𝑟𝑖𝑖𝑐𝑐𝑖𝑖 Crop residue C content of irrigated soybeans (g/kg) 430 
𝛽𝛽𝑑𝑑𝑖𝑖𝑐𝑐𝑖𝑖 Crop residue C content of non-irrigated soybeans (g/kg) 430 
𝛽𝛽𝑑𝑑𝑖𝑖𝑐𝑐𝑟𝑟𝑑𝑑 Crop residue C content of non-irrigated sorghum (g/kg) 420 
𝛿𝛿𝑙𝑙𝑐𝑐𝑙𝑙 Aboveground C remaining in the soil with low tillage 0.40 

𝛿𝛿𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑙𝑙 Aboveground C remaining in the soil with conventional tillage 0.70 
𝜂𝜂𝑙𝑙𝑐𝑐𝑙𝑙 Belowground C remaining in the soil with low tillage 0.45 

𝜂𝜂𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙 Belowground C remaining in the soil with conventional tillage 0.40 
𝜒𝜒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 Root C content of rice (g/kg) 350 
𝜒𝜒𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐 Root C content of corn (g/kg) 420 
𝜒𝜒𝑟𝑟𝑖𝑖𝑐𝑐𝑖𝑖 Root C content of irrigated soybeans (g/kg) 430 
𝜒𝜒𝑑𝑑𝑖𝑖𝑐𝑐𝑖𝑖 Root C content of non-irrigated soybeans (g/kg) 430 
𝜒𝜒𝑑𝑑𝑖𝑖𝑐𝑐𝑟𝑟𝑑𝑑 Root C content of non-irrigated sorghum (g/kg) 380 
𝜙𝜙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 Root/shoot ratio (belowground/aboveground biomass) of rice 0.16 
𝜙𝜙𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐 Root/shoot ratio (belowground/aboveground biomass) of corn 0.19 

𝜙𝜙𝑟𝑟𝑖𝑖𝑐𝑐𝑖𝑖 Root/shoot ratio (belowground/aboveground biomass) of 
irrigated soybeans 0.16 

𝜙𝜙𝑑𝑑𝑖𝑖𝑐𝑐𝑖𝑖 Root/shoot ratio (belowground/aboveground biomass) of non-
irrigated soybeans 0.16 

𝜙𝜙𝑑𝑑𝑖𝑖𝑐𝑐𝑟𝑟𝑑𝑑 Root/shoot ratio (belowground/aboveground biomass) of non-
irrigated sorghum 0.08 

         gσ  Conversion factors to track the carbon emitted from fuel 
combustion to lift an acre-foot of water one foot  10.37 

Source: Popp et al. (2011) 
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Table A3 Carbon Emission Data and Parameters for Annual Land States 

Parameter Definition Value 

Erice GHG emissions from rice production 621 
Ecorn GHG emissions from corn production 852 
Eisoy GHG emissions from irrigated soybean production 169 
Edsoy GHG emissions from dryland soybean production 137 
Efallow GHG emissions from fallow production 23 
Emethane GHG emissions from methane release of rice production 1211 

 

 

 

Table A4 Crop, environmental, and economic conditions for landscape at baseline conditions 
with bathtub and spatial aquifer depletion under fixed and flexible rotation treatment 

Land use, environmental, 
and economic conditions 

Fixed rotation 
with bathtub  

aquifer 

Fixed rotation 
with spatial 

aquifer 

Flexible rotation 
with bathtub 

aquifer 

Flexible rotation 
with spatial 

aquifer 

Land use conditionsa  
(acres) 
Rice 273,200 272,250 273,200 272,250 
Irrigated corn  202,400 192,620 202,400 192,730 
Irrigated soybeans  536,300 481,090 536,300 480,960 
Non-irrigated soybeans  - 27,941 - 27,934 
Fallow  - 3,502 - 6,510 
Harvestable pine - 6,435 - 31,400 
Harvestable hardwood - - - - 
Permanent pine - 28,140 - 192 
Permanent hardwood - - - - 
Environmental  
conditionsb   
(million tons of carbon) 
Net carbon sequestration  30 1,856 30 1,428 
Aquifer stock (thousand 
acre-feet) 32,075 35,544 32,075 35,544 

Economic conditions     
Present value farm net 
return ($ billions) 1,057 1,053 1,057 1,053 

a Land uses are annual averages.  b Net carbon sequestration is a present value total in millions of 
tons and the aquifer stock is the level in the final period. 



 36 

Table A5 Crop, environmental, and economic conditions for landscape at baseline conditions 
presuming spatial aquifer depletion and flexible rotation treatment for crop margin and 
groundwater depth variance 

Land use, environmental, 
and economic conditions 

Crop  
margin  
double 

Crop  
margin  

half 

Groundwater 
depth 

 double 

Groundwater 
depth 
half 

Land use conditionsa  
(acres) 
Rice 272,250 272,250 272,250 272,250 
Irrigated corn  192,260 193,300 193,110 192,380 
Irrigated soybeans  481,730 401,210 447,830 481,580 
Non-irrigated soybeans  27,409 107,240 60,835 27,592 
Fallow  4,642 6,715 6,163 6,532 
Harvestable pine 30,017 31,251 31,578 31,437 
Harvestable hardwood - - - - 
Permanent pine 3,663 - 204 190 
Permanent hardwood - - - - 
Environmental  
conditionsb   
(million tons for carbon) 
Net carbon sequestration  1,677 1,423 1,442 1,427 
Aquifer stock (thousand 
acre-feet) 35,532 39,498 37,178 35,532 

Economic conditions     
Present value farm net 
return ($ billions) 2,109 525 1,052 1,054 

a Land uses are annual averages.  b Net carbon sequestration is a present value total in millions of 
tons and the aquifer stock is the level in the final period. 

 

 

 

 

 



 37 

Table A6 Crop, environmental, and economic conditions for landscape at baseline conditions 
presuming spatial aquifer depletion and flexible rotation treatment for tree price and product mix 
variance 

Land use, environmental, 
and economic conditions 

Tree price 
alternative  

Tree product 
mix 

(45 p/55 t) 

Tree product 
mix  

(85 p/15 t) 
 

Land use conditionsa  
(acres) 
Rice 272,250 272,250 272,250  
Irrigated corn  192,730 192,730 192,720  
Irrigated soybeans  480,940 480,960 480,980  
Non-irrigated soybeans  27,889 27,926 27,939  
Fallow  6,100 6,225 6,569  
Harvestable pine 32,048 30,053 31,334  
Harvestable hardwood - 1,832 -  
Permanent pine - - 192  
Permanent hardwood - - -  
Environmental  
conditionsb   
(million tons of carbon) 
Net carbon sequestration  1,436 1,448 1,412  
Aquifer stock (thousand 
acre-feet) 35,544 35,544 35,544  

Economic conditions     
Present value farm net 
return ($ billions) 1,053 1,053 1,053  

a Land uses are annual averages.  b Net carbon sequestration is a present value total in millions of 
tons and the aquifer stock is the level in the final period. 
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