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ABSTRACT 

This thesis presents a microcontroller- and DC-DC converter-based photovoltaic 

(PV) simulator which emulates the output characteristic of a PV module. The current-

voltage (IV) characteristic of a PV module is implemented as a look-up-table that 

generates an output reference current based on a measured output voltage. The control 

mechanism is based on a double current mode controller that consists of a predictive 

current mode controller and a proportional-integral (PI) controller arranged in an inner 

loop and outer loop configuration. The PI controller is designed based on classical phase 

margin and gain margin criteria to ensure system stability. The performance of the 

portable PV simulator prototype of 85 W is examined in terms of its steady state IV curve 

matching capability and the convergence time corresponding to step changes in load and 

insolation levels. The result shows a well behaved and responsive PV simulator that can 

be treated as a real PV module in most situations. 
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1. INTRODUCTION 

Solar energy is one of the few renewable energy sources that have gained broad 

popularity around the world due to its high predictability and availability. One way to 

harness solar energy is by converting it to electrical energy using photovoltaic (PV) 

modules. One challenge when interfacing devices to PV modules is that the outputs of 

PV modules are non-linear. This non-linear output characteristic of PV modules requires 

devices that interface with them to have maximum power point tracking (MPPT) in order 

to maximize the efficiency of PV modules [1, 2]. Field testing devices with PV modules 

can be very challenging. First, PV modules are still expensive despite the fact that their 

price has been on a steady decline over the past decade. Installation of PV modules is 

also an expensive and time-consuming process. Second, the outputs of PV modules are 

dependent on the insolation level and temperature, which vary depending on the time of 

year and weather of the day. As a result, test conditions cannot be controlled, and 

repeatable test results cannot be obtained. 

An alternative to field testing a PV system is to replace the PV module with a PV 

simulator, which is a device that emulates the output characteristic of a PV module. A PV 

simulator can be used within a lab environment at any time of the year. A few methods 

have been devised to simulate a PV module. The first method is to amplify the output of a 

PV cell or photodiode using analog amplifier circuits [3]. This requires the use of a 

device that can simulate natural sunlight. The second method is to build an equivalent 

circuit of a PV module using transistor and resistor networks and to amplify the signal 

from the equivalent circuit with analog circuits and a DC-DC converter [4, 5]. The last 

method is to digitally implement the output characteristic of a PV module through a look-

up-table (LUT) that resides in the memory of a microcontroller and convert the digital 

signal to power output though a DC-DC converter [6-10]. This last method has gained 

increased popularity due to the ever increasing speed and capabilities of microcontrollers 

and their declining cost. The major advantage of digitally implemented PV simulators is 

that they provide a controlled environment where users can set conditions such as 

temperature, insolation level, the type of PV modules and the shading scenarios. 
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Digital control of a pulse-width modulation  (PWM) converter is made possible 

with the inclusion of a microcontroller in the design. A digital system has the advantage 

of high noise immunity, immunity to analog component variations, fast design process 

and programmability for multiple applications, as compared to an analog counterpart [11-

13]. With digital control, more complex control schemes can be easily achieved, such as 

the double current mode controller described in the present work. However, digital 

control limits the bandwidth of a system due to calculations delays and zero order hold 

actions originated from microcontrollers and sampling delays from analog-to-digital 

converters (ADCs) [14, 15]. Direct implementation of analog controllers in the digital 

domain would require relatively high switching frequency in order to get similar 

performance, which is not practical due to limited calculation capabilities of 

microcontrollers and excessive power loss in DC-DC converters. Different types of 

predictive control methods have been proposed to address calculation delay limitations of 

microcontrollers [11, 12, 14, 16]. They have been proven to alleviate the negative effect 

that calculation delay has on system bandwidth.  

In this thesis, a PV simulator is implemented using a microcontroller and a DC-

DC converter. The IV characteristic of a PV module is implemented as a LUT. The DC-

DC converter is controlled by a double current mode controller that consists of an inner 

predictive current mode controller and an outer proportional-integral (PI) controller. This 

is a new approach to create a stable and reliable PV simulator.  

In Chapter 2, the mathematical model of a PV module is derived and two methods 

to implement the mathematical model are proposed. In Chapter 3, the small signal 

transfer functions are derived, and the inner predictive current mode controller and the 

outer PI controller are designed to satisfy gain margin and phase margin requirements. 

Computer simulation of the PV simulator is done in Chapter 4. In Chapter 5, the 

hardware setup of the PV simulator is described in terms of the DC-DC converter 

topology, component selection and the requirements of the digital signal processor 

(DSP). The experimental results of the PV simulator prototype are shown in Chapter 6. 
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2. PV MODULE IV CURVE IMPLEMENTATION 

2.1. PV MODULE MODELING 

 

 

 

 

Figure 2.1. Equivalent circuit model of a PV cell [17] 

 

 

 

A PV Cell can be modeled as a network that consists of a current source, a diode, 

a shunt resistor and a series resistor configured as shown in Fig. 2.1 [17]. The diode 

equation is given as [18] 

 

 
0 ( 1)

D

t

V

V

DI I e   (1) 

  

 
t

AkT
V

q
  (2) 

 

where ID is the current though the diode, VD is the voltage across the diode, I0 is reverse 

saturation current, Vt is thermal voltage, A is ideality factor, k is Boltzmann’s constant, T 

is absolute temperature and q is elementary charge. A PV module is made of many series-

connected PV cells as shown in Fig. 2.2. As a result, the voltage across each cell is the 

total output voltage of the PV module divided by the number of series-connected cells, 

and the current through each PV cell is the same as the output current of the PV module. 
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Figure 2.2. A PV module consists of series-connected PV cells 

 

 

 

The output equation that relates the output current and output voltage of a PV 

module can be derived as 

 

 
 

0 1
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where IPVout is the output current of the PV module, VPVout is the output voltage of the PV 

module, Rs is the series resistance of the PV cell model, Rsh is the shunt resistance of the 

PV cell model, N is the number of series-connected cells, Iph is the photo-generated 

current which is proportional to the amount of insolation received by the PV module as 
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shown in (4) and (5), Iph(max) is the photo-generated current at 100% insolation, and Λ is 

the irradiance from the sun received by the PV module, which is normalized to standard 

test condition (STC) of 1000 W/m
2 

to find α, the insolation percentage. From (1)-(3), the 

IV curve of a PV module is characterized by Rs, Rsh, N, Iph, A, T and I0. By varying these 

parameters, one can model many different kinds of PV modules under different 

environmental conditions. 

However, solar panel datasheets generally do not specify the parameters used in 

(3) explicitly, so these parameters must be extracted from other specified parameters 

from the datasheets. One technique requires only three values: the open circuit voltage, 

the short circuit current and the maximum power point (MPP) voltage and current [19]. 

The core of this technique involves stepping through all possible values of Rs and Rsh 

until the requirement that the derivative of power over voltage is zero is satisfied at the 

MPP. The Matlab
1
 code to implement this technique is attached in Appendix C. The 

datasheet parameters and the extracted equivalent circuit model parameters have been 

compiled in Table 1 for the PV module SW-S85P from SunWize in Chapter 6. 

 

2.2. IV CURVE IMPLEMENTATION 

The PV module IV characteristic is represented by a LUT, which is updated 

whenever the controller receives a command to change the operating conditions, such as 

a different insolation level. In order to store the IV curve as a LUT in memory, a set 

number of matching output voltage and output current pairs has to be determined 

according to (3). For the double current mode controller to be presented in this paper, an 

output current reference is generated according to a measured output voltage. For 

simplicity, the output voltage corresponding to the i
th

 element of the LUT is set as 

 

 [ ] , 0,1,2, , ( 1)OC
PVout size

size

V
V i i i A

A
     (6) 

 

                                                 

1
 Matlab is a registered trade mark of The Math Works, Inc. 
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where VOC is the open circuit voltage of the IV curve and Asize is the size of the LUT. Asize 

is limited by the random access memory (RAM) size of the microcontroller and can be 

increased if higher resolution is necessary and RAM permits. The i
th

 element of the LUT, 

which contains the output current reference IPVout[i], can be calculated according to (3). 

However, (3) has no analytical solution because IPVout  is on both sides of the equation 

and in a transcendental function, so Newton’s method is used to find the numeric 

solutions. Equation (3) can be rearranged into 

 

  

[ ]
[ ]

0

[ ]
[ ]

[ ] [ ] 1

PVout
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V i
I i R PVout

N PVout s
V
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sh

V i
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R

    
 

     
 
 

 (7) 

 

with the output current reference IPVout[i] as its independent variable. The i
th

 LUT entry is 

the root of f(IPVout[i])=0. Newton’s method is given as [20] 
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N

V s s
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  .

 (9) 

 

IPVout[i][n+1] is the approximation to the real root of f(IPVout[i])=0 after n+1 iterations. 

The initial guess IPVout[i][0]can be set to the short circuit current of the IV curve. 

Once the array is filled up with voltage and current pairs, it may be used to 

represent the PV module. The index i to the array is calculated according to 
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where Vout is the output voltage of the PV simulator. 

Newton’s method gives accurate solutions and only the output voltage is required 

to calculate the corresponding output current, which means only the output voltage needs 

to be measured to generate the index i. However, setting up the LUT requires a 

considerable amount of computing power from the microcontroller, which is a limited 

resource in embedded systems. This makes real time changes to the IV curve implausible 

due to large calculation delays. 

Another technique to calculate the voltage and current pairs involves expressing 

the output current as a function of the diode voltage as 

 

 
 

0 1t
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VD becomes the indexed voltage to the LUT, and its value corresponding to the i
th

 

element of the LUT is set as 
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where ISC is the short circuit current of the IV curve. Then IPVout[i] is calculated by 
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The index i to the LUT is generated according to 
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size

OC SC s

V I R N
i round A
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 (15) 

 

One drawback of this technique is that it requires the knowledge of both the 

output voltage and output current, which requires an extra current sensor besides an 

output voltage sensor, to generate the index i. However, the extra current sensor is 

already in place because the output current is regulated. This method does not require 

iterations of Newton’s method and therefore drastically reduces the calculation time 

required to setup the LUT. The implementation of the PV simulator described below 

incorporates the abilities to simulate real time insolation and temperature changes, which 

is achieved with the fast method of (11) to (15). The process to setup the LUT is outlined 

in Fig. 2.3. The final current values that are stored in the LUT and their corresponding 

voltage values are shown in Fig. 2.4. 

 

 

 

 

Figure 2.3. The LUT setup process 
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Figure 2.4. Final current values of the LUT and their corresponding voltage values 

 

 

 

The IV curves of the PV module SW-S85P corresponding to 100%, 80%, 60%, 

40% and 20% insolation levels along with their MPPs are shown in Fig. 2.5 with the 

diode voltage method. The same IV curves can also be obtained with Newton’s method. 

 

 

 

 

Figure 2.5. IV curves of the PV module SW-S85P using equivalent circuit modeling 
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To implement real time insolation and temperature changes to the IV curve, the 

LUT must be modified in real time; however, the LUT cannot be generated within one 

switching cycle, so the reference current signal would come from a partially modified 

LUT with discontinuities in it. This problem can be solved by using two separate LUTs. 

One LUT is used to generate the reference current and the other LUT is modified by the 

microcontroller in a background process to reflect insolation and temperature changes as 

shown in Fig. 2.6. Both processes shown in Fig. 2.6 run simultaneously. The variable S is 

used to determine the role of each LUT, and the symbol % is used to denote modulus 

operation. 

 

 

 

 

Figure 2.6. The IV curve implementation process 
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3. CONTROLLER IMPLEMENTATION 

3.1. DC-DC CONVERTER IMPLEMENTATION 

To achieve a variable output voltage, a synchronous buck converter topology is 

utilized as shown in Fig. 3.1. This topology has high efficiency over a wide operating 

range, a key feature given the need to reach both short-circuit and open-circuit 

conditions. 

 

 

 

 

Figure 3.1. A synchronous buck converter 

 

 

 

3.2. CONVERTER SMALL SIGNAL MODELING 

 

 

 

 

Figure 3.2. Control block diagram of the PV simulator 
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The control block diagram is shown in Fig. 3.2. In order to design a controller for 

the simulator, the small signal transfer functions of the buck converter must be derived. 

Here only the small signal transfer functions for the buck converter operating in 

continuous conduction mode (CCM) are needed because the buck converter is 

synchronous and will never run into discontinuous conduction mode (DCM). These small 

signal transfer functions can be derived using averaged switch modeling or state space 

averaging; both methods produce the same transfer functions [21]. The process accounts 

for the inductor DC resistance and equivalent series resistance (ESR) of the capacitor. 

Assuming a pure resistive load and that the inductor DC resistance and the ESR of the 

capacitor are much less than the load resistance, the continuous time small signal transfer 

functions are derived as 
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where Gvd(s) is the small signal transfer function of output voltage over duty ratio, Gid(s) 

is the small signal transfer function of inductor current over duty ratio, Giv(s) is the small 

signal transfer function of output current over output voltage, L is the inductance, C is the 

capacitance, RESR is the ESR of the output capacitor, RL is the DC resistance of the 

inductor, Vin is the input voltage, and R is the load resistance. 

 

3.3. INNER PREDICTIVE CURRENT MODE CONTROLLER 

Predictive current control is an accurate digital control technique that is based on 

inductor current predicted by sampled inductor current and output voltage. There are 

three kinds of predictive current mode controls – peak current control, average current 

control and valley current control. There are four kinds of modulation methods – trailing 

edge, leading edge, trailing triangle and leading triangle. Each of the three current control 

methods must be paired with the correct modulation method in order to be stable over the 

whole range of the duty ratio. Here average current control is used to increase noise 

immunity, and it is paired with trailing triangle modulation to give stability over the 

whole duty ratio range of the buck converter. The switching diagram is shown in Fig. 3.3. 

Sampling occurs at the beginning of each switching period. By the end of the second 

switching period, the average inductor current reaches the reference current set at the 

beginning of the first switching period. Regardless of the current control method, the 

predictive current mode control law for a buck converter is given as [12] 
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where d[n+1] is the predicted duty ratio for the next switch cycle, d[n] is the duty ratio 

of the current switch cycle, IL[n] is the measured inductor current for the current switch 

cycle, Iref[n] is the reference inductor current for the current switch cycle, and Ts is the 

switching period. The small signal discrete time transfer function of duty ratio over 

current error is given as [13] 
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Figure 3.3. Average predictive current mode switch diagram 
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3.4. OUTER PI CONTROLLER DESIGN 

From the block diagram shown in Fig. 3.2, the discrete time loop gain of the plant 

without the compensator Gc(z) can be found using loop reduction or Mason’s Law. 

Assuming that the gains from the ADCs have been adjusted to unity, the discrete time 

loop gain of the plant is found as 
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where Gvd(z),  Gid(z) and Giv(z) are the discrete time equivalents of Gvd(s), Gid(s) and Giv(s) 

respectively. To design the compensator in the continuous time domain, the loop gain 

from (22) is converted to the continuous time domain by converting Fm(z) to the 

continuous time domain Fm(s) using bilinear transform as 
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Then the loop gain becomes 
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where 
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The compensator Gc(s) is designed based on the common PI controller 
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The small signal transfer functions of the buck converter are dependent on the load 

condition. To eliminate the need for mode switching or gain scheduling in the controller, 

control gain must ensure stability under the load conditions that place the most stringent 

requirements on the PI controller. If the load resistance is assumed to range from 0.25 Ω 

to 200 Ω, then a PI controller can be designed to satisfy both end point load conditions. 

Using Matlab, a range of operating conditions can be considered so that a PI controller 

can be produced to satisfy the requirements that the phase margin is greater than 75° and 

gain margin is greater than 6 dB. The zero of the PI controller is determined primarily by 

the light load condition, while the gain is determined primarily by the heavy load 

condition. Considering both, a stable controller may be found for the entire operating 

range. The PI controller is chosen to be 
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The discrete time equivalent of Gc(s) is transformed as  
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The bandwidth of the system increases as load resistance decreases. The Bode 

plots of the compensated loop gains when the system is operating at minimum load 

resistance, maximum load resistance and MPP load resistance are shown in Fig. 3.4. 
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Figure 3.4. Compensated plant loop gains for multiple load conditions 

 

 

 

3.5. SYSTEM STABILITY ANALYSIS 

The continuous time loop gain of the whole closed system, which includes the 

LUT and the plant, is found to be  
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GLUT is the small signal gain from the LUT. From (29), the stability of the whole system 

depends on the gain of the LUT since the plant is designed to be stable. The IV curve of 

the PV module to be simulated in Chapter 6 is shown in Fig. 3.5 along with the 

corresponding GLUT. From Fig. 3.5, the absolute value of the IV curve slope increases as 

the voltage increases, and the worst case GLUT is -1.797 S. At this worst case GLUT, the 

loop gain of the whole closed system is shown in Fig. 3.6. As shown in Fig.3.6, the 

system still has adequate gain and phase margins and is stable. 
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Figure 3.5. PV module IV curve and gain 

 

 

 

 

Figure 3.6. Bode plot of worst case system loop gain 
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4. SIMULATION RESULTS 

Simulation is done in Matlab Simulink
2
 with the help of the toolset PLECS

3
. The 

top level model schematic is shown in Fig. 4.1. 
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Figure 4.1. Top level schematic of the PV simulator simulation model 

 

 

 

The “Power Stage” block shown in Fig. 4.2 houses the two stage DC-DC converter to be 

discussed in Chapter 5. 

                                                 

2
 Matlab Simulink is a registered trade mark of The Math Works, Inc. 

3
 PLECS is a registered trade mark of Plexim GmbH. 
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Figure 4.2. Power stage simulation model of  the PV simulator 

 

 

 

The circuit parameters used in the power stage simulation model are from those shown in 

Chapter 6 to match the experimental setup. The “IV LUT” block houses the IV curve 

LUT of the PV module. It is implemented through the “C-script” block available from the 

PLECS toolset as shown in Fig. 4.3. 

 

 

 

 

Figure 4.3. Inside of “IV LUT” block 
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The “C-script” block allows users to implement algorithms in C code. This greatly 

increases the capabilities and flexibilities of Simulink. The C code that goes in this “C-

script” block can be extracted from the C codes shown in Appendix B. The “Control” 

block is implemented in a similar manner as shown in Fig. 4.4. The “Delay” block before 

the output “d2” is to simulate the zero-order hold action of a microcontroller. 

 

 

 

 

Figure 4.4. Control block simulation model for PV simulator 

 

 

 

The steady state IV curve matching capability of the simulator is shown in Fig. 4.5 at 

insolation levels of 100%, 60% and 20%. The dynamic load step responses of the 

simulator at five different operating points on the IV curve as shown in Fig. 4.6 are 

shown from Fig. 4.7 to Fig. 4.11. The dynamic responses corresponding to insolation 

changes for three fixed load conditions are shown from Fig. 4.12 to Fig. 4.14. 
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Figure 4.5. Computer simulated performance of the PV simulator 

 

 

 

 

Figure 4.6. Dynamic load step response test operating points 
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Figure 4.7. Computer simulated output waveforms of the PV simulator when load 

changes between 1.0Ω and 0.9Ω (operating point A) 

 

 

 

 

Figure 4.8. Computer simulated output waveforms of the PV simulator when load 

changes between 2.2Ω and 2Ω (operating point B) 
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Figure 4.9. Computer simulated output waveforms of the PV simulator when load 

changes between 3.2Ω and 2.9Ω (operating point C) 

 

 

 

 

Figure 4.10. Computer simulated output waveforms of the PV simulator when load 

changes between 4.4Ω and 4Ω (operating point D) 

 

 



 

 

25 

 

Figure 4.11. Computer simulated output waveforms of the PV simulator when load 

changes between 9.6Ω and 8.7Ω (operating point E) 

 

 

 

 

Figure 4.12. Computer simulated insolation change step response with load of 1.25Ω 
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Figure 4.13. Computer simulated insolation change step response with load of 4.07Ω 

 

 

 

 

Figure 4.14. Computer simulated insolation change step response with load of 5.4Ω 
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5. HARDWARE IMPLEMENTATION  

5.1. POWER STAGE OF THE PV SIMULATOR 

The simulator is powered by a Li-ion battery pack to create a portable device; 

however, it can also be powered by a fixed or programmable DC power supply when they 

are available. A battery or DC power supply with output voltage higher than the open 

circuit voltage of the PV module to be simulated might not be readily available, so a two-

stage synchronous DC-DC converter is devised as shown in Fig. 5.1. 

 

 

 

 

Figure 5.1. PV simulator hardware block diagram 

 

 

 

The first stage is a step-up synchronous boost converter whose steady state output 

voltage is approximately 
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where Vbat is the input voltage from the battery or an equivalent power source, Db is the 

boost converter duty ratio and Vb is the output voltage of the boost converter. For the 

prototype built, the boost converter outputs a nominal voltage of 30 V from a nominal 

input voltage of 14.8 V from the Li-ion battery pack. The second stage is a step-down 

synchronous buck converter whose output voltage is approximately 

 

 out bk bV D V  (31) 

 

where Vout is the output voltage and Dbk is the duty ratio of the buck converter. For the 

prototype built, the buck converter has an output voltage range of 0 V to 30 V from a 

nominal input voltage of 30 V, which means Dbk will range from zero to unity. One major 

advantage of using a synchronous topology is high efficiency, which is essential for 

portable applications. Another advantage of using a synchronous topology here is that the 

DC-DC converter will never run into DCM. This allows for a much simpler controller 

implementation that does not need to account for both CCM and DCM, which are 

qualitatively different in nature and have different dynamic models. 

However, with a synchronous topology, the number of MOSFETs used is 

increased from two to four, which means the required number of PWM signals also 

increases from two to four. Dead-bands must be introduced between Q1 and Q2, and 

between Q3 and Q4 to prevent short-circuiting of the filter capacitor CB due to the 

inherent turn-on and turn-off delays of MOSFETs. Since the source nodes of the high-

side MOSFETs Q2 and Q3 have to be floating, the gate drivers must be able to provide 

floating gate signals to these high-side MOSFETs. In the present design, the “low and 

high side” gate driver IR2110 from International Rectifier is used. This type of gate 

driver requires that the source node of the high-side MOSFETs be connected to the drain 

of the low-side MOSFETs. This means that the body diodes of Q2 and Q3 will be 

temporarily conducting whenever Q2 and Q3 are not fully turned on and are required to 

conduct current. The body diode of a MOSFET is inefficient because it has 
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comparatively high forward voltage and reverse recovery charge, so the Schottky diodes 

D1 and D2 are used to bypass the body diodes in Q2 and Q3 to increase efficiency. 

 

5.2. INDUCTOR AND CAPACITOR SELECTION 

The inductor current waveform of the buck converter is shown in Fig. 5.2. 
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Figure 5.2. Buck converter inductor current 

 

The ripple current then can be calculated by 
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where ΔIL is the inductor peak-to-peak current ripple, and L2 is the buck converter 

inductor. Substituting (31) in (32) and solving for L2 gives 
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where fsw is the switching frequency. When Vout is equal to half of Vb, L2 is maximized. 

This leads to 
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Equation (34) gives the minimum required inductance for a specified inductor peak-to-

peak current ripple requirement for the proposed PV simulator. The minimum required 

output capacitor value to satisfy output voltage peak-to-peak ripple requirement is given 

as [21]  
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where ΔVout is the peak-to-peak output voltage ripple. In the PV simulator prototype, the 

inductor value and capacitor value selected are to satisfy a peak-to-peak inductor current 

ripple of 1 A and a peak-to-peak output voltage ripple of 50 mV respectively.  

Since the second stage buck converter acts as a low pass filter to the output 

voltage of the first stage boost converter, there is a lot of flexibility in the inductor and 

capacitor values for the boost converter. However, the boost converter acts as an input 

filter for the buck converter, so the output impedance of the boost converter must be less 

than the input impedance of the buck converter to ensure system stability. In order to 

avoid multi-stage instability, the filter capacitor Cb should be chosen to be as large as 

reasonable. In the PV simulator prototype, Cb is chosen to be twice as large as Cout, and 

L1 is chosen to be the same as L2. 

 

5.3. THE DSP 

The DSP is required to have three ADC channels, four PWM output channels, 

built-in or external RAM and a processing unit, preferably with floating point math 

capability. The ADCs are used to measure the output voltage, output current and the buck 

converter inductor current, as needed by the double current mode controller. The PWM 

signals that go into Q1 and Q2 should run in complementary mode, which means only 

one MOSFET can be turned on at a time, with preset dead-band. This also applies to the 

PWM signals that go into Q3 and Q4. For the PV simulator prototype, the DSP chosen is 

the 32-bit TMS320F28335 by Texas Instrument. The DSP runs at 150MHz and has a 

built-in floating-point-unit, 16 channels of 12-bit ADCs, and six PWM modules, each 
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with two PWM output channels that can run in complementary mode with preset dead-

band. 
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6. EXPERIMENTAL RESULTS 

6.1. PV SIMULATOR PROTOTYPE 

The PV simulator has been built with the circuit parameters shown in Table 6.1. 

The physical layout of the circuit board is shown in Fig. 6.1. 

 

 

 

 

Figure 6.1. PV simulator prototype built 

 

 

 

The main restriction to the frequency is the calculation speed of the 

microcontroller since it has to finish all required calculation before the next switching 

period starts. The PV simulator is set to simulate the multi-crystalline PV module SW-

S85P from SunWize. Its datasheet parameters and the calculated parameters for the 

equivalent circuit model shown in Chapter 2 are given in Table 6.2. Note that the circuit 

parameters from the datasheet are taken under STC, where the temperature is 25 °C and 

the irradiance is 1000 W/m
2
 (100% insolation). 
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Table 6.1. PV Simulator Parameter 

DC-DC converter parameters 

Switching Frequency (fsw) 100  kHz 

Inductor (L1) 138  μH 

Inductor (L2) 138  μH 

Inductor DC Resistance(RDC) 100  mΩ 

Input Capacitor (Cin) 560  μF 

Filter Capacitor(CB) 1      mF 

Output Capacitor (Cout) 560  μF 

Output Capacitor ESR(Resr) 54    mΩ 

 

 

 

Table 6.2. PV Module Parameters 

Datasheet Parameters (STC) 

Number of Cells in Series (N) 72 

Short Circuit Current (Isc) 5.4    A 

Open Circuit Voltage (Voc) 22     V 

Voltage at Max. Power (Vmpp) 17.4  V 

Current at Max. Power (Impp) 4.9    A 

Maximum Output Power (Pmpp) 85     W 

Model Parameters 

Internal Series Resistance (Rs) 342    mΩ 

Internal Shunt Resistance (Rsh) 1.115 KΩ 

Reverse Saturation Current (I0) 73.42 nA 

Photo-generated Current (100% Insolation) (Iph) 5.402 A 

Ideality Factor (A) 0.4728 

 

 

 

The outputs of the PV simulator prototype when connected to different constant current 

loads are shown in Fig. 6.2 for 100%, 60% and 20% insolation levels. As shown in Fig. 

6.2, the output of the PV simulator prototype follows the ideal IV curves consistently 

without running into stability issues. 
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Figure 6.2. PV simulator prototype’s performance 

 

 

 

The experimental setup to test the dynamic response of the simulator is shown in 

Fig. 6.3, where Rf is the controlled load, Qf is the controlled load switch and P is the gate 

control signal with a switching frequency of 100 kHz. The load step responses of the PV 

simulator prototype, corresponding to the five different operating points on the IV curve 

shown in Fig. 4.6, are shown from Fig. 6.4 to Fig. 6.8, where the top trace is the output 

voltage, the middle trace is the output current and the bottom trace is the load switch. Fig. 

6.9 to  Fig. 6.14 show the insolation step responses of the PV simulator prototype in the 

MPP region, where the top trace is the output current and the bottom trace is the output 

voltage. The load step response experimental results are comparable to the simulated load 

step responses shown in Chapter 4, as measured by rise time, fall time, settling time and 

overshoots. The maximum settling time of the prototype is about 500 μs. Therefore, the 

PV simulator prototype can be perturbed, as by a MPPT controller, with a sampling 

frequency of up to 2 kHz. 
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Figure 6.3. Experiment setup for the PV simulator/PV module load dynamic response 

 

 

 

 

Figure 6.4. Step response when load changes between 1Ω and 0.9Ω. 
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Figure 6.5. Step response when load changes between 2.22Ω and 2Ω. 

 

 

 

 

Figure 6.6. Step response when load changes between 3.2Ω and 2.9Ω. 
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Figure 6.7. Step response when load changes between 4.4Ω and 4Ω. 

 

 

 

 

Figure 6.8. Step response when load changes between 9.6Ω and 8.7Ω. 
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Figure 6.9. Insolation step change (Insolation 100% - 60%) (Load = 1.24Ω) 

 

 

 

 

Figure 6.10. Insolation step change (Insolation 60% - 100%) (Load = 1.24Ω) 
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Figure 6.11. Insolation step change (Insolation 100% - 60%) (Load = 3.14Ω) 

 

 

 

 

Figure 6.12. Insolation step change (Insolation 60% - 100%) (Load = 3.14Ω) 
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Figure 6.13. Insolation step change (Insolation 100% - 60%) (Load = 4.23Ω) 

 

 

 

 

Figure 6.14. Insolation step change (Insolation 60% - 100%) (Load = 4.23Ω) 

 

 

 

6.2. PV MODULE DYNAMIC RESPONSE 

With the setup shown in Fig. 6.3, the load step responses of the PV module SW-

S85P are determined and the results are shown from Fig. 6.15 to Fig. 6.17 with a load 

switching frequency of 100 kHz. The settling time increases as the output current 
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increases, and the output takes about 5 μs to settle for the worst case, which translates to a 

sampling frequency of 200 kHz. 

 

 

 

 

Figure 6.15. PV module step response when load changes between 2.34Ω and 2.14Ω 

 

 

 

 

Figure 6.16. PV module step response when load changes between 4.23Ω and 3.67Ω 
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Figure 6.17. PV module step response when load changes between 8.46Ω and 7.33Ω 
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7. CONCLUSION 

7.1. RESEARCH FINDINGS 

This thesis presents a digitally implemented PV simulator which consists of a DC-

DC converter and a DSP. The IV characteristic of the PV module of interest is 

implemented as a LUT that resides in the RAM of a microcontroller. A double current 

mode controller that consists of a PI controller and a predictive current mode controller is 

used to regulate the output current of the DC-DC converter to match the IV curve in the 

LUT. With a double current mode controller, the stability of the system is guaranteed 

over a wide range of load conditions. A portable PV simulator prototype of 85 Watts is 

built to demonstrate the effectiveness of the presented method. It is shown that the 

prototype has excellent IV curve matching capability, and it can be perturbed, as by a 

MPPT controller, with a sampling frequency of up to 2 kHz. The dynamic response of the 

physical PV module of interest is also examined, and it has a maximum settling time of 

approximately 5 μs, which translates to a maximum sampling frequency of 200 kHz. It is 

observed that the settling time of the PV simulator prototype is significantly more than 

the settling time of a real PV module. The effectiveness of the PV simulator prototype 

hence is dependent on the MPPT algorithm and its sampling frequency. Even though the 

PV simulator prototype falls short of the step response of a real PV module, this gap can 

be bridged by better component selection and faster microcontrollers. 

 

7.2. FUTURE WORK 

It is possible to improve the dynamic response of the simulator prototype by 

reducing the size of the output capacitor while at the same time satisfying the output 

voltage ripple requirement. For a fixed switching frequency, the selection of the output 

capacitor for the simulator prototype is dominated by the ESR, so the best way to reduce 

the size of the output capacitor is to replace it with a capacitor of a different material, 

such as Polymer Aluminum, which has lower ESR than Aluminum Electrolytic 

capacitors. Another way to reduce the size of the output capacitor is to reduce the 

inductor ripple by using large inductor values. However, larger inductor values mean 

lower rate of change of the inductor current, which could limit the system bandwidth. A 
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method to balance inductor and capacitor values to achieve maximum system bandwidth 

is of great value here. The last method to reduce the size of the output capacitor is to 

increase the switching frequency. However, higher frequency requires faster processors, 

better power management for the DC-DC converter and capacitors that are suitable for 

high frequency operation. 

It is also beneficial to see if multiple PV simulators can be connected in a series or 

parallel configuration to enable emulation of higher power PV modules. This would 

greatly increase the flexibility of the PV simulator and give reasons for the mass 

production of a PV simulator of low output power, such as the prototype built. 

A computer user interface, such as a graphic user interface or a command prompt, 

needs to be designed to let users input all the parameters about the PV module of interest 

and the environmental conditions of the simulation in order to run the PV simulator 

prototype in stand-alone mode. There is a serial port built into the PV simulator 

prototype, which is connected to the SCI channels of the DSP. This port will be 

connected to the RS-232 serial port of a computer. There is also a USB interface for the 

SCI of the DSP for computers that don’t have serial ports, as it is true for most modern 

computers. 
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APPENDIX A. 

PRINTED CIRCUIT BOARD DESIGN 
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This appendix contains the EAGLE
4
 schematics and printed circuit board (PCB) 

physical layout information for the photovoltaic simulator prototype built. Figures A.1 

through A.4 show the schematics for the PV simulator prototype. The PCB consists of 

two layers and utilizes the ground plane construct technique. Figure A.5 and A.6 show 

the PCB physical top and bottom board layer of the PV simulator prototype. In the 

physical board layout, circles represent vias or through holes, and the dashed lines 

specify the ground plane borders. 

 

 

                                                 

4
 The EAGLE logo is a registered trademark of CadSoft Computer. 
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Figure A.1. PV simulator PCB schematic sheet one 
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Figure A.2. PV simulator PCB schematic sheet two 
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Figure A.3. PV simulator PCB schematic sheet three 
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Figure A.4. PV simulator PCB schematic sheet four 
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Figure A.5. Top layer of board physical layout 
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Figure A.6. Bottom layer of board physical layout 
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APPENDIX B. 

C CODE FOR THE MICROCONTROLLER 
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This appendix contains the C code that is executed by the DSP TMS320F28335 

from Texas Instrument. The C code shown in this appendix is very hardware specific and 

readers should refer to the technical manual of the DSP in order to fully understand how 

it functions. Note that the C code also contains the code to implement the function 

generator to drive the experiment setup shown in Chapter 6. 
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/********************************************************************* 

 * DSP: TMS320F28335 

 * (c) Jie Ang Zhao, Missouri S&T 

 * Last modified 02/09/2012 

 * *******************************************************************/ 

  

  

  

#include "DSP2833x_Device.h" 

#include "DSP2833x_GlobalPrototypes.h" 

#include "DSP2833x_EPwm_defines.h" 

#include "DSP2833x_Examples.h" 

 

#include <math.h>     // contains basic math  

          functions 

#include <string.h> 

#include <stdio.h>    // contains the function  

   sprintf 

 

//#define __FLASH     // define if loading  

          program to flash module 

 

//#define __FUNCTION    // define if the board is  

   used as a function   

   generator 

 

#ifdef __FLASH 

extern unsigned int  RamfuncsLoadStart; 

extern unsigned int  RamfuncsLoadEnd; 

extern unsigned int  RamfuncsRunStart; 

#endif 

 

// custom functions 

void init_ePWMs(void);    // setup ports for the PWMs 

void Init_SCIA(void);    // initialize SCIA 

//void Gpio_select(void); 

interrupt void cpu_timer0_isr(void); // timer0 ISR 

void setup_ePWM1(void);    // initialize PWM module A 

void setup_ePWM2(void);    // initialize PWM module B 

 

 

void InfoDisplay(void);    // sent output voltage and  

          output current through  

          serial port 

 

void setup_ADC_mode(void);   // initialize ADC module 

interrupt void adc_isr(void);   // ADC end of sequence ISR 

interrupt void SCIA_TX_isr(void);  // SCIA transmit ISR 

interrupt void SCIA_RX_isr(void);  // SCIA receive interrupt ISR 

interrupt void timer0_isr(void);  // timer0 ISR 

void PWMSD(unsigned int);   // PWM shut down, 1= turnn  

   off, 0= turn on 

 

void gateDriveSD(unsigned int gd1, unsigned int gd2); 

// gate drivers shut down, 1= shutdown, 0= release 

 

void IV_generator(void);   // generator look up table 
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void IV_generator_Vd(void);   // generate the IV curve  

   using the Vd method 

 

// global variables 

/******************************************************************** 

 * PV panel Parameters 

 * *****************************************************************/ 

float f_temp=300;   // temperature in K 

float f_Voc=22;   // open circuit voltage of panel in Volt 

float f_Isc=5.4;   // short circuit current of panel in Amp 

unsigned int n_cells=72; // number of cells in series 

const float q=1.6E-19;  // elememtary charge in C 

const float k=1.38E-23;  // Boltzmann constant in J/K 

float f_Rs=.3419;   // series resistance in Ohms 

float f_Rsh=1152;   // shunt resistance in Ohms 

float f_n=.4728;   // ideality factor of diode in PV cell  

   model 

 

const unsigned int n_size=1000; // size of look up table 

float f_ary_VI[2][1000]={0}; 

// IV curve lookup table. Voltage generates the index and the element  

   values are the corresponding output current 

 

float f_deltaI=0.1;   // smallest current step 

unsigned int n_index=0;   // index to be used in LUT 

float f_Vth=.0169;   // thermal voltage 

float f_Io=7.3417E-8;   // reverse saturation current 

float f_deltaVd=0.0221;   // equals (open circuit voltage +  

         .1) /n_size 

 

float f_Iph=5.4017;   // photogenerated current 

float f_Inso=1;    // insolation level, 0-1 

/************************************ 

 * End of PV panel Parameters 

 * **********************************/ 

  

  

float dutyCycle1 = 0.5;  // this sets the duty cycle for first  

   stage boost converter 

 

float dutyCycle2 = 0.45; // this sets the initial duty cycle for  

   the second stage buck converter 

float r1k[3]={0,0,0};  // voltage loop state array 

float r2k[2]={0,0};  // curretn loop state array 

float r3k[2]={0,0};  // low pass filter state array 

float irefn[2]={0};  // reference current state array 

unsigned int IV_switch=0; // switch of the IV curve 

 

/************************************** 

 * PRD sets the frequency of the PWM */ 

unsigned int PRD = 375;  // 16bit, period of the PWM 

// PRD = 37500 1KHz 

// PRD = 7500  5KHz 

// PRD = 3750  10KHz 

// PRD = 1875  20KHz 

// PRD = 1500  25KHz 

// PRD = 750   50KHz 
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// PRD = 375   100KHz 

//************************* 

 

// global variables to save ADC readings 

float Vout;    // output voltage 

float Vin;    // input voltage 

float Iout;    // output current 

float Vout_boost;   // first stage output voltage 

float Inso[2]={0};  // insolation knob reading 

float Inso_Out[2]={0};  // insolation after filter 

float Temp;    // temperature knob reading 

float IL;    // buck stage inductor current 

 

// test variables 

unsigned long count=0; 

unsigned int IVCurveDone=0; 

unsigned int indexOut=0; // for SCIA-TX 

unsigned int indexIn=0;  // for SCIA-RX 

char outBuff[32]; 

char inBuff[32]; 

unsigned int sup=0;   // for testing 

unsigned int txcount=0; 

char tempChar;   // helper character 

unsigned long rxcount=0; 

unsigned long tcount=0; 

 

void main(void) 

 { 

 InitSysCtrl();  // Basic Sys Init, 150MHz SYSCLKOUT 

  

 #ifdef __FLASH 

 memcpy(&RamfuncsRunStart, &RamfuncsLoadStart, &RamfuncsLoadEnd - 

&RamfuncsLoadStart); 

 InitFlash();  // initialize flash memory module,  

   pipline enabled, minimum waitstate 

 #endif 

  

 Gpio_select(); 

 DINT;    // Disable all interrupts 

  

 #ifdef __FUNCTION 

 InitPieCtrl(); 

 InitPieVectTable(); 

 InitAdc(); 

 setup_ADC_mode(); 

 InitCpuTimers(); 

 ConfigCpuTimer(&CpuTimer0,150,100000); 

 EALLOW; 

 PieVectTable.TINT0=&timer0_isr; 

 PieVectTable.ADCINT = &adc_isr; 

 EDIS; 

 PieCtrlRegs.PIEIER1.bit.INTx7=1; 

 PieCtrlRegs.PIEIER1.bit.INTx6 = 1; 

 IER |=0x001; 

 #endif 

  

 #ifndef __FUNCTION 



 

 

58 

 InitPieCtrl();  // basic setup of PIE table; from  

   DSP2833x_PieCtrl.c 

 InitPieVectTable(); // default ISR's in PIE 

 

 InitAdc();   // calibrate and start the ADC module 

 

 setup_ADC_mode();  // setup ADC module  

 //InitCpuTimers(); // basic setup for CPU timer0, 1 and 2 

 //ConfigCpuTimer(&CpuTimer0,150,2000); 

// timer0 triggers every 2000us 

 EALLOW;   // allow access to protected  

   registers 

 //PieVectTable.TINT0=&timer0_isr; 

// add timer0 ISR to PIE vector table 

 PieVectTable.ADCINT = &adc_isr;  // add adc ISR to PIE  

   vector table 

 PieVectTable.SCITXINTA=&SCIA_TX_isr; 

// add scia transmit interrupt to PIE vector table 

 PieVectTable.SCIRXINTA=&SCIA_RX_isr; 

// add scia receive interrrupt to PIE vector table 

 EDIS;    // disable access to protected registers 

 PieCtrlRegs.PIEIER1.bit.INTx6 = 1;  // enable ADC  

   interrrupt 

 PieCtrlRegs.PIEIER9.bit.INTx2=1;  // SCIA-A-TX-isr 

 PieCtrlRegs.PIEIER9.bit.INTx1=1;  // SCIA-A-RX-isr 

 //PieCtrlRegs.PIEIER1.bit.INTx7 = 1;// Enable CPU Timer 0 INT 

 IER |=0x101;     // enable INT1 and INT9 

  

  

  

 //IV_generator();  // initialize LUT 

 IV_generator_Vd(); // initialize LUT with diode voltage  

   method 

 IVCurveDone=1;  // shown that IV curve is done 

 #endif 

  

 gateDriveSD(1,1);  // shut down the two gate drivers 

 init_ePWMs();  // setup ports for ePWM outputs 

 PWMSD(1);   // turn off PWM module 

 setup_ePWM1();  // setup PWM1A and PWM1B 

 setup_ePWM2();  // setup PWM2A and PWM2B 

 PWMSD(0);   // turn on PWM module 

 DELAY_US(1000000); // 1 second delay 

 gateDriveSD(0,1);  // turn on first stage gate driver for  

        boost converter 

 

 Init_SCIA();  // setup ports for SCIA 

  

 CpuTimer0Regs.TCR.bit.TSS = 0; // start timer0 

  

 EINT;    // enable global interrupt 

 ERTM;    // enable debug events 

 DELAY_US(2000000); // 2 second delay to allow for first  

        stage output to settle 

 gateDriveSD(0,0);  // turn on second stage buck converter  

        gate driver 

 while(1){    
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  IV_generator_Vd(); // update the LUT to reflect new 

   Insolation condition 

 };    

 

}  

 

void Gpio_select(void) 

{ 

 EALLOW; 

 GpioCtrlRegs.GPAMUX1.all = 0;  // GPIO15 ... GPIO0 = General  

   Puropse I/O 

 GpioCtrlRegs.GPAMUX2.all = 0;  // GPIO31 ... GPIO16 =  

   General Purpose I/O 

 GpioCtrlRegs.GPBMUX1.all = 0;  // GPIO47 ... GPIO32 =  

   General Purpose I/O 

 GpioCtrlRegs.GPBMUX2.all = 0;  // GPIO63 ... GPIO48 =  

   General Purpose I/O 

 GpioCtrlRegs.GPCMUX1.all = 0;  // GPIO79 ... GPIO64 =  

   General Purpose I/O 

 GpioCtrlRegs.GPCMUX2.all = 0;  // GPIO87 ... GPIO80 =  

   General Purpose I/O 

 GpioCtrlRegs.GPADIR.bit.GPIO7 = 1; // setup shut down on gate  

   driver 1 

 GpioCtrlRegs.GPBDIR.bit.GPIO34 = 1; // setup shut down on gate  

   driver 2 

  

 EDIS; 

}    

 

interrupt void cpu_timer0_isr(void) 

{ 

 CpuTimer0.InterruptCount++; 

 EALLOW; 

 SysCtrlRegs.WDKEY = 0xAA; // service WD #2 

 EDIS; 

 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; 

} 

 

void init_ePWMs(void){ 

 InitEPwm1Gpio();  //setup ePWM1, with pullup enabled,  

    GPIO0(1A), GPIO1(1B) 

 InitEPwm2Gpio();  //setup ePWM2, with pullup enabled,  

  GPIO2(2A), GPIO3(2B) 

// InitEPwm3Gpio();  //setup ePWM3, with pullup enabled,  

  GPIO4(3A), GPIO5(3B) 

// InitEPwm4Gpio();  //setup ePWM4, with pullup enabled,  

  GPIO6(4A), GPIO7(4B) 

} 

 

void setup_ePWM1(void){ 

  

 /************************************************ 

  * formula to calculate TBPRD in updown mode 

  * TBPRD = 0.5*fSYSCLKOUT/(fPWM*2^CLKDIV*HSPCLKDIV),HSPCLKDIV is   

 * always 2 for f28335 

  * **********************************************/ 

 EPwm1Regs.TBCTL.bit.CLKDIV = 0x0; // TB clock pre-scale, 3bit 
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 EPwm1Regs.TBPRD = PRD; 

 EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; 

// set the counter to up-down mode 

  

 // set up the duty cycle 

 EPwm1Regs.CMPA.half.CMPA = (unsigned  

  int)(dutyCycle1*EPwm1Regs.TBPRD); // set duty cycle 

 EPwm1Regs.AQCTLA.all = 0x0090;  //symmetrical PWM 

  

 // deadband implementation 

 // Active High Complentary suitable for power switches  

   applications 

 EPwm1Regs.DBCTL.bit.IN_MODE = DBA_ALL;  

//PWMA is used for both channels A and B 

 EPwm1Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC; 

//Active High Complementary 

 EPwm1Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE;  

//Both rising and falling edge delay 

  

 /************************************************* 

  * formula to calculate the dead band delay 

  * Rising Edge Delay = T(TBCLK)*DBRED 

  * Falling EDge Delay = T(TBCLK)*DBFED 

  * f(TBCLK) = f(SYSCLKOUT)/(2^CLKDIV*HSPCLKDIV),HSPCLKDIV is  

 * always 2 for f28335 

  * ***********************************************/ 

 EPwm1Regs.DBRED = 12;   // 160ns dead band; 10bit 

 EPwm1Regs.DBFED = 12;   // 160ns dead band; 10bit 

 #ifdef __FUNCTION 

 EPwm1Regs.DBRED = 0;   // 0ns dead band; 10bit 

 EPwm1Regs.DBFED = 0;   // 0ns dead band; 10bit 

 #endif 

 // end of deadband implementation 

 

 EPwm1Regs.TBCTL.bit.SYNCOSEL = 1; //SyncOut if CTR = 0; 

} 

 

void setup_ePWM2(void){ 

  

 /************************************************ 

  * formula to calculate TBPRD in updown mode 

  * TBPRD = 0.5*fSYSCLKOUT/(fPWM*2^CLKDIV*HSPCLKDIV), HSPCLKDIV is  

 * always 2 for f28335 

  * **********************************************/ 

 EPwm2Regs.TBCTL.bit.CLKDIV = 0x0; // TB clock pre-scale, 3bit 

 EPwm2Regs.TBPRD = PRD; 

 EPwm2Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; 

// set the counter to up-down mode 

  

 // set up the duty cycle 

 EPwm2Regs.CMPA.half.CMPA = (unsigned  

int)(dutyCycle2*EPwm1Regs.TBPRD); 

 EPwm2Regs.AQCTLA.all = 0x0090; //symmetrical PWM 

  

 // deadband implementation 

 // Active High Complentary suitable for power switches  

   applications 
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 EPwm2Regs.DBCTL.bit.IN_MODE = DBA_ALL;  //PWMA is used for both  

  channels A and B 

 EPwm2Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC; 

//Active High Complementary 

 EPwm2Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE; 

//Both rising and falling edge delay 

  

 /************************************************* 

  * formula to calculate the dead band delay 

  * Rising Edge Delay = T(TBCLK)*DBRED 

  * Falling EDge Delay = T(TBCLK)*DBFED 

  * f(TBCLK) = f(SYSCLKOUT)/(2^CLKDIV*HSPCLKDIV),HSPCLKDIV is  

 * always 2 for f28335 

  * ***********************************************/ 

 EPwm2Regs.DBRED = 12;   // 160ns dead band; 10bit 

 EPwm2Regs.DBFED = 12;   // 160ns dead band; 10bit 

 #ifdef __FUNCTION 

 EPwm2Regs.DBRED = 0;   // 0ns dead band; 10bit 

 EPwm2Regs.DBFED = 0;   // 0ns dead band; 10bit 

 #endif 

 // end of deadband implementation 

 

 EPwm2Regs.ETPS.all = 0x0100; // Configure ADC start by ePWM2 

 /* 

   bit 15-14     00:     EPWMxSOCB, read-only 

  bit 13-12     00:     SOCBPRD, don't care 

  bit 11-10     00:     EPWMxSOCA, read-only 

  bit 9-8       01:     SOCAPRD, 01 = generate SOCA on first event 

  bit 7-4       0000:   reserved 

  bit 3-2       00:     INTCNT, don't care 

  bit 1-0       00:     INTPRD, don't care 

 */ 

 

 EPwm2Regs.ETSEL.all = 0x0900; 

// Enable SOCA to ADC, change SOCASEL to select even trigger  

   point 

 /* 

  bit 15        0:      SOCBEN, 0 = disable SOCB 

  bit 14-12     000:    SOCBSEL, don't care 

  bit 11        1:      SOCAEN, 1 = enable SOCA 

  bit 10-8      010:    SOCASEL, 001 = SOCA on CTR = 0 event 

  bit 7-4       0000:   reserved 

  bit 3         0:      INTEN, 0 = disable interrupt 

  bit 2-0       000:    INTSEL, don't care 

 */ 

 EPwm2Regs.TBCTL.bit.SYNCOSEL = 0; // SyncOut=syncin; 

 EPwm2Regs.TBCTL.bit.PHSEN = 1; // enable phase shift 

 EPwm2Regs.TBPHS.half.TBPHS = PRD; // phase shift amount 

} 

 

void init_SCIA(void){ 

 InitSciaGpio();  // SCIRXDA (GPIO28), SCITXDA (GPIO29);  

   internal pullup enabled 

} 

 

void setup_ADC_mode(void){ 

 AdcRegs.ADCTRL1.all = 0; 
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 AdcRegs.ADCTRL1.bit.ACQ_PS = 7; // ACQ_PS + 1 ADCCLK  

   cycles of sampling window 

 AdcRegs.ADCTRL1.bit.SEQ_CASC =1;  // cascaded mode 

 AdcRegs.ADCTRL1.bit.CPS = 0;   // ADCCLK = FCLK/1 

 AdcRegs.ADCTRL1.bit.CONT_RUN = 0;  // single run mode 

 

 AdcRegs.ADCTRL2.all = 0; 

 AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 1; // enable SEQ1  

   interrupt 

 AdcRegs.ADCTRL2.bit.EPWM_SOCA_SEQ1 =1; 

// triggered by ePWM_SOCA event 

 AdcRegs.ADCTRL2.bit.INT_MOD_SEQ1 = 0; 

// interrupt every end of sequence 

 

 /************************************************** 

  * formula to calculate fFCLK = fHSPCLK/(2*ADCCLKPS) 

  * fHSPCLK is default to fSYSCLKOUT/2 = 75MHz 

  **************************************************/ 

 AdcRegs.ADCTRL3.bit.ADCCLKPS = 3;  // 12.5MHz ADC clock 

 

 AdcRegs.ADCTRL3.bit.SMODE_SEL = 1; 

// simultaneous sampling mode 

 AdcRegs.ADCMAXCONV.all = 0x0003; 

// ADCMAXCONV + 1 conversions from SEQ1 

  

 /************************************************** 

  * connect the ADC channels to the specific sequence slot 

  * Ex: 1 stand for ADC1A and ADC1B for simultaneous sampling mode 

  * Length of sequence limited by ADCMAXCONV 

  **************************************************/ 

 AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0; 

 AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 1; 

 AdcRegs.ADCCHSELSEQ1.bit.CONV02 = 2; 

 AdcRegs.ADCCHSELSEQ1.bit.CONV03 = 3; 

 //AdcRegs.ADCCHSELSEQ2.bit.CONV04 = 4; 

 //AdcRegs.ADCCHSELSEQ2.bit.CONV05 = 5; 

 //AdcRegs.ADCCHSELSEQ2.bit.CONV06 = 6; 

 //AdcRegs.ADCCHSELSEQ2.bit.CONV07 = 7; 

 

} 

 

interrupt void adc_isr(void){ 

 // reads from the ADC mirror registers and convert to real  

   voltage values 

 Vout = AdcMirror.ADCRESULT0*0.007381; // output voltage 

 Temp = AdcMirror.ADCRESULT1*3/(float)4096;// temperature setting 

 IL = AdcMirror.ADCRESULT2*0.001744;  // inductor current 

 Inso[0] = AdcMirror.ADCRESULT3*3/(float)4096;// insolation level 

 Iout = AdcMirror.ADCRESULT4*0.001744; // output current 

 Vin = AdcMirror.ADCRESULT5*0.004395; // input voltage 

 Vout_boost = AdcMirror.ADCRESULT7*0.008789; 

// output voltage of first stage boost converter 

  

 //pass Inso through a digital low pass filter 

 Inso_Out[0]=(Inso[0]+Inso[1]+3182*Inso_Out[1])/3184; 

 Inso[1]=Inso[0]; 

 Inso_Out[1]=Inso_Out[0]; 
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 #ifndef __FUNCTION 

 /********************************************** 

  * Controller implementation 

  * *********************************************/ 

 n_index=(unsigned int)floor((Vout+Iout*f_Rs)/f_deltaVd);  

 //generate the index 

 

 if(n_index > (n_size -1)) 

  n_index = n_size -1; 

 Iref=f_ary_VI[IV_switch%2][n_index]; 

// generate current reference 

  

 r1k[0]=(Iref-Iout);  // add saturation to states 

 if(r1k[0]>10) 

  r1k[0]=10; 

 else if(r1k[0]<-10) 

  r1k[0]=-10; 

 

 irefn[0]=7.61*r1k[0]-7.59*r1k[1]+irefn[1]; 

 

 if(irefn[0]>100)    // saturate the current loop error 

  irefn[0]=100; 

 else if(irefn[0]<-100) 

  irefn[0]=-100;  // end of saturation 

  

  

 r2k[0]=Vout*2/Vout_boost+(irefn[0]-IL)*.46-r2k[1]; 

// inner current loop 

 

 if(r2k[0]>.9) 

  r2k[0]=.9; 

 else if(r2k[0]<.1) 

  r2k[0]=0.1; 

 dutyCycle2=r2k[0]; 

 

 r1k[2]=r1k[1];   // update states 

 r1k[1]=r1k[0]; 

 r2k[1]=r2k[0];    

 irefn[1]=irefn[0];   // end of update states 

  

 if(Iout>6)    // limit output current 

  dutyCycle2=0; 

 

 /***************************************************** 

  * End of Controller Implementation 

  * ***************************************************/ 

  

 EPwm2Regs.CMPA.half.CMPA = (unsigned  

int)(dutyCycle2*EPwm2Regs.TBPRD); // update duty cycle 

 #endif 

 AdcRegs.ADCTRL2.bit.RST_SEQ1 = 1;  // reset SEQ1 

   AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1;  // clear INT 

   PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; // acknowledge  

   interrupt 

} 
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void PWMSD(unsigned int sd){ 

 if(sd==0){ 

  EALLOW; 

  SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1; 

// start all the TB clocks 

  EDIS; 

 } 

 else if(sd==1){ 

  EALLOW; 

  SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0; 

// stop all the TB clocks 

  EDIS; 

 } 

} 

 

void gateDriveSD(unsigned int sd1, unsigned int sd2){ 

 if(sd1==0){ 

  GpioDataRegs.GPBCLEAR.bit.GPIO34 = 1; 

//release shutdown on GD2 

 } 

 else if(sd1==1){ 

  GpioDataRegs.GPBSET.bit.GPIO34 = 1;  //shut down gd2 

 } 

 if(sd2==0){ 

  GpioDataRegs.GPACLEAR.bit.GPIO7 = 1; 

//release shutdown on GD1 

 } 

 else if(sd2==1){ 

  GpioDataRegs.GPASET.bit.GPIO7 = 1;  //shut down gd1 

 } 

} 

void IV_generator(){ 

 //unsigned int i; 

 //unsigned int j; 

  

 f_deltaI=f_Isc*f_Rsh/(n_size*(f_Rs+f_Rsh)); //calculates the 

current step in the LUT 

 f_Vth=k*f_temp/q;      

 //calculates the thermal voltage 

 f_Io=f_Isc/(exp(f_Voc/n_cells/f_Vth)-1); //calculates the 

reverse saturation current 

 f_Vn=10;        

 //initial guess of voltage 

 f_Vf=0; 

 

 /*for(i = 0;i < n_size;i++){    

 //numerically solve for the IV curve with Newton's method 

  for(j=0;j < 2000;j++){ 

   f_Vf=f_Vn-

(f_Io*exp((f_Vn+i*f_deltaI*f_Rs)/f_Vth)+(f_Vn+i*f_deltaI*f_Rs)/f_Rsh-

f_Io+i*f_deltaI-f_Isc)/ 

  

 (f_Io*exp((f_Vn+i*f_deltaI*f_Rs)/f_Vth)/f_Vth+1/f_Rsh); 

    

  f_Vn=f_Vf; 

  } 

  f_Vn=10; 
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  f_ary_IV[i]=n_cells*f_Vf; 

 }*/ 

  

 /*f_deltaV=f_Voc/n_size; 

 for(i = 2;i <= n_size;i++){     // use 

newton's method to find the voltage VS current curve 

  for(j=0;j < 2000;j++){ 

   f_I2=f_I1-

(f_Io*exp((i*f_deltaV/n_cells+f_I1*f_Rs)/f_Vth)+(i*f_deltaV/n_cells+f_I

1*f_Rs)/f_Rsh-f_Io+f_I1-f_Isc)/ 

  

 (f_Io*exp((i*f_deltaV/n_cells+f_I1*f_Rs)/f_Vth)*f_Rs/f_Vth+f_Rs/f

_Rsh+1); 

    

  f_I1=f_I2; 

  } 

  f_I1=2.5; 

  f_ary_VI[i-2]=f_I2; 

 } 

 f_ary_VI[998]=0; 

 f_ary_VI[999]=0;*/ 

  

 /*f_deltaR=(f_Rmax-f_Rmin)/1000; 

 for(i = 1;i <= n_size;i++){ 

  for(j=0;j < 2000;j++){ 

   f_I2=f_I1-

(f_Io*exp((f_I1*(f_deltaR*i+f_Rmin)/n_cells+f_I1*f_Rs)/f_Vth)+(f_I1*(i*

f_deltaR+f_Rmin)/n_cells+f_I1*f_Rs)/f_Rsh-f_Io+f_I1-f_Isc)/ 

  

 (f_Io*exp((f_I1*(i*f_deltaR+f_Rmin)/n_cells+f_I1*f_Rs)/f_Vth)*(i*

f_deltaR+f_Rmin+f_Rs)/f_Vth+(i*f_deltaR+f_Rmin+f_Rs)/f_Rsh+1); 

    

  f_I1=f_I2; 

  } 

  f_I1=2.5; 

  f_ary_RI[i-1]=f_I2; 

 }*/ 

} 

 

/*void init_SCIA(void){ 

 GpioCtrlRegs.GPAMUX2.bit.GPIO28 = 1; // SCIRXDA 

 GpioCtrlRegs.GPAMUX2.bit.GPIO29 = 1; // SCITXDA 

  

 SciaRegs.SCICCR.all =0x0027;    // 1 stop bit,  No loopback  

                                    // ODD parity,8 char bits, 

                                    // async mode, idle-line protocol 

 SciaRegs.SCICTL1.all =0x0003;   // enable TX, RX, internal 

SCICLK,  

                                    // Disable RX ERR, SLEEP, TXWAKE 

                                     

 // SYSCLOCKOUT = 150MHz; LSPCLK = 1/4 = 37.5 MHz 

 // BRR = (LSPCLK / (9600 x 8)) -1 

 // BRR = 487  gives 9605 Baud 

 SciaRegs.SCIHBAUD    = 487 >> 8;  // Highbyte 

 SciaRegs.SCILBAUD    = 487 & 0x00FF; // Lowbyte 

 SciaRegs.SCICTL1.all = 0x0023; // Relinquish SCI from Reset 

}*/ 
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void Init_SCIA(void){ 

 EALLOW; 

 GpioCtrlRegs.GPAMUX2.bit.GPIO28 = 1; // SCIRXDA 

 GpioCtrlRegs.GPAMUX2.bit.GPIO29 = 1; // SCITXDA 

 EDIS; 

  

 SciaRegs.SCICCR.all = 0x0027; // 1 stop bit,  No loopback  

                                    // ODD parity,8 char bits, 

                                    // async mode, idle-line protocol 

 SciaRegs.SCICTL1.all =0x0003; // enable TX, RX, internal SCICLK,  

                                    // Disable RX ERR, SLEEP, TXWAKE 

 

 // SYSCLOCKOUT = 150MHz; LSPCLK = 1/4 = 37.5 MHz 

 // BRR = (LSPCLK / (9600 x 8)) -1 

 // BRR = 487  gives 9605 Baud 

 SciaRegs.SCIHBAUD    = 487 >> 8;  // Highbyte 

 SciaRegs.SCILBAUD    = 487 & 0x00FF; // Lowbyte 

 SciaRegs.SCICTL2.bit.TXINTENA = 1;   // enable SCI-A Tx-ISR 

 SciaRegs.SCICTL2.bit.RXBKINTENA = 1;  // enable SCI_A Rx-ISR 

 SciaRegs.SCIFFTX.all=0xC060; 

// bit 15 = 1 : relinquish from Reset 

 // bit 14 = 1 : Enable FIFO 

 // bit 6 = 1 :  CLR TXFFINT-Flag 

 // bit 5 = 1 :  enable TX FIFO match 

 // bit 4-0 :  TX-ISR, if TX FIFO is 0(empty) 

 SciaRegs.SCIFFCT.all = 0x0000; 

// Set FIFO transfer delay to 0 

 SciaRegs.SCIFFTX.bit.TXFIFOXRESET = 1; 

// re-enable transmit fifo operation 

  

  

 //SciaRegs.SCIFFRX.all = 0xE065; // Rx interrupt level = 5 

  

 SciaRegs.SCICTL1.all = 0x0023; // Relinquish SCI from Reset                        

                                      

} 

 

interrupt void SCIA_RX_isr(void){ 

 tempChar=SciaRegs.SCIRXBUF.bit.RXDT; 

 if(tempChar!='\0'){ 

  inBuff[indexIn]=tempChar; 

  indexIn++; 

 } 

 else { 

  inBuff[indexIn]='\0'; 

  indexIn=0; 

  InfoDisplay(); 

 } 

 rxcount++; 

 PieCtrlRegs.PIEACK.all=PIEACK_GROUP9; 

} 

 

interrupt void SCIA_TX_isr(void){ 

 while(indexOut < sizeof(outBuff) && SciaRegs.SCIFFTX.bit.TXFFST < 

16 && outBuff[indexOut]!='\0'){ 

  SciaRegs.SCITXBUF=outBuff[indexOut]; 
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  indexOut++; 

 } 

 if(SciaRegs.SCIFFTX.bit.TXFFST !=0){ 

  SciaRegs.SCIFFTX.bit.TXFFINTCLR = 1; 

// enable TX FIFO operation 

  txcount++; 

 } 

 PieCtrlRegs.PIEACK.all=PIEACK_GROUP9; 

} 

 

void InfoDisplay(void){ 

 sprintf(outBuff,"%06.3f %06.3f %06.3f %06.3f\n\r", Vout, Iout,  

Temp, Inso); 

 indexOut=0; 

 SciaRegs.SCIFFTX.bit.TXFFINTCLR = 1; 

// enable TX FIFO operation 

} 

void IV_generator_Vd(void){ 

 unsigned int i; 

  for(i=0;i<n_size;i++){ 

   f_ary_VI[(IV_switch+1)%2][i]=f_Iph*f_Inso-

f_Io*(exp(f_deltaVd*i/(n_cells*f_Vth))-1)-f_deltaVd*i/f_Rsh; 

  } 

 IV_switch++; 

} 

 

interrupt void timer0_isr(void){ 

 if(f_Inso==1) 

  f_Inso=.6; 

 else f_Inso=1; 

 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; 

} 
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APPENDIX C. 

MATLAB CODE TO EXTRACT PV MODULE MODEL PARAMETERS 
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This appendix contains the Matlab code to implement the photovoltaic module 

equivalent circuit model parameter extraction method shown in Section 3.1. The solar 

panel parameters used is for the PV module SW-S85P from Sunwize, and the extracted 

parameters are shown in Table 6.2; however, users can modify the solar panel datasheet 

parameters to extract equivalent model parameters for any type of PV module.
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%% Extraction of PV module parameters based on datasheet values 

% PV Module SW-S85P from SunWire 

  

  
close all; 
clear all; 

  
% Intitalize parameters----------------------------------------------- 
A=1;            % initial ideality factor 
k=1.38e-23;     % Bolzman's Constant 
q=1.1602e-19;   % elemental charge 
Tstc=300;       % STC temperature 
Io=1;           % initial dark saturation current 
Iph=0;          % initial photo generated current 
Rs=0;           % initial series resistance 
Rsh=1000;       % initial shunt resistance 
Vt=.026;        % initial thermal voltage 

  
% solar panel datasheet parameters------------------------------------ 
n=72;           % number of panels 
Voc=22;         % open circuit voltage 
Isc=5.4;        % short circuit current 
Impp=4.9;       % max power point current 
Vmpp=17.4;      % max power point voltage 

  
% Test values of Rs and Rsh------------------------------------------- 
Rs_t=zeros(1,3000); 
Rsh_t=zeros(1,3000); 
for i=1:1:length(Rs_t)  % Initialize test values 
    Rs_t(i)=.5 * power(.9995,i); 
    Rsh_t(i)=5000 * power(.9995,i); 
end 

  
% helper values------------------------------------------------------- 
dpdvtemp=0; 
dpdv=0; 
didvtemp=0; 
didv=0; 
count=1; 

  
% Numeric iteration method of extracting the PV panel model parameters 
% with the method presented in "PV panel model based on datasheet 

values" 
% by D. Sera etc. 
for i=1:1:length(Rs_t) 
    Rs=Rs_t(i); 
    for j=1:1:length(Rsh_t) 
        Rsh=Rsh_t(j); 
                Vt=(Vmpp+Impp*Rs-Voc)/n/log((Isc-(Vmpp+Impp*Rs-

Isc*Rs)... 
                    /Rsh-Impp)/(Isc-(Voc-Isc*Rs)/Rsh)); 
                alpha=(Isc*Rsh-Voc+Isc*Rs)... 
                    *exp((Vmpp+Impp*Rs-Voc)/n/Vt)/(n*Vt); 
                dpdv=Impp+Vmpp*((-1*alpha/Rsh-

1/Rsh)/(1+alpha/Rsh+Rs/Rsh)); 



 

 

71 

                 
            if (imag(Vt)~=0 || Vt<=0) 
                continue; 
            elseif (dpdv==0) 
                break; 
            elseif (sign(dpdvtemp)*sign(dpdv)==-1) 
                break; 
            else 
                dpdvtemp=dpdv; 
            end 
    end 
    beta=(Isc*Rsh-Voc+Isc*Rs)*exp((Isc*Rs-Voc)/n/Vt)/(n*Vt); 
    didv=(-1*beta/Rsh-1/Rsh)/(1+beta/Rsh+Rs/Rsh)+1/Rsh; 
    if (didv==0) 
        break; 
    end 
    if (sign(didvtemp)*sign(didv)==-1) 
        break; 
    else didvtemp=didv; 
    end         
end 

  
% Outputs the finalized parameters------------------------------------- 
Vt 
Rs 
Rsh 
Io=(Isc-(Voc-Isc*Rs)/Rsh)*exp(-1*Voc/n/Vt) 
Iph=Io*exp(Voc/n/Vt)+Voc/Rsh 
A=Vt*q/k/Tstc 
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