
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Summer 2012

A digitally implemented practical photovoltaic simulator with a A digitally implemented practical photovoltaic simulator with a

double current mode controller double current mode controller

Jie Ang Zhao

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Electrical and Computer Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Zhao, Jie Ang, "A digitally implemented practical photovoltaic simulator with a double current mode
controller" (2012). Masters Theses. 6895.
https://scholarsmine.mst.edu/masters_theses/6895

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F6895&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F6895&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/6895?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F6895&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

A DIGITALLY IMPLEMENTED PRACTICAL PHOTOVOLTAIC SIMULATOR

WITH A DOUBLE CURRENT MODE CONTROLLER

by

JIE ANG ZHAO

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

2012

Approved by

Jonathan W. Kimball, Advisor

Keith Corzine

Mehdi Ferdowsi

 2012

Jie Ang Zhao

All Rights Reserve

iii

ABSTRACT

This thesis presents a microcontroller- and DC-DC converter-based photovoltaic

(PV) simulator which emulates the output characteristic of a PV module. The current-

voltage (IV) characteristic of a PV module is implemented as a look-up-table that

generates an output reference current based on a measured output voltage. The control

mechanism is based on a double current mode controller that consists of a predictive

current mode controller and a proportional-integral (PI) controller arranged in an inner

loop and outer loop configuration. The PI controller is designed based on classical phase

margin and gain margin criteria to ensure system stability. The performance of the

portable PV simulator prototype of 85 W is examined in terms of its steady state IV curve

matching capability and the convergence time corresponding to step changes in load and

insolation levels. The result shows a well behaved and responsive PV simulator that can

be treated as a real PV module in most situations.

iv

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Jonathan Kimball for his guidance and

support which allow me to conduct this research. Without Dr. Kimball’s vast knowledge

and dedication in the electrical engineering field, this research will not come to fruition.

I would also like to acknowledge the members of my committee, Dr. Keith

Corzine and Dr. Mehdi Ferdowsi, for their interest in my research topic and their

instructions in electric drive machines and power electronics.

I want to express my deepest gratitude to my family for their support and

understanding. Despite all the hardships and difficulties that my parents have in their

lives, they are still able to stand strong and put faith in me.

I would also like to thank my friends for their helps and advises.

Last, I would like to thank the National Science Foundation and the University of

Missouri research board for their financial support. This project was funded in part by

NSF grant ECCS-0900940.

v

TABLE OF CONTENTS

Page

ABSTRACT ... iii

ACKNOWLEDGMENTS ... iv

LIST OF ILLUSTRATIONS .. vii

LIST OF TABLES ... ix

NOMENCLATURE ..x

SECTION

1. INTRODUCTION .. 1

2. PV MODULE IV CURVE IMPLEMENTATION .. 3

2.1. PV MODULE MODELING ... 3

2.2. IV CURVE IMPLEMENTATION ... 5

3. CONTROLLER IMPLEMENTATION ... 11

3.1. DC-DC CONVERTER IMPLEMENTATION .. 11

3.2. CONVERTER SMALL SIGNAL MODELING .. 11

3.3. INNER PREDICTIVE CURRENT MODE CONTROLLER 13

3.4. OUTER PI CONTROLLER DESIGN.. 15

3.5. SYSTEM STABILITY ANALYSIS .. 17

4. SIMULATION RESULTS ... 19

5. HARDWARE IMPLEMENTATION .. 27

5.1. POWER STAGE OF THE PV SIMULATOR ... 27

5.2. INDUCTOR AND CAPACITOR SELECTION .. 29

5.3. THE DSP .. 30

6. EXPERIMENTAL RESULTS ... 32

6.1. PV SIMULATOR PROTOTYPE ... 32

6.2. PV MODULE DYNAMIC RESPONSE .. 40

7. CONCLUSION .. 43

7.1. RESEARCH FINDINGS .. 43

7.2. FUTURE WORK .. 43

APENDICES

vi

A. PRINTED CIRCUIT BOARD DESIGN ..45

B. C CODE FOR THE MICROCONTROLLER ..53

C. MATLAB CODE TO EXTRACT PV MODULE MODEL PARAMETERS68

BIBLIOGRAPHY ..72

VITA ..74

vii

LIST OF ILLUSTRATIONS

 Page

Figure 2.1. Equivalent circuit model of a PV cell [17] ... 3

Figure 2.2. A PV module consists of series-connected PV cells .. 4

Figure 2.3. The LUT setup process ... 8

Figure 2.4. Final current values of the LUT and their corresponding voltage values 9

Figure 2.5. IV curves of the PV module SW-S85P using equivalent circuit modeling 9

Figure 2.6. The IV curve implementation process .. 10

Figure 3.1. A synchronous buck converter ... 11

Figure 3.2. Control block diagram of the PV simulator ... 11

Figure 3.3. Average predictive current mode switch diagram .. 14

Figure 3.4. Compensated plant loop gains for multiple load conditions 17

Figure 3.5. PV module IV curve and gain .. 18

Figure 3.6. Bode plot of worst case system loop gain .. 18

Figure 4.1. Top level schematic of the PV simulator simulation model........................... 19

Figure 4.2. Power stage simulation model of the PV simulator 20

Figure 4.3. Inside of “IV LUT” block... 20

Figure 4.4. Control block simulation model for PV simulator ... 21

Figure 4.5. Computer simulated performance of the PV simulator 22

Figure 4.6. Dynamic load step response test operating points .. 22

Figure 4.7. Computer simulated output waveforms of the PV simulator when load

changes between 1.0Ω and 0.9Ω (operating point A) 23

Figure 4.8. Computer simulated output waveforms of the PV simulator when load

changes between 2.2Ω and 2Ω (operating point B) 23

Figure 4.9. Computer simulated output waveforms of the PV simulator when load

changes between 3.2Ω and 2.9Ω (operating point C) 24

Figure 4.10. Computer simulated output waveforms of the PV simulator when load

changes between 4.4Ω and 4Ω (operating point D) 24

Figure 4.11. Computer simulated output waveforms of the PV simulator when load

changes between 9.6Ω and 8.7Ω (operating point E) 25

Figure 4.12. Computer simulated insolation change step response with load of 1.25Ω ... 25

Figure 4.13. Computer simulated insolation change step response with load of 4.07Ω ... 26

viii

Figure 4.14. Computer simulated insolation change step response with load of 5.4Ω 26

Figure 5.1. PV simulator hardware block diagram ... 27

Figure 5.2. Buck converter inductor current ... 29

Figure 6.1. PV simulator prototype built .. 32

Figure 6.2. PV simulator prototype’s performance .. 34

Figure 6.3. Experiment setup for the PV simulator/PV module load dynamic response . 35

Figure 6.4. Step response when load changes between 1Ω and 0.9Ω. 35

Figure 6.5. Step response when load changes between 2.22Ω and 2Ω. 36

Figure 6.6. Step response when load changes between 3.2Ω and 2.9Ω. 36

Figure 6.7. Step response when load changes between 4.4Ω and 4Ω. 37

Figure 6.8. Step response when load changes between 9.6Ω and 8.7Ω. 37

Figure 6.9. Insolation step change (Insolation 100% - 60%) (Load = 1.24Ω) 38

Figure 6.10. Insolation step change (Insolation 60% - 100%) (Load = 1.24Ω)................ 38

Figure 6.11. Insolation step change (Insolation 100% - 60%) (Load = 3.14Ω)................ 39

Figure 6.12. Insolation step change (Insolation 60% - 100%) (Load = 3.14Ω)................ 39

Figure 6.13. Insolation step change (Insolation 100% - 60%) (Load = 4.23Ω)................ 40

Figure 6.14. Insolation step change (Insolation 60% - 100%) (Load = 4.23Ω)................ 40

Figure 6.15. PV module step response when load changes between 2.34Ω and 2.14Ω ... 41

Figure 6.16. PV module step response when load changes between 4.23Ω and 3.67Ω ... 41

Figure 6.17. PV module step response when load changes between 8.46Ω and 7.33Ω ... 42

ix

LIST OF TABLES

 Page

Table 6.1. PV Simulator Parameter .. 33

Table 6.2. PV Module Parameters .. 33

x

NOMENCLATURE

Symbol Description

PV Photovoltaic

MPPT Maximum Power Point Tracking

LUT Look-Up-Table

PWM Pulse-Width Modulation

ADC Analog-to-Digital Converter

PI Proportional-Integral

DSP Digital Signal Processor

ID Diode Current

VD Diode Voltage

I0 Reverse Saturation Current

Vt Thermal Voltage

A Ideality Factor

k Boltzmann’s Constant

T Absolute Temperature

q Elementary Charge

IPVout Output Current of a PV Module

VPVout Output Voltage of a PV Module

Rs Series Resistance of a PV Cell Model

Rsh Shunt Resistance of a PV Cell Model

N Number of Series Connected Cells of a PV Module

Iph Photo-generated Current

Iph(max) Photo-generated Current at Maximum Insolation

α Insolation Percentage

Λ Irradiance

MPP Maximum Power Point

VPVout[i] Digital Output Voltage

VOC Open Circuit Voltage of a PV Module

Asize Size of a Look-Up-Table

xi

RAM Random Access Memory

IPVout[i] Digital Output Reference Current

ISC Short Circuit Current of a PV Module

CCM Continuous Conduction Mode

DCM Discontinuous Conduction Mode

ESR Equivalent Series Resistance

Gvd(s) Small Signal Transfer Function Of Output Voltage Over Duty Ratio

Gid(s) Small Signal Transfer Function Of Inductor Current Over Duty Ratio

Giv(s) Small Signal Transfer Function Of Output Current Over Output Voltage

L Inductance

C Capacitance

RESR ESR of a Capacitor

RL DC Resistance of an Inductor

R Load Resistance

d[n+1] Predicted Duty Ratio for the Next Switch Cycle

d[n] Duty Ratio for the Current Switch Cycle

IL[n] Measured Inductor Current

Iref[n] Reference Inductor Current for the Current Switch Cycle

Ts Switching Period

Fm(z) Predictive Current Mode Small Signal Transfer Function

T(z) Discrete Time Loop Gain of the Plant

Gvd(z) Discrete Time Equivalent of Gvd(s)

Gid(z) Discrete Time Equivalent of Gid(s)

Giv(z) Discrete Time Equivalent of Giv(s)

Fm(s) Continuous Time Equivalent of Fm(z)

Gc(s) Compensator

Gc(s) Discrete Time Equivalent of Gc(s)

Tsys(s) Loop Gain of Whole System

GLUT Small Signal Gain from LUT

Vbat Input Battery Voltage

Db Boost Converter Duty Ratio

xii

Vb Output Voltage of Boost Converter

Vout Output Voltage

Dbk Buck Converter Duty Ratio

MOSFET Metal Oxide Semiconductor Field Effect Transistor

ΔIL Peak-to-Peak Inductor Current Ripple

fsw Switching Frequency

ΔVout Peak-to-Peak Capacitor Voltage Ripple

PCB Printed Circuit Board

1. INTRODUCTION

Solar energy is one of the few renewable energy sources that have gained broad

popularity around the world due to its high predictability and availability. One way to

harness solar energy is by converting it to electrical energy using photovoltaic (PV)

modules. One challenge when interfacing devices to PV modules is that the outputs of

PV modules are non-linear. This non-linear output characteristic of PV modules requires

devices that interface with them to have maximum power point tracking (MPPT) in order

to maximize the efficiency of PV modules [1, 2]. Field testing devices with PV modules

can be very challenging. First, PV modules are still expensive despite the fact that their

price has been on a steady decline over the past decade. Installation of PV modules is

also an expensive and time-consuming process. Second, the outputs of PV modules are

dependent on the insolation level and temperature, which vary depending on the time of

year and weather of the day. As a result, test conditions cannot be controlled, and

repeatable test results cannot be obtained.

An alternative to field testing a PV system is to replace the PV module with a PV

simulator, which is a device that emulates the output characteristic of a PV module. A PV

simulator can be used within a lab environment at any time of the year. A few methods

have been devised to simulate a PV module. The first method is to amplify the output of a

PV cell or photodiode using analog amplifier circuits [3]. This requires the use of a

device that can simulate natural sunlight. The second method is to build an equivalent

circuit of a PV module using transistor and resistor networks and to amplify the signal

from the equivalent circuit with analog circuits and a DC-DC converter [4, 5]. The last

method is to digitally implement the output characteristic of a PV module through a look-

up-table (LUT) that resides in the memory of a microcontroller and convert the digital

signal to power output though a DC-DC converter [6-10]. This last method has gained

increased popularity due to the ever increasing speed and capabilities of microcontrollers

and their declining cost. The major advantage of digitally implemented PV simulators is

that they provide a controlled environment where users can set conditions such as

temperature, insolation level, the type of PV modules and the shading scenarios.

2

Digital control of a pulse-width modulation (PWM) converter is made possible

with the inclusion of a microcontroller in the design. A digital system has the advantage

of high noise immunity, immunity to analog component variations, fast design process

and programmability for multiple applications, as compared to an analog counterpart [11-

13]. With digital control, more complex control schemes can be easily achieved, such as

the double current mode controller described in the present work. However, digital

control limits the bandwidth of a system due to calculations delays and zero order hold

actions originated from microcontrollers and sampling delays from analog-to-digital

converters (ADCs) [14, 15]. Direct implementation of analog controllers in the digital

domain would require relatively high switching frequency in order to get similar

performance, which is not practical due to limited calculation capabilities of

microcontrollers and excessive power loss in DC-DC converters. Different types of

predictive control methods have been proposed to address calculation delay limitations of

microcontrollers [11, 12, 14, 16]. They have been proven to alleviate the negative effect

that calculation delay has on system bandwidth.

In this thesis, a PV simulator is implemented using a microcontroller and a DC-

DC converter. The IV characteristic of a PV module is implemented as a LUT. The DC-

DC converter is controlled by a double current mode controller that consists of an inner

predictive current mode controller and an outer proportional-integral (PI) controller. This

is a new approach to create a stable and reliable PV simulator.

In Chapter 2, the mathematical model of a PV module is derived and two methods

to implement the mathematical model are proposed. In Chapter 3, the small signal

transfer functions are derived, and the inner predictive current mode controller and the

outer PI controller are designed to satisfy gain margin and phase margin requirements.

Computer simulation of the PV simulator is done in Chapter 4. In Chapter 5, the

hardware setup of the PV simulator is described in terms of the DC-DC converter

topology, component selection and the requirements of the digital signal processor

(DSP). The experimental results of the PV simulator prototype are shown in Chapter 6.

3

2. PV MODULE IV CURVE IMPLEMENTATION

2.1. PV MODULE MODELING

Figure 2.1. Equivalent circuit model of a PV cell [17]

A PV Cell can be modeled as a network that consists of a current source, a diode,

a shunt resistor and a series resistor configured as shown in Fig. 2.1 [17]. The diode

equation is given as [18]

0 (1)

D

t

V

V

DI I e (1)

t

AkT
V

q
 (2)

where ID is the current though the diode, VD is the voltage across the diode, I0 is reverse

saturation current, Vt is thermal voltage, A is ideality factor, k is Boltzmann’s constant, T

is absolute temperature and q is elementary charge. A PV module is made of many series-

connected PV cells as shown in Fig. 2.2. As a result, the voltage across each cell is the

total output voltage of the PV module divided by the number of series-connected cells,

and the current through each PV cell is the same as the output current of the PV module.

4

Figure 2.2. A PV module consists of series-connected PV cells

The output equation that relates the output current and output voltage of a PV

module can be derived as

0 1

PVout
PVout s

t

V
I R PVout

N PVout s
V

PVout ph

sh

V
I R

NI I I e
R

 (3)

(max)ph phI I (4)

21000W

m

 (5)

where IPVout is the output current of the PV module, VPVout is the output voltage of the PV

module, Rs is the series resistance of the PV cell model, Rsh is the shunt resistance of the

PV cell model, N is the number of series-connected cells, Iph is the photo-generated

current which is proportional to the amount of insolation received by the PV module as

5

shown in (4) and (5), Iph(max) is the photo-generated current at 100% insolation, and Λ is

the irradiance from the sun received by the PV module, which is normalized to standard

test condition (STC) of 1000 W/m
2

to find α, the insolation percentage. From (1)-(3), the

IV curve of a PV module is characterized by Rs, Rsh, N, Iph, A, T and I0. By varying these

parameters, one can model many different kinds of PV modules under different

environmental conditions.

However, solar panel datasheets generally do not specify the parameters used in

(3) explicitly, so these parameters must be extracted from other specified parameters

from the datasheets. One technique requires only three values: the open circuit voltage,

the short circuit current and the maximum power point (MPP) voltage and current [19].

The core of this technique involves stepping through all possible values of Rs and Rsh

until the requirement that the derivative of power over voltage is zero is satisfied at the

MPP. The Matlab
1
 code to implement this technique is attached in Appendix C. The

datasheet parameters and the extracted equivalent circuit model parameters have been

compiled in Table 1 for the PV module SW-S85P from SunWize in Chapter 6.

2.2. IV CURVE IMPLEMENTATION

The PV module IV characteristic is represented by a LUT, which is updated

whenever the controller receives a command to change the operating conditions, such as

a different insolation level. In order to store the IV curve as a LUT in memory, a set

number of matching output voltage and output current pairs has to be determined

according to (3). For the double current mode controller to be presented in this paper, an

output current reference is generated according to a measured output voltage. For

simplicity, the output voltage corresponding to the i
th

 element of the LUT is set as

 [] , 0,1,2, , (1)OC
PVout size

size

V
V i i i A

A
 (6)

1
 Matlab is a registered trade mark of The Math Works, Inc.

6

where VOC is the open circuit voltage of the IV curve and Asize is the size of the LUT. Asize

is limited by the random access memory (RAM) size of the microcontroller and can be

increased if higher resolution is necessary and RAM permits. The i
th

 element of the LUT,

which contains the output current reference IPVout[i], can be calculated according to (3).

However, (3) has no analytical solution because IPVout is on both sides of the equation

and in a transcendental function, so Newton’s method is used to find the numeric

solutions. Equation (3) can be rearranged into

[]
[]

0

[]
[]

[] [] 1

PVout
PVout s

t

V i
I i R PVout

N PVout s
V

PVout PVout ph

sh

V i
I i R

Nf I i I i I I e
R

 (7)

with the output current reference IPVout[i] as its independent variable. The i
th

 LUT entry is

the root of f(IPVout[i])=0. Newton’s method is given as [20]

 '

[][]
[][1] [][]

[][]

PVout

PVout PVout

PVout

f I i n
I i n I i n

f I i n
 (8)

where

[]
[][]

'

0[][] 1

PVout
PVout s

t

V i
I i n R

N

V s s
PVout

t sh

R R
f I i n I e

V R

 .

 (9)

IPVout[i][n+1] is the approximation to the real root of f(IPVout[i])=0 after n+1 iterations.

The initial guess IPVout[i][0]can be set to the short circuit current of the IV curve.

Once the array is filled up with voltage and current pairs, it may be used to

represent the PV module. The index i to the array is calculated according to

 ()out
size

OC

V
i round A

V
 (10)

7

where Vout is the output voltage of the PV simulator.

Newton’s method gives accurate solutions and only the output voltage is required

to calculate the corresponding output current, which means only the output voltage needs

to be measured to generate the index i. However, setting up the LUT requires a

considerable amount of computing power from the microcontroller, which is a limited

resource in embedded systems. This makes real time changes to the IV curve implausible

due to large calculation delays.

Another technique to calculate the voltage and current pairs involves expressing

the output current as a function of the diode voltage as

0 1t

DV

V

PVou h

s

D
t p

h

V
I I I e

R

 (11)

 PVout
P sD Vout

V
V I R

N
 (12)

VD becomes the indexed voltage to the LUT, and its value corresponding to the i
th

element of the LUT is set as

 []

OC
SC S

D

size

V
I R

NV i i
A

 (13)

where ISC is the short circuit current of the IV curve. Then IPVout[i] is calculated by

[]

0

[]
[] (1)

D

t

V i

V D
PVout ph

sh

V i
I i I I e

R
 (14)

The index i to the LUT is generated according to

8

 ()out out s
size

OC SC s

V I R N
i round A

V I R N

 (15)

One drawback of this technique is that it requires the knowledge of both the

output voltage and output current, which requires an extra current sensor besides an

output voltage sensor, to generate the index i. However, the extra current sensor is

already in place because the output current is regulated. This method does not require

iterations of Newton’s method and therefore drastically reduces the calculation time

required to setup the LUT. The implementation of the PV simulator described below

incorporates the abilities to simulate real time insolation and temperature changes, which

is achieved with the fast method of (11) to (15). The process to setup the LUT is outlined

in Fig. 2.3. The final current values that are stored in the LUT and their corresponding

voltage values are shown in Fig. 2.4.

Figure 2.3. The LUT setup process

9

Figure 2.4. Final current values of the LUT and their corresponding voltage values

The IV curves of the PV module SW-S85P corresponding to 100%, 80%, 60%,

40% and 20% insolation levels along with their MPPs are shown in Fig. 2.5 with the

diode voltage method. The same IV curves can also be obtained with Newton’s method.

Figure 2.5. IV curves of the PV module SW-S85P using equivalent circuit modeling

10

To implement real time insolation and temperature changes to the IV curve, the

LUT must be modified in real time; however, the LUT cannot be generated within one

switching cycle, so the reference current signal would come from a partially modified

LUT with discontinuities in it. This problem can be solved by using two separate LUTs.

One LUT is used to generate the reference current and the other LUT is modified by the

microcontroller in a background process to reflect insolation and temperature changes as

shown in Fig. 2.6. Both processes shown in Fig. 2.6 run simultaneously. The variable S is

used to determine the role of each LUT, and the symbol % is used to denote modulus

operation.

Figure 2.6. The IV curve implementation process

11

3. CONTROLLER IMPLEMENTATION

3.1. DC-DC CONVERTER IMPLEMENTATION

To achieve a variable output voltage, a synchronous buck converter topology is

utilized as shown in Fig. 3.1. This topology has high efficiency over a wide operating

range, a key feature given the need to reach both short-circuit and open-circuit

conditions.

Figure 3.1. A synchronous buck converter

3.2. CONVERTER SMALL SIGNAL MODELING

Figure 3.2. Control block diagram of the PV simulator

12

The control block diagram is shown in Fig. 3.2. In order to design a controller for

the simulator, the small signal transfer functions of the buck converter must be derived.

Here only the small signal transfer functions for the buck converter operating in

continuous conduction mode (CCM) are needed because the buck converter is

synchronous and will never run into discontinuous conduction mode (DCM). These small

signal transfer functions can be derived using averaged switch modeling or state space

averaging; both methods produce the same transfer functions [21]. The process accounts

for the inductor DC resistance and equivalent series resistance (ESR) of the capacitor.

Assuming a pure resistive load and that the inductor DC resistance and the ESR of the

capacitor are much less than the load resistance, the continuous time small signal transfer

functions are derived as

() 0

()
()

()
in

out
vd

sv

s
s

s

v
G

d

 2

1in esr

esr esr L esr L L

V R CR s

LC R R s L CR R CR R R s R R

 2

1

in esr

L esr L

V R CR s

LCR s L CR R R s R R

 (16)

() 0

()
()

()
in

L

v s

id

i
G s

sd

s

 2

1in esr

esr esr L esr L L

V C R R s

LC R R s L CR R CR R R s R R

13

 2

1in

L esr L

V CR s

LCR s L CR R R s R R

 (17)

()

()
(

1

)

out
iv

out

s
s

s

i
G

v R
 (18)

where Gvd(s) is the small signal transfer function of output voltage over duty ratio, Gid(s)

is the small signal transfer function of inductor current over duty ratio, Giv(s) is the small

signal transfer function of output current over output voltage, L is the inductance, C is the

capacitance, RESR is the ESR of the output capacitor, RL is the DC resistance of the

inductor, Vin is the input voltage, and R is the load resistance.

3.3. INNER PREDICTIVE CURRENT MODE CONTROLLER

Predictive current control is an accurate digital control technique that is based on

inductor current predicted by sampled inductor current and output voltage. There are

three kinds of predictive current mode controls – peak current control, average current

control and valley current control. There are four kinds of modulation methods – trailing

edge, leading edge, trailing triangle and leading triangle. Each of the three current control

methods must be paired with the correct modulation method in order to be stable over the

whole range of the duty ratio. Here average current control is used to increase noise

immunity, and it is paired with trailing triangle modulation to give stability over the

whole duty ratio range of the buck converter. The switching diagram is shown in Fig. 3.3.

Sampling occurs at the beginning of each switching period. By the end of the second

switching period, the average inductor current reaches the reference current set at the

beginning of the first switching period. Regardless of the current control method, the

predictive current mode control law for a buck converter is given as [12]

2

1 out
ref L

in s in

VL
d n d n n I

V
n

VT
I (19)

14

where d[n+1] is the predicted duty ratio for the next switch cycle, d[n] is the duty ratio

of the current switch cycle, IL[n] is the measured inductor current for the current switch

cycle, Iref[n] is the reference inductor current for the current switch cycle, and Ts is the

switching period. The small signal discrete time transfer function of duty ratio over

current error is given as [13]

 ()[() (())]m ref Ld z zz IIF z (20)

where

1

()
1

m

in s

L
F

V T
z

z

 (21)

Figure 3.3. Average predictive current mode switch diagram

15

3.4. OUTER PI CONTROLLER DESIGN

From the block diagram shown in Fig. 3.2, the discrete time loop gain of the plant

without the compensator Gc(z) can be found using loop reduction or Mason’s Law.

Assuming that the gains from the ADCs have been adjusted to unity, the discrete time

loop gain of the plant is found as

() () ()

()
1 () ()

m vd iv

m id

F z G z G z
T z

F z G z

 (22)

where Gvd(z), Gid(z) and Giv(z) are the discrete time equivalents of Gvd(s), Gid(s) and Giv(s)

respectively. To design the compensator in the continuous time domain, the loop gain

from (22) is converted to the continuous time domain by converting Fm(z) to the

continuous time domain Fm(s) using bilinear transform as

1

2

1
2

)

1
2

((
2

)
s

s

s

m m T
s

s in
z

T
s

T
L s

s
T

zF F
V

 (23)

Then the loop gain becomes

() () ()

() (

2 1 1
2

()
1 ())

s
esr

m vd iv

m id

T
L CR s s

F Gs s s

s s

G
T s

F G D s

 (24)

where

 2() 3 4 4 3 2 2 4 4s L s esr s s s L sD s CLRT s CRR T CRR T LT CLR s L RT R T
. (25)

The compensator Gc(s) is designed based on the common PI controller

16

I
p

PI
P

K
K s

KK
PI K

s s

.
 (26)

The small signal transfer functions of the buck converter are dependent on the load

condition. To eliminate the need for mode switching or gain scheduling in the controller,

control gain must ensure stability under the load conditions that place the most stringent

requirements on the PI controller. If the load resistance is assumed to range from 0.25 Ω

to 200 Ω, then a PI controller can be designed to satisfy both end point load conditions.

Using Matlab, a range of operating conditions can be considered so that a PI controller

can be produced to satisfy the requirements that the phase margin is greater than 75° and

gain margin is greater than 6 dB. The zero of the PI controller is determined primarily by

the light load condition, while the gain is determined primarily by the heavy load

condition. Considering both, a stable controller may be found for the entire operating

range. The PI controller is chosen to be

 2000 1 0.

()
0039

c

s
G

s
s

 (27)

The discrete time equivalent of Gc(s) is transformed as

2 1

1

7.61 7.59
()()

1
s

c c z
s

T z

z
G G s

z
z

 (28)

The bandwidth of the system increases as load resistance decreases. The Bode

plots of the compensated loop gains when the system is operating at minimum load

resistance, maximum load resistance and MPP load resistance are shown in Fig. 3.4.

17

Figure 3.4. Compensated plant loop gains for multiple load conditions

3.5. SYSTEM STABILITY ANALYSIS

The continuous time loop gain of the whole closed system, which includes the

LUT and the plant, is found to be

()

1 ()

()
()

()

c
sys LUT

c

T s G
T G

T s G

s
s

s

 (29)

GLUT is the small signal gain from the LUT. From (29), the stability of the whole system

depends on the gain of the LUT since the plant is designed to be stable. The IV curve of

the PV module to be simulated in Chapter 6 is shown in Fig. 3.5 along with the

corresponding GLUT. From Fig. 3.5, the absolute value of the IV curve slope increases as

the voltage increases, and the worst case GLUT is -1.797 S. At this worst case GLUT, the

loop gain of the whole closed system is shown in Fig. 3.6. As shown in Fig.3.6, the

system still has adequate gain and phase margins and is stable.

18

Figure 3.5. PV module IV curve and gain

Figure 3.6. Bode plot of worst case system loop gain

19

4. SIMULATION RESULTS

Simulation is done in Matlab Simulink
2
 with the help of the toolset PLECS

3
. The

top level model schematic is shown in Fig. 4.1.

Scope

Power Stage

PWM1

PWM2

RL

ILb

Vout

Probe

Iout

Vin

PLECS

Circuit

PWM

d1

d2

PWM1

PWM2

PLECS

Circuit

Load

RL
PLECS

Circuit

Inso Control

Inso
PLECS

Circuit

IV LUT

Vout

Iout

Inso

Iref
PLECS

Circuit

Control

ILb

Vout

Iout

Iref

Vin

d1

d2

PLECS

Circuit

Figure 4.1. Top level schematic of the PV simulator simulation model

The “Power Stage” block shown in Fig. 4.2 houses the two stage DC-DC converter to be

discussed in Chapter 5.

2
 Matlab Simulink is a registered trade mark of The Math Works, Inc.

3
 PLECS is a registered trade mark of Plexim GmbH.

20

Figure 4.2. Power stage simulation model of the PV simulator

The circuit parameters used in the power stage simulation model are from those shown in

Chapter 6 to match the experimental setup. The “IV LUT” block houses the IV curve

LUT of the PV module. It is implemented through the “C-script” block available from the

PLECS toolset as shown in Fig. 4.3.

Figure 4.3. Inside of “IV LUT” block

21

The “C-script” block allows users to implement algorithms in C code. This greatly

increases the capabilities and flexibilities of Simulink. The C code that goes in this “C-

script” block can be extracted from the C codes shown in Appendix B. The “Control”

block is implemented in a similar manner as shown in Fig. 4.4. The “Delay” block before

the output “d2” is to simulate the zero-order hold action of a microcontroller.

Figure 4.4. Control block simulation model for PV simulator

The steady state IV curve matching capability of the simulator is shown in Fig. 4.5 at

insolation levels of 100%, 60% and 20%. The dynamic load step responses of the

simulator at five different operating points on the IV curve as shown in Fig. 4.6 are

shown from Fig. 4.7 to Fig. 4.11. The dynamic responses corresponding to insolation

changes for three fixed load conditions are shown from Fig. 4.12 to Fig. 4.14.

22

Figure 4.5. Computer simulated performance of the PV simulator

Figure 4.6. Dynamic load step response test operating points

23

Figure 4.7. Computer simulated output waveforms of the PV simulator when load

changes between 1.0Ω and 0.9Ω (operating point A)

Figure 4.8. Computer simulated output waveforms of the PV simulator when load

changes between 2.2Ω and 2Ω (operating point B)

24

Figure 4.9. Computer simulated output waveforms of the PV simulator when load

changes between 3.2Ω and 2.9Ω (operating point C)

Figure 4.10. Computer simulated output waveforms of the PV simulator when load

changes between 4.4Ω and 4Ω (operating point D)

25

Figure 4.11. Computer simulated output waveforms of the PV simulator when load

changes between 9.6Ω and 8.7Ω (operating point E)

Figure 4.12. Computer simulated insolation change step response with load of 1.25Ω

26

Figure 4.13. Computer simulated insolation change step response with load of 4.07Ω

Figure 4.14. Computer simulated insolation change step response with load of 5.4Ω

27

5. HARDWARE IMPLEMENTATION

5.1. POWER STAGE OF THE PV SIMULATOR

The simulator is powered by a Li-ion battery pack to create a portable device;

however, it can also be powered by a fixed or programmable DC power supply when they

are available. A battery or DC power supply with output voltage higher than the open

circuit voltage of the PV module to be simulated might not be readily available, so a two-

stage synchronous DC-DC converter is devised as shown in Fig. 5.1.

Figure 5.1. PV simulator hardware block diagram

The first stage is a step-up synchronous boost converter whose steady state output

voltage is approximately

1

bat
b

b

V
V

D

 (30)

28

where Vbat is the input voltage from the battery or an equivalent power source, Db is the

boost converter duty ratio and Vb is the output voltage of the boost converter. For the

prototype built, the boost converter outputs a nominal voltage of 30 V from a nominal

input voltage of 14.8 V from the Li-ion battery pack. The second stage is a step-down

synchronous buck converter whose output voltage is approximately

 out bk bV D V (31)

where Vout is the output voltage and Dbk is the duty ratio of the buck converter. For the

prototype built, the buck converter has an output voltage range of 0 V to 30 V from a

nominal input voltage of 30 V, which means Dbk will range from zero to unity. One major

advantage of using a synchronous topology is high efficiency, which is essential for

portable applications. Another advantage of using a synchronous topology here is that the

DC-DC converter will never run into DCM. This allows for a much simpler controller

implementation that does not need to account for both CCM and DCM, which are

qualitatively different in nature and have different dynamic models.

However, with a synchronous topology, the number of MOSFETs used is

increased from two to four, which means the required number of PWM signals also

increases from two to four. Dead-bands must be introduced between Q1 and Q2, and

between Q3 and Q4 to prevent short-circuiting of the filter capacitor CB due to the

inherent turn-on and turn-off delays of MOSFETs. Since the source nodes of the high-

side MOSFETs Q2 and Q3 have to be floating, the gate drivers must be able to provide

floating gate signals to these high-side MOSFETs. In the present design, the “low and

high side” gate driver IR2110 from International Rectifier is used. This type of gate

driver requires that the source node of the high-side MOSFETs be connected to the drain

of the low-side MOSFETs. This means that the body diodes of Q2 and Q3 will be

temporarily conducting whenever Q2 and Q3 are not fully turned on and are required to

conduct current. The body diode of a MOSFET is inefficient because it has

29

comparatively high forward voltage and reverse recovery charge, so the Schottky diodes

D1 and D2 are used to bypass the body diodes in Q2 and Q3 to increase efficiency.

5.2. INDUCTOR AND CAPACITOR SELECTION

The inductor current waveform of the buck converter is shown in Fig. 5.2.

ΔILIL

DbkTs 2TsTs

2

-b outV V

L
2

outV

L

Figure 5.2. Buck converter inductor current

The ripple current then can be calculated by

2

bk s b out

L

D T V V
I

L

 (32)

where ΔIL is the inductor peak-to-peak current ripple, and L2 is the buck converter

inductor. Substituting (31) in (32) and solving for L2 gives

2

out b out

bL sw

V V V
L

I f V

 (33)

where fsw is the switching frequency. When Vout is equal to half of Vb, L2 is maximized.

This leads to

 2
4 L s

b

w

V
L

I f

.

 (34)

30

Equation (34) gives the minimum required inductance for a specified inductor peak-to-

peak current ripple requirement for the proposed PV simulator. The minimum required

output capacitor value to satisfy output voltage peak-to-peak ripple requirement is given

as [21]

 8

L
out

sw out ESR L

I
C

f V R I

.

 (35)

where ΔVout is the peak-to-peak output voltage ripple. In the PV simulator prototype, the

inductor value and capacitor value selected are to satisfy a peak-to-peak inductor current

ripple of 1 A and a peak-to-peak output voltage ripple of 50 mV respectively.

Since the second stage buck converter acts as a low pass filter to the output

voltage of the first stage boost converter, there is a lot of flexibility in the inductor and

capacitor values for the boost converter. However, the boost converter acts as an input

filter for the buck converter, so the output impedance of the boost converter must be less

than the input impedance of the buck converter to ensure system stability. In order to

avoid multi-stage instability, the filter capacitor Cb should be chosen to be as large as

reasonable. In the PV simulator prototype, Cb is chosen to be twice as large as Cout, and

L1 is chosen to be the same as L2.

5.3. THE DSP

The DSP is required to have three ADC channels, four PWM output channels,

built-in or external RAM and a processing unit, preferably with floating point math

capability. The ADCs are used to measure the output voltage, output current and the buck

converter inductor current, as needed by the double current mode controller. The PWM

signals that go into Q1 and Q2 should run in complementary mode, which means only

one MOSFET can be turned on at a time, with preset dead-band. This also applies to the

PWM signals that go into Q3 and Q4. For the PV simulator prototype, the DSP chosen is

the 32-bit TMS320F28335 by Texas Instrument. The DSP runs at 150MHz and has a

built-in floating-point-unit, 16 channels of 12-bit ADCs, and six PWM modules, each

31

with two PWM output channels that can run in complementary mode with preset dead-

band.

32

6. EXPERIMENTAL RESULTS

6.1. PV SIMULATOR PROTOTYPE

The PV simulator has been built with the circuit parameters shown in Table 6.1.

The physical layout of the circuit board is shown in Fig. 6.1.

Figure 6.1. PV simulator prototype built

The main restriction to the frequency is the calculation speed of the

microcontroller since it has to finish all required calculation before the next switching

period starts. The PV simulator is set to simulate the multi-crystalline PV module SW-

S85P from SunWize. Its datasheet parameters and the calculated parameters for the

equivalent circuit model shown in Chapter 2 are given in Table 6.2. Note that the circuit

parameters from the datasheet are taken under STC, where the temperature is 25 °C and

the irradiance is 1000 W/m
2
 (100% insolation).

33

Table 6.1. PV Simulator Parameter

DC-DC converter parameters

Switching Frequency (fsw) 100 kHz

Inductor (L1) 138 μH

Inductor (L2) 138 μH

Inductor DC Resistance(RDC) 100 mΩ

Input Capacitor (Cin) 560 μF

Filter Capacitor(CB) 1 mF

Output Capacitor (Cout) 560 μF

Output Capacitor ESR(Resr) 54 mΩ

Table 6.2. PV Module Parameters

Datasheet Parameters (STC)

Number of Cells in Series (N) 72

Short Circuit Current (Isc) 5.4 A

Open Circuit Voltage (Voc) 22 V

Voltage at Max. Power (Vmpp) 17.4 V

Current at Max. Power (Impp) 4.9 A

Maximum Output Power (Pmpp) 85 W

Model Parameters

Internal Series Resistance (Rs) 342 mΩ

Internal Shunt Resistance (Rsh) 1.115 KΩ

Reverse Saturation Current (I0) 73.42 nA

Photo-generated Current (100% Insolation) (Iph) 5.402 A

Ideality Factor (A) 0.4728

The outputs of the PV simulator prototype when connected to different constant current

loads are shown in Fig. 6.2 for 100%, 60% and 20% insolation levels. As shown in Fig.

6.2, the output of the PV simulator prototype follows the ideal IV curves consistently

without running into stability issues.

34

Figure 6.2. PV simulator prototype’s performance

The experimental setup to test the dynamic response of the simulator is shown in

Fig. 6.3, where Rf is the controlled load, Qf is the controlled load switch and P is the gate

control signal with a switching frequency of 100 kHz. The load step responses of the PV

simulator prototype, corresponding to the five different operating points on the IV curve

shown in Fig. 4.6, are shown from Fig. 6.4 to Fig. 6.8, where the top trace is the output

voltage, the middle trace is the output current and the bottom trace is the load switch. Fig.

6.9 to Fig. 6.14 show the insolation step responses of the PV simulator prototype in the

MPP region, where the top trace is the output current and the bottom trace is the output

voltage. The load step response experimental results are comparable to the simulated load

step responses shown in Chapter 4, as measured by rise time, fall time, settling time and

overshoots. The maximum settling time of the prototype is about 500 μs. Therefore, the

PV simulator prototype can be perturbed, as by a MPPT controller, with a sampling

frequency of up to 2 kHz.

35

Rf

PV Simulator/

PV Module
RL

Qf
P

+

-

Vout

Iout

Figure 6.3. Experiment setup for the PV simulator/PV module load dynamic response

Figure 6.4. Step response when load changes between 1Ω and 0.9Ω.

36

Figure 6.5. Step response when load changes between 2.22Ω and 2Ω.

Figure 6.6. Step response when load changes between 3.2Ω and 2.9Ω.

37

Figure 6.7. Step response when load changes between 4.4Ω and 4Ω.

Figure 6.8. Step response when load changes between 9.6Ω and 8.7Ω.

38

Figure 6.9. Insolation step change (Insolation 100% - 60%) (Load = 1.24Ω)

Figure 6.10. Insolation step change (Insolation 60% - 100%) (Load = 1.24Ω)

39

Figure 6.11. Insolation step change (Insolation 100% - 60%) (Load = 3.14Ω)

Figure 6.12. Insolation step change (Insolation 60% - 100%) (Load = 3.14Ω)

40

Figure 6.13. Insolation step change (Insolation 100% - 60%) (Load = 4.23Ω)

Figure 6.14. Insolation step change (Insolation 60% - 100%) (Load = 4.23Ω)

6.2. PV MODULE DYNAMIC RESPONSE

With the setup shown in Fig. 6.3, the load step responses of the PV module SW-

S85P are determined and the results are shown from Fig. 6.15 to Fig. 6.17 with a load

switching frequency of 100 kHz. The settling time increases as the output current

41

increases, and the output takes about 5 μs to settle for the worst case, which translates to a

sampling frequency of 200 kHz.

Figure 6.15. PV module step response when load changes between 2.34Ω and 2.14Ω

Figure 6.16. PV module step response when load changes between 4.23Ω and 3.67Ω

42

Figure 6.17. PV module step response when load changes between 8.46Ω and 7.33Ω

43

7. CONCLUSION

7.1. RESEARCH FINDINGS

This thesis presents a digitally implemented PV simulator which consists of a DC-

DC converter and a DSP. The IV characteristic of the PV module of interest is

implemented as a LUT that resides in the RAM of a microcontroller. A double current

mode controller that consists of a PI controller and a predictive current mode controller is

used to regulate the output current of the DC-DC converter to match the IV curve in the

LUT. With a double current mode controller, the stability of the system is guaranteed

over a wide range of load conditions. A portable PV simulator prototype of 85 Watts is

built to demonstrate the effectiveness of the presented method. It is shown that the

prototype has excellent IV curve matching capability, and it can be perturbed, as by a

MPPT controller, with a sampling frequency of up to 2 kHz. The dynamic response of the

physical PV module of interest is also examined, and it has a maximum settling time of

approximately 5 μs, which translates to a maximum sampling frequency of 200 kHz. It is

observed that the settling time of the PV simulator prototype is significantly more than

the settling time of a real PV module. The effectiveness of the PV simulator prototype

hence is dependent on the MPPT algorithm and its sampling frequency. Even though the

PV simulator prototype falls short of the step response of a real PV module, this gap can

be bridged by better component selection and faster microcontrollers.

7.2. FUTURE WORK

It is possible to improve the dynamic response of the simulator prototype by

reducing the size of the output capacitor while at the same time satisfying the output

voltage ripple requirement. For a fixed switching frequency, the selection of the output

capacitor for the simulator prototype is dominated by the ESR, so the best way to reduce

the size of the output capacitor is to replace it with a capacitor of a different material,

such as Polymer Aluminum, which has lower ESR than Aluminum Electrolytic

capacitors. Another way to reduce the size of the output capacitor is to reduce the

inductor ripple by using large inductor values. However, larger inductor values mean

lower rate of change of the inductor current, which could limit the system bandwidth. A

44

method to balance inductor and capacitor values to achieve maximum system bandwidth

is of great value here. The last method to reduce the size of the output capacitor is to

increase the switching frequency. However, higher frequency requires faster processors,

better power management for the DC-DC converter and capacitors that are suitable for

high frequency operation.

It is also beneficial to see if multiple PV simulators can be connected in a series or

parallel configuration to enable emulation of higher power PV modules. This would

greatly increase the flexibility of the PV simulator and give reasons for the mass

production of a PV simulator of low output power, such as the prototype built.

A computer user interface, such as a graphic user interface or a command prompt,

needs to be designed to let users input all the parameters about the PV module of interest

and the environmental conditions of the simulation in order to run the PV simulator

prototype in stand-alone mode. There is a serial port built into the PV simulator

prototype, which is connected to the SCI channels of the DSP. This port will be

connected to the RS-232 serial port of a computer. There is also a USB interface for the

SCI of the DSP for computers that don’t have serial ports, as it is true for most modern

computers.

45

APPENDIX A.

PRINTED CIRCUIT BOARD DESIGN

46

This appendix contains the EAGLE
4
 schematics and printed circuit board (PCB)

physical layout information for the photovoltaic simulator prototype built. Figures A.1

through A.4 show the schematics for the PV simulator prototype. The PCB consists of

two layers and utilizes the ground plane construct technique. Figure A.5 and A.6 show

the PCB physical top and bottom board layer of the PV simulator prototype. In the

physical board layout, circles represent vias or through holes, and the dashed lines

specify the ground plane borders.

4
 The EAGLE logo is a registered trademark of CadSoft Computer.

47

Figure A.1. PV simulator PCB schematic sheet one

48

Figure A.2. PV simulator PCB schematic sheet two

49

Figure A.3. PV simulator PCB schematic sheet three

50

Figure A.4. PV simulator PCB schematic sheet four

51

Figure A.5. Top layer of board physical layout

52

Figure A.6. Bottom layer of board physical layout

53

APPENDIX B.

C CODE FOR THE MICROCONTROLLER

54

This appendix contains the C code that is executed by the DSP TMS320F28335

from Texas Instrument. The C code shown in this appendix is very hardware specific and

readers should refer to the technical manual of the DSP in order to fully understand how

it functions. Note that the C code also contains the code to implement the function

generator to drive the experiment setup shown in Chapter 6.

55

/***

 * DSP: TMS320F28335

 * (c) Jie Ang Zhao, Missouri S&T

 * Last modified 02/09/2012

 * ***/

#include "DSP2833x_Device.h"

#include "DSP2833x_GlobalPrototypes.h"

#include "DSP2833x_EPwm_defines.h"

#include "DSP2833x_Examples.h"

#include <math.h> // contains basic math

 functions

#include <string.h>

#include <stdio.h> // contains the function

 sprintf

//#define __FLASH // define if loading

 program to flash module

//#define __FUNCTION // define if the board is

 used as a function

 generator

#ifdef __FLASH

extern unsigned int RamfuncsLoadStart;

extern unsigned int RamfuncsLoadEnd;

extern unsigned int RamfuncsRunStart;

#endif

// custom functions

void init_ePWMs(void); // setup ports for the PWMs

void Init_SCIA(void); // initialize SCIA

//void Gpio_select(void);

interrupt void cpu_timer0_isr(void); // timer0 ISR

void setup_ePWM1(void); // initialize PWM module A

void setup_ePWM2(void); // initialize PWM module B

void InfoDisplay(void); // sent output voltage and

 output current through

 serial port

void setup_ADC_mode(void); // initialize ADC module

interrupt void adc_isr(void); // ADC end of sequence ISR

interrupt void SCIA_TX_isr(void); // SCIA transmit ISR

interrupt void SCIA_RX_isr(void); // SCIA receive interrupt ISR

interrupt void timer0_isr(void); // timer0 ISR

void PWMSD(unsigned int); // PWM shut down, 1= turnn

 off, 0= turn on

void gateDriveSD(unsigned int gd1, unsigned int gd2);

// gate drivers shut down, 1= shutdown, 0= release

void IV_generator(void); // generator look up table

56

void IV_generator_Vd(void); // generate the IV curve

 using the Vd method

// global variables

/**

 * PV panel Parameters

 * ***/

float f_temp=300; // temperature in K

float f_Voc=22; // open circuit voltage of panel in Volt

float f_Isc=5.4; // short circuit current of panel in Amp

unsigned int n_cells=72; // number of cells in series

const float q=1.6E-19; // elememtary charge in C

const float k=1.38E-23; // Boltzmann constant in J/K

float f_Rs=.3419; // series resistance in Ohms

float f_Rsh=1152; // shunt resistance in Ohms

float f_n=.4728; // ideality factor of diode in PV cell

 model

const unsigned int n_size=1000; // size of look up table

float f_ary_VI[2][1000]={0};

// IV curve lookup table. Voltage generates the index and the element

 values are the corresponding output current

float f_deltaI=0.1; // smallest current step

unsigned int n_index=0; // index to be used in LUT

float f_Vth=.0169; // thermal voltage

float f_Io=7.3417E-8; // reverse saturation current

float f_deltaVd=0.0221; // equals (open circuit voltage +

 .1) /n_size

float f_Iph=5.4017; // photogenerated current

float f_Inso=1; // insolation level, 0-1

/************************************

 * End of PV panel Parameters

 * **********************************/

float dutyCycle1 = 0.5; // this sets the duty cycle for first

 stage boost converter

float dutyCycle2 = 0.45; // this sets the initial duty cycle for

 the second stage buck converter

float r1k[3]={0,0,0}; // voltage loop state array

float r2k[2]={0,0}; // curretn loop state array

float r3k[2]={0,0}; // low pass filter state array

float irefn[2]={0}; // reference current state array

unsigned int IV_switch=0; // switch of the IV curve

/**************************************

 * PRD sets the frequency of the PWM */

unsigned int PRD = 375; // 16bit, period of the PWM

// PRD = 37500 1KHz

// PRD = 7500 5KHz

// PRD = 3750 10KHz

// PRD = 1875 20KHz

// PRD = 1500 25KHz

// PRD = 750 50KHz

57

// PRD = 375 100KHz

//*************************

// global variables to save ADC readings

float Vout; // output voltage

float Vin; // input voltage

float Iout; // output current

float Vout_boost; // first stage output voltage

float Inso[2]={0}; // insolation knob reading

float Inso_Out[2]={0}; // insolation after filter

float Temp; // temperature knob reading

float IL; // buck stage inductor current

// test variables

unsigned long count=0;

unsigned int IVCurveDone=0;

unsigned int indexOut=0; // for SCIA-TX

unsigned int indexIn=0; // for SCIA-RX

char outBuff[32];

char inBuff[32];

unsigned int sup=0; // for testing

unsigned int txcount=0;

char tempChar; // helper character

unsigned long rxcount=0;

unsigned long tcount=0;

void main(void)

 {

 InitSysCtrl(); // Basic Sys Init, 150MHz SYSCLKOUT

 #ifdef __FLASH

 memcpy(&RamfuncsRunStart, &RamfuncsLoadStart, &RamfuncsLoadEnd -

&RamfuncsLoadStart);

 InitFlash(); // initialize flash memory module,

 pipline enabled, minimum waitstate

 #endif

 Gpio_select();

 DINT; // Disable all interrupts

 #ifdef __FUNCTION

 InitPieCtrl();

 InitPieVectTable();

 InitAdc();

 setup_ADC_mode();

 InitCpuTimers();

 ConfigCpuTimer(&CpuTimer0,150,100000);

 EALLOW;

 PieVectTable.TINT0=&timer0_isr;

 PieVectTable.ADCINT = &adc_isr;

 EDIS;

 PieCtrlRegs.PIEIER1.bit.INTx7=1;

 PieCtrlRegs.PIEIER1.bit.INTx6 = 1;

 IER |=0x001;

 #endif

 #ifndef __FUNCTION

58

 InitPieCtrl(); // basic setup of PIE table; from

 DSP2833x_PieCtrl.c

 InitPieVectTable(); // default ISR's in PIE

 InitAdc(); // calibrate and start the ADC module

 setup_ADC_mode(); // setup ADC module

 //InitCpuTimers(); // basic setup for CPU timer0, 1 and 2

 //ConfigCpuTimer(&CpuTimer0,150,2000);

// timer0 triggers every 2000us

 EALLOW; // allow access to protected

 registers

 //PieVectTable.TINT0=&timer0_isr;

// add timer0 ISR to PIE vector table

 PieVectTable.ADCINT = &adc_isr; // add adc ISR to PIE

 vector table

 PieVectTable.SCITXINTA=&SCIA_TX_isr;

// add scia transmit interrupt to PIE vector table

 PieVectTable.SCIRXINTA=&SCIA_RX_isr;

// add scia receive interrrupt to PIE vector table

 EDIS; // disable access to protected registers

 PieCtrlRegs.PIEIER1.bit.INTx6 = 1; // enable ADC

 interrrupt

 PieCtrlRegs.PIEIER9.bit.INTx2=1; // SCIA-A-TX-isr

 PieCtrlRegs.PIEIER9.bit.INTx1=1; // SCIA-A-RX-isr

 //PieCtrlRegs.PIEIER1.bit.INTx7 = 1;// Enable CPU Timer 0 INT

 IER |=0x101; // enable INT1 and INT9

 //IV_generator(); // initialize LUT

 IV_generator_Vd(); // initialize LUT with diode voltage

 method

 IVCurveDone=1; // shown that IV curve is done

 #endif

 gateDriveSD(1,1); // shut down the two gate drivers

 init_ePWMs(); // setup ports for ePWM outputs

 PWMSD(1); // turn off PWM module

 setup_ePWM1(); // setup PWM1A and PWM1B

 setup_ePWM2(); // setup PWM2A and PWM2B

 PWMSD(0); // turn on PWM module

 DELAY_US(1000000); // 1 second delay

 gateDriveSD(0,1); // turn on first stage gate driver for

 boost converter

 Init_SCIA(); // setup ports for SCIA

 CpuTimer0Regs.TCR.bit.TSS = 0; // start timer0

 EINT; // enable global interrupt

 ERTM; // enable debug events

 DELAY_US(2000000); // 2 second delay to allow for first

 stage output to settle

 gateDriveSD(0,0); // turn on second stage buck converter

 gate driver

 while(1){

59

 IV_generator_Vd(); // update the LUT to reflect new

 Insolation condition

 };

}

void Gpio_select(void)

{

 EALLOW;

 GpioCtrlRegs.GPAMUX1.all = 0; // GPIO15 ... GPIO0 = General

 Puropse I/O

 GpioCtrlRegs.GPAMUX2.all = 0; // GPIO31 ... GPIO16 =

 General Purpose I/O

 GpioCtrlRegs.GPBMUX1.all = 0; // GPIO47 ... GPIO32 =

 General Purpose I/O

 GpioCtrlRegs.GPBMUX2.all = 0; // GPIO63 ... GPIO48 =

 General Purpose I/O

 GpioCtrlRegs.GPCMUX1.all = 0; // GPIO79 ... GPIO64 =

 General Purpose I/O

 GpioCtrlRegs.GPCMUX2.all = 0; // GPIO87 ... GPIO80 =

 General Purpose I/O

 GpioCtrlRegs.GPADIR.bit.GPIO7 = 1; // setup shut down on gate

 driver 1

 GpioCtrlRegs.GPBDIR.bit.GPIO34 = 1; // setup shut down on gate

 driver 2

 EDIS;

}

interrupt void cpu_timer0_isr(void)

{

 CpuTimer0.InterruptCount++;

 EALLOW;

 SysCtrlRegs.WDKEY = 0xAA; // service WD #2

 EDIS;

 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;

}

void init_ePWMs(void){

 InitEPwm1Gpio(); //setup ePWM1, with pullup enabled,

 GPIO0(1A), GPIO1(1B)

 InitEPwm2Gpio(); //setup ePWM2, with pullup enabled,

 GPIO2(2A), GPIO3(2B)

// InitEPwm3Gpio(); //setup ePWM3, with pullup enabled,

 GPIO4(3A), GPIO5(3B)

// InitEPwm4Gpio(); //setup ePWM4, with pullup enabled,

 GPIO6(4A), GPIO7(4B)

}

void setup_ePWM1(void){

 /**

 * formula to calculate TBPRD in updown mode

 * TBPRD = 0.5*fSYSCLKOUT/(fPWM*2^CLKDIV*HSPCLKDIV),HSPCLKDIV is

 * always 2 for f28335

 * **/

 EPwm1Regs.TBCTL.bit.CLKDIV = 0x0; // TB clock pre-scale, 3bit

60

 EPwm1Regs.TBPRD = PRD;

 EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN;

// set the counter to up-down mode

 // set up the duty cycle

 EPwm1Regs.CMPA.half.CMPA = (unsigned

 int)(dutyCycle1*EPwm1Regs.TBPRD); // set duty cycle

 EPwm1Regs.AQCTLA.all = 0x0090; //symmetrical PWM

 // deadband implementation

 // Active High Complentary suitable for power switches

 applications

 EPwm1Regs.DBCTL.bit.IN_MODE = DBA_ALL;

//PWMA is used for both channels A and B

 EPwm1Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC;

//Active High Complementary

 EPwm1Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE;

//Both rising and falling edge delay

 /***

 * formula to calculate the dead band delay

 * Rising Edge Delay = T(TBCLK)*DBRED

 * Falling EDge Delay = T(TBCLK)*DBFED

 * f(TBCLK) = f(SYSCLKOUT)/(2^CLKDIV*HSPCLKDIV),HSPCLKDIV is

 * always 2 for f28335

 * ***/

 EPwm1Regs.DBRED = 12; // 160ns dead band; 10bit

 EPwm1Regs.DBFED = 12; // 160ns dead band; 10bit

 #ifdef __FUNCTION

 EPwm1Regs.DBRED = 0; // 0ns dead band; 10bit

 EPwm1Regs.DBFED = 0; // 0ns dead band; 10bit

 #endif

 // end of deadband implementation

 EPwm1Regs.TBCTL.bit.SYNCOSEL = 1; //SyncOut if CTR = 0;

}

void setup_ePWM2(void){

 /**

 * formula to calculate TBPRD in updown mode

 * TBPRD = 0.5*fSYSCLKOUT/(fPWM*2^CLKDIV*HSPCLKDIV), HSPCLKDIV is

 * always 2 for f28335

 * **/

 EPwm2Regs.TBCTL.bit.CLKDIV = 0x0; // TB clock pre-scale, 3bit

 EPwm2Regs.TBPRD = PRD;

 EPwm2Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN;

// set the counter to up-down mode

 // set up the duty cycle

 EPwm2Regs.CMPA.half.CMPA = (unsigned

int)(dutyCycle2*EPwm1Regs.TBPRD);

 EPwm2Regs.AQCTLA.all = 0x0090; //symmetrical PWM

 // deadband implementation

 // Active High Complentary suitable for power switches

 applications

61

 EPwm2Regs.DBCTL.bit.IN_MODE = DBA_ALL; //PWMA is used for both

 channels A and B

 EPwm2Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC;

//Active High Complementary

 EPwm2Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE;

//Both rising and falling edge delay

 /***

 * formula to calculate the dead band delay

 * Rising Edge Delay = T(TBCLK)*DBRED

 * Falling EDge Delay = T(TBCLK)*DBFED

 * f(TBCLK) = f(SYSCLKOUT)/(2^CLKDIV*HSPCLKDIV),HSPCLKDIV is

 * always 2 for f28335

 * ***/

 EPwm2Regs.DBRED = 12; // 160ns dead band; 10bit

 EPwm2Regs.DBFED = 12; // 160ns dead band; 10bit

 #ifdef __FUNCTION

 EPwm2Regs.DBRED = 0; // 0ns dead band; 10bit

 EPwm2Regs.DBFED = 0; // 0ns dead band; 10bit

 #endif

 // end of deadband implementation

 EPwm2Regs.ETPS.all = 0x0100; // Configure ADC start by ePWM2

 /*

 bit 15-14 00: EPWMxSOCB, read-only

 bit 13-12 00: SOCBPRD, don't care

 bit 11-10 00: EPWMxSOCA, read-only

 bit 9-8 01: SOCAPRD, 01 = generate SOCA on first event

 bit 7-4 0000: reserved

 bit 3-2 00: INTCNT, don't care

 bit 1-0 00: INTPRD, don't care

 */

 EPwm2Regs.ETSEL.all = 0x0900;

// Enable SOCA to ADC, change SOCASEL to select even trigger

 point

 /*

 bit 15 0: SOCBEN, 0 = disable SOCB

 bit 14-12 000: SOCBSEL, don't care

 bit 11 1: SOCAEN, 1 = enable SOCA

 bit 10-8 010: SOCASEL, 001 = SOCA on CTR = 0 event

 bit 7-4 0000: reserved

 bit 3 0: INTEN, 0 = disable interrupt

 bit 2-0 000: INTSEL, don't care

 */

 EPwm2Regs.TBCTL.bit.SYNCOSEL = 0; // SyncOut=syncin;

 EPwm2Regs.TBCTL.bit.PHSEN = 1; // enable phase shift

 EPwm2Regs.TBPHS.half.TBPHS = PRD; // phase shift amount

}

void init_SCIA(void){

 InitSciaGpio(); // SCIRXDA (GPIO28), SCITXDA (GPIO29);

 internal pullup enabled

}

void setup_ADC_mode(void){

 AdcRegs.ADCTRL1.all = 0;

62

 AdcRegs.ADCTRL1.bit.ACQ_PS = 7; // ACQ_PS + 1 ADCCLK

 cycles of sampling window

 AdcRegs.ADCTRL1.bit.SEQ_CASC =1; // cascaded mode

 AdcRegs.ADCTRL1.bit.CPS = 0; // ADCCLK = FCLK/1

 AdcRegs.ADCTRL1.bit.CONT_RUN = 0; // single run mode

 AdcRegs.ADCTRL2.all = 0;

 AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 1; // enable SEQ1

 interrupt

 AdcRegs.ADCTRL2.bit.EPWM_SOCA_SEQ1 =1;

// triggered by ePWM_SOCA event

 AdcRegs.ADCTRL2.bit.INT_MOD_SEQ1 = 0;

// interrupt every end of sequence

 /**

 * formula to calculate fFCLK = fHSPCLK/(2*ADCCLKPS)

 * fHSPCLK is default to fSYSCLKOUT/2 = 75MHz

 **/

 AdcRegs.ADCTRL3.bit.ADCCLKPS = 3; // 12.5MHz ADC clock

 AdcRegs.ADCTRL3.bit.SMODE_SEL = 1;

// simultaneous sampling mode

 AdcRegs.ADCMAXCONV.all = 0x0003;

// ADCMAXCONV + 1 conversions from SEQ1

 /**

 * connect the ADC channels to the specific sequence slot

 * Ex: 1 stand for ADC1A and ADC1B for simultaneous sampling mode

 * Length of sequence limited by ADCMAXCONV

 **/

 AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0;

 AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 1;

 AdcRegs.ADCCHSELSEQ1.bit.CONV02 = 2;

 AdcRegs.ADCCHSELSEQ1.bit.CONV03 = 3;

 //AdcRegs.ADCCHSELSEQ2.bit.CONV04 = 4;

 //AdcRegs.ADCCHSELSEQ2.bit.CONV05 = 5;

 //AdcRegs.ADCCHSELSEQ2.bit.CONV06 = 6;

 //AdcRegs.ADCCHSELSEQ2.bit.CONV07 = 7;

}

interrupt void adc_isr(void){

 // reads from the ADC mirror registers and convert to real

 voltage values

 Vout = AdcMirror.ADCRESULT0*0.007381; // output voltage

 Temp = AdcMirror.ADCRESULT1*3/(float)4096;// temperature setting

 IL = AdcMirror.ADCRESULT2*0.001744; // inductor current

 Inso[0] = AdcMirror.ADCRESULT3*3/(float)4096;// insolation level

 Iout = AdcMirror.ADCRESULT4*0.001744; // output current

 Vin = AdcMirror.ADCRESULT5*0.004395; // input voltage

 Vout_boost = AdcMirror.ADCRESULT7*0.008789;

// output voltage of first stage boost converter

 //pass Inso through a digital low pass filter

 Inso_Out[0]=(Inso[0]+Inso[1]+3182*Inso_Out[1])/3184;

 Inso[1]=Inso[0];

 Inso_Out[1]=Inso_Out[0];

63

 #ifndef __FUNCTION

 /**

 * Controller implementation

 * ***/

 n_index=(unsigned int)floor((Vout+Iout*f_Rs)/f_deltaVd);

 //generate the index

 if(n_index > (n_size -1))

 n_index = n_size -1;

 Iref=f_ary_VI[IV_switch%2][n_index];

// generate current reference

 r1k[0]=(Iref-Iout); // add saturation to states

 if(r1k[0]>10)

 r1k[0]=10;

 else if(r1k[0]<-10)

 r1k[0]=-10;

 irefn[0]=7.61*r1k[0]-7.59*r1k[1]+irefn[1];

 if(irefn[0]>100) // saturate the current loop error

 irefn[0]=100;

 else if(irefn[0]<-100)

 irefn[0]=-100; // end of saturation

 r2k[0]=Vout*2/Vout_boost+(irefn[0]-IL)*.46-r2k[1];

// inner current loop

 if(r2k[0]>.9)

 r2k[0]=.9;

 else if(r2k[0]<.1)

 r2k[0]=0.1;

 dutyCycle2=r2k[0];

 r1k[2]=r1k[1]; // update states

 r1k[1]=r1k[0];

 r2k[1]=r2k[0];

 irefn[1]=irefn[0]; // end of update states

 if(Iout>6) // limit output current

 dutyCycle2=0;

 /***

 * End of Controller Implementation

 * ***/

 EPwm2Regs.CMPA.half.CMPA = (unsigned

int)(dutyCycle2*EPwm2Regs.TBPRD); // update duty cycle

 #endif

 AdcRegs.ADCTRL2.bit.RST_SEQ1 = 1; // reset SEQ1

 AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1; // clear INT

 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; // acknowledge

 interrupt

}

64

void PWMSD(unsigned int sd){

 if(sd==0){

 EALLOW;

 SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1;

// start all the TB clocks

 EDIS;

 }

 else if(sd==1){

 EALLOW;

 SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0;

// stop all the TB clocks

 EDIS;

 }

}

void gateDriveSD(unsigned int sd1, unsigned int sd2){

 if(sd1==0){

 GpioDataRegs.GPBCLEAR.bit.GPIO34 = 1;

//release shutdown on GD2

 }

 else if(sd1==1){

 GpioDataRegs.GPBSET.bit.GPIO34 = 1; //shut down gd2

 }

 if(sd2==0){

 GpioDataRegs.GPACLEAR.bit.GPIO7 = 1;

//release shutdown on GD1

 }

 else if(sd2==1){

 GpioDataRegs.GPASET.bit.GPIO7 = 1; //shut down gd1

 }

}

void IV_generator(){

 //unsigned int i;

 //unsigned int j;

 f_deltaI=f_Isc*f_Rsh/(n_size*(f_Rs+f_Rsh)); //calculates the

current step in the LUT

 f_Vth=k*f_temp/q;

 //calculates the thermal voltage

 f_Io=f_Isc/(exp(f_Voc/n_cells/f_Vth)-1); //calculates the

reverse saturation current

 f_Vn=10;

 //initial guess of voltage

 f_Vf=0;

 /*for(i = 0;i < n_size;i++){

 //numerically solve for the IV curve with Newton's method

 for(j=0;j < 2000;j++){

 f_Vf=f_Vn-

(f_Io*exp((f_Vn+i*f_deltaI*f_Rs)/f_Vth)+(f_Vn+i*f_deltaI*f_Rs)/f_Rsh-

f_Io+i*f_deltaI-f_Isc)/

 (f_Io*exp((f_Vn+i*f_deltaI*f_Rs)/f_Vth)/f_Vth+1/f_Rsh);

 f_Vn=f_Vf;

 }

 f_Vn=10;

65

 f_ary_IV[i]=n_cells*f_Vf;

 }*/

 /*f_deltaV=f_Voc/n_size;

 for(i = 2;i <= n_size;i++){ // use

newton's method to find the voltage VS current curve

 for(j=0;j < 2000;j++){

 f_I2=f_I1-

(f_Io*exp((i*f_deltaV/n_cells+f_I1*f_Rs)/f_Vth)+(i*f_deltaV/n_cells+f_I

1*f_Rs)/f_Rsh-f_Io+f_I1-f_Isc)/

 (f_Io*exp((i*f_deltaV/n_cells+f_I1*f_Rs)/f_Vth)*f_Rs/f_Vth+f_Rs/f

_Rsh+1);

 f_I1=f_I2;

 }

 f_I1=2.5;

 f_ary_VI[i-2]=f_I2;

 }

 f_ary_VI[998]=0;

 f_ary_VI[999]=0;*/

 /*f_deltaR=(f_Rmax-f_Rmin)/1000;

 for(i = 1;i <= n_size;i++){

 for(j=0;j < 2000;j++){

 f_I2=f_I1-

(f_Io*exp((f_I1*(f_deltaR*i+f_Rmin)/n_cells+f_I1*f_Rs)/f_Vth)+(f_I1*(i*

f_deltaR+f_Rmin)/n_cells+f_I1*f_Rs)/f_Rsh-f_Io+f_I1-f_Isc)/

 (f_Io*exp((f_I1*(i*f_deltaR+f_Rmin)/n_cells+f_I1*f_Rs)/f_Vth)*(i*

f_deltaR+f_Rmin+f_Rs)/f_Vth+(i*f_deltaR+f_Rmin+f_Rs)/f_Rsh+1);

 f_I1=f_I2;

 }

 f_I1=2.5;

 f_ary_RI[i-1]=f_I2;

 }*/

}

/*void init_SCIA(void){

 GpioCtrlRegs.GPAMUX2.bit.GPIO28 = 1; // SCIRXDA

 GpioCtrlRegs.GPAMUX2.bit.GPIO29 = 1; // SCITXDA

 SciaRegs.SCICCR.all =0x0027; // 1 stop bit, No loopback

 // ODD parity,8 char bits,

 // async mode, idle-line protocol

 SciaRegs.SCICTL1.all =0x0003; // enable TX, RX, internal

SCICLK,

 // Disable RX ERR, SLEEP, TXWAKE

 // SYSCLOCKOUT = 150MHz; LSPCLK = 1/4 = 37.5 MHz

 // BRR = (LSPCLK / (9600 x 8)) -1

 // BRR = 487 gives 9605 Baud

 SciaRegs.SCIHBAUD = 487 >> 8; // Highbyte

 SciaRegs.SCILBAUD = 487 & 0x00FF; // Lowbyte

 SciaRegs.SCICTL1.all = 0x0023; // Relinquish SCI from Reset

}*/

66

void Init_SCIA(void){

 EALLOW;

 GpioCtrlRegs.GPAMUX2.bit.GPIO28 = 1; // SCIRXDA

 GpioCtrlRegs.GPAMUX2.bit.GPIO29 = 1; // SCITXDA

 EDIS;

 SciaRegs.SCICCR.all = 0x0027; // 1 stop bit, No loopback

 // ODD parity,8 char bits,

 // async mode, idle-line protocol

 SciaRegs.SCICTL1.all =0x0003; // enable TX, RX, internal SCICLK,

 // Disable RX ERR, SLEEP, TXWAKE

 // SYSCLOCKOUT = 150MHz; LSPCLK = 1/4 = 37.5 MHz

 // BRR = (LSPCLK / (9600 x 8)) -1

 // BRR = 487 gives 9605 Baud

 SciaRegs.SCIHBAUD = 487 >> 8; // Highbyte

 SciaRegs.SCILBAUD = 487 & 0x00FF; // Lowbyte

 SciaRegs.SCICTL2.bit.TXINTENA = 1; // enable SCI-A Tx-ISR

 SciaRegs.SCICTL2.bit.RXBKINTENA = 1; // enable SCI_A Rx-ISR

 SciaRegs.SCIFFTX.all=0xC060;

// bit 15 = 1 : relinquish from Reset

 // bit 14 = 1 : Enable FIFO

 // bit 6 = 1 : CLR TXFFINT-Flag

 // bit 5 = 1 : enable TX FIFO match

 // bit 4-0 : TX-ISR, if TX FIFO is 0(empty)

 SciaRegs.SCIFFCT.all = 0x0000;

// Set FIFO transfer delay to 0

 SciaRegs.SCIFFTX.bit.TXFIFOXRESET = 1;

// re-enable transmit fifo operation

 //SciaRegs.SCIFFRX.all = 0xE065; // Rx interrupt level = 5

 SciaRegs.SCICTL1.all = 0x0023; // Relinquish SCI from Reset

}

interrupt void SCIA_RX_isr(void){

 tempChar=SciaRegs.SCIRXBUF.bit.RXDT;

 if(tempChar!='\0'){

 inBuff[indexIn]=tempChar;

 indexIn++;

 }

 else {

 inBuff[indexIn]='\0';

 indexIn=0;

 InfoDisplay();

 }

 rxcount++;

 PieCtrlRegs.PIEACK.all=PIEACK_GROUP9;

}

interrupt void SCIA_TX_isr(void){

 while(indexOut < sizeof(outBuff) && SciaRegs.SCIFFTX.bit.TXFFST <

16 && outBuff[indexOut]!='\0'){

 SciaRegs.SCITXBUF=outBuff[indexOut];

67

 indexOut++;

 }

 if(SciaRegs.SCIFFTX.bit.TXFFST !=0){

 SciaRegs.SCIFFTX.bit.TXFFINTCLR = 1;

// enable TX FIFO operation

 txcount++;

 }

 PieCtrlRegs.PIEACK.all=PIEACK_GROUP9;

}

void InfoDisplay(void){

 sprintf(outBuff,"%06.3f %06.3f %06.3f %06.3f\n\r", Vout, Iout,

Temp, Inso);

 indexOut=0;

 SciaRegs.SCIFFTX.bit.TXFFINTCLR = 1;

// enable TX FIFO operation

}

void IV_generator_Vd(void){

 unsigned int i;

 for(i=0;i<n_size;i++){

 f_ary_VI[(IV_switch+1)%2][i]=f_Iph*f_Inso-

f_Io*(exp(f_deltaVd*i/(n_cells*f_Vth))-1)-f_deltaVd*i/f_Rsh;

 }

 IV_switch++;

}

interrupt void timer0_isr(void){

 if(f_Inso==1)

 f_Inso=.6;

 else f_Inso=1;

 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;

}

68

APPENDIX C.

MATLAB CODE TO EXTRACT PV MODULE MODEL PARAMETERS

69

This appendix contains the Matlab code to implement the photovoltaic module

equivalent circuit model parameter extraction method shown in Section 3.1. The solar

panel parameters used is for the PV module SW-S85P from Sunwize, and the extracted

parameters are shown in Table 6.2; however, users can modify the solar panel datasheet

parameters to extract equivalent model parameters for any type of PV module.

70

%% Extraction of PV module parameters based on datasheet values

% PV Module SW-S85P from SunWire

close all;
clear all;

% Intitalize parameters---
A=1; % initial ideality factor
k=1.38e-23; % Bolzman's Constant
q=1.1602e-19; % elemental charge
Tstc=300; % STC temperature
Io=1; % initial dark saturation current
Iph=0; % initial photo generated current
Rs=0; % initial series resistance
Rsh=1000; % initial shunt resistance
Vt=.026; % initial thermal voltage

% solar panel datasheet parameters------------------------------------
n=72; % number of panels
Voc=22; % open circuit voltage
Isc=5.4; % short circuit current
Impp=4.9; % max power point current
Vmpp=17.4; % max power point voltage

% Test values of Rs and Rsh---
Rs_t=zeros(1,3000);
Rsh_t=zeros(1,3000);
for i=1:1:length(Rs_t) % Initialize test values
 Rs_t(i)=.5 * power(.9995,i);
 Rsh_t(i)=5000 * power(.9995,i);
end

% helper values---
dpdvtemp=0;
dpdv=0;
didvtemp=0;
didv=0;
count=1;

% Numeric iteration method of extracting the PV panel model parameters
% with the method presented in "PV panel model based on datasheet

values"
% by D. Sera etc.
for i=1:1:length(Rs_t)
 Rs=Rs_t(i);
 for j=1:1:length(Rsh_t)
 Rsh=Rsh_t(j);
 Vt=(Vmpp+Impp*Rs-Voc)/n/log((Isc-(Vmpp+Impp*Rs-

Isc*Rs)...
 /Rsh-Impp)/(Isc-(Voc-Isc*Rs)/Rsh));
 alpha=(Isc*Rsh-Voc+Isc*Rs)...
 *exp((Vmpp+Impp*Rs-Voc)/n/Vt)/(n*Vt);
 dpdv=Impp+Vmpp*((-1*alpha/Rsh-

1/Rsh)/(1+alpha/Rsh+Rs/Rsh));

71

 if (imag(Vt)~=0 || Vt<=0)
 continue;
 elseif (dpdv==0)
 break;
 elseif (sign(dpdvtemp)*sign(dpdv)==-1)
 break;
 else
 dpdvtemp=dpdv;
 end
 end
 beta=(Isc*Rsh-Voc+Isc*Rs)*exp((Isc*Rs-Voc)/n/Vt)/(n*Vt);
 didv=(-1*beta/Rsh-1/Rsh)/(1+beta/Rsh+Rs/Rsh)+1/Rsh;
 if (didv==0)
 break;
 end
 if (sign(didvtemp)*sign(didv)==-1)
 break;
 else didvtemp=didv;
 end
end

% Outputs the finalized parameters-------------------------------------
Vt
Rs
Rsh
Io=(Isc-(Voc-Isc*Rs)/Rsh)*exp(-1*Voc/n/Vt)
Iph=Io*exp(Voc/n/Vt)+Voc/Rsh
A=Vt*q/k/Tstc

72

BIBLIOGRAPHY

[1] J. W. Kimball and P. T. Krein, "Discrete-time ripple correlation control for

maximum power point tracking," IEEE Trans. Power Electron., vol. 23, pp. 2353-

2362, Sep. 2008.

[2] T. Esram and P. L. Chapman, "Comparison of photovoltaic array maximum

power point tracking techniques," IEEE Trans. Energy Conversion, vol. 22, pp.

439-449, June 2007.

[3] H. Nagayoshi, "Characterization of the module/array simulator using I-V

magnifier circuit of a pn photo-sensor " in Proc. 3rd World Conf. Photovoltaic

Energy Conversion, 2003, vol. 2, pp. 2023-2026.

[4] A. Koran, K. Sano, R. Y. Kim, and J. S. Lai, "Design of a photovoltaic simulator

with a novel reference signal generator and two-stage LC output filter," IEEE

Trans. Power Electron., vol. 25, pp. 1331-1338, May 2010.

[5] G. Vachtsevanos and K. Kalaitzakis, "A hybrid photovoltaic simulator for utility

interactive studies," IEEE Trans. Energy Conversion, vol. EC-2, pp. 227-231,

June 2987.

[6] E. Koutroulis, K. Kalaitzakis, and V. Tzitzilonis, "Development of a FPGA-based

system for real-time simulation of photovoltaic modules," in Proc. IEEE RSP'06,

2006, pp. 200-206.

[7] H. Lee, M. J. Lee, S. N. Lee, H. C. Lee, H. K. Nam, and S. J. Park, "Development

of photovoltaic simulator based on DC-DC converter," in Proc. 31st INTEL 2009,

2009, pp. 1-5.

[8] J. P. Lee, B. D. Min, T. J. Kim, et al., "Development of a photovoltaic simulator

with novel simulation method of photovoltaic characteristics," in Proc. 31st

INTEL 2009, 2009, pp. 1-5.

[9] Y. Li, T. Lee, and F. Z. Peng, "A hybrid control strategy for photovoltaic

simulator," in Proc. IEEE APEC 2009, 2009, pp. 899-903.

[10] M. C. D. Piazza, M. Pucci, A. Ragusa, and G. Vitale, "Analytical versus neural

real-time simulation of a photovoltaic generator based on a DC-DC converter,"

IEEE Trans. Industry Applications, vol. 46, pp. 2501-2510, Dec 2010.

[11] S. Chattopadhyay and S. Das, "A digital current-mode control technique for DC-

DC converters," IEEE Trans. Power Electron., vol. 21, pp. 1718-1726, Nov.

2006.

73

[12] J. Chen, A. Prodic, R. W. Erickson, and D. Maksimovic, "Predictive digital

current programmed control," IEEE Trans. on Power Electron., vol. 18, pp. 411-

419, Jan 2003.

[13] Y. S. Lai and C. A. Yeh, "Predictive digital-controlled converter with peak

current-mode control and leading-edge modulation," IEEE Trans. on Ind.

Electron., vol. 56, pp. 1854-1863, June 2009.

[14] S. Bibian and H. Jin, "Time delay compensation of digital control for DC

switchmode power supplies using prediction techniques," IEEE Trans. Power

Electron., vol. 15, pp. 835-842, Sep. 2000.

[15] S. Bibian and H. Jin, "High performance Predictive dead-beat digital controller

for DC power supplies," IEEE Trans. Power Electron., vol. 17, May 2002.

[16] P. Athalye, D. Maksimovic, and R. Erickson, "Variable-frequency predictive

digital current mode control," IEEE Power Electron. Letters, vol. 2, pp. 113-116,

Dec. 2004.

[17] E. Lorenzo, G. Araujo, A. Cuevas, M. Egido, J. Minano, and R. Zilles, Solar

electricity: engineering of photovoltaic system. Seville, Spain: Progensa, 1994.

[18] D. A. Neaman, Microelectronics Circuit Analysis and Design, 3 ed. New York:

McGraw-Hill, 2007.

[19] D. Sera, R. Teodorescu, and P. Rodriguez, "PV panel model based on datasheet

values," in Proc. IEEE ISIE 2007, 2007, pp. 2392-2396.

[20] J. Stewart, Calculus, 5th ed: Thompson, 2003.

[21] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2 ed:

Kluwer, 2004.

74

VITA

Jie Ang Zhao was born in Xinhui, Guangdong, China. He came to the United

States with his family in 2003. He received the Bachelor of Science degree in Electrical

Engineering from Missouri University of Science and Technology in 2010 and the Master

of Science degree in Electrical Engineering from Missouri University of Science and

Technology in 2012.

Jie Zhao has been a member of the honor society Eta Kappa Nu since 2009 and a

student member of IEEE since 2011. He was a Grainger Award recipient in 2011 for his

excellence in the field of power engineering.

