
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Fall 2013

Communication protocols for integrated fiber optic sensor Communication protocols for integrated fiber optic sensor

interrogator interrogator

Tameem Ahmed Khan

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Khan, Tameem Ahmed, "Communication protocols for integrated fiber optic sensor interrogator" (2013).
Masters Theses. 5440.
https://scholarsmine.mst.edu/masters_theses/5440

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5440&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5440&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/5440?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5440&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

COMMUNICATION PROTOCOLS FOR

INTEGRATED FIBER OPTIC SENSOR INTERROGATOR

by

TAMEEM AHMED KHAN

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN COMPUTER ENGINEERING

2013

Approved by

Dr. Hai Xiao (Advisor)

Dr. Maciej Zawodniok

Dr. Minsu Choi

ii

iii

ABSTRACT

Fiber optic sensors have gained rapid recognition in sensing environmental

factors such as strain, stress, acoustics, pressure, temperature among emerging other

sensing applications. Major advantages of fiber based systems are small size, light

weight, multiplex-ability of sensors on a single fiber, and immunity to Radio Frequency

(RF) interference. However, single most major disadvantage of such technology is that

traditionally the interrogation systems are typically bulky and heavy lab only

equipment. Embed-ability of sensors into different structures and environments requires

that the whole systems (sensors + interrogator) be small, modular and portable.

This thesis presents such a custom Fiber optic Sensor Interrogator (FSI) based

on a Low-power TMS320C6748 applications Processor (DSP) and Virtex®-5 FPGA

hardware. Specific objectives for such FSI include; first, to develop a management

module that could compare and set FLASH parameters for LASER Controller, second

to develop robust code for data collection through a DRP2E Photo Detector, third to

establish communication protocols including Serial, USB, Ethernet and Wireless (both

on FSI and PC end).

iv

ACKNOWLEDGMENTS

I am extremely thankful to my advisor Dr. Hai Xiao for his support and the

knowledge imparted by him, which not just helped in my thesis but also in my overall

development as a student. I would also like to thank him for supporting my work with

graduate research assistantship.

I thank Dr. Maciej Zawodniok and Dr. Minsu Choi in having trust in me for

timely completion of this work and serving on my committee.

I am thankful to my team at Photonics Technology Lab who time to time taught

me basics and advanced topics in laser physics and extended their support in

understanding the existing lab equipment.

I also thank my wife Adviya Saba Khan for her support on the personal end

without which it would have been things would have been different for me. I also thank

my mother Arifa Begum for support she extended by joining hands with us in our

endeavors.

Finally, I would like to thank my fellow graduate students who always gave a

helping hand when I needed one.

v

TABLE OF CONTENTS

Page

ABSTRACT .. iii

ACKNOWLEDGMENTS .. iv

LIST OF ILLUSTRATIONS .. viii

LIST OF TABLES .. x

NOMENCLATURE ... xi

SECTION

1. INTRODUCTION .. 1

2. SETUP .. 3

2.1. HARDWARE .. 3

2.2. SOFTWARE .. 8

2.2.1. Device End FPGA Setup .. 9

2.2.2. Device End DSP Setup ... 10

2.2.3. PC End COM Interrogation .. 11

2.2.4. PC End USB Interrogation .. 11

3. SERIAL PORT (COM) ... 14

3.1. PURPOSE OF THE PERIPHERAL ... 14

3.2. OVERVIEW OF FEATURES .. 14

3.3. FUNCTIONAL BLOCK DIAGRAM ... 15

3.4. FLOW DIAGRAM FOR COM ... 16

4. UNIVERSAL SERIAL BUS (USB) ... 17

4.1. PURPOSE OF THE PERIPHERAL ... 17

4.2. OVERVIEW OF FEATURES .. 17

4.3. FUNCTIONAL BLOCK DIAGRAM ... 18

4.4. USB CONTROLLER PERIPHERAL MODE OPERATION 18

4.4.1. Soft Connect .. 19

4.4.2. Entry into Suspend Mode .. 19

4.4.3. Resume Signaling ... 20

4.4.4. Initiating a Remote Wakeup ... 20

4.4.5. Reset Signaling ... 20

vi

4.5. PERIPHERAL MODE: CONTROL TRANSACTIONS 21

4.5.1. Zero Data Requests ... 21

4.5.2. Write Requests .. 23

4.5.3. Read Requests ... 24

4.5.4. Endpoint 0 States .. 25

4.5.5. Endpoint 0 Service Routine .. 27

4.5.6. IDLE Mode ... 30

4.5.7. TX Mode ... 30

4.5.8. RX Mode ... 32

4.5.9. Error Handling .. 33

5. ETHERNET .. 35

5.1. EMAC .. 35

5.1.1. Purpose of the Peripheral .. 35

5.1.2. Features ... 36

5.1.3. Memory Map .. 38

5.1.4. Media Independent Interface (MII) Connections.................................... 39

5.1.5. Ethernet Frame Format ... 39

5.1.6. Packet Buffer Descriptors ... 40

5.1.7. Transmit and Receive Descriptor Queues ... 40

5.1.8. Transmit and Receive EMAC Interrupts .. 40

5.2. MDIO MODULE .. 41

5.2.1. Initializing the MDIO Module .. 42

6. RESULTS ... 43

6.1. SERIAL PORT / COM .. 43

6.1.1. User Interface .. 43

6.1.2. Data Transfer .. 43

6.2. UNIVERSAL SERIAL BUS (USB) ... 44

6.2.1. USB Driver ... 44

6.2.2. Data Transfer .. 45

6.3. ETHERNET .. 46

6.4. WIRELESS .. 46

vii

APPENDIX - CODE OVERVIEW ... 47

BIBLIOGRAPHY ... 54

VITA. ... 56

viii

LIST OF ILLUSTRATIONS

Page

Figure 1.1 Structure of the fiber optical sensor
[2]

 .. 1

Figure 2.1 Multi layered board layout .. 3

Figure 2.2 PCB layout of main board ... 4

Figure 2.3 PCB layout of LASER board .. 5

Figure 2.4 Photo detector schematic .. 6

Figure 2.5 Hybrid view of proposed FSI .. 6

Figure 2.6 Modular view of proposed FSI ... 7

Figure 2.7 Software control flow of proposed FSI ... 8

Figure 2.8 Perform a new boundary scan & assign configuration 9

Figure 2.9 Perform FPGA programming .. 9

Figure 2.10 DSP Configuration .. 10

Figure 2.11 FSI connected via COM port .. 11

Figure 2.12 Configuring hardware endpoints ... 12

Figure 2.13 Building USB driver project ... 12

Figure 2.14 Build the DDK .. 13

Figure 3.1 COM functional block diagram .. 15

Figure 3.2 COM Flow Diagram ... 16

Figure 4.1 USB Functional Block Diagram ... 18

Figure 4.2 CPU Actions at USB Transfer Phases .. 26

Figure 4.3 USB Sequence of Transfer .. 27

Figure 4.4 USB Service Endpoint 0 Flow Chart .. 29

Figure 4.5 USB IDLE Mode Flow Chart ... 30

Figure 4.6 USB TX Mode Flow Chart ... 31

Figure 4.7 USB RX Mode Flow Chart ... 33

Figure 5.1 EMAC Module Block Diagram .. 35

Figure 5.2 EMAC and MDIO Block Diagram ... 37

ix

Figure 5.3 Ethernet Configuration—MII Connection .. 39

Figure 5.4 Frame Format for Ethernet .. 39

Figure 5.5 Basic Ethernet Descriptor Format ... 40

Figure 5.6 MDIO Module Block Diagram ... 41

Figure 6.1 Sample UI Menu ... 43

Figure 6.2 COM data to PC without Laser board connected ... 43

Figure 6.3 COM data to PC when Laser board connected ... 44

Figure 6.4 PC side USB DLL Test ... 45

Figure 6.5 USB Data Transactions ... 46

x

LIST OF TABLES

Page

Table 3.1 COM Features .. 14

Table 3.2 COM Protocol .. 15

xi

NOMENCLATURE

Symbol Description

FBG .. Fiber Bragg Grating

FPGA .. Field-Programmable Gate Array

DSP ... Digital Signal Processor

UART .. Universal Asynchronous Receiver/Transmitter

USB ... Universal Serial Bus

FIFO ... First In First Out

IIR .. Infinite Impulse Response

1

1. INTRODUCTION

With increasing demand on the sensor based monitoring for structural integrity

sensing, harsh chemical sensing or any other on-site sensing system, the necessity for a

compact modular yet cost / power effective sensor interrogator and communications

systems is becoming indispensible.

Electrical sensors have for decades been the default mechanism for measuring

various phenomena. Despite their simple structure, these sensors have inherent

limitations such as transmission loss, power and susceptibility to electromagnetic

interference (EMI) that make their usage challenging or impractical in many

applications. Fiber-optic sensing is an excellent solution to these challenges, using light

rather than electricity and standard optical fiber in place of copper wire.

Figure 1.1 Structure of the fiber optical sensor
[2]

2

Fiber optical sensing overcomes many of the challenges commonly found with

electrical sensing by using light (laser light in this project) rather than electricity and

standard optical fiber in place of copper wire. Optical fibers and FBG optical sensors

are nonconductive, electrically passive, and immune to EMI.

Interrogation with a high-power tunable laser enables measurements that can run

over long distances with little or no loss in signal integrity hence making them best

suited for remote sensing. Also, unlike electrical sensing systems, each fiber optical

channel has the capability to measure multiple FBG sensors, hence reducing the size,

weight, and complexity of the measurement system.

Further, lack of flexibility limits the system’s ability to meet many structural test

and monitoring application needs. This project realizes a solution for FSI which is small

in size, robust in communication and to an extent scalable.

3

2. SETUP

2.1. HARDWARE

The hardware design includes multi layered board layout. The first level is the

DC power distribution board. Second level is the Logic / Signal processing (including

FPGA, Flash, PROM, COM, USB, Ethernet and WiFi mega modules). Third level

onwards a maximum of four laser driver boards can be connected. Each laser board will

have one laser chip and maximum of two photo diodes that can detect the transmitted or

reflected light.

Figure 2.1 Multi layered board layout

4

Below two layouts show details on the parts of the board layout discussed

throughout this report that participate in communication.

Figure 2.2 PCB layout of main board

5

Figure 2.3 PCB layout of LASER board

a. Laser module

The laser module D2570H
[8]

 used has following properties:

 ITU wavelengths available from 1528.77 nm —1610.06 nm

 Temperature tunable for precise wavelength selection

b. Photo detector

The photo detector DRP2EX - 43T2
[7]

 has following properties

 Bias voltage: 5.0 V

 Wavelength: 1520nm – 1570nm

6

Figure 2.4 Photo detector schematic

Management &
Data Collection

Algorithm

FPGA Init

DSP Init

Programming

Programming

NOR Flash

Log
Amplifier

Temp_ctl

Log_output1

Log_output2

Temp PID
Temp_value

Laser_currentLaser
Driver Laser_power

H
E
A
P

 Serial (COM)

 USB

 LAN

 WLAN

Device
end

drivers

Host
end

drivers

(1) Initialize

(4) Analyze(3) Collect
F
I
F
O

Flash PROM

C
o

u
p

le
r

Laser source

data

sensor(s)

(2) Measure

Daemon

P
h

o
to

-
d

et
ec

to
r

Figure 2.5 Hybrid view of proposed FSI

7

FPGA Init

DSP Init

Programming

Programming

NOR Flash

(1) Initialize

Flash PROM

Log
Amplifier

Temp PID

Laser
Driver

C
o

u
p

le
r

Laser source

data

sensor(s)

(2) Measure

P
h

o
to

-
d

et
ec

to
r

Management &
Data Collection

Algorithm

H
E
A
P

Device
end

drivers

(3) Collect
F
I
F
O

Daemon

Host
end

drivers

(4) Analyze

Figure 2.6 Modular view of proposed FSI

8

2.2. SOFTWARE

Below figure depicts the communication flow of the FSI which will be the main

focus of this thesis. The code is developed using Code Composer Studio v3.3 (for DSP)

and Xilinx iMPACT 12.3 (for FPGA).

Daemon

Start

Main clock
(300MHz)

Set EMIF NOR FLASH

GPIO INIT

Timer INIT

COM Rx/Tx buffer
INIT

ADC / DAC INIT

OTG USB INIT

USB Rx/Tx Buffer
INIT

USB FIFO INIT

FLASH INIT

FPGA INIT

EnumerateUSB

Control Laser
Temperature

Refresh Laser Power

Collect Sensor
Values

Handle UART End
Point

Handle USB End
Points

Handle WiFi End
Point

Handle EMAC End
Point

Figure 2.7 Software control flow of proposed FSI

9

2.2.1. Device End FPGA Setup. Connect Xilinx 12.3 FPGA programmer

and start ISE iMPACT (M .70d)

Figure 2.8 Perform a new boundary scan & assign configuration

Figure 2.9 Perform FPGA programming

10

2.2.2. Device End DSP Setup. Open AISgen for D800K002

and perform below steps

Figure 2.10 DSP Configuration

11

2.2.3. PC End COM Interrogation. Make sure that COM port to which FSI

is connected is detected through the hardware wizard of the operating system (here

COM3). Modify com_4.m if the COM port changes. Below figure shows the default

data when LASER board is not connected.

Figure 2.11 FSI connected via COM port

2.2.4. PC End USB Interrogation. Using DriverWizard 3.2.0,

Create a new USB project with:

 Vendor ID: 1b49

 Device GUID: B0655D76-ED59-44B8-B37E-E7EDF175F962

12

Figure 2.12 Configuring hardware endpoints

 Driver Wizard produces custom WDM driver which requires DDK (used

3790.1830) to build into the DLL project. This source code is just bare bones,

modify according to the end points and URBs supported by the FSI.

Figure 2.13 Building USB driver project

13

Use the buttons shown above to build the new driver. The DLL and SYS

files generated are the output.

Note: INI and Test project need to be written if PnP functionality is required.

Figure 2.14 Build the DDK

14

3. SERIAL PORT (COM)

3.1. PURPOSE OF THE PERIPHERAL

The serial COM port is physical interface through which information transfers in

or out one bit at a time. This port supports different properties that can be set before the

transfer begins.

3.2. OVERVIEW OF FEATURES

Table 3.1 COM Features

Feature Value

Speed 115200

Frame Size 44

Data Bits 8 bits

Parity Even

15

3.3. FUNCTIONAL BLOCK DIAGRAM

Internal
Bus

FIFO

Registers, interrupts

COM Tx/Rx
Core

Figure 3.1 COM functional block diagram

Table 3.2 COM Protocol

Feature (w.r.t. FSI) PC-> Peripheral (Hex) Peripheral->Host (Hex)

1 Download Data to PC 5A,5A,1,1,0,0,0,0,0 A5, A5, 1, 1, data(240B)

2 Upload Current / Power

mode to FSI

5A, 5A, 2, Laser#,

data(5B)

A5, A5, Status(1B)

3 Upload Temp, PID to FSI 5A, 5A, 3, Laser#,

data(5B)

A5, A5, Status(1B)

4 Download Laser

parameters to PC

5A, 5A, 11, 11 A5, A5, data (60D)

16

3.4. FLOW DIAGRAM FOR COM

Validate first two bytes are
0x5A, 0x5A

Loop

COM Interrupted?

OK

If CMD1 send photo
detector data (0..3)

Yes

If CMD2 receive laser
current / power

If CMD3 receive
temperature / PID

parameter

If CMD4 send laser status

Fail

No

Figure 3.2 COM Flow Diagram

17

4. UNIVERSAL SERIAL BUS (USB)

4.1. PURPOSE OF THE PERIPHERAL

The USB controller
[9]

 supports data throughput rates up to 480 Mbps. It provides

a mechanism for data transfer between USB devices and also supports host negotiation.

4.2. OVERVIEW OF FEATURES

The USB has the following features
[5]

:

 Supports USB 2.0 peripheral at High Speed (480 Mbps) and Full Speed (12

Mbps)

 Supports USB 2.0 host at High Speed (480 Mbps), Full Speed (12 Mbps),

and Low Speed (1.5 Mbps)

 Supports four simultaneous RX and TX endpoints, more can be supported by

dynamically switching

 Each endpoint can support all transfer types (control, bulk, interrupt, and

isochronous)

 Includes a 4K endpoint FIFO RAM, and supports programmable FIFO sizes

 External 5V power supply for VBUS can be controlled through I2C

Features Not Used

 Supports USB extensions for Session Request (SRP) and Host Negotiation

(HNP)

 Includes a DMA controller that supports four TX and four RX DMA

channels

 Includes RNDIS mode of DMA for accelerating RNDIS type protocols using

short packet termination over USB

18

Features Not Supported

 The following features are not supported:

 High Bandwidth Isochronous Transfer.

 High Bandwidth Interrupt Transfer.

 Automatic Amalgamation of Bulk Packets (CPPI DMA will indirectly

handle this feature and is not supported at the core level).

 Automatic Splitting of Bulk Packets (CPPI DMA will indirectly handle this

feature and is not supported at the core level).

4.3. FUNCTIONAL BLOCK DIAGRAM

The USB functional block diagram is shown in figure below.

Internal
Bus

CPPI DMA
Engine

Registers, interrupts, end point control, and
packet scheduling

FIFO
Packet encode /

decode
USB 2.0

PHY
USB

24 MHz crystal
oscillator

Figure 4.1 USB Functional Block Diagram

4.4. USB CONTROLLER PERIPHERAL MODE OPERATION

The USB controller can be used in a range of different environments. It can be

used as either a high-speed or a full-speed USB peripheral device attached to a

conventional USB host (such as a PC). It can be used as either host or peripheral device

in point-to-point data transfers with another peripheral device - or, if the other device

19

also contains a Dual-Role Controller, the two devices can switch roles as required. (This

second device may be either a high-speed, full-speed or low-speed USB function.) Or

the controller can be used as the host to a range of such peripheral devices in a multi-

point setup.

Whether the controller expects to behave as a host or as a peripheral device

depends on the way the devices are cabled together. Each USB cable has an A end and a

B end. If the A end of the cable is plugged into the controller, it will take the role of the

Host device and go into host mode. If the B end of the cable is plugged in, the controller

will go instead into peripheral mode.

The USB controller interrupts the DSP on completion of the data transfer on any

of the endpoints or on detecting reset, resume, suspend, connect, disconnect, or SOF on

the bus. When the DSP is interrupted with a USB interrupt, it needs to read the interrupt

status register to determine the endpoints that have caused the interrupt and jump to the

appropriate routine. If multiple endpoints have caused the interrupt, endpoint 0 should

be serviced first, followed by the other endpoints. The suspend interrupt should be

serviced last.

4.4.1. Soft Connect. After a reset, the SOFTCONN bit of POWER register

(bit 6) is cleared to 0. The controller will therefore appear disconnected until the

software has set the SOFTCONN bit to 1. The application software can then choose

when to set the PHY into its normal mode. Systems with a lengthy initialization

procedure may use this to ensure that initialization is complete and the system is ready

to perform enumeration before connecting to the USB. Once the SOFTCONN bit has

been set, the software can also simulate a disconnect by clearing this bit to 0.

4.4.2. Entry into Suspend Mode. When operating as a peripheral device, the

controller monitors activity on the bus and when no activity has occurred for 3ms, it

goes into Suspend mode. If the Suspend interrupt has been enabled, an interrupt will be

generated at this time.

20

At this point, the controller can then be left active (and hence able to detect

when resume signaling occurs on the USB), or the application may arrange to disable

the controller by stopping its clock. However, the controller will not then be able to

detect resume signaling on the USB. As a result, some external hardware will be needed

to detect Resume signaling (by monitoring the DM and DP signals), so that the clock to

the controller can be restarted.

4.4.3. Resume Signaling. When resume signaling occurs on the bus, first the

clock to the controller must be restarted if necessary. Then the controller will

automatically exit Suspend mode. If the Resume interrupt is enabled, an interrupt will

be generated.

4.4.4. Initiating a Remote Wakeup. If the software wants to initiate a remote

wakeup while the controller is in Suspend mode, it should write to the Power register to

set the RESUME bit to 1. The software should leave then this bit set for approximately

10 ms (minimum of 2 ms, a maximum of 15 ms) before resetting it to 0.

NOTE: No resume interrupt will be generated when the software initiates a remote

wakeup.

4.4.5. Reset Signaling. When reset signaling occurs on the bus,

the controller will perform the following actions:

 Sets FADDR register to 0

 Sets INDEX register to 0

 Flushes all endpoint FIFOs

 Clears all control/status registers

 Generates a reset interrupt.

If the HSENA bit in the POWER register (bit 5) was set, the controller also tries

to negotiate for high-speed operation. Whether high-speed operation is selected is

indicated by HSMODE bit of POWER register (bit 4). When the application software

21

receives a reset interrupt, it should close any open pipes and wait for bus enumeration to

begin.

4.5. PERIPHERAL MODE: CONTROL TRANSACTIONS

Endpoint 0 is the main control endpoint of the core. The software is required to

handle all the standard device requests that may be sent or received via endpoint 0. The

protocol for these device requests involves different numbers and types of transactions

per transfer. To accommodate this, the software needs to take a state machine approach

to command decoding and handling.

The Standard Device Requests received by a USB peripheral device can be divided into

three categories:

 Zero Data Requests (in which all the information is included in the command),

 Write Requests (in which the command will be followed by additional data), and

 Read Requests (in which the device is required to send data back to the host).

This section looks at the sequence of actions that the software must perform to process

these different types of device request.

NOTE: The Setup packet associated with any standard device request should include an

8-byte command. Any setup packet containing a command field of anything other than

8 bytes will be automatically rejected by the controller.

4.5.1. Zero Data Requests. Zero data requests have all their information

included in the 8-byte command and require no additional data to be transferred.

Examples of Zero Data standard device requests are:

 SET_FEATURE

 CLEAR_FEATURE

 SET_ADDRESS

 SET_CONFIGURATION

 SET_INTERFACE

22

The sequence of events will begin, as with all requests, when the software

receives an endpoint 0 interrupt. The RXPKTRDY bit of PERI_CSR0 (bit 0) will also

have been set. The 8-byte command should then be read from the endpoint 0 FIFO,

decoded and the appropriate action taken.

For example, if the command is SET_ADDRESS, the 7-bit address value

contained in the command should be written to the FADDR register. The PERI_CSR0

register should then be written to set the SERV_RXPKTRDY bit (bit 6) (indicating that

the command has been read from the FIFO) and to set the DATAEND bit (bit 3)

(indicating that no further data is expected for this request). The interval between setting

SERV_RXPKTRDY bit and DATAEND bit should be very small to avoid getting a

SetupEnd error condition.

When the host moves to the status stage of the request, a second endpoint 0

interrupt will be generated to indicate that the request has completed. No further action

is required from the software. The second interrupt is just a confirmation that the

request completed successfully. For SET_ADDRESS command, the address should be

set in FADDR register only after the status stage interrupt is received.

If the command is an unrecognized command, or for some other reason cannot

be executed, then when it has been decoded, the PERI_CSR0 register should be written

to set the SERV_RXPKTRDY bit (bit 6) and to set the SENDSTALL bit (bit 5). When

the host moves to the status stage of the request, the controller will send a STALL to tell

the host that the request was not executed. A second endpoint 0 interrupt will be

generated and the SENTSTALL bit (bit 2 of PERI_CSR0) will be set.

If the host sends more data after the DATAEND bit has been set, then the

controller will send a STALL. An endpoint 0 interrupt will be generated and the

SENTSTALL bit (bit 2 of PERI_CSR0) will be set.

23

NOTE: DMA is not supported for endpoint 0, so the command should be read by

accessing the endpoint 0 FIFO register.

4.5.2. Write Requests. Write requests involve an additional packet

(or packets) of data being sent from the host after the 8-byte command. An example of a

Write standard device request is: SET_DESCRIPTOR.

The sequence of events will begin, as with all requests, when the software

receives an endpoint 0 interrupt. The RXPKTRDY bit of PERI_CSR0 will also have

been set. The 8-byte command should then be read from the Endpoint 0 FIFO and

decoded.

As with a zero data request, the PERI_CSR0 register should then be written to

set the SERV_RXPKTRDY bit (bit 6) (indicating that the command has been read from

the FIFO) but in this case the DATAEND bit (bit 3) should not be set (indicating that

more data is expected).

When a second endpoint 0 interrupt is received, the PERI_CSR0 register should

be read to check the endpoint status. The RXPKTRDY bit of PERI_CSR0 should be set

to indicate that a data packet has been received. The COUNT0 register should then be

read to determine the size of this data packet. The data packet can then be read from the

endpoint 0 FIFO.

If the length of the data associated with the request (indicated by the wLength

field in the command) is greater than the maximum packet size for endpoint 0, further

data packets will be sent. In this case, PERI_CSR0 should be written to set the

SERV_RXPKTRDY bit, but the DATAEND bit should not be set.

When all the expected data packets have been received, the PERI_CSR0 register

should be written to set the SERV_RXPKTRDY bit and to set the DATAEND bit

(indicating that no more data is expected).

24

When the host moves to the status stage of the request, another endpoint 0

interrupt will be generated to indicate that the request has completed. No further action

is required from the software, the interrupt is just a confirmation that the request

completed successfully.

If the command is an unrecognized command, or for some other reason cannot

be executed, then when it has been decoded, the PERI_CSR0 register should be written

to set the SERV_RXPKTRDY bit (bit 6) and to set the SENDSTALL bit (bit 5). When

the host sends more data, the controller will send a STALL to tell the host that the

request was not executed. An endpoint 0 interrupt will be generated and the

SENTSTALL bit of PERI_CSR0 (bit 2) will be set.

If the host sends more data after the DATAEND has been set, then the controller

will send a STALL. An endpoint 0 interrupt will be generated and the SENTSTALL bit

of PERI_CSR0 (bit 2) will be set.

4.5.3. Read Requests. Read requests have a packet (or packets) of data sent

from the function to the host after the 8-byte command. Examples of Read Standard

Device Requests are:

 GET_CONFIGURATION

 GET_INTERFACE

 GET_DESCRIPTOR

 GET_STATUS

 SYNCH_FRAME

The sequence of events will begin, as with all requests, when the software

receives an endpoint 0 interrupt. The RXPKTRDY bit of PERI_CSR0 (bit 0) will also

have been set. The 8-byte command should then be read from the endpoint 0 FIFO and

decoded. The PERI_CSR0 register should then be written to set the

SERV_RXPKTRDY bit (bit 6) (indicating that the command has read from the FIFO).

25

The data to be sent to the host should then be written to the endpoint 0 FIFO. If

the data to be sent is greater than the maximum packet size for endpoint 0, only the

maximum packet size should be written to the FIFO. The PERI_CSR0 register should

then be written to set the TXPKTRDY bit (bit 1) (indicating that there is a packet in the

FIFO to be sent). When the packet has been sent to the host, another endpoint 0

interrupt will be generated and the next data packet can be written to the FIFO.

When the last data packet has been written to the FIFO, the PERI_CSR0 register

should be written to set the TXPKTRDY bit and to set the DATAEND bit (bit 3)

(indicating that there is no more data after this packet).

When the host moves to the status stage of the request, another endpoint 0

interrupt will be generated to indicate that the request has completed. No further action

is required from the software: the interrupt is just a confirmation that the request

completed successfully.

If the command is an unrecognized command, or for some other reason cannot

be executed, then when it has been decoded, the PERI_CSR0 register should be written

to set the SERV_RXPKTRDY bit (bit 6) and to set the SENDSTALL bit (bit 5). When

the host requests data, the controller will send a STALL to tell the host that the request

was not executed. An endpoint 0 interrupt will be generated and the SENTSTALL bit of

PERI_CSR0 (bit 2) will be set.

If the host requests more data after DATAEND (bit 3) has been set, then the

controller will send a STALL. An endpoint 0 interrupt will be generated and the

SENTSTALL bit of PERI_CSR0 (bit 2) will be set.

4.5.4. Endpoint 0 States. When the USB controller is operating as

a peripheral device, the endpoint 0 control needs three modes – IDLE, TX and RX –

corresponding to the different phases of the control transfer and the states endpoint 0

enters for the different phases of the transfer (described in later sections).

26

The default mode on power-up or reset should be IDLE. RXPKTRDY bit of

PERI_CSR0 (bit 0) becoming set when endpoint 0 is in IDLE state indicates a new

device request. Once the device request is unloaded from the FIFO, the controller

decodes the descriptor to find whether there is a data phase and, if so, the direction of

the data phase of the control transfer (in order to set the FIFO direction).See Figure 3.3.

Depending on the direction of the data phase, endpoint 0 goes into either TX

state or RX state. If there is no Data phase, endpoint 0 remains in IDLE state to accept

the next device request.

The actions that the CPU needs to take at the different phases of the possible

transfers (e.g., loading the FIFO, setting TXPKTRDY) are indicated in below figure.

NOTE: The controller changes the FIFO direction, depending on the direction of the

data phase independently of the CPU.

Idle

Tx State Rx State

Seq #1 Seq #2

Seq #3

Figure 4.2 CPU Actions at USB Transfer Phases

27

Figure 4.3 USB Sequence of Transfer

4.5.5. Endpoint 0 Service Routine. An Endpoint 0 interrupt is generated

when:

 The controller sets the RXPKTRDY bit of PERI_CSR0 (bit 0) after a valid token

has been received and data has been written to the FIFO.

 The controller clears the TXPKTRDY bit of PERI_CSR0 (bit 1) after the packet of

data in the FIFO has been successfully transmitted to the host.

 The controller sets the SENTSTALL bit of PERI_CSR0 (bit 2) after a control

transaction is ended due to a protocol violation.

 The controller sets the SETUPEND bit of PERI_CSR0 (bit 4) because a control

transfer has ended before DATAEND (bit 3 of PERI_CSR0) is set.

28

Whenever the endpoint 0 service routine is entered, the software must first

check to see if the current control transfer has been ended due to either a STALL

condition or a premature end of control transfer. If the control transfer ends due to a

STALL condition, the SENTSTALL bit would be set. If the control transfer ends due to

a premature end of control transfer, the SETUPEND bit would be set. In either case, the

software should abort processing the current control transfer and set the state to IDLE.

Once the software has determined that the interrupt was not generated by an

illegal bus state, the next action taken depends on the endpoint state. Refer below figure

for flow of this process.

If endpoint 0 is in IDLE state, the only valid reason an interrupt can be

generated is as a result of the controller receiving data from the bus. The service routine

must check for this by testing the RXPKTRDY bit of PERI_CSR0 (bit 0). If this bit is

set, then the controller has received a SETUP packet. This must be unloaded from the

FIFO and decoded to determine the action the controller must take. Depending on the

command contained within the SETUP packet, endpoint 0 will enter one of three states:

 If the command is a single packet transaction (SET_ADDRESS, SET_INTERFACE

etc.) without any data phase, the endpoint will remain in IDLE state.

 If the command has an OUT data phase (SET_DESCRIPTOR etc.), the endpoint

will enter RX state.

 If the command has an IN data phase (GET_DESCRIPTOR etc.), the endpoint will

enter TX state.

If the endpoint 0 is in TX state, the interrupt indicates that the core has received

an IN token and data from the FIFO has been sent. The software must respond to this

either by placing more data in the FIFO if the host is still expecting more data or by

setting the DATAEND bit to indicate that the data phase is complete. Once the data

29

phase of the transaction has been completed, endpoint 0 should be returned to IDLE

state to await the next control transaction.

NOTE: All command transactions include a field that indicates the amount of data the

host expects to receive or is going to send.

If the endpoint is in RX state, the interrupt indicates that a data packet has been

received. The software must respond by unloading the received data from the FIFO.

The software must then determine whether it has received all of the expected data. If it

has, the software should set the DATAEND bit and return endpoint 0 to IDLE state. If

more data is expected, the firmware should set the SERV_RXPKTRDY bit of

PERI_CSR0 (bit 6) to indicate that it has read the data in the FIFO and leave the

endpoint in RX state.

Figure 4.4 USB Service Endpoint 0 Flow Chart

30

4.5.6. IDLE Mode. IDLE mode is the mode the endpoint 0 control

must select at power-on or reset and is the mode to which the endpoint 0 control should

return when the RX and TX modes are terminated. It is also the mode in which the

SETUP phase of control transfer is handled (as outlined in below figure).

Figure 4.5 USB IDLE Mode Flow Chart

4.5.7. TX Mode. When the endpoint is in TX state all arriving IN

tokens need to be treated as part of a data phase until the required amount of data has

been sent to the host. If either a SETUP or an OUT token is received while the endpoint

is in the TX state, this will cause a SetupEnd condition to occur as the core expects only

IN tokens (See below figure).

31

Three events can cause TX mode to be terminated before the expected amount

of data has been sent:

 The host sends an invalid token causing a SETUPEND condition (bit 4 of

PERI_CSR0 set).

 The software sends a packet containing less than the maximum packet size for

endpoint 0.

 The software sends an empty data packet.

Until the transaction is terminated, the software simply needs to load the FIFO

when it receives an interrupt that indicates a packet has been sent from the FIFO. (An

interrupt is generated when TXPKTRDY is cleared.)

When the software forces the termination of a transfer (by sending a short or

empty data packet), it should set the DATAEND bit of PERI_CSR0 (bit 3) to indicate to

the core that the data phase is complete and that the core should next receive an

acknowledge packet.

Figure 4.6 USB TX Mode Flow Chart

32

4.5.8. RX Mode. In RX mode, all arriving data should be treated as

part of a data phase until the expected amount of data has been received. If either a

SETUP or an IN token is received while the endpoint is in RX state, a SetupEnd

condition will occur as the controller expects only OUT tokens.

Three events can cause RX mode to be terminated before the expected amount

of data has been received as shown in below figure:

The host sends an invalid token causing a SETUPEND condition (setting bit 4

of PERI_CSR0). The host sends a packet which contains less than the maximum packet

size for endpoint 0.

The host sends an empty data packet. Until the transaction is terminated, the

software unloads the FIFO when it receives an interrupt that indicates new data has

arrived (setting RXPKTRDY bit of PERI_CSR0) and to clear RXPKTRDY by setting

the SERV_RXPKTRDY bit of PERI_CSR0 (bit 6).

When the software detects the termination of a transfer (by receiving either the

expected amount of data or an empty data packet), it should set the DATAEND bit (bit

3 of PERI_CSR0) to indicate to the controller that the data phase is complete and that

the core should receive an acknowledge packet next.

33

Figure 4.7 USB RX Mode Flow Chart

4.5.9. Error Handling. A control transfer may be aborted due to a

protocol error on the USB, the host prematurely ending the transfer, or if the software

wishes to abort the transfer (e.g., because it cannot process the command).

The controller automatically detects protocol errors and sends a STALL packet

to the host under the following conditions:

 The host sends more data during the OUT Data phase of a write request than was

specified in the command. This condition is detected when the host sends an OUT

token after the DATAEND bit (bit 3 of PERI_CSR0) has been set.

 The host requests more data during the IN Data phase of a read request than was

specified in the command. This condition is detected when the host sends an IN

token after the DATAEND bit in the PERI_CSR0 register has been set.

 The host sends more than Max Packet Size data bytes in an OUT data packet.

34

 The host sends a non-zero length DATA1 packet during the STATUS phase of a

read request.

 When the controller has sent the STALL packet, it sets the SENTSTALL bit (bit 2

of PERI_CSR0) and generates an interrupt. When the software receives an endpoint

0 interrupt with the SENTSTALL bit set, it should abort the current transfer, clear

the SENTSTALL bit, and return to the IDLE state.

 If the host prematurely ends a transfer by entering the STATUS phase before all the

data for the request has been transferred, or by sending a new SETUP packet before

completing the current transfer, then the SETUPEND bit (bit 4 of PERI_CSR0) will

be set and an endpoint 0 interrupt generated. When the software receives an

endpoint 0 interrupt with the SETUPEND bit set, it should abort the current transfer,

set the SERV_SETUPEND bit (bit 7 of PERI_CSR0), and return to the IDLE state.

If the RXPKTRDY bit (bit 0 of PERI_CSR0) is set this indicates that the host has

sent another SETUP packet and the software should then process this command.

 If the software wants to abort the current transfer, because it cannot process the

command or has some other internal error, then it should set the SENDSTALL bit

(bit 5 of PERI_CSR0). The controller will then send a STALL packet to the host, set

the SENTSTALL bit (bit 2 of PERI_CSR0) and generate an endpoint 0 interrupt.

Note: FSI USB implementation currently does not support Bulk Transactions,

Interrupt Transactions, Isochronous Transactions

35

5. ETHERNET

5.1. EMAC

The EMAC module
[10]

 (in figure below) interfaces to the outside world through

the Media Independent Interface (MII) and/or Reduced Media Independent Interface

(RMII). The interface between the EMAC module and the system core is provided

through the EMAC control module.

Figure 5.1 EMAC Module Block Diagram

5.1.1. Purpose of the Peripheral. The EMAC module is used to move data

between the device and another host connected to the same network, in compliance with

the Ethernet protocol.

36

5.1.2. Features. The EMAC/MDIO has the following features:

 Synchronous 10/100 Mbps operation.

 Standard Media Independent Interface (MII) and/or Reduced Media Independent

Interface (RMII) to physical layer device (PHY).

 EMAC acts as DMA master to either internal or external device memory space.

 Eight receive channels with VLAN tag discrimination for receive quality-of-service

(QOS) support.

 Eight transmit channels with round-robin or fixed priority for transmit quality-of-

service (QOS) support.

 Ether-Stats and 802.3-Stats statistics gathering.

 Transmit CRC generation selectable on a per channel basis.

 Broadcast frames selection for reception on a single channel.

 Multicast frames selection for reception on a single channel.

 Promiscuous receive mode frames selection for reception on a single channel (all

frames, all good frames, short frames, error frames).

 Hardware flow control.

 8k-byte local EMAC descriptor memory that allows the peripheral to operate on

descriptors without affecting the CPU. The descriptor memory holds enough

information to transfer up to 512 Ethernet packets without CPU intervention. (This

memory is also known as CPPI RAM.)

 Programmable interrupt logic permits the software driver to restrict the generation

of back-to-back interrupts, which allows more work to be performed in a single call

to the interrupt service routine.

37

Figure 5.2 EMAC and MDIO Block Diagram

Above figure shows the three main functional modules of the EMAC/MDIO

peripheral: EMAC control module, EMAC module, MDIO module

The EMAC control module is the main interface between the device core

processor to the EMAC and MDIO modules. The EMAC control module controls

device interrupts and incorporates an 8k-byte internal RAM to hold EMAC buffer

descriptors (also known as CPPI RAM).

The MDIO module implements the 802.3 serial management interface to

interrogate and control up to 32 Ethernet PHYs connected to the device by using a

shared two-wire bus. Host software uses the MDIO module to configure the auto-

negotiation parameters of each PHY attached to the EMAC, retrieve the negotiation

results, and configure required parameters in the EMAC module for correct operation.

The module is designed to allow almost transparent operation of the MDIO interface,

with very little maintenance from the core processor.

38

The EMAC module provides an efficient interface between the processor and

the network. The EMAC on this device supports 10Base-T (10 Mbits/sec) and

100BaseTX (100 Mbits/sec), half-duplex and full-duplex mode, and hardware flow

control and quality-of-service (QOS) support.

 The DMA bus connection from the EMAC control module allows the EMAC

module to read and write both internal and external memory through the DMA

memory transfer controller.

 The EMAC control, EMAC, and MDIO modules all have control registers. These

registers are memory-mapped into device memory space via the device

configuration bus. Along with these registers, the control module’s internal CPPI

RAM is mapped into this same range.

 The EMAC and MDIO interrupts are combined into four interrupt signals within the

control module. Three configurable interrupt cores within the control module

receive all four interrupt signals from the combiner and submit interrupt requests to

the CPU.

5.1.3. Memory Map. The EMAC peripheral includes internal memory

that is used to hold buffer descriptions of the Ethernet packets to be received and

transmitted. This internal RAM is 2K × 32 bits in size. Data can be written to and read

from the EMAC internal memory by either the EMAC or the CPU. It is used to store

buffer descriptors that are 4-words (16-bytes) deep. This 8K local memory holds

enough information to transfer up to 512 Ethernet packets without CPU intervention.

This EMAC RAM is also referred to as the CPPI buffer descriptor memory because it

complies with the Communications Port Programming Interface (CPPI) v3.0 standard.

The packet buffer descriptors can also be placed in other on- and off-chip

memories such as L2 and EMIF. There are some tradeoffs in terms of cache

performance and throughput when descriptors are placed in the system memory, versus

when they are placed in the EMAC’s internal memory. In general, the EMAC

throughput is better when the descriptors are placed in the local EMAC CPPI RAM.

39

5.1.4. Media Independent Interface (MII) Connections.

Figure 5.3 Ethernet Configuration—MII Connection

Note: Reduced Media Independent Interface (RMII) Connections is not

required if MII is supported

5.1.5. Ethernet Frame Format.

Figure 5.4 Frame Format for Ethernet

40

5.1.6. Packet Buffer Descriptors. The buffer descriptor is a central

part of the EMAC module and is how the application software describes Ethernet

packets to be sent and empty buffers to be filled with incoming packet data. The basic

descriptor format is shown in figure below

Figure 5.5 Basic Ethernet Descriptor Format

5.1.7. Transmit and Receive Descriptor Queues. The lists used by the

EMAC are maintained by the application software through the use of the head

descriptor pointer registers (HDP). Since the EMAC supports eight channels for

transmit and receive, there are eight head descriptor pointer registers for both transmit

and receive. They are:

 TXnHDP - Transmit Channel n DMA Head Descriptor Pointer Register

 RXnHDP - Receive Channel n DMA Head Descriptor Pointer Register

After an EMAC reset and before enabling the EMAC for send and receive, all

16 head descriptor pointer registers must be initialized to 0.

5.1.8. Transmit and Receive EMAC Interrupts. The EMAC synchronizes

descriptor list processing through the use of interrupts to the software application. The

interrupts are controlled by the application using the interrupt masks, global interrupt

enable, and the completion pointer register (CP). The CP is also called the interrupt

acknowledge register.

41

5.2. MDIO MODULE

The MDIO module is used to manage up to 32 physical layer (PHY) devices

connected to the Ethernet Media Access Controller (EMAC). The device supports a

single PHY being connected to the EMAC at any given time. The MDIO module is

designed to allow almost transparent operation of the MDIO interface with little

maintenance from the CPU.

The MDIO module continuously polls 32 MDIO addresses in order to

enumerate all PHY devices in the system. Once a PHY device has been detected, the

MDIO module reads the MDIO PHY link status register (LINK) to monitor the PHY

link state. Link change events are stored in the MDIO module, which can interrupt the

CPU. This storing of the events allows the CPU to poll the link status of the PHY

device without continuously performing MDIO module accesses. However, when the

CPU must access the MDIO module for configuration and negotiation, the MDIO

module performs the MDIO read or write operation independent of the CPU. This

independent operation allows the processor to poll for completion or interrupt the CPU

once the operation has completed.

Figure 5.6 MDIO Module Block Diagram

42

5.2.1. Initializing the MDIO Module. The following steps are

performed by the application software or device driver to initialize the MDIO device:

1. Configure the PREAMBLE and CLKDIV bits in the MDIO control register

(CONTROL).

2. Enable the MDIO module by setting the ENABLE bit in CONTROL.

3. The MDIO PHY alive status register (ALIVE) can be read in polling fashion until a

PHY connected to the system responded, and the MDIO PHY link status register

(LINK) can determine whether this PHY already has a link.

4. Setup the appropriate PHY addresses in the MDIO user PHY select register

(USERPHYSELn), and set the LINKINTENB bit to enable a link change event

interrupt if desirable.

5. If an interrupt on general MDIO register access is desired, set the corresponding bit

in the MDIO user command complete interrupt mask set register

(USERINTMASKSET) to use the MDIO user access register (USERACCESSn).

Since only one PHY is used in this device, the application software can use one

USERACCESSn to trigger a completion interrupt; the other USERACCESSn is not

setup.

43

6. RESULTS

6.1. SERIAL PORT / COM

6.1.1. User Interface. A simple COM interface using MATLAB

shows UI with four menu options

Figure 6.1 Sample UI Menu

6.1.2. Data Transfer. When Laser board is not connected, FSI detects the

disconnection and transmits default zero data as shown in below figure.

Figure 6.2 COM data to PC without Laser board connected

44

Figure 6.3 COM data to PC when Laser board connected

Whereas, above figure shows the measured laser temperature, Photo diode 1 and

Photo diode 2 sensor data. The data is multiplied by 1000 and floating point is truncated

for speeding up transfer.

The two valleys correspond to shining of white light to cleaved open end of

plain fiber optic cable connected to photo diode 1. IIR is applied to remove any noise

before the data is sent, however similar filters on the PC end can be applied depending

on the noise filter tolerance level of the end application.

6.2. UNIVERSAL SERIAL BUS (USB)

6.2.1. USB Driver. Windows side DDK build for USB end driver

is verified by a small test program that can identify this specific connected device

(based on manufacturer id).

45

Figure 6.4 PC side USB DLL Test

6.2.2. Data Transfer. FSI USB protocol has four different channels through

which data can be exchanged. In this implementation we use first channel dedicatedly

for parameter download and updates. Second channel is used for high speed (16B, 64B

and 512 B) data transfer per burst.

As we discussed in section 3.2 Overview of Features, this implementation can

support all control, bulk, interrupt, and isochronous. However we use interrupt type of

transfer only. This decision is based on the type of data we need to transfer. For bulkier

data transfers the implementation can be tweaked to confirm bulk or isochronous

modes. Tests recorded an average transfer rate of 3.8MBps @ 512 bytes buffer.

46

Figure 6.5 USB Data Transactions

6.3. ETHERNET

Some issues were discovered in Ethernet MDIO and debugging is in progress.

The test results for Ethernet will be included in future work.

6.4. WIRELESS

Wireless module is not yet tested and will be included in future work.

47

APPENDIX - CODE OVERVIEW

Table 6.1 Code layout for Flash Utility

File Name Description

\05_LaserController\burn\main.c (LOC : 102)

Main()
Initialize 300MHz PLL, Initialize NOR Flash, Burn

DSP_Firmware.bin onto the flash

\05_LaserController\burn \evmomapl138_nor.c (LOC : 149)

WriteFlash()/ReadFlash() Writes/Reads to/from NOR flash

Table 6.2 Code layout for User Interface (COM)

File Name Description

\05_LaserController\com\com_4.m (LOC : 517)

com_4()
Initialize COM3, with even parity and prepare UI

com_4.fig

\05_LaserController\com\UARTTx.m (LOC : 9) & SendCommand.m (LOC : 62)

UARTTx /

SendCommand
Transmit data over COM3 to FSI

\05_LaserController\com\UARTRx.m (LOC : 135)

UARTRx Receive data over COM3 to FSI

\05_LaserController\com\Blink.m (LOC : 10)

Blink Blink image to show activity

48

Table 6.3 Code layout for DSP Program

File Name Description

\05_LaserController\dsp\init.c (LOC : 183)

OUT_INIT initialize external communication buffer

ADC_DAC_INIT,

ADC_DAC_CONFIG
Initialize / Config ADC/DAC Chip

FLASH_INIT Initialize Flash memory

FPGA_INT_INIT Initialize FPGA interrupt

\05_LaserController\dsp\func_pid.c (LOC : 107)

ControlLaserTemp Control laser temperature

CLT_GetCurrTemp Get current laser temperature

CLT_ControlLaserPow

er
Get current laser power

CLT_DAC2TECContro

l
Generate dac to TEC control

\05_LaserController\dsp\func_out.c (LOC : 163)

UARTRxData

HandleUARTEndPoint

UARTTxData

\05_LaserController\dsp\func_flash.c (LOC : 181)

flash_store Store downloaded parameter to flash

NOR_read,

NOR_write, writeFlash,

readFlash,

NOR_sector_erase,

NOR_block_erase,

NOR_chip_erase,

NOR_master_erase

Handle NOR flash for erase, read, write

\05_LaserController\dsp\main.c (LOC : 153)

49

TEST_mii_loopback Test MII loopback mode

main()

Initialize Flash, NOR, COM, USB, Ethernet and Wireless

modules, Deamonize algorithms to control, collect and

serve request over COM, USB, Ethernet and Wireless

\05_LaserController\dsp\func_adc.c (LOC : 296)

gsLaser[] One element each for connected active LASER board

CollectSensorValues() process data from photo diode

IIR_filter() lowpass filter algothrm

update_laser_driver() update current or power to board

RefreshLaserPower() refresh laser power when it is current driven

\05_LaserController\dsp\tms320c6748_usb_enum_desc.c (LOC : 186)

gDevDesc, gConfDesc,

gEPDesc, gLangDesc
Default values of end point descriptors

\05_LaserController\dsp\tms320c6748_usb_enum.c (LOC : 309)

InitializeOTGUSB Initialize OTG USB, IdleMode,

EnumerateUSB Enumerate USB capabilities

IdleMode Handle Idle mode state machine

USBSendDescriptors Transmit descriptors when doing handshake

USBTxData Transmit USB data

SetupEndPointFIFOs Establish FIFOs for Tx/Rx

\05_LaserController\dsp\tms320c6748_timer.c (LOC : 81)

Timer_int
Configure TIMER0 for interrupts and TIMER1 for

calculating delays

Timer_delay Cause delay

\05_LaserController\dsp\tms320c6748_psc.c (LOC : 181)

EVMOMAPL138_pinm

uxConfig
configures the desired pin mux register

EVMOMAPL138_lpscT

ransition
Cause transition

PSC0_LPSC_enable, Manage LPSC

50

PSC1_LPSC_enable,

PSC1_LPSC_force,

PSC_All_On_Full_EV

M,

PSC1_LPSC_SyncReset

\05_LaserController\dsp\tms320c6748_led.c (LOC : 193)

LED_init, LED_isOn,

LED_turnOn,

LED_turnOff,

LED_toggle,

convertLedToI2CGpio

Manage LED

\05_LaserController\dsp\tms320c6748_isr.c (LOC : 146)

Interrupt_disable_int,

Interrupt_int,

TIMER0_IR

Enable / Disable interrupts

OUT_int Prepare the output buffer for COM

ADC_10k_int ADC timer interrupt

\05_LaserController\dsp\tms320c6748_usb_proc.c (LOC : 109)

HandleUSBEndPoints Respond to USB interrupt requests

\05_LaserController\dsp\tms320c6748_emac.c (LOC : 769)

initMdioPhy Initialize MDIO PHY interface

isLinkActive Check if link is active

phyRegRead,

phyRegWrite
Read / Write to PHY register

EMAC_init Initialize the EMAC interface

EMAC_rxPacket Entry point for receiving packet over EMAC

EMAC_txPacket Entry point for sending packet over EMAC

EMAC_phyPowerOn,

EMAC_phyPowerDown
Power on / off PHY

EMAC_phyEnterLoopb Enable / Disable loopback for testing purposes

51

ack,

EMAC_phyExitLoopba

ck

\05_LaserController\dsp\msg_data_proc.c (LOC : 154)

RefreshMFIFO,

RefreshDFIFO,

RefreshRxBuffer

Refresh data structures to sync values from external

interfaces

USBRxData Receive USB data

USBFIFOInit,

USBRxBufferInit
Initialize FIFO for Rx/Tx USB data

\05_LaserController\DSP\tms320c6748_emif_norflash.c (LOC : 56)

EMIFA_NAND_PINM

UX /

EMIFA_NOR_PINMU

X

Initialize the NOR and NAND flashes

\05_LaserController\DSP\tms320c6748_gpio.c (LOC : 105)

GPIO_INT,

GPIO_SET_IR_INT,

GPIO_SET_TRIG

Initialize the GPIO

52

Table 6.4 Code layout for USB WDK Driver

File Name Description

\USB\dll\kfifo.c (LOC: 343) - A simple kernel FIFO implementation

\USB\dll\MSTPTLDLL.cpp (LOC: 554) - Defines the entry point for the DLL

application

init_dev Initilaize the DEV handler

valid_dev Validate the DEV handler

MST_USBDev_Open Open driver handler

MST_USBDev_Close Close driver handler

MST_WriteP1 Write to Pipe1

MST_ReadP1 Read from Pipe1

MST_WriteP2 Write to Pipe2

MST_ReadP2 Read from Pipe2

MST_WriteP3 Write to Pipe3

MST_ReadP3 Read from Pipe3

MST_WriteP4 Write to Pipe4

MST_ReadP4 Read from Pipe4

\USB\driver\MSTPTLUSBDevice.cpp (LOC: 2754) - functions to handle requests

(IRPs) from the system

MSTPTLUSBDevice This is the constructor for the class

~MSTPTLUSBDevice This is the destructor for the class

DefaultPnp

This routine just passes the IRP through to the lower

device

OnStartDevice Initialize the hardware device.

OnStopDevice the stop device IRP

OnRemoveDevice deleting the device object

OnQueryCapabilities The Bus driver fills in the device capabilities structure

OnQueryCapabilitiesCo

mplete

This method is called when the IRP is completed to alter

the device capabilities reported by the bus driver

TestBusInterface This routine uses the USB direct client interface to query

53

information

OnDevicePowerUp

The bus driver has completed the IRP and this driver can

now access the hardware device

OnDeviceSleep

The hardware has yet to be powered down and this driver

can now access the hardware device

Create Dispatch routine for IRP_MJ_CREATE requests

Close Dispatch routine for IRP_MJ_CLOSE requests

Read Read requests

Write Write requests

DeviceControl Device Control

\USB\driver\MSTPTLUSBDriver.cpp (LOC: 162)

DriverEntry This routine is called when the driver is loaded

AddDevice

This routine is called when the system detects a device for

which this driver is responsible

Unload This routine is called when the driver is unloaded

\USB\driver\MSTPTLUSBQueue.cpp (LOC : 313) - This class implements a driver

managed queue that serializes IRP

StartIo system queuing

MSTPTLUSB.cat / MSTPTLUSB.inf (LOC : 149) - Install information file for

MSTPTLUSB Driver (cat is for signed drivers)

\USB\dtest\MSTPTLUSBDTest.cpp (LOC : 678) - Methods to input / output text in

the window and open / call / close correct instance of driver

54

BIBLIOGRAPHY

[1] E. A. Mendoza, J. Prohaska, C. Kempen, S. Sun And Y. Esterkin, ―Fully

Integrated Miniature Multi-Point Fiber Bragg Grating Sensor Interrogator (FBG-

TransceiverTM) System for Applications where Size, Weight, and Power are

Critical for Operation,‖ 6th European Workshop on Structural Health Monitoring

- Poster 7

[2] Jens-Thomas Wernicke, Rain Byars, Jody Shadden, Christiane Schmoeller,

―Production Integration Of Fiber Optical Sensors Embedded In New Rotor Blades

For Real Time Loads Feedback,‖ European Wind Energy Conference 2007 May

9, 2007, Milan, Italy.

[3] Amardeep Kaur, Sriram Nagarajan, Sudharshan Anandan, Lei Yuan, K.

Chandrashekhara, et al. " Embeddable fiber optic strain sensor for structural

monitoring," Proc. SPIE 8692, Sensors and Smart Structures Technologies for

Civil, Mechanical, and Aerospace Systems 2013, 86921W (April 19, 2013);

doi:10.1117/12.2009462; http://dx.doi.org/10.1117/12.2009462.

[4] Van Hoe B, Lee G, Bosman E, Missinne J, Kalathimekkad S et al., ―Ultra small

integrated optical fiber sensing system,‖ Sensors (Basel). 2012;12(9):12052-69.

doi: 10.3390/s120912052. Epub 2012 Sep 3

[5] Alan D. Kersey, ―Interrogation and multiplexing techniques for fiber Bragg

grating strain sensors,‖ Proc. SPIE 2071, Distributed and Multiplexed Fiber Optic

Sensors III, 30 (December 30, 1993); doi:10.1117/12.165923.

[6] Hongo, A., Kojima, S. and Komatsuzaki, S. (2005), ―Applications of fiber Bragg

grating sensors and high-speed interrogation techniques,‖ Struct. Control Health

Monit., 12: 269–282. doi: 10.1002/stc.70

[7] Bookham Technology, Data sheet for DRP2EX (43T2REV 1 Feb 2003)

[8] Lucent Technologies Microelectronics group, Data Sheet for D2570H (February

2000).

[9] Texas Instruments ―TMS320DM644x DMSoC Universal Serial Bus (USB)

Controller,‖ (Literature Number: SPRUE35G, June 2010).

[10] Texas Instruments ―TMS320C674x/OMAP-L1x Processor Ethernet Media

Access Controller (EMAC)/ Management Data Input/Output (MDIO) Module‖

(Literature Number: SPRUFL5A May 2010).

http://www.ncbi.nlm.nih.gov/pubmed?term=Bosman%20E%5BAuthor%5D&cauthor=true&cauthor_uid=23112699
http://www.ncbi.nlm.nih.gov/pubmed?term=Missinne%20J%5BAuthor%5D&cauthor=true&cauthor_uid=23112699
http://www.ncbi.nlm.nih.gov/pubmed?term=Kalathimekkad%20S%5BAuthor%5D&cauthor=true&cauthor_uid=23112699

55

[11] Texas Instruments ―TMS320C6748 DSP Development Kit,‖ (Literature Number:

SPRT633 2012).

[12] Xilinx Virtex-5 FPGA Configuration User Guide,‖ (UG191 (v3.11) October 19,

2012)

[13] Rodrigo A. Silva-Muñoz, Roberto A. Lopez-Anido, ―Structural health monitoring

of marine composite structural joints using embedded fiber Bragg grating strain

sensors,‖ Composite Structures 89 (2009) 224–234

[14] Hong-Nan Li, Dong-Sheng Li, Gang-Bing Song, Recent applications of fiber optic

sensors to health monitoring in civil engineering, Engineering Structures,‖

Volume 26, Issue 11, September 2004, Pages 1647-1657, ISSN 0141-0296,

http://dx.doi.org/10.1016/j.engstruct.2004.05.018

56

VITA

Tameem Ahmed Khan was born in Mysore, Karnataka, India on February 17,

1982. He completed his Bachelor of Engineering in Computer Science from

Visveswariah Technological University, Belgaum in July 2003. After his undergrad,

Tameem worked as a Software Engineer for 7 years at Wipro Technologies, India

(deputed at Toshiba, Japan for 3 years), and then as Research Engineer for 1 year at

University of Missouri, Columbia, MO.

Because of his interests in sensors and embedded systems, Tameem started his

Master of Science in Computer Engineering on a distance program in January 2012

later in June he moved as a full time student at Missouri University of Science and

Technology, Rolla. He worked as a research assistant on sensor interfacing projects at

Photonics Technology Lab under Dr. Hai Xiao. He received his masters in August,

2013.

57

