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ABSTRACT 

 With the rapid advances in power electronics and motor drive technologies in 

recent decades, permanent magnet synchronous machines (PMSM) have found extensive 

applications in a variety of industrial systems due to its many desirable features such as 

high power density, high efficiency, and high torque to current ratio, low noise, and 

robustness. In low dynamic applications like pumps, fans and compressors where the 

motor speed is nearly constant, usage of a simple control algorithm that can be 

implemented with least number of the costly external hardware can be highly desirable 

for industry. 

 In recent published works, for low power PMSMs, a new sensorless volts-per-

hertz (V/f) controlling method has been proposed which can be used for PMSM drive 

applications where the motor speed is constant. Moreover, to minimize the cost of motor 

implementation, the expensive rotor damper winding was eliminated. By removing the 

damper winding, however, instability problems normally occur inside of the motor which 

in some cases can be harmful for a PMSM drive. As a result, to address the instability 

issue, a stabilizing loop was developed and added to the conventional V/f.  

By further studying the proposed sensorless stabilized V/f, and calculating power 

loss, it became known that overall motor efficiency still is needed to be improved and 

optimized. This thesis suggests a new V/f control method for PMSMs, where both 

efficiency and stability problems are addressed. Also, although in nearly all recent related 

research, methods have been applied to low power PMSM, for the first time, in this 

thesis, the suggested method is implemented for a medium power 15 kW PMSM.  

A C2000 F2833x Digital Signal Processor (DSP) is used as controller part for the 

student custom built PMSM drive, but instead of programming the DSP in Assembly or 

C, the main control algorithm was developed in a rapid prototype software environment 

which here Matlab Simulink embedded code library  is used. 
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NOMENCLATURE 

Symbol Description         

l                Length of the Conductor 

F               Exerted Force   

B                     Magnetic Field 

ϕ0                    Power Factor Angle  

Is                    Magnitude of the Current   

Es                   Magnitude of the Voltage Vector   

rs                    Stator Winding Resistance 

λm                  Rotor Permanent-Magnet Flux    

fo                   Applied frequency    

ωe                  Electrical Speed 

Bm                 Viscous Friction Coefficient 

Vs                   Stator Voltage Magnitude 

J                      Inertia of the Motor and the Load System 

Vrated              Rated Voltage Phase to Phase  

Tlrated             Load Torque  

n                     Number of Poles of the Motor 

iqsr                    Rotor q Axes Current  

idsr                    Rotor d Axes Current          

L                     Motor Inductance  

vdc                  DC Power Supply 

d                        Modulation Index 

CAN                  Communication Area Network 

PMSM               Permanent Magnet Synchronized Motor 

ADC                 Analog to Digital Converter 

DSP                  Digital Signal Processor 

 

 



 

 

1. INTRODUCTION 

1.1. MOTIVATION 

When PMSM drives are used for applications like pumps and fans, where high 

dynamic performance is not a demand, a simple control strategy can be used instead of 

the sensorless field-oriented- control approach that is heavily dependent on the rotor 

position sensor. Furthermore, the PMSM damper windings in the rotor assure the 

synchronization of motion of the rotor with the stator applied frequency, which is the 

fundamental requirement for synchronous machine control. This allows a stable control 

of this type of PMSM in an open-loop manner. However, due to the high manufacturing 

cost and the difficulty to design rotors with damper windings for some type of PMSMs 

the PMSMs are not generally available with damper windings in the rotor. The PMSMs 

without damper windings in the rotor do not assure the synchronization of motion of the 

rotor with stator applied frequency under the open-loop control approach. This causes 

instability problems in those PMSMs under the open-loop control approach and an 

additional signal is required to the controller in order to assure the synchronization and 

the stable operation. Moreover, a PMSM using a damper winding may not have stability 

issue but its functionality and operations may not be efficient and acceptable. Further 

study shows that only  𝑚𝑞 stator current can contribute in effective torque generation 

while  𝑚𝑑 stator current can increase the overall motor loss therefore the efficiency issue 

needs to be addressed for any PMSM. 

 

1.2. PERMANENT MAGNET SYNCHRONOUS MACHINES (PMSM) 

The permanent-magnet synchronous machine (PMSM) drive has emerged as a top 

competitor for a full range of motion control applications [1, 2, 3]. For example, the 

PMSM is widely used in machine tools, robotics, actuators, and is being considered in 

high-power applications such as vehicular propulsion and industrial drives. It is also 

becoming viable for commercial/residential applications. The PMSM is known for 

having high efficiency, low torque ripple, superior dynamic performance, and high power 

density.



 

 

 

These drives often are the best choice for high-performance applications and are 

expected to see expanded use as manufacturing costs decrease. The PMSM is a 

synchronous machine in the sense that it has a multiphase stator and the stator electrical 

frequency is directly proportional to the rotor speed in the steady state. However, it 

differs from a traditional synchronous machine in that it has permanent magnets in place 

of the field winding and otherwise has no rotor conductors. The use of permanent 

magnets in the rotor facilitates efficiency, eliminates the need for slip rings, and 

eliminates the electrical rotor dynamics that complicate control (particularly vector 

control). The permanent magnets have the drawback of adding significant capital cost to 

the drive, although the long term cost can be less through improved efficiency. The 

PMSM also has the drawback of requiring rotor position feedback by either direct means 

or by a suitable estimation system. Since many other high performance drives utilize 

position feedback, this is not necessarily a disadvantage.  A conceptual drive system is 

pictured in Figure 1.1. There, a speed, position, or torque command is input to the drive 

system. The motion controller implements feedback control based on mechanical sensors 

(or estimators). The controller generates commands for the electrical variables to obey. 

The electrical control block converts its input commands into commands for the power 

converter/modulator block and sometimes utilizes feedback of voltage or current. The 

power converter block imposes the desired electrical signals onto the PMSM machine 

with the connected load. 

 

 

 

 

 

 

 

 

 

 Figure 1.1. Diagram of conceptual drive system 
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As in all electrical motors, a PMSM has two principle parts, a moving part and a 

stationary part which are called rotor and stator. The phase windings are found in the 

stator and can be configured in different ways, for example as sinusoidal, trapezoidal or 

the more common concentrated winding. There are usually three phase windings since 

most PMSMs are three phase motors, thus each winding is excited by a different phase.  

When a current runs through windings a force is exerted on the current due to the 

magnetic field of the rotor. This phenomena is called the Lorentz force and is described 

by equation  

 

F = l⃗  ∙  ( I⃗  × B��⃗  ) (1)         

 

Here F is the force exerted, 𝑃 is length of the conductor, 𝐼 is the current flowing in the 

conductor and B is the external magnetic field present. The counter force to equation (1) 

is that causes the rotation of the rotor and transform electrical energy to mechanical 

energy. 

In Figure 1.2 the cross section of a simplified PMSM with concentrated winding 

is depicted. The three phase windings are presented by u, v, w respectively and the rotor 

is modeled as a simple magnet bar, thus this motor has two poles. The max torque 

generation can achieved when the current and the magnetic vectors field are orthogonal. 

Therefore, the goal of any motor control algorithm should be to keep the current flowing 

in the stator winding orthogonal to the magnetic field of the rotor.  

 

 

 

 

 

 

 

 

 

Figure 1.2. Two poles salient PMSM 
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2. CONTROL METHOD 

2.1. REVIEW OF THE SENSORLESS CONTROLLING METHOD OF PMSM 

  With the rapid advances in power electronics and motor drive technologies in 

recent decades, permanent magnet synchronous machines (PMSM) have found extensive 

applications in a variety of industrial systems due to their many desirable features such as 

high power density, high efficiency, and high torque to current ratio, low noise, and 

robustness. However, using a PMSM also is associated with some limitations. One major 

drawback of the most commonly used PMSM drive systems is that the control algorithm 

requires the knowledge of the rotor position or speed, which requires the usage of an 

encoder or a resolver, increasing the final machine cost and decreasing system reliability. 

The use of these rotational transducers escalates the complexity of the motor 

construction, complicates the production process, and increases the final machine cost, 

while at the same time decreases system reliability. Sensorless control for PMSM has 

been a desired field of study of researchers in recent years, and a large number of 

sensorless control methods have been proposed over the years [4, 5, 6, 7, 8, 9, 10]. 

Among those methods, some utilize the position dependence of the back electromotive 

force (EMF), some rely on rotor saliency characteristics, and the injection of various 

kinds of test signals is used in some of recent papers. In [9], the authors proposed a novel 

modified back EMF observer for rotor speed estimation based on sliding mode observer 

theory using Lyapunov stability criteria. In [10], the sensorless operation of PMSM was 

extended to all four quadrants and at significantly low speed, by measuring the current 

derivative during the zero voltage switching vectors. The majorities of those methods are 

based on the involved algorithms, and are proposed for the high dynamic application. 

However, for applications where high dynamic performance is not a demand, such as 

pump and fan motor drive systems, an inexpensive, a simpler and more robust method is 

often desired. Moreover, due to the high manufacturing cost and difficulty to design rotor 

with damper winding for some type of PMSMs, the PMSMs are not generally available 

with damper winding on the rotor. As a result, using the open-loop V/f control approach 

causes some instability problems in the PMSM performance. In [11], Perera et al. address 

the inherent instability issue associated with the open-loop V/f control for PMSM that do 
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not have damper windings in the rotor, and then   proposed such a sensorless control 

technique that was integrated into a V/f control method in order to resolve the mentioned 

problem. By modulating the applied voltage frequency proportional to the perturbations 

in the input power, the method achieved a stable control in a wide frequency range while 

maintaining a constant stator flux linkage of the motor. 

Further detailed study of the method proposed by Perera et al. revealed that 

although the suggested stabilized sensorless control is very effective, the overall PMSM 

drive control is not optimized. Especially, in certain operating conditions, the non-

optimal choice of the stator flux linkage can lead to low motor efficiency. In this thesis, 

an efficiency improvement method is proposed that can be combined with the sensorless 

stable control in [11] to attain efficient V/f operation of PMSM. The proposed method is 

easy to implement and does not require any additional hardware changes or measurement 

signals. 

 

2.2. VOLTAGE CONTROL METHOD AND STABILITY ANALYSIS 

In the proposed V/f control method, the magnitude of the voltage is calculated in 

order to keep a stator flux linkage constant in the PMSM. With a constant stator flux 

linkage, the PMSM has the same torque-producing capability in all operating frequency 

ranges. The steady-state vector diagram of the PMSM is shown in Figure. 2.1 can be used 

to explain the calculation of the voltage magnitude. 

In the triangle OAB shown in Figure 2.1, AC is drawn perpendicular to OB. From 

the OAB triangle the steady-state magnitude of the voltage vector can be obtained as 

 

𝑉𝑠 = BC + CO = Isrscosϕ0 +  �Es2 − Is2rs2 sin2 ϕ0 (2)         

 

Where  𝐼𝑠  is the magnitude of the current and the vector 𝐸𝑠 is the magnitude of the 

voltage vector induced by stator flux linkage, and 𝜙0   is the power factor angle, the 

phase difference between current and voltage ; all are in steady state. 𝑟𝑠  is the stator 

winding resistance per phase. Using trigonometric relationship, we can simplify the 

above mathematical equation like 
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Figure 2.1. Steady-state vector diagram of the PMSM in synchronized reference frame 

 

 

 

Vs = Isrscosϕ0 +  �Es2 + Is2rs2 cos2 ϕ0 − Is2rs2 (3)         

 

The stator-flux-induced Voltage 𝐸𝑠  in previous equation can be calculated from the 

required steady-state constant stator flux. The constant magnitude of the stator flux vector 

is selected as the rotor permanent-magnet flux 𝜆𝑚.  With this selection of the magnitude 

of the stator flux, can be calculated from: 

 

Es = 2 π f0λm (4)         

 

In above equation, 𝑓𝑜 is the frequency applied to the machine.  Furthermore, the term 

𝐼𝑠cos 𝜑 in (3) is the stator current component along with the stator voltage vector. By 

transforming the measured phase currents to the stator voltage fixed reference frame this 

term can instantaneously be calculated as 

 

             𝑚𝑠𝑐𝑃𝑠𝜙 =
2
3

 � 𝑚𝑎𝑠𝑐𝑃𝑠𝜃𝑒 + 𝑚𝑏𝑠 𝑐𝑃𝑠 �𝜃𝑒 −
2𝜋
3
� − (𝑚𝑎𝑠 + 𝑚𝑏𝑠) 𝑐𝑃𝑠 �𝜃𝑒 +

2𝜋
3
��              (5)  
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Where  𝑚𝑠 and   𝜙 are the instantaneous values of the magnitude of the current vector and 

the power-factor angle, respectively. Moreover, 𝑚𝑎𝑠 and  𝑚𝑏𝑠 are the measured phase 

currents and  𝜃𝑒 is the position of the voltage vector in the stationary reference frame. 

From the vector diagram shown in Figure 2.1, someone can easily find the 

magnitude of 𝑚𝑑𝑠 &𝑚𝑞𝑠, but since the stator currents are measured by current sensorless it 

is somehow more desirable to express the magnitude of stator current base on  𝑚𝑎𝑠 & 𝑚𝑏𝑠 . 

To fulfill this requirement, we can apply the Clarke transformation where we have 

following equations: 

ids =
1
3

(ias + 2ibs)2 

iqs = ibs 

 

 

(6)         

By using the equation (5), final simple form of the equation the absolute value of the 

stator current base on the a-b component can be found from equation (6) 

 

𝑚𝑠 =  �(𝐼𝑑𝑠𝑠 )2 + � 𝐼𝑞𝑠𝑠 �
2

 =  �
1
3

 (𝑚𝑎𝑠 + 2𝑚𝑏𝑠)2 + (𝑚𝑎𝑠)2 
 

(7)         

 

Using the instantaneously calculated values and the commanded value for the Es 

the final expression for calculation of magnitude of the voltage command 𝑣∗𝑠 can be 

written as  

 

Vs = Isrscosϕ0 +  �(2πfoλm)2 + Is2rs2 cos2 ϕ0 − Is2rs2 (8)         

 

The real implementation of equation (7) is shown in Figure 2.2 in the block 

diagram format. Low Pass Filters (LPF) are used to remove the high frequency ripple 

associated with calculated currents 𝑚𝑠 and 𝑚𝑠 cos𝜙. Moreover, 𝑓0 is the electrical speed 

applied to PSMM stator which is directly proportion with commanded speed. In V/f 
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controlling method the ratio of the applied stator voltage and frequency is fixed and 

constant. 

 
Figure 2.2. Calculation of the voltage command 

 

 

The preliminary drive configuration with the above-discussed voltage control 

method is shown in Figure 2.3. 

 

 

2.3. STABILITY ANALYSIS  

One of the most important aspect of PMSM  drive  performance  is its dynamic 

response which means that  whether it can exhibit a smooth and  stable  response to 

different inputs  at many various  conditions  which the PMSM may encounter in 

practice. 

 
Figure 2.3. Primary drive configuration with V/f control method 

 

As an example, in this case, it must be verified in the case when the frequency of 

applied voltage and current get changed, the output of system such as rotor speed should 
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gradually reach to the final value very smoothly although before reaching to this point it 

may exhibit a negligible oscillatory behavior.  In this part, stability analysis is going to be 

performed for PMSM motor which does not have damper winding. To analyze the 

stability of the PMSM under constant stator flux linkage control, the linearized PMSM 

model is used. The eigenvalues of the state transition matrix of the linearized PMSM 

model will reveal the stability behavior of the PMSM for all scenarios. Using the 

linearized form of the equation accurate for PMSM, we will have the following 

equations: 

 

                             piqs =
−iqs
στs

−  
ωr

σ
�
λm
Ld

+   ids� +  
vs cos(δ)
σLd

                                (9)                    
             

(  

 

          pids =
−ids
τs

−  � σωr iqs� −  
vs sin(δ)

Ld
                                        (10) 

             

(         

 

 pωr =  3
2J
�n
2
�
2
�λmiqs +  Ld(1 − σ)iqsids� −  1

J
 Bmωr −

n
2J

Tl          (11)                                           

            

 

In (8) - (11):  

                            τs =  Ld/rs     ,             σ =
Lq
Ld

                                     (12) 

The machine linear state equations (8)–(12) have the state form 

 

                                    𝑥̇ = 𝑓( 𝑥,𝑢)                                                               (13)                    

 

where is the vector of the machine state variables and is the nonlinear function of the 

state and the inputs . The linearized system equations of this nonlinear system have the 

form 

                     𝛥𝑥̇ = 𝐴(𝑥)Δ𝑥 + 𝐵(𝑥)Δ𝑢                                                    (14)            
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in which Δx is the perturbations matrix for state variables, A(x)   is the state transition 

matrix, Δu is the input perturbation matrix, and B(x) is the input matrix, finally, The 

obtained linearized PMSM model can be written as in the matrix equation (13), 

moreover, When deriving this model, it is considered that the input voltage and the 

frequency to the PMSM are constant steady state values, i.e., perturbations Δvs=0 and 

Δωe=0. 

 

Using equation (13) which its derivation process is explained in [11] , some 

inherent characteristic of the system such as stability issue can be studied from equation 

(15). 

The state transition matrix in (15) can be solved by using machine parameters and 

the steady-state value of the machine variables (voltage, current, etc.) presented in table 

2.1.  In this thesis, machine parameters are chosen from  [11], which are:  
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        Table 2.1. PMSM motor parameters which its loci plot is shown in Figure 1.6 

𝑃𝑟𝑎𝑡𝑒𝑑 = 2.2 𝑘𝑘 
 

𝑉𝑟𝑎𝑡𝑒𝑑 = 380 𝑉 𝜆𝑚 =  . 48 𝑉. 𝑠. 𝑟𝑟𝑑−1 
 

𝑇𝑙𝑟𝑎𝑡𝑒𝑑 = 12 N. m 
 

𝑟𝑠 = 3.3𝛺 𝑃𝑃𝑃𝑃𝑠 = 6 

 𝐿𝑞 = 57.09 𝑚𝑚 
 

         𝐿𝑑 = 41.59 𝑚𝑚 
 

𝐵𝑚 = 20.44 ∗ 10−4𝑁.𝑚. 𝑠. 𝑟𝑟𝑑−1 
 

𝐽 = 10.07 ∗ 10−3𝑘𝑘.𝑚2 
 

 𝜔𝑟𝑎𝑡𝑒𝑑 = 1750
𝑟
𝑚𝑚𝑚

 

 

 

The paper also plots the calculated eigenvalues of the state transition matrix of 

A(X) in (15), under no load, i.e., 𝑣𝑠 =  𝐸𝑚 (back electromotive force (EMF) produced by 

rotor permanent magnets), as a function of the applied frequency. Figure 2.4 shows Loci 

of the rotor poles under different load conditions. From below figure, the system goes 

unstable when the electrical frequency greater than 15 Hz which means that if  rotor 

speed start increasing once time it pass this frequency the motor become unstable and its 

speed get back to the zero) 

 

 

 
Figure 2.4. Loci of the rotor poles under different load conditions, as a function of the 

applied frequency 
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2.4. FREQUENCY MODULATION TECHNIQUE  

The PMSM’s instability behavior after exceeding a certain applied frequency 

observed in previous section is due to the nonexistence of rotor circuits (i.e., damper 

windings) and, therefore, the weak coupling between electrical and mechanical modes of 

the machine. The stator and rotor poles move away from each other and, after exceeding 

a certain applied frequency, the poles of the system cross over to the instability region of 

the s  plane (right side of imaginary axis), having a small positive real part.  Improvement 

of instability issue can be achieved by a proper modulation of the applied frequency of 

the machine. 

The system becomes unstable during transient state where the motor tries to 

follow an increase in speed. If the control system employed for PMSM drive just relies 

on the open loop V/f method, the electrical speed and frequency are predefined and they 

increase linearly without considering the transient and instantaneous condition PMSM 

may face (there is not any simultaneous adjustment, and no flexibility), and in many 

cases the real PMSM is not able to follow the predefined function which leads the system 

toward instability condition. However, if the commanded electrical speed being able to 

adjust itself base on its internal parameters perturbation, a stable behavior can be seen 

from the system, the key parameter having dramatic changes during transient mode is 

input power disturbance, and due to the fact that this parameter has direct relation with 

rotor speed, stabilization loop can be implemented base on the idea of changing 

commanded speed base on the input real power distribution.  Therefore, 𝜔𝑒 is a new 

variable added into the old A(x) matrix meaning that by choosing the appropriate 

parameters a new transfer function can be derived.  To find a new state space where 

electrical speed is one its state, using input real power can be a good starting point. As a 

matter of the fact, the applied frequency should be modulated as:  

 

                                    𝛥𝜔𝑒 =  −𝑘𝑝𝛥𝑝𝑒                                                           (16)            

 

In the simulation,𝐾𝑝 = 2.4  is used. 𝛥𝑝𝑒 is the AC component of real input power which 

must be filter out from DC value. Therefore, a HPF which has small cut off frequency 

can be implemented to extract the AC component.  𝛥𝑝𝑒 can be written as 
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                                          Δpe =  s
s+ 1

τh

 Pe                                                                  (17) 

                                   Pe = 3
2

Vs[iqsr cosδ − idsr sinδ]                                           (18)  

 

Where τhis the high-pass filter time constant, and in this simulation its value should be 

τh= .064. Substituting Δpe from (17) in (16), and using equation (18) which present real 

input power for a salient pole PMSM,   the new state transition matrix can be calculated 

which is fully described given in [11], and using the eigenvalues of new state space 

matrix, it is easily possible to study the effectiveness of the stabilizing loop, which 

modulates the applied frequency of the system. Figure 2.5 shows the rotor poles of the 

system, which are obtained from the new A′(x), under different load conditions as a 

function of the applied frequency.   

 

 

 
Figure 2.5. Measured rotor speeds at different frequencies, under no load 
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Comparing  Figures. 1.6 and 1.7 helps readers sense easily the effectiveness of the 

stabilizing loop in the system, and it is obvious that adding stabilized loop which 

modulate the input frequency of the input parameters of the motor can improve the motor 

performance, and solve stability issue. Finally, Figure 2.6 show the block diagram of 

stability loop. 

The stability analysis described here is carried out for a salient PMSM which is a 

general case. Therefore, performing the same procedures for round rotor PMSM, the 

same results can be found. 

 

 

 

 

 

 

 

 

 

 

 

2.5. EFFICIENCY OPTIMIZATION OF THE STABILIZED V/F CONTROL 

In the previous section, it was shown that even with large load torque sudden 

changes, the control was capable of maintaining stable operation in a wide frequency 

range. However, further study indicated that the control is not optimized in terms of 

overall system efficiency. The goal of this part is to improve the efficiency of the system 

without sacrificing its stability features. Considering a round rotor PMSM, the torque 

equation can be found from 

 

                                             𝑇𝑒 =
3𝑃
2

 𝜆𝑚′ 𝑚𝑞                                                                   (19)            

 

Figure 2.6. Derivation of the frequency modulation signal 𝛥𝑤𝑒 
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From the above equation, it can be seen that only q-axis current contribute in torque 

production, and any d-axis current component only contributes to machine losses. As a 

result, to improve the efficiency by keeping the d-axis current component close to zero, 

nearly all of the currents absorbs by the PMSM have contribution in torque production.  

The vector diagram of a PMSM in such an operating mode is shown in Figure 2.7. From 

the vector diagram in Figure 2.7, it can be seen that if the d-axis current di  is zero, the 

current vector sI  is aligned with '
mrλω .  The reactive power also can be calculated from 

equation (20).  

 

 

 
Figure 2.7. Vector diagram of PMSM with maximum torque per amp 

 

 

 

                            Qin =
3
2

 � Vqsiqs� =  
3
2

 � Vsiqs�                                                       (20)           

(  

 

Thus the current vector can be aligned with the back EMF vector by keeping the reactive 

power drawn by the PMSM at zero. Since the reactive power in the electrical machines 

are controlled by adjusting the magnitude of the stator voltage magnitude, a proportional-

integral (PI) controller can be used to generate the adjustment 𝛥𝑣𝑠∗ from input reactive 

power which was found in equation (20). 
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Finally, Figure 2.8 shows the complete diagram of the proposed efficiency-

optimizing method for V/f control, coupled with the stabilization loop we have designed 

in earlier parts of this report. 

 

 

 

 

 

 

 

 

 

 Figure 2.8. Final control diagram for PMSM after adding the stabilized 
and  efficiency loop  to the  preliminary configuration 
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3. DSP IMPLEMENTATION USING MATLAB/SIMULINK 

3.1.  INTRODUCTION   

In the present day, time efficiency and flexibility are getting considered highly 

important in research and product development throughout all industry fields. It also 

applies to the development, implementation and testing of control algorithms for the 

electrical motors. The rapid development in computer technology, computer science and 

electronic  during  last decades allow electrical engineers and  field researchers to  easily 

bring new, complex and efficient  motors control algorithms  into the practice which  now 

days mainly are implemented on microprocessors. As a result, it has led to a more energy 

efficient use of electrical motors. Something that can  help to the vast energy savings in 

industrialized countries in which 30% to 40% of the electrical energy consumption  is due 

to the usage of electrical motors. 

The process of programming a microprocessor and microcontroller for real time 

applications is a tedious and time consuming task which must be done with aid of some 

computer languages like C or Assembly. Furthermore, due to the lack of computer 

programming skill, many power electrical engineers have difficulties with 

implementation of a new efficient controlling method for a particular electrical machine. 

However, during last decade a new approach for microcontroller programming has been 

developed which is denoted Computer Automated Control System Design (CACSD) and 

it mainly put emphasis on that embedded system programming should be performed in a 

graphical environment and thus intuitive. As a matter of fact, in this new scheme, any 

algorithms are implemented using graphical blocks containing invisible C or Assembly 

codes and out of this, scheme code is auto generated by the CACSD program 

environment. In general, this approach is a lot faster than writing the code by hand, 

something allows developers to spend more time on improving the performance of their 

programs instead of wasting the time to write and debug their C code errors.  

The purpose of this chapter is to examine a rapid prototyping approach using a 

CACSD to develop and implement a new motor control algorithm on a Digital Signal 

Processor (DSP), but instead of programming the DSP in Assembly or C, the main 

control algorithm will be performed in the Matlab/Simulink environment which is  
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developed by  MathWorks𝑇𝑀. The control algorithm is implemented as  block scheme in 

Simulink, and out of this Simulink, Matlab can auto generate C-code  needed to program 

an embedded target like a DSP. Moreover, we also need to use Real-Time Workshop 

(RTW) Embedded Coder to program our DSP.    

It is worthy to mention here that the prime objective of this project is not to 

develop a very efficient implementation in terms of motor step response and speed 

reference tracking, but rather to develop a real time test platform that is easy to 

understand and to evaluate the Mathworks CACSD environment from a user perspective. 

The stabilized and efficient sensorless V/f method was implemented on a system 

which Matlab & Simulink 2012b was installed on it.  The additional packages required 

for target specific code generation for the TI C2000 family are; Real Time Workshop 

v8.0, Real Time Workshop Embedded Coder v5.0, Link to code composer v4.1 and 

Target for TI C2000. In addition to the Matlab software, in order to program DSP, Code 

Composer Studio v4 is needed to load generated C-code on the DSP. 

An implementation of stabilized and efficient sensorless V/f in Matlab/Simulink 

adapted for code generation with RTW can easily result in a model which is difficult to 

follow its details. Therefore the model developed in the following sections is divided into 

several subsystems, where each one is explained individually to make overall model 

more intuitive and easy to follow. 

 

3.2.  TOP LEVEL  

The overall DSP program for a stabilized and efficient sensorless V/f is shown in 

Figure 3.1. The target preference block, here it is F28335 which is shown in grey color 

block, specifies the setting of the processor. As a matter of the fact, this block tells EC 

what sort of DSP is being programmed so that it initializes the right peripherals, uses the 

correct operation frequency, knows how much memory is available, etc. It is important to 

note that the placement of this block is important. When it is placed on the main screen, 

everything in the simulation file will be built and compiled. However, if it be used inside 

of a subsystem block, only that subsystem block will be built and compiled. 

Figure 3.2 shows inside of eZdsp unit where user can chose his desired 

microcontroller from wide range of different microcontrollers supporting rapid 
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prototyping of Matlab/ Simulink. It is also highly important to choose a proper CPU 

clock which eventually has effect on the PWM switching frequency and ADC sampling 

time. As a traditional method of C code programming of DSP in the code composer, we 

normally import some predefined programs and some math libraries like 

DSP2833x_PieCtril.c and DSP2833x_SysCtril.c and DSP2833x_Interrupt.c, mainly 

written and developed by Texas Instrument and control default settings for different  

peripheral units in a DSP, need to be load on DSP alongside of user main C program. 

Finally, the Peripherals panel can be seen in Figure 3.2, is one of the most valuable 

features of rapid prototyping which allow users to easily control such important variables 

like defining eCAN bitrate and setting up I2C graphically through this panel. For more 

information please refer to [12]. 

 

 

 

 

 

 

 

 

 

Figure 3.1. The top level in the implementation of DSP 
program in the Matlab/Simulink, left window, and the 
properties of the Hardware Interrupt block, right window 
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The block should also make a number of changes to the configuration parameters, 

so the user should always double-check and make sure the parameters are correct. By 

opening the configuration parameters, which is shown in Figure 3.3, from simulation tab 

in Simulink, we can have access to broad hardware and software settings. But as simple 

checking, user needs to ensure that the solver is set to Fixed-step and discrete, the fixed-

step size should remain auto. The hardware implementation page should show Texas 

Instruments, C2000, and Little Endian. By expanding the code generation tree and 

making sure that the system target file is “idelink_ert.tlc” on the code generation page. 

Finally, the user needs to open the IDE Link page and select “Build” for the build action 

option.   

Figure 3.2. Target Preferences block can be fine in Simulink 
Library Embedded Coder>> Embed Targets 



   21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the application where code efficiency has a high priority for the designer, 

there are a couple of other things that can be done to improve the code output. For one we 

can set objectives for the generated output code, such as execution efficiency, ROM 

efficiency, and RAM efficiency. 

In Figure 3.1, there are two function call subsystems in the scheme, the right side 

one which is the main program is the part of the program in which the stabilized and 

efficient sensorless V/f algorithm is implemented. The next block on the left side is ADC, 

which is responsible to collect sample current data through the current sensors which are 

located inside of the PMSM drive. ADC unit do scale and prepare current information for 

the main program block. From Figure 2.1, someone can  also easily find out  that 

subsystems are hooked up to the Hardware Interrupt block which  it process interrupt 

request issued by subsystems in the DSP   program and  will send trigger signals for 

subsystem. In the Hardware interrupt block, see again Figure 3.1, the designer can set the 

Interrupt Service Routine (ISR’s) that are to be used in the program and how these shall 

be prioritized. The ISR generated by the Hardware Interrupt block are connected to the 

Main program and ADC units which are triggered to be executed asynchronously once its 

Figure 3.3. Configuration Parameters (simulation tab in Simulink) 
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interrupt is thrown. Since subsystems in our program are executed asynchronously all 

blocks placed inside of them must have their sample time set to -1, which implies that the 

sample time is inherited. 

The right part of Figure 3.1 shows the properties pane of the Hardware Interrupt 

Block. To generate an ISR the designer should choose the four parameters, specified on 

row one to four, that are used by Matlab to describe an interrupt. The first two parameters 

are the CPU and PIE interrupt numbers, found on row one and two separately.  These 

numbers correspond to a position in the F28335 interrupt table which is shown in Figure 

3.4.   

In right window of Figure 3.1, two ISR are initialized, here presented in 

coordinated form (CPU number, PIE number). The first interrupt has coordinates (1, 1), 

which corresponds to an event coming from the ADC module. Interrupt number two has 

coordinates (3, 1) which correspond to an event coming from the first ePWM module and 

it triggers the execution of the Main Program subsystem. Moreover, on the third row the 

Simulink task priority is set, a low value correspond to a high priority. Here the Main 

Program subsystem has a higher priority since it is the main task and thus forms the base 

rate of the model. Figure 3.4 shows F2833x PIE interrupt assignment table which specify 

related peripheral units interrupt numbers, for more information about interrupt unit 

inside of the C2000 F2833x please see [13].  The  reader should also be aware that  

process of setting the interrupt units is not yet over because what have been discussed up 

to this point  are related to top level part of a DSP program. To set up the interrupt 

request, we shall go into subsystem under layer where major DSP peripheral units like 

ADC, ePWM and CAN are located.  

 Finally, on the top level page, it can be seen that there are rate transition blocks 

connected between output and input of ADC and Main Program subsystems. This is a 

requirement for all signal paths between blocks running on different sample rates. The 

rate transition block improves the data integrity in the system.  
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Figure 3.4. Interrupt vector table 

 

 

3.3.  ADC UNIT AND SUBSYSTEM  

Figure 3.5 depict inside of ADC subsystem. As it was mentioned in the previous 

part, C280/C2833x ADC peripheral block inside of ADC unit first start reading the 

current signals, and then scale them up to their actual current magnitude and as last and 

most important step filter out undesirable noises associate with current signals. To do 

noise cancelation, a LPF with 5 Hz cut off frequency is employed. However, even using 

this low pas filter; we still observe a major noise component on current signal. Therefore, 

to better address and alleviate undesirable noise effect, a series of unit delay blocks are 

employed at the output side of LPF. Figure 3.6 clearly shows how these block is 

implemented using some delay units. As a matter of the fact, using delay units, which 

their delay time is defined by trigger unit. Having access to about 25 sample points make 

it possible to find the sum and then calculate the average value. Therefore, after using 

these noise cancelation strategies what we expect to see at the output of the ADC 

subsystem is pure sinusoidal waveforms with very small proportion of noise. 

On Figure 3.7, properties panel of the ADC module is shown. C280/C2833x ADC 

consist from two independent ADC channels A/B which have their own control time base 

and they are capable to operate in Simultaneous mode and sequence mode. By selecting 
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Simultaneous Sampling for the sampling mode we can convert 2 independent analogue 

input signals simultaneously. 

If Sequential Sampling is chosen only one multiplexed input channel (for example 

A) is converted at the time. By selecting Single Sequence Mjode (or “Start/Halt - Mode”) 

the Auto sequencer starts at the first input trigger signal, performs the predefined number 

of conversions and stops at the end of this conversion sequence then to wait for a second 

trigger. In continuous mode the Auto sequencer starts all over again at the end of the first 

conversion sequence without waiting for another trigger input signal.. The conversation 

mode is sequential and will post interrupt at the end of conversation meaning that it will 

stop converting analog data to digital until it receives a new trigger signal. Furthermore, 

ePWMxA (orange block in Figure 2.5.) should issue an interrupt request for the ADC 

unit to get a trigger signal from top layer of DSP program. Further discussion will come 

up in the next section where the main program will be explained in great details. For 

obtaining more information about C2000 F2833x ADC please see [14]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.5. ADC subsystem implementing measurement and scaling 
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           Figure 3.6. Unit delay implementation using 6 unit delay blocks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.  MAIN PROGRAM SUBSYSTEM  

Figure 3.8 represents the main stabilized and efficient V/f algorithm implemented 

for a PMSM machine drive. For the sake of easiness in understanding the main 

functionality of the program, we explain the program in detail step by step. 

 

Figure 3.7. Show the properties of the ADC module 
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Figure 3.8. Implementation of sensor less stabilized efficient V/f for PMSM drive in 
Main Program subsystem 

 

 

Since a sensorless method is being used, we should estimate the electrical rotor 

position from the commanded speed, but it is highly important for the reader to know that 

this angle is not necessarily same as the real rotor position. Therefore, it could be possible 

that the electrical angle is different than real rotor position, but in steady state value 

should be the same. In Figure 2.8, the parameter fb defines the maximum rotor speed as a 

step function, it is connected to an adjustable rate limiter controlling the desirable rise 

time of PMSM rotor.  In here, the purpose of rise time is the amount of time rotor should 

spend to accelerate from zero speed to get maximum speed which is defined by fb. After 
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importing the electrical speed into the program, in the following the calculation of 

electrical angle is implemented which is shown in Figure 3.9. 

 

 

 
Figure 3.9. Calculating the electrical angle from the motor speed and program sampling 

time 

 

 

 

The following equation is used in electrical angle calculation:  

  

θe,t =  θe,t −1 +  ωeTsec            (21) 

 

The unit delay will keep the previous sample point and send it for comparison unit. Using 

a switch block we can reset electrical angle whenever its value reaches 2π . The output 

will be electrical angle which will be used in other subsystems inside of the main 

program.  

As it was  discussed in the first section, voltage magnitude must be calculated 

from speed command and current magnitude which can be derived from following 

equation 

 

Vs = Isrscosϕ0 + �(2πfoλm)2 + Is2rs2 cos2 ϕ0 − Is2rs2            (22) 

 

Equation (21) is implemented inside of the voltage magnitude subsystem which is shown 

in Figure 3.10. It is noteworthy to mention here that all blocks have inherited (-1) 

1
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sampling time. The IF function block assure that all the time the term under square is 

positive. The assigned value for 𝜆𝑚 and  𝑟𝑠 is presented in section 2 where all PMSM 

motor parameters is presented detail.  

 

 

 
Figure 3.10. Finding voltage magnitude from frequency and a-b phases current 

 

 

In equation (21), 𝐼𝑠 𝑐𝑃𝑠 𝜙0 𝑟𝑚𝑑 𝐼𝑠 𝑠𝑚𝑚 𝜙0   are q and d stator current components 

which are calculated using abc/dq transformation block which is depicted in downside of 

the Figure 3.5. Finally, this block will give 𝐼𝑞and 𝐼𝑑   which are critical parameters for V/f 

algorithm. As a matter of the fact the real and reactive power will be calculate using them 

and in the later part in which we implement efficiency loop, we will see that by 

regulating𝐼𝑑  we can make it goes to zero.  Figure 3.11 is showing abc/dq transformation 

and relevant equations. 

Stabilization loop is also implemented based on the expected functionally which 

was described earlier in the first chapter. It must filter out undesirable DC component of 

the input real power in order to be capable of generating 𝛥𝜔𝑒, which is required for 

stabilization of PMSM, based on perturbation in the input real power. Figure 3.12 shows 

how 𝛥𝜔𝑒 is generated from AC portion of input real power and commanded speed. 
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Figure 3.11. Park transformation 

 

 

 

 
Figure 3.12. Stabilization loop implementation 

 

 

 

Efficiency loop also is developed from the idea that by controlling the reactive 

power, 𝐼𝑑 current can be controlled and set to the zero. A PI controller can fulfill the need 
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for this design goal where it compares reactive power magnitude with zero reference in 

order to adjust its value. PI controller parameters are found by try and error process 

which was so frustrating and time consuming. After running numerous tests for PMSM 

drive to verify the functionality of the efficient control loop. Figure 3.13 shows the 

efficiency loop implementation. 

 

 

 
Figure 3.13. Efficiency loop implementation 

 

 

 

3.5.  EPWM UNIT 

For the sine-triangle modulation, modulation index is calculated from 𝑑 =  2√2𝑉𝑠
𝑣𝑑𝑐

  

where 𝑉𝑠 is the voltage magnitude which is proportional to the electrical frequency and 

𝑣𝑑𝑐  is dc power supply is connected at the input side of the inverter.  

Figure 3.14 display how a Sine-Triangle PWM unit is implemented in the DSP 

program. The electrical angle and modulation index are inputs of this subsystem. By 

applying the PWM modulation, at the input side of multiplexer, the three signals 

𝑑𝑎,𝑑𝑏𝑟𝑚𝑑 𝑑𝑐 get generated which h their duty cycle ratio range from -1 to 1 and are 

center round zero. Moreover, the three saturation blocks are used in the path between 

𝑑𝑎,𝑑𝑏 𝑟𝑚𝑑 𝑑𝑐   and multiplexer to limit and curb the allowable magnitude.  Finally, the 

scaling is performed by adding a one to the duty ratios and dividing them by two which 

put their range between 0-1, and then multiply it by 7500 which is the period of the 

ePWM waveform.  
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Figure 3.14. Display of ePWM unit inside of the main program 

 

 

In machine drive application, it is common to choose switching frequency 

somewhere between 5 kHz-10 kHz, for this application chosen switching frequency is   

10 kHz.  It was mentioned earlier that the CPU clock is set for 150MHz inside of the 

F28335 eZdsp block, therefore in order to generate signal of 10 kHz at line ePWM1-6A, 

the TPRD which define signal frequency should be calculated from following equation: 

 

TBPRD =
1
2

×
fSYSCLKOUT

fPWM × CLKDIV × HSPCLKDIV
=  

150M
2 ∗ 10K

=   7500                      (23) 

 

In the last equation, due to the fact that ePWM counting mode is set in Up-Down mode, a 

2 factor is used in the denominator. The properties of the PWM block are shown in 

Figure 3.15. Here it is possible to set practically all features belonging to the PWM 

module of the F2833xin a simple graphical way. The controllable features ranges from 

setting of timer period, duty cycle, dead band generation, symmetrical/ unsymmetrical 

waveforms, to the control of then in the PWM cycle ADC conversations are to occur. 

In Figure 3.15, left window shows a pane in which the basic ePWM settings 

needed to activate an ePWM unit are located. Register TBPRD defines the length of a 



   32 

 

period of an output signal, in multiples of the time period of the input signal.  Register 

CMPA which is abbreviation for compare value is important parameter cause the length 

of output ePWM signals become variable. Furthermore, two hardware signals ‘’SYNCI’’ 

and ‘’SYNCO’’ can be used to synchronize ePWM units to each other. For example, we 

could define one ePWM unit as a ‘’ master’’ to generate an output signal ‘’SYNCO’’ 

each time the counter equals to the period.  

 The ePWM  counting mode can be adjust for 3 different modes of count up 

mode, count down mode and count up & down mode.  Finally, since CPU clock 

frequency is too fast, 150 MHz, in order to make an independent clock source which is 

much slower than CPU frequency for ePWM, TB clock prescaler divider and High Speed 

TB clock prescaler divider should be used. All these settings are shown in Figure 3.15. 

.  

 

 

 

 

Figure 3.15. Property panels of ePWM unit 
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Furthermore, Right window in Figure 3.15 also show the action qualifier unit. Whenever 

the ePWM counter value reach to the compare value which is specified by CMPA 

register, the unit can change the value of the output signals Figure 3.16, the event trigger 

pane determine the source of the interrupt and manage interrupt request 

 

 

 

 

 

In switched mode power electronics, a typical configuration to drive a 3-phase 

system is shown in the Figure 3.17. A typical system consists of a 3-phase current or 

voltage injection circuit, in which a pair of power switches per phase is controlled by a 

sequence of PWM - pulses. A phase current flows either from a DC bus voltage through a 

top switch into the winding of a motor or via a bottom switch from the motor winding 

back to ground. Of course, we have to prevent both switches from conducting at the same 

Figure 3.16. Property panels of ePWM unit 
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time. A minor problem arises from the fact that power switches usually turn on faster 

than they turn off. If we would apply an identical but complementary pulse pattern to the 

top and bottom switch of a phase, we would end up in a short period in time with a shoot-

through situation.   

 

 
Figure 3.17. A typical configuration to drive a 3-phase system consist of a DC bus and   

3- phase full bridge 

 

Dead-band control provides a convenient means of combating current “shoot-

through” problems in a power converter. “Shoot-through” occurs when both the upper 

and lower transistors in the same phase of a power converter are on simultaneously. This 

condition shorts the power supply and results in a large current draw. Shoot-through 

problems occur because transistors turn on faster than they turn off and also because 

high-side and low-side power converter transistors are typically switched in a 

complimentary fashion. Although the duration of the shoot-through current path is finite 

during PWM cycling, (i.e. the transistor will eventually turn off), even brief periods of a 

short circuit condition can produce excessive heating and stress the power converter and 

power supply. To address this issue, the best approach to shoot-through control separates 

transitions on complimentary PWM signals with a fixed period of time. This is called 

C A B 
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dead-band. While it is possible to perform software implementation of dead-band, the 

F2833x offers on-chip hardware for this purpose that requires no additional CPU 

overhead. Compared to the passive approach, dead-band offers more precise control of 

gate timing requirements. 

 In Figure 3.18, complementary   pulse sequences having different patterns can be 

selected from dead band polarity and dead band value will be defined using RED and 

FED registers. Figure 3.18 also contains all definable pattern can be used for different 

application. Finally, for getting more information about ePWM unit please see [15]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.6.  ECAN UNIT   

Finally, in order to see whether the proposed stabilized and efficient V/f   control 

algorithm for PMSM is functional, some critical parameters like input real power, 

reactive power and q component of stator current need to be calculated and be compared 

for different cases where the stabilized and the efficiency loop may or may not be used.    

Figure 3.18. Dead-band waveforms for typical cases 
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   Due to the fact that some of these parameters are math defined elements and also 

some other like input real power or reactive power cannot be measured by oscilloscope, 

user must be capable to communicate directly with DSP using one way from different 

defined communication protocol for DSP. The F28335 DSP supports three different 

communication protocols that can be used in communication between the DSP and 

Matlab. These are CAN, SCI and RTDX (Real Time Data Exchange). For these thesis, 

the CAN communication is selected due to its advantages it has over others 

communication methods. This portion of the thesis is dedicated to explain ECAN 

peripheral unit   which was used in the DSP program.  

3.6.1. Basics. Controller Area Network (CAN) is a serial network technology that 

was originally designed for automotive industry, especially for European cars, but has 

also become a popular communication protocol in industrial automation as well as other 

applications. The CAN bus is primarily used in embedded systems, and as its name 

implies, is a network technology that provides fast communication among 

microcontrollers up to real-time requirements which  eliminate the need for the much 

more expensive and complex technology of a Dual-Ported RAM. It also grants high 

speed real-time communication and noise immunity in the noisy environment commonly 

found in a vehicle. [16] CAN is a two-wire, half duplex, high-speed network system, that 

is far superior to conventional serial technologies such as RS232 in regards to 

functionality and reliability and yet CAN implementations are more cost effective. 

In general Controller Area Network has the following features:  

 

• Is a high-integrity serial data communications bus for real-time applications 

•  Is more cost effective than any other serial bus system including RS232 and 

TCP/IP 

• Provides better ease of use than any other serial bus system 

• Operates at data rates of up to 1 Megabit per second 

• Has excellent error detection and fault confinement capabilities 

• Has the ability to function in difficult electrical environments 

• Is now being used in many other industrial automation 
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A typical physical CAN bus consist of two wires terminated at both ends by 120 

Ω resistors in addition to a reference wire. The system uses this three wire setup for 

differential signals for better noise immunity. The old and obsolete system used flat 

ribbon cables for communication; each cable was directly connected to its destination. 

The use of multi-wire systems leads to higher weight, higher cost, higher complexity and 

lower reliability due to the number of wires. Figure 3.19 displays a comparison between 

CAN bus set up and older multi-wire setup. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19. Comparison between older multi-wire setup and typical Can bus set 
up 
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So with this network system, each sensor or controller is now a node on the bus 

and can communicate to any other node on the network. Figure 3.20 shows a typical node 

setup, where the system have a CAN controller and CAN transceiver in each node. The 

CAN controller is where the message database is kept, which decodes and encodes all of 

the data being sent and received from that node to the network. The CAN transceiver 

actually transmits and receives the messages on the bus. 

 
Figure 3.20. CAN node example 

 

 

3.6.2. Message Frame Architecture. Various types of messages, or frames, exist 

in the CAN protocol. These types include: data, remote, error, overload, and inter space 

frames. Only the data and remote frames are set by the user, everything else is set by the 

hardware and come into the action whenever there is a fault or error on the CAN bus in 

order to protect form data accuracy and integrity. In Figure 2.21, standard data frame is 

shown, or message. Each message has a unique ID, a data field, and other header 

information. 
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 SOF (1 Bit) 

 

The dominant Start of Frame (SOF) bit represents the start of a Data/Remote 

Frame. A CAN node, before attempting to access the bus, must wait until the bus is idle. 

An idle bus is detected by a sequence of 11 recessive bits ( 11 zero bits)  which is the 

sequence of ACK Delimiter bit in the Acknowledgement Field (1 bit), the End of Frame 

Field (7 bits) and the Intermission Field (3 bits).(Figure 3.21) 

 Arbitration field ( 12 or 32 bit) 

The arbitration field contains of two components: 

•  11/29 Bit Message Identifier, first Bit is MSB, and the CAN message ID can be 

11 or 29 bits long.  RTR (Remote Transmission Request) indicates either the 

transmission of a Data Frame (RTR = 0) or a Remote-Request Frame (RTR = 1). 

 

 A low message ID number represents a high message priority. For example, a 

message that its ID number is 0x000 must be the most important message in CAN 

database library which have the highest priority to access the CAN bus for data 

submission. The total length of the arbitration field is 12 bits when an 11 bit message 

identifier is used. As shown in picture 3, the total length of the arbitration field will be 32 

bit with a 29 bit identifier 

 

Figure 3.21. CAN data frame for 29-Bit extended format 
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 Control Field ( 6 Bits) 

The 4 LSB bits of the Control Field specify the length of the data block (DLC = 

Data Length Code), the MSB bit (IDE = Identifier Extension) indicates either standard 

11-Bit format (Bit = 0) or 29-Bit extended format (Bit = 1). The Data Length Code 

(DLC) is normally set to a value between 0 and 8 indicating a data field length between 0 

and 8 bytes. 

 

 Data Field ( 8 Bits) 

Data field is most important part of data frame message carrying information from 

different nodes of different subsystems. The data must be imported in hex format. As we 

will show in the later part, in real application, it is common t message o packed signals 

into a single message in order to minimize the message numbers defined for CAN 

database; therefore,  the start bit of each signal is critical for a receiver node to easily 

distinguish and unpacked its relevant signals out of a specific message. 

3.6.3. Message Broadcasting and Error Detection. The broadcasting of 

messages in a CAN network is based on a producer-consumer principle. One node, when 

sending a message, will be the producer while all other nodes are the consumers. All 

nodes in a CAN network receive the same message at the same time. Each node “listens” 

to the network bus and will receive every transmitted message on the CAN bus. The 

CAN protocol supports message filtering meaning that the receiving nodes will only react 

to data that is relevant to them and are defined in their database library otherwise nodes  

ignore the irrelevant  messages. CAN assume that all messages are compliant with the 

defined standard and if they do not, there will be a corresponding response by all nodes in 

the network for Error Detection. If the consistency is not acknowledged by any or all 

nodes in the network, the transmitter of the frame will post an error message to the bus 

and will not grant permission to nodes for their message transmission. Moreover,  If 

either one or more nodes are unable to decode a message, either detect an error in the 

message or are unable to read the message due to an internal malfunction, the entire bus 

will be notified of the error condition.  
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3.6.4. Canoe Software. Each node attached to the CAN bus needs a Host 

Processor, CAN Controller, and Transceiver in order to receive and send CAN messages.  

The Host Processor decodes the messages using a database which is defined by user to 

extract real data from received binary digits. For this project The Vector CANoe software 

along with a Vector CANcaseXL hardware interface was used to monitor and analyze the 

on-line operation of the CAN network.  CANoe is a development and testing software 

tool from Vector Informatik GmbH. The software is primarily used by automotive 

manufacturers and electronic control unit (ECU) suppliers for development, analysis, 

simulation, testing, diagnostics and start-up of ECU networks and individual ECUs. 

Figure 3.22 shows inside of the CANOE software where the user can import any  CAN 

database into the software which means that any message exist on the Can bus  and is not 

defined for  the CAN database cannot be motorized and be measured by the user. 

Moreover, I- Generator is a block in which user can manually define a CAN message out 

of the CAN data base library. As an example, the reader can imagine that in the DSP 

program where the user should define a commanded speed for PMSM, instead of using a 

constant Simulink block, it is possible to import CAN message from CANoe into the 

DSP program. Moreover, the user doesn’t supposed to build a new DSP program for each 

new commanded speed, which is time consuming process, and he  can simultaneously 

change the speed command while the DSP program is running  to verify the V/f 

algorithm functionality for different speeds. The CAN database for the system was 

developed using the Vector CANdb++ software.  The CANdb++ is a data management 

program which can be used to create and modify CAN databases. The CAN Controller 

stores received data bits serially until an entire message is available and then transfers it 

to the Host Processor.  The Transceiver acts as a voltage level shifter and adapts signal 

levels from the bus voltage level to the voltage level that the CAN controller expects.  

For further information about making up a  CAN database using CANdb++  and setting 

up the CANoe software for  monitoring the CAN messages, please refer to the following 

references [17, 18].                                         

 

http://en.wikipedia.org/wiki/Vector_Informatik
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Figure 3.22. CANoe configuration window 

 

 

 

3.6.5. Can Using Simulink’s Embedded Coder. This section will provide a 

basic guide to get the F28335 DSP   programmed to use CAN using Simulink’s 

embedded coder. As a first step the user is supposed to set a baud rate which he has 

already defined for CANoe software. By opening up the target preferences block in 

Simulink and navigating  to the eCAN_A section under the Peripherals tab the baud rate 

can be define for the CAN bus, as shown in Figure 3.23. To get idea about how to set a 

particular bite rate please see the reference [12]. 
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Figure 3.23. CAN A preferences 

 

 

 Next users need to setup the Vector CANcaseXL box ,Figure. 3.24, to operate at a 

1 Mbps baud rate as well. To do this, please hook up the box to the PC and open the 

Vector Hardware application. Backing to the Figure 3.22, by double clicking on the 

Network can bus; the baud rate can be also defined for the software. Finally a CAN 

harness 2 wire cable attached to the 9 pin D-sub pin out which is shown in figure 3.25 

should be connected between DSP and CAN vector box. 
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Figure 3.24. Vector CAN box 

 

 

 

 
 

Fig. 20: D-sub pinout 

 

 

 

 

 CAN communication with Embedded Coder is done using four blocks: CAN  
Figure 3.25. D-sub pin out 
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CAN communication with Embedded Coder is done using four blocks: CAN 

Pack, CAN Unpack, eCAN Transmit, and eCAN Receive. The first two blocks are found 

in the Target Communication submenu of the C2000 branch in Simulink’s library 

browser. The latter two blocks are found in the C28x3x submenu. The CAN Pack block 

(Figure 3.26) takes Simulink values and packs them into a message that is transferred 

over the network using the eCAN Transmit block. If the user be lucky enough to be using 

a 32-bit version of Matlab/Simulink there is an option to load the .dbc file you created 

earlier to fill in all these options; otherwise you have to fill them in by hand.  

 

 

 
Figure 3.26. CAN Pack Block 
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By selecting “manually specified signals” from the “data is input as” drop-down menu 

then all the information you enter has to match what was entered into your database file. 

 The eCAN Transmit block settings are also pretty straight forward. The dialog 

menu shown in Figure 3.27 should have similar setup options to what you will be using.  

Mailbox number is a given number from 1-12, and it can be random number. The user 

can choose between the A and B CAN bus. The message identifier should be the same 

message ID in hex, minus the “0x” from the database file which was defined by 

CANdb++ and was imported into the CANoe software. The box ‘’ post interrupt when 

message is transmitted’’ should also be checked [15] help to set up a eCAN unit for DSP. 

 

 
Figure 3.27. eCAN Transmit block 

 

 



   47 

 

4. SIMULATION AND EXPERIMENTAL RESULTS 

4.1. SIMULATION 

In order To verify the accuracy and performance of the both stabilized loop and  

proposed efficiency-optimizing control technique, simulation tests have been conducted 

using the Simulink of the MATLAB. The PMSM parameters used in the simulation is 

presented in the table 2.2. 

 

Table 2. 2. PMSM motor parameters which were used in experimental tests 

𝐿𝑑 = 𝐿𝑞 = 1.9𝑚𝑚 𝑅𝑟𝑡𝑃𝑑 𝑃𝑃𝑤𝑃𝑟 = 15 𝐾𝑤  𝑟𝑟𝑡𝑃𝑑 

𝜆𝑚 =  . 278 𝑆𝑝𝑃𝑃𝑑 = 1750 𝑟/𝑚𝑚𝑚 

𝐽 = 15 ∗ 10−3𝑘𝑘.𝑚2    number of poles= 6 

𝐵𝑚 = 20.4 ∗ 10−3𝑁.𝑚. 𝑠 𝑟𝑠= . 149 

𝐼𝑟𝑎𝑡𝑒𝑑= 50 A 

 

 

 

 

As it was discussed in the first chapter, PMSM motors that are not equipped with  

damper winding have serious  stability problems during transient conditions like for 

example, during time  motor start up , the rotor  may capable to drive out  from zero 

speed, but before reaching to the commanded speed it will lose synchronization. Another 

common instability scenario is when the amount of load torque exerted on PMSM rotor 

shaft suddenly and abruptly get changed, commonly happen in field of motor application 

leading motor into the instability situation.  Therefore, the first test is to examine the 

effect of stability loop on the PMSM start up using stabilized loop. Figure 4.1 shows the 

measured rotor speed of the machine, when the machine is ramped up to different 

frequencies under no load, for the sensorless V/f controller where the stabilization loop is 

not utilized From Figure 1.3, the stable operation of the machine at low frequencies and 

the unstable operation at high frequencies is evident, as expected from the stability 

analysis and the loci diagram was shown in Figure 2.5. 
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The same test was carried out with the drive configuration shown in Figure 2.6, 

with the stabilizing loop in the system. The stabilizing loop parameters which were used 

to calculate the eigenvalue plots in Figure 2.5 were used in the drive system. Since the 

stable operation of the machine was possible at low frequencies the stabilizing loop was 

added to the system. Figure 4.2 shows the results. Comparing this figure with Figure 4.1, 

the effect of stabilized loop should be tangible for the readers indicating stabilization loop 

is correspond to the damper winding on rotor cage of synchronized electrical machines.  

 

 

 

 

 

 

 

Figure 4.1. Measured rotor speeds at different frequencies, under no load, without 
stabilizing loop in the system 

f = 10  Hz 

f = 43.75  Hz 

f = 87.5 Hz 
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In the next simulation test, the effect of adding efficiency loop to a stabilized V/f 

sensorless control method for PMSM is studied by measuring various motor parameters 

for two different scenarios. In the first case, a stabilized V/f is not utilized with efficiency 

loop while in the second test efficiency loop is employed in control loop. 

In the first scenario, the machine is started at zero speed and load torque, it then 

ramps up the speed towards half of the rated value, which corresponds to an electrical 

frequency of 98.43 Hz which is equivalent to 940 rpm. At t = 3 seconds, the load torque 

is stepped to the rated value of 15 N.m. Later on, at t=5 the load torque magnitude 

increase to 25 N. Finally, at t = 7 seconds, the load torque is stepped back to zero. The 

simulation results are presented in Figures 4.3 - 4.9 and in all these figure the green line 

diagram represent the results of test in which efficiency loop is employed.  

f = 87.5 Hz 

f = 43.75  

 

f = 10  Hz 

Figure 4.2. Measured rotor speeds at different frequencies, under no load, with 
stabilizing loop in the system 
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Figure 4.3, support our earlier claim that by controlling the reactive power and 

keeping its value to the zero, we should able to see changers in magnitude of input real 

power.  It is noteworthy to mention that as the amount of load torque applying on motor 

shaft increase, the magnitude of input real power increase consequently and the benefit of 

using efficiency loop become more apparent due to the fact that power losses get much 

smaller compare to the low and light load torque. By making comparison between 2 

diagrams in Figure 4.3, it is clear that by using the second method, it is possible to save 

up the input power up to the 10%, and reduce the machine losses.  Because the q-axis 

current is directly proportional to the electrical torque, zero d-axis current means that the 

stator current magnitude is at its minimum. Moreover, Base on the result presented in 

Figure 4.5, in order to control the reactive power, the voltage magnitude need to be 

regulated. In fact, in any type of synchronized machine starter voltage magnitude is 

proportional with reactive power.  

Base on simulation results of Figure 4.7 and 4.8, at 25 N.m torque, the q-axis 

current has a significant magnitude. However, the d-axis current is also very large, even 

though it does not have any contribution to torque generation, and it cause inclination in 

power loss, but in the next test, the efficiency optimization algorithm is added to the 

simulation and the same test procedure is followed as in the first test. Comparing results 

in Figure 4.7 has almost identical waveforms for rotor speed, torque, and q-axis stator 

current. One of the differences lies in the waveforms of the d-axis current, which is 

maintained at near zero in Figure 4.8.  

Finally, as can be seen from Figure 4.9, after the speed ramp, the motor is able to 

maintain a constant speed even with large step changes in load torque. The operation is 

stable in the whole speed and torque range regardless of efficiency loop usage in the 

control loop. In all following graphs, the green color one shows the stabilized V/f which 

efficiency loop controller is employed while the blue one  represent the stabilized V/f  

without efficiency loop controller. 
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Figure 4.4. Comparison of input reactive power  

Figure 4.3. Comparison of input real power  



   52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time [s] 

Time [s] 

 Figure 4.6. Comparison of stator current magnitude  

Figure 4.5. Comparison of stator voltage magnitude  
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Figure 4.7. Comparison of stator current q component 

Figure 4.8. Comparison of stator current d component  
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4.2.  EXPERIMENTAL RESULTS  

Figure 4.10 and 4.11 show the lab experimental set up for this thesis.  The Matlab 

2012 has been installed on the lab computers with all the toolboxes and subsystems 

which are required for C2000 DSP rapid prototyping. Moreover, the dc motor is driven 

by a DCS800 ABB drive while the PMSG drive is a custom made drive built by the team 

using a TMS320F28335 DSP from Texas Instrument and a Semikron SKS 83F B6CI 44 

V 12 inverter. 

To be able to run PMSM and control it based on the program running on its DSP, 

a 320 V dc supply must feed the PSMSM drive which is provided by constant dc power 

supply shown in Figure 4.10. Both PMSM drive and DC drive support the CAN 

communication, and the PMMS calculated and measured motor parameters are read out 

of the CAN port was integrated into the PMSM drive. Furthermore, it was very crucial 

for the experimental tests that  being able to apply load torque on PMSM shaft abruptly to 

examine the dynamic behavior of PMSM machine under heavy load torque changes 

while a sensorless V/f is supposed to control its speed. For this purpose,  Advanced  

Time [s] 

Figure 4.9. Comparison of rotor mechanical speed  
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DCS800 ABB drive  allow the user to communicate with dc machines by reading dc 

machines measured signals like mechanical speed or by sending the user command such 

as load torque ,which is our primary concern in this case,  through  the CAN protocol 

communication. 

 

 

 

 

 

 

Finally, the experimental results are presented in Figures 4.11 – 4.18, all the 

signals are measured and recorded in CANOE software originally, but to improve result 

quality and make it more appealing for the readers the recorded data was transformed into 

the Matlab and was plotted regain. In all following graphs, the green color one shows the 

stabilized V/f which efficiency loop controller is employed while the blue one  represent 

the stabilized V/f  without efficiency loop controller. 

 

 

 

 

 

 

Figure 4.10. Lab set up for efficient and stabilized V/f for PMSM 
machine 
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Figure 4.12. Comparison of input reactive power  

Figure 4.11. Comparison of input real power  
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Figure 4.14. Comparison of stator voltage magnitude  

Figure 4.13. Comparison of stator current magnitude  
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Figure 4.16. Comparison of stator current d component  

Figure 4.15. Comparison of stator current q component  
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Figure 4.18. Comparison of applied load torque  

Figure 4.17. Comparison of rotor mechanical speed  
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4.3. ISSUES ENCOUNTERED DURING THE IMPLEMENTATION  

When working with a relatively new technology such as automated generation for 

embedded targets some problematic issues are to be expected. Here, it is important to 

distinguish issues and the problems they cause from one another. 

The most important issue is the reliability of the generated cod, i.e. that the code 

actually has the anticipated functionality. This has never been a problem through this 

project; the generated code has always functioned correctly and there have never been 

any compilation errors. This is most likely due to the Target Language Complier (TLC) 

in RTW which generates the code for all the different processor family packages, of 

which Target for TI C2000 is one. Hence a lot of development effort has been spent on 

the TLC and it appears to be very mature technology. 

4.3.1. Software Issue.  What has been an issue in the project are which blocks 

that are supported by code generation and which are not. The main problem is that all 

Simulink blocks that support code generation are not gathered in one or several block 

sets. Of course all the blocks that supports code generation, but to design the model more 

blocks are need such as summing and delay blocks, these blocks are found in the standard 

Simulink libraries. One illustrative example is that the unit delay block is supported but 

the integer delay block is not, even though they are basically identical in functionality. 

In the case that user wants to use a fixed point DSP, another problem can happen 

through project development. The problem is that some of the standard Simulink blocks 

that support code generation does not support fixed point numbers. When using these 

clocks the signal must first be converted to integer or floating point  then passed on to the 

block and then after the block be converted back to fixed point, something that of course 

highly degrades the efficiency of the generated code for the fixed point  digital signal 

processor families. However the major issues encountered has not been regarding 

whether or not blocks support code generation or not but rather which DSP settings that 

are supported in the code generation. A tangible example of this problem is how the two 

hardware interrupt were initialized in the model that was developed. The interrupt 

generated in the ADC module, see section, and was initialized by selecting the post 

interrupt at end of conversion option in the properties pane of the ADC block. 
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The interrupt generated by the ePWM module was initialized in completely 

different and not very intuitive way, as described in section 2.2. This inconsistency in 

which settings that are implemented in different modules is quite confusing and 

disturbing for the designer. 

When working in a rapid prototyping approach it is desirable for the designer to 

have the possibility to alter parameter values in real time or at least to alter them without 

rebuilding the entire program. This feature is possible in Matlab when using Simulink 

external mode, see [19], which enable logging and parameter tuning. However, this 

feature is only available using the CAN communication protocol which is getting used 

for implementation in this project.  Particular for this project, using the CAN 

communication, the user easily can change the commanded speed of PMSM at any time 

after code generation whiles the test running.  

It is noteworthy to mention here that parameter tuning and external mode is not 

compatible with IQmath/DMC blocks even when using CAN communication. This 

means that when the gains in for example a PID controller is to be changed, the whole 

program has to be regenerated. 

4.3.2. Debugging. The debugging process when working with automated code 

generation is as anticipated fairly different compared to code written in the usual way. In 

the standard design process most syntax errors are found during the compilation of the 

program and are corrected in an iterative process unit the code compiles with the design 

rules. 

In Matlab the syntax errors are found before the code is compiled, as Matlab 

executes the build command it checks the Simulink model and controls whether design 

rules are obeyed before he code is generated. Instead of an error message from the 

compiler the designer gets an error message from Simulink and the build process is halted 

before the code generation starts. Therefore there are seldom compilation errors. 

The second part of the debugging process concerns the code functionality. Here 

the automated code generation has both advantages and disadvantages. The main 

advantage is the fact the code is auto generated. Thus registers, counters and memory 

sections are initialized correctly and without human mistakes. Since these are the main 

sources of functionality errors this is clearly an advantage and saves a lot of time and 
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effort for the designer. However, the main disadvantage is also due to the fact that the 

code is auto generated. The code generation is not perfect and if the generated code has 

errors these are very hard to find, although it appears to happen very rarely. 

The most common debugging that has to be done when using automated code 

generation is to located functionality errors in the algorithm implemented in Simulink. 

These errors should generally be found during simulations before code generation. 

However, if they remain after the simulations they can be hard to be found by user since 

it is quite complicated to use break points in Matlab. 
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5. CONCLUSIONS  

The idea of sensorless stable V/f control method for permanent-magnet 

synchronous motor (PMSM) drives was taken from earlier works where the idea was 

developed for low power permanent synchronized machine. The stabilized loop behavior 

is pretty much similar to the damper winding functionality which is not used in this 

application. Then a new optimization method suggested for a sensorless stabilized of the 

V/f control by minimizing the d-axis current which is proportional to the reactive power 

in the machine to reduce the motor losses, and supplied input power. The proposed 

sensorless method only needs machine terminal signals and does not require any 

additional motor parameters measurements. Minimization of the d-axis current is 

accomplished through computed reactive power. 

The purpose of this thesis was also to examine a rapid prototyping approach using 

a CACSD to develop and implement a new motor control algorithm on a Digital Signal 

Processor (DSP), but instead of programming the DSP in Assembly or C, the main 

control algorithm will be performed in the Matlab/Simulink environment which is  

developed by the  MathWorks𝑇𝑀. Therefore, The DSP program was implemented using 

embedded code toolbox and Simulik/ Matlab. Moreover, the CAN communication was 

used in this work to communicate with DSP for reading the motor parameters ad sending 

commanded signal for dc drive. 

Finally, the new developed algorithm was implemented for a PMSG drive which 

is a custom made drive built by the student design team using a TMS320F28335 DSP 

from Texas Instrument and a Semikron SKS. The program was run and tested for a 

15 kW PMSM machine which directly connected to a dc machine controlled by a 

DCS800 ABB drive. 
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