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ABSTRACT 

 

The experiments and research performed on Autonomous Vehicles and 

Navigation Systems have gained increasing interest over the last few years. Various 

intelligence algorithms are being tested to generate the optimum paths for the 

Autonomous Navigation Systems and to provide the necessary intelligence to those 

systems depending upon the application. 

Research and experiments on these Autonomous Navigation Schemes and 

Algorithms need an efficient test-bed for objective performance analysis. These 

algorithms often require sensor inputs from the systems such as the speed and steering 

sensors to apply feedback control action. An efficient test-bed provides status of all 

sensors and records of all previous sensor values is very desirable. 

This work involves developing for such a test-bed to support research on 

Autonomous Navigation schemes and Algorithms involved in these applications. 

Different approaches are analyzed and an optimum approach to design test-bed is 

implemented. 
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1. INTRODUCTION 

 

Autonomous vehicle algorithms often depend upon the current and the past states 

of the vehicle to decide the next control step. Thus, sensor information from data 

acquisition hardware and software within a specific guaranteed time becomes imperative 

in the implementation of these Autonomous Vehicle Control Algorithms. Some of the 

previous projects on Autonomous vehicle Navigation schemes are given in [4-10].  

Some of the challenges faced in the design of Autonomous Navigating Vehicles 

include developing an efficient data acquisition system to get instant sensor and actuator 

access without missing any sensor update or actuator control step and making the 

computing system performance predictable.  

This work identifies these challenges and presents a Real Time approach in 

developing a test-bed for Autonomous Vehicles Algorithms testing using Real Time 

Application Interface (RTAI), [14].  

The test-bed consists of a 1/16 scaled trailer truck, a single board computer, data 

acquisition hardware, and a real time data acquisition and control software library. The 

real time system implementation makes possible the prediction of the system response in 

terms of worst-case latency period and guarantees that any real time execution event is 

never skipped. 

The user of the test-bed implements the control algorithm for the autonomous 

vehicle control application using the test-bed hardware model presented in [10] and 

develops the application in real time using the application programming interface (API) 

provided by the test-bed software library.  

In recent years, extensive research and development has been conducted on the 

design real time systems and different approaches. A detailed analysis of various 

approaches for designing real time systems was conducted and an approach was 

implemented considering the system requirements, budget considerations and technical 

support available. 
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2. TEST-BED DESIGN METHODOLOGY 

 

The initial challenge is to decide on the necessary variables or state to model and 

control the test-bed. Providing a software library, that contains all the user-required 

functions in form of an “Application Programming Interface (API)” callable by the user 

is the most desirable solution. Providing a software library would make possible listing of 

all the functions with self explanatory names for obtaining the sensor and actuator access 

and making them available to the user by simply calling the function names.  

The aim would be to facilitate building up a discrete time control system wherein 

the state variables in form of sensor updates would be provided at sampling instants of 

one millisecond and the actuator control functions would be provided by the software 

library. 

The next challenge is to decide the sensor reading update strategies. Since there 

are various methods that could be implemented, they were analyzed for efficiency.  

One approach is to develop functions to get sensor update. In the approach the 

user can access any of sensor update in the control algorithm by calling the respective 

function. However, this approach would pose many design problems. The main problem 

would be getting instant access to any state variable. Calling of a function would 

consume some amount of CPU cycles in getting the sensor update. Problems would also 

be faced because of scheduling limitations of the operating system, in this case, the non-

preemptive embedded Linux kernel. This approach will not be able to guarantee the 

timing requirements of the control process and hence would present a non-deterministic 

system. In this case, there is no guarantee that the state variable accessed is valid for that 

instant. 

The limitations of the first approach make possible identification of the system 

requirements for this project. System requirements are in the form of implementing a 

deterministic operating system of the test-bed single board computer that can support 

high frequency applications. In addition, the system should be able to support concurrent 

running tasks at a high frequency, thus allowing scope for designing a high-speed data 

acquisition and control system. A software design method that would guarantee instant 
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real time state variable access was required. To satisfy such requirement, an approach 

based on writing sensor value update functions in form of higher priority real time 

concurrent threads and developing the application using Real Time Operating System 

(RTOS) is to be provided. The threads are to update the sensor values in real time 

periodically at one millisecond sampling rate. The threads are update the sensor values 

and then would sleep for one millisecond before making the next update. The CPU would 

be available for other computations during this interval.  

The threads would preempt the existing task and use CPU during time of their 

updates. Thus, the sensor updates are take place and be available instantly under any load 

condition on CPU. At any point of time, previous five updates of the sensor readings 

should always be available and be accessed by simple function calls. 

  To achieve the desired goals, a real time kernel “Real Time Application Interface 

(RTAI)” was embedded into the Test-bed CPU. As a result, the sensor updates are 

guaranteed not to be missed under any load. The application is developed using C and 

POSIX threads implementation and makes maximum utilization of the RTAI API. The 

test-bed application contains functions for accessing sensor values at any instant and 

accessing sensor values of previous five instants.  

In this work, the sensor values are updated to arrays, that hold up to five previous 

sensor values, and functions were developed to access any of the array elements. 

Functions for actuator control such as starting, stopping, and changing the speed of the 

drive motor and steering motor have been developed. Emergency functions to stop the 

vehicle have been developed along with miscellaneous functions to change the PID filter 

parameters of the motor controller card for the control algorithm optimization. 

The application is compiled and developed as a static library. The user only needs 

to develop the specific control algorithm using the API provided by the library. 

An autonomous vehicle system can be modelled as a discrete-time control-system 

wherein the real time sensor values generate the state variables and the actuator values 

become outputs of the control algorithm. The test-bed hardware and software are 

designed be used to implement an autonomous vehicle navigation system as showned in 

Figure 2.1.  
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Figure 2.1: System architecture 
 

 Numerous intelligent control methods such as Neural Networks ([4], [6]-[8]) or 

other methods as in [1], [11], can be implemented easily using the developed software 

library. 
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3. TEST-BED HARDWARE ARCHITECTURE 

 

3.1. THE TEST-BED CPU  

The test-bed consists of an Arcom Control system PC104 based single board 

computer (SBC) embedded with a Real Time Application Interface (RTAI) based real 

time Linux kernel. The details of the single board computer configuration is detailed in 

Table 3.1. 

 

Table 3.1: Test- bed single board computer configuration 

 

 
Component  

 

 
Configuration 

 
Processor  

 
AMD Geode TM GX533@1.1W 

400MHz clock 
low-power 32-bit processor 

 
 

Primary Memory  
 

512MB un-buffered 64-bit 
2.5V DDR SDRAM 

single 200-pin SODIMM 
 

 
Secondary Memory  

 
32MB Spansion Mirror Bit Flash 

Data light FlashFX® 
FlashFX® Pro Flash filing system 

 
 

Cache  
 

32K L1 write-back cache 
16K instruction 

16K data 
 

 
Operating System  

 
Real Time Linux kernel using RTAI 

 
 

 

 



   6

3.2. THE TEST-BED DATA ACQUISITION AND CONTROL HARDWARE 

Data acquisition and control are performed by the Arcom AIM104-Multi I/O [19] 

card and Mesa Electronics 4I27 Motor controller cards, [16]. The AIM104-Multi I/O and 

Mesa Electronics 4I27 Motor controller cards are PC104 based add on cards that are 

connected to the test-bed PC104 based single board computer. 

3.2.1 AIM104 Multi I/O Card. AIM104 Multi I/O is an 8-bit PC104 module 

providing 8 opto-isolated digital inputs, 2 analogue outputs (Voltage or Current Loop) for 

Digital to Analog conversion (DAC) operation and 16 single-ended or eight differential 

analogue inputs for Analog to Digital Conversion (ADC) operations, [19].  

The DAC has channel update time of 320 microseconds per channel, and ADC 

has channel update time of 500 microseconds per channel. 

3.2.1.1 ADC block. The ADC conversion takes place across the channels. The 

ADC card polls each channel every 500 microseconds. The SBC is pre-loaded with ADC 

driver software and the data across each channel is accessed as explained in [21]. 

 The standard analogue input range for the AIM104 Multi I/O is ±5V. Signals 

with greater range than this, such as ±10V, need to be buffered with a simple amplifier 

circuit. Figure 3.1 explains the input circuitry for the ADC operation in the ±10V range. 

 

 

 

Figure 3.1: ADC input circuitry for ±10V input 
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3.2.1.2 DAC operation. For the DAC operation, channel numbers are referenced 

using the corresponding bit numbers in the base address and the status of the digital 

inputs are read from the base address. Figure 3.2 shows the input configuration. 

The DAC conversion takes place across the channels. The DAC card polls each 

channel every 320 microseconds. The SBC is pre loaded with the DAC driver software 

and the data across each channel is accessed as explained in [21]. 

DAC data is written to DAC lower byte and the DAC higher byte registers in 

accordance with the I/O map. Bit numbers 4 to 7 of the higher byte designate the DAC 

channel number. A value of ‘0’ in this position writes the data to DAC channel 0.  

 

 

 

Figure 3.2:  Input configuration of DAC 
 

 3.2.2 4I27 Motor Controller Card. The 4I27 is a LM629 based 2-axis DC servo 

motor control system implemented on a stackable PC104 bus card [16]. The 4I27 can be 

used to operate in velocity mode as well as position mode and uses a digital PID filter to 

set control parameters for optimization. The 4I27 card provides ability to make changes 

to Velocity, Target position and control parameters during motion. 

The LM629 used on the 4I27 are high performance digital processors specifically 

designed for motion control. The LM629 are capable of executing a ramp-up, slew, and 
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ramp-down motion sequence. The LM629 execute these sequences without host 

processor intervention. The interface software for the 4I27 motor controller card included 

in the test-bed library, also includes functions to communicate and utilize the sequencing 

options provided by the 4I27 motor controller card. 

Host interrupts can be generated at end of motion, position breakpoints, index 

pulse, or in response to various error conditions. Interrupts are or'ed on the 4I27 card, so 

that only one system interrupt is used. The IRQ line used can be software selected from 

any of the 11 available AT bus interrupts. The test-bed library provides a function for the 

same operation. 4I27 uses a digital PID filter to set loop feedback parameters for stability 

and optimum performance. Velocity, target position and filter parameters may be 

changed during motion. In addition, the clock speed of the LM629 can be lowered to 

accommodate large motors that require lower PWM chopping frequencies.  

The test-bed library provides functions to change the PID filter parameters and 

also to change the velocity, target position and filter parameters. 

 Figure 3.3 shows the hardware architecture of LM629 processors. 

 

 

Figure 3.3:  LM629 hardware architecture 
 

∑ 

TRAJECTORY GENERATOR HOST INTERFACE 

PID FILTER 
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3.3. THE TEST-BED VEHICLE  

The test-bed vehicle is 1/16 scaled trailer truck. The truck is embedded with 

sensors and actuators, that are accessed and actuated, respectively, by the embedded 

software. The sensors and actuators are interfaced with the data acquisition and control 

cards.  

The trailer truck test-bed hardware has been modeled and the physical model is 

described comprehensively in [10] for the user to design a controller. In [10], the test-bed 

hardware model is represented based on physical system along with the model accuracy 

results. 

 For example, the angular velocity of the test-bed trailer cab in terms of steering 

angle δ is      

 

δδθ sincos** Vccdca =     (1) 

 

Where, dca is the distance between the drive tire and the steering tire, θc is the angular 

velocity and VC is the drive tire velocity. The steering angle and the drive tire velocity 

values are provided in real time by the test-bed software library sensor value threads. 

 The real time software provides the advantage of making theses sensor values 

always available in real time. The data acquisition software is in real time with the data 

acquisition threads having the highest priority. The real time implementation ensures that 

no corrupted or wrong sensor value is in use at any point by the users control algorithm. 

Equations governing the trailer truck test-bed system parameters are provided in 

[10]. The test-bed hardware model gives extensive information of the rules governing the 

relationship between truck movements and the demands placed on truck motor [10]. 

In [4] the test-bed hardware model has been successfully utilized to implement 

path planning control algorithm using neural network. Thus, the model facilitates the user 

to develop the control algorithm and the test-bed software library API facilitates 

implementing the control algorithm in software. A detailed documentation of the API is 

presented in Section 5. 
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Architecture for control of the autonomous vehicle using the test-bed software 

library API and the control algorithm itself  is presented in detail in Section 4.  

Figure 3.4 shows the picture of the test-bed vehicle whose model is presented in 

[10]. Figure 3.5 shows the test-bed vehicle dimensions. In the figure, the point C 

represents the drive tires and the point A represents the point of steering angle control 

tires. Points P and D are the pivot points on vehicle cab and the trailer respectively. The 

equations for the velocity and acceleration at these points are described and explained in 

[10]. 

 

 

 

Figure 3.4: Test-bed vehicle 
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Figure 3.5:  Test-bed truck dimensions 
 

 

3.4. THE TEST-BED SENSORS 

3.4.1 Accelerometer. The test-bed features a Dimension Engineering DE-

ACCM3D 3D analogue accelerometer [20]. The accelerometer measures acceleration 

with a minimum full-scale range of ±3 g. It can measure the static acceleration of gravity 

in tilt-sensing applications, as well as dynamic acceleration resulting from motion, shock, 

or vibration. It can enable Vehicle Acceleration logging and can be used as an important 

state variable in motion control system for the vehicle. The voltage outputs on the 

accelerometer correspond to acceleration being experienced in the X, Y and Z directions.  

The output is ratio metric, so the output sensitivity (in mV/g) will depend on the 

supply voltage. The accelerometer is powered by a 3.3 v onboard source resulting in 

range of 0v to 3.3 v. The accelerometer block diagram is given in Figure 3.6 and Figure 

3.7 shows the picture of the accelerometer. 

Xout, yout and zout are the voltage outputs of the accelerometerthat are calibrated 

as the accelerometer and slope measurements along x, y and z directions, respectively. 
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Figure 3.6: Functional block diagram of accelerometer 
 

 

 

 

 

 
Figure 3.7: Test-bed vehicle accelerometer 
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 3.4.1.1 Theory of operation. The accelerometer contains a micro machined 

sensor and signal conditioning circuitry to implement open-loop acceleration 

measurement architecture. The output signals are analog voltages that are proportional to 

acceleration. The accelerometer can measure the static acceleration of gravity in tilt 

sensing applications as well as dynamic acceleration resulting from motion, shock, or 

vibration.  

The accelerometer is made up of a polysilicon surface structure suspended over 

silicon wafer by means of polysilicon springs. A differential capacitor that consists of 

independent fixed plates and plates that are attached to the moving structure measures the 

deflection of the structure. 180° out-of-phase square waves are used to drive the fixed 

plates. Deflection occurs due to the acceleration that deflects the moving structure and 

creating an unbalance in the differential capacitor resulting in sensor output whose 

amplitude is proportional to acceleration. The magnitude and the direction of the 

acceleration are determined by phase sensitive demodulation techniques and are showed 

in Figure 3.8. 

 

 

 

Figure 3.8: Accelerometer magnitude and direction 
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3.4.1.2 Interfacing with onboard ADC. The accelerometer output is ratio metric, 

so the output sensitivity (in mV/g) will depend on the supply voltage. The accelerometer 

is powered by a 3.3 v onboard source. Hence, the output being ratio metric will vary 

between 0 v to 3.3 v.  

The ADC can measure a voltage range from 0v to +5v. However, connecting this 

voltage straight to A/D input generates low-resolution conversion. There are 4096 

possible digital values that the 12-bit ADC can produce, but connecting the accelerometer 

output directly only utilizes 1352 4096)*(-5))-(3.3/(5 =  of the possible 4096 values. 

Therefore, the solution is to scale the 0 to 3.3 v DC to 0 to 5v DC which is done using 

DC voltage scaling circuit as shown in Figure 3.9. 

The scaling circuit amplifies the input range from 0 to 3.3 v DC to 0 to 5v DC 

using LM358 operational amplifier. The designing and component selection of the circuit 

is elaborated in detail. 

 

 

 

Figure 3.9: DC voltage scaling circuit 

 

Vout 
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Initially, during the design of this signal conditioning circuit, the gain Av is 

determined as  

 

)/( geRangeInputVoltaageRangeOutputVoltabsAv =    (2) 

 

 

))/()(( VilVihVolVohabsAv −−=         (3) 

 

AV = DC voltage gain. 

Vih = High end of input voltage range. 

Vil = Low end of input voltage range. 

Voh = High end of output voltage range. 

Vol = Low end of output voltage range. 

In this case, Av= 3. 

R1 and R2 are selected in the circuit to yield the desired gain. The input resistance 

R1 is assumed 100kthat is the input impedance. The resistors R1 and R2 determine the 

DC gain Av as Av = R2/R1 and R2= 3*100 = 300K. 

In order to scale the DC voltage input range Vbias is found as follows: 

 

Vbias = ((Av* VIH) + VOL)/ (Av+1) 

Vbias = ((3* 3.33) + -5)/ (3+1) 

Vbias = 1.25 v. 

3.4.1.3 Calibrating the accelerometer output. The 12-bit ADC will output a 

decimal value in range of 0 to 4095 with 0 corresponding to 0v and 4095 corresponding 

to 3.3 v output of the accelerometer. Thus, the interpretation of any digital value say x 

obtained from ADC in terms of the accelerometer output voltage is given as follows: 

Accelerometer output voltage = (x*3.3)/4095 



   16

At 3.3V, the 0g point is approximately 1.66V. The Accelerometer output voltage 

Xout is represented as ‘x’. Thus, with respect to 0g point the voltage is given as y= x-

1.66.The sensitivity at 3.3 v supply for the accelerometer is 333mV/g. Therefore, the 

acceleration in x direction is given as (y/0.333) g. 

3.4.2 Trailer Cab Potentiometer. The test-bed consists of a potentiometer 

embedded into a socket in between the truck cab and trailer. The potentiometer is used to 

calibrate the trailer-cab angle whose measurements are critical to avoid jackknifing of the 

test-bed trailer truck. The potentiometer selected was a bourn 50KΩ precision 

potentiometer [22]. It provided accurate angle measurements. 

The potentiometer had mechanical angle range from 0 degrees to 340 degrees. 

Thus, the trailer cab angles are calibrated in range from -170 degrees to + 170 degrees. 

Figure 3.10 shows the mechanical angle of the potentiometer arrangement. 

 

 

 

   Figure 3.10: Potentiometer mechanical angles 
 

The mechanical angle of potentiometer is 340 degrees while traversing from Point 

3 to Point 1 in clockwise direction. Reference Point 2 is assumed 0 degrees where the 

trailer and cab are linear. Reference Point 3 is the point where the angle between trailer 

and cab is -170 degrees when cab movement is anticlockwise. Reference Point 1 is the 
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point where the angle between the trailer and the cab is +170 degrees when the cab 

movement is clockwise. The data acquisition software library always presents the trailer 

cab angle with respect to the 0-degree reference position. 

With +5 V DC supply voltage at reference point 3 the potentiometer output is 0v 

DC and at reference point 1 the potentiometer output is 5 V DC and at reference point 2 

the output is 2.5V DC. The 12-bit ADC will generate a decimal value in the range of 0 to 

4095 with 0 corresponding to 0 V DC and 4095 corresponding to 5 V DC output of the 

potentiometer. Thus, the interpretation of any digital value say x obtained from ADC in 

terms of the potentiometer output voltage is given as Trailer cab angle in radians = 

(340*x/4095)-170. So at Reference Position 3 the output would be -170 degrees and at 

reference position 1 the output would be + 170 degrees. 

Figure 3.11 shows the trailer cab potentiometer. 

 

 

Figure 3.11: Trailer cab potentiometer 
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3.4.3 Test-bed Vehicle Speed Sensor. The test-bed features a Hewlett-Packard 

HEDS-5000 optical shaft encoder [23]. The shaft encoder outputs a square wave whose 

frequency is proportional to the speed of the motor shaft. The encoder output is directly 

connected to the 4I27 motor controller card.  

The incremental shaft encoder operates by translating the rotation of the shaft into 

light interruptions in the form of electrical pulses. The light source is a light emitting 

diode channeled into a parallel beam of light by a molded lens. The light beam thus 

becomes an output pulse only when apertures in the phase plate wheel and shaft code 

wheel are lined up. Figure 3.12 shows the block diagram of the shaft encoder operation. 

 

 

 

Figure 3.12: Block diagram of the optical shaft encoder operation 
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A code wheel rotates between the emitter and the detector and causes the light 

beam to be interrupted by the pattern of spaces and bars on itself. The photodiodes that 

detect these interruptions are arranged in a pattern that corresponds to the radius and the 

design of the code wheel.  

These detectors are also spaced such that a light period on one pair of detectors 

corresponds to a dark period on the adjacent pair of detectors. The photodiode outputs are 

then fed through the signal processing circuitry. Comparators receive these signals and 

produce the final outputs for channels A and B. Due to this integrated phasing technique, 

the digital output of channel A is in quadrature with that of channel B (90 degrees out of 

phase). Figure 3.13 shows sample output waveforms of the encoder. 

 

 

 

Figure 3.13: Output waveform of optical shaft encoder 
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3.4.4 Test-bed Vehicle Steering Angle Sensor. The steering angle is measured 

through the servo used to control the steering. The servo uses a potentiometer to perform 

the position control and the same potentiometer is used to find the steering angle. The 

steering angle output is used as feedback by the controller to make corrections to steering 

angle. Figure 3.14 shows the servo used to control steering angle. 

 

 

 

 

 

Figure 3.14: Steering servo 
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3.5. THE TEST-BED ACTUATORS  

3.5.1 Driver Motor. The driver motor for moving the truck is a DC motor. The 

driver motor is connected to the 4I27 motor controller card that modulates the pulse 

width of the PWM pulses supplied to this motor to actuate its speed and direction. Figure 

3.15 shows the arrangement of the driver motor from bottom view of the cab. 

 

 

 

 

 

 

Figure 3.15: Steering and driver motor connection (bottom view) 

 

 

3.5.2 Steering Motor. A DC motor is used to actuate the steering angle. The 

steering angle potentiometer updates the current steering angle, which is used to 

maneuver the nest steps in steering the truck. The steering motor is connected to 4I27 

Driver motor 
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motor control card. Figure 3.16 shows the arrangement of steering motor (bottom view of 

test-bed vehicle cab). 

 

 

 

 

 

 

Figure 3.16: Steering motor 

Steering motor 
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4. REAL TIME APPLICATION INTERFACE (RTAI) 

 

RTAI stands for Real Time Application Interface for Linux as given in [11], [12], 

and [14]. RTAI lets the user develop applications with strict timing constraints. RTAI 

consists mainly of a patch to the Linux kernel that introduces a hardware abstraction layer 

and adds real time capabilities to the kernel generating a real time operating system 

within a non real time Linux environment. It provides ample programming services that 

can be utilized effectively in developing real time embedded system. It takes control of 

the hardware interrupts from the Linux kernel and adds real time precision to the interrupt 

handling.  

Consequently, the Linux kernel act as a low priority task and is functional when 

CPU is not in demand by any real time task. The real time tasks are scheduled by RTAI 

and they can communicate with any of non-real-time or Linux kernel tasks. The hardware 

abstraction layer provided by RTAI minimizes the amount of changes to be made to 

kernel code and has features that make maintenance of RTAI quite easy. The test-bed 

single board computer was embedded with RTAI Linux based operating system thereby 

adding real time properties to the system. 

The interrupts for a periodic application can be designed using two timer tick 

periods supported by RTAI i.e. “periodic” and “one-shot”. In the periodic mode, the 

RTAI sets its timer to interrupt at the desired period. Interrupt occurs when timer 

overflows and RTAI timer is reloaded again with the same time requirement. This 

method ensures that there is no CPU overhead spent in servicing the timer.  

On the other hand, in one shot mode RTAI reprograms the timer at every 

interrupt. Hence, considerable CPU overhead is spent using the one-shot mode. Figure 

4.1 shows RTAI architecture and shows how the RTAI forms an intermediate layer in 

between the hardware and the Linux kernel. Figure 4.1 also briefs out the way real time 

tasks defined through the RTAI application programming interface and the non real time 

ordinary Linux kernel tasks communicate amongst themselves. The real time tasks do not 

communicate directly with the Linux kernel and normally do not make any ordinary 

Linux kernel function calls. 
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Figure 4.1: RTAI architecture 
 

 

RTAI is based on the concept of Real-Time Hardware Abstraction Layer 

(RTHAL) that is used for intercepting the hardware interrupts and processing them. 

RTHAL minimizes the number of changes required to be made to kernel code and 

assigns pointers to kernel data and functions operating on the system hardware thereby 

forming a so-called layer in between hardware and kernel. RTHAL allows easy access 

and changes to interrupt handlers without the need to make complex arrangements to 

kernel structure.  

The RTHAL maintains an interrupt handler table containing functions that are 

called for handling different interrupts. When RTAI is patched the hardware interaction 

of the kernel is replaced by the pointers pointed by RTHAL and hardware interaction and 

interrupt handling is done completely by RTAI. RTAI provides hard real time capabilities 

in both kernel space as well as user space. RTAI provides hard real time capabilities 

through two schedulersthat now are called rtai_lxrt and rtai_sched. The user space 

scheduling is available for Linux processes and threads. The rtai_sched allows real time 

scheduling of RTAI kernel tasks along with scheduling of objects that can be scheduled 

by Linux such as Linux processes and Linux threads. 

HARDWARE/PERIPHERALS 

REAL TIME APPLICATION INTERFACE (RTAI) 

REAL TIME TASKS LINUX KERNEL 

NON REAL TIME TASKS 
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4.1. INSTALLING RTAI ON TEST-BED CPU 

The Arcom control systems manufactured test-bed CPU came pre loaded with 

debian-based Linux 2.6 version. The process of patching RTAI to the existing Linux 

kernel was distributed in three tasks as explained. 

4.1.1 Setting up Kernel Sources. The Kernel source for the target board can be 

found on the AEL Host environment on the host machine. On the test-bed single board 

computer, the path to the source was “/opt/arcom/src/linux-source-2.6.16.14-

arcom1.tar.gz”. The kernel source and RTAI source were both extracted to “/usr/src”. A 

symlink “/usr/src/linux” pointing to the kernel source was created using the following 

command “# ln -s /usr/src/linux-source-2.6.16.14-arcom1 /usr/src/linux”. The RTAI was 

then patched to the kernel using the “# patch -p1 /usr/src/rtai-3.4-

cv/base/arch/i386/patches/hal-linux-2.6.16-i386-1.3-08.patch” .The sources are now 

setup and next step was configuring and compiling the kernel and RTAI.  

4.1.2 Configuring and Compiling the Kernel. The default configuration was 

obtained by executing “# make ARCH=i386 sbc-gx533_defconfig”. The options for real 

time kernel configuration were selected using following command “# make ARCH=i386 

xconfig”. According to the RTAI installation guide, you need to turn off module 

versioning, ACPI support and APM support as these conflicts with RTAI. These features 

were turned off and the kernel was made pre-emptible. The kernel is then compiled using  

“# ael-kernel-build --ARCH=i386 image”. This compiled the kernel, built the image and 

built three .deb packages at “/usr/src/”  which were installed on the test-bed CPU 

using the command “# dpkg -i  linux-image-2.6.16.14-arcom1_10.0.Custom_i386.deb” 

.The test-bed single board computer was accessed using serial connection and using red 

boot command window the default kernel was changed to newly installed kernel as 

follows : 

“Red Boot> alias kernel /boot/vmlinuz- 2.6.16.14-arcom1” 

This made the test-bed single board computer ready to be installed with RTAI. 

4.1.3 Configuring and Compiling RTAI.The working directory was changed to 

“/usr/src” and a new directory was created called build. The working directory was 
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changed to “/usr/src/build” and the following command was used to build RTAI:  

 “# make -f /usr/src/rtai-3.4-cv/makefile xconfig CC=i386-linux-gcc CXX=i386-linux-

g++”. The configuration features were saved and RTAI was compiled by executing “# 

make all”. The RTAI was installed to a temporary folder using “# make install 

DESTDIR=/tmp/rtai” .The installed source was compressed using “# cd /tmp/rtai” and 

then “# tar -cvzf... /rtai_install.tar.gz”. RTAI was installed in the test-bed CPU using the 

following command “# tar -xvzf /root/rtai_install.tar.gz”. This concluded the installation 

of RTAI.   
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5. TEST-BED SOFTWARE LIBRARY 

 

The test-bed software contains the real time software library that consists of real 

time threads for sensing and real-time control functions for actuation. The threads 

periodically update the sensor readings at one millisecond rate to individual global arrays 

corresponding to each sensor. The global arrays always keep a track of the previous five 

sensor values along with the current value, thus providing the access to any of the five 

previous values for each sensor.  

The arrays keep track of the previous five sensor values before being overwritten 

by recent values. All the sensor update threads are equal priority threads and would 

require the library user to call an initialization routine to start these threads concurrently.  

First, the threads update the current sensor value and then they sleep for one 

millisecond until the next interval of update. The SBC central processing unit (CPU) is 

available during this interval for other computations. The real time software ensures that 

the sensor values keep being updated in the background periodically independent of the 

complexity of the application software and CPU overhead caused.  

The control functions are real time and ensure that the control action is processed 

without any significant latency. The control functions include position, steering, and 

speed control functions as well as emergency functions. 

The test-bed software library provides an Application Programming Interface 

(API) to the user where the user can easily use the library functions and global variables 

updated by the library to get the current state of the vehicle, make decisions and 

implement the desired control action. RTAI runs in kernel space with the highest priority. 

The real time task that it manages also runs in kernel space.  

However, kernel space application development faces problems in using source 

level debugger and fatal programming errors in kernel space such as allocating restricted 

memory can crash the whole kernel system. However, RTAI provides a solution to this 

problem. RTAI provides LXRT extension ([14], [15]), where the application can be 

developed as normal user application. All the LXRT tasks are created as normal user 

space tasks. All the tasks are initialized as real time tasks using an initialization routine 
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call provided by LXRT module. The initialization creates a friend task that runs on behalf 

of the user space task in kernel space. Whenever LXRT task calls are made, the friend 

task executing in kernel space executes the real function.  

The software library is developed in user space using LXRT module. All the 

functions in the library are initialized as LXRT tasks and they are executed in user space. 

The user of this library would just be required to include the library during compilation 

and the real time application developed by the user would be executed in the user space. 

Figure 5.1 explains the test-bed software library and the user application implementation 

in user space. 

 

 

 

Figure 5.1: Test-bed software library and user application implementation 
 

 

 

KERNEL SPACE 

USER SPACE 

TEST-BED 
SOFTWARE 

LIBRARY 

USER 
APPLICATION 

Friend task 
1 

Friend task 
2 

Friend task 
n 



   29

The test-bed software library components are described in detail in following 

sections: 

 

5.1. GLOBAL VARIABLES HOLDING THE SENSOR VALUES  

The sensor values are updated every one millisecond to global arrays that are 

allocated dynamically when the user calls the initialization routine for the library from his 

application. Each sensor updates to a separate global array and at any point of time the 

arrays hold the five previous sensor updates. Pointers are initialized to each global array 

and the sensor values of each instant stored can be accessed through index addressing.  

The dynamic memory allocation function call calloc () is used to assign memory 

dynamically for six update instants for each sensor. The pointers point to the initial 

location of allocated chunk of memory. The allocation can be thought of as allocating 

dynamic memory array for storing the current update of each sensor along with five 

previous updates for each sensor.  

The dynamic memory implementation also ensures that memory is allocated at 

run time only after the initialization routine is invoked by the user. The user has to ensure 

that the initialization routine is not called more than once. The pointers are listed out as 

follows: 

 

Function: Pointer holding acceleration value in the x direction.  

Synopsis: truck_accel_x 

Description: Pointer pointing to updates of the trucks acceleration along x direction of 

the accelerometer. The updates are the truck acceleration along the x direction of the 

accelerometer. Indexed addressing of the pointer can access sensor values. 

 

Function: Pointer holding acceleration value in the y direction. 

Synopsis: truck_accel_y 

Description: Pointer pointing to updates of the trucks acceleration along y direction of 

the accelerometer. The updates are the truck acceleration along the y direction of the 
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accelerometer. Indexed addressing of the pointer can access sensor values instantly in 

real time. 

 

Function:  Pointer holding acceleration value in the z direction 

Synopsis: truck_accel_z 

Description: Pointer pointing to updates of the trucks acceleration along z direction of 

the accelerometer. The updates are the truck acceleration along the z direction of the 

accelerometer. Indexed addressing of the pointer can access sensor values. 

 

Function: Pointer holding the truck potentiometer value 

Synopsis: truck_pot 

Description: Pointer pointing to updates of the truck potentiometer sensor for the angle 

between trailer and cab in radians. Indexed addressing of the pointer can access sensor 

values. 

 

Function: Pointer holding the truck steering angle value 

Synopsis: truck_steer 

Description: Pointer pointing to updates of the trucks steering angle in radians. Indexed 

addressing of the pointer can access sensor values. 

 

Function: Pointer holding value of the speed of truck 

Synopsis: truck_pot 

Description: Pointer pointing to updates of the truck speed in RPM. Indexed addressing 

of the pointer can access sensor values. 

  

The library users do not have direct access to these pointers and the users should 

design their application using the test-bed library in such a way that the application 

should ensure that these pointers are not accessed by the application. Any wild usage of 

these pointers could result in critical damages. 

Damages may include the pointers corrupting the kernel data and data structures 

on which the kernel operatesthat can cause fatal crashing of the kernel. The user 
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application has to ensure that there is no wild usage of pointers in the application that can 

corrupt the memory accessed by the test-bed library. It would be advisable to follow safe 

programming practices. 

 

5.2. REAL TIME THREADS UPDATING THE SENSOR VALUES 

The test-bed library API provides real time threads (user space POSIX pthreads) 

which periodically update the sensor values to global arrays corresponding to each 

individual sensor. All the threads are defined as real time threads and the user is required 

to include an initialization routine to start the real time threads. The task priority, stack 

size, data to be passed and the other essential task related data are passed through the 

initialization routine for the real time task. 

 The threads run concurrently and the real time design ensures that any sensor 

update event by any of these threads is never missed irrespective of the load on CPU. The 

RTAI LXRT module allows declaring normal threads in user space as real time threads 

using same application programming interface. Using RTAI API all these threads are 

defined as periodic updating threads with one millisecond update interval and are they 

assigned equal priorities.  

The threads have equal priority and are scheduled in round robin format by the 

real time application interface scheduler. The threads share the ADC driver function in 

accessing the channel updates for each sensor. To avoid common resource sharing 

problems a global mutex is locked by each thread to before accessing the ADC function 

and unlocked after accessing the ADC function. 

The sensor update threads are listed as follows: 

 

Function: Thread updating truck acceleration value along x direction 

Synopsis: truck_accelerometer_x 

Description: Real time threadthat updates the truck accelerometer sensor readings in x 

direction to the global array pointed by truck_accel_x. The updates are the truck 

acceleration along the x direction of the accelerometer. 
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Function: Thread updating truck acceleration value along y direction 

Synopsis: truck_accelerometer_y 

Description: Real time thread that updates the truck accelerometer sensor readings in y 

direction to the global array pointed by truck_accel_y. The updates are the truck 

acceleration along the y direction of the accelerometer. 

 

Function: Thread updating truck acceleration value along z direction 

Synopsis: truck_accelerometer_z 

Description: Real time thread that updates the truck accelerometer sensor readings in z 

direction to the global array pointed by truck_accel_z. The updates are the truck 

acceleration along the z direction of the accelerometer. 

 

Function: Thread updating truck potentiometer value 

Synopsis: truck_potentiometer 

Description: Real time thread that updates the truck potentiometer sensor readings for 

angle between trailer and cab in radians to the global array pointed by truck_pot. 

 

Function: Thread updating truck steering angle value 

Synopsis: truck_steering_motor 

Description: Real time thread that updates the truck steering angle sensor readings in 

radians to the global array pointed by truck_steer. 

 

Function: Thread updating current state value 

Synopsis: Current_state_k 

Description: Real time thread that updates the current state of sensor update to global 

variable current_state. The states are updated up to 109 instants before reinitializing itself 

back to zero. 
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The threads update the sensor values and do not communicate with any other function in 

the library. The functions to obtain the sensor updates done by these threads are 

explained in Section 5.3. 

 

5.3. REAL TIME SENSOR UPDATE ACCESS FUNCTIONS 

The test-bed library API provides various functions to access sensor values at any 

instant of each sensor. Given the previous time step, these functions return the 

corresponding previous value of the respective sensor. For example to access the 3rd 

previous value of the truck sensor the function call would be in form of 

“truck_sensor_update (3)” and current update of the sensor can be accessed by 

“truck_sensor_update (0)”.  

This methodology avoids the direct user interaction of the global arrays and thus 

prevents the user from corrupting the library data. Without these functions, the user may 

be required to access the values pointed by the global array pointers for the sensor values 

and significant programming effort and caution to correctly access the sensor update 

values would be required. Any programming error in the use of these pointers would 

result in corrupted data and disastrous control decision. This could also lead to system 

instability due to inefficient control implementation. 

The update functions are defined to work in real time, and they run in user space 

using LXRT module based upon same principle for the sensor update threads. This 

methodology also ensures user-friendly implementation since the sensor value access is 

reduced to mere function calls. 

The sensor update functions mainly take in the previous required instance of 

update as argument and output the sensor value at that instant. The sensor update access 

functions provided by the test-bed library API are explained in detail as follows: 

 

Function: Function to access potentiometer update 

Synopsis: float truck_potentiometer_update (int n) 

Description: Real time function that updates the nth previous truck potentiometer update 
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to get the trailer cab angle in radians. This reading is useful to avoid landing of the test-

bed truck in jack-knife position where it cannot move. 

 

Function: Function to access steering angle update 

Synopsis: float truck_steering_update (int n) 

Description: Real time function that updates the nth previous truck steering angle update 

in radians. 

 

Function: Function to access truck speed update 

Synopsis: float truck_speed_update (int n) 

Description: Real time function that updates the nth previous truck speed sensor update 

to get the truck speed in RPM. 

 

Function: Function to access truck acceleration along x direction 

Synopsis: float truck_accelerometer_x_update (int n) 

Description: Real time function that updates the nth previous truck accelerometer update 

along x direction of the accelerometer. The updates are the truck acceleration along the x 

direction of the accelerometer. 

 

Function: Function to access truck acceleration along y direction 

Synopsis: float truck_accelerometer_y_update (int n) 

Description: Real time function that updates the nth previous truck accelerometer update 

along y direction of the accelerometer. The updates are the truck acceleration along the y 

direction of the accelerometer. 

 

Function: Function to access truck acceleration along z direction 

Synopsis: float truck_accelerometer_z_update (int n) 

Description: Real time function that updates the nth previous truck accelerometer update 

along z direction of the accelerometer. The updates are the truck acceleration along the z 

direction of the accelerometer. 
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Function: Function to access truck velocity in encoder counts 

Synopsis: long ReadRealVelocity (Motor *motorx) 

Description: Real time function that updates the current truck speed. Using this function 

would require assigning the driver motor to motor0 using the motor assign function 

explained in Section 5.4.1. 

 

5.4. REAL TIME CONTROL FUNCTIONS 

The test-bed library API provides a vast number of real time control functions to 

actuate the steering angle control and speed control motors. The user can access the 

sensor updates and accordingly use any of these control function calls and implement the 

control decision as per the control algorithm they are using. The motor controller driver 

functions are defined to be real time functions and thus RTAI takes charge of the Motor 

controller peripheral and communicates directly with the actuators. 

The control functions include functions for controlling the motor speed and 

position and to load the target velocity, target position and PID filter parameters. The 

control functions also include emergency procedures for stopping the motor smoothly 

and abruptly. 

The real time sensor value threads provide real time status of current and previous 

five sensor values. These sensor values are indicative of the current state of the vehicle 

and depending upon the current state the control algorithm determines the desired next 

state of the vehicle. The control functions are then used to achieve the desired next state 

of the vehicle by actuating the vehicle actuators. 

The control functions communicate with the LM629 processors on the 4I27 motor 

controller card. The control functions access data structures declared in the software 

library. The data structures used and the control functions are described in detail. 

 

Function: Function to initialize motor 

Synopsis: void AssignMotor (Motor *motorx, int card, int whichhalf) 

Description: This function is used to assign motor to one of the half’s (one of the two 
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LM629 processors onboard) of the card. The argument passed is a pointer to the data 

structure Motor declared in the software library and the card address (ox200 for the test-

bed card) and the half of the card. This function is to be implemented as part of 

initialization procedure. 

Example: To assign the driver motor to define driver motor as motor 0 and assign it to 

first half of 4I27 card the following procedure is implemented: 

Main () 

{ 

 Motor motor0; //part of initialization 

 AssignMotor (&motor0,0x200,0); 

   ….. 

  } 

 

Function: Function to turn on motor 

Synopsis: void TurnOnMotor (Motor *motorx) 

Description: This function is used to turn on the motor under control of 4I27 motor 

controller card. The argument passed is a pointer to the data structure Motor declared in 

the software library. This function passes the motor start command declared in the library 

header file, to the 4I27 motor controller card. 

Example: To turn on driver motor defined as motor 0 the following procedure is 

implemented: 

 

Main () 

{ 

 …..     //initialization 

 TurnOnMotor (&motor0); 

   ….. } 

   

Function: Function to turn off motor 

Synopsis: void TurnOffMotor (Motor *motorx) 

Description: This function is used to turn off the motor under control of 4I27 motor 



   37

controller card. The argument passed is a pointer to the data structure Motor declared in 

the software library. This function passes the motor stop command declared in the library 

header file, to the 4I27 motor controller card. 

Example: To turn off driver motor defined as motor zero the following procedure is 

implemented: 

 

Main () 

{  

…..     //initialization 

 TurnOffMotor (&motor0); 

   …..  

  } 

 

Function: Function to smoothly stop the motor  

Synopsis: void StopSmoothly (Motor *motorx) 

Description: This function is used to smoothly stop the motor under control of 4I27 

motor controller card. The argument passed is a pointer to the data structure Motor 

declared in the software library. This function can be used to stop the vehicle smoothly 

on completion of any of desired trajectory of position, velocity or acceleration. This 

function passes the command to smoothly stop the motor declared in the library header 

file, to the 4I27 motor controller card. 

Example: To smoothly stop the driver motor defined as motor 0 the following procedure 

is implemented: 

 

Main () 

{ …..     //initialization 

 StopSmoothly (&motor0); ….. 

  } 
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Function: Function to abruptly stop the motor  

Synopsis:  void StopAbruptly (Motor *motorx) 

Description: This function is used to abruptly stop the motor under control of 4I27 motor 

controller card. The argument passed is a pointer to the data structure Motor declared in 

the software library. This function can be used to stop the vehicle smoothly on 

completion of any of desired trajectory of position, velocity or acceleration. This function 

passes the command to abruptly stop the motor declared in the library header file, to the 

4I27 motor controller card. 

Example: To abruptly stop the driver motor defined as motor 0 the following procedure 

is implemented: 

 

Main () 

{ 

 …..     //initialization 

 StopAbruptly (&motor0); 

   …..  

 } 

 

Function: Function to define home position  

Synopsis: void DefineHome (Motor *motorx) 

Description: This function defines the current position as home position. The argument 

passed is a pointer to the data structure Motor declared in the software library. This 

function passes the command to define current position as home positionthat is declared 

in the library header file, to the 4I27 motor controller card. 

Example: To define the current position of the driver motor defined as motor 0 as home 

position the following procedure is implemented: 

 

Main () 

{ …..     //initialization 

 DefineHome (&motor0); 

   ….. } 
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Function: Function to set index position 

Synopsis: void SetIndexPosition (Motor *motorx) 

Description: This function is used to define current position as Index position. The 

argument passed is a pointer to the data structure Motor declared in the software library. 

This function passes the command to define current position as Index positionthat is 

declared in the library header file, to the 4I27 motor controller card. 

Example: To define index position for the driver motor defined as motor 0 the following 

procedure is implemented: 

 

Main () 

{ …..     //initialization 

 SetIndexPosition (&motor0); 

   …..  

} 

 

Function: Function to set position error to cause software interrupt 

Synopsis: void LoadPosErrorForInt (Motor *motorx, int maxerr) 

Description: This function is used to load the position errorthat can trigger off a software 

interrupt. The argument passed is a pointer to the data structure Motor declared in the 

software library and the integer value of maximum error that should trigger off the 

interrupt. This function passes the command to load the position errorthat is declared in 

the library header file and the position error, to the 4I27 motor controller card.  

Example: To define 1000 encoder counts as the maximum error to cause interrupt for the 

driver motor defined as motor 0 the following procedure is implemented: 

 

Main () 

{  

…..     //initialization 

 LoadPosErrForInt (&motor0, 1000);  

 ….. 

  } 
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Function: Function to set position error to stop the motor 

Synopsis: void LoadPosErrorForStop (Motor *motorx, int maxerr) 

Description: This function is used to load the position errorthat can trigger off stopping 

of the vehicle. The argument passed is a pointer to the data structure Motor declared in 

the software library and the integer value of maximum error that should trigger off the 

stopping of vehicle. This function passes the command to load the position errorthat is 

declared in the library header file and the position error, to the 4I27 motor controller card.  

Example: To define 1000 counts as the maximum error to stop the motor for the driver 

motor defined as motor 0 the following procedure is implemented: 

 

Main () 

{ …..     //initialization 

 LoadPosErrForStop (&motor0, 1000);   

………. 

} 

 

Function: Function to set absolute breakpoint 

 Synopsis: void SetBreakpointAbsolute (Motor *motorx, long position) 

Description: This function is used to set the absolute position breakpoint for motion. The 

argument passed is a pointer to the data structure Motor declared in the software library 

and the integer value of position that should be set as breakpoint. This function passes the 

command to load the absolute position break pointthat is declared in the library header 

file and the absolute motion breakpoint, to the 4I27 motor controller card.  

Example: To define 1000 encoder counts as the absolute breakpoint for the driver motor 

defined as motor 0 the following procedure is implemented: 

 

Main () 

{ …..     //initialization 

 SetBreakpointAbsolute (&motor0, 1000);  

 …..  

} 
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Function: Function to set relative breakpoint 

Synopsis: void SetBreakpointRelative (Motor *motorx, long position) 

Description: This function is used to set the relative position breakpoint for motion. The 

argument passed is a pointer to the data structure Motor declared in the software library 

and the integer value of relative position that should be set as breakpoint. This function 

passes the command to load the relative position break pointthat is declared in the library 

header file and the relative position breakpoint, to the 4I27 motor controller card.  

Example: To define 1000 encoder counts as the relative breakpoint for the driver motor 

defined as motor 0 the following procedure is implemented: 

 

Main () 

{  

…..     //initialization 

 SetBreakpointRelative (&motor0, 1000);  

 ….. } 

 

Function: Function to load PID filter parameters. 

Synopsis: void LoadFilterParameters (Motor *motorx). 

Description: This function is used to load the filter coefficients from their pre-loaded 

buffers. The argument passed is a pointer to the data structure Motor declared in the 

software library. This function passes the command to load the filter parametersthat is 

declared in the library header file, to the 4I27 motor controller card. The filter parameters 

can be pre loaded using any of filter parameter load functions and are loaded using this 

function before run time. 

Example: To define filter parameters KP,KI,KD,IL for the 4I27 PID filter as 

200,100,2000,10 respectively and assign them to data structure pointer motorx,the data 

structure pointer is passed to an initialization routine which can initialize the filter 

parameters and use “LoadFilterParameters” function to load them as explained in the 

example. 

initfunction (Motor *motorx) 

{ Motorx->Filter.KP = 200;       // proportional gain 
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Motorx->Filter.KI = 100;        // integral gain 

Motorx->Filter.KD = 2000;      // derivative gain 

Motorx->Filter.IL = 10;        // integration limit  

LoadFilterParameters(motorx); 

} 

The initfunction routine can be used as an initialization routine and is one of the 

important steps in setting up the PID filter coefficients for the 4I27 motor card. The 

function should be following the reset function for the 4I27 card.  

The reset function should always precede the initfunction routine during run time 

whenever the PID filter parameters of the 4I27 are desired to be changed. The reset 

function resets the 4I27 and the onboard LM629 processors and allows any changes to 

the 4I27 and LM629 processors possible. 

 

Function: Function to load proportional gain 

Synopsis: void LoadKP (Motor *motorx, unsigned int KP) 

Description: This function is used to set the proportional gain KP for the PID filter of 

4I27. The argument passed is a pointer to the data structure Motor declared in the 

software library and the integer value of KP. This function passes the command to load 

the proportional gainthat is declared in the library header file and the proportional gain, to 

the 4I27 motor controller card PID filter. This function can be used as one of the testing 

function while tuning the PID filter loop of the LM629 processor on the 4I27 motor 

controller card. 

Example: To define proportional gain as 100 for PID filter with respect to driver motor 

defined as motor 0 the following procedure is implemented. 

 

Main () 

{  

…..     //initialization 

 LoadKP (&motor0, 100);  

 …..   

} 



   43

Function: Function to load Integral gain 

Synopsis: void LoadKI (Motor *motorx, unsigned int Ki) 

Description: This function is used to set the integral gain Ki for the PID filter of 4I27. 

The argument passed is a pointer to the data structure Motor declared in the software 

library and the integer value of Ki. This function passes the command to load the integral 

gainthat is declared in the library header file and the integral gain, to the 4I27 motor 

controller card PID filter.  

Example: To define integral gain as 50 for PID filter with respect to driver motor defined 

as motor 0 the following procedure is implemented. 

Main () 

{  

…..     //initialization 

 LoadKI (&motor0, 50);  

 …..   

} 

 

Function: Function to load Derivative gain 

Synopsis: void LoadKD (Motor *motorx, unsigned int KD) 

Description: This function is used to set the derivative gain KD for the PID filter of 

4I27. The argument passed is a pointer to the data structure Motor declared in the 

software library and the integer value of KD. This function passes the command to load 

the derivative gainthat is declared in the library header file and the derivative gain, to the 

4I27 motor controller card PID filter.  

Example: To define derivative gain as 2000 for PID filter with respect to driver motor 

defined as motor 0 the following procedure is implemented. 

 

Main () 

{  

…..     //initialization 

 LoadKD (&motor0, 2000);  

 …..   } 
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Function: Function to load Integral limit 

Synopsis: void LoadIL (Motor *motorx, unsigned int IL) 

Description: This function is used to set the integral limit IL for the PID filter of 4I27. 

The argument passed is a pointer to the data structure Motor declared in the software 

library and the integer value of IL. This function passes the command to load the integral 

limitthat is declared in the library header file and the integral limit, to the 4I27 motor 

controller card PID filter.  

Example: To define integral limit as 10 for PID filter with respect to driver motor 

defined as motor 0 the following procedure is implemented. 

 

Main () 

{  

…..     //initialization 

 LoadIL (&motor0, 50);  

 …..   

} 

 

Function: Function to update PID filter coefficients 

Synopsis: void UpdateFilter (Motor *motorx) 

Description: This function is used to update the filter coefficients from their pre-loaded 

buffers. The argument passed is a pointer to the data structure Motor declared in the 

software library. This function passes the command to update the filtersthat is declared in 

the library header file, to the 4I27 motor controller card. The filter parameters can be pre 

loaded using any of filter parameter load functions and can be updated using this function 

at run time. 

Example : To define filter parameters KP,KI,KD,IL for the 4I27 PID filter as 

200,100,2000,10 respectively and assign them to data structure pointer motorx,the data 

structure pointer motorx is passed to an initialization routine which can initialize the filter 

parameters and use “LoadFilterParameters” function to load them. The filter parameters 

are then updated using “UpdateFilter” function as explained in the example.  
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This function can be used at runtime to update PID filter parameters depending 

upon the control demands. At run time, any undesired change in motion can cause to 

change the desired control action and this function can be used then to change the PID 

filter parameters at run time. 

 

initfunction (Motor *motorx) 

{ 

 Motorx->Filter.KP = 200;       // proportional gain 

Motorx->Filter.KI = 100;        // integral gain 

Motorx->Filter.KD = 2000;      // derivative gain 

Motorx->Filter.IL = 10;        // integration limit  

LoadFilterParameters(motorx); 

UpdateFilter (motorx); 

} 

 

Function: Function to load trajectories 

Synopsis: void LoadTrajectory (Motor *motorx, Trajectory *traj) 

Description: This function is used to load the trajectories of Acceleration, Velocity and 

Position to the 4I27 motor controller card. The argument passed is a pointer to the data 

structure Motor declared in the software library and a pointer to the data structure 

Trajectory declared in the software library. This function passes the command to load the 

trajectorythat is declared in the library header file, and the trajectories (Acceleration, 

Velocity, and Position) which are defined through trajectory load commands. 

This function can be used at runtime to update motion trajectories depending upon 

the control demands. At run time, any undesired change in motion can cause to change 

the desired control action and this function can be used then to change the trajectories at 

run time. 

Example: To define trajectories of position, velocity and acceleration as zero encoder 

counts, 1000 encoder counts/sampling period and 100 counts/ (sampling period*sampling 

period) respectively the procedure is explained as follows: 
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Main () 

{         

 …    //initialization 

Motor motor0; 

Trajectory trajx; 

trajx.Position = 0; 

 trajx.Velocity = 1000; 

 trajx.Acceleration = 100; 

 LoadTrajectory (&motor0, &trajx); 

  ……  

} 

 

Function: Function to load acceleration trajectory 

Synopsis: void LoadAcceleration (Motor *motorx, unsigned long acceleration) 

Description: This function is used to load the acceleration set point for motion. The 

argument passed is a pointer to the data structure Motor declared in the software library 

and the integer value of acceleration that should be set as set point. This function passes 

the command to load the accelerationthat is declared in the library header file and the 

acceleration, to the 4I27 motor controller card. The acceleration is always loaded in terms 

of the encoder counts since the 4I27 functions deal with the trajectories in terms of 

encoder counts. The user of the test-bed library has to calibrate the trajectories 

accordingly to the desired trajectory range. 

Example: To load acceleration as 100 encoder counts/ (Sampling period) for driver 

motor defined as motor 0 the following procedure is implemented. 

Main () 

{  

…..     //initialization 

 LoadAcceleration (&motor0, 100);  

 …..   

} 
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Function: Function to load velocity trajectory 

Synopsis: void LoadVelocity (Motor *motorx, unsigned long velocity) 

Description: This function is used to load the velocity set point for motion. The 

argument passed is a pointer to the data structure Motor declared in the software library 

and the integer value of velocity that should be set as set point. This function passes the 

command to load the velocitythat is declared in the library header file and the velocity, to 

the 4I27 motor controller card.  

Example : To load velocity as 1000 encoder counts/sampling period for driver motor 

defined as motor 0 the following procedure is implemented. 

 

Main () 

{  

…..     //initialization 

 LoadVelocity (&motor0, 1000);  

 …..   

} 

 

Function: Function to load position trajectory 

Synopsis: void LoadPosition (Motor *motorx, unsigned long position) 

Description: This function is used to load the position set point for motion. The 

argument passed is a pointer to the data structure Motor declared in the software library 

and the integer value of position that should be set as set point. This function passes the 

command to load the positionthat is declared in the library header file and the position, to 

the 4I27 motor controller card.  

Example: To define position as 0 encoder counts (velocity mode) for driver motor 

defined as motor 0 the following procedure is implemented. 

Main () 

{  

…..     //initialization 

 LoadPosition (&motor0, 0);  

 ….. } 



   48

Function: Function to start pre loaded trajectory 

Synopsis: void StartTrajectory (Motor *motorx) 

Description: This function is used to start a pre-loaded trajectory using any of trajectory 

load functions. The argument passed is a pointer to the data structure Motor declared in 

the software library. This function passes the command to start a pre-loaded trajectorythat 

is declared in the library header file, to the 4I27 motor controller card. 

Example: To define position as zero encoder counts (velocity mode) for driver motor 

defined as motor 0 and start the trajectory the following procedure is implemented. 

Main () 

{  

…..     //initialization 

 LoadPosition (&motor0, 0);  

 StartTrajectory (&motor0); 

 …..  

} 

 

Function: Function to set sampling interval 

Synopsis: void SetSamplingInterval (Motor *motorx, unsigned int sinterval) 

Description: This function sets the sampling interval of the 4I27 processor clock. The 

argument passed is a pointer to the data structure Motor declared in the software library 

and the integer value of desired sampling interval .This function is used as part of 

initialization procedure for the 4I27 motor controller card. The sampling interval supplied 

can be from zero to 255 and sampling interval is determined as SP = SAMPLING 

PERIOD = 256 uSec * (1+SI) with 8 MHz clock. 

Example: To define minimum sampling interval for driver motor defined as motor 0 the 

following procedure is implemented. 

Main () 

{  

…..     //initialization 

 SetSamplingInterval (&motor0, 0); // 

 ….. } 
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Function: Function to set motion mode 

Synopsis: void SetMotionMode (Motor *motorx, int mmode) 

Description: This function sets the motion mode of the motor. The argument passed is a 

pointer to the data structure Motor declared in the software library and the integer value 

of motion modethat is already defined in the library header. This function is used as part 

of initialization procedure for the 4I27 motor controller card. 

Example: To set position mode for driver motor defined as motor 0 the following 

procedure is implemented. 

Main () 

{  

…..     //initialization 

SetMotionMode (&motor0, PositionMode); // set up motor 0 for  

Position mode  

…..  

} 

 

Function: Function to set encoder lines  

Synopsis:  void SetEncoderlines (Motor *motorx, int lines) 

Description: This function sets the encoder lines for the respective motor. The argument 

passed is a pointer to the data structure Motor declared in the software library and the 

integer value of lines of encoderthat are 256 for the test-bed motor speed encoder. This 

function is used as part of initialization procedure for the 4I27 motor controller card. 

Example : To set encoder lines equal to 500 for driver motor (which happens to be 500 

in case of test-bed driver motor) defined as motor 0  the following procedure is 

implemented. 

Main () 

{  

…..     //initialization 

SetEncoderLines (&motor0, 500); //  

…..  

} 
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Function: Function to select clock frequency  

Synopsis: void SetClockFrequency (Motor *motorx, long frequency) 

Description: This function is used to set the clock frequency of LM629. The argument 

passed is a pointer to the data structure Motor declared in the software library and the 

frequency required to be set.  

Example: To set 8 MHz clock frequency for driver motor defined as motor 0 the 

procedure would be as follows: 

 

Main () 

{  

…..     //initialization 

SetClockFrequency (Motor0, 8000000);           //8 MHz clock  

…..  

} 

To set 4Mhz frequency for driver motor incase if the driver motor is changed to one 

which requires lower chopping frequency the function call in such a case would be  

SetClockFrequency (Motor0, 4000000);           //4 MHz clock 

 

5.5. TEST-BED SOFTWARE LIBRARY USAGE 

The users of test-bed would be required to compile their application and link it to 

the test-bed software library. The user would also be required to call a routine called as 

“init_threads” as a part of the initialization routine.  

 

Synopsis: init_threads (int *fdc)  

Description: The init_thread routine initializes all the sensor update threads and starts 

them as periodic threads of one millisecond frequency. The argument supplied to 

init_thread routine is a pointer to the integer file handle for the ADC access function. The 

file handle is obtained by opening the ADC device node as follows: 

/dev/arcom/aim104/multi-io/0. 

Example: The device node can be opened by using the open function as explained in the 

example. The open function returns the integer device file handlethat is supplied, to the 
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real time threadsthat use this device file handle to access the ADC device. This 

initialization routine is the first part of initialization that the user needs to call as a part of 

initialization procedure. 

 

Main () 

{  

int *ptr; 

int a = open (/dev/arcom/aim104/multi-io/0, O_RDWR); 

ptr = &a; 

init_thread(&ptr);           //initialize all threads  

…..  

} 

 

The test-bed library header file is called as “testbedheader.h” and the user would 

be required to include the header file in his application. The header file includes 

following header files  

• #include <stdio.h>  

• #include <libaim104.h>  

• #include <math.h> 

• #include <time.h> 

• #include <linux/module.h> 

• #include <rtai.h>   

• #include <rtai_sched.h> 

• #include <rtai_fifos.h> 

• #include <rtai_lxrt.h> 

• #include <pthread.h> 

• #include <stdlib.h> 
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Inclusion of the test-bed header file will automatically include the source code for all the 

header files mentioned. If the user intends to use any other library, the user would be 

required to include the respective header file in his application. 
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6. TEST-BED DESIGN PERFORMANCE 

 

The RTAI kernel provides standard test suites to test the system performance for 

latency, preemption and context switching under heavy CPU load conditions [17]. The 

RTAI performance on test-bed CPU was tested for latency, preemption and context 

switching by running the test suites provided by RTAI on the test-bed CPU. The 

following results were obtained: 

 

6.1. LATENCY TEST RESULTS 

Latency is the time delay between occurrence of an event in a system and 

servicing of that event by the system. The latency test suite gives a measure of the 

average latency of the system under test. The test subjects the CPU to heavy loads by 

running complex algorithms involving intense calculations. The tests were conducted 

over a period of 1000 seconds. The latency test gives out results in form of table over a 

period with each row getting updated and presenting in detail the minimum and 

maximum latency readings along with overruns.  

The test runs with the application loading RTAI modules for period of 100000 

nanoseconds. The modules are dynamically linked and delinked at run time and the test 

starts giving out a measure of minimum latency, average latency and maximum latency 

on the screen. The test was initially conducted with default load period of 100000 

nanoseconds for the RTAI modules used by the test application. For best performance the 

number of overruns should either be zero or should stay constant or increase very slowly 

and the latency timing results should not vary much with each update. 

The screenshot of the test result is showed in Figure 6.1. The rows are the 

respective updates of the test suite in terms of maximum latency, average latency and 

number of overruns. The test suite performs the computations and the results are updated 

with the application running in one-shot mode of the RTAI kernel timer. The results were 

then plotted to present plots of average and maximum latency in nanoseconds against the 

number of updates thereby presenting a graphical representation of the test results. 
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Figure 6.1: Latency test results with default period 
 

 



   55

Figure 6.2 shows the plot of the average latency with default period on the test-

bed single board computer. The plot shows average latency wavering in the range of 13 

to 15 microseconds.  

The plot presents average latency in nanosecond on the vertical axis and presents 

the number of updates on the horizontal axis. A minor shoot in the application response 

in the initial update is observed where the average latency rises to 14.1 microseconds and 

then settles down to around 13.5 microseconds. 
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Figure 6.2: Plot of average latency for latency test suite with default period 
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Figure 6.3 shows the plot of the maximum latency with default period on the test-

bed single board computer. The plot shows maximum latency wavering in the range of 

140 to 180 microseconds.  

The plot presents average latency in nanosecond on the vertical axis and presents 

the number of updates on the horizontal axis. A minor shoot is observed in the 

application response with maximum latency reaching around 180 microseconds and the 

maximum latency then settles down to around 160 microseconds. 
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Figure 6.3: Plot of maximum latency for latency test suite with default period 
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The test indicated average latency in range of 13 to 14 microseconds and 

maximum latency in range of 170 to 180 microseconds. The results indicate good 

performance in terms of latency response of the system, however, the results obtained are 

not acceptable because the overruns should either be zero or should stay constant or 

increase very slowly.  

The reason for this anomaly was because the test suite applications loaded the real 

time kernel modules for a very short period of 100,000 nanoseconds and thus the 

overruns increased constantly thereby the application kept on running in memory buffer 

overruns.  

The solution to this problem was either to load the RTAI modules during booting 

of the test-bed single board computer or to implement a routine that should be called by 

the user during the start of his application.  

The second approach was not practical enough since it could lead to calling of the 

routine repeatedly due to a programming error or abrupt stopping and re-executing of the 

application without rebooting the kernel. As a result it was decided that the first approach 

to make the RTAI modules load by default when the test-bed system kernel boots up. 

To overcome this problem the required RTAI modules were configured to be 

loaded at boot time. In addition, the period of the modulethat was loaded during running 

of the test suites, was increased to 10,000,000 nano seconds. The modifications were 

made and it was ensured that the test-bed CPU loads the RTAI modules directly during 

boot time of the kernel. 

Once the modifications were done, the tests were conducted again on the test-bed 

CPU. The test results were observed to be consistent in terms of zero number of overruns 

for each update and in terms of improved maximum latency performancethat improved to 

the range of 20 to 30 microseconds.  

The screenshot of the test result with the period of loading of the RTAI modules 

to 10,000,000 nanoseconds is showed in Figure 6.4. The results were then plotted to 

present plots of average and maximum latency in nanoseconds against the number of 

updates thereby presenting a graphical representation of the test results. 
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Figure 6.4: Latency test results with period increased to 10,000,000 nanoseconds 
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Figure 6.5 shows the plot of the average latency with period of 10,000,000 

nanoseconds on the test-bed single board computer. The plot shows average latency 

wavering in the range of 15 to 20 microseconds.  

The plot presents average latency in nanosecond on the vertical axis and presents 

the number of updates on the horizontal axis. A minor shoot in the application response is 

observed in the initial update where the average latency rises to 20 microseconds and 

then settles down to around 15 microseconds. 
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Figure 6.5: Plot of average latency for latency test suite with period of 10,000,000 ns 
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Figure 6.6 shows the plot of the maximum latency with period of 10000000 

nanoseconds on the test-bed single board computer. The plot shows maximum latency 

wavering in the range of 200 to 400 microseconds.  

The plot presents average latency in nanosecond on the vertical axis and presents 

the number of updates on the horizontal axis. A minor shoot in the application response is 

observed with maximum latency reaching around 400 microseconds and the maximum 

latency then settles down to around 200 microseconds. 
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Figure 6.6: Plot of maximum latency for latency test suite with period of 10,000,000 ns 
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The test-bed system was then subjected to the latency test concurrently with an 

application that performed complex floating-point calculations in terms of finding square 

roots and cube roots of floating point numbers ranging from 1.5 to 1000.5 in increments 

of one in an infinite loop. The test served as stress test in terms of finding the test-bed 

system performance under demanding floating-point operations.  

The test-bed system performance maintained its consistency in terms of latency in 

response to the concurrent running of the test suite with the floating point based 

application. The results strongly emphasize on the multitasking performance of the test-

bed CPU indicating performance concurrent running of the real time threads declared in 

the test-bed software library.  

The concurrent running of the real time threads is not as computationally 

demanding and intensive as compared to these tests. Hence, the consistency of 

performance of the real time application is concluded based on these tests. 

The test-bed CPU does not have a separate floating-point unit. As a result, the 

floating-point application shares the processor along with other tasks. Since the floating-

point tasks consume a large number of CPU cycles, the test-bed CPU is subjected to 

perform large amount of multitasking of concurrent applications and maintain the 

frequency of periodic real time threads.   

The test-bed CPU gave successful results for maintaining its performance even 

with a computationally intensive task such as the floating-point application and the real 

time kernel proved its multitasking capabilities.  

The floating-point application serves as an additional source of load on the RTAI 

scheduler and providing a good measure of the RTAI capabilities on the test-bed CPU. 

The test results are in accordance with [17] for test-bed equivalent configuration. 

The screenshot of the test result running concurrently with an application 

involving floating point calculation is showed in Figure 6.7. The results were then plotted 

to present plots of average and maximum latency in nanoseconds against the number of 

updates thereby presenting a graphical representation of the test results. 
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Figure 6.7: Latency test results with a concurrent floating-point application 
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Figure 6.8 shows the plot of the average latency with a concurrent floating-point 

application. The plot shows average latency wavering in the range of 13 to 14.5 

microseconds.  

The plot presents average latency in nanosecond on the vertical axis and presents 

the number of updates on the horizontal axis. A minor shoot in the response was observed 

where the average latency was as high as 14.5 microseconds and then settled down to 

around 13.5 microseconds. 
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Figure 6.8: Plot of average latency for latency test suite with concurrent floating-point 
application 
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Figure 6.9 shows the plot of the maximum latency test result with a concurrent 

floating-point application. The plot shows maximum latency wavering in the range of 20 

to 160 microseconds.  

The plot presents average latency in nanosecond on the vertical axis and presents 

the number of updates on the horizontal axis. Occasional peaks of around 160 

microseconds were observed which indicated the stress the test-bed CPU was put into 

owing to the floating-point application. 

 

 

Maximum Latency in Nanoseconds

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Number of Updates

M
ax

im
um

 la
te

nc
y 

in
 

N
an

os
ec

on
ds

 

Figure 6.9: Plot of maximum latency for latency test suite with concurrent floating-point 
application 
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The test suite for latency was then executed in parallel with the test suite for 

preemptionthat subjects the RTAI schedulers to intense load. Thus, parallel running of 

both the tests subjects the test-bed CPU kernel to maximum load in terms of large 

number of interrupts provided by the test suite for latency and maximum scheduling 

demand through the test suite for preemption.  

The preemption test and latency test run in one-shot mode to measure the 

difference in time between the expected switch time and the time when a task is actually 

called by the scheduler. However, in periodic mode of RTAI application the variation of 

the task period is used as measures of the scheduling latency and jitter. This is because 

the timer interrupt for RTAI is based on a time baseline that is different from the one 

used to carry out measurement calculations in the preemption and latency tests. As long 

as there is no major loss of timer interrupt, there will be no drift in periodic mode. Hence, 

the measures of this are valid measures. 

The test-bed performed consistently under the intense load of the preemption and 

latency test suite in terms of average latency and maximum latency with a slight 

deterioration in the performance. The average latency was in range of 14 microseconds to 

20 microseconds and maximum latency 28 microseconds to 35 microseconds.  

This performance indicates the test-bed CPU performance in the worst case in 

case of an application having high frequency interrupts and scheduling demands in 

handling interrupts (hardware and software). The real time concurrent threads act as high 

priority software interrupts. The real time kernel challenge lies in handling the real time 

software interrupts under intense load conditions. The real time scheduler has to ensure 

the consistency of the performance for the real time functions and accordingly has to 

schedule the tasks and yet maintain the timing specification requirements. The RTAI 

kernel in combination with the test-bed CPU was able to effectively handle the 

specification demands of any real time application, which is evident from the test results. 

The screenshot of the latency test result running concurrently with preemption test 

suite is showed in Figure 6.10. The results were then plotted to present plots of average 

and maximum latency in nanoseconds against the number of updates thereby presenting a 

graphical representation of the test results. 
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Figure 6.10: Latency test results with preemption test suite in parallel 
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Figure 6.11 shows the plot of the average latency for latency test suite with 

preemption test suite running in parallel. The plot shows average latency wavering in the 

range of 15 to 25 microseconds.  

The plot presents average latency in nanosecond on the vertical axis and presents 

the number of updates on the horizontal axis. A minor shoot in the response was observed 

where the average latency was as high as 25 microseconds and then settled down to 

around 20 microseconds. 
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Figure 6.11: Plot of average latency for latency test suite with preemption test suite in 
parallel 
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Figure 6.12 shows the plot of the maximum latency test result with preemption 

test suite running in parallel. The plot shows maximum latency wavering in the range of 

20 to 160 microseconds.  

The plot presents average latency in nanosecond on the vertical axis and presents 

the number of updates on the horizontal axis. Occasional peaks of around 1600 

microseconds were observed which indicated the stress the test-bed CPU was put into 

owing to the parallel execution of the preemption test suite. 
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Figure 6.12: Plot of maximum latency for latency test suite with preemption test suite in 
parallel 
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6.2. PREEMPTION TEST RESULTS 

Preemption means a high priority task preempts a low priority task. The 

preemption test is designed to verify the RTAI schedulers under intense load and 

provides as a stress utility test. The test suite combines the latency calibration task 

(highest priority task) with a fast task (second highest priority) and slow task (lowest 

priority task) and gives jitter results over execution of this test suite [17].  

The test results are verified by launching the display utilitythat shows the 

tabulated results of minimum, maximum and average jitters of the latency check task, 

next to high priority fast task, and of the slow task, at the lowest priority. Reasonable 

jitters are a clear indication of preemption. The preempt test on CPU subjects the CPU up 

to the 75% computing power. The parameters of this test were adjusted according to test-

bed machine specifications to avoid unfair locking of the scheduler. 

Jitter in regards to real time application means the fluctuation in latency and 

response time of the system. Figure 6.13 shows summary of results obtained for the 

preemption test when the test was conducted over a period of 1000 seconds. The results 

show reasonable jitters indicating preemption. 

Determination of Preemption is important because this test determines the time 

spent by test-bed single board computer when the high priority real time threads would 

preempt the low priority control task that would have access to CPU during the one 

millisecond sleep time of the threads. This result concludes that for periodic application 

reasonable preemption time performance was displayed by the test-bed single board 

computer and gives a good measure of the test-bed performance when the low priority 

user application would run concurrently with the high priority threads for sensor updates 

and the high priority actuator control functions defined in the test-bed software library. 

The screenshot of the preemption test is presented in Figure 6.13. The results 

were then plotted to present plots of jitter time for fast task and jitter time for slow task in 

nanoseconds against the number of updates thereby presenting a graphical representation 

of the test results. 
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Figure 6.13: Preemption test results 
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Figure 6.14 shows the plot of the jitter for the fast task switching. The plot shows 

the jitter for fast task wavering in the range of 100 microseconds to 200 microseconds.  

The plot presents jitter for fast task in nanosecond on the vertical axis and 

presents the number of updates on the horizontal axis. The initial updates started with less 

than 50 microseconds of jitter time and then maintained the jitter at around 100 

microseconds. As the updates progressed, the jitter was around 200 microseconds. 
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Figure 6.14: Plot of jitter for fast task 
 



   72

Figure 6.15 shows the plot of the jitter for the slow task switching. The plot shows 

the jitter for fast task wavering in the range of 100 microseconds to 200 microseconds.  

The plot presents jitter for fast task in nanosecond on the vertical axis and 

presents the number of updates on the horizontal axis. The initial updates maintained the 

jitter at around 100 microseconds and then as the updates progressed the jitter was around 

200 microseconds. 
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Figure 6.15: Plot of jitter for slow task 
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The test-bed system was then subjected to the preemption test concurrently with 

an application that performed complex floating-point calculations in terms of finding 

square roots and cube roots of floating point numbers ranging from 1.5 to 1000.5 in 

increments of one in an infinite loop. The test served as stress test in terms of finding the 

test-bed system performance under demanding floating-point operations.  

The test-bed CPU does not have a separate floating-point unit. As a result, the 

floating-point application shares the processor along with other tasks. Since the floating-

point tasks consume a large number of CPU cycles, the test-bed CPU is subjected to 

perform large amount of multitasking of concurrent applications and maintain the 

frequency of periodic real time threads.   

The test-bed system performance maintained its consistency in terms of latency 

and jitter response. The results strongly emphasize on the multitasking performance of 

the test-bed CPU and indicate performance of the concurrent real time threads declared in 

the test-bed software library with periodic rate of one millisecond with a computationally 

intensive task running in parallel. The concurrent running of the real time threads is not 

as computationally demanding and intensive as compared to these tests. Hence, the 

consistency of performance of the real time application is concluded based on these tests. 

The floating-point application serves as an additional source of load on the RTAI 

scheduler and providing a good measure of the RTAI capabilities on the test-bed CPU. 

The test results are in accordance with [17] for test-bed equivalent configuration. The test 

results presented reasonable jitter even under tough load conditions and indicated 

preemption even under the stress presented by the concurrent floating-point application. 

The screenshot of the test result running concurrently with an application 

involving floating point calculation is showed in Figure 6.16. The results were then 

plotted to present plots of jitter time for fast task and jitter time for slow task in 

nanoseconds against the number of updates thereby presenting a graphical representation 

of the test results. 
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Figure 6.16: Preemption test results with a concurrent running floating-point application 
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Figure 6.17 shows the plot of the jitter for fast task with concurrent running 

floating point application. The plot shows the jitter for fast task wavering in the range of 

200 microseconds to 1600 microseconds.  

The plot presents jitter for fast task in nanosecond on the vertical axis and 

presents the number of updates on the horizontal axis. The initial updates started with less 

than 400 microseconds of jitter time and then maintained the jitter at around 1400 

microseconds. As the updates progressed, the jitter was around 1600 microseconds. 
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Figure 6.17: Plot of jitter for fast task with a concurrent running floating-point application 
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Figure 6.18 shows the plot of the jitter for slow task with a concurrent running 

floating point application. The plot shows the jitter for slow task wavering in the range of 

400 microseconds to 450 microseconds.  

The plot presents jitter for slow task in nanosecond on the vertical axis and 

presents the number of updates on the horizontal axis. The initial updates started with less 

than 50 microseconds of jitter time indicating less initial demand on CPU and then 

maintained the jitter at around 400 microseconds consistently. 
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Figure 6.18: Plot of jitter for slow task with a concurrent running floating-point 
application 
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The test suite for preemption was then executed in parallel with the test suite for 

latencythat subjects the RTAI to handling maximum software interrupts at high 

frequency. Thus, parallel running of both the tests subjected the test-bed CPU kernel to 

maximum load in terms of large number of interrupts provided by the test suite for 

latency and maximum scheduling demand through the test suite for preemption. 

Since the preemption, jitter test creates a single real-time thread that asks to be 

awakened periodically, and compares expected wake time to actual wake time the test-

bed CPU was subjected to heavy and varying loads in form of the latency test suite 

running in parallel. Since jitter is mostly result of bus and memory contention the latency 

test suite serves as perfect load and test bench for testing the jitter result of the test-bed 

because the latency test suite subjects the CPU to loads on bus and memory contention. 

Minimum interrupt latency which is largely determined by the interrupt controller 

circuit and its configuration can also effect the jitter in the interrupt latencythat can 

drastically affect the real-time schedulability of the system. Maximum interrupt latency is 

largely determined by the methods an operating system uses for interrupt handling. 

Maximum latency in case of RTAI test suite is a measure of how well RTAI handles 

maximum load in terms of large number of interrupts and maximum scheduling demand 

placed by an application on the CPU. 

The test-bed performed consistently under the intense load of the preemption and 

latency test suite in terms of average latency and maximum latency with a slight 

deterioration in the performance. The jitter for fast task stayed consistently below 200 

microseconds and the jitter for slow task stayed in range of 400 microseconds.  

This performance indicates the test-bed CPU performance in the worst case in 

case of an application having high frequency interrupts and scheduling demands in 

handling the high priority real time threads. 

The screenshot of the preemption test result running concurrently with latency test 

suite is showed in Figure 6.19. The results were then plotted to present plots of jitter time 

for fast task and jitter time for slow task in nanoseconds against the number of updates 

thereby presenting a graphical representation of the test results. 
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Figure 6.19: Preemption test results with latency test running in parallel 
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Figure 6.20 shows the plot of the jitter for fast task with latency test suite running 

concurrently. The plot shows the jitter for fast task wavering in the range of 120 

microseconds to 160 microseconds.  

The plot presents jitter for fast task in nanosecond on the vertical axis and 

presents the number of updates on the horizontal axis. The initial updates started with less 

than 400 microseconds of jitter time indicating less initial demand on CPU and then 

maintained the jitter at around 1200 microseconds. As the updates progressed, the jitter 

was around 1600 microseconds. 
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Figure 6.20: Plot of jitter for fast task with latency test running in parallel 
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Figure 6.21 shows the plot of the jitter for slow task with latency test suite 

running concurrently. The plot shows the jitter for slow task wavering in the range of 400 

microseconds to 450 microseconds.  

The plot presents jitter for slow task in nanosecond on the vertical axis and 

presents the number of updates on the horizontal axis. The initial updates started with less 

than 50 microseconds of jitter time indicating less initial demand on CPU and then 

maintained the jitter at around 400 microseconds consistently. 
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Figure 6.21: Plot of jitter for slow task with latency test running in parallel 
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6.3. SWITCHES TEST RESULTS 

The switches test is a measure on context switching performance of the RTAI 

kernel on hardware its running. A context is the contents of a CPU's registers and 

program counter at any point in time. Context switching can be described in slightly more 

detail as the kernel performing the following activities with regard to processes 

(including threads) on the CPU: (1) suspending the progression of one process and 

storing the CPU's state (i.e., the context) for that process somewhere in memory, (2) 

retrieving the context of the next process from memory and restoring it in the CPU's 

registers and (3) returning to the location indicated by the program counter (i.e., returning 

to the line of code at which the process was interrupted) in order to resume the process. A 

context switch is also sometimes described as the kernel suspending execution of one 

process on the CPU and resuming execution of some other process that had previously 

been suspended.  

Switches test indicates maximum time required by RTAI for context switching 

[18] amongst tasks and disabling interrupts. To do so the test suite uses a repeated 

sequence of suspend/resume and semaphore signal/wait, with the FPU support and under 

a relatively heavy load of about 10 tasks and 40000 switches.  

The test suite when executed gives out the performance of the system under test in 

terms of number of tasks, number of switches, time required to execute the tasks and the 

switching time. The switches test was conducted over ten times and after execution of 

each test, the result was printed on the screen. The screenshot of the switches test results 

is presented in Figure 6.22. 

The switches test determined the context switching performance of the test-bed 

single board computer and gave a good summary of the worst-case time required by 

RTAI on test-bed to do context switching among the test-bed software library tasks and 

the user application tasks. The average switching time was in range of 5000 nanoseconds 

to 6000 nanoseconds. The switches test is importance in predicting the handling of test-

bed CPU in handling the switching of the application tasks.  
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Figure 6.22: Switches test results 
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Figure 6.23 shows the plot of the switches test result. The plot shows the task 

switching time for 10 respective tests wavering in the range of 5.3 microseconds to 5.8 

microseconds.  

The plot presents task-switching time in nanosecond on the vertical axis and 

presents the respective test number on the horizontal axis. The test maintained consistent 

results for all the tests showing consistent switching time. 
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Figure 6.23: Plot of switches test results 
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7. CONCLUSIONS AND FUTURE WORK 

 

The work presented in this thesis presents a real time approach in the 

development of test-bed for autonomous vehicle control schemes. Autonomous vehicle 

application developers can easily develop their applications based upon the test-bed 

software library. The real time implementation of the test-bed library ensures the sensor 

update and actuator control events are never missed, thus aiding development of an 

efficient system. 

The test-bed library allows a user friendly API providing all the basic functions 

required for motion control in either position mode or velocity mode. The user of this 

test-bed has to develop application for Autonomous vehicle navigation steering control 

and steering angle generation and link it to the test-bed software library to use its API. 

The test-bed library gave excellent consistent performance in terms of responding 

to the latency, preemption and switches test suite. The test-bed proved consistent in its 

performance when the test suites were executed in parallel with each other and with 

computationally intensive tasks. The test suite results are a good measure of how the test-

bed will respond to the execution of the Autonomous Vehicle Navigation Application. 

Hardware updates in future will improve the accuracy of testing autonomous 

vehicle applications on the test-bed. Fitting of the test-bed single bed computer with a 

rechargeable portable battery will add much needed mobility to the experiments. Right 

now, the test-bed single board computer runs on the dealer supplied wired battery. 

Adding a wireless network interface on the test-bed single board computer would add 

flexibility in remote debugging and remote testing of applications on the test-bed. Adding 

an H-bridge type power supply to the drive motor would add better motion control 

options. 

Additional configuration of RTAI would further improve the performance of the 

test-bed real time kernel. [17] Lists plenty of methods of RTAI performance 

optimization. The test-bed library was developed and executes completely in user space 

thereby eliminating programming and debugging hassles. However, this approach costs 

some overhead in terms of latency, scheduling and task switching since the real time 
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application executes completely in user space. Next approach in this work would be to 

develop the library completely in kernel space and load the library in the test-bed as 

kernel module. The kernel module would then be linked and delinked dynamically as per 

the execution of the application. 

The test-bed library functions have been designed to be re-entrant and can be used 

by more than one application at run time. However if two applications are to link and use 

the test-bed library in parallel the test-bed library can be configured as kernel module and 

can also be put up as a device file where the application links to the library using device 

function calls. 

Future work should extensively involve improving the test-bed real time 

performance and porting the library in kernel space. RTAI offers an extensive API in 

utilizing its real time capabilities. Future work should involve extensive use of the RTAI 

API in terns of improving the functionality and performance of the test-bed library. The 

main problem in utilizing this test-bed is having adequate knowledge of the test-bed 

single board computer, test-bed library and RTAI fundamentals. The solution to this 

problem is to maintain adequate and easy to refer documentation with every subsequent 

change made to the test-bed system kernel, hardware or RTAI. To be able to refer the 

knowledge provided by the maintained documentation is the solution to being able to 

develop efficient autonomous vehicle applications. 
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