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ABSTRACT 

In most solar energy systems, the output voltage of a photovoltaic panel is usually 

between 20 to 40 Vdc. In order to interface the panels to a 400 Vdc bus, a high voltage 

gain dc-dc converter is required.  

This thesis starts with analyzing and simulating several topologies that have been 

already introduced for this application. The voltage gain and efficiency are investigated 

analytically. A hardware prototype of one of the existing topologies, the interleaved boost 

converter with voltage multiplier cell, has been developed. Finally, a new topology with a 

higher voltage transfer ratio is proposed and its experimental results are compared with 

former topologies.  Simulations are used to verify the design and predict the performance 

of each topology. 



 

 

iv 

ACKNOWLEDGMENTS 

I would like to express my sincere and grateful thanks to my advisor, Dr. Mehdi 

Ferdowsi, for his generous guidance and support throughout my research. His critical and 

passionate research attitude always inspires me. I have achieved a lot with his help not 

only in the course of this study but also on how to be a successful researcher. I would 

also like to thank my committee member, Dr. Jonathan W. Kimball and Dr. Mariesa L. 

Crow for their valuable suggestions in my research.  

Thanks also goes to my colleagues and fellow friends in electrical machines and 

drives laboratory at Missouri S&T, such as Lucas Müller, Darren Paschedag, Jacob 

Mueller, Venkata Anand, Stephen Moerer, and Bhanu Prashant Reddy. I benefit a lot 

from many stimulating discussions with them.     

Special thanks goes to my family, my father, my mother as well as my sister, who 

endowed me and helped me constantly and countlessly. Your indispensable support is 

always with me and I am really grateful. All in all, I would like to thank everyone who 

has made it possible for me to have such a valuable opportunity in my graduate research. 



 

 

v 

TABLE OF CONTENTS 

Page 

ABSTRACT ....................................................................................................................... iii 

ACKNOWLEDGMENTS ................................................................................................. iv 

LIST OF ILLUSTRATIONS ............................................................................................ vii 

LIST OF TABLES .............................................................................................................. x 

SECTION 

1. INTRODUCTION .......................................................................................... 1 
 

 REVIEW ON HIGH-GAIN DC-DC CONVERTERS ............................. 1 1.1.

 RESEARCH OBJECTS AND THESIS ORGANIZATION .................... 9 1.2.

2. SIMULATION AND HARDWARE TEST  
    OF EXISTING CONVERTERS .................................................................. 11 

 
 BRIEF ANALYSIS OF EXISTING CONVERTERS ........................... 11 2.1.

 SIMULATIONS OF EXISTING PROMISING CONVERTERS ......... 12 2.2.

 Simulation of Boost Converter with Voltage Multiplier Cell.. ....... 12 2.2.1.
 

 Simulation of Interleaved Boost Converter with Voltage  2.2.2.
   Multiplier Cell.. .............................................................................. 18 

 
 HARDWARE DEVELOPMENT OF THE INTERLEAVED BOOST  2.3.

       CONVERTER WITH VOLTAGE MULTIPLIER ................................ 24 
 

 Coupled Inductor Design. ............................................................... 24 2.3.1.

2.3.1.1 Skin effect.. .................................................................................24 

2.3.1.2 Design procedure.. ......................................................................26 

 Theoretical Losses Analysis. .......................................................... 29 2.3.2.
 

2.3.2.1 MOSFETs loss. ...........................................................................29 



 

 

vi 

2.3.2.2 Diode and capacitor loss.. ...........................................................31 

 Circuit Performance Improvements. ............................................... 32 2.3.3.
 

2.3.3.1 Ringing voltage of MOSFETS....................................................32 

2.3.3.2 Efficiency improvements. ...........................................................36 

3. DESIGN OF NEW TOPOLOGY................................................................. 38 
 

 SCHEMATIC ......................................................................................... 38 3.1.

 THEORETICAL ANALYSIS ................................................................ 40 3.2.

 Operation Modes.. ........................................................................... 40 3.2.1.
 

 Voltage Transfer Ratio. ................................................................... 43 3.2.2.
 

 Voltage Stress on Components.. ..................................................... 45 3.2.3.
 

 Coupled Inductor Design.. .............................................................. 50 3.2.4.
 

 Analysis with the Leakage Inductance. .......................................... 51 3.2.5.
 

4. HARDWARE TEST RESULTS AND ANALYSIS ................................... 57 
 

 INPUT AND OUTPUT WAVEFORMS ................................................ 59 4.1.

 Input Voltage and Current. ............................................................. 59 4.1.1.
 

 Output Voltage and Current. ........................................................... 61 4.1.2.
 

 VOLTAGE STRESS ON COMPONENTS ........................................... 64 4.2.

 Voltage Stress Across MOSFETs.. ................................................. 64 4.2.1.
 

 Voltage Stress on Diodes. ............................................................... 66 4.2.2.
 

 EFFICIENCY ANALYSIS .................................................................... 70 4.3.

5. CONCLUSIONS .......................................................................................... 72 
 

BIBLIOGRAPHY ............................................................................................................. 73 

VITA …………………………………………………………………………………….76 



 

 

vii 

 
LIST OF ILLUSTRATIONS 

Page 
Figure 1.1 Parallel diode clamped coupled inductor boost converter ................................. 2 

Figure 1.2 Boost converter with winding-coupled inductor ............................................... 3 

Figure 1.3 Elementary Luo converter ................................................................................. 4 

Figure 1.4 Elementary additional circuit ............................................................................ 5 

Figure 1.5 Hybrid step up converter with switching structure............................................ 6 

Figure 1.6 Basic step up structure ....................................................................................... 7 

Figure 1.7 Boost converter with voltage multiplier cell ..................................................... 7 

Figure 1.8 Interleaved boost converter with voltage multiplier cell ................................... 8 

Figure 2.1 The boost converter with voltage multiplier cell simulation circuit................ 12 

Figure 2.2 Output voltage of boost converter with voltage multiplier cell ....................... 13 

Figure 2.3 Input current of boost converter with voltage multiplier cell .......................... 14 

Figure 2.4 Switch voltage stress of boost converter with voltage multiplier cell ............. 15 

Figure 2.5 Output voltage @Lr=2𝜇H ............................................................................... 16 

Figure 2.6 Output voltage @Lr=1𝜇H ............................................................................... 16 

Figure 2.7 Output voltage @Lr=3𝜇H ............................................................................... 17 

Figure 2.8 Inductor Lr voltage stress ................................................................................ 17 

Figure 2.9 Schematic of the interleaved boost converter .................................................. 18 

Figure 2.10 Output voltage of the interleaved boost converter ........................................ 19 

Figure 2.11 Switch voltage stress on both MOSFETs ...................................................... 20 

Figure 2.12 Input current of interleaved boost with voltage multiplier ............................ 21 

Figure 2.13 Four diodes current ........................................................................................ 22 



 

 

viii 

Figure 2.14 Cm and Cc currents ....................................................................................... 22 

Figure 2.15 Output voltage with different turns ratios ..................................................... 23 

Figure 2.16 Gate driver with MOSFET connection loop circuit ...................................... 34 

Figure 2.17 MOSFET drain-source voltage with Rg=10Ω ............................................... 35 

Figure 2.18 MOSFET drain-source voltage with Rg=2.7Ω .............................................. 36 

Figure 2.19 Simulation results of MOSFETs voltage stress with N=2 ............................ 37 

Figure 2.20 Simulation results of MOSFETs voltage stress with N=1 ............................ 37 

Figure 3.1 Proposed topology ........................................................................................... 39 

Figure 3.2 Proposed topology with magnetizing inductance ............................................ 39 

Figure 3.3 Switch pattern .................................................................................................. 40 

Figure 3.4 Operation mode I of proposed converter ......................................................... 41 

Figure 3.5 Operation mode Ⅱ of proposed converter ...................................................... 42 

Figure 3.6 Operation mode Ⅲ of proposed converter ...................................................... 43 

Figure 3.7 Proposed converter output voltage .................................................................. 45 

Figure 3.8 MOSFETs voltage stress of proposed converter ............................................. 46 

Figure 3.9 D1&D2 voltage ............................................................................................... 47 

Figure 3.10 Diodes D3 and D4 voltage stress .................................................................... 48 

Figure 3.11 C1 voltage ...................................................................................................... 49 

Figure 3.12 C2 voltage ...................................................................................................... 50 

Figure 3.13 Equivalent circuit with leakage inductance ................................................... 52 

Figure 3.14 Switch pattern with leakage inductance ........................................................ 53 

Figure 3.15 Transient mode I-II ........................................................................................ 54 

Figure 3.16 Transient mode II-I ........................................................................................ 55 



 

 

ix 

Figure 3.17 Transient mode III-I ..................................................................................... 56 

Figure 4.1 Input voltage of interleaved boost convert in [6] (10V/div)............................ 59 

Figure 4.2 Input voltage of proposed converter (10V/div) ............................................... 60 

Figure 4.3 Input current of interleaved boost convert in [6] (5A/div) .............................. 60 

Figure 4.4 Input current of proposed converter (5A/div) ................................................. 61 

Figure 4.5 Output voltage of  interleaved boost convert in [6] (100V/div) ...................... 62 

Figure 4.6 Output voltage of proposed converter (100V/div) .......................................... 62 

Figure 4.7 Output current of interleaved boost convert with in [6] (1A/div) ................... 63 

Figure 4.8 Output current of proposed converter (1A/div) ............................................... 63 

Figure 4.9 Drain-source voltage stress on S1 of interleaved boost converter in [6] ......... 64 

Figure 4.10 Drain-source voltage stress on S1 of proposed converter .............................. 65 

Figure 4.11 Drain-source voltage stress on S2 of interleaved boost convert in [6] .......... 65 

Figure 4.12 Drain-source voltage stress on S2 of proposed converter .............................. 66 

Figure 4.13 DC1 voltage stress of interleaved boost convert in [6] ................................... 67 

Figure 4.14 DC2 voltage stress of interleaved boost convert in [6] ................................... 67 

Figure 4.15 Do voltage stress of interleaved boost convert in [6] ..................................... 68 

Figure 4.16 D1 voltage stress of proposed converter ........................................................ 68 

Figure 4.17 D2 voltage stress of proposed converter ........................................................ 69 

Figure 4.18 D4 voltage stress of proposed converter ........................................................ 69 

Figure 4.19 Topologies efficiency comparison ................................................................ 71 

 

 



 

 

x 

LIST OF TABLES 

Page 
Table 2.1 AWG ac/dc Resistance Ratio at Common Converter Frequencies................... 25 

Table 2.2 Standard Litz wire ............................................................................................. 26 

Table 3.1 Converter simulation parameters ...................................................................... 44 

Table 4.1 Test condition and components list .................................................................. 57 

Table 4.2 Components list ................................................................................................ 58 

Table 4.3 Efficiency test of both topologies ..................................................................... 70 

 

  



 

 

1. INTRODUCTION 

 REVIEW ON HIGH-GAIN DC-DC CONVERTERS 1.1.
 

High performance and high-gain DC-DC Converters are widely employed in 

many industry applications. For example, some renewable energy resources, such as, 

solar would require high gain DC-DC converters to lift the output voltage of the 

photovoltaic panels from 20~40V to 400V. Those applications have two typical 

characteristics including high efficiency and high gain.  

Theoretically, a simple boost converter with an extreme high duty ratio close to 1 

is able to achieve this high gain. However, practically, simple boost converter 

performance is far from satisfaction. There are several limitations: 

1) Voltage stress on the switch is equal to the output voltage which is 

typically 400V. This high voltage stress on the switch could increase the switch loss 

significantly and there is not many choices of MOSFETs in the market that can handle 

this high voltage and still have a good efficiency. 

2) The inductance of the inductor would be very large to minimize its current 

ripple.  

3) The output diode reverse recovery loss is large. 

4) The efficiency of the basic boost converter is poor.  

Due to these limitations, many different topologies based on basic boost converter 

have been introduced in recent years. These topologies have relatively high efficiency 

with high voltage transfer ratio. In general, these topologies can be classified into 

different category based on their principal voltage lift cell. Mainstreams are interleaved 

boost converter with different voltage lift cell[1-11] and converters with switched 
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capacitors [12-16]. Those boost converters usually have one or more inductors or coupled 

inductors as a part of voltage lift cells. Switched capacitor converters, on the contrary, 

usually only have switches and capacitors to lift the voltage. The control scheme is 

complicated for switched capacitor converters and the cost of them are also higher 

because they require capacitors that have small equivalent series resistance, such as film 

capacitors.  Figure 1.1 is a parallel diode clamped coupled inductor boost converter 

proposed in [1].  
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Figure 1.1 Parallel diode clamped coupled inductor boost converter 

 

 

In this topology, the author uses a center tapped coupled inductor. The coupled 

inductor has two windings. The primary winding serves as the similar function as the 

filter inductor. The second winding operates as a voltage source in series to the power 

branch. The voltage gain can be extended by a proper turns ratio design of the coupled 

inductor. Dc is the clamped diode to pass the energy stored in the leakage inductor to the 

output side. Assuming the converter is operating in continuous conduction mode (CCM), 

the steady state output voltage to input voltage ratio for an ideal converter is 
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(1.1) 

Where Vo and Vin are the output and input voltages respectively, N is the 

secondary inductor turn to primary inductor turn ratio and D is the duty cycle. In this 

clamped circuit, the switch voltage stress is clamped to the output voltage and is not 

suitable for high voltage step-up application though its voltage transfer ratio is high.  

Another topology is shown in Figure 1.2 [2]. This topology introduced a three-

winding-coupled inductor interleaved with another three-winding inductor. This topology 

has a voltage transfer ratio which is 
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V N
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−
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Figure 1.2 Boost converter with winding-coupled inductor 

 

 

Where, N is the secondary inductor turn to primary inductor turn ratio.  
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This topology interleaves two boost converters to get a smooth input current and 

the voltage stress across the switches is 𝑉𝑜
𝑁

. By adjusting the inductor turns ratio, the 

switch voltage would be relatively small. However, the three-winding-coupled inductor 

design would be challenging.  And the switch voltage stress is not ideally small in high 

output voltage applications since the turns ratio is usually under 3.  

Another approach to design high-gain DC-DC converters is to add voltage lift 

cells to a basic boost converter to achieve high output voltage. As described in Figure 1.3, 

a basic Luo converter cell is introduced in [3]. When adding more elementary cells in 

series, it can have a higher output voltage transfer ratio. A two-cells in series circuit is 

shown in Figure 1.4.  
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Figure 1.3 Elementary Luo converter 
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Figure 1.4 Elementary additional circuit 

 

 

By charging the capacitors in parallel and discharging them in series, this 

converter can lift the output voltage to a significant high level. The voltage transfer ratio 

of this two-cell converter is  

 

3
1

o

in

V D
V D

−
=

−
 

(1.3) 

Also, by adding more elementary cells, the transfer ratio further increases. This 

kind of converter is using a lot of capacitors and diodes, which makes it more complicate 

and less efficient. As for the experimental results provided in the paper, it only has 80% 

overall efficiency. Also, since capacitors flow the main current to the output, it requires 

capacitors that have a small ESR. Usually, these capacitors are expensive.  

Despite these disadvantages, this converter open up a gate for researchers that by 

adding different cells to converters, one can easily get a high voltage transfer ratio. 
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Another similar topology that uses voltage lift cells is depicted in Figure 1.5 [4]. This 

converter also has a basic voltage lift cell as shown in Figure 1.6. This topology is 

simple. However, the voltage transfer ratio shown in (1.4) is not high enough. Adding 

cells to increase the gain is not an efficient way.  

1
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o

in

V D
V D

+
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−
 

(1.4) 
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Figure 1.5 Hybrid step up converter with switching structure 
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Figure 1.6 Basic step up structure 

 

 

Among those boost converters with voltage lift cells, one topology drawn most 

attention, the schematic is as Figure 1.7 [5]. This topology introduces the voltage 

multiplier that are usually employed in AC voltage lift applications. Small Lr is used for 

zero current switch (ZCS) of the diodes. The voltage transfer ratio is 

1
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in

V M
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−
 

(1.5) 
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Figure 1.7 Boost converter with voltage multiplier cell 
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M refers to the number of voltage multiplier cell. The voltage multiplier cell is 

simple and efficient. The overall efficiency is high according to [5]. However, the voltage 

gain is not good enough for high output voltage applications. Adding more cells to 

increase the gain is not an efficient and simple way because this would increase the 

circuit complexity and cost. Another way to increase the voltage gain is to couple input 

inductor and clamp inductor Lr, which is reported in [6].  

Figure 1.8 shows another modified edition of boost converter with voltage 

multiplier. This topology interleaved two basic boost with one voltage multiplier cell. 

The reason to interleave two boost is to achieve a continuous and smooth input current 

from the source. This topology has a voltage gain as  

2 1
1

o

in

V N
V D

+
=

−
 

(1.6) 
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Figure 1.8 Interleaved boost converter with voltage multiplier cell 
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Where, N is the turns of the secondary winding to the primary winding turns ratio. 

By adjusting the turns ratio, the voltage gain could increase significantly. The voltage 

stress on the switches is also clamped by the voltage multiplier cell to 𝑉𝑖𝑛
1−𝐷

, which is 

relatively smaller than other topologies. This is a good topology with high potential.  

In all, employing voltage lift cells into basic converters and interleaving them is a 

promising research stream and shows a good potential with a great high voltage gain.  

 

 RESEARCH OBJECTS AND THESIS ORGANIZATION 1.2.
 

After reviewing many high step-up voltage converter topologies, one realizes 

there are many topologies developed in many different ways in high voltage applications. 

The main concern is to design a high gain converter with high efficiency. Many 

converters would meet the high voltage gain requirement but without good efficiency. 

Other topologies may meet the high efficiency but with a relatively inadequate voltage 

gain. Or in order to get a high gain, they require adding more voltage lift cells to the 

converter which will increase the cost and deteriorate the efficiency.  

 Under this circumstance, the motivation is to design a new topology that has a 

high voltage transfer ratio and good efficiency at a low cost. This task is challenging. To 

design a new topology, one needs to fully understand how different types of converters 

work theoretically. Further, one needs to simulate several converters for reference, check 

components behavior and calculate the theoretical estimated efficiency to determine a 

general direction to explore more options, e.g., using a three-winding coupled inductor or 

a normal two-winding coupled inductor, using an interleaved boost converters or just one 

stage, and adding voltage lift cells or using other types boost converters.  
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After the converter to be built is chosen, a necessary procedure is to build a 

converter to test its performance and improve its efficiency and voltage gain. By doing 

so, some useful experience has been acknowledged and it’s helpful to design and build 

one’s own converter in a good way.  

In Section 2, existing promising topologies are simulated, one particular, the 

interleaved boost converter is built. Inspired by this interleaved boost converter topology, 

a new topology is proposed and built. This topology has a higher voltage gain with the 

same components as the interleaved boost converter and will be fully explained in 

Sections 3. The test results of both topologies are compared in Sections 4. 
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2. SIMULATION AND HARDWARE TEST OF EXISTING CONVERTERS 

 BRIEF ANALYSIS OF EXISTING CONVERTERS  2.1.
 

Among those high-gain DC-DC converters, the boost converter with voltage 

multiplier cell, as depicted in Figure 1.7, draws much attention. First, the voltage transfer 

gain is high, as shown in(1.5). Second, the structure is simple. It combines a basic boost 

converter with a voltage multiplier cell.   Third, the experiment efficiency is reported to 

be 92% [5]. All these characteristics are the essential requirements for a high-gain DC-

DC Converter. However, there are still some possibilities to improve this converter. For 

instance, the number of voltage multiplier cells affects the voltage gain. The more cells 

used, the more voltage gain is achieved. However, adding more cells would cause other 

side effects, like cost increase and efficiency decrease.  Also, the inductance of the 

resonant inductor Lr has a great effect on the output voltage which is not mentioned in the 

original paper, which will be discussed later in Section 2.2.1. 

So, the first step is to modify this converter to a converter which has a higher 

voltage gain while at a low cost and high efficiency at the same time. My first thought is 

to use a coupled inductor to replace input inductor Lin and resonant inductor Lr. This 

modification has been made through simulation and the results would be discussed in 

Section 2.2.2. From the result, it would increase the voltage gain while the input current 

ripple is significantly increases. This is not a good solution since the input current should 

be as smooth as possible. To fix this problem, having two stages of input current 

interleaved with each other with proper phase lag would be a good way to decrease the 

input current ripple.  
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This method has been proposed in [6]. A simplified version of interleaved boost 

converter with voltage multiplier cell is shown in Figure 1.8. It has a higher voltage gain 

compared with the one stage boost converter with voltage multiplier cell and also has a 

good efficiency [6]. Simulation and hardware building of this converter will be discussed 

later in this chapter to fully understand its operation.  

 

 SIMULATIONS OF EXISTING PROMISING CONVERTERS  2.2.
 

In this section, simulations results of two converters is discussed, the boost 

converter with voltage multiplier cell and the interleaved boost converter with voltage 

multiplier cell. 

 Simulation of Boost Converter with Voltage Multiplier Cell. The boost 2.2.1.

converter with a voltage multiplier cell is simulated and the outputs match with the result 

in [5]. The simulation schematic and parameters are as Figure 2.1 shows.  

 
 

 

Figure 2.1 The boost converter with voltage multiplier cell simulation circuit 

 

 

The parameters are chosen from [5]. For input voltage equals 20V, and output is 

400V, the simulation result of the output voltage is as shown in Figure 2.2. Also, the 
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input current ripple is small at output power of around 200W, as Figure 2.3 shows. The 

ripple is around 1.2A, while, the RMS value is 10.39A. Therefore the ripple is 11.54%. 

 

 

 

Figure 2.2 Output voltage of boost converter with voltage multiplier cell 
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Figure 2.3 Input current of boost converter with voltage multiplier cell 

 

 

The simulation results are in steady state. The output voltage can maintain 400 V 

while the duty ratio is around 0.907. There are some concerns about this converter. 

Normally, the duty ratio should be lower considering the switch rise and fall time and the 

reverse recovery effect of diodes.  Also, as Figure 2.4 shows, the switch stress on the 

MOSFETs is around 210V, which is relatively higher than normal. This is because the 

switch voltage is clamped by capacitor CM1. The ideal switch voltage stress is 𝑉𝑖𝑛
1−𝐷

, for a 

boost based converter. A lower switch voltage usually means a lower switching loss and 

conduction loss. 
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Figure 2.4 Switch voltage stress of boost converter with voltage multiplier cell 

 

 

Another disadvantage is the inductance value of Lr would affect the output 

voltage much, which is not mentioned in the original paper. This effect is simulated by 

setting three different values of Lr, 2𝜇𝐻, 1𝜇𝐻, 3𝜇𝐻, and the output voltage is shown as 

Figure 2.5 through Figure 2.7. As these figures show, slightely different  Lr values 

significantly affect the output voltage. A 1𝜇𝐻 difference inductance would change the 

output voltage by 9V. 1𝜇𝐻 inductance is relatively large since the Lr value is small. Also, 

this small inductor should handle almost 200V maximum voltage stress, as Figure 2.8 

depicts. For these disadvantages, this topology may not have a good potential on high-

gain DC-DC conversion applications. The next step is to simulate the interleaved boost 

converter with voltage multiplier to examine its performance.  
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Figure 2.5 Output voltage @Lr=2𝜇H 

 

 

 

Figure 2.6 Output voltage @Lr=1𝜇H 
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Figure 2.7 Output voltage @Lr=3𝜇H 

 

 

 

Figure 2.8 Inductor Lr voltage stress 
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 Simulation of Interleaved Boost Converter with Voltage Multiplier 2.2.2.

Cell. The schematic of the circuit is as Figure 2.9 shows [6]. For the input voltage of 

20V, the output voltage is 400V when the output power is 200W. The simulation result 

for the output voltage is as Figure 2.10 shows. 
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Figure 2.9 Schematic of the interleaved boost converter 
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Figure 2.10 Output voltage of the interleaved boost converter 

 

 

The simulation results are in steady state. The duty ratio is around 0.854 when 

N=1. N is the secondary turns to the primary turns ratio. The voltage transfer ratio is as 

equation (1.6). This converter has a higher voltage transfer ratio compared with boost 

converter with voltage multiplier cell. The switch voltage stress is depicted in Figure 

2.11. As we can see, the switch voltage stress is clamped by capacitor Cc to 137V, which 

matches 𝑉𝑖𝑛
1−𝐷

= 20
1−0.854

= 137𝑉. 
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Figure 2.11 Switch voltage stress on both MOSFETs 

 

 

The input current ripple is also small, as Figure 2.12 shows. The average current 

is 10.30A, while the current ripple is 1.4A, which is 13.59% of the average current. The 

efficiency is another concern. It is reported that, the efficiency is around 91% at 200W 

[6]. Since this topology employs many diodes and capacitors, it is necessary to check the 

voltage and current through these components in simulation first and find out whether the 

diodes and capacitors would significantly deteriorate the overall efficiency.  



 

 

21 

 

Figure 2.12 Input current of interleaved boost with voltage multiplier 

 

 

Figure 2.13 shows the four diodes current at the 200 W output power.  The diodes 

only conduct for a short time, nearly 10% of the cycle. The RMS currents are around 1.5 

A, which is small. So the conduction of diodes would not harm the efficiency 

significantly. And neither do the capacitors, as depicted in Figure 2.14.  
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Figure 2.13 Four diodes current 

 

 

 

Figure 2.14 Cm and Cc currents 
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The last concern is the coupled inductors. There are two coupled inductors used in 

this topology. In practice, the turn’s ratios for both inductors may be slightly different 

with each other. Also N may not be exactly integer. So, the turn’s ratio is changed a bit in 

the simulation, for example, N1 and N2 to 0.9 and 1.1 respectively. N1, N2 are the first 

inductor turns ratio and the second respectively. The circuit can still work and the output 

voltage waveform in steady state is still plain but with a slight increase, as depicted in 

Figure 2.15.  

 

 

 

Figure 2.15 Output voltage with different turns ratios 

 

 

The results are good so far. The voltage transfer ratio is high, and can be easily 

increased by increasing the secondary turn s number to the primary turns number ratio. 
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The switch voltage stress is acceptable.  So this topology is with good potential to further 

explore. Coupled inductor and voltage multiplier are two attractions. And this topology is 

capable of lifting 20V to 400V with good a performance. The next step is to build this 

topology and test it and compare its performance with the new topology which will be 

introduced in the following chapter.  

 

 HARDWARE DEVELOPMENT OF THE INTERLEAVED BOOST  2.3.
       CONVERTER WITH VOLTAGE MULTIPLIER 

 
In this section, hardware development and test results of the interleaved boost 

converter with voltage multiplier is presented. Performance improvement is also 

discussed. 

 Coupled Inductor Design. Coupled inductor’s structure is similar to a 2.3.1.

transformer. Primary and secondary windings are very close to each other. The difference 

is the magnetic cores. For coupled inductors, there are two different cores, gapped cores 

and powder cores. Gapped cores create an air gap between the two half cores and stored 

energy in the gap. Powder cores introduced a distributed air gap into the core structure. 

Design concerns and procedure are analyzed in this section.   

2.3.1.1 Skin effect. It is best to use only one layer of each winding to reduce the 

leakage inductance and parasitic capacitance [17]. Another issue is the skin effect. When 

using some large wires, skin effect would increase the resistance significantly, especially 

when at high frequency [17]. To reduce the skin effect, proper wire size should be 

carefully chosen. According to Table 2.1 [17], skin effect, depicted as 𝑅𝑎𝑐
𝑅𝑑𝑐

, varies 

depending on different AWG wire sizes and operation frequency. For optimal design, 𝑅𝑎𝑐
𝑅𝑑𝑐
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should be as small as possible. When operating at 50 kHz, AWG24 wire should be 

employed. If operating at 100 kHz, the largest wire would be AWG28.  

 
 

Table 2.1 AWG ac/dc Resistance Ratio at Common Converter Frequencies 

AWG ac/dc Resistance Ratio at Common Converter Frequencies 

 
 
AWG 

25kHz 50kHz 100kHz 
ɛ 

cm 
𝑅𝑎𝑐
𝑅𝑑𝑐

 
ɛ 

cm 
𝑅𝑎𝑐
𝑅𝑑𝑐

 
ɛ 

cm 
𝑅𝑎𝑐
𝑅𝑑𝑐

 

18 0.041868 0.032 0.029606 1.211 0.020934 1.530 
20 0.041868 1.001 0.029606 1.077 0.020934 1.303 
22 0.041868 1.000 0.029606 1.006 0.020934 1.137 
24 0.041868 1.000 0.029606 1.000 0.020934 1.033 
26 0.041868 1.000 0.029606 1.000 0.020934 1.001 
28 0.041868 1.000 0.029606 1.000 0.020934 1.000 

 

 

AWG28 is relatively thin and therefore the DC resistance is relatively large. 

Using AWG28 would reduce the skin effect but with a higher DC resistance. To 

minimize the conduction resistance, Litz wire is introduced. Litz wire is generally 

defined, as a wire constructed of individually, film insulated wires, braided together in a 

uniform pattern of twists and length of lay [17]. This kind of wire would minimize the 

skin effect and conduction resistance at the same time. The maximum and minimum 

number of strand for standard Litz wire is shown in Table 2.2.  
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Table 2.2 Standard Litz wire 

Standard Litz Wire 
AWG Minimum 

Strands 
Approximate 

AWG 
Maximum 

Strands 
Approximate 

AWG 
30 3 25 20 17.0 
32 3 27 20 19.0 
34 3 29 20 21.0 
36 3 31 60 18.5 
 

 

Unfortunately, there is no available AWG24 wire or Litz wire in the lab. For 

optimal design, 3 strands of AWG30 Litz wire should be employed to minimize both the 

conduction loss and skin effect. For convenience, a standard AWG22 wire is used for 

both primary and secondary windings. And for its best performance, the operation 

frequency should be 50 kHz.  

2.3.1.2 Design procedure. In [6], the primary side inductance is 100𝜇𝐻 . So, as 

to be identical, the inductance value should also be 100𝜇𝐻 . Based on the design 

procedure given in [17], the first step is to calculate the energy-handling capability. The 

peak current is obtained based on simulation. 

2 6 2
3100 10 11.29 6.373 10 [ ]

2 2
pkL I

Energy w s
−

−× × ×
= = = × −  

(2.1) 

Then calculate the electrical conditions, Ke. 

2 4 2 4 40.145 10 0.145 111 0.25 10 1.006 10e o mK P B − − −= × = × × × = ×  (2.2) 

Then calculate the core geometry, Kg. 

2 3 2

4

(6.373 10 ) 0.403
1.006 10 1.0g

e

EnergyK
K α

−

−

×
= = =

× ×
 

(2.3) 



 

 

27 

According to [17], one must choose a core that has a larger Kg. The best one is ETD49 

ferrite core, which has a Kg of 0.5917. 

In [6], the authors have used 20 turns for both primary and secondary sides of the 

coupled inductor with 100𝜇𝐻 inductance. The best way is to design an inductor that has 

the same number of turns and inductance for comparison with the results of the original 

paper. There is one magnetic core, gapped ETD49 with an AL value of 250𝑛𝐻/𝑇2, can 

meet this requirement.  

Approximately, inductance L can be calculated as (2.4) 

2
LL n A≅ ×  (2.4) 

Where n is the turns number and AL is inductance per square turn.  

So, using 20 turns for primary and secondary winding would have an inductance 

of 100𝜇𝐻. Since both primary and secondary side would have the same turns number, the 

DC resistance would be same. The diameter of ETD49 bobbin is 18.9mm.  

1.2WL D N mπ= × × =  (2.5) 

333.31 1.2 10 0.04Ωdc WR Lρ −= × = × × =  (2.6) 

Copper loss, Pcu, 

2
1,cu dc RMSP R I= ×  (2.7) 

The input current RMS value is determined: 

, ,in RMS in RMS outV I Pη× × =  (2.8) 

For Pout=200W, the Iin,RMS is 11.11A. Since there are two interleaved coupled 

inductor and their currents are synchronized, the RMS current for each inductor is 

approximately a bit more than half of the input current. So, take I1,RMS=I2,RMS=6.0A.  
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Thus,  

2
, ,1 ,2 2 6.0 0.04 2.88cu pri cu cuP P P W= + = × × =  (2.9) 

For secondary winding, I2nd,RMS=1.0A, 

2
,2 2 1.0 0.04 0.08cu ndP W= × × =  (2.10) 

So, total copper loss is, 

, 2.88 0.08 2.96cu totP W= + =  (2.11) 

For core loss,  

3( ) 10fe tfe
mWP W

g
−= × ×  

(2.12) 

Where,  

m n
ac

mW k f B
g

= × ×  
(2.13) 

40.4 10
2

ac
g

IN
B

L

π −∆ × × × 
 =  

(2.14) 

Lg is the gap length, which is 0.10cm. 𝑊𝑡𝑓𝑒is the core weight, which is 124g for ETD49 

and k, m, n are the core loss coefficients for P Ferrites material at switching frequency of 

100KHz, which are 4.855 × 10−5, 1.63 and 2.62 respectively, for worst condition [17]. 

∆𝐼 is the primary current ripple, which is 6.35A in simulation.  

So, take these numbers into the equations listed above, the core loss is, 

3 310 31.33 124 10 3.88fe tfe
mWP W W

g
− − 

= × × = × × = 
 

 
(2.15) 

The total loss would be  



 

 

29 

10.72tot fe cuP P P W= + =  (2.16) 

Calculate the fringing flux factor F. 

2 0.1 2 3.5401 ln( ) 1 ln( ) 1.29
0.102.110

g

gc

l GF
lA

×
= + = + × =  

(2.17) 

Calculate the peak flux density: 

4 40.4 10 0.4 20 1.29 12.06 10 0.194[ ]11.400.1
2500

pk
pk

g
m

N F I
B TeslaMPLl

π π

µ

− −× × × × × × × ×
= = =

+ +
 

(2.18) 

For ferrite core, the peak flux density should not be larger than 0.5 Tesla to avoid 

inductor saturation. 

 
  Theoretical losses analysis. Other losses including MOSFETs switching 2.3.2.

and conduction losses, diodes conduction losses also contribute overall power dissipation.  

2.3.2.1 MOSFETs loss. MOSFETs loss has two parts: conduction loss and 

switching loss.  

Switching loss: 

Switching loss is a combination of turn-on losses, turn-off losses, and MOSFET 

body diode switching losses. Turn-on loss includes switch on energy of MOSFET itself 

and caused by the reverse recovery of the body diode [18]. 

_ ( )SW ON ds Don on rr ds swP V I t Q V f= × × + × ×  (2.19) 

Where Vds is the drain-source voltage, IDon is the turn-on current, Qrr is the reverse 

recovery charge capacitor.  
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Ton, which is turn-on time, is actually a median of fall times, due to the non-linearity of 

the gate –drain capacitance, two-point estimation is introduced to simplify the non-

linearity turn-on time, so ton can be defined as below: 

_1 _ 2

2
on on

on

t t
t

+
=  

(2.20) 

_1
_1 ( ) rss

on ds dson Don
Gon

C
t V R I

I
= − × ×  

(2.21) 

_ 2
_ 2 ( ) rss

on ds dson Don
Gon

C
t V R I

I
= − × ×  

(2.22) 

Dr Gth
Gon

G

V VI
R
−

=  
(2.23) 

Crss_1 is the reverse transfer capacitance at VDS=0V, and Crss_2 is at VDS is at the worst 

condition determined by the application. VDr is the gate driver output voltage and VGth is 

MOSFET gate the threshold voltage, RG is gate resistance.  

Turn on energy of the body diode mostly consists of the reverse recovery energy: 

_
1( )
4D ON rr ds swP Q V f≈ × ×  

(2.24) 

 

Turn off loss is a similar process. The turn off loss of body diode can be 

neglected.  

Turn off loss of MOSFET is: 

_SW off ds Doff off swP V I t f= × × ×  (2.25) 

_1 _ 2

2
off off

off

t t
t

+
=  

(2.26) 
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_1
_1 ( ) rss

on ds dson Don
Goff

C
t V R I

I
= − × ×  

(2.27) 

_ 2
_ 2 ( ) rss

on ds dson Don
Goff

C
t V R I

I
= − × ×  

(2.28) 

Gth
Goff

G

VI
R
−

=  
(2.29) 

Conduction loss of MOSFETs can be calculated: 

2
_ rmsSW C dson DP R I= ×  (2.30) 

Conduction loss of body diode can be calculated: 

2
_ rmsD C D F DF FavgP R I V I= × + ×  (2.31) 

2.3.2.2  Diode and capacitor loss. Diode conduction loss is as (2.31). 

Capacitor loss can be expressed as (2.32) 

2
_ rmsCap C CP ESR I= ×  (2.32) 

Where, ESR is the equivalent series resistance of capacitor.  

Pluging numbers into (2.19), (2.24), (2.25), (2.30), (2.31) and (2.32), the 

theoretical total loss is as  

Pswitching=0.218W, PSW_C=0.227W, PD=0.40 × 2 + 0.64 + 0.64 = 2.08𝑊, 

Pc=0.393 + 0.75 + 0.377 = 1.52𝑊, 

MOSFETs loss Diode loss Capacitor loss Inductor loss Total 
0.89W 2.08W 1.52 10.72W 15.21W 
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 Circuit Performance Improvements. In this section, the factors that affect 2.3.3.

the circuit performance have been analyzed and approaches to solve and improve them 

are introduced.   

2.3.3.1 Ringing voltage of MOSFETS. The switch voltage has a slight ringing 

during the turn off status. The peak voltage is near 150V, which is the maximum drain-

source voltage of the MOSFET. This high spike voltage would damage the MOSFET. 

This ringing problem is caused by the parasitic capacitance and inductance connected at 

the switch node, where diode Dc and the inductor are connected. When the switches turn 

off, the suddenly interrupted current of the leakage inductance will flow into parasitic 

capacitor of MOSFETS and leads to a sharp voltage rise. Additionally, the conducted 

emissions would cause problems for any nearby Integrated Circuits, like gate drivers [19]. 

Without solving this problem and at this circumstance, this ringing voltage would require 

other MOSFETS that have a relatively higher drain-source voltage but with a higher 

static drain-source-on resistance, which in this case, will increase the conduction loss and 

harm the efficiency.  

To solve this problem, either adding a snubber circuit or optimizing the gate 

resistance would be helpful. A snubber circuit, especially for those only conducts during 

the switch transient period, will eliminate ringing voltage during switch turn off status 

while consume only the energy stored in parasitic capacitors and inductors. This circuit 

will not only reduce the ringing voltage significantly but also help improve the efficiency 

[20].  There are a lot of snubber circuits and can be divided into two main groups, the 

passive and active snubbers. Passive subbers, as the word passive indicates, are 

composed of tiny inductors, capacitors and diodes. They do not require extra sensors and 
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switches to control the circuit to conduct at certain precise time, which makes them 

simple and small[21-25]. Active snubber circuits, on the other hand, are composed of 

switches, inductors, capacitors and diodes. They use switches to control the circuit 

conducting during the switch turn off period[26-30]. Among them, a particular one, 

which only conducts during transient period, seems promising[31]. The snubber circuit 

proposed in [31] works well in simulation. However, in hardware prototype, it’s not good.   

Optimizing the gate resistance could be another way. This resistance includes the 

driver output resistance, external gate resistance and built-in internal gate resistance of 

MOSFETs. The only one that can be changed is the external gate resistance. Adding an 

external resistance would slow down turn on/off time of switches because the time 

required to charge/discharge the input capacitor of MOSFET(CISS) would increase. A 

smaller gate resistance would result an overshoot in the switch voltage but with a higher 

switching time while higher resistance will underdamp the oscillation but increase 

switching time and driver power dissipation. 

A proper external gate resistance, balance the switching time and overshoot 

voltage, should be applied to the gate circuit [32]. As depicted in Figure 2.16, the gate 

driver, gate resistor, series inductor, MOSFET input capacitor form a loop.  
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Gate 
Driver

Rg Ls

Ciss

 

Figure 2.16 Gate driver with MOSFET connection loop circuit 

 

 

The oscillatory spikes observed in most gate driver circuit are caused by the gate 

driver output voltage steep edges. These spikes can usually be damped or improved much 

by the external gate resistor and the internal resistor built in the drivers. By adjusting the 

external gate resistor, the spikes can be damped. Rg can be calculated for optimum 

performance by : 

( ), ,2 s
gate OPT driver G I

iss

LR R R
C

= × − −  
(2.33) 

where, Ls is the inductance in series with the gate driver and MOSFET gate; Ciss is the 

input capacitance of MOSFET, Rdriver is the output resistance of gate driver and RG,I is the 

input gate resistance of MOSFET [32]. 

The only unknown parameter is Ls. It comes from the wire that connects driver 

and MOSFET, and the built in inductance of gate driver and MOSFET. The wire 

inductance is measured under 50kHz, which is the current switching frequency, with an 

approximate value of 0.47µH. Plugging this value into (2.33), 

, 8.8gate OPTR = Ω  (2.34) 
Inductance should be a bit larger than 0.47µH,by including the built-in inductance 

of gate driver and MOSFET. So, in practice, the gate resistance is 10 Ω. Different values 
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of gate resistances have been applied to the circuit on breadboard and compared with 

each other, as Figure 2.17 and Figure 2.18 depict. The waveforms of drain-source voltage 

are as below, other components and parameters of the circuit are identical. The ringing 

spikes have been dumped by applying 10 Ω gate resistance.  It also improves the 

efficiency by 0.4%. 

 

 

 

Figure 2.17 MOSFET drain-source voltage with Rg=10Ω 
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Figure 2.18 MOSFET drain-source voltage with Rg=2.7Ω 

 

 

2.3.3.2 Efficiency improvements. The overall efficiency can be further improved 

by replacing components, such as diodes with more efficient ones. Also, the winding of 

coupled inductor can be further optimized. For example, put two wires in parallel with 

each other for the primary side. This method would decrease the DC resistance and skin 

effect and also help improve the conduction loss of primary side in fact of it conducts 

much more current than secondary.  

Another way may help is to increase the turns ratio N. By increasing N, the 

secondary current would reduce and voltage transfer ratio would increase. Also, with a 

larger N, the duty cycle would decrease which could lead to a smaller conduction loss 

and a lower voltage stress on MOSFETs. Figure 2.19 and Figure 2.20 show the 

simulation results of MOSFETs voltage stress difference.  
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Figure 2.19 Simulation results of MOSFETs voltage stress with N=2 

 

 

 

Figure 2.20 Simulation results of MOSFETs voltage stress with N=1 
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3. DESIGN OF NEW TOPOLOGY  

 SCHEMATIC 3.1.
 

The new topology depicted in Figure 3.1 is inspired by [5]. It basically combines 

a voltage multiplier cell with an interleaved boost converter. The proposed topology 

somewhat resembles the topology that was discussed in chapter 2. However, its voltage 

transfer ratio is higher.  

As shown in Figure 3.1, L1p and L1s are the primary and secondary windings of 

the first coupled inductor, respectively. Similarly, L2p and L2s are the primary and 

secondary windings of the second coupled inductor. S1 and S2 are the power MOSFETs. 

D1 serves as a classic boost converter output diode, and D2, which is in dotted line, is the 

clamping diode. The role of D2 will be explored later. C1 functions like an output 

capacitor of the two interleaved boost converters and also compose the voltage multiplier 

cell along with D3, C2, and the coupled inductor secondary windings. Cout is the output 

capacitor, and Ro is the load resistor. N is the primary turns’ number to the secondary 

turns’ number (n2/n1) for both coupled inductors.  

The magnetizing inductance of the coupled inductors serve as the boost inductor 

with turns number of n1, the secondary windings with turns number of n2 are connected in 

series with capacitor C2 to achieve high voltage gain. Coupling references of coupled 

inductors are pointed as “•” and “*” as given in Figure 3.1. 

Each coupled inductor can be modeled as a combination of a magnetizing 

inductor, representing the actual inductance of the coupled inductor, and an ideal 

transformer with corresponding turns ratio and a leakage inductance in series with the 
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magnetizing inductor. To simplify the analysis, the leakage inductance is temporarily 

neglected. The equivalent circuit is shown in Figure 3.2 
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Figure 3.1 Proposed topology 
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Figure 3.2 Proposed topology with magnetizing inductance 
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 THEORETICAL ANALYSIS 3.2.
 

 Operation Modes. Assuming the converter works in continuous 3.2.1.

conduction mode (CCM), then there are 3 different operation modes in one switching 

period as depicted in Figure 3.3. At any given time, one of the switches should be on. 

Usually, the command to S2 is similar to that of S1, but with a 180o of phase shift. Both 

switches conduct with the same duty cycle D. T is the cycle time. The equivalent circuit 

of each mode is explored. The bold lines indicate which part is conducting during a 

certain mode. 

 
 

Mode-Ⅱ 

S1

S2

T

180o phase delay

DT

tT

Mode-Ⅰ Mode-Ⅲ Mode-Ⅰ 

DT

t
 

Figure 3.3 Switch pattern 

 

 

Mode I: In this mode, both switches are conducting. Therefore, L1 and L2 are 

charged through the DC source (see Figure 3.4). The voltage drop on both inductors is 

the input voltage. Each inductor current rises linearly. The voltage multiplier cell does 

not conduct yet. The load is powered through the output. 

1 2L p L p inV V V= =  (3.1) 
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Figure 3.4 Operation mode I of proposed converter 

 

 

Mode II: In this mode, S2 opens while S1 stay closed (see Figure 3.5). The energy 

stored in magnetizing inductance L2 is transferred to the secondary side and turns diode 

D3 on. Therefore, C1 discharges and C2 charges. D1 and D2 are backward biased, and so is 

the output diode.  The voltage on L1p is the input voltage. Thus, the voltage on L2p can be 

derived.  

1L p inV V=  (3.2) 

1 2
2

C C
L p in

V VV V
N N

= + −  (3.3) 
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Figure 3.5 Operation mode Ⅱ of proposed converter 

 

 

Mode III: In this mode, S1 is off while S2 starts to conduct (see Figure 3.6). 

Capacitor C1 is charged through L1 and the input source. Meanwhile, the output capacitor 

is also charged through L1p, the secondary windings, C2 and D4. L2p is also charged 

through the source. Also, C2 discharges. The voltages on two primary side inductors can 

be derived.  

1 1L p in CV V V= −  (3.4) 

2L p inV V=  (3.5) 
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Figure 3.6 Operation mode Ⅲ of proposed converter 

 

 

 Voltage Transfer Ratio. During an entire switching cycle, the average 3.2.2.

voltage on the inductors is zero [33].  

1 0L pV< >=  (3.6) 

2 0L pV< >=  (3.7) 

From operation modes analysis, the voltages on the inductor primary side in 

different modes are all given. The equations and derivations are below: 

1 1(1 ) ( ) 0L p in in CV DT V D T V V< >= × + − − =  (3.8) 

1 2
2 (1 ) ( ) 0C C

L p in in
V VV DT V D T V
N N

< >= × + − − − =  (3.9) 

Therefore,  
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1 1
in

C
VV

D
=

−
 (3.10) 

2
( 1)

1
in

C
N VV

D
+

=
−

 (3.11) 

For the output voltage, in mode Ⅲ, capacitor C1, the secondary windings, C2, D4 

and output capacitor Cout form a loop. By applying KVL to this loop, the output voltage 

can be obtained.  

1 1 2( ) 0C in C in C outV N V V NV V V− + − − − + =  (3.12) 

1 2
2 2(1 )
1out C C in
NV N V V V

D
+

= + + =
−

 (3.13) 

For solar power system application, typically the minimum output voltage of a 

solar panel is around 20V, and the DC converter output voltage is 400V. The simulation 

parameters are listed in Table 3.1. Components including MOSFETs, diodes and 

capacitors are assumed to be ideal, without conduction and switching losses. 

 

 

Table 3.1 Converter simulation parameters 

Components Parameters 
Input voltage 20V 
Turn’s ratio N=2 
Duty ratio 0.70 

Output voltage 400V 
Output power 200W 

Switching frequency 50KHz 
Coupled inductor inductance 100𝜇𝐻 

C1,C2 47 𝜇𝐹 
Cout 470 𝜇𝐹 
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The output voltage and source current can be verified through simulation, as 

given in Figure 3.7: 

 

 

 

Figure 3.7 Proposed converter output voltage 

 

 

 Voltage Stress on Components. Voltage stress is another issue that draws 3.2.3.

attention. Generally, the voltage stress on every component should be as low as possible, 

especially for the MOSFETs. In this high voltage gain converter, every component 

voltage stress is theoretically analyzed. 

MOSFETs voltage: 

The Voltage stress on MOSFETs is big concern. Usually, the smaller voltage 

stress would lead to a smaller switching loss and conduction loss for MOSFETs. In this 
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topology, the voltage stress on both MOSFETs 
1

inV
D−

is 𝑉𝑖𝑛
1−𝐷

= 67𝑉. The simulation result 

is shown in Figure 3.8. 

 

 

 

Figure 3.8 MOSFETs voltage stress of proposed converter 

 

 

Diodes voltages: 

In mode I, D1 and D2 act like an output diode of a classical boost converter. Their 

voltage stress is the output voltage of the classical boost converter, as shown in Figure 

3.9, given as: 

1 2& 1 1
in

D D C
VV V

D
= = −

−
 (3.14) 
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Figure 3.9 D1&D2 voltage 

 

 

For voltage multiplier diode D3, in mode II,  

3 1
2 1
1D C out in
NV V V V

D
+

= − = −
−

 (3.15) 

In mode I,  

3 1 2
2

1D C C inV V V V
D

= − = −
−

 (3.16) 

 

For output diode D4 , in mode Ⅲ, 

4 1
2 1
1D C out in
NV V V V

D
+

= − = −
−

 (3.17) 

In mode I, 

4 2
1

1D Cout C in
NV V V V

D
+

= − = −
−

 (3.18) 

These voltages can be verified by simulation results, as shown in Figure 3.10: 
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Figure 3.10 Diodes D3 and D4 voltage stress 

Capacitor voltages: 

For output capacitor, the voltage is the output voltage. For the clamping capacitor, 

which is acting like a classical boost converter output capacitor, the voltage stress has 

been derived before, and the waveform is as Figure 3.11 shows. 

1 1
in

C
VV

D
=

−
 (3.19) 
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Figure 3.11 C1 voltage 

 

 

For voltage multiplier capacitor C2, the simulation waveform is shown in Figure 

3.12, the theoretical voltage is, 

2
1

1C in
NV V

D
+

=
−

 (3.20) 
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Figure 3.12 C2 voltage 

 

 

 Coupled Inductor Design. The coupled inductor design process is almost 3.2.4.

the same as what has been presented in section 2.3.1. Besides turns ratio N equals exactly 

1, a different inductor with N=2, has been made to measure how it effects the efficiency. 

Also, considering primary current is nearly 11A, two wires in parallel consist the primary 

winding to reduce the conduction loss.   
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 Analysis with the Leakage Inductance. As mentioned earlier, all the 3.2.5.

analysis before is based on ideal conditions. This procedure would simplify the entire 

converter behavior. However, in practice, none of components are ideal and some of 

these non-ideal components would entirely change the converter operation condition. For 

example, the leakage inductance of the coupled inductor has a significant influence on 

converter operation modes and voltage stress on switches and other components. Also, 

the built-in series resistance of MOSFETs, diodes and capacitors would also deteriorate 

the efficiency and increase voltage drop on these components.  

Fortunately, not all these non-ideal parameters have negative impacts. Leakage 

inductance may increase the converter complexity, but will also help achieve MOSFETs 

zero current switching. When MOSFETs are turned off, the energy stored in leakage 

inductance charges C1 and C2. Since the leakage inductance is relatively small and 

capacitor C1 and C2 are large enough, all the energy would transfer from the leakage 

inductance to the capacitors and there is no current flowing in coupled inductors and 

diodes D1 and D2. Thus, the zero current switching condition is obtained. Therefore, the 

turn on switching loss of MOSFETs and reverse recovery energy loss on diodes have 

been minimized. The equivalent circuit is as Figure 3.13 shows. 
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Figure 3.13 Equivalent circuit with leakage inductance 

 

 

When taking leakage inductance into picture, diode D2 is added to allow the 

energy stored in leakage inductance flow into C1. Another big difference is the operation 

modes. By adding leakage inductance into account, more transients will happen during 

the modes introduced earlier. The transient modes are analyzed and they are marked in 

switch pattern, as Figure 3.14 shows. 



 

 

53 

Mode-Ⅱ 

S1

S2

T

180o phase delay

DT

tT

Mode-Ⅰ Mode-Ⅲ Mode-Ⅰ 

DT

t

ModeⅠ-Ⅱ  ModeⅡ-Ⅰ   Mode III-INo transient

 

Figure 3.14 Switch pattern with leakage inductance 

 

 

Mode I-II: During this transient mode(see Figure 3.15), switch S2 is turned off. 

Diode D2 is forced to turned on and capacitor C1 is charged through source. Meanwhile, 

D3 is forward biased and capacitor C2 is charged by the source. Secondary windings are 

forced to conduct through S1. The energy stored in leakage inductance keeps D2 

conducting till all the energy is transferred to C2.  
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Figure 3.15 Transient mode I-II 

 

 

Mode II-I: During this mode(see Figure 3.16), switch S2 is turned on. Source 

begins to charge L2. D2 is reverse biased. C1 continues to charge C2 until C2 is fully 

charged. The energy stored in leakage inductance on secondary windings of the coupled 

inductors reaches zero which leads to the end of this mode.  
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Figure 3.16 Transient mode II-I 

 

 

Mode III-I: In this mode(see Figure 3.17), capacitor C1 has been fully charged by 

the source through D1 and thus D1 is reversed biased. Cout is still being charged until S1 

turns on and Mode II starts.  
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Figure 3.17 Transient mode III-I 
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4. HARDWARE TEST RESULTS AND ANALYSIS 

In order to verify converter performance other than simulations, the circuit is built 

on the breadboard. The circuit is tested under open-loop condition. The input side is an 

Agilent Tech N5766A DC power supply instead of a set of solar panel, which gives 

constant input voltage and current. The load is composed of pure resistors. Components 

and Parameters are listed as Table 4.1 and Table 4.2. 

 

 

Table 4.1 Test condition and components list 

Components Parameters 

Vin(input voltage) 20V 

Vout(output voltage) 400V 

Fs(switching frequency) 50kHz 

Duty cycle 0.71 for proposed converter 

0.78 for interleaved boost converter 

Output Power range 100W-270W 

N(turns ratio,n2/n1) 20/40 
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Table 4.2 Components list 

LM(magnetizing inductance) 98µH 

Cout(output capacitor) B43504A5477M(450V,470µF) 

RCout(ESR of Co) 0.29Ω 

S1 and S2 IRFP4568 

D4(output diode) VS-ETL1506-M3 

D3 VS-ETL1506-M3 

C2 EEU-EE2E470S 

RC2(ESR of C2) 0.12 Ω 

D1 and D2 FES16DT-E3/45GI-ND 

C1 EEU-EE2E470S 

R1(ESR of C1) 0.12 Ω 
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 INPUT AND OUTPUT WAVEFORMS 4.1.
 

 Input Voltage and Current. Input voltages and currents are measured by 4.1.1.

an MSO4034 oscilloscope with current and voltage probe. The scale is as in waveform. 

All the measurements are done on breadboard with 200 Watts of output power. The input 

voltage is around 20 V and the input current is around 11 A. The high frequency spikes 

come from the series small inductance in the long connection wires. Both topologies are 

facing this problem since all the waveforms are obtained on breadboard. Employing PCB 

design would decrease these spikes. The input voltages and currents of both converters is 

shown in Figure 4.1 through Figure 4.4. 

 

 

Figure 4.1 Input voltage of interleaved boost convert in [6] (10V/div) 
 

 



 

 

60 

 

Figure 4.2 Input voltage of proposed converter (10V/div) 

 

Figure 4.3 Input current of interleaved boost convert in [6] (5A/div) 
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Figure 4.4 Input current of proposed converter (5A/div) 

 

 

 Output Voltage and Current. Both converters’ output voltages and 4.1.2.

currents are flat and constant as depicted from Figure 4.5 through Figure 4.8. There is not 

much difference between these voltages and currents. This means regarding of the output 

voltage and current, both converters’ performance are in the same level and there is no 

significant distinguish between them.  
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Figure 4.5 Output voltage of interleaved boost convert in [6] (100V/div) 

 

Figure 4.6 Output voltage of proposed converter (100V/div) 
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Figure 4.7 Output current of interleaved boost convert with in [6] (1A/div) 

 

Figure 4.8 Output current of proposed converter (1A/div) 
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 VOLTAGE STRESS ON COMPONENTS 4.2.
 

 Voltage Stress Across MOSFETs. The MOSFETs drain-source voltage is 4.2.1.

another concern. Normally, the smaller voltage stress could help reduce switching loss 

and conduction loss. In practice, MOSFETs with low voltage limit usually have a low 

drain-source resistance which would decrease the conduction loss. Since proposed 

converter has a larger voltage transfer ratio, the duty cycle would be smaller than 

topology in [6] which leads to a smaller voltage stress ( 𝑽𝒊𝒏
𝟏−𝑫

) across the MOSFETs as 

shows from Figure 4.9 through Figure 4.12 in 50V/div. 

 

 
Figure 4.9 Drain-source voltage stress on S1 of interleaved boost converter in [6]  
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Figure 4.10 Drain-source voltage stress on S1 of proposed converter 

 

 

 

Figure 4.11 Drain-source voltage stress on S2 of interleaved boost convert in [6]  
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Figure 4.12 Drain-source voltage stress on S2 of proposed converter 

 

 

 Voltage Stress on Diodes. The voltage stress on diodes has some high 4.2.2.

frequency resonations, as depicted from Figure 4.13 through Figure 4.18. This 

phenomenon is caused by the parasitic capacitor built in with diodes. Fortunately, this 

does not have an impact on efficiency because there is no current through diodes when 

diodes are reverse biased.  

 



 

 

67 

 
Figure 4.13 DC1 voltage stress of interleaved boost convert in [6]  

 

 

 

         Figure 4.14 DC2 voltage stress of interleaved boost convert in [6]  
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            Figure 4.15 Do voltage stress of interleaved boost convert in [6]  

 

        Figure 4.16 D1 voltage stress of proposed converter  
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       Figure 4.17 D2 voltage stress of proposed converter  

 

Figure 4.18 D4 voltage stress of proposed converter  
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 EFFICIENCY ANALYSIS 4.3.
 

The input voltage and output voltage and current are measured by Fluke 8845A 

digit precision multimeter. The input current is around 12A, which is beyond the 

maximum current range of the multimeter, so the input current is based on the number 

given by power supply. These values are all RMS values. The efficiency of both 

Topologies are compared under the same conditions. The efficiency is defined as below: 

, ,

, ,

 100%
 

out RMS out RMS

in RMS in RMS

V Ioutput power
input power V I

η
×

= = ×
×

 
(4.1) 

Efficiency is measured under different output power with same input and output 

voltage. Comparison has been done between these two topologies, as listed in Table 4.3. 

the proposed converter has about 1% higher efficiency than the interleaved boost 

converter proposed in [6]. When the output power increases from 110 W to 270 W, both 

converters’ efficiency decrease as Figure 4.19 shows. 

 

 

Table 4.3 Efficiency test of both topologies 

Interleaved boost converter in [6] 
Vout(V) Iout(A) Vin(V) Iin(A) Rout(Ω) Pout(W) Pin(W) Efficiency 

400.8 0.26464 19.881 5.83 1500 106.0677 115.9062 0.915117 
400.7 0.3988 20.29 8.64 1000 159.7992 175.3056 0.911546 

399.008 0.49165 20.492 10.66 800 196.1723 218.4447 0.898041 
400.5 0.6763 21.11 14.37 600 270.8582 303.3507 0.892888 

Proposed converter 
Vout(V) Iout(A) Vin(V) Iin(A) Rout(Ω) Pout(W) Pin(W) efficiency 
402.65 0.2648 20.12 5.76 1500 106.6217 115.8912 0.920016 
403.8 0.3994 20.546 8.58 1000 161.2777 176.2847 0.914871 

398.038 0.49202 20.5245 10.5 800 195.8427 215.5073 0.908752 
401 0.6767 21.16 14.25 600 271.3567 301.53 0.899933 
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Figure 4.19 Topologies efficiency comparison 
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5. CONCLUSIONS 

This dissertation has introduced numbers of high gain DC-DC converters with 

different design considerations. One particular has been analyzed to inspire a new 

topology. The new topology proposed is based on the interleaved converter with voltage 

multiplier cell with some modifications. For both converters, theoretical and experimental 

analyses have been performed to compare their performance. Several key improvements 

has been seen in newly proposed converter, including a higher voltage gain, better 

efficiency and a lower voltage stress on MOSFETs, compared with the former one.  
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