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ABSTRACT 

Cervical cancer, the second most common cancer affecting women worldwide 

and the most common in developing countries can be cured if detected early and treated. 

Expert pathologists routinely visually examine histology slides for cervix tissue 

abnormality assessment. In previous research, an automated, localized, fusion-based 

approach was investigated for classifying squamous epithelium into Normal, CIN1, 

CIN2, and CIN3 grades of cervical intraepithelial neoplasia (CIN) based on image 

analysis of 62 digitized histology images obtained through the National Library of 

Medicine. In this research, CIN grade assessments from two pathologists are analyzed 

and are used to facilitate atypical cell concentration feature development from vertical 

segment partitions of the epithelium region for the same digitized histology images.  

Using features developed in this thesis with prior work, a particle swarm optimization 

and Receiver Operating Characteristic curve (ROC) explored for CIN classification 

showing exact grade labeling accuracy as high as 90%.   
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1.  INTRODUCTION 

Annually, there are 400,000 new cases of invasive cervical cancer out of which 

15,000 occur in the U.S. alone [1].  Diagnosis for cervix tissue abnormalities is 

commonly performed procedures, including Pap test, a colposcopy to visually inspect the 

cervix, and visual inspection of histology slides when biopsied cervix tissue is available 

Expert pathologist visual inspection of histology slides has been used as a standard of 

diagnosis [2].  Pathologists commonly assess Cervical Intraepithelial Neoplasia (CIN), 

provide diagnoses related to CIN and its various grades based on the visual interpretation 

of histology slides [3–7]. As part of the pathologist diagnostic process, Cervical 

intraepithelial neoplasia (CIN) is a pre-malignant condition for cervical cancer in which 

the atypical cells are examined in the epithelium [3] and is commonly assessed in the 

visual inspection of histology slides [3,7].  As shown in Figure 1.1, Cervical biopsy 

diagnoses include Normal (that is, no CIN lesion), and three grades of CIN, CIN1, CIN2 

and CIN3 [3–5]. CIN1 corresponds to mild dysplasia (abnormal change), while CIN2 and 

CIN3 are used to denote moderate dysplasia and severe dysplasia, respectively.  

 

    

(a) (b) (c) (d) 

Figure 1.1. CIN grading label examples. (a) Normal, (b) CIN 1, (c) CIN 2, (d) 

CIN 3. 
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In previous research, the research group investigated cervix histology image 

analysis techniques using a localized, fusion-based approach to classify the epithelium 

region into the different CIN grades, as determined by an expert pathologist [8]. There 

were 66 features presented including texture, color, triangle, WDD features which yield 

an exact classification result of 70.5% [8].  

The remainder of this thesis is organized as follows. Section 2 presents the 

methodology of the research. Section 3 is about the algorithms for medial axis detection 

and details on vertical segmentations. Section 4 presents details about nuclei and light 

area detection and segmentation. Section 5 gives explanations of feature groups which 

include the nuclei, combined and layer-by-layer triangle features.  Section 6 presents the 

neural network used in classification in this research and the experimental results yielded 

which is completed by Dr. Stanley and Koyel Banerjee.  Section 7 presents my CIN 

classification analysis of two pathologists including comparison and detail analysis 

between all the classification results. Section 8 presents the conclusion of the thesis. My 

unique contributions in this research are: 1) the development of nuclei and light area 

detection and segmentation (Section 4), 2) the development of nuclei, combined, 

layer-by-layer triangle features (Section 5) and 3) the analysis of inter-pathologist 

epithelium classification (Section 7).   
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2.  METHODOLOGY 

The goal of this research is to classify the squamous epithelium regions from 

cervix histology images into different grades of CIN. In the research, 62 cervix histology 

images were obtained in collaboration with the National Library of Medicine (NLM), 

with the epithelium manually segmented and CIN grade classifications determined by an 

expert pathologist. The research presented in this thesis extends the study in [8] for the 

development of new image analysis and classification of individual vertical segments for 

whole image for CIN grade determination. Figure 2.1 shows the flowchart of the overall 

method developed in this study for CIN grade classification. This thesis also presents 

CIN grade comparative classification analysis for two expert pathologist CIN grading of 

the 62 image data set.   

 

 

 

 

Figure 2.1. Overview of CIN grade classification method developed in this study. 

Segmented squamous epithelium image 

Determine the medial axis 

Creation of vertical segments from the 

squamous epithelium 

Feature extraction from each 

vertical segment 

CIN grade classification of each 

vertical segment 

Fuse segment grades into overall CIN 

grade for entire epithelium. 
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Figure 2.1 before can be concluded as several steps followed: 

 Medial axis detection, locate the medial axis of the segmented epithelium region 

which is mainly finished by Soumya De and Koyel Banerjee; 

 Image segmentation, divide the segmented image into 5 or 10 different vertical 

blocks along the medial axis by Soumya De. 

 Feature extraction, extract features from each of the blocks in which is done by 

me with creating and testing several feature groups that help a lot in classification. 

 Image Classification, classify each of these segmented blocks into the different 

CIN cervical cancer grades in which is developed by Dr. Stanley and Koyel 

Banerjee. 
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3.  MEDIAL AXIS DETECTION 

The medial axis determination algorithm is presented here as one of the steps for 

epithelium analysis for CIN grade classification. This approach for medial axis detection 

was developed by Koyel Banerjee and Soumya De [12]. The approach used to involve 

distance transform to estimate the interior 60% of the medial axis with the bounding box 

of the epithelium region to project the distance transform-based medial axis to the median 

bounding box points for the left- and right-hand end points (remaining left-hand 20% and 

right-hand 20% portions of the axis) [8,9]. However, the algorithm had difficulties 

finding the left- and right-hand portions of the axis in histology images with a somewhat 

rectangular epithelium region. Figure 3.1 shows three examples of improper medial axis 

estimation using the distance transform-based approach. The line shown in pink color is 

the detected medial axis using the distance transform approach while the line shown in 

green is the manually marked medial axis, which is the desirable medial axis. In order to 

address these limitations with medial axis determination, a bounding box-based method 

was explored.    

 

 

 

 

Figure 3.1. Examples of improper medial axis estimation. 
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The bounding box-based medial axis estimation algorithm (new approach) is a 

two steps method. One of the methods follow the original method by using the distance 

transform and then finding out the centroid points at the end segments for correction 

along the end segments and prevent bending or deflection of the medial axis along the 

edges. The second and new approach however uses the morphology of the epithelium 

area under consideration before making the decision about which method to follow for 

the axis detection. 

The bounding box-based method is mainly based on ratio comparison of the 

number of nuclei distributed over 8 masks that are created from the bounding box and 

control points marked on it. Also for precision purposes a 16 mask approach along with 

symmetry factor of the image was taken into consideration. The following Figure 3.2 

explains the concept. 

 

 

 

 

Figure 3.2. New medial detection. 
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The masks are used to help in computing the ratios of the number of detected 

nuclei to the ratio of the area of the masks. For example if the number of nuclei in mask 1 

in Figure 3.2 is supposed to be n1 and I mask 2 is n2 then Koyel Banerjee compute a ratio 

as f1=n1/n2 . She also computes another set of ratios as 
  

  
and 

  

  
 for normalizing the n 

(  ,   ..) values. Finally she multiplied this result by the eccentricity value of the 

particular mask . The equation guiding the detection of the medial axis can be given 

as  
   

 
 where n symbolizes the array containing the normalized ratios of   ,   , 

  ….   , f symbolises the array containing   ,   ….    and e contains the eccentricity 

measures of all the eight masks and e represents the eccentricity value of the entire tissue 

slide. The idea is that whichever position gives the maximum value by this computation 

is the medial axis position. Position 1 and 2 gives the medial axis as shown in Figure 3.3 

and so on, respectively. Some of the medial axis image examples are stated below.  

 

 

 

Figure 3.3. Example of medial axis found using bounding box-based algorithm.  (a) And 

(b) show bounding box method with axis extending beyond epithelium region. (c) And (d) 

show bounding box updated algorithm with medial axis contained with epithelium 

region. 
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As seen from the right-hand medial axis example image in Figure 3.3, some of the 

segments extend way out of the actual epithilial region. This is because in this approach 

points on the bounding box which is exterior to the epithilium region was used. However, 

for such cases during feature extraction the code outputs zero as output meaning that no 

epithilium region was under consideration under those vetical segemented parts. Later on 

the classification preocess discards such segments and take up only valid segments out of 

the ten segments for an image for decision of CIN label.   
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4.  NUCLEI AND LIGHT AREA DETECTION 

The nuclei and light area detection method is presented here as an important step 

for feature extraction and further for classification, which is developed by Cheng Lu and 

myself. The algorithm can extract nuclei area and light area out of the whole epithelium 

region. As what is found, each given image contains two separate files, one in jpg format 

and the other in XML format. The jpg format is the visual representation of the sample. 

The Extensible Markup Language (XML) file is a format that is both human-readable and 

machine-readable. The XML file marks the boundary position for the jpg image. The 

boundary position differentiates the useful area and outside area. As shown in Figure 4.1, 

the light area above the green box is not considered in the region of interest, since it is not 

a part of the squamous epithelium.  

 

 

 

 

Figure 4.1. Original large image with green boundary. 
 

 

Previous research has explored dividing the ROI into 10 vertical segments 

(sub-images) along the uniform points along the medial axis [8]. First, to definite the 
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vertical segments are determined, a big bounding box which contain the whole 

epithelium is created with the help of medial axis; then, the box is divided in parts 

respecting to the medial axis, each of which is the single segment among the total 5 or 10. 

Current research is examining 5 vertical segments for epithelium region analysis 

and classification. In continuation, a data set of 620 sub-images (10 vertical segments 

from each of the 62 images) from the original 62 images is created which were obtained 

from the National Library of Medicine (NLM). The following Figure 4.2 shows some 

samples of sub-images. 

 

 

 

Figure 4.2. Dividing the original image into sub-images of 10 and 5. 

 

 

4.1. NUCLEI PRE-PROCESSING 

A second new feature in this study was the investigation of a nuclei detection 

algorithm based on epithelium image pre-processing to make the image enhanced for 

nuclei detection.  These pre-processing procedures include averaging, image sharpening, 

histogram-equalization, high frequency boosting, etc. 
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There are two steps in this segmentation process, image enhancement and nuclei 

detection. Before nuclei detection, I take a step of image enhancement of the gray scale 

image. There are many different approaches for image enhancement. For this project, a 

variety of filters are applied to the images, including Laplacian, Canny, Roberts and 

Sobel as shown in Figure 4.3.  

 

 

Figure 4.3. Original image and edge detector images. 

 

 

 

An image enhancement process called High-boost Filtering is used to improve the 

contrast between the nuclei and the background which is shown in Figure 4.4.  

 

 

     

Figure 4.4. Method of image sharpening. 
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        (   )     (   )   (   ) 

From the equation and Figure 4.4 before, f (x, y) is the original image. “ (   )” is 

calculated from passing an averaging filter to the original image. A is varied by the result 

from the output image. After optimization, a value of 2.25 is used as “A”. The 

“        (   )” is the resulting image as shown in Figure 4.5. After using High-boost 

filter, histogram equalization is applied to the image. This step equalizes the values in 

each pixel, so the range of values is equally distributed from 0 to 255 as shown in Figure 

4.5. 

 

 

               

Figure 4.5. Images and histograms before and after Histogram-Equalization. 

 

 

 

 

 

 

4.2 NUCLEI REGION SEGMENTATION (NUCLEI PROCESSING) 

After testing and correction, Cheng Lu and I use a portion of the nuclei detection 

code which was supplied by NLM and it has many progresses such as clustering, holes 

filling, thresholding, etc, which is shown in Figure 4.6. 
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Figure 4.6. Nuclei detection progress. 

 

 

 

At the very beginning of all the procedures, K-means clusters are taken from the 

image after the former steps of pre-processing [10]. Since the contrast of the images is 

improved, the nuclei detection code can produce a better result. The initial plan for this 

project is only processing the red layer of the RGB image. After examination, the green 

and blue layers give similar but slight different resulting images as shown in Figure 4.7. 

Even though three layers have very similar result, but none of them gives a conclusive 

result. It is possible to have a better result by combining all three layers, but time 

consuming is the only disadvantage for this approach. It takes three times more 

calculation time to process three layers instead of one. After careful consideration a 

decision is made that only process red layer and take the consequence of losing some of 

the small region. 
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Figure 4.7. Result images in three different color channels. (a) Red layer, (b) 

green layer, (c) blue layer. 

 

 

 

4.3 LIGHT AREA SEGMENTATION 

With the help of the nuclei detection results, light area segmentation can be 

achieved with a good result. The algorithm is developed by Xiao Pan and Koyel Banerjee 

involving the nuclei detection results from Cheng Lu and me. The challenge that goes 

with extracting the light area regions from the original image is mainly the color and 

intensity variations. Often the light areas are mistaken for white areas which are not the 

case. The light areas may appear white to the human eye, but the light areas tend to be 

more on the tail on the histogram where there is the concentration of light areas or high 

intensity values. Also the other problem faced was that the light areas do not have a 

pre-defined shape like the nuclei so it cannot be taken into account the shape/morphology 

of these regions. Therefore, to avoid such shortcomings an attempt to process these 
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regions in the color plane was done taking into account the a-plane and b-plane and 

discarding the L-plane. The L-plane provided the best visual results of the 3 planes 

examined.   

The following outlines the methods undertaken to segment the histology images: 

1. Conversion from RGB color space to L*a*b color space and taking out the 

luminance components that is the L plane for working further on it. 

2. Adaptive histogram equalization is performed on the image from step 1 as 

an alternative to using ‘histeq’. While ‘histeq’ works on the entire image, ‘adapthisteq’ 

operates on small regions in the image, called tiles. Each tile's contrast is enhanced, so 

that the histogram of the output region approximately matches a specified histogram. 

After performing the equalization, ‘adapthisteq’ combines neighboring tiles using bilinear 

interpolation to eliminate artificially induced boundaries. 

3. After the image has been sufficiently contrast adjusted so that the light areas 

appear lighter and the dark areas appear darker for facilitating the extraction, thresholding 

is performed with a value of 0.6 as obtained by trial and error analysis. This step 

generally gets rid of the very dark nuclei regions leaving behind the lighter nuclei and 

epithelium along with the light areas. 

4. Finally, to segment out the light areas, Koyel and I perform a general 

classification step using the K-means algorithm. K-means clustering is a method of 

cluster analysis which aims to partition n observations into k clusters in which each 

observation belongs to the cluster with the nearest mean. This results in a partitioning of 

the data space into Voronoi cells. This is crucial for segmenting the light areas since these 

areas do not have a fixed color value neither do they have a fixed contour or shape. Koyel 
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and I cluster the image into 4 observations and work further on with the cluster giving the 

value for the lighter most regions in the epithelium. 

5. After the final cluster of importance has been obtained to get rid of the finer 

connected light regions, a morphological dilation is presented followed by erosion with 

“disk” as structure element and 2 as radius. Then, “regionprops” is performed on the 

remaining image objects to keep only those light areas which are greater than an area of 

100 pixels. 

The resulting large light areas are used for feature calculations for epithelium 

vertical and   image-based classification which are shown in Figure 4.8. 

 

 

 

 

Figure 4.8. Original epithelium and the light area segmentation. 
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5.  FEATURE DEVELOPMENT 

5.1 NUCLEI FEATURE DEVELOPMENT 

Nuclei feature development are presented here as a very important feature, which 

gives the situation of the nuclei on the epithelium region that related to the classification 

of CIN stage. The algorithm is developed by Cheng Lu [11] and myself, including two 

features calculated within vertical segments as shown below: 

1. Number of nuclei 

2. Nuclei area over background area 

The steps for computing the nuclei-based features are as follows.  First, with the 

nuclei detected, in an image called nuclei mask, the number of nuclei can be counted, 

also the nuclei area can be found. 

Second, the region of epithelium background with the help of nuclei mask is got, 

and the area of background is calculated. Then, compute the ratio. 

 

5.2 LIGHT AREA FEATURE DEVELOPMENT 

For each vertical segment within the epithelium, to define the classification by 

light areas, Xiao Pan and Koyel obtain some relative feature data. They are ratio RGB, 

ratio R, ratio G, ratio B, ratio of luminance image in L plane, number of light area in per 

area and the ratio of light area to background area separately. The exact procedures are as 

follow: 

1. Obtaining the mask of light area, RGB segmented image and luminance 

image. 
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2. Calculating the average intensity of the RGB segmented image and the 

associated average background intensities. 

3. The same algorithm to get the average intensity of R-plane, G-plane, 

B-plane, L-plane in luminance image and the associated average background intensities 

backgrounds. 

4. Obtain the total number and final areas of white parts, and calculate the total 

area of the whole image. 

5. Dividing the average intensity of RGB image by its background area which 

is the area except white area to obtain the ratio of RGB.  

6. The same calculation to get ratio of R, ratio of G, ratio of B, ratio of 

luminance. 

7. Dividing the total number of white parts by total area of the whole image to 

get the number of white area in per unit area. 

8. Compute the ratio of light areas to background areas. 

 

5.3 LAYER-BY-LAYER TRIANGLE FEATURES 

The layer-by-layer triangle algorithm and the features generated are presented 

here, which are developed by me, taking advantages the concept of “Delaunay Triangle” 

[13]. In this algorithm, the nuclei detection result is imported to locate the position of the 

nuclei which are used as vertices forming the Delaunay triangles. In the previous research 

[8], triangle features are developed according to the whole segment and the way to locate 

nuclei (vertices) is Hough-transform included in the triangle function. The features that 

are obtained from the triangles include: average area of the triangles, standard deviation 
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of the area of the triangles, average distance between the vertices of the triangles found 

and standard deviation of the distance between the vertices of the triangles.  

Most of the features are obtained with respect to the nuclei detection results which 

make it more accurate. And each vertex is the centroid of every nuclei detected. Also, the 

whole epithelium is no longer the focus but the three different layers generated after 

dividing a single segment horizontally into 3 parts. The reason for this is that the situation 

of each layer is changing and has some characteristic features when it is in different CIN 

stage, which can be taken advantage of making a proper diagnosis. Processing the nuclei 

detection result is shown in Figure 5.1, where the circles in three colors mark the 

centroids of nuclei in three different layers.  

Also, the triangle algorithm is re-coded by importing nuclei detection results 

instead of using Hough-transform to locate the nuclei (vertices), the features that are 

obtained are shown from F96-F100 in the feature sheet. 

 

 

 

 

Figure 5.1. Progress of locating nuclei (vertex) in three different layers. 

 

 

 

Then, Delaunay triangles can be figured out as what is shown in Figure 5.2, and 

what need to be informed is that this is the Delaunay triangles based on all the nuclei of 
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one piece of vertical segment among 5 or 10 totally, which is different from the algorithm 

here to be presented, where a single segment is processed in three parts (or three layers 

horizontally).  

 

 

 

 

Figure 5.2. Distribution of triangles for the entire image. 

 

 

 

 

The top/bottom orientation of the epithelium is determined so that the higher 

density level of nuclei is top and the lower density is bottom, so that all the features 

obtained from calculation can be in a same order, which makes them useful and 

comparable. For one certain image, size known, higher density goes with the number of 

nuclei in a certain area, which leads to the method of determining the top. After equally 

dividing the whole image by parts in a horizontal direction, the one contains the largest 

number of nuclei should be the top part. 
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The next step is to divide the whole epithelium in three layers, as the edges of 

bounding box are very closed to the boundary of the epithelium, it can be used to divide 

the whole epithelium into 3 different parts as wanted: upper-layer, which is the top 1/3 of 

the whole bounding box, the mid-layer which is the middle 1/3 and the lower layer which 

is the bottom 1/3. The distribution of triangles for three different layers in Matlab is 

shown in Figure 5.2. 

Then, different features are calculated based on three different layers, the number 

of triangles in each layer, average area of the triangles in each layer, average edge 

distance of triangles in each layer, and the standard deviation of the two former features. 

For these triangle features mentioned, which describe different aspects of CIN stages, are 

all generalized by dividing the square root of epithelium area in the single vertical 

segment. The number of triangles can be another way of showing the number of nuclei 

existing per unit area, and it could be evidence of current CIN stage since the higher the 

CIN stage goes, relatively more nuclei would be there in per unit area of epithelium 

region. And the same thing happens on the average area of the triangles which shows the 

number of triangles existing per unit area of epithelium region. Also the information of 

nuclei density is reflected on the feature value of average edge distance and standard 

deviation of triangles, as the longer the average edge distance be, the lower density would 

be. 

Figure 5.3 presents an example image where the lines represent the edges of the 

triangles and the vertices represent the positions of nuclei found and the different colors 

show the different layers. 
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Figure 5.3. Distribution of triangles in a single image. 

 

 
 

Where attention needed to be paid is the small overlaps between different layers, 

which come from the method used to locate the top or bottom point of each layer. In this 

algorithm, nuclei itself is used with the bounding box coordinate system to locate the 

lowest or the highest point. The reason is that if only the coordinate system is used to 

sharply cut the whole epithelium vertically by 3 parts, some of the nuclei would also be 

cut in parts, resulting in lack of nuclei in certain layer to form a single triangle, which 

would have given worse result and affect the counting of triangles and nuclei. As a result, 

nuclei are also involved in locating the boundary of different layers to which the judging 

point lies where the nearest position in which a complete nuclei can be figured out, one 

pixel off. Note that a similar process is process for Triangle feature calculations and 

analysis for both 5 and 10 vertical segments.  
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5.4 COMBINED FEATURE DEVELOPMENT 

Combined feature is a feature group Cheng Lu [11] and I developed to indicate 

the condition of CIN stage with respect to both nuclei and light area features. Table 5.1 

below presents features investigated in this thesis and previous research [8] (Texture 

Features, Color Features, Triangle Features, and Correlation-based Features and the 

features currently under development (Nuclei Features, Light Area Features, and 

Combined Features), summarized as follows.   

After both the nuclei features and the light area features were extracted, some new 

features were generated by using some of the new attributes from nuclei and light area 

features. Such features include the ratio between the number of light areas and the 

number of nuclei, and the ratio between total light areas and total nuclei areas.  

 

Table 5.1. Feature table,(a) texture, (b) color, (c) triangle, (d) WDD, (e) nuclei, (f) 

light area, (g) combined, (h, i, j, k, l) layer-by-layer triangle  

Feature Set Label Measure Description 

(a) Texture 

Features 

F1 Contrast of segment 

Returns a measure of the 

intensity contrast between a 

pixel and its neighbor over the 

whole image. 

 

F2 Energy of segment 

Measures the entropy (sum of 

squares of  pixel values in 

the segment) 

 

F3 Correlation of segment 

Returns a measure of how 

correlated a pixel is to its 

neighbor over the whole 

image. 

 

F4 
Homogeneity of a 

segment 

Returns a value that measures 

the closeness of the 

distribution of pixels in the 

segment to the segment. 
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F5-F6 Contrast of GLCM 

Measure of the contrast of the 

GLCM matrix obtained from 

the segment. 

 

F7-F8 Correlation of GLCM 

Returns a value that measures 

the closeness of the  

distribution of elements in the 

GLCM to the GLCM 

diagonal. 

 

F9-F10 Energy of GLCM 

Returns the sum of squared 

elements in the GLCM. 

 

F11 Correlation of GLCM 

Returns a value that measures 

the closeness of the 

distribution of elements in the 

GLCM to the GLCM 

diagonal. 

(b) Color 

Features 

F12 Percentage Red 
Percentage of region that has 

the reddish pixels. 

F13 Percentage White 
Percentage of region that has 

the whitish pixels. 

F14 Percentage Black 
Percentage of region that has 

the blackish pixels. 

(c) Triangle 

Features 

F15 
Average area of 

triangles 

This is the average area of the 

triangles formed by using 

Delaunay triangulation on the 

cells detected. 

 

F16 
Std deviation of area of 

the triangles 

This is the standard deviation 

of the area of the triangles 

formed by using Delaunay 

triangulation on the cells 

detected. 

 

F17 Average edge length 

This is the mean of the length 

of the edges of the triangles 

formed. 

 

F18 
Std deviation of edge 

length 

Standard deviation of the 

length of the edges of the 

triangles formed. 

Table 5.1. Feature table,(a) texture, (b) color, (c) triangle, (d) WDD, (e) nuclei, (f) 

light area, (g) combined, (h, i, j, k, l) layer-by-layer triangle (Cont.) 
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Table 5.1. Feature table,(a) texture, (b) color, (c) triangle, (d) WDD, (e) nuclei, (f) light 

area, (g) combined, (h, i, j, k, l) layer-by-layer triangle (Cont.) 

 

(d) Correlation

-based 

Features 

(WDD 

Features) 

F19~F66 
Weighted density 

distribution  

Correlation of texture profile 

of the segment and WDD 

function. 

(e) Nuclei 

Features 

F67 Average nuclei area 

Returns the ratio of total 

nuclei area over total number 

of nuclei 

 

F68 
Ratio of background 

area over nuclei area 

Returns the ratio of total 

background (Nuclei) area 

over total nuclei area 

(f) Light Area 

Features 

F69 Ratio RGB 

Returns the average intensity 

of RGB image over 

background 

 

F70 Ratio R 

Returns the average intensity 

of R-plane in luminance 

image over background 

 

F71 Ratio G 

Returns the average intensity 

of G-plane in luminance 

image over background 

 

F72 Ratio B 

Returns the average intensity 

of B-plane in luminance 

image over background 

 

F73 Ratio LUM 

Returns the average intensity 

of L-plane in luminance 

image over background 

 

F74 Unit size of light area 

Returns the number of light 

area over total area 

 

F75 
Ratio of light area over 

background area 

Returns the ratio of total light 

areas over total background 

(Light) area 

(g) Combined 

Features 

F76 
Light area number 

over nuclei number 
 

The ratio of light area 

number over nuclei number 

F77 
Ratio Light over 

Nuclei 
 

The ratio of total light 

areas over total nuclei area 
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Table 5.1. Feature table,(a) texture, (b) color, (c) triangle, (d) WDD, (e) nuclei, (f) 

light area, (g) combined, (h, i, j, k, l) layer-by-layer triangle (Cont.) 

 

(h) Triangle 

Features 

(Vertices 

detected 

with the 

original 

algorithm 

of F15-F18) 

F78-F80 

Average area of 

triangles In upper,  

mid and lower layer 

This is the average area of the 

triangles formed by using 

Delaunay triangulation on the 

cells detected, from the upper 

layer to the lower layer. 

 

F81-F83 

Std deviation of 

area of the triangles 

in  upper mid and 

lower layer 

This is the standard deviation 

of the area of the triangles 

formed by using Delaunay 

triangulation on the cells 

detected, from the upper layer 

to the lower layer. 

 

F84-F86 

Average edge 

length of the 

triangles in  upper 

mid and lower layer 

This is the mean of the length 

of the edges of the triangles 

formed, from the upper layer 

to the lower layer. 

 

F87-F89 

Std deviation of 

edge length of 

triangles in  upper 

mid and lower layer 

Standard deviation of the 

length of the edges of the 

triangles formed, from the 

upper layer to the lower layer. 

F90-F92 

Number of triangles 

in three layers 

divided by square 

root of epithelium 

area 

Counting the number of 

triangles in three different 

layers 

F93-F95 Number of triangles 

The ratio of number of 

triangles over the area of the 

three different layers and the 

total triangle number over the 

total area in the last feature 

(i) Triangle 

Features 

(Vertices 

detected as 

Nuclei 

centroids 

but not in 

three layers) 

F96 

 

 

Average area of 

triangles In upper,  

mid and lower layer 

 

 

 

This is the average area of the 

triangles formed by using 

Delaunay triangulation on the 

cells detected, from the upper 

layer to the lower layer. 
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Table 5.1. Feature table,(a) texture, (b) color, (c) triangle, (d) WDD, (e) nuclei, (f) light 

area, (g) combined, (h, i, j, k, l) layer-by-layer triangle (Cont.) 

 

(j) Triangle 

Features 

(Vertices 

detected as 

Nuclei 

centroids 

but not in 

three layers) 

F97 

Std deviation of 

area of the triangles 

in  upper mid and 

lower layer 

This is the standard deviation 

of the area of the triangles 

formed by using Delaunay 

triangulation on the cells 

detected, from the upper layer 

to the lower layer. 

F98 

Average edge 

length of the 

triangles in  upper 

mid and lower layer 

This is the mean of the length 

of the edges of the triangles 

formed, from the upper layer 

to the lower layer. 

 

F99 

Std deviation of 

edge length of 

triangles in  upper 

mid and lower layer 

Standard deviation of the 

length of the edges of the 

triangles formed, from the 

upper layer to the lower layer. 

F100 

Number of triangles 

in three layers 

divided by square 

root of epithelium 

area 

Counting the number of 

triangles in three different 

layers 

F101 Number of triangles 

The ratio of number of 

triangles over the area of the 

three different layers and the 

total triangle number over the 

total area in the last feature 

(k) Layer-by-la

yer Triangle 

Features 

F102-F104 

Average area of 

triangles In  upper,  

mid and lower layer 

This is the average area of the 

triangles formed by using 

Delaunay triangulation on the 

cells detected, from the upper 

layer to the lower layer. 

 

F105-F107 

Std deviation of 

area of the triangles 

in upper mid and 

lower layer 

This is the standard deviation 

of the area of the triangles 

formed by using Delaunay 

triangulation on the cells 

detected, from the upper layer 

to the lower layer. 
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Table 5.1. Feature table,(a) texture, (b) color, (c) triangle, (d) WDD, (e) nuclei, (f) light 

area, (g) combined, (h, i, j, k, l) layer-by-layer triangle (Cont.) 

 

(k) Layer-by-la

yer Triangle 

Features 

 

 

 

F108-F110 

 

 

Average edge 

length of the 

triangles in upper 

mid and lower layer 

 

 

This is the mean of the length 

of the edges of the triangles 

formed, from the upper layer 

to the lower layer. 

 

F111-F113 

Std deviation of 

edge length of 

triangles in  upper 

mid and lower layer 

Standard deviation of the 

length of the edges of the 

triangles formed, from the 

upper layer to the lower layer. 

 

F114-F116 
Number of triangles 

in three layers  

Counting the number of 

triangles in three different 

layers 

 

F117-F119 

Number of triangles 

over area of the 

layer 

The ratio of number of 

triangles over the area of the 

three different layers and the 

total triangle number over the 

total area in the last feature 

 

F120 

Total number of 

triangles over total 

area 

The ratio of number of 

triangles over the area of the 

whole epithelium 

 

F121 

Background area 

over total triangle 

area 

The ratio of background area 

over the area of all the 

triangles 

(l) Triangle 

Features 

(Vertices as 

centroids 

but with 

original 

methods of 

feature 

F15-F18) 

F122 
Average area of 

triangles 

This is the average area of the 

triangles formed by using 

Delaunay triangulation on the 

cells detected. 

 

F123 
Std deviation of 

area of the triangles 

This is the standard deviation 

of the area of the triangles 

formed by using Delaunay 

triangulation on the cells 

detected. 
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Table 5.1. Feature table,(a) texture, (b) color, (c) triangle, (d) WDD, (e) nuclei, (f) light 

area, (g) combined, (h, i, j, k, l) layer-by-layer triangle (Cont.) 

 

(l) Triangle 

Features 

(Vertices as 

centroids 

but with 

original 

methods of 

feature 

F15-F18) 

F124 
Average edge 

length 

This is the mean of the length 

of the edges of the triangles 

formed. 

 

F125 
Std deviation of 

edge length 

Standard deviation of the 

length of the edges of the 

triangles formed. 

 

 

 

Note that feature group (h) is the completely new feature development for 

triangles features, and similar groups (i), (j), (k) are all control groups to test the quality 

of new features. And the features from F126 to F137 are basal membrane features which 

are not created by myself but Koyel Banerjee, and not shown in the features table 

presented above.  
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6. CLASSIFICATION 

6.1 CONTINUOUS CLASSIFICATION SCALE FOR DIFFERENT FEATURE 

COMBINATIONS COMPUTED FROM VERTICAL  

For epithelium image-based classification based on F1-F137, several neural 

network-based approaches have been explored by Dr. Joe Stanley and Koyel Banerjee. In 

the current research problem, there are four related grades for diagnostic assessment 

(Normal, CIN1-slightly abnormal, CIN2-moderately abnormal, CIN3-cancerous).  The 

four grades, class labels, form a continuous range to assess the epithelium region.  The 

research group has examined an approach to perform leave-one-out image-based 

classification and generate the classifier output for the left out image as a confidence 

value or quantitative cancer assessment, rank the confidence values for all images to 

provide a continuum for determining the four grades for diagnostic assessment.  Scoring 

the image-based classifications uses the expert labeled grade for each image with the 

classifier generated confidence output.  The classifier outputs for all images are sorted in 

ascending order (lower confidence corresponds to a normal epithelium and higher 

confidence corresponds to a cancerous epithelium). The image class labels are sorted 

such that normal images have the lowest confidence values, CIN1 has the next lowest 

range, CIN2 has the next lowest range, and CIN3 has the highest range.  Based on the 

distribution of the confidence values, images with class labels that do not sort into the 

order of the confidence value range associated with each class label are called incorrect 

image classifications, where those images are assigned with the class label corresponding 

to the label associated with sorted confidence values obtained for the entire data set.  

This classification approach utilizes a single confidence value for each image.  Note that 
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this approach is explicitly performed for exact class classification.  Our research has 

focused on feature analysis of 10 and 5 vertical segments per image with classifier 

training using a leave-one-image out approach (for example, 10 vertical segments for the 

left out image used as the test image and the remaining 10 vertical segments per image 

used as the training images). 

For investigating this single confidence value per image-based approach, Dr. 

Stanley and Koyel have investigated a Particle Swarm Optimization neural network 

methodology. For clarity in the experiments performed a detailed presentation of the 

classification algorithms is given as follows.  The neural networks were trained using a 

leave-one-image out approach (10 vertical segments per image for 61 images gives 610 

training feature vectors with individual vertical segment label assignments) and 10 

vertical segments for the left out image.  In order to generate a continuum of values to 

represent the classes normal, CIN1, CIN2, CIN3, the target outputs for each vertical 

segment were assigned as 0, 0.33, 0.66, 1, respectively.  For each of the vertical 

segments (10 as an example) for the left out image, neural network outputs are 

determined.  For combining the neural network outputs for the vertical segments for 

each image, the following approaches were investigated: 

1) Weighted sum of the neural network outputs for the 10 vertical segments for 

each image 

2) Hierarchical neural networks using the 10 vertical segment neural network 

outputs as inputs to a second tier neural network. 

The weighted sum approach for combining neural network outputs is given as 

followed for the 10 vertical segment decomposition of each image, denoted as Seg 1, Seg 
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2, … , Seg 10.  Let N1, N2,…, N10 denote the neural network outputs for each of the 

vertical segments.  Let W1, W2, W3, W4, and W5 denote the weights applied to the 

different vertical segments.  Note that the weights are specified such that the segments 

at corresponding positions along the medial axis are given equal weights in order to 

accommodate for rotational variations (flipped or not flipped) in the way that the 

epithelium region is processed.  The final output used for each image for the 10 vertical 

segment case for image-based classification is given as the equation and Table 6.1 below: 

    
    ∑     

 
              

 

 

Table 6.1. Input variables for each single segment among 10 vertical segments. 

Seg 1 Seg 2 Seg 3 Seg 4 Seg 5 Seg 6 Seg 7  Seg 8 Seg 9 Seg 10 

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 

w1 W2 W3 W4 W5 W5 W4 W3 W2 W1 

 

 

The values of     
  are sorted for continuum based classification.  Each of the 

weights can take on the values 0, 0.25, 0.5, 0.75, 1.  “    
  ” is calculated for different 

weight combinations and the continuum-based classification results are generated for 

each combination.  Exhaustive search of the different weights combinations is 

performed for determining the highest classification rate.  Note that different weight 

combinations lead to the same classification rate (linear scaling). 

The same process is being investigated for 5 vertical segments decomposition for 

each image.  Let Seg.1, Seg.2, Seg.3, Seg.4, and Seg.5 denote the 5 vertical segments. 

Let NN1, NN2, NN3, NN4, and NN5 denote the neural network outputs for the 5 vertical 
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segments, respectively, which are shown in Table 6.2. Finally, let W1, W2, and W3 

denote the weights applied to the different vertical segments, again specifying the 

weights so that segments at corresponding positions along the medial axis are given equal 

weights in order to accommodate for rotational variations (flipped or not flipped) in the 

way that the epithelium region is processed. 

 

Table 6.2. Input variables for each single segment among 5 vertical segments. 

Seg 1 Seg 2 Seg 3 Seg 4 Seg 5 

N1 N2 N3 N4 N5 

w1 W2 W3 W4 W5 

 

 

The final output used for each image for the 5 vertical segment case for 

image-based classification is given as: 

    
                              

 

6.2 EXPERIMENTS PERFORMED AND EXPERIMENTAL RESULTS 

In this research, several experiments which reflect the classification results are 

performed such as leave-one out, normal vs. CIN, normal+ CIN I vs. CIN II+ CIN III, 

and off by one.  

Leave-one out is mainly applied in training and testing which use 61 out of 62 

groups of feature values to train the system in classification and take advantage of the rest 

one group to test whether the system gives proper classification; the training groups and 

testing group are different in each iteration after which the whole training and testing 

procedure is completed.  
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And normal vs. CIN, normal+ CIN I vs. CIN II+ CIN III, off by one experiments 

are reflected in the final results. Normal vs. CIN compare the classification result of 

normal and not normal (including CIN I, CIN II, CIN III stages), the results of normal+ 

CIN I vs. CIN II+ CIN III shows the image group which is diagnosed as normal and CIN 

I stage comparing with the groups which are diagnosed as CIN II and CIN III stage. 

Moreover, off-by-one shows the percentage of classification results which are improperly 

diagnosed as other stage and more than one stage off from the right stage. For example, a 

normal stage epithelium is diagnosed as CIN II or CIN III, vice versa.  

The PSO neural network architecture with the weighted sum neural network 

output combination approach described above for the 10 and 5 vertical segment cases 

was examined for different feature combinations. Table 6.3 presents the exact class 

labels, the features used from Table 5.1 are listed in column 1 and 4 of Table 6.3 which 

give the different approaches for combining the neural network outputs for each of the 

vertical segments (10 vertical segments examined here). 

 

 

Table 6.3. Image-based classification results using PSO neural network approach for 

continuous classification scale. (Note that 10 vertical segments are used for feature 

analysis for each image). 

Features Used 

Exact 

Class 

Label 

Normal 

vs. CIN 
Features Used 

Exact 

Class 

Label 

Normal 

vs. CIN 

Texture 69.35 83.87 
Color, Nuclei, Light Area, 

Combined 
72.58 93.55 

Correlation WDD 66.13 93.55 
Color, Layer-by-Layer 

Triangle 
53.23 77.42 

Nuclei, Light 

Area, Combined 
74.19 93.55 

Color, New Triangle 2, 

New Triangle 3 
61.29 83.87 

Layer-by-Layer 

Triangle 
48.39 74.19 Color, Basal Membrane 61.29 83.87 
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Table 6.3. Image-based classification results using PSO neural network approach for 

continuous classification scale. (Note that 10 vertical segments are used for feature 

analysis for each image). (Cont.) 

 

New Triangle2 46.77 70.97 

Nuclei, Light Area, 

Combined, Layer-by-Layer 

Triangle 

69.35 90.32 

New Triangle3 59.68 83.87 
Texture, Color, Nuclei, 

Light Area, Combined  
77.42 93.55 

Basal Membrane 53.22 70.97 
Texture, Color, 

Layer-by-Layer Triangle 
77.42 96.77 

Texture, Color 80.65 93.55 

Texture, Color, 

Layer-by-Layer Triangle, 

Basal Membrane 

74.19 93.55 

Texture, Triangle 67.74 83.87 
Color, Nuclei, Light Area, 

Combined  
75.81 93.55 

Texture, 

Correlation WDD 
80.65 93.55 

Correlation WDD, Nuclei, 

Light Area, Combined 
67.74 90.32 

Texture, Nuclei, 

Light Area, 

Combined 

74.19 87.1 
Texture, Color, Nuclei, 

Light Area, Combined 
80.64 93.55 

Texture, 

Layer-by-Layer 

Triangle 

66.13 87.1 

Texture, Color, Nuclei, 

Light Area, Combined, 

Combined WDD 

79.03 93.55 

Texture, New 

Triangle 2 
64.52 83.87 

Nuclei, Light Area, 

Combined, Layer-by-Layer 

Triangle, New Triangle 2, 

New Triangle 3, Basal 

Membrane 

79.03 93.55 

Texture, New 

Triangle 3 
66.13 87.1 

Texture, Color, Triangle, 

Nuclei, Light Area, 

Combined, Layer-by-Layer 

Triangle, Basal Membrane 

83.87 96.77 

Texture, Basal 

Membrane 
66.13 87.1 

Texture, Color, Triangle, 

Nuclei, Light Area, 

Combined, Combined 

Layer-by-Layer, New 

Triangle 2, Basal 

Membrane 

88.71 96.77 

Color, Correlation 

WDD 
59.68 90.32 

Texture, Color, Nuclei, 

Light Area, Combined, 

Layer-by Layer Triangle, 

New Triangle 3, Basal 

Membrane 

82.26 96.77 
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Finally, feature analysis based on Fisher’s scoring optimization technique for 

stepwise variable selection in SAS was performed to determine statistically significant 

features.  Probability values (Pr) is used with the Chi-Square scores for variable 

selection.  Note that a binary model was examined here (Normal vs. CIN) for feature 

selection and statistical classification of the individual vertical segments.   

Based on feature reduction and examining different feature groups using 5 

vertical segments for each epithelium region, the following feature combinations with 

classification results are presented in Table 6.4. Note that the experimental results are 

presented for Exact Class Label, Off-by-One Window, Normal versus CIN, and Normal 

versus CIN1 versus CIN2/CIN3 (3 total classes). 

 

Table 6.4. Classification results for 5segments with different feature combinations using 

Exact Class Label, Off-by-One Window, Normal vs. CIN, and Normal vs. CIN1 vs. 

CIN2 or CIN3. 

Feature 

Combination 

Exact 

Class 

Label 

Off By One 

Classificati

on 

Normal vs. 

CIN 

Classificati

on 

Normal vs 

CIN1 vs 

CIN2/CIN

3 

Segment Weights 

for Weighted 

Classifier Sum 

(W1,…,W5) 

F1-F18, 

F67-F77, 

F124 

90.32% 98.39% 96.77% 96.77% 1,0,0,0.75,0 

F1-F18,F29,F

30, 

F67-F77,F124

, 

F126,F136 

90.32% 98.39% 96.77% 96.77% 
0.25,0.75,0.25,0.5,0

.25 

 

 

Extending the feature reduction and analysis from the 5 vertical segments, 

classification results for different feature groups based on 10 vertical segments are 

presented in Table 6.5. Again, note that the experimental results are presented for Exact 
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Class Label, Off-by-One Window, Normal versus CIN, and Normal versus CIN1 versus 

CIN2/CIN3 (3 total classes).  Many different feature combinations were examined.  

The feature combinations presented in Table 6.5 provided the highest classification 

results.   

Table 6.5. Classification results for different feature combinations based on 10 vertical 

segments using Exact Class Label, Off-by-One Window, Normal vs. CIN, and Normal vs. 

CIN1 vs. CIN2/CIN3. 

Feature Combination 

Exact 

Class 

Label 

Off By 

One 

Classifica

tion 

Normal 

vs. CIN 

Classifica

tion 

Normal 

vs CIN1 

vs 

CIN2/C

IN3 

Segment 

Weights for 

Weighted 

Classifier 

Sum 

(W1,…,W5) 

F1-F18, F67-F77 91.94% 100.00% 96.77% 96.77% 1,0,0,0.75,0 

F1-F18, 

F67-F77,F124,F126,F136 
88.71% 100.00% 96.77% 93.55% 1,0.5,0,1,1 

F1-F18,F29,F30,F67-F77,

F124,F126,F136 
85.48% 100.00% 96.77% 90.32% 

0.25,0,0.75,

0,0.25 

 

Table 6.4 and Table 6.5 show actual image classification rates of 90.32% and 

91.94% for the 5 and 10 vertical segment cases, respectively. The feature combinations 

that yielded the highest classification results for the 10 and 5 vertical segment cases 

include the texture features (F1-F11), color features (F12-F14), triangle features 

(F15-F18), nuclei features (F67,F68), light area features (F69-F75), and combined 

features (F76,F77).  

 

6.3 INTER-PATHOLOGIST IMAGE-BASED CLASSIFICATION OF DIGITIZED 

CERVICAL IMAGE DATA SET 

Dr. Rosemary Zuna, Professor of Pathology, at the University of Oklahoma 

Health Sciences Center provided the expert pathologist CIN grades for the 62 digitized 

histology images of the epithelium region presented in the previous sections of this thesis.  
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In this section and in following sections, a second expert pathologist was sought for 

guidance in establishing CIN truth classifications for sub-regions of the epithelium 

(individual vertical segments) and for the entire epithelium region. Dr. Shelly Frazier, 

Surgical Pathologist, at the University of Missouri was approached and agreed to provide 

these classifications for the 62 cervical images data set. Note that all vertical segment 

classifications used in this study were provided by Dr. Shelly Frazier, Dr. Zuna and Dr. 

Frazier provided whole image CIN grades.   

Overall, the CIN classification results from Table 6.5 before and Table 6.6 below 

are similar, with slightly higher classification results obtained based on the expert CIN 

labeling from Dr. Zuna. Using Dr. Frazier’s CIN labeling of the 62 image data set with 

10 and 5 vertical segments, several features set combinations were examined using 

different scoring schemes, including the Exact Class Label, Normal vs. CIN and 

Normal+CIN1 vs. CIN2+CIN3. 

 

 

Table 6.6. Classification results based on CIN truth grades from Dr. Frazier for 

different feature combinations based on 10 vertical segments using Exact Class Label, 

Off-by-One Window, Normal vs. CIN, and Normal vs. CIN1 vs. CIN2/CIN3.  

Feature 

Combination 

Actual 

Image 

Classificatio

n 

Off By One 

Classificatio

n 

Normal vs. 

CIN 

Classificatio

n 

Normal vs 

CIN1 vs 

CIN2/CIN

3 

Segment 

Weights for 

Weighted 

Classifier 

Sum 

(W1,…,W5) 

F1-F18, 

F67-F77 
88.71% 98.39% 96.77% 91.94% 

1,0.25,1,0.25,

0 

F1-F18, 

F67-F77, 

F124,F126,F1

36 

88.71% 98.39% 96.77% 93.55% 1,0.5,0,1,1 
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The individual 5 vertical segment CIN labels for classifier training were the 

image-based CIN labels provided by Dr. Frazier. Koyel and I used the same PSO-based 

classifier to train and test the images with leave one image out scheme.   

The following parameters were used in the PSO neural network algorithm:  

rg_vals = 0.001,  rm_vals = 0.001,  c2_vals = 1.5; 

c1_vals = 1,  particles_number_vals = 30,  w_vals = 0.6; 

 

Tables 6.7 and 6.8 present the classification results for the different features.  

 

Table 6.7. Classification results for different feature combinations with 10 vertical 

segments for Exact Class Label, Normal vs. CIN, and CIN1 vs. CIN2/CIN3 based on Dr. 

Frazier’s CIN labeling. 

Features Used 

Exact 

Class 

Label 

Norm

al vs.  

CIN 

Normal 

+ CIN I       

vs.                           

CIN II 

+ CIN 

III 

Features 

Used 

Exact 

Class 

Label 

Norm

al vs.  

CIN 

Normal 

+ CIN I       

vs.                           

CIN II + 

CIN III 

Texture 69.35 83.87 83.87 

Nuclei, Light 

Area, 

Combined, 

Layer-by-La

yer Triangle 

69.35 90.32 91.94 

Texture, Color, 

Triangle, 

Nuclei, Light 

Area, 

Combined, 

Layer-by-Layer 

Triangle, Basal 

Membrane 

88.71 96.77 93.55 
Texture, 

Triangle 
67.74 83.87 83.87 

Texture, Color, 

Nuclei, Light , 

Combined, 

Layer-by Layer 

Triangle, Basal 

Membrane 

82.26 96.77 93.55 

Correlation 

WDD, 

Nuclei, Light 

Area, 

Combined 

67.74 90.32 91.94 



 

 

40 

Table 6.7. Classification results for different feature combinations with 10 vertical 

segments for Exact Class Label, Normal vs. CIN, and CIN1 vs. CIN2/CIN3 based on 

Dr. Frazier’s CIN labeling. (Cont.) 

 

 

Texture, Color 80.65 93.55 91.94 
Correlation 

WDD 
66.13 93.55 93.55 

Texture, 

Correlation 

WDD 

80.65 93.55 93.55 
Texture, New 

Triangle 3 
66.13 87.1 83.87 

Texture, Color, 

Nuclei, Light 

Area, Combined 

80.64 93.55 95.16 

Texture, 

Basal 

Membrane 

66.13 87.1 82.26 

Texture, Color, 

Nuclei, Light 

Area, 

Combined, 

Combined 

WDD 

79.03 93.55 91.94 
Texture, New 

Triangle 2 
66.13 87.1 85.48 

Nuclei, Light 

Area, 

Combined, 

Layer-by-Layer 

Triangle, New 

Triangle 2, New 

Triangle 3, 

Basal 

Membrane 

79.03 93.55 91.94 

Color, New 

Triangle 2, 

New Triangle 

3 

61.29 83.87 82.26 

Color, Nuclei, 

Light Area, 

Combined 

72.58 93.55 87.1 
New 

Triangle2 
46.77 70.97 72.58 

 

 

 

 

 

From Table 6.7, the best 10 vertical segment classification results are 88.71% for 

the Exact Class Label, 95.16% for CIN vs. Normal and 93.55% for Normal+CIN I vs. 

CIN II + CIN III.  From Table 6.8, the best 5 vertical segment classification results are 

90.32% for the Exact Class Label, 96.77% for CIN vs. Normal and 96.77% for Normal + 

CIN I vs. CIN II + CIN III. 
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Table 6.8. Classification results for different feature combinations with 5 vertical 

segments for Exact Class Label, Normal vs. CIN, and CIN1 vs. CIN2/CIN3 based on Dr. 

Frazier’s CIN labeling. 

 

Features Used 

Exact 

Class 

Label 

Norm

al vs.    

CIN 

Normal 

+ CIN I  

vs.                       

CIN II + 

CIN III 

Features 

Used 

Exact 

Class 

Label 

Norm

al vs.    

CIN 

Normal 

+ CIN I  

vs.                       

CIN II 

+ CIN 

III 

Texture, 

Color, Nuclei, 

Light Area, 

Combined, 

Layer-by 

Layer 

Triangle, New 

Triangle 3, 

Basal 

Membrane 

90.32 96.77 96.77 

Texture, 

Color, 

Layer-by-La

yer Triangle 

83.87 93.55 91.94 

Texture, 

Color, Nuclei, 

Light Area, 

Combined 

88.71 96.77 96.77 

Texture, 

Color, 

Nuclei, Light 

Area, 

Combined, 

Combined 

WDD 

83.87 93.55 95.16 

Texture, 

Color, 

Triangle, 

Nuclei, Light 

Area, 

Combined, 

Layer-by-Laye

r Triangle, 

Basal 

Membrane 

88.71 96.77 96.77 

Nuclei, Light 

Area, 

Combined, 

Layer-by-La

yer Triangle, 

New 

Triangle 2, 

New 

Triangle 3, 

Basal 

Membrane 

77.42 96.77 93.55 

Texture, Color 87.1 93.55 96.77 

Texture, 

Correlation 

WDD 

74.19 90.32 87.1 

Texture, 

Triangle 
83.87 83.87 90.16 
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  The combination of features which yielded the highest classification results 

contains texture, color, nuclei, light area, combined features, triangle, and only three 

features in the group of basal membrane features. Texture and color feature provide the 

general situation with respect to the whole epithelium including color data and structural 

analysis data. Nuclei, light area, and combined features, as well as triangle features give 

much information about the characters in different CIN stages, they are more dynamic 

and differ with the increasing of CIN stage with which a clue can be found in 

contributing to make a proper diagnosis.  

The other group of features like Correlation WDD, Triangle features discussed in 

former paper, and most of the basal membrane do not yield as good a result as those 

mentioned above do. And, the basal membrane feature is a little different from other 

features but also follow the rules that features are operated in different layers, which 

finally give information about the origin of certain CIN stages. With some concern, these 

features fail to provide some “key information” which leads a significant difference in 

describing the current situation of the whole epithelium, or in other words, are not typical 

or universal for all the epithelium regions which are taken into the test. Some of the 

features are generated to be trials or control group, in order to discover more clues which 

can lead to a better result.  

According to the results which are presented in the former paper, feature 

combination of texture, original triangle and correlation WDD features yielded the exact 

label classification result of 70.5% and normal vs. CIN result to be 90.2%. As a matter of 

fact, the recent research does yield much better results with exact label classification 

result of 90.32% and normal vs. CIN to be 96.77% compared with previous results.   
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7.  ANALYSIS OF INTER-PATHOLOGIST EPITHELIUM CLASSIFICATION 

In this section, all the research and analysis are completed by myself, by using 

detail comparison and analysis to present the situation of the classification results that are 

given by the pathologists, in order to get more related information about the contribution 

of the single segments to the final classification results and the relationship between 

classification results and the whole algorithm. These CIN truth references are examined 

for comparison with the reference truth reference in evaluating the features developed.  

From Table 7.1, there are 5 images (in bold) where the expert (Dr. Zuna) and Dr. Frazier 

differed in CIN truth. In all 5 cases, the expert labeled CIN grade differed by 1 CIN grade 

value. In examining the CIN truth references, there are 10 segments for each of the 62 

images, so there are 620 classifications of single segments (individual vertical segments) 

to be discussed and described. I divide the individual vertical segments into several 

categories to make it much clearer and easier. All the categories are presented below:  

 The classification results in both experts agree with each other on whole 

image classification (7.1) 

 Non-zero (all segments within an image have valid CIN grade 

classifications) existing in any one of the 10 segments for one whole image 

(7.1.1) 

 One same CIN grade for all 10 segments of one whole image 

 Multi-CIN grades among 10 segments for an image 

 10 segments result distributed in 2 different levels 

 10 segments result distributed in 3 different levels 

 Zero existing in any one of the 10 segments (7.1.2) 
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 Only one zero existing among 10 segments result of one whole 

image 

 More than one zeros existing among 10 segments result of one 

whole  image 

 The classification results in which two experts disagree with each 

other(7.2) 

 

All the classification results will be shown in the form of tables with Cervical 

Intraepithelial Neoplasia grading scales marked as “1 = Normal, 2 = CIN 1, 3 = CIN 2, 4 

= CIN 3, 0 = inconclusive CIN grade assignment”, also the image name is given as well 

as every single segment from it. All the different categories given above are marked with 

different group titles which are shown in the end of every category description. 

 

7.1. THE CLASSIFICATION RESULTS IN BOTH EXPERTS AGREE WITH 

EACH OTHER ON WHOLE IMAGE CLASSIFICATION 

7.1.1. Non-zero Existing in Any One of the 10 Segments. There is a same CIN 

grade for all the 10 segments of one whole image, for each of the 23 images in this group, 

the image-based classification is given from both of the experts (NLM Expert 

Classification from Dr. Rosemary Zuna from the University of Oklahoma Health 

Sciences Center and Dr. Shelly Frazier from the University of Missouri) and 10 single 

vertical segment classifications are given by Dr. Frazier. Also, all the 10 segment results 

stay the same and agree with the final classification grading scale for the whole image.  

All the images in this group are presented below ranked in order of CIN grading scale 

from “1” to “4”. 
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In Table 7.1, there are 11 images where the two experts agree with each other 

again on the classification assignment. All the classification assignments for the single 

segments are “1” (Normal), for the reason that the nuclei distribution is relatively clear, 

not a significant number of nuclei, and the nuclei are highly concentrated on the basal 

membrane part of the epithelium. In addition, for these images, there is considerable area 

of light region (white area) and it remains solid red for the surface color. 

 

Table 7.1. Both experts agree on whole image and individual segment normal 

grade classification (11 images total). 

 

Image 

Name 

NLM 

Expert 

Classificati

ons 

Dr. Shelly 

Frazier 

Classificati

ons 

  

Cervical Intraepithelial 

Neoplasia grading scale 

1 = Normal   2 = CIN 

1 

3 = CIN 2   4 = CIN 3 
ouhsc_d15-

3-normal 

1 1 

 

 

  

 

10 

segments 

of one 

whole 

image, 

and the 

individual 

manual  

classificat

ion label 

from Dr. 

Frazier 

1 1 1 1 1 

 

 

   

1 1 1 1 1 
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ouhsc_d3-4

-normal 

1 1 

  

     

     

     

1 1 1 1 1 

 

ouhsc_d4-1

-normal 
1 1 

   

     

1 1 1 1 1 

     

1 1 1 1 1 

 

ouhsc_d55-

4-normal 
1 1 

   

     

1 1 1 1 1 

     

1 1 1 1 1 

 

Table 7.1. Both experts agree on whole image and individual segment normal 

grade classification (11 images total). (Cont.) 
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Table 7.1. Both experts agree on whole image and individual segment normal grade 

classification (11 images total). (Cont.) 

 

Image 

Name 

NLM 

Expert 

Classificati

ons 

Dr. Shelly 

Frazier 

Classificati

ons 

  

Cervical Intraepithelial 

Neoplasia grading scale 

1 = Normal   2 = CIN 1 

3 = CIN 2   4 = CIN 3 ouhsc_d61-

2-normal 

1 1 

     

10 

segments 

of one 

whole 

image, and 

the 

individual 

manual  

classificati

on label 

from Dr. 

Frazier 

1 1 1 1 1 

     

1 1 1 1 1 

ouhsc_d61-

3-normal 
1 1 

   

     

1 1 1 1 1 

     

1 1 1 1 1 

ouhsc_d61-

4-normal 
1 1 

   

     

1 1 1 1 1 

     

1 1 1 1 1 
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ouhsc_d8-1

-normal 
1 1 

   

     

1 1 1 1 1 

     

1 1 1 1 1 

 

 

ouhsc_d8-3

-normal 
1 1 

   

     

1 1 1 1 1 

     

1 1 1 1 1 

 

   

ouhsc_d8-4

-normal 
1 1 

   

     

1 1 1 1 
 

     

1 1 1 1 1 

   

Table 7.1. Both experts agree on whole image and individual segment normal 

grade classification (11 images total). (Cont.) 
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ouhsc_d65-

2-normal 
1 1 

   

     

1 1 1 1 1 

 

 

   

1 1 1 1 1 
 

 

 

 

In Table 7.2, there are 5 images that both experts classified as CIN1.  For these 

images, all 10 segments for each image are labeled as CIN 1 by the experts (Dr. Frazier’s 

individual segment classifications are shown in Table 3).  For these images, the light 

area becomes less (compared to normal grade images) and the nuclei start to grow across 

the epithelium. In addition, the color of the region of interest tends to be darker (than 

normal images). 

In Table 7.3 later after Table 7.2, there are 4 images in the 62 image data set 

where both experts agree on CIN 2 grades for the whole image and CIN 2 for all of the 

individual segments within those images.  Some observations about these images that 

have agreed CIN 2 grades from both experts include these: 1) a dark nuclei are 

intensively concentrated in the basal membrane part and spread out through the middle 

part towards the whole epithelium, 2) darker color with even less light area surround the 

nuclei, and the nuclei closer to the bottom are relatively sparse all of which contributes to 

CIN 2 classification. 

Table 7.1. Both experts agree on whole image and individual segment normal 

grade classification (11 images total). (Cont.) 
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Table 7.2. Experts both agree on CIN 1 grades for whole image and all segments  

have CIN 2 grades (5 images total). 

 

Image 

Name 

NLM 

Expert 

Classificati

ons 

Dr. Shelly 

Frazier 

Classificati

ons 

 

Cervical Intraepithelial 

Neoplasia grading scale 

1 = Normal   2 = CIN 

1 

3 = CIN 2   4 = CIN 3 
ouhsc_d55-

3-cin1 
2 2 

     

10 

segments 

of one 

whole 

image, 

and the 

individual 

manual  

classificat

ion label 

from Dr. 

Frazier 

2 2 2 2 2 

     

2 2 2 2 2 

 

 

Image 

Name 

NLM 

Expert 

Classificati

ons 

Dr. Shelly 

Frazier 

Classificati

ons 

 

Cervical Intraepithelial 

Neoplasia grading scale 

1 = Normal   2 = CIN 

1 

3 = CIN 2   4 = CIN 3 
ouhsc_d74-

2-cin1 
2 2 

     

10 

segments 

of one 

whole 

image, 

and the 

individual 

manual  

classificat

ion label 

from Dr. 

Frazier 

2 2 2 2 2 

     

2 2 2 2 2 
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Table 7.2. Experts both agree on CIN 1 grades for whole image and all segments have 

CIN 2 grades (5 images total). (Cont.) 

 

 

ouhsc_lsil3-

1-cin1 
2 2 

   

     

2 2 2 2 2 

     

2 2 2 2 2 

 

   

ouhsc_lsil4-

1-cin1 
2 2 

   

     

2 2 2 2 2 

     

2 2 2 2 2 

 

   

ouhsc_d65-

6-cin1 
2 2 

   

     

2 2 2 2 2 

     

2 2 2 2 2 
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Table 7.3. Experts both agree on CIN 2 labels on whole image and individual 

segment grades (4 images total). 

 

Image 

Name 

NLM 

Expert 

Classificati

ons 

Dr. Shelly 

Frazier 

Classificati

ons 

  

Cervical Intraepithelial 

Neoplasia grading scale 

1 = Normal   2 = CIN 

1 

3 = CIN 2   4 = CIN 3 
ouhsc_d14-

2-cin2 
3 3 

 

 

        

10 

segments 

of one 

whole 

image, 

and the 

individual 

manual  

classificat

ion label 

from Dr. 

Frazier 

3 3 3 3 3 

          
3 3 3 3 3 

 

 

Image 

Name 

NLM 

Expert 

Classificati

ons 

Dr. Shelly 

Frazier 

Classificati

ons 

  

Cervical Intraepithelial 

Neoplasia grading scale 

1 = Normal   2 = CIN 

1 

3 = CIN 2   4 = CIN 3 
ouhsc_d4-2

-cin2 
3 3 

     

10 

segments 

of one 

whole 

image, 

and the 

individual 

manual  

classificat

ion label 

from Dr. 

Frazier 

3 3 3 3 3 

     

3 3 3 3 3 
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Table 7.3. Experts both agree on CIN 2 labels on whole image and individual segment 

grades (4 images total). (Cont.) 

 

 

Image 

Name 

NLM 

Expert 

Classificati

ons 

Dr. Shelly 

Frazier 

Classificati

ons 

  

Cervical Intraepithelial 

Neoplasia grading scale 

1 = Normal   2 = CIN 

1 

3 = CIN 2   4 = CIN 3 
ouhsc_d4-3

-cin2 
3 3 

     

10 

segments 

of one 

whole 

image, 

and the 

individual 

manual  

classificat

ion label 

from Dr. 

Frazier 

3 3 3 3 3 

     

3 3 3 3 3 

 

 

Image 

Name 

NLM 

Expert 

Classificati

ons 

Dr. Shelly 

Frazier 

Classificati

ons 

  

Cervical Intraepithelial 

Neoplasia grading scale 

1 = Normal   2 = CIN 

1 

3 = CIN 2   4 = CIN 3 
ouhsc_d65-

4-cin2 
3 3 

     

10 

segments 

of one 

whole 

image, 

and the 

individual 

manual  

classificat

ion label 

from Dr. 

Frazier 

3 3 3 3 3 

     

3 3 3 3 3 

 



 

 

54 

From Table 7.4 below, there are 3 images that both experts provided CIN 3 

grades, with all 10 segments from each image labeled as CIN 3. Common characteristics 

of these images include: light areas are uncommon, nuclei intensively growing across the 

epithelium from top to bottom, and the solid reddish color becomes more blackish. 

 

Table 7.4. Experts both agree on CIN 3 labels on whole image and individual 

segment grades (3 images total). 

 

Image 

Name 

NLM 

Expert 

Classificati

ons 

Dr. Shelly 

Frazier 

Classificati

ons 

  

Cervical Intraepithelial 

Neoplasia grading scale 

1 = Normal   2 = CIN 

1 

3 = CIN 2   4 = CIN 3 
ouhsc_d61-

1-cin3 
4 4 

     

10 

segments 

of one 

whole 

image, 

and the 

individual 

manual  

classificat

ion label 

from Dr. 

Frazier 

4 4 4 4 4 

     

4 4 4 4 4 

 

ouhsc_d68-

2-cin3 
4 4 

 

     

 

4 4 4 4 4 

     

4 4 4 4 4 
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Image 

Name 

NLM 

Expert 

Classificati

ons 

Dr. Shelly 

Frazier 

Classificati

ons 

  

Cervical Intraepithelial 

Neoplasia grading scale 

1 = Normal   2 = CIN 

1 

3 = CIN 2   4 = CIN 3 
ouhsc_cin1-

1-1-cin1 
4 4 

  

 

 

 

10 

segments 

of one 

whole 

image, 

and the 

individual 

manual  

classificat

ion label 

from Dr. 

Frazier 

4 4 4 4 4 

 

    

4 4 4 4 4 

 

 

 

 Segments result distributed in 2 different levels 

In this category of image classifications, both experts agree on the whole image 

CIN label, but the individual segments have different CIN grades (some segment 

assignments agree with the whole image CIN label). For each of the 15 images, the CIN 

classifications for both experts agree for the whole image, but the CIN classifications for 

the different segments are not all the same as the whole image classification. Table 7.5 

below presents CIN labels for Dr. Zuna (NLM Expert) and Dr. Frazier for the whole 

image and the individual segment CIN grades determined by Dr. Frazier for 15 images. 

Table 7.4. Experts both agree on CIN 3 labels on whole image and individual 

segment grades (3 images total). (Cont.) 
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Table 7.5. Whole image and individual segment CIN classifications for 15 images 

where both experts agree on the whole image classification and the individual segment 

classifications vary from the whole image. 

 

 

Image 

Name 

NLM 

Expert 

Classificati

ons 

Dr. Shelly 

Frazier 

Classificati

ons 

  

Cervical Intraepithelial 

Neoplasia grading scale 

1 = Normal   2 = CIN 

1 

3 = CIN 2   4 = CIN 3 
ouhsc_d26-

1-cin3 
4 4 

   

      

10 

segments 

of one 

whole 

image, 

and the 

individual 

manual  

classificat

ion label 

from Dr. 

Frazier 

 3  3  3  3  3 

   

   

 

 3  3  3  4  4 

 

 

 

Image 

Name 

NLM 

Expert 

Classificati

ons 

Dr. Shelly 

Frazier 

Classificati

ons 

  

Cervical Intraepithelial 

Neoplasia grading scale 

1 = Normal   2 = CIN 

1 

3 = CIN 2   4 = CIN 3 
ouhsc_d26-

2-cin3 
  4   4 

          

10 

segments 

of one 

whole 

image, 

and the 

individual 

manual  

classificat

ion label 

from Dr. 

Frazier 

 3  3  4  4  3 

          

 4  3  3  4  3 
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Table 7.5. Whole image and individual segment CIN classifications for 15 images 

where both experts agree on the whole image classification and the individual 

segment classifications vary from the whole image. (Cont.) 

 

 

  

ouhsc_d4-4

-cin2 
3 3 

     

3 3 3 3 3 

     

3 3 4 3 3 

ouhsc_d49-

1-cin2 
3 3 

  

     

3 3 3 3 3 

     

3 2 3 3 3 

ouhsc_d49-

2-cin1 
2 2 

   

     

2 2 1 2 2 

     

2 2 1 2 1 
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Table 7.5. Whole image and individual segment CIN classifications for 15 images where 

both experts agree on the whole image classification and the individual segment 

classifications vary from the whole image. (Cont.) 

 

 

ouhsc_d56-

1-cin3 
4 4 

 

 

 

   

4 4 3 4 4 

     

4 3 4 4 4 

ouhsc_d62-

1-cin1 
2 2 

   

     

1 1 2 2 2 

     

2 2 1 2 2 

ouhsc_d62-

4-cin3 
4 4 

   

     

3 4 4 4 4 

     

4 4 4 3 4 
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Table 7.5. Whole image and individual segment CIN classifications for 15 images where 

both experts agree on the whole image classification and the individual segment 

classifications vary from the whole image. (Cont.) 

 

 

ouhsc_d68-

1-cin3 
4 4 

 

     

4 4 4 4 4 

     

4 4 4 4 3 

ouhsc_d68-

4-cin3 
4 4 

  

     

4 4 3 4 4 

     

4 3 3 4 4 

ouhsc_d74-

1-cin3 
4 4 

   

     

4 4 4 4 4 

     

3 4 4 4 3 
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Table 7.5. Whole image and individual segment CIN classifications for 15 images where 

both experts agree on the whole image classification and the individual segment 

classifications vary from the whole image. (Cont.) 

 

 

ouhsc_d84-

1-cin3 
4 4 

 

     

4 3 3 3 3 

     

3 3 3 3 3 

ouhsc_lsil3-

2-cin1 
2 2 

  

     

2 2 2 2 2 

     

2 2 1 1 1 

ouhsc_d84-

2-cin3 
4 4 

   

     

4 4 4 4 4 

     

4 4 3 4 4 
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Table 7.5. Whole image and individual segment CIN classifications for 15 images where 

both experts agree on the whole image classification and the individual segment 

classifications vary from the whole image. (Cont.) 

 

 

ouhsc_d15-

2-cin2 
3 3 

 

         

 

10 

segments 

of one 

whole 

image, 

and the 

individual 

manual  

classificat

ion label 

from Dr. 

Frazier 

 2  2  2  2  2 

          
 2  2  3  3  3 

 

 

The goal of analysis in this subsection is to address characteristics of the whole 

image CIN classification that can be extracted from the individual segment CIN 

classifications, particularly when the individual segment CIN classifications vary.  

For example in Table 7.5, in the image (“ouhsc_d15-2-cin2”), most of the 

individual segments are labeled as “2” (CIN 1) by the expert pathologists, but the whole 

image is labeled as “3” (CIN 2).  Thus, the final CIN label is not necessarily determined 

by the classifications of the individual segments, but by the composite of individual 

segment information. In order words, the whole image is labeled as a CIN 2 if it shows 

enough CIN 2 characteristic features, withstanding the number of individual segments 

that may locally characteristic of another CIN grade.  
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 10 segments result distributed in 3 different levels 

In this category of classification results which are shown in Table 7.6, the 

situation becomes a little more complicated where 10 segment results are distributed in 3 

different CIN stages. An image result description is given below as an example: 

In image “ouhsc_d15-1-cin3”, both expert classification results are “4”(CIN 3).  

However, it can be observed from Table 7.6 that Dr. Frazier’s individual segment 

classifications for the 10 are distributed in three different grading levels, the first 3 

segments as “4”(CIN 3) and the others as “3” and “2” differently. According to the first 

three classification results which have the highest grading level of “4”(CIN 3) and 

contain the mid part of the whole epithelium which occupies the major useful 

information, impacting the whole image CIN classification. 

 

Table 7.6. Whole image and individual segment CIN classifications for 9 images 

where both experts agree on the whole image classification and the individual segment 

classifications vary from the whole image. 

Image 

Name 

NLM 

Expert 

Classificati

ons 

Dr. Shelly 

Frazier 

Classificati

ons 

  

Cervical Intraepithelial 

Neoplasia grading scale 

1 = Normal   2 = CIN 

1 

3 = CIN 2   4 = CIN 3 
ouhsc_d15-

1-cin3 
4 4 

          

10 

segments 

of one 

whole 

image, 

and the 

individual 

manual  

classificat

ion label 

from Dr. 

Frazier 

4   4  4 3   2 

          
2   2 3  3  3  
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Table 7.6. Whole image and individual segment CIN classifications for 9 images where 

both experts agree on the whole image classification and the individual segment 

classifications vary from the whole image. (Cont.) 

 

 

ouhsc_d3-2

-cin2 
3 3 

          

 1  1  2  1  2 

          

 1  2  2 

ouhsc_d3-1

-cin3 
  4   4 

 

     

  2   3   4   3   3 

     

4 3 4 3 4 

ouhsc_d55-

1-cin2 
3 3 

   

     

1 2 3 3 2 

     

3 3 3 3 2 
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Table 7.6. Whole image and individual segment CIN classifications for 9 images 

where both experts agree on the whole image classification and the individual 

segment classifications vary from the whole image. (Cont.) 

 

  

ouhsc_d55-

2-cin2 
3 3 

     

1 2 2 2 3 

     

1 1 1 1 2 

ouhsc_d62-

2-cin2 
3 3 

  

     

1 2 3 2 3 

     

3 3 3 3 3 

ouhsc_d62-

3-cin2 
3 3 

   

     

3 3 2 3 2 

     

2 2 2 2 1 
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Table 7.6. Whole image and individual segment CIN classifications for 9 images 

where both experts agree on the whole image classification and the individual 

segment classifications vary from the whole image. (Cont.) 

 

ouhsc_d62-

5-cin3 
4 4 

   

     

2 2 3 3 4 

     

4 3 3 4 3 

 

ouhsc_d65-

5-cin2 
3 3 

   

     

1 2 2 2 2 

     

3 3 3 3 2 
 

 

7.1.2 Zero Existing in Any One of the 10 Segments. Firstly, for the situation of 

“only one zero existing among 10 segments result of one whole image”, there are 4 

images where experts agree on the CIN grades for the whole image and Dr. Frazier 

labeled one of the individual segments as “0”, meaning that the segment was too small or 

did not include enough information to make a CIN grade assignment. 

For the 4 images or 40 segments presented in Table 7.7, “zero-image” can be 

easily found where only a little part of the whole epithelium is located. Also, enough 
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information from a complete slice of the epithelium can’t be addressed from it. Here are 

the zero-images shown in Figure 7.1. 

 

 

 

  

0 0 0 0 

 

Figure 7.1. Single segments which are given "0". 

 

 

 

Compared to the other images which are given a certain CIN grade, the 

“zero-images” are always lack of the ability of showing enough useful information about 

the basal membrane, the nuclei, and the light area at the same time, by which a proper 

decision can be finally made. 

 

Table 7.7. Whole image and individual segment CIN classifications for 4 images 

where both experts agree on the whole image classification with an inconclusive 

individual segment classification (“0”). 

Image 

Name 

NLM 

Expert 

Classificati

ons 

Dr. Shelly 

Frazier 

Classificati

ons 

  

Cervical Intraepithelial 

Neoplasia grading scale 

1 = Normal   2 = CIN 

1 

3 = CIN 2   4 = CIN 3 
ouhsc_d3-3

-cin2 
3 3 

 

 

 

 

 

10 

segments 

of one 

whole 

image, 

and the 

individual 

manual  

classificat

ion label 

from Dr. 

Frazier 

0 3 3 3 3 

 
 

 
 

 

3 3 3 3 3 
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Table 7.7. Whole image and individual segment CIN classifications for 4 images where 

both experts agree on the whole image classification with an inconclusive individual 

segment classification (“0”). (Cont.) 

 

 

 

ouhsc_cin1-

1-1-cin1 
2 2 

 
 

 

  

2 2 2 2 2 

  

 

 

 

2 2 2 2 0 

ouhsc_d68-

5-cin3 
4 4 

     

4 4 4 4 3 

     

3 4 3 4 0 

ouhsc_lsil2-

1-cin1 
2 2 

 

     

2 2 2 2 2 

     

2 2 2 2 0 
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For example from Table 7.7 before, Dr. Frazier and Dr. Zuna classify image 

“ouhsc_lsil2-1-cin1” as a CIN 1, where it can be observed that most of the nuclei are 

located at the top third part of the whole epithelium. Based on Dr. Frazier’s individual 

segment classifications, the 10
th

 segment (end segment) is classified as “0”, as it is seen 

that only a little part of the epithelium is shown and maybe there is not enough 

information provided for a proper classification.   

 More than one zeros existing among 10 segments result of one whole image 

In this category of images there are multiple inconclusive individual segments 

(“0” classifications), which make this category are more complicated than in last group 

presented. Table 7.8 presents the 5 images from the 62 image data set with multiple cases 

of inconclusive individual segments. 

 

Table 7.8. Whole image and individual segment CIN classifications for 4 images 

where both experts agree on the whole image classification with an inconclusive 

individual segment classification (“0”). 

 

Image 

Name 

NLM 

Expert 

Classificati

ons 

Dr. Shelly 

Frazier 

Classificati

ons 

  

Cervical Intraepithelial 

Neoplasia grading scale 

1 = Normal   2 = CIN 

1 

3 = CIN 2   4 = CIN 3 
ouhsc_d49-

4-normal 
1 1 

  

   

10 

segments 

of one 

whole 

image, 

and the 

individual 

manual  

classificat

ion label 

from Dr. 

Frazier 

0 0 1 1 1 

 

  

 

 

1 1 1 1 0 
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Table 7.8. Whole image and individual segment CIN classifications for 4 images where 

both experts agree on the whole image classification with an inconclusive individual 

segment classification (“0”). (Cont.) 

 

ouhsc_d50-

2-normal 
1 1 

   

 

   

 

0 1 1 1 1 

   

  

1 1 1 0 0 

 

ouhsc_gas-

10541-2-no

rmal 

1 1 

   

  

   

0 0 1 1 1 

  

 

 

 

1 1 1 1 0 

 

ouhsc_gas-

10541-1-cin

1 

2 2 

   

  

   

0 0 2 2 2 

    

 

2 2 2 2 0 
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Table 7.8. Whole image and individual segment CIN classifications for 4 images where 

both experts agree on the whole image classification with an inconclusive individual 

segment classification (“0”). (Cont.) 

 

 

ouhsc_lsil3-

3-cin1 
2 2 

   

 

    

0 2 2 2 2 

    

 

2 2 2 0 0 

 

 

 

 

From Table 7.8, the tables of individual segments seem to be not completed, ①

with some blocks empty but, at the same time, with a “0” result at the bottom of them; 

② some blocks are not empty still with a “0” as a result.  

Here it has to be clear, that the blocks which are not empty but with a “0” result 

because the content or segment image of that block does not provide enough information 

for a proper diagnose. 

The empty blocks (individual segments) are generated by the bounding box 

algorithm developed and presented in a previous statement of work, which divides the 

whole image into 10 vertical segments. During the progress of generating 10 segments, 

10 bounding boxes are drawn across the medial axis to contain each part of the 10 

segments.  The empty bounding boxes are always located at both ends of left and right 

direction, which explains why the empty blocks (or bounding boxes) are always the 
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first(or last) one or two. The bounding box algorithm divides the medial axis into tenths 

for obtaining the 10 vertical segments. One of the difficulties in developing the bounding 

box and other techniques is that the ends of the epithelium region are often oriented 

differently than the interior portion of the epithelium region. When the vertical segments 

are extracted based on the medial axis partitioning into tenths, the area of the end vertical 

segments is often less than the interior vertical segments extracted. A potential approach 

to address this problem is to estimate the area of each vertical segment in determining 

where to partition the medial axis for vertical segment extraction such as partitioning the 

medial axis to obtain approximately equal area vertical segments. However, the number 

of individual segments with label “0” does not appear to impact the whole image CIN 

classifications, which is shown in Table 7.9. And the final CIN classification is obtained 

using the same approach presented in Section 7.1.2. 

   

Table 7.9. Image example with end segments as inconclusive (“0”) where both experts 

agree on the whole image classification. 

Image 

Name 

NLM 

Expert 

Classificati

ons 

Dr. Shelly 

Frazier 

Classificati

ons 

  

Cervical Intraepithelial 

Neoplasia grading scale 

1 = Normal   2 = CIN 1 

3 = CIN 2   4 = CIN 3 ouhsc_d49-

4-normal 
1 1 

     

10 segments of 

one whole 

image, and the 

individual 

manual  

classification 

label from Dr. 

Frazier 

0 4 4 4 4 

     

4 4 4 4 0 
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7.2 THE CLASSIFICATION RESULTS IN WHICH TWO EXPERTS DISAGREE 

WITH EACH OTHER 

In this category, 3 images (given in Table 7.10) are shown in which two experts 

give different CIN classifications (within 1 CIN grade) for the whole image 

classification.  For all of these images, the experts differ by 1 CIN grade, meaning that 

the experts have very similar diagnostic interpretations.  Also, note that Dr. Frazier has a 

consistently more conservative classifications (1 CIN grade higher) than Dr. Zuna. 

“Zero images” appear here again in this group of images, and the reason is 

explained in the former group that the bounding boxes have nothing inside because of the 

small size of images. 

 

 

Table 7.10. Whole image CIN classifications on which the experts disagree with 

each other. 

 

Image 

Name 

NLM 

Expert 

Classificati

ons 

Dr. Shelly 

Frazier 

Classificati

ons 

  

Cervical Intraepithelial 

Neoplasia grading scale 

1 = Normal   2 = CIN 

1 

3 = CIN 2   4 = CIN 3 
ouhsc_d46-

2-normal 
1 2 

     

10 

segments 

of one 

whole 

image, 

and the 

individual 

manual  

classificat

ion label 

from Dr. 

Frazier 

1 1 1 1 1 

     

1 1 1 1 1 
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Table 7.10. Whole image CIN classifications on which the experts disagree with each 

other. (Cont.) 

 

 

Image 

Name 

NLM 

Expert 

Classificati

ons 

Dr. Shelly 

Frazier 

Classificati

ons 

  

Cervical Intraepithelial 

Neoplasia grading scale 

1 = Normal   2 = CIN 

1 

3 = CIN 2   4 = CIN 3 
ouhsc_d49-

3-normal 
1 2 

 

 

   

10 

segments 

of one 

whole 

image, 

and the 

individual 

manual  

classificat

ion label 

from Dr. 

Frazier 

0 1 1 1 1 

   

  

1 1 1 0 0 

ouhsc_gas-

10541-3-cin

1 

2 3 

  

   

0 0 2 2 2 

 

 

  

 

2 2 2 2 0 

 

 

And the most interesting thing is, according to the segmentation results from two 

experts that they agree with each other because all the segmentation results for the whole 

images are the same with the final result from NLM expert. But the only thing different is 

the final classification result from Dr. Frazier who gives it a higher CIN grading level 
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than the segment results; like in image “ouhsc_d46-2-normal”, all the segment results are 

“1” (Normal) but the final result shows to be “2” (CIN1). 

From examining all of the categories presented in this report, the individual 

segments can be interpreted as specific CIN grades reasonably.  However, the image 

examples show that the individual segment classifications can vary within an image and 

are required to be interpreted in the context of whole image to facilitate the whole image 

CIN classification.   

The images shown below in Figure 7.2 are the 3 images from which the 10 

segments of each image are generated; they look different because they are in a condition 

before segmenting the epithelium out from the image. Also, these are the images from 

which the experts drew their final classification results. 

 

 

              

ouhsc_d49-3-normal    ouhsc_d46-2-normal     ouhsc_gas-10541-3-cin1 

 

Figure 7.2. Whole image examples. 

 

 

 

 

 

Table 7.11 presents 2 image examples where the experts differ in the whole image 

CIN grades and the individual segment classifications by Dr. Frazier show variation in 

CIN grades. From Table 7.11 the image (“ouhsc_d8-2-cin3”) has inconclusive individual 
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segment classifications (“0”), where the CIN grades are given in four different CIN 

grading (0, 2, 3, 4). Three out of 10 segments are given a 4(CIN 3); however, the whole 

image classification by Dr. Frazier is 3 (CIN 2), which seems to be contradictory with 

what is discussed in the group where multi-levels (more than one) CIN stages exist.   

This illustrates the complexity of having varying local CIN information in the different 

segments and its impact on the whole image classification.   

Using a more detailed analysis, the segments which are diagnosed as “4” in this 

group do not match the CIN 3 – segments which are shown in former groups. The size of 

nuclei is not as large and the color of the epithelium surface is not as dark either. They 

might be thought, to be CIN3, but to a very slight degree which means that the certain 

segments have just started to show a few characteristic feature of CIN 3.  

 

 

Table 7.11. Whole image classification examples in which experts disagree and 

with multiple results within 10 segments. 

 

Image 

Name 

NLM 

Expert 

Classificati

ons 

Dr. Shelly 

Frazier 

Classificati

ons 

  

Cervical Intraepithelial 

Neoplasia grading scale 

1 = Normal   2 = CIN 

1 

3 = CIN 2   4 = CIN 3 
ouhsc_d8-2

-cin3 
4 3 

     

10 

segments 

of one 

whole 

image, 

and the 

individual 

manual  

classificat

ion label 

from Dr. 

Frazier 

0 3 3 4 2 

     

3 3 4 4 0 
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Table 7.11. Whole image classification examples in which experts disagree and with 

multiple results within 10 segments. (Cont.) 

 

 

Image Name 

NLM 

Expert 

Classificati

ons 

Dr. Shelly 

Frazier 

Classificati

ons 
 

Cervical Intraepithelial 

Neoplasia grading scale 

1 = Normal   2 = CIN 

1 

3 = CIN 2   4 = CIN 3 
ouhsc_d14-1-

cin3 
4 3 

     

10 

segments 

of one 

whole 

image, 

and the 

individua

l manual  

classifica

tion label 

from Dr. 

Frazier 

4 4 3 3 3 

  

 

  

3 4 4 4 3 

 

 

 

 

Also from Table 7.11, the image “ouhsc_d14-1-cin3” has different expert whole 

image classifications, where one from Dr. Frazier is more conservative to be “3”(CIN 2) 

other than “4”(CIN 3) from Dr. Zuna. As it can be seen, in most of the 10 segments, dark 

nuclei are gathering around about the top half of the epithelium, but some light ones are 

in the bottom half, and considering all the classification of all the 10 segments, the “mid 4 

images” are all diagnosed as “3”, which may be the reason why it is classified as CIN 2 

that the mid-part segments contain the majority of convincing information that can be 

used for a reasonable CIN classification. 

Overall, examining the CIN classifications for the 62 image data set and 620 

segments, only 30 segments are given “0”, meaning that those segments exist without 
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enough useful information for CIN classification. Below follows the statistical diagram 

from the segment results of Dr. Frazier in Figure 7.3: 

 

 

    

 

Figure 7.3. Distribution of different CIN grading scales over 620 segments.  

 

 

 

 

 

According to the statistical information drawn from all the classification results, 

compared between two experts, it is known that Dr. Frazier’s classification is more in 

detail; all of the 10 segments results of every image are classified; Meanwhile, Dr. 

Frazier’s results tend to be more conservative in that they sometimes shows a lower CIN 

level or even “0” at the lack of enough information, while most of the final results for the 

whole images remain the same with the NLM expert’s classifications. 

Figure 7.4 shows the number of the individual segment results which match the 

final CIN classifications of those images. As observed, it is difficult to assess which 

segment takes a great advance in leading to the correct whole image CIN classification. 
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Figure 7.4. Distribution of individual segment classifications which match the whole 

image CIN classifications. 

 

 

 

 

Figure 7.5 below shows the statistical result that the number of each segment 

which fits the final result for the whole image; and it is counted after eliminating the data 

from Section.7.1 (One same CIN stage for all the 10 segments of one whole image). As it 

is seen, generally, that the 6
th

 and 9
th

 segment match the most in comparison with the 

final classification; Meanwhile, the 1
st
, 8

th
 and 10

th
 segment have the worse matching 

accordingly. 

 

 

 

Figure 7.5. Distribution of individual segment classifications which match the whole 

image classifications where there is variation in the 10 individual segments within an 

image. 
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Figure 7.6 is obtained by eliminating “10 segments result distributed in 2 different 

levels” data from the former data, the 6
th

 and 7
th

 still remain high and the 3
rd

 segment 

stands out in this result. And if a glance is given to the former two diagrams, it can be 

found that all the three segments (3
rd

, 6
th

, 7
th

) are relatively high-matching compared with 

the rest of the individual segments. 

 

 

 

 

 

Figure 7.6. Distribution of segment results which match the final classification 

results (without all same results, and group with 2 different CIN levels). 

 
 

 

 

 

There are 5 images in which the two experts differ in their CIN grade 

classifications.  For all 5 images, the CIN classifications differ by a single grade. 

Accordingly, there are no significant variations in CIN grade classifications for the whole 

image for the two expert pathologists.    

0
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10

15

20
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8.  CONCLUSION 

In this study, an automated CIN grade classification of vertical segmented 

epithelium regions is developed. The method developed includes medial axis 

determination, bounding box determination and partitioning the whole epithelium region 

into several vertical segments with the respect of medial axis. Then as many as 137 

features are generated and taken all through experiment procedures which include 

leave-one out, normal vs. CIN, Normal+CIN1 vs. CIN2+3, off by one, and yield the final 

results through data fusion. And the features generated consist of texture, color, triangle, , 

nuclei, light area, combined features, layer-by-layer triangle features, and basal 

membrane features. 

Experimental results from this study show higher CIN classification with 90.32% 

for exact label classification and 96.77% for normal vs. CIN classification compared to 

70.5% and 90.2%, respectively, from previous research [8]. Some of the features in this 

study such as nuclei, light area, and layer-by-layer triangle features outperform other 

features and contribute a lot in improving the CIN classification, demonstrating the 

potential for vertical segmentation and the horizontal layer by layer analysis for 

enhancing CIN grading for the epithelium. Overall, most of the CIN grade assessments 

for the epithelium histology images from the two pathologists agree contribute to the 

similarity of automated CIN classification results reported in this thesis. The epithelium 

images which the pathologists disagree provide the basis for discovering different ways 

to fuse classification data for each single segment or a different method to update the 

weight in the neural network used in classification.  
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