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The pressuremeter is a versatile in situ testing instrument capable of testing a large range

of materials from very soft clay to weak rock. Due to limitations of other testing devices,

the pressuremeter is one of the few instruments capable of capturing stiffness and strength

properties of weak rock. However, data collected is only useful if the material tested is

properly modeled and desirable material properties can be obtained. While constitutive

models with various flows rules have been developed for pressuremeter analysis in soil, less

research has been directed at model development for pressuremeter tests in weak rock. The

result is pressuremeter data collected in rock is typically analyzed using models designed

for soil. The aim of this study was to explore constitutive rock models for development

into a pressuremeter framework. Three models were considered, with two of those three

implemented for pressuremeter analysis. A Mohr-Coulomb model with a tensile cutoff

developed by Haberfield [10] and a Hoek-Brown model initiated by Yang et al in [23] and

further developed by the author were implemented and calibrated against a data set of

pressuremeter tests from 5 project test sites including a total of 115 pressuremeter tests in a

number of different rock formations. Development of a multiscale damage model established

by Kondo et al [8] was explored. However, this model requires further development to be

used for pressuremeter data analysis.
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Chapter 1

INTRODUCTION

The pressuremeter is one of the most versatile in situ testing instruments used in the

field of geotechnical engineering; capable of data collection in materials ranging from very

soft clay to weak rock. Dependant upon the type of pressuremeter used and the manner

in which the test is performed, a large number of soil parameters can be obtained from

a pressuremeter (PM) test. Refer to Tables 1.1 and 1.2 on the next page, adopted from

Clarke (1995) after Robertson (1986) and Wroth (1984). Among them, the most common

parameters that are determined from a PM test are shear modulus, G, which can then

be correlated to Young’s modulus, E, undrained shear strength Su, friction angle ϕ′, and

the in situ horizontal shear stress σho. Accurately defining these parameters can lead to

more reliable and efficient shallow and deep foundation, tunnel, earth anchor and excavation

design. For this reason it is imperative to continue the advancement of pressuremeter in-

strumentation as well as the development and improvement of accurate constitutive models

for analysis of pressuremeter data.

The focus of this study is the interpretation of pressuremeter data obtained in weak rock.

Due to the limitations in testing capabilities for weak rock, the pressuremeter is one of few

and probably the most appropriate in situ test for estimating rock modulus [17] that is also

capable of capturing strength properties. Although the pressuremeter is highly capable of

testing weak rock, data collected is only useful if the material tested is properly modeled and

desirable material properties are obtained. Many constitutive models have been developed

to analyze different soil types, but less research has been directed toward the behavior of

rock subjected to pressuremeter loading. Complicating factors, such as propagating cracks,

discontinuities, tensile strength, and brittle behavior have attenuated the development of

weak rock models. A result of this is that tests performed in weak rock are often analyzed



2

using models designed to interpret soil. The goal of this research is accomplished by re-

viewing previous models developed for PM analysis and exploring constitutive models for

weak rock. This information is used to develop an alternative cavity expansion rock model

which is calibrated against a large pressuremeter data set and subsequently compared to

applicable previous models (in particular that by Haberfield (1987)). The data analyzed was

collected from five different sites throughout the United states and in other regions of the

world in weak, weathered and sometimes highly fractured material. The instrumentation de-

ployed was a pre-bored pressuremeter fitted with cavity displacement and pressure sensors.

Table 1.1: Applicability of the Pressuremeter (adopted from Clarke; adjusted by author)

Device Ground Type

Hard Rock Soft Rock Gravel Sand Silt Clay Peat

PBP A A B B B A B

SBP - A - B A A A

PIP - - - B A A B

Cone PIP - - - A A A A

Applicability: A-high; B-moderate; C-low; -not.

Table 1.2: Usefulness of the Pressuremeter (adopted from Clarke (1995); adjusted by author)

Device Parameters

Soil Profile u ϕ′ Su Dr mv cv k G σh OCR σ − ϵ

PBP B B - C B C B C - B C C C

SBP B B A A A A A A B A A A A

PIP A B B C B C C A B A C C C

Cone PIP C B B C B C C A B A C C C

Applicability: A-high; B-moderate; C-low; -not.
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Before the research performed for this thesis is presented, the author will first provide

background information on pressuremeter development, instrumentation and testing. The

author will also provide a brief description of the data analyzed and a working definition of

weak rock. This chapter then concludes with an outline of the thesis.

1.1 Background

The pressuremeter is a cylindrical probe with a flexible membrane that is inserted into the

ground and expanded radially against a borehole wall to measure the displacement obtained

given a certain pressure applied (refer to Figure 1.1)). The resulting data obtained is a stress-

strain curve, where the pressure applied (radial stress) is plotted against circumferential (∆

radius/initial radius), or volumetric strain. Both strain-controlled tests and stress-controlled

tests are possible dependant on the equipment and setup used. Four main categories of

pressuremeters exist as shown in Tables 1.1 and 1.2: pre-bored pressuremeter (PBP), self-

boring pressuremeter (SBP), push-in pressuremeter (PIP) and cone PIP, of which the focus

of this study will be the pre-bored pressuremeter. It should be noted that within any one

category a number of instrument configurations exist.

1.1.1 Development of the Pressuremeter Instrumentation and Interpretation

The idea of a pressuremeter was first developed by Kogler in 1933, but major development

of the instrument did not occur until Louis Mẽnard began his work at the University of

Illinois in the 1950s. Mẽnard developed and patented what is known as the Mẽnard pres-

suremeter in 1957, one of the most widely used types of pressuremeter today [7]. Also

during the 1950s in Japan, Fukuoka was researching laterally loaded piles and indepen-

dently developed a pressuremeter for the OYO Corporation. The Mẽnard pressuremeter

is a pre-bored pressuremeter with expansion induced by a controlled volume of water fed

into the pressuremeter cavity via an umbilical cable that extends to the ground surface.

Volumetric strain and pressure are recorded as the test proceeds. In 1980 Hughes and Irvin

developed the high pressure dilatometer manufactured in Cambridge, England, not to be

confused with the later developed Marchetti dilatometer. The instrument is equipped with

a pressure cell and three or six displacement sensors placed equidistant around the center of
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test pocket

ground surface

comm box

umbilical cable

test zone

drill rod
regulator
pressure computer

probe

Figure 1.1: Pressuremeter Test Setup

the expanding zone of the instrument. Previously analog and now digital signals from the

pressure cell and strain gauges are processed by a computer board within the instrument

and then sent to the surface via an umbilical cable attached to the instrument. At the

surface the signals are interpreted by computer software and a plot of pressure versus cavity

strain is created. Data analyzed for this research was collected with instruments developed

by Hughes (Cambridge type) and will be described in greater detail later.

The advancement of the pressuremeter has subsequently led to the development of a

number of material models to analyze the data collected. However, the theory of cavity

expansion existed prior to the creation of the pressuremeter, originally developed by Lamẽ

in 1852. The interpretation techniques for the pressuremeter have often been developed

for a specific material and focus on either drained or undrained analysis. In this regard,

materials analyzed are usually viewed as either purely cohesive materials or purely frictional

materials. Table 1.3 briefly summarizes the history of model progression. The more common
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Table 1.3: Theoretical Interpretation of a Pressuremeter Test (after Clarke (1995))

Lamẽ (1852) Linear elastic material

Bishop et al. (1945) Cohesive material

Mẽnard (1957d) Frictional cohesive material

Vesic (1972)

Gibson and Anderson (1961) Linear elastic perfectly plastic material with

Windle and Wroth (1977a) no volume changes

Jefferies (1988)

Houlsby and Withers (1988)

Denby (1978) Non-linear elastic perfectly plastic material with

Ferreira and Robertson (1992) no volume changes

Prẽvost and Hoeg (1975) Elastic-plastic with strain hardening or softening with

no volume changes

Ladanyi (1963a) Linear elastic perfectly plastic material

Vesic (1972) with volume changes

Hughes et al. (1977)

Robertson and Hughes (1986)

Houlsby et al. (1986)

Palmer (1972) Cohesive material with no volume changes

Manassero (1989) Cohesionless material with volume changes
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models used in practice today are those developed by Gibson and Anderson (1961), Palmer

(1972) and Jefferies (1988) for cohesive materials; Hughes (1977) and Manassero (1989) for

frictional materials. These models will be described in more detail in the following chapter.

It should be noted that models developed by Rocha (1966), Ladayni (1976) and Haberfield

(1987) are not included in Table 1.3, but will also discussed in the next chapter.

1.1.2 Pressuremeter Instrumentation and Typical Data Collected

initial radius

P

Pressure

feeler arms

initial radius
expanded radius expanded radius

Figure 1.2: Pressuremeter Expansion (Cross Section)

As previously mentioned, a number of different types of pressuremeters exist. The focus

of this study revolves around data collected using a pre-bored monocell pressuremeter of the

Cambridge type; the description that follows will be applicable to this type of pressuremeter.

The Cambridge style pre-bored pressuremeter developed by Hughes consists of a cylindri-

cal probe with three displacement sensors and a pressure sensor. The three displacement

sensors, spaced 120 degrees apart, are comprised of feeler arms equipped with strain gauges

that measure the movement of the inside of a rubber membrane as it expands laterally
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(refer to Figure 1.2). The rubber membrane encloses the electronics of the instrument and

is locked down on either end of the instrument via a threaded coupling mechanism to avoid

pressure loss during a test. The strain gauges and pressure sensor both feed information to

a computer board within the instrument. Electronic cables run from the computer board

up an umbilical cable to the surface. The umbilical cable serves two purposes: i) protection

for the electronic cables running from the instrument to the surface and ii) feeds pressurized

air or oil to the instrument during a test. The information sent to the surface is processed

by a communication box, which sends information to a computer for interpretation by data

collection software. The software allows the operator to observe a live stress-strain curve

while performing a test. The flow of air or oil is controlled by the operator using a regulator

at the surface, which hooks into the umbilical cable. Prior to installation for a test, the

instrument is also fitted with a shield to protect the membrane, consisting of a series of

metal strips that allow for free movement of the instrument. This style pressuremeter is

approximately 2.5 feet (.76 meters) long and 3 inches (7.6 cms) in diameter. The portion

that expands during a test is approximately 18 inches (45.7 cms) long (deemed the ‘test

zone’ in Figure 1.1).

The testing process involves employing drillers to create test pockets (refer to Figure

1.1) at different locations of interest for a particular engineering project. Often multiple

boreholes will be selected to perform pressuremeter testing and a number of depth locations

are assigned. At a given borehole location, the driller will ream out a hole of larger diameter

(typically 4-6 inches (10.1-15.2 cm)) to a depth just above the location of the desired test

pocket. A test pocket is then drilled out using a 2-15/16 inch tricone bit or NQ core barrel,

which is typically used in a rock. The term NQ is the size designation for the core barrel

used; NQ rod has an outside diameter of approximately 2.75 inches (7 cms) and cuts a

hole approximately 3 inches in diameter. Depending upon conditions, usually a 5-6 foot

(1.5-1.8 meter) test pocket is drilled. The pressuremeter is then lowered into the test pocket

as far as possible; ground conditions may be such that the pressuremeter is stopped short

due to sloughing or inhibiting rock or gravel fragments which cease the advancement of the

instrument. After testing this location, the instrument is raised 18 inches and another test

is performed in the same test pocket (if possible). The second test serves multiple purposes:
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i) if one test is of poor quality due to a washed out area in the test pocket, the second may

provide useful data, ii) if both tests are good quality and in the same material, confirmation

of the material properties can be gained during the modeling process, and iii) if both tests

are good quality and in different materials, the properties of both materials are captured

(in the case of highly variable material or interbedded zones). The process described above

is then repeated at the next testing location.

During a test, the flow of air or oil into the instrument is controlled by the PM operator.

The judgement of the operator is crucial in collecting data. Depending upon what parame-

ters are desired, the test may be performed in a different fashion. The main goal, however, is

to deform the surrounding material sufficiently so that material yield or failure has occurred

if such pressures are within the achievable range of the instrument (typical ranges are 0-20

MPa or approximately 0-2,900 psi). During the process a series of unload-reload loops are

also performed to determine the shear modulus of the material. Of course, considerations

for disturbance due to drilling action, the size of the pocket relative to the instrument and

the possibility of damaging the instrument are of concern as well.

An example of a test performed in rock-like material is given in Figure 1.3. The test

commences at point A and the pressure is gradually increased until the initiation of the

first unload-reload loop at point B. From this portion of the test, the in situ stress and

initial shear modulus can be determined, the details of which will be discussed later. It

should, however, be noted that the portion of the test between points A and B is prone to

disturbance from drilling action. Evidence of disturbance is present in this test as illustrated

by the irregular shape of the initial loading curve.

Beyond point B, the material is unloaded and upon reloading, the curve takes on a

shape more indicative of an initial loading curve without the presence of disturbance. The

pressuremeter is then incrementally loaded until point C.

Between points C and D, the pressure is held constant for three minutes in order to

capture the movement of the surrounding material under a constant load; this is deemed a

‘creep test’.

Immediately following the creep test, the pressuremeter is again unloaded between points

D and E, and then reloaded from points E to F forming an unload-reload loop. It is from
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Figure 1.3: Example of Pressuremeter Test in Rock

this loop that the shear modulus of the material can be determined. The initial portion of

the slope can also be used for determining the shear modulus, but lower modulus values are

often obtained due to the drilling disturbance and stress relief. As the loading is increased

further, a series of unload-reload loops is performed. Parallel loops indicate a consistent

shear modulus value that can be reported with confidence. In the case where loops are

not parallel, this is indicative of disturbance or that a strain-hardening or strain-softening

material is present.

The loading is again increased further until the final unloading is commenced at point

G. Although yield has occurred in this test, it’s worth noting that the test was terminated

as a result of the pressure limitations of the instrument. Typically, a test in soil will be

terminated due to the strain capacity of the instrument and it is often the goal to reach a

material strain of 10%.
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During the unloading, a reload-unload loop is performed in order to gain more informa-

tion about the material shear modulus. At point H, the pressuremeter is almost completely

deflated. The rapid collapse of the membrane prior to point H is a result of the static

pore water pressure present in the surrounding formation. Once the pressure inside the

membrane is reduced below the static pore pressure, the membrane is quickly forced back

towards the instrument body.

The overall shape of the loading and unloading curve can both be modeled for strength

properties provided that sufficient yield has occurred. Such details of the analysis process

will be further discussed in the following chapters of this thesis.

1.1.3 Weak Rock Data and Definition

It is important to establish a working definition of the material modeled in this research

project. Therefore a classification scheme separating soil and rock, that accounts for the

general strength of rock must be established. A parameter that is commonly used to describe

rock strength is the unconfined compressive strength, also known as the uniaxial compressive

strength (σc). A scheme that considers these qualities, adopted by [17] after Meigh and

Wolski (1979), has been reproduced in Figure 1.4 and provides a straightforward working

definition. However, it should be noted that this chart does not consider the effects of

discontinuities and rock structure, which should be accounted for [17]. Nevertheless, it

does provide a scale of measure and generally, weak to moderately weak rock has an axial

compressive strength in the range of 1 - 12.5 MPa.

The data set analyzed in thesis consists of 115 pressuremeter tests in a number of rock

types including: limestone, siltstone, sandstone, gruss, shale, mudstone, meta-welded tuff

and a cemented cobble, gravel matrix. Through modeling and background information, it

was determined that uniaxial compressive strength of the data collected typically ranged

from 4.5 - 50 MPa, with data from one site (in meta-welded tuff) in the range of 70 - 120

MPa. With the exclusion of the tests in meta-welded tuff, which would be defined as strong

rock, the majority of the data varied between weak to moderately strong rock. The data

collected in the meta-welded tuff allowed for easier model calibration and provided a good
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Figure 1.4: Scale of Strengths for classifying rock (adopted from [17] after Meigh and Wolski
(1979))

basis for comparison to the weaker rock formations. It should also be stressed that the tuff

is only considered strong rock in an intact state.

1.2 Thesis Outline

As described above, the purpose of this study is to explore constitutive models for weak

rock using cavity expansion theory to analyze pressuremeter data. A Hoek-Brown model

is developed and used to interpret pressuremeter data from the five sites mentioned. The

equivalent strength values determined through the Hoek-Brown analysis are compared to

the strength parameters found analyzing the same data set using a Mohr-Coulomb model
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with a tensile cutoff developed by Haberfield (1987). A third constitutive model with a

double yield criterion considering crack propagation is also investigated for possible future

use in analyzing pressuremeter data. The thesis will be organized and presented as follows:

• Chapter 2 provides a literature review of previous pressuremeter models developed.

Theory is presented covering both elastic and inelastic (plastic) deformation using a

cavity expansion framework. The validity of the models for use in weak rock analysis

is then discussed.

• Chapter 3 goes into the development of the Hoek-Brown model and also provides

further detail of the model developed by Haberfield. Validation of the models is

provided and a parametric analysis of the two models is presented and discussed.

Finally, the framework of a third constitutive model is outlined.

• Chapter 4 presents details of data interpretation and the pressuremeter data set ana-

lyzed. Some sample results of the data analysis for both the Hoek-Brown and Mohr-

Coulomb model are presented and discussed.

• Chapter 5 discusses the performance of the models and concluding thoughts on strength

and weaknesses of the models. A framework for possible future work is also presented.

• Appendix A provides plots of all the data analyzed by the Hoek-Brown model. Input

parameters and other pertinent information is provided for the five test sites in which

data was collected.
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Chapter 2

CAVITY EXPANSION THEORY FOR PRESSUREMETER ANALYSIS

The different models developed to analyze pressuremeter data have all spawned from the

same theory of cavity expansion developed originally by Lamẽ in 1852 for a linear elastic

material. When solving a cavity expansion problem there are two different approaches

which can be utilized; either a constitutive model for the soil or rock is used to derive

a cavity expansion curve or a cavity expansion curve is developed using a mathematical

function or flow rule, and parameters are derived by applying a constitutive model to the

function. The second method is often applied to develop new pressuremeter models and

is known as an inverse cavity expansion method [24]. Both methods produce an idealized

pressuremeter stress-strain curve which can be used to determine stress and displacement

fields. Adjustment of key parameters affecting the shape of the cavity expansion curve

is required until a ‘best fit’ to the recorded data is accomplished. In order to properly

develop a new model or adapt a constitutive model for use in pressuremeter analysis, first

an understanding of cavity expansion theory and a review of some of the existing models is

required.

Before presenting the existing models, it is important to first consider the basic assump-

tions used in the model development. The assumptions true to most pressuremeter models

are as follows:

• The material tested is homogeneous

• The material behaves isotropically

• Axial symmetry is valid

• The material deforms as a right cylinder and thus deforms in plane strain

• Loading and strain rate effects are negligible

• No significant disturbance occurs prior to the start of a test

• The material follows a unique stress-strain law
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Along with the above assumptions, it is generally accepted that small strain theory is appli-

cable, which remains valid until higher strain and dilation angles are reached [7]. Dependant

upon the material tested, a drained analysis assuming volume change or an undrained anal-

ysis assuming no volume change is often applied. Although a drained analysis is more likely

appropriate in modeling weak rock, solutions for both types of analysis will be presented

in this chapter. Flow rules and yield criterion adopted will be included in the discussion of

each model.

It should be noted that the purpose of this chapter is to provide a general overview of

some of the principals of cavity expansion and it’s application to the pressuremeter. Some of

the pressuremeter models currently adopted and pertinent equations are provided. However,

a more detailed description of model development and formulation is given in Chapter 3,

specifically for the models explored for analyzing weak rock that are the focus of this thesis.

2.1 Cavity Expansion in an Elastic Medium [7][10][24]

During a pressuremeter test, as pressure is applied, the material will initially deform in

an elastic manner. The solution for an expanding right cylinder in an infinite elastic ma-

terial can be determined by utilizing boundary conditions related to conditions of stress

or displacement. Both solutions will be presented here. From these results, a method for

determining the shear modulus, G, will also be revealed. It should be recognized that the

following solutions are in cylindrical coordinates with vertical stress, σz, radial stress, σr

and circumferential stress σθ acting as the principal stresses. It follows that ϵz, ϵr and ϵθ

are the principal strains.

2.1.1 Solution using Displacement Boundary Conditions

For a given element of soil, dr, located at a distance r, in an axisymmetric system the

equation for equilibrium in terms of radial and hoop stress is as follows:

dσr
dr

+
σr − σθ

r
= 0 (2.1)

where σr and σθ are stresses in the radial and circumferential directions respectively and r is

the radius from the neutral axis, an example of which is given in Figure 2.1. The kinematic
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Figure 2.1: Cross Section of an Expanding Cylindrical Cavity

relations for an expanding cylindrical cavity are:

ϵθ =
u

r
(2.2)

and

ϵr =
du

dr
(2.3)

where u is displacement in the radial direction. The cavity strain directly measured during

a pressuremeter test can be related to the radius of the expanding cavity as follows:

ϵc =
a− ao
ao

(2.4)

where a is the radius or the inner cavity (pressuremeter cavity) and ao is the initial inner

cavity radius. It can be noted that cavity strain as defined in Equation (2.4) is a measure
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of circumferential strain. If the material is assumed to be isotropic and behave in a linear

elastic manner, Hooke’s Law can be used to define the constitutive relations between stress

and strain for the axisymmetric case as follows:

Eϵr = σr − ν(σθ + σz) (2.5)

Eϵθ = σθ − ν(σr + σz) (2.6)

Eϵz = σz − ν(σθ + σr) (2.7)

where E is the elastic modulus and ν is Poisson’s ratio. If it is recognized that the strain

in the vertical direction is zero (plain strain assumption), then the above equations can be

rearranged yielding:

ϵr =
1− ν2

E

(
σr −

ν

1− ν
σθ

)
(2.8)

ϵθ =
1− ν2

E

(
σθ −

ν

1− ν
σr

)
(2.9)

For a homogeneous, isotropic, linear elastic material (as assumed here) Young’s modulus

can be related to the shear modulus as follows:

E = 2G(1 + ν) (2.10)

Substituting the relation in Equation (2.10) into Equations (2.8) and (2.9) and solving in

terms of radial and circumferential stress yields:

σr = G

(
2ν

1− ν

)
ϵθ + 2G

(
1− ν

1− 2ν

)
ϵr (2.11)

σθ = G

(
2ν

1− ν

)
ϵr + 2G

(
1− ν

1− 2ν

)
ϵθ (2.12)

Combining the kinematic (Equations (2.2) and (2.3)) and constitutive (Equations (2.11) and

(2.12)) relations with the equation for equilibrium (Equation (2.1)) yields the differential

equation:
d2u

dr2
+

1

r

du

dr
− u

r2
= 0 (2.13)

The above equation is a second order differential equation which can be solved by substitu-

tion in terms of displacement using the general format below:

u = Ar +
B

r
(2.14)
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where A and B are constants which can be solved by applying boundary conditions. The

boundary conditions are:

u→ 0 as r → ∞

u = a− ao when r = a

Applying these boundary conditions the following solutions for constants A and B can be

determined:

A = 0 (2.15)

B = (a− ao)a (2.16)

This results in the following equation for displacement at the cavity wall:

u = ϵc
aoa

r
(2.17)

Combining the above relation and the constitutive relations for an incremental change in

stress (σr − σho) allows the stresses to be computed as follows:

σr = po + 2Gϵc
aoa

r2
(2.18)

σθ = po − 2Gϵc
aoa

r2
(2.19)

where po is the in situ pressure, equivalent to the ambient horizontal stress σho.

Recognition that a− ao is small during elastic expansion, and that σr = p at the cavity

wall, Equation (2.19) can be rewritten as:

p− po = 2Gϵc (2.20)

where p is the internally applied pressure. Rearranging to solve for the shear modulus, G,

yields the following equation:

G =
0.5(p− po)

ϵc
(2.21)

Thus the shear modulus can easily be derived from the slope of the stress-strain curve

produced by the pressuremeter during elastic deformation. The above equation is applied to

the elastic portion of the curve developed during initial loading and deformation. However,
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as this section of the curve is often prone to disturbance, or not very well defined, unload-

reload cycles are often performed during a test to capture a more realistic representation

of the elastic material behavior. Accounting for this, Equation (2.21) can be written in a

more general form as:

G = 0.5
a

ao

dp

dϵc
(2.22)
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Figure 2.2: Typical Pressuremeter Curve with Initial Modulus: Gi and Unload-Reload
Modulus: Gur. This is for illustrative purposes, as the actual slopes of these lines measured
as shown would equal 2G, i.e. 2Gi.

Figure 2.2 represents the typical curve obtained during a pressuremeter test. The unload-

reload loop performed during the loading phase of the test is used to determine the shear

modulus, Gur, while the initial elastic phase is used to determine the shear modulus Gi.

The unload-reload loop is less prone to error and is often repeatable (usually more than one

is performed during a test) and thus is usually accepted as the true shear modulus of the

material.
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2.1.2 Solution using Stress Boundary Conditions

The solutions for stress and displacement determined in the previous section can also be

achieved by utilizing boundary conditions related to stress. If it is initially assumed that the

material tested has a finite boundary at radius b (i.e. for a thick walled cylinder) beyond

which the influence of the expanding cavity is negligible, then the boundary conditions are

as follows:

σr(r=a) = p

σr(r=b) = po

By combining the equations for equilibrium and kinematics (Equations (2.1) through (2.3)),

along with the constitutive stress-strain relations (Equations (2.8) and (2.9)) a differential

equation for the radial stress with a general solution as written below will be produced.

σr = C +
D

r2
(2.23)

where C and D are constants. Applying the boundary conditions and solving for C and D

results in:

C =
pob

2 − pa2

b2 − a2
(2.24)

D =
a2b2(p− po)

b2 − a2
(2.25)

These values for the constants C and D are true for the case of a thick walled cylinder,

but in order to properly mimic the conditions of a pressuremeter test, an infinite medium

must be considered and hence b → ∞ must be substituted. Solving for the stress and

displacement and making this substitution results in the following relations:

σr = po + (p− po)
(a
r

)2
(2.26)

σθ = po − (p− po)
(a
r

)2
(2.27)

u =
p− po
2G

a2

r
(2.28)

It should be noted that these solutions are identical to those obtained in the previous section,

but are defined by different parameters.
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2.2 Plasticity Models - Undrained Analysis [7][17]

During the elastic phase of loading, the radial stress, σr, increases as the circumferential

stress, σθ, decreases at the same rate (refer to points 1 through 3 in Figure 2.3 and Equations

(2.26) and (2.27)). Due to plain strain conditions, the vertical strain is zero (ϵz = 0) meaning

vertical stress σz = ν(σθ + σr) (Equation (2.7)) and therefore the change in vertical stress

is also zero in the elastic range. Hence, as there is no change in the mean stress, there is no

build up of excess pore water pressure and thus the behavior during elastic deformation is

independent of the drainage conditions. However, at the onset of yield (point 3 in Figure

2.3), the conditions in the soil or rock change and either a drained, partially drained or

undrained analysis must be adopted. For cohesive materials (i.e. clay) it is assumed that

fully undrained conditions are applicable and subsequently no volume change occurs as

the surrounding material deforms plastically (points 3 to 4 in Figure 2.3). Due to the

resulting fluctuations in pore pressure, a total stress analysis is usually adopted. Generally

the models for undrained analysis use a Tresca failure criterion and assume elastic-perfectly

plastic behavior. The Tresca yield criterion can be written as:

pf = po + Su (2.29)

where pf is the pressure at which yield or initiation of plastic failure occurs, po is the initial

or in situ pressure and Su is the undrained shear strength of the material.

If the material deforms in a perfectly plastic manner, then the shear stress at failure,

τf will remain constant and be equal to the undrained shear strength, Su once the yield

criterion has been satisfied, i.e. when the applied pressure is equal to pf . In analyzing the

shear stresses developed during a pressuremeter test, Palmer (1972), Baguelin (1972) and

Ladanyi (1972) all independently arrived at the same solution for the shear stress at any

given strain.

τ = 0.5ϵc(1 + ϵc)(2 + ϵc)
dp

dϵc
(2.30)

For small strains Equation (2.30) reduces to:

τ = ϵc
dp

dϵc
(2.31)
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Equation (2.31) can also be written in terms of volumetric strains (measured when using a

Mẽnard style pressuremeter) as follows:

τ =
dp

d
[
ln
(
∆V
V

)] (2.32)

From inspection of the equations above, it is clear that the shear stress can be determined

by multiplying cavity strain by the slope of pressure versus cavity strain or by measuring

the slope of a plot of pressure versus the natural log of volumetric strain. Thus, after the

initiation of plasticity the shear strength, Su can be determined in this manner. Utilizing

this knowledge, the volumetric strain at the initiation of plastic yield can be written as

follows:
∆V

V
=
Su
G

(2.33)

Gibson and Anderson (1961) used these relations to determine a governing equation

for the behavior of a cohesive, undrained, elastic-perfectly plastic material during cavity

expansion. By integrating Equation (2.32) with respect to ln(∆V/V ) the following relation

was obtained:

p− po = Su

[
1 + ln

(
G

Su

)
+ ln

(
∆V

V

)]
(2.34)

This equation is the most commonly used when analyzing pressuremeter data in a cohesive

material and is directly applicable to a Mẽnard pressuremeter which takes measurements

in terms of volumetric strains. A more accessible form of the equation for pressuremeters

that measure strain in terms of cavity strain (such as the type used in this research) can be

written in terms of displacement as follows:

p− po = Su

{
1 + ln

[(
G

Su

)(
1− ao

a

)2]}
(2.35)

A similar equation to that proposed by Gibson and Anderson was developed previously

by Mẽnard (1957). Upon the initiation of plasticity, an annulus of soil undergoing plastic

deformation is formed around the expanding pressuremeter cavity. As the pressuremeter

expands further the radius of the plastic annulus increases. Thus the boundary, beyond

which soil is behaving elastically, (known at the elastic-plastic boundary) is moved further

away from the expanding cavity, resulting in a stiffness reduction of the pressuremeter
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response [17]. Eventually a point is reached where the pressuremeter response is entirely

dominated by the plastic soil behavior and thus a limiting pressure is achieved. Mẽnard

recognized that this occurred when the volumetric strain, ∆V/V = 1, that is the strain at

which the change in volume is equivalent to the initial volume or in other words, the volume

of the pressuremeter has doubled in size. He deemed the pressure at which this phenomena

occurs the ‘limit pressure’ of the material and developed the following equation to describe

it:

pl − po = Su

[
1 + ln

(
G

Su

)]
(2.36)

where pl is the limit pressure and the other parameters are as previously defined. For the

Cambridge system, which measures cavity strain, the limiting pressure occurs when the

cavity strain has reached 41%. Equation (2.36) led to the development of the following

equation describing the pressuremeter response after the initiation of plasticity:

p = pl + Suln

(
∆V

V

)
(2.37)

Using Equation (2.37) the undrained shear strength Su can be determined by plotting the

applied pressure versus the natural log of volumetric strain as displayed in Figure 2.4.
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With the equations developed in this section and section 2.1, it is possible to model the

entire behavior of an elastic-perfectly plastic, undrained material under an applied radial

load. However, the data collected during a pressuremeter test also captures the stress-

strain relations as the material is unloaded and the stresses are reversed. The advantage to

modeling the unloading portion of the curve is that the effects of disturbance from drilling

and probe installation have been overcome and thus the unloading curve could be more

representative of the material. The reverse argument is that the deformation caused by

the pressuremeter has remolded the surrounding material and hence the material properties

have been changed. Jefferies (1988) developed a model for the case of a undrained, elastic-

perfectly plastic material during the unloading phase of the pressuremeter test.

As in loading, the material surrounding the expanded pressuremeter cavity initially

behaves elastically and is governed by the equation:

p− pmax = 2G

[
a− amax
amax

]
(2.38)

where pmax is the maximum pressure reached during the test and amax is the maximum

displacement reached. The yield criterion used for unloading is:

p− pmax = (1 + β)Su (2.39)

where β = Su(unloading)/Su(loading). Using this criterion for failure yields the following equa-

tion for plastic material behavior in extension:

p− pmax = −Su

(1 + β)− ln

{[
1−

(
a

amax

)2] [
G

(1+β)Su

]}
−βln

{[(
a

amax

)2
− 1

] [
G

(1+β)Su

]}
 (2.40)

If it is assumed that the shear strength derived from loading is equal to that determined

during the unloading phase, i.e. when β = 1, then the Equation (2.40) reduces to:

p− pmax = −2Su

{
1 + ln

[
G

Su

(
amax
a

− a

amax

)]}
(2.41)

Other models for cohesive materials have been developed that consider non-linearity

resulting from either strain-hardening or strain-softening effects. These models often use a

hyperbolic function that is related to different desired parameters or constants determined

through lab testing. However, they will not be included in this discussion.
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2.3 Plasticity Models - Drained Analysis [7][10][11][12][16][17][22]

The models discussed in the previous section can be used to determine shear strength and

stress-strain behavior for a undrained cohesive material. As mentioned previously, elastic

behavior is similar regardless of material type due to the coincidence of an increase in radial

stress with a decrease in circumferential stress (points 1 through 3 in Figure 2.5). However,

to properly analyze sand and rock a drained analysis which considers volume change must be

applied. As the material is considered to be completely drained an effective stress analysis

is adopted. Most of the developed models use a Mohr-Coulomb yield criterion and express

volume change in terms of a dilation angle, ψ. The general Mohr-Coulomb yield criterion

expressed in terms related to the cavity expansion of the pressuremeter is:

pf = c′cosϕ′ + po(sinϕ
′ + 1) (2.42)

where pf is the applied pressure at the onset of yield (point 3 in Figure 2.5), po is the in situ

pressure (or initial horizontal stress σho), c
′ is the effective cohesion and ϕ′ is the internal

angle of friction. For a material with no cohesion, such as sand, Equation (2.42) reduces to:

pf = po(sinϕ
′ + 1) (2.43)

2.3.1 Solutions for Sand

Two models that are frequently used to determine engineering parameters and stress-strain

behavior in sand are those developed by Hughes (1977) and Manassero (1989). Both models

use a Mohr-Coulomb yield criterion and adopt a plastic flow rule based on Rowe’s stress

dilatancy theory. Elastic strain developed after yield are neglected as they are considered

negligible in comparison to the plastic strain. Rowe’s dilatancy theory relates the principal

stress ratio to changes in volume through the following equation:

1 + sinϕ′

1− sinϕ′
=

(
1 + sinψ

1− sinψ

)(
1 + sinϕ′cv
1− sinϕ′cv

)
(2.44)

where ϕ′ is the effective internal angle of friction, ψ is the angle of dilation and ϕ′cv is the

angle of shearing resistance at constant volume, also known as the critical friction angle.
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Volume changes that occur during loading will be dependent upon the initial state of

the sand tested. The state of the sand can be described by the void ratio and the effective

stresses present prior to loading. If the sand is in a loose state, with a high void ratio, it will

contract upon loading, whereas a dense sand, with a low void ratio, will tend to expand,

or dilate. The rate of dilation, expressed in terms of the dilation angle, will vary with the

changes in volume and shear strain and can be expressed as follows:

sinψ = −dϵv
dγ

(2.45)

where ϵv is the volumetric strain and γ is the shear strain. The effective stress ratio, K,

will vary as the applied load and resulting shear strains increase until the sand has been

mobilized to a critical state. Once a critical state is achieved changes in volume will cease

and the mobilized friction angle and effective stress ratio will become constant. The effective

stress ratio can be defined as:

K =
σ′1
σ′3

=
σ′r
σ′θ

=
1 + sinϕ′

1− sinϕ′
(2.46)

For a the critical state condition, the stress ratio, Kpcv, can be expressed in a similar way by

replacing ϕ′ with the critical friction angle, ϕ′cv, in Equation (2.46). Using the relationships

developed in Equations (2.45) and (2.46), Rowe’s dilatancy theory can be expressed as:

K = Kpcv

(
1− dϵv

dγ

1 + dϵv
dγ

)
(2.47)

The above equation cannot be solved in a closed form solution unless assumptions are

made. Hughes (1977) developed a solution by assuming a constant stress ratio, K, and a

constant dilation angle, i.e. an elastic-perfectly plastic model. This assumption results in a

linear relationship between the volumetric strain and shear strain. The relationship can be

written as:

ϵv = c− γsinψ (2.48)

where c is a constant defined as illustrated in the Figure 2.6. Equation (2.48) can be

rewritten in terms of radial and circumferential strain as follows:

−sinψ =
ϵθ + ϵr
ϵr − ϵθ

(2.49)
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Using the above relationship along with Rowe’s stress dilatancy theory, Hughes developed

the following relationship between cavity strain and applied pressure during a pressuremeter

test.

ϵc +
c

2
=
(
ϵR +

c

2

)[ p
pf

][(n+1)/(1−N)]

(2.50)

where ϵR is the strain at the onset of yield, when the pressure pf is reached, and

N = 1−sinϕ′
1+sinϕ′

n = 1−sinψ
1+sinψ

The constant c is considered to be negligible and is generally ignored. While this is certainly

true of dense sands, it may be not, however, be correct for sands in looser states. By plotting

Equation (2.50) on a log-log plot (using natural logs), a straight line function is obtained

(refer to Figure 2.6). Hughes used the gradient of this line, s = [(1 − N)/(n + 1)], along

with Rowe’s relationship to calculate values for ϕ′ and ψ. The resulting equations are as

follows:

sinϕ′ =
s

1 + (s− 1)sinϕ′cv
(2.51)

sinψ = s+ (s− 1)sinϕ′cv (2.52)

Manassero (1989) approached the problem of modeling the drained behavior of an ex-

panding cavity using a finite difference technique. Using the relation for Rowe’s dilatancy

theory derived earlier in Equation (2.47), Manassero developed the following governing

equation in terms of radial and circumferential stresses and strains valid at any strain:

dσr
dϵθ

= −σ′r
(
1 +Kacv(dϵr/dϵθ)

ϵr − ϵθ

)
(2.53)

where Kacv = 1/Kpcv. At the cavity wall, σr = p and ϵθ = ϵc, and can be determined

directly from the data collected. Thus the above equation must be solved in terms of radial

strain, ϵr. Using a finite difference technique, the slope at any point i on the curve obtained

during a pressuremeter test is:
dp

dϵc
=

p(i) − p(i−1)

ϵc(i) − ϵc(i−1)
(2.54)
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A similar relationship can be used to describe the change in radial strain with cavity strain:

dϵr
dϵc

=
ϵr(i) − ϵr(i−1)

ϵc(i) − ϵc(i−1)
(2.55)

Plugging Equations (2.54) and (2.55) into (2.53) and solving in terms of radial strain yields:

ϵr =
p(i)[ϵc(i−1)+Kacvϵr(i−1)]
2[p(i)(1+Kacv)−p(i−1)]

− p(i−1)ϵc(i)

2[p(i)(1+Kacv)−p(i−1)]

+
p(i)[ϵc(i−1)−ϵr(i−1)]

2Kacvp(i−1)
+

p(i−1)[ϵr(i−1)(1+Kacv)−ϵc(i)]
2Kacvp(i−1)

(2.56)

The rest of stress strain curve can then be constructed by determining shear and volumetric

strains from Equation (2.53) and the finite difference technique.
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2.3.2 Solutions for Rock

The stress path displayed on the left in Figure 2.7 (on the next page) is typical of an

expanding cavity in a continuous, homogeneous medium. While the material is behaving

elastically, the change in the radial stress is equal and opposite to the circumferential stress

until the onset of yield. Once the yield pressure is reached, the radial and circumferential

stress increase simultaneously and the material deforms plastically. This is the assumed

behavior when modeling soil. When modeling weak rock, however, it is likely that the

circumferential stress exceeds the tensile strength, σt, of the rock prior to reaching the

yield stress, σy, resulting in brittle tensile failure leading to fractures and crack propagation

(refer to the image on the right in Figure 2.7). Thus the material will no longer behave as a

continuum and inclusion of the effects of crack propagation and the tensile strength of the

rock will need to be considered.

In performing a pressuremeter test, the applied pressure must equal the horizontal in

situ stress, defined as po in Figure 2.7, before any soil or rock deformation occurs. Once

the applied pressure is increased to a value twice that of the initial horizontal stress, the

circumferential stress will equal zero provided that the yield pressure pf is greater than 2po.

A further increase in pressure will result in a increase in tensile stress (as the circumferential

stress becomes negative) until either the yield pressure or tensile strength of the material is

reached. Hence, if the yield stress is reached first, the apparent yield can be defined as:

pf = 2po + |σy| (2.57)

and the pressure at which the onset of tensile fracture and crack initiation will occur is:

pc = 2po + |σt| (2.58)

From these equations, it is apparent that the potential for fracture and development of

cracks in the rock formation is dependent upon the horizontal in situ stress and the yield

criterion of the material tested. Thus, at greater depths, when a larger horizontal stress is

present, crack initiation will be suppressed and the rock will most likely yield as a continuum

that can be modeled in a way similar to that of soil, provided a proper yield criterion and

flow rule are selected.
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The problem of modeling the reaction of weak rock to an expanding cavity for pres-

suremeter analysis has been attempted previously by a handful of researchers, most no-

tably, Rocha et al. (1966), Ladayni (1976) and Haberfield (1987,1990,1997). The models

developed by Rocha and Ladayni are analytical solutions and thus require simplifying as-

sumptions that may not represent the true nature of weak rock. Haberfield produced a

more extensive model that utilizes numerical techniques via the finite element method. Us-

ing his finite element model, he also developed an alternative empirically based analytical

solution for mudstone in Australia. The remainder of this section will be a presentation and

discussion of these models.

Model after Rocha (1966)

a

rc

p

Propagating Cracks

Figure 2.8: Model of Cavity Expansion for Rocha

The model developed by Rocha et al. assumed that once the tensile strength of the rock

was exceeded, radial cracks would form around the cavity creating a series of wedges as
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shown in Figure 2.8. He recognized that propagating cracks will not extend infinitely, and

thus some method for determining the finite crack length must be imposed. Rocha used the

following relationship to determine radial crack growth:

rc = a

√
p

|σt|
(2.59)

where rc is the radius of crack propagation, a is the initial cavity radius, p is the applied

pressure and σt is the tensile strength of the rock (refer to Figure 2.8). Using this criteria for

crack growth, Rocha used two equations to describe the behavior of the surrounding rock.

The first equation describes the elastic deformation of the cavity wall prior to tensile failure.

For this initial phase, Rocha adopted the original cavity expansion equation developed by

Lamẽ for an elastic medium, written as follows:

u = a
p

E
(1 + ν) (2.60)

where u is the cavity displacement, E is Young’s modulus, ν is Poisson’s ratio and the other

parameters are defined as above. The second equation Rocha developed by integrating the

radial strains and using the relation in Equation (2.59). This equation applies to a material

with natural discontinuities, as found in weak rock, and is independent of the number of

cracks present. The wedges of material between the developing cracks is assumed to still

behave elastically during this phase. The equation for displacement after crack propagation

is:

u = a
p

E

(
1 + ν + ln

[rc
a

])
(2.61)

Model after Ladayni (1976)

Ladanyi (1976) developed a model that divided the behavior of rock into five phases. Aside

from the usual assumptions of homogeneity, isotropy and axisymmetry, Ladanyi also incor-

porated the following conditions:

• Behavior is linear elastic prior to failure.

• The rocks yields according to a Mohr Coulomb failure criterion incorporating either

a linear progression with a tensile cut-off or yields according to a parabolic function

that follows a Fairhurst criterion.
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• Dilation is governed by the associative flow rule of the theory of plasticity.

• The rock fails in tension resulting in the propagation of cracks at lower in situ stresses

and fails in compression at greater in situ stresses.

As two different potential failure criterion are considered in Ladanyi’s model, there are two

ways in which to determine the potential for the occurrence of radial cracks. Based on the

criteria chosen, the following inequalities must be satisfied for cracks to develop. For the

Fairhurst criterion, cracks will develop if:

po
|σt|

< 0.5 [l(l − 2)− 1] (2.62)

For the Mohr-Coulomb criterion, cracks will develop if:

po
|σt|

<
k − 2

4
(2.63)

where

l =
√

(k + 1)

and

k = σc/|σt|

where po and σt defined as previously, and σc is the compressive strength of the rock.

Ladanyi argues that if either of the criteria in Equations (2.62) or (2.63) for the initiation

of crack propagation is satisfied, then the solution for the rock deformation doesn’t depend

on the shape of the failure envelope for the rock, but rather the elastic properties, uniaxial

tensile strength and uniaxial compressive strength of the intact rock. If the occurrence of

cracks is possible, the pressure at which crack initiation will occur is governed by Equation

(2.58) developed earlier in this section (i.e. once the apparent tensile strength is reached).

The length of the cracks developed once the apparent tensile strength is exceeded is governed

by:
rc
a

=
p

2po + |σt|
(2.64)

where rc is the radial crack length, a is the cavity radius and p is the applied pressure.
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As the applied pressure is increased, it will eventually become equivalent to the compres-

sive strength of the rock. A further increase in pressure results in the compressive failure

of the rock between the propagating cracks and subsequently a crushed zone is produced

adjacent to the expanding cavity. Ladanyi argued that crack growth would cease at this

stage and thus the final length of the developing cracks could be determined by:

rf
a

=

[
p+ Sc
σc + Sc

] 1
(1−1/m)

(2.65)

where rf is the final crack length,

Sc = ccotϕ

and

m = 1+sinϕ
1−sinϕ

with c being the cohesion and ϕ the angle of internal friction.

As mentioned previously, Ladanyi developed his model by dividing the behavior of the

rock into phases. By combining information from all phases, a full load-deformation response

of the rock is obtained. Assuming that one of the previous yield criterions above is met for

the case of tensile failure (i.e. with crack propagation), the governing equations for each

phase of Ladanyi’s model are as follows:

Phases I and II - 0 < p < po and po < p < 2po + |σt| (Sections 0 − 2 in Figure 2.9).

Linear elastic response of the rock prior to crack initiation. The first phase involves the

reestablishment of the original state of the rock as the applied pressure reaches po. The

radial displacement during these phases is given by:

u

a
=
p− po
2G

(2.66)

Phase III - 2po+ |σt| < p < pf (Sections 2−3 in Figure 2.9). Once the apparent tensile

strength is exceeded, cracks will propagate radially and increase in length as the pressure is

increased. Radial displacement includes the initial displacement given by Equation (2.66)

and is given by:

u

a
=

p

2G

[
(1− ν)ln

(
p

2po + |σt|

)
+

po + |σt|
2po + |σt|

+
po
p

]
(2.67)
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Phase IV - σc < p < pult (Sections 3− 4 in Figure 2.9). In this phase, the compressive

strength, σt has been exceeded and the material between the propagating cracks begins to

crush. The crushed zone will enlarge as the pressure is increased until the ultimate pressure

– at which complete failure occurs – is reached. The radial displacement is given by:

u

a
=

√√√√ 1− ϵav

1−
(
2uf
rf

+ ϵav

) ( rf
a

) − 1 +
po
2G

(2.68)

where ϵav is the average volumetric strain as the rock crushes, and uf is the displacement

when r = rf , which can be determined by substituting p = σc into Equation (2.67).

Phase V - p = pult (refer to Figure 2.9). The ultimate pressure is associated with the

complete failure of the rock. As this pressure, the radial displacement will extend infinitely.
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The ultimate pressure is given by:

pult =
σc + Sc(

2uf
rf

+ ϵav

)(m−1)/2m
− Sc (2.69)

Ladanyi also developed equations for the scenario in which radial cracking is suppressed.

However, these equations are similar in nature to those developed for sand earlier and thus

will not be included here.

Model after Haberfield (1987,1990,1997)

The cavity expansion model for weak rock analysis developed by Haberfield uses a Mohr-

Coulomb failure criterion incorporating a c′ − ϕ′ material with a finite element technique

to allow for initiation and propagation of radial cracks. As in previous models, different

equations govern material behavior during the multiple phases of loading and deformation

(i.e. in the Ladanyi model). The different phases as described by Haberfield are illustrated

in Figure 2.11 (page 40). During the elastic phase (prior to yield), the governing equation

for the material response is the same as previously stated, repeated here for convenience:

ϵc =
u

a
=
p− po
2G

(2.70)

where ϵc is the cavity strain, u is the cavity displacement, a is the initial cavity radius, p

is the applied pressure, po is the in situ horizontal stress, and G is the shear modulus. It

should be noted that as this is a drained analysis, all the material properties are in terms

of effective stress.

As the cavity pressure is increased the material will undergo a phase change resulting

from either tensile failure and the initiation of radial cracks or as a consequence of satisfying

the yield criterion. The potential for crack failure will depend upon the in situ stress and

tensile strength of the rock tested. If the pressure at which crack initiation occurs, pc, is

less than the material yield pressure, pf , radial cracks will develop and extend into the

surrounding material, where pc is defined in Equation (2.58) and pf is defined in Equation

(2.42). That is, if:

2po + |σt| < c′cosϕ′ + po(1− sinϕ′) (2.71)



38

Elastic
p

σrf

rf

a

Plastic

Figure 2.10: Yield zone around and Expanding Cavity

For the case in which the development of radial cracks is suppressed (pf < pc) the

material will yield according to a Mohr-Coulomb failure envelope using a non-associative

flow rule to describe the volume change of the material. The adopted flow rule from Davis

(1968) is expressed in terms of the dilation angle, ψ as follows:

dϵpr
dϵpθ

= −1− sinψ

1 + sinψ
= − 1

n
(2.72)

where dϵpr and dϵ
p
θ are the incremental radial and circumferential plastic strains respectively.

Manipulating the equations for equilibrium, kinematic relations, and constitutive relations

to ensure compatibility, and using the above flow rule allowed the following solution for

displacement to be determined:

ϵc =
u

a
=

1

2G

[
b1

(rf
a

) (m−1)
m

+ b2

(rf
a

) (n+1)
n

+ b3

]
(2.73)
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where

b1 =
2m
m−1

[
(1− ν)

(
1+mn
m+n

)
− ν
]
(pf − po)

b2 = 2n(1− ν)
(
m+1
m+n

)
(pf − po)

b3 = (1− 2ν)
(
m+1
m−1

)
(pf − po)

rf
a =

[
p(m−1)+σ̂
pf (m−1)+σ̂

] m
m−1

σ̂ = 2c′cosϕ′

1−sinϕ′

m = 1+sinϕ′

1−sinϕ′

n = 1+sinψ
1−sinψ

where c′ is effective material cohesion, ϕ′ is the effective angle of internal friction and rf is

the radius to the edge of the yield zone (refer to Figure 2.10).

The solution to Equation (2.73) requires knowledge of six parameters. However, to

uniquely define a pressuremeter curve only requires three parameters and thus three of

the above parameters must be determined by other methods or by relations between the

parameters. The shear modulus, G, can be determined by the unload-reload loops performed

during the test. Poisson’s ratio, ν usually has a known range for a given rock and often

lies between 0.15 and 0.35 [11]. Lastly, Rowe’s stress dilatancy theory can be applied which

allows a relation between the internal angle of friction, ϕ, critical friction angle, ϕcv, and the

dilation angle ψ to be adopted. This still requires knowledge of the critical friction angle,

ϕcv, or for rock, the residual friction angle ϕr, which can be considered equivalent to the

critical friction angle. Again, for different rock materials, the residual friction angle is often

known and more easily determined by laboratory testing. The relationship developed by

Haberfield between the residual friction angle, peak friction angle and dilation angle was

determined by rearranging that developed by Hughes et al. and is given by:

sinψ =
sinϕ− sinϕr

1− (sinϕ)(sinϕr)
(2.74)

For the case of tensile failure and subsequent radial cracking, Haberfield developed a

semi-empirical analytical solution based on his finite element solution to an expanding

cavity in weak rock. The analytical solution was obtained by determining an empirical
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Figure 2.11: Failure process around expanding cavity in soft rock, after Haberfield (1990)
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relation for the length of crack growth based on pressuremeter tests performed in siltstone

and mudstone. The relation is as follows:

rc
a

= 3

(
p

pc
− 1

)
∗ 10−1.88po/pc + 1 (2.75)

where rc is the radial length of crack growth and all other parameters are defined as previ-

ously stated. Because radial cracking provides relief of the circumferential stress around the

pressuremeter, the material between the cracks will only be loaded in compression. Hence,

the rock will continue to behave elastically until the compressive strength of the rock, σc is

reached. The displacement prior to reaching the compressive strength of the rock can be

defined as:

ϵc =
1

2G

[
p(1− ν)ln

(rc
a

)
+ p− po

rc
a

]
(2.76)

This equation is valid as long as the applied pressure is less than the compressive strength of

the rock. However, once the compressive strength of the rock is exceeded, the rock will yield

and shear zones will develop in the material between the radial cracks. Once the applied

pressure has greatly exceeded σc cracks at the cavity wall will begin to close creating a shear

zone around the entire expanding cavity (refer to Figure 2.11). The cracks, however, will

continue to propagate out into the surrounding material. Upon development of this shear

zone around the pressuremeter cavity, the displacement is once again governed by Equation

(2.73). It should be noted that the semi-empirical equation (Equation (2.75)) was developed

for tests in siltstone and mudstone and thus may not apply to other rock types.

The finite element model developed by Haberfield was designed to account for crack

propagation taking into account the high stresses (theoretically infinite) that develop at the

tip of a propagating crack. Through a series of lab tests, Haberfield determined that gener-

ally either two, three or four major cracks developed during tensile failure and the number

of cracks was related to the in situ pressure applied. Lower in situ pressures generally

resulted in two diametrically opposite cracks forming, while higher pressures yielded four

equally spaced cracks propagating away from the pressuremeter cavity. Generally, using

an analysis which included the propagation of four major cracks produced the best results

when using the finite element program to determine pressuremeter parameters [10]. As a

result of these findings, the finite element program was set up to model crack propagation at



42

predetermined locations. The areas where cracks are allowed to develop have fixed bound-

aries prior to loading. As the criteria is met to allow for the initiation and propagation

of cracks (i.e. when the stress intensity resulting from tensile loading exceeds the fracture

toughness of the material at that point), the boundary conditions are released allowing the

crack to extend to the next fixed location or node, where the criteria is again checked. Once

a location is reached in which the stress intensity is less than the fracture toughness of the

material, the crack propagation will cease. This mechanism allows the high stresses devel-

oping at the crack tip to be more accurately modeled than previous analytical solutions,

which do not consider this additional stress. As mentioned previously, once the applied

pressure greatly exceeds the compressive strength of the material, the cracks will begin to

close at the cavity wall and a shear zone will develop around the entire cavity. The finite

element model is also capable of modeling this phenomena. For more details on the finite

element model developed by Haberfield, refer to [10] and [12].

2.4 Discussion of Models

The previous sections have described a number of cavity expansion models accounting for

both drained and undrained pressuremeter data analysis. The intention of the previous

sections was to provide the reader with a thorough understanding of the models currently

available for pressuremeter analysis while also providing the framework necessary for more

in depth discussion and details of model development, which is presented in next chapter.

The focus of the remaining chapters in this document will be the analysis of weak rock using

pressuremeter data. In this light, the forthcoming conversation will be aimed at advantages

and disadvantages of the previously discussed models for this purpose. It should be noted

that the behavior of the material subjected to pressuremeter loading during the elastic phase

is widely agreed upon when assuming linear behavior during this phase. For this reason,

this discussion and remainder of this document will focus on constitutive models associated

with plastic (or inelastic) behavior.

Inspection of the equation for equilibrium (Equation (2.1)) of which all these models

are based, reveals that only the radial (σr) and circumferential (σθ) stress are considered.

The inherent assumption then is that the vertical stress (σz) does not influence material
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behavior during shearing [17]. Therefore, is it assumed at failure that the effective radial

stress and effective circumferential stress are the major and minor stress respectively, and

that the vertical stress adjusts to prevent strain in vertical direction while remaining the

intermediate stress. However, this assumption may not be true in all cases, particularly

for formations with a relatively high or low in situ lateral stress (σ′ho) in comparison to

the in situ vertical stress (σ′vo). This principal is illustrated by Figure 2.12 for a Mohr-

Coulomb failure criterion for three different hypothetical values of Ko, where Ko is the

coefficient of earth pressure at rest and is equal to σ′ho/σ
′
vo. If this assumption is not true

(i.e. σz does remain a principal stress at failure), these pressuremeter strength models are

invalidated. Fortunately, the range of Ko values for which this assumption is valid increases

as the material strength increases. For a friction angle of 40o, the assumption is valid for Ko

values ranging from 0.6 : 2.8 [17]. As the conditions for most weak rock would fall within

these bounds, pressuremeter models formulated in under this assumption should remain

valid.
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1977) [17]
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Considering the models discussed, the models developed by Mẽnard (1957), Gibson and

Anderson (1961) and Jefferies (1988) (for unloading) are applicable to cohesive materials

with low permeability, and are particularly useful in analyzing pressuremeter tests in clay.

However, the assumption that material behavior is undrained is not applicable to fractured

material for which drainage will readily occur. Therefore, these models are not appropriate

for weak rock analysis. One exception, however, for consideration would be an intact clay

shale, under enough overburden pressure to suppress the development of fractures during

loading. Thus, these models could be useful for some scenarios, and may at least serve in

determining an upper limit for rock shear strength.

Models after Hughes (1977) and Manassero (1989) do consider drained analysis and di-

lation, which are both important considerations in the analysis of weak rock. However, both

models are designed for analysis of a continuum and in no way account for the discontinuous

nature of weak rock. These models also assume purely frictional material resistance and

thus would not account for the cohesive component, or cementation, of rock. Again, an

exception could be made in analyzing an intact weak sandstone with suppressed fracture

development for which these models may be applicable.

Rocha (1966), Ladayni (1976) and Haberfield (1987,1990,1997) all designed their models

to consider the behavior of weak rock subjected to pressuremeter loading. The most recent

of the models is also most likely the best suited for weak rock analysis, however, the models

developed by both Rocha and Ladayni also have shortcomings.

The model after Rocha does capture the phenomena described by Haberfield in that

cracks develop diametrically opposite each other and new sets of cracks develop as loading

is increased and the tensile strength of the rock is exceeded. However, the high stresses that

develop at the crack tip are not considered and thus the crack length radius described by

Equation (2.59) may be underestimated, making the deformation response inaccurate [10].

Rocha also did not consider the yield or failure of the rock as loading was increased beyond

the rock compressive strength.

Ladayni did consider more phases of deformation, including failure of rock due to crush-

ing, but also made inaccurate assumptions. Ladayni assumed that crack propagation would

cease once the compressive strength of rock was exceeded (during the crushing phase, Phase
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IV - refer to previous section), which is unrealistic because the stress state at the crack tips

would remain. Ladayni also applied an associative flow rule to model the plastic material

behavior, which is most likely incorrect. While, the overall process described by Ladayni

is possible, these inaccuracies greatly affect the deformation behavior making this model

undesirable.

The model developed by Haberfield is currently the best method for analyzing pres-

suremeter data in weak rock to the knowledge of this author. However, this model also

has potential shortcomings. The model accounts for both cohesion and frictional resistance,

while also accounting for dilation as a result of crack formation and propagation using a

non-associative flow rule. The finite element model is designed to account for the formation

and propagation of fractures and was used in determining a semi-empirical formula. These

features are useful and necessary. However, the model is completely based on a minimal

data set in a synthetic rock and a few tests in native mudstone. The synthetic rock was

used to perform a qualitative assessment of fracture formation, leading to the determination

of the cracking pattern for which the finite element software is limited to. The results of

this analysis were then used in developing the semi-empirical formula. Unfortunately, the

synthetic rock tested was fully intact, which is often not the case for rock tested in the field.

Thus the patterns witnessed by Haberfield may be inaccurate, and it may be more correct to

assume that preexisting fractures propagate further during loading and that few, if any new

fractures form during a pressuremeter test. Generality of the semi-empirical formula is also

lost in that the equation was created based on the synthetic rock (which was modeled after

local mudstone in Australia) and thus may not be appropriate for other rock types (noted

by [11]). Also of question is the use of a Mohr-Coulomb failure criterion. The addition of

a tensile cutoff is important and necessary, but the Mohr-Coulomb criterion was designed

to model soil behavior and thus may not be accurate for the interpretation of rock data.

Lastly, the Mohr-Coulomb failure criterion does not account for the strength of preexisting

fractures, which typically dominate the ability of a rock formation to resist load.

For the reasons listed in the previous paragraphs, the author has further developed a

cavity expansion model using a Hoek-Brown failure criterion initiated in [23] for use in

pressuremeter analysis. The Hoek-Brown failure criterion, the details of which are in the
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following chapter, was designed to capture inelastic rock behavior for many different types

of rock formations and has been continuously updated and improved (empirically) since it

was first created in 1980. The Hoek-Brown failure criterion is non-linear, which is more in

line with true rock behavior and allows for consideration of preexisting fractures, something

the other rock models introduced lack. Furthermore, equivalent Mohr-Coulomb parameters

can be determined from the Hoek-Brown model inputs. Therefore, use of the Hoek-Brown

failure criterion for analyzing pressuremeter data in weak rock could prove to be superior

to current methods, an idea explored in the remainder of the thesis.

Five pressuremeter data sets were interpreted by the author using the Hoek-Brown model

in order to test and calibrate the model and results were compared to Haberfield’s Mohr-

Coulomb model with a tensile cutoff. The details of these two models and their development

as well as a parametric analysis will be presented and discussed in the following chapter.

The author will also introduce a third constitutive model, which could be developed into

a cavity expansion framework in the future. Further considerations in rock behavior and

response to pressuremeter loading are also discussed.
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Chapter 3

ROCK MODELS FOR PRESSUREMETER ANALYSIS

A rock mass generally consists of intact rock separated by fractures or joint sets of

which the behavior of the fractures often controls the deformation response of the rock

mass to an applied load. Therefore, when modeling rock behavior the effect of the fractures

must be considered. A number of techniques are used to map fracture networks in rock

using outcroppings, borehole core and penetrating radar. In modeling rock behavior this

information can be used to directly account for the presence of fractures using statistical

variations of the observed fracture patterns and treating the rock mass as a discontinuous

medium. However, due to the inherent difficulties in properly defining fracture networks,

and often limited data available, rock is also commonly modeled as an equivalent continuous

medium. The equivalent continuous medium considers the weakening of the rock mass due

to fractures by using reduced stiffness and strength values from those of the intact rock. An

example of rock blocks modeled by the two methods mentioned here is illustrated in Figure

3.1.

E_f

E_i  =  intact elastic modulus
E_f  =  fracture modulus
E_eq  =  equivalent elastic modulus

        Intact Rock Fractured Rock Equivalent Rock Mass

E_i E_eqE_i

Figure 3.1: Examples of Interpreting Rock Blocks



48

Using either analysis method (discontinuous or continuous media) a proper constitutive

model describing rock behavior is typically required in order to perform analysis for design.

The constitutive model selected can be used to capture material behavior for the analysis

of rock slopes, tunnels, mine pits, shafts, and rock bolts among other projects. Selection

of the proper constitutive model requires knowledge of parameters that can be measured

and accurately define the rock response to loading. Common parameters used to define

rock include some form of stiffness modulus, such as the elastic (Young’s) modulus, shear

modulus, bulk modulus and strength parameters, such as the uniaxial compressive strength

and shear strength. These values can be determined either through laboratory testing, field

in situ testing or based on previous knowledge of the rock type. One in situ test capable of

determining both stiffness and strength parameters in rock is the pressuremeter; hence it is

imperative that new models are explored and developed to analyze pressuremeter data.

Pressuremeter data consists of a stress-strain curve where radial stress versus the cir-

cumferential or cavity strain (change in radius/initial radius) are directly measured and

plotted. The test can be described as an axisymmetric, cylindrical cavity expanding under

an applied radial load, under plain strain conditions. The expansion of the cavity is resisted

by the surrounding material and thus the recorded data will reflect the material properties

of the surrounding rock mass. Before the yield pressure of rock mass is reached, the rock

will respond to the applied load in an elastic manner. The behavior of the rock mass beyond

yield is then idealized using the constitutive model selected. The actual behavior of the rock

mass will depend on many variables including strength of the intact rock, the number of

fractures, fracture frequency, fracture length, fracture orientation, aperture of the fractures

and roughness of the fracture faces. If allowance of crack formation and propagation is con-

sidered, then the yield pressure can be defined by the apparent tensile strength as defined in

Chapter 2, Equation (2.58) where pc = 2po+ |σt|. As the pressure is increased beyond yield,

the radius defining the crack lengths, rc, increases resulting in a weaker material response.

The rock material between the cracks is considered to behave elastically. By comparison, if

the rock material is treated as a continuum or it is assumed that cracks are not present, then

the yield pressure is determined by the yield criterion selected and the material properties.

As the pressure is increased beyond yield, an annulus of plastically deformed (or equivalently
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plastically deformed) rock forms around the pressuremeter cavity. The material beyond the

plastically deformed annulus continues to behave elastically defining a boundary between

elastic and plastic zones deemed the elastic-plastic boundary or yield front. As the pressure

is further increased, the radius of the elastic-plastic boundary, rf , increases (Figure 3.2).

elastic

after increased pressure

PM Cavity

a r_f

elastic

plastic

elastic−plastic boundary

after increased pressure
crack length radius

propagating
crack

PM Cavity

a

elastic

crack length radius

r_c

elastic−plastic boundary

Figure 3.2: Plan View Cross Section of Pressuremeter (PM) Cavity; left - PM modeled
assuming an equivalent continuous media; right - PM modeled assuming formation and
propagation of radial cracks

It is valid to model pressuremeter data in rock in either of the manners presented above

if accurate material parameters useful for design are gained. The remainder of this chapter

will be devoted to the exploration of three constitutive models for this purpose. Two of

the models were implemented and used to analyze data collected at five different test sites.

The structure of the third model will be presented for potential future use in pressuremeter

data analysis. The first model presented will be a Mohr-Couloumb model with a tensile

cutoff as developed by Haberfield and described in the previous chapter. Further detail

of the implementation and a parametric analysis will be presented. A Hoek-Brown cavity

expansion model described in [23] and developed further by the author will then be discussed

and compared to the model developed by Haberfield. Lastly, a constitutive model developed

by Zhu, Kondo and Shao referenced in [8] [14] [15] will be presented.
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3.1 Review of Elastic Loading and Governing Equations

Important governing equations, assumptions and material behavior during the elastic phase

of loading will be briefly reviewed here. However, it may be useful for the reader to revisit

the assumptions listed at the beginning of Chapter 2 as well as the equations presented in

Section 2.1 before continuing on.

The stress and strain at any point during loading must be determined in order to properly

model data collected by the pressuremeter. For the type of pressuremeter used in this study,

the recorded data consists of the applied pressure versus the cavity strain, which is equivalent

to the radial stress versus the circumferential strain at the cavity wall. Hence, it is natural

to adopt a cylindrical coordinate system in modeling pressuremeter response for which the

principal stresses are σr, σz and σθ. It follows the principal strains are defined as ϵr, ϵz

and ϵθ as illustrated in Figure 3.3 with reference to the pressuremeter cavity. Under the

r

Pressuremeter Cavity

r

θ

z

θ

Figure 3.3: Cylindrical Coordinate System for Stress and Strain
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assumption of plain strain, (i.e. that the pressuremeter expands as a right cylinder) strain

in the vertical or z-direction is equal to zero; that is ϵz = 0. The other principal strains can

be defined in terms of displacements as

ϵθ =
u

r
(3.1)

and

ϵr =
du

dr
(3.2)

where u is displacement relative to radius r. The cavity strain measured during a pres-

suremeter test is defined by

ϵc =
a− ao
ao

(3.3)

where a is the inner cavity radius and ao is the initial cavity radius. Recognizing that at

the inner cavity wall, u = a − ao with reference to r = ao, it can be noted that the cavity

strain, ϵc, is similar to measuring the circumferential strain, ϵθ, at the cavity wall.

Under the assumption of axisymmetric loading, the equation for equilibrium is defined

by
dσr
dr

+
σr − σθ

r
= 0 (3.4)

which can be used along with boundary conditions to determine the stresses and displace-

ments during the elastic phase of loading. Refer to Section 2.1 for details. The governing

equations in the elastic zone are

σr = po + (p− po)
(a
r

)2
(3.5)

σθ = po − (p− po)
(a
r

)2
(3.6)

u =
p− po
2G

a2

r
(3.7)

where p is the cavity pressure and po is equivalent to the initial ambient pressure or in situ

horizontal stress σho. It should be noted that σr is equal and opposite to σθ during the

elastic phase. Recognition that a/r = 1 at the inner wall of the cavity and a − ao is small

during the elastic phase, Equation (3.7) can be rewritten in terms of cavity strain as follows

ϵc =
u

a
=
p− po
2G

(3.8)
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where G is the shear modulus of the material.

The elastic behavior of the material beyond the elastic-plastic boundary, that is at a

radius r > rf , can be determined in a similar manner to that described for the inner cavity

wall (refer to Figure 2.10). Applying the boundary condition that at rf , p = pf yields the

following equations

σr = po + (pf − po)
(rf
r

)2
(3.9)

σθ = po − (pf − po)
(rf
r

)2
(3.10)

u =
pf − po
2G

r2f
r

(3.11)

where pf is the pressure at the initiation of failure.

Using the equations above the material behavior during the elastic phase of loading can

be defined. The measured cavity strain and applied radial pressure can be compared to the

material response in terms of ϵθ and σr. The goal then is to determine the point at which

elastic behavior ceases, and the resulting stress-strain relation beyond this point as pressure

is further increased inside the expanding cavity. This can be accomplished by adopting a

yield criterion and flow rule as will be discussed in the following sections for the different

constitutive models.

3.2 Mohr-Coulomb Model with Tensile Cutoff

The model developed by Haberfield has been discussed in the previous chapter in Sections

2.3 and 2.4. Although some information is repeated, further development will also be

presented here. It should be noted that unless otherwise stated, the ideas presented in the

first subsection describing model development are adopted from work by Haberfield as in

[10] [11]. As drained analysis is used in the following model, it should be assumed that any

parameters listed are in terms of effective values (i.e effective stress, friction angle, cohesion

etc.).
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3.2.1 Model Development

Employing a Mohr-Coulomb model with a tensile cutoff naturally leads to two yield criteri-

ons and thus two different ways of modeling inelastic weak rock behavior. For a given set of

parameter inputs, a yield pressure defined by the tensile cutoff and a yield pressure defined

by the Mohr-Coulomb failure criterion can both be established. If the yield pressure for

the tensile cutoff is less than that of the Mohr-Coulomb failure criterion, then cracks form

and propagate. If, however, the yield pressure determined by the standard Mohr-Coulomb

failure criterion is reached first, the rock is assumed to behave as a ductile continuum. In

terms of principal stresses, the Mohr-Coulomb failure criterion can be written as follows:

σ1 =
1 + sinϕ

1− sinϕ
σ3 +

2ccosϕ

1− sinϕ
(3.12)

where ϕ is the internal angle of friction, c is material cohesion and σ1 and σ3 are the major

and minor principal stresses respectively. Defining

m =
1 + sinϕ

1− sinϕ
(3.13)

and

σ̂ =
2ccosϕ

1− sinϕ
(3.14)

and taking σ1 = σr and σ3 = σθ Equation (3.12) can be rewritten as

σr = mσθ + σ̂ (3.15)

At the initiation of plasticity, once the yield pressure is reached, the radius defining the

elastic-plastic boundary, rf , is equivalent to the radius of the expanding cavity; thus, rf/r =

rf/a = 1, where a is the inner cavity radius. Plugging this into Equations (3.9) and (3.10)

and substituting the definitions in these equations into Equation (3.15) the yield pressure,

pf , can be obtained.

pf =
2pom+ σ̂

m+ 1
(3.16)

Plugging the definitions of m and σ̂ from Equations (3.13) and (3.14) into Equation (3.16)

and simplifying reduces the expression to the Mohr-Coulomb failure criterion presented in

Section 2.3.

pf = ccosϕ+ po(1 + sinϕ) (3.17)
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Using the yield criterion defined here and the equation of equilibrium defined previously,

the stresses in the plastic failure zone (i.e. a < r < rf ) can be determined. Rearranging

the relationship for the Mohr-Coulomb criterion defined in Equation (3.15) such that σθ =

(σr − σ̂)/m and substituting this into the equation of equilibrium defined in Equation (3.4)

yields the following differential equation

dσr
dr

+
σr(m− 1) + σ̂

rm
= 0 (3.18)

Equation (3.18) can be rearranged such that

mdσr
σr(m− 1) + σ̂

+
dr

r
= 0 (3.19)

By solving and applying the boundary condition that when r = rf , σr = pf , the following

relationship for radial stress at radius r is obtained

σr =

[
σ̂ + pf (m− 1)

m− 1

](rf
r

)m−1
m − σ̂

m− 1
(3.20)

Substituting this definition back into the yield criterion, the circumferential stress is deter-

mined.

σθ =

[
σ̂ + pf (m− 1)

m(m− 1)

](rf
r

)m−1
m − σ̂

m− 1
(3.21)

Here the author deviates from the model developed by Haberfield. Haberfield used the

boundary condition that at r = ro, σr = p, which is inconsistent with the formulation of

strain, which references r = rf as is presented here. The form of the equation presented

here is also more useful for implementation than that presented by Haberfield in [10].

Once yield has occurred, the strains in the plastic zone can be determined incrementally

by adding the elastic and plastic components such that

dϵr = dϵer + dϵpr (3.22a)

dϵθ = dϵeθ + dϵpθ (3.22b)

where ϵe denotes the elastic strain component, ϵp denotes the plastic strain component and

dϵ denotes an incremental change. The plastic strain components are determined by a non-

associative flow rule written in general form as ˙ϵpij = λ∂g/∂σij with g being the plastic
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potential function and λ a scalar plastic multiplier. The flow rule used here, adopted from

Davis (1968), describes dilative volume change via an angle of dilation, ψ, as described in

Section 2.3. In terms of incremental strains the flow rule then can be written as

dϵpr = λ (3.23a)

dϵpθ = −nλ (3.23b)

where

n =
1 + sinψ

1− sinψ
(3.24)

Rearranging Equations (3.23a) and (3.23b) yields

dϵpθ + ndϵpr = 0 (3.25)

Integrating and applying boundary conditions at r = rf leads to

ϵpθ + nϵpr = 0 (3.26)

The strain displacement equations can be rearranged giving

ϵr = ϵθ + r
dϵθ
dr

(3.27)

with

ϵr = ϵpr + ϵer (3.28a)

ϵθ = ϵpθ + ϵeθ (3.28b)

Substituting equations (3.28a) and (3.28b) into Equations (3.26) and (3.27) yields

r
dϵpθ
dr

+ ϵpθ

(
n+ 1

n

)
= ϵer − ϵeθ − r

dϵeθ
dr

(3.29)

From here, the elastic components of Equation (3.29) can be solved using Hooke’s law (as

stated in Equations (2.5) and (2.6)) and the stress equations previously derived, defined by

Equations (3.20) and (3.21). The plastic components, specifically ϵpθ, can then be deter-

mined. The resulting equations for the circumferential strains are

ϵeθ =
1 + ν

E

[
(1− ν −mν)

(
pf (m− 1) + σ̂

m(m− 1)

)(rf
r

)m−1
m − (1− 2ν)

(
po +

σ̂

m− 1

)]
(3.30a)
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ϵpθ = D

(
1 + ν

E

)[(rf
r

)m−1
m −

(rf
r

)n+1
n

]
(3.30b)

with

D = (1− ν)
n(m+ 1)

m(m+ n)
[pf (m− 1) + σ̂] (3.30c)

where E is the Young’s modulus, ν is Poisson’s ratio and everything else is as previously

defined. Combining elastic and plastic strains to obtain total circumferential strains gives

ϵθ =
1 + ν

E


[(

pf (m−1)+σ̂
m(m−1)

)
(1− ν −mν) +D

] ( rf
r

)m−1
m −D

( rf
r

)n+1
n

−(1− 2ν)
(
po +

σ̂
m−1

)
 (3.31)

This can be rewritten as presented in Section 2.3 as

ϵθ =
u

r
=

1

2G

[
b1

(rf
r

) (m−1)
m

+ b2

(rf
r

) (n+1)
n

+ b3

]
(3.32)

where

b1 =
2m

m− 1
(pf − po)

[
(1− ν)

(
1 +mn

m+ n

)
− ν

]
b2 = 2n(1− ν)

(
m+ 1

m+ n

)
(pf − po)

b3 = (pf − po)(1− 2ν)

(
m+ 1

m− 1

) (3.33)

with all parameters as previously defined.

The equations derived thus far follow a Mohr-Coulomb failure criterion and are valid

for ductile rock behavior (i.e. plastic deformation occurs). If, however, the apparent tensile

strength of the rock is less than the yield pressure associated with the Mohr-Coulomb

failure criterion, then the tensile cutoff will be reached a different material model must be

considered. The yield pressure related to the apparent tensile strength is

pc = 2po + |σt| (3.34)

where pc is the yield pressure associated with the initiation of tensile cracking and σt is the

tensile strength of the rock. As discussed in Section 2.3, if this yield pressure, pc, is less than

the previously determined yield pressure, pf , then it is assumed that brittle fracture occurs,

and failure of the rock mass results from the propagation of cracks and not through plastic

yield. The material between the propagating cracks is assumed to behave elastically during
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this process until the compressive strength of the rocks is reached. At this point, the cracks

continue to propagate and shear zones appear in the rock between the cracks. This is well

illustrated in Figure 2.11. To account for crack propagation, Haberfield developed a finite

element model as discussed in Section 2.3. Analyzing pressuremeter data in weak siltstone

and mudstone with the finite element model, Haberfield developed empirical equations for

cracked rock behavior. In essence, the rock mass is treated as an equivalent continuous

medium with altered material properties. The empirical equations developed by Haberfield

and used in this study and are as follows

rc
r

= 3

(
p

pc
− 1

)
∗ 10−1.88po/pc + 1 (3.35)

where rc is as illustrated in Figure 3.2, and

ϵc =
1

2G

[
p(1− ν)ln

(rc
r

)
+ p− po

rc
r

]
(3.36)

where ϵc is the cavity strain. All the required equations for implementation of the Mohr-

Coulomb model with a tensile cutoff have now been presented. For more information and

details on the model developed by Haberfield, the author refers the reader to [10][11][12].

3.2.2 Model Implementation

In order to properly implement the model described above, it is important to first identify

the necessary input parameters. As previously mentioned, the aim is to determine the radial

stress, σr, and circumferential strain, ϵθ, for comparison to the recorded applied pressure,

p, and cavity strain, ϵc, respectively.

During the elastic phase, the response is assumed to be linear elastic, whereby the slope

of pressure versus strain is equal to twice the shear modulus (i.e. in Equation (2.22)).

p− po
ϵc

= 2G (3.37)

Thus in order to determine the stress-strain response during this phase, knowledge of the in

situ pressure, po, and the shear modulus, G, is required. The end of the elastic response (or

beginning of inelastic behavior) is determined by the yield pressure, pf or pc. It is clear then

that the entire elastic response can be defined by two points, the initial stress-strain, (0,po)
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and the stress-strain at the initiation of yield, (ϵcf ,pf or pc), where ϵcf can be determined

by replacing p with pf or pc in Equation (3.37). The parameters required to determine

the yield pressure can be identified by inspecting Equations (3.17) and (3.34) revealing the

tensile strength of the rock σt, internal angle of friction ϕ, and material cohesion c, must be

determined.

Beyond the yield pressure, the stress-strain response can be determined by Equations

(3.20) and (3.32) or by Equations (3.35) and (3.36). It should be noted that Equation (3.35)

can be rearranged to solve for pressure, p, as follows

p = pc

(
rc
r − 1

3 ∗ 10
−1.88po

pc

+ 1

)
(3.38)

Additional input parameters identified through inspection of the these equations are Pois-

son’s ratio ν, the angle of dilation ψ (this input can be replaced by the critical friction angle

ϕr by using Rowe’s dilatancy relationship (Equation (2.74)) and friction angle, ϕ) and the

ratio rf/r or rc/r. The radius r in this last parameter can be replaced by the radius of

interest defined by the inner cavity wall, a. The radius rf (or rc) defines the elastic-plastic

(or crack propagation) boundary beyond which elastic behavior is occurring. Upon the

initiation of material yield, rf or rc is equivalent to the cavity radius a; that is the ratio of

rf/a or rc/a is equal to one. As the pressure is increased further, the radius rf or rc enlarges

and extends beyond the radius of the inner cavity wall (Figure 3.2). Thus, the ratio rf/a

or rc/a, increases as the applied pressure increases. Creating a vector for this ratio from

1 : x, where x is a number large enough to achieve the required (or desired) strain, therefore

allows the elimination of this ratio as an input parameter.

The parameters necessary to define the entire model then are the horizontal in situ stress,

po, shear modulus, G, friction angle, ϕ, cohesion, c, Poisson’s ratio, ν, the angle of dilation,

ψ, (or if preferred the critical friction angle, ϕr) and the tensile strength of the rock σt.

Details on the determination of these material parameters is reserved for the next chapter

where data interpretation is discussed. Using these parameters and the proper equations the

model can be effectively implemented for data analysis; best illustrated by a flow diagram

(refer to Figure 3.4). The mode of failure for the rock is determined through comparison

of the two possible yield pressures, pc and pf . If pf > pc, it is assumed that tensile failure
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occurs and the rock mass deforms as a result of crack formation and subsequent propagation.

However, if the opposite is true (i.e. pf < pc), it is assumed the rock mass behaves as a

continuum and fails according to a Mohr-Coulomb failure criterion with a flow rule utilizing

the angle of dilation to account for change in volume.

if pf > pc

Combine Elastic and Inelastic Responses

Input Parameters

rf
a = 1 : xrc

a = 1 : x

Equation (3.36)
Determine Strain, ϵc, beyond yield

Equation (3.32)

if pf < pc

Determine Stress, p, beyond yield
Equation (3.38) Equation (3.20)

Determine strain at yield
Equation (3.8), p = pf

Determine pf and pc

Determine strain at yield

Determine Stress, σr, beyond yield

Determine Strain, ϵθ, beyond yield

Equations (3.17) and (3.34)

Output Stress-Strain Curve

Equation (3.8), p = pc

Figure 3.4: Flow Diagram for Implementation of the Mohr-Coulomb model with a Tensile
Cutoff
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3.2.3 Validation of Model Implementation

The model implementation outlined in Figure 3.4 was coded by the author using MATLAB.

In order to analyze data with confidence, however, the code must be validated against a

previously known solution. This task was accomplished by comparing plots Haberfield pro-

duced as examples in his dissertation [10] against those produced by the author’s code.

Three different figures, for which the inputs are given in [10] are used for comparison and

are displayed in Figures 3.5, 3.6 and 3.7.
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Figure 3.5: Comparison of plots produced by Haberfield [10] (left) and the author (right).
Input parameters are G = 30 MPa, po = 0.1 MPa, ν = 0.3, c = 0 MPa, ϕ = 30o and
ψ = −10o, 0o, 10o. The dashed lines in the Haberfield plot are there for comparison to the
Hughes sand model and can be ignored in this comparison.
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For the cases in which Young’s modulus was given (Figures 3.6 and 3.7), the shear modulus

was calculated using Equation (3.39) and used as input into the author’s code.

G =
E

2(1 + ν)
(3.39)
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Figure 3.6: Comparison of plots produced by Haberfield [10] (left) and the author (right).
Inputs are displayed in the left plot (except water content which is not a model input). Pois-
son’s ratio and Young’s modulus were used to determine a shear modulus for the author’s
plot via Equation (3.39)

.

The three examples presented here represent a variety of conditions for the author’s code

to be tested against. Weak rock that behaves in a purely frictional manner (i.e no cohesion)

with a variance in dilation angle is presented in Figure 3.5. Figures 3.6 and 3.7 represent

weak rock with cohesion representative of higher and lower strength respectively. In all

cases, the author’s code is able to match the stress-strain curve produced by Haberfield in

[10]. Confirmation of the match is obtained by systematically comparing different points
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Figure 3.7: Comparison of plots produced by Haberfield [10] (left) and the author (right).
Inputs are displayed in the left plot (except water content which is not a model input). Pois-
son’s ratio and Young’s modulus were used to determine a shear modulus for the author’s
plot via Equation (3.39)

.

along the curve. For example, in Figure 3.6 stress values of 10, 14, 17, 19.5, 21, 23.5 and 25

corresponding to 1, 2, 3, 4, 5, 6 and 7% strain can be identified in both plots. This provides

validation that the code produced by the author is indeed functioning properly.

3.2.4 Parametric Analysis

Before using a model for data analysis, it is important to first understand the affect of

different input parameters on the model output. It is particularly useful to know which

parameters qualitatively induce the greatest change in the output of the model. This section

is devoted toward illustrating the effects of the input parameters for Haberfield’s Mohr-

Coulomb model. The easiest way to present this is in graphical form. Thus a series of
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Table 3.1: Default Input Values for Parametric Analysis - Mohr-Coulomb

Shear modulus, G 2, 200 MPa

In Situ stress, po 0.4 MPa

Cohesion, c 0.3 MPa

Poisson’s ratio, ν, 0.3

Friction angle, ϕ 45o

Dilation angle, ψ 8.5o

figures in which the model parameters are altered is presented with discussion to follow.

In the following figures, all parameters are held constant while one parameter is varied.

The default values (values assumed by parameters that are not varied in a given graph) of

the parameters are presented in Table 3.1. These values are chosen because they are near

the average for the data set analyzed and therefore representative of the material of interest.

All values are effective values, in that drained analysis is assumed. All the figures have been

plotted to the same scale for comparative purposes.

Inspection of Figures 3.8 through 3.12 reveals that the material cohesion, c, shear mod-

ulus, G, and the dilation angle, ψ, have the largest effect on the stress-strain output. The

choice of in situ stress, po, can also have a significant impact, while the choice of Poisson’s

ratio, ν, and surprisingly friction angle, ϕ, have a lesser impact on the stress-strain curve

produced. Each of the parameters exhibits a nonlinear response to a constant increment

change. That is the change resulting from an incremental increase either grows or decays

with an increase in the parameter value. These results warrant a more detailed discussion

of the individual parameters.

The selection of shear modulus and in situ stress greatly affect the model output, with

the impact of shear modulus being greater for the range of interest. In both cases, the

influence of the parameter decreases as the parameter increases. For example, an increase

in shear modulus from 500 to 2,000 MPa has more impact than a jump from 9,500 to 11,000

MPa. Similarly, an increase in the in situ stress from 0.1 to 0.3 MPa has a greater effect than
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Figure 3.8: Effect of Changing the Shear Modulus, G, for Mohr-Coulomb Model
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Figure 3.9: Effect of Changing the In Situ Stress, po, for Mohr-Coulomb Model
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Figure 3.10: Effect of Changing the Material Cohesion, c, for Mohr-Coulomb Model
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Figure 3.11: Effect of Changing Poisson’s Ratio, ν, for Mohr-Coulomb Model
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Figure 3.12: Effect of Changing the Dilation Angle, ψ, for Mohr-Coulomb Model
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Figure 3.13: Effect of Changing the Friction Angle, ϕ, for Mohr-Coulomb Model
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an increase from 1.1 to 1.3 MPa. Thus, the choice of these parameters is most important for

a soft material with low confining stress. Fortunately, the shear modulus can be determined

from the unload-reload loops performed during a pressuremeter test reducing or eliminating

the effect of an improper choice for this parameter on the model output. The lateral in situ

or ambient stress can be more difficult to determine, but a range can often be defined if

the vertical stress in the test region is known. Additionally, the pressuremeter curve can be

used to help in the determination of the in situ stress - a detail to be discussed in the next

chapter.

The choice of Poisson’s ratio has the lowest impact on the model output and already has

a predefined range between 0 and 0.5. This range is narrowed further in that typically rock

will have a Poisson’s ratio between 0.15 and 0.35 [11] and ranges of Poisson’s ratio for a

given rock type are usually available in the literature. Therefore selection of this parameter

is not of great concern.

The final three parameters relate to material strength and deformation qualities and

can significantly impact the model output. The effect of a change in the material cohesion

decreases with an increase in the cohesion value, but the impact at greater values is still

significant in comparison to other parameters. The impact of additional cohesion, however,

is most prominent in changing a purely frictional response (c = 0) into a c − ϕ response

with both frictional and cohesion strength components (refer to Figure 3.10). The choice

of dilation angle has less impact on the model output than choice of material cohesion, but

the effect is still important. As the dilation angle increases there is a slight increase in

the influence on the model output. This result is logical in that increased dilation should

cause a strain-hardening effect and thus an apparent stiffer material response. Inspection of

Figure 3.13 leads to the conclusion that the selection of friction angle does not significantly

influence the model output. However, in Figure 3.13 the dilation angle is held constant

as the friction angle is changed. This is unrealistic as the amount of dilation occurring

typically should increase as the friction angle of the material is increased; in other words

there is a relationship between the friction angle of the material and the dilation angle. One
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relationship previously mentioned is Rowe’s dilatancy theory, restated here for convenience

1 + sinϕ

1− sinϕ
=

(
1 + sinψ

1− sinψ

)(
1 + sinϕcv
1− sinϕcv

)
(3.40)

where ϕcv is the critical friction angle. The critical state friction angle should be constant

for a given material. Hence a more realistic approach to studying the impact of change in

friction angle on model behavior is to hold the critical friction angle constant and allow the

dilation angle to change as the friction angle is altered. This approach is used in Figure

3.14 with a critical friction angle of 36o. The result is that the effect of a change in friction

angle is now comparable to the effect of changing the material cohesion, making the choice

of the two strength parameters of near equal importance. It should be noted that the two

differ in that the effect of change in the friction angle increases with an increase in the value

of the friction angle chosen, while the opposite is observed for the material cohesion.
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Figure 3.14: Effect of Changing the Friction Angle, ϕ, Holding the Residual Friction Angle
Constant While Allowing the Dilation Angle to Change for Mohr-Coulomb Model
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One final note should be made regarding the choice of material parameters. The case

presented here are centered around the default values in Table 3.1. Lowering or raising

the default values may lead to a difference in response to the varied parameters. However,

this section does provide a qualitative understanding of which parameters have the greatest

influence on the model output if the tensile cutoff is not reached.

For the case of the tensile cutoff, the controlling parameters are those which relate to

whether or not the cutoff is reached, namely the shear modulus, rock tensile strength, lateral

in situ stress and Poisson’s ratio. The influence of these parameters is similar in nature to

that discussed for the case in which the cutoff is not reached and thus a parametric analysis

will not be presented here. Furthermore, it was found that for the weak rock formations

studied in this thesis, this empirical model typically did not capture the rock behavior.

Therefore, the author has chosen not to emphasize the tensile cutoff model.

3.3 Hoek-Brown Model

The Hoek-Brown failure criterion is widely accepted and extensively used in rock engineering

projects to describe rock mass behavior [6]. Originally developed in 1980 to model the

behavior of intact and jointed rock masses for underground excavation, the criterion has

evolved over time to account for weak and heavily fractured rock masses. The criterion’s

most recent iteration, released in 2002 in [6] is supplemented by further improvement of

classification schemes associated with the model parameters, such as in [18]. The criterion

is non-linear and empirical, based on a plethora of rock data and observed behavior over

the years. The non-linear nature of the criterion is likely more appropriate for modeling the

true behavior of a rock mass.

In terms of principal stresses, the Generalized Hoek-Brown criterion can be written as

follows

σ′1 = σ′3 + σc

(
mb

σ′3
σc

+ s

)b
(3.41)

where σ′1 and σ′3 are the effective major and minor principal stresses respectively, σc is the

uniaxial compressive strength of intact rock, mb is the reduced value of the Hoek-Brown
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material constant, mi given by

mb = miexp

(
GSI − 100

28− 14D

)
(3.42)

s and b are constants based on the rock mass characteristics defined as

s = exp

(
GSI − 100

9− 3D

)
(3.43)

b =
1

2
+

1

6

(
e−GSI/15 − e−20/3

)
(3.44)

GSI is the Geological Strength Index (0−100) and D is a disturbance parameter (0−1). As

in Section 3.2, effective stress (i.e. drained) analysis is applicable here and thus the prime

(’) is dropped in future equations for convenience.

As the reader may be unfamiliar with some of the parameters mentioned, a brief de-

scription is included here. The Hoek-Brown material constant for intact rock, mi, generally

ranges from a value of 2 to 35. Higher numbers indicate greater interlocking and frictional

resistance, and thus greater strength. Ideally values for this parameter should be deter-

mined through lab or in situ testing, however, values can be assigned based on rock type

as outlined in the chart image in Figure 3.15, taken from [18]. The Geological Strength In-

dex, GSI, is a system used to rate rock mass strength based on the rock structure and joint

roughness. A rock with few discontinuities and sharp asperities on its joint faces will provide

more resistance to load than a rock with developed shear planes and smooth joint faces. The

system rates a rock mass from 0 − 100, with values assigned based on the chart displayed

in Figure 3.16, taken from [18]. The use of the GSI system has been extensively covered in

the literature; some helpful resources for the interested reader include [20][13][18][19]. The

disturbance parameter, D, is a qualitative tool used to assign a value based on observed

disturbance resulting from stress relaxation and blasting. The parameter ranges from 0− 1

with 0 representing an undisturbed rock mass and 1 being highly disturbed. General guide-

lines are given in Figure 3.17, taken from [6]. Lastly, the uniaxial compressive strength of

the intact rock, σc, represents the maximum resistance to failure under an applied axial

load where failure is defined by crushing of the grains or ultimate failure of the rock ma-

terial. The uniaxial compressive strength should be determined through laboratory testing
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Figure 3.15: Chart for use in Determining the Hoek-Brown Constant, mi, for Different Rock
Types. Original Image is Table 2 in [18].
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Figure 3.16: Chart for use in Determining the Geological Strength Index, GSI, for Different
Rock Types. Original Image is Table 3 in [18].
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Figure 3.17: Chart for use in Determining the Disturbance due to Stress Relaxation and
Blasting, D, for Different Rock Types. Original Image is Table 1 in [6].
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Figure 3.18: Chart Providing General Guidelines for Determining the Intact Uniaxial Com-
pressive Strength, σc, for Different Rock Types. Original Image is Table 1 in [18].
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or other testing methods. However, if this information is not available, the chart from

[18] reproduced in Figure 3.18 can be used to estimate a value for a given rock type.

More details of the Hoek-Brown failure criterion are presented in the remaining sections

of this thesis. The aim of the above section is to provide background information for future

discussion.

3.3.1 Model Development

A similar procedure to that used in Section 3.2 for development of a cavity expansion Mohr-

Coulomb model can be utilized to define a cavity expansion model using the Hoek-Brown

failure criterion. The governing equations for the elastic material response (po < p < pf )

are the same as previously defined in Section 3.1. Equations governing the behavior of the

material beyond yield are presented here. It should be noted that a similar derivation is

presented in [23]. However, changes and corrections are made by the author here, particu-

larly in the derivation of the stress equations. The derivation of the deformation equations

is the same. Implementation of the model with application towards pressuremeter analysis,

however, is original work performed by the author to best of his knowledge.

The Hoek-Brown failure criterion in Equation (3.41) can be written in terms of a cylin-

drical coordinate system as

σr = σθ + σc

(
mb

σθ
σc

+ s

)b
(3.45)

where σ1 = σr and σ3 = σθ. Recognizing that rf/r = 1 at the initiation of yield, the yield

pressure, pf , can be determined by plugging the definitions in Equations (3.9) and (3.10)

for σr and σθ into Equation (3.45). The resulting equation can be expressed as follows

σrf = pf =
σc
2

[
mb

σc
(2po − pf ) + s

]b
+ po (3.46)

where an iterative method is required to determine pf .

To determine the stresses developed beyond yield (i.e. p > pf ), the yield criterion defined

in Equation (3.45), and the equation of equilibrium defined in Equation (3.4) must both be

satisfied. Substituting the yield criterion into the equilibrium equation yields

d

[
σθ + σc

(
mb

σθ
σc

+ s
)b]

dr
+
σc

(
mb

σθ
σc

+ s
)b

r
= 0 (3.47)
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Rearranging gives

d

[
σθ + σc

(
mb

σθ
σc

+ s
)b]

σc

(
mb

σθ
σc

+ s
)b +

dr

r
= 0 (3.48)

Through substitution Equation (3.48) can be integrated to form the following solution

(b)ln

(
mb

σθ
σc

+ s

)
−

(
mb

σθ
σc

+ s
)(1−b)

mb(b− 1)
+ ln(r) + C = 0 (3.49)

where C is an integration constant. Applying the boundary condition that when r = rf ,

σθ = σθf and solving yields

(b)ln

(
Aσθf + s

Aσθ + s

)
− 1

mb(b− 1)

[
(Aσθf + s)(1−b) − (Aσθ + s)(1−b)

]
+ ln

(rf
r

)
= 0 (3.50)

for any radius r where A = mb/σc and σθ is the circumferential stress at radius r. Solving

Equation (3.50) for σθ requires a numerical method which is discussed in the next subsection,

Model Implementation. The radial stress, σr, is then determined by plugging the solution

to σθ from Equation (3.50) into the Hoek-Brown failure criterion.

The strains beyond yield can be determined incrementally by applying a flow rule and

appropriate boundary conditions. The same non-associative flow rule used in Section 3.2

is utilized here for the Hoek-Brown model. The resultant flow rule in terms of radial and

circumferential strain previously written in Equation (3.26) is repeated here for convenience.

ϵpθ + nϵpr = 0 (3.51)

where

n =
1 + sinψ

1− sinψ
(3.52)

and ψ is the dilation angle as previously stated. The plastic strain components can be

written in terms of the total strain and elastic strain components by rearranging the relations

in Equations (3.28a) and (3.28b),

ϵpr = ϵr − ϵer (3.53a)

ϵpθ = ϵθ − ϵeθ (3.53b)
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The elastic strain components at the elastic-plastic interface can be determined by setting

r = rf in Equation (3.11), resulting in

ϵeθ = −ϵer =
pf − po
2G

= Bo (3.54)

with the newly defined variable Bo created for convenience. Substituting these values into

the flow rule (Equation (3.51)) yields the following differential equation.

u

r
+ n

du

dr
= Bo(n− 1) (3.55)

Solving and applying the boundary condition ur=rf = rfBo results in an expression for the

displacement in the plastic zone for radius r.

u = −rBo
n− 1

n+ 1
+ rfBo

2n

n+ 1

(rf
r

)1/n
(3.56)

Dividing both sides by r yields the total circumferential strain beyond yield.

ϵθ = −Bo
[
n− 1

n+ 1
+

2n

n+ 1

(rf
r

)(1/n)+1
]

(3.57)

All the necessary equations to implement the Hoek-Brown cavity expansion model have now

been presented. For additional information on this derivation, the author refers the reader

to [23].

3.3.2 Model Implementation

The Hoek-Brown model can be implemented in a manner similar to that described for the

Mohr-Coulomb model with extra complications due to model non-linearity. However, before

discussing the practical details of implementing the model, it is important to establish the

input parameters required to define the model.

The material response during the elastic phase of loading is identical to that of the

Mohr-Coulomb model and hence governed by the same equations. The two models differ,

however, in the determination of the end of elastic behavior defined by the yield pressure,

pf . As before, the elastic zone can be described by two points, (0, po) and (ϵcf , pf ), where pf

is defined in Equation (3.46) and ϵcf is equal to Bo in Equation (3.54). To satisfy Equation

(3.46), knowledge of the reduced Hoek-Brown parameter, mb, the uniaxial compressive
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strength, σc, constants s and b, and the in situ stress po is required to determine the yield

stress, pf . Additionally, shear modulus, G, must be known to solve Equation (3.54) for

ϵcf . Further inspection of the parameters reveals that mb, s and b as defined in Equations

(3.42), (3.43) and (3.44) respectively can be determined if the Hoek-Brown parameter, mi,

the Geological Strength Index, GSI, and the damage parameter D are known.

Beyond the yield pressure, radial stress is determined by solving Equation (3.50) for σθ

and plugging this value into the Hoek-Brown failure criterion of Equation (3.45). Strain is

determined by Equation (3.57). In addition to the parameters necessary to define elastic

behavior, these equations require knowledge of the dilation angle, ψ, and ratio rf/r where r

is the radius of interest (inner cavity radius, a, in this case) and rf again defines the radius

to the elastic-plastic boundary or yield front. As in the case of the Mohr-Coulomb model,

this last parameter can be eliminated by defining a vector for the ratio rf/a from 1 : x

where x is a number large enough to achieve the required strain for modeling data.

The necessary parameters to define the entire model then are the in situ stress, po, shear

modulus, G, uniaxial compressive strength of intact rock, σc, Geological Strength Index,

GSI, the Hoek-Brown parameter, mi, dilation angle, ψ, and the damage parameter D.

Using these parameters as inputs, and the proper equations the model can be set up for

data analysis as illustrated in the flow diagram in Figure 3.19. Details of the implementation

that warrant further discussion include the process for determining the yield pressure and

the incremental determination of the stress-strain values beyond yield.

The yield pressure, pf , can be found on both sides of Equation (3.46), therefore requiring

an iterative procedure to solve for pf . One method that can be applied is to loop through

a number of values (or guesses) for pf on the right-hand side of the equation and check

the solution of the equation against the variable input. The looping of variables ends when

an acceptable tolerance (or difference between the guess and output) is reached. This

method was employed here with a tolerance of 0.005. As this method lends itself to the

possibility of multiple solutions, it is important to apply natural bounds to the input value

of the parameter. It is impossible for the yield pressure to be below the in situ stress

of the material and thus po can be used as a lower bound. The upper bound can be

found through inspection of Equation (3.46). If the evaluated expression inside the brackets
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Determine ϵθf
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check value of pf

Guess pf
po : 0.0001 : 2po + s σc

mb

Combine Elastic and Inelastic Responses

Figure 3.19: Flow Diagram for Implementation of the Hoek-Brown Model
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(mb/σc(2po−pf )+ s) is negative, the solution to the equation will become imaginary. Thus

the point at which this expression equals zero can be used as an upper bound for the yield

pressure. This occurs when pf = 2po + sσc/mb. Once an acceptable solution for pf is

determined a further check for accuracy can be applied. Because the yield stress marks the

end of elastic behavior, the elastic relations still apply. Therefore the yield criterion and

the governing elastic equations must be satisfied at the point of yield. Using the elastic

equations, the circumferential stress at failure, σθf , should be equal to po − (σrf − po) or

2po − pf with σrf = pf . This value for σθf can be plugged into the Hoek-Brown failure

criterion; the result should be equal to pf previously determined.

Once the yield stresses σrf and σθf have been reached, inelastic stress and strain values

are determined by Equations (3.50) and (3.57) incrementally. To solve Equation (3.50) for

each increment an iterative method is required, a result of the non-linearity of the failure

criterion. The iterative method adopted here is the well known Newton-Raphson method

which can be written in common form as follows

χj+1 = χj −
f(χj)

f ’(χj)
(3.58)

where χj is the current guess for the value of variable χ, f(χj) is the function evaluated at χ

for the current guess, f ’(χj) is the derivative (or slope) of the function and χj+1 is the next

guess for χ. The Newton Raphson method is designed to find roots of a function for the

case when f(χ) = 0. Essentially the method works by applying a tangent line at the point

where the function is evaluated (based on the guess) and a new guess is formed by taking

the value associated with the χ− intercept of the tangent line as illustrated in Figure 3.20.

The process is then repeated. After a few iterations a local maxima or minima is found

as a solution. Because this equation is solved for a number of small increments, the value

determined in the previous increment is always used as a first guess for the next increment,

knowing this value should be close to the correct answer. Once σθ is determined at each

increment, σr is calculated by plugging σθ into the Hoek-Brown failure criterion.
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Desired Output

χ

f(χ)

χ1χ2χ3

Figure 3.20: Example of Newton-Raphson Method

3.3.3 Validation of Model Implementation

The model implementation outlined in Figure 3.19 was coded by the author using MATLAB.

As stated previously, it is important to validate the implementation before analyzing data.

However, to the author’s knowledge a previous implementation of the model does not exist

for comparison. Thus, the validity of the model itself must be proven which will in turn

validate the model implementation.

Two methods are adopted here to confirm the model machinery is functioning properly.

The first method utilizes external data from one of the five data sets analyzed for this thesis

in which the model input parameters had been determined by other methods. If these

material parameters can be used as inputs to the pressuremeter model and the resultant

stress-strain curves are in good agreement with the pressuremeter data, then it can be said

the model is valid. The second method utilizes the Mohr-Coulomb model. For a given set of

Hoek-Brown model parameters, an equivalent cohesion and friction angle can be determined
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Table 3.2: Hoek-Brown Parameters Determined by External Methods in Tuff

Uniaxial Compressive Strength, σc 70− 105 MPa

Geological Strength Index, GSI 40− 65

Hoek-Brown Parameter, mi 8− 18

Damage Parameter, D, 0

(more details on this are provided in the next chapter). Using the equivalent c − ϕ values

as inputs into the Mohr-Coulomb model should produce a stress-strain curve similar to

the Hoek-Brown stress-strain curve (at least within the same range) further validating the

Hoek-Brown pressuremeter model.

The data set used for model validation consists of pressuremeter tests in meta-welded

tuff. Hoek-Brown parameters were determined based on logging of core and laboratory test-

ing with results and details reported in [1]. A summary of the parameter ranges determined

in [1] is given in Table 3.2. The attentive reader would note that the uniaxial strength range

of the meta-welded tuff adheres to the definition of strong rock as defined in Figure 1.4.

However, because the Hoek-Brown model is valid for both weak and strong rock [6] [18],

validating the Hoek-Brown pressuremeter model against strong rock data will inherently

validate the model against weak rock as well.

In all, 22 pressuremeter tests were performed in the meta-welded tuff and all were

tested against the parameter ranges provided by the lab and field data. The Hoek-Brown

pressuremeter model achieved a good fit to all 22 tests using the parameter ranges given.

Shear modulus values were obtained from the unload-reload loops of each test. The in

situ stress was determined based on the overburden stress and previously accepted analysis

performed on the data set. The dilation angle was adjusted to provide the best fit to

the data; determined to typically range from 9 - 11 degrees with a mean of 9.8 degrees.

The small range of values used for the dilation angle indicates consistency in the data and

rock formation. It also provides confidence that a good fit was not achieved via radical or

erratic changes in the parameter (which would lead to uncertainty in the model validation).
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Additionally, good quality rock is listed as having a dilation angle around 11.5 degrees in

[13]. As this rock formation was fairly intact and could be considered to be fairly good

quality, values around 10 degrees are agreeable. A sample of two tests is provided here to

illustrate model fit to the tuff data set.

The two tests chosen for display here are tests I-90-04 and I-90-19 at depths of 25.9

meters and 18.1 meters respectively. Both tests require inputs towards the lower end of the

spectrum for the defined parameter range indicating the tests are performed in the weaker

zones of the tuff than is typical of the formation. Tests were performed in tuff with strength

values towards the higher end of the spectrum as well and were also validated against the

model.
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Figure 3.21: Typical Pressuremeter test in Meta-Welded Tuff. Test I-90-04 at 25.9m depth.

Test I-90-04 presented in Figure 3.21 is an example of a typical test performed in the

meta-welded tuff. The recorded data requires two shifts be made before analyzing the data.

First, the strain must be adjusted to reflect an appropriate point for zero strain. Apparent

strain is recorded in which the pressuremeter expands before reaching the borehole wall due

to a slightly oversized test pocket. This apparent strain must be removed via a strain shift



84

of the data. Once the pressuremeter membrane has expanded and makes contact with the

borehole wall, material response is recorded as a stress-strain curve.

Second, because we are performing an effective stress analysis, the water pressure present

must be removed requiring a stress shift in the data. After making these changes, test I-

90-04 appears as presented in Figure 3.22. Use of both these shifts are discussed in detail

in the next chapter. Using the input parameters displayed in Table 3.2, the Hoek-Brown
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Figure 3.22: Test I-90-04 at 25.9m depth in Meta-Welded Tuff after Stress and Strain Shift
Performed.

model fit to the data is presented in Figure 3.23. The discrepancy near the beginning of

the curve can be explained by disturbance due to drilling action and stress relaxation which

the model does not consider. Beyond that, it is clear that the model performs well and

is capable of reproducing an idealized version of the recorded data. The model curve also

sheds light on the material behavior had the pressure been increased further during the test

allowing for greater strain of the rock mass to be achieved.

Analysis of a more atypical test, test I-90-19, in which the tuff is the weakest encountered

in the data set is presented in Figure 3.24. Typically on this site, tests are terminated due
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Figure 3.23: Test I-90-04 at 25.9m depth in Meta-Welded Tuff with Model Curve (solid
line) Fitted to Data (dashed line).

to pressure limitations of the instrument (to avoid blowing the membrane and causing

serious damage), subsequently leading to minimal rock strain (1 - 2%) a reflection of the

strong nature of the tuff. However, strain near 3% is achieved in test I-90-04 allowing

for comparison of the data to the model at higher strains (for this rock type). Inspection

of Figure 3.24 reveal the model, again, performs well using parameters within the range

determined by lab and field testing. This further confirms the model validity for analyzing

pressuremeter data.

As mentioned previously, another check against the performance of the Hoek-Brown

pressuremeter model is to compare the output of the Hoek-Brown model to the Mohr-

Coulomb model using the equivalent c − ϕ values determined by the Hoek-Brown model.

Of course there are inherent differences between the two models, notably that the Mohr-

Coulomb model has a linear yield criterion while the Hoek-Brown failure criterion is non-

linear. Thus even using equivalent Mohr-Coulomb parameters, the Hoek-Brown model will

naturally give a different result. Also, there are multiple approaches to determining the
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Figure 3.24: Test I-90-19 at 18.1m depth in Meta-Welded Tuff with Model Curve (solid
line) Fitted to Data (dashed line).

equivalent Mohr-Coulomb parameters using the Hoek-Brown model, which can also lead to

different results (more on this in the next chapter). However, regardless of these differences,

it should be possible to create two similar curves using the Hoek-Brown model and the

equivalent c−ϕ values as inputs into the Mohr-Coulomb model. An example comparing the

two models for three different strength levels is displayed in Figure 3.25. The dashed lines

represent the Hoek-Brown curve and the solid lines represent the equivalent Mohr-Coulomb

curve. The input numbers themselves are insignificant, but it should be noted that common

parameters between the two models are maintained for each comparison (i.e. the same shear

modulus, in situ stress etc., is used in a given comparison). As expected the curves lie in

the same range, but the overall shape differs. In particular, the Hoek-Brown model tends

towards a strength limit more quickly at higher strains, a result due to the differences in the

yield criterions. Further comparison of these models is reserved for later, however, the fact

that the two models produce similar results further validates that the Hoek-Brown model

is properly implemented and may be suitable for pressuremeter analysis.
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Figure 3.25: Comparison of Mohr-Coulomb Model (Solid Line) to Hoek-Brown model
(Dashed Line) Using Equivalent Effective Cohesion and Effective Friction Angle as De-
termined by the Hoek-Brown Parameters.

3.3.4 Parametric Analysis

As previously emphasized, it is important to understand the affect of the model input

parameters on the resulting stress-strain curve before using the model for data analysis. By

performing a parametric analysis the inputs that most heavily impact the model response

can be identified. The results of such an analysis are presented in Figures 3.26 through 3.32.

Each figure is produced by changing one input parameter while all other inputs remain

constant. The default parameters (i.e. those held constant as others are changed) are listed

in Table 3.3 and represent near average values for the data set analyzed. Drained analysis

is assumed and the figures are all plotted to the same scale for comparative purposes. The

remainder of this section is dedicated towards discussion of the parametric effects on model

output.

From inspection of Figures 3.26 through 3.32, it can be established that the Geological
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Table 3.3: Default Input Values for Parametric Analysis - Hoek-Brown

Shear modulus, G 2, 200 MPa

In Situ stress, po 0.4 MPa

Geological Strength Index, GSI 33

Uniaxial Compressive Strength, σc 14 MPa

Hoek-Brown Parameter, mi, 10

Dilation angle, ψ 8.5o

Damage Parameter, D 0

Strength Index, GSI, and the uniaxial compressive strength of intact rock, σc, have the

greatest impact on the stress-strain curve produced by the Hoek-Brown model. The choice

of GSI is based on a rating (from 0 − 100) of the rock condition in terms of the amount

of fracturing (or joints) and conditions of the joint interfaces. As joint strength will largely

dictate the material response to loading, it is logical that this parameter would dominate

the model response. The effect of GSI increases as the parameter value is increased towards

a value of 100, representing intact rock. A similar trend is found in observing the effect

of σc with a less significant overall impact. However, using uniaxial compressive strength

values for very strong rock (σc > 250 MPa) may result in a stress-strain curve similar to

that produced for GSI = 100. Thus the importance of selection of these two parameters is

high and must be considered carefully.

The choice of dilation angle, ψ, and the Hoek-Brown constant, mi, can also have a

significant influence on the model output. The Hoek-Brown constant represents a measure

of joint interlocking and frictional resistance with the typical range of values illustrated in

Figure 3.30. The effect of a change in input on the model response diminishes quickly as

higher values of mi are reached, essentially capping the resistance to load gained from the

joint interlocking. At lower values of mi, a small increase in interlocking can have a more

significant impact. The choice of dilation angle directly impacts the deformation response

of the model. The effect of the parameter choice increases slightly as the parameter value



89

0 2 4 6 8 10 12
0

5

10

15

20

25

30

35

40

45

Strain (%)

S
tr

es
s 

(M
P

a)

G = 500

G = 2000

G = 3500

G = 5000
G = 6500
G = 8000

G = 11000

Figure 3.26: Effect of Changing the Shear Modulus, G, for Hoek-Brown Model
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Figure 3.27: Effect of Changing the In Situ Stress, po, for Hoek-Brown Model
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Figure 3.28: Effect of Changing the Geological Strength Index, GSI, for Hoek-Brown Model
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Model
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Figure 3.30: Effect of Changing the Hoek-Brown Parameter, mi, for Hoek-Brown Model
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Figure 3.31: Effect of Changing the Dilation Angle, ψ, for Hoek-Brown Model
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Figure 3.32: Effect of Changing the Damage Parameter, D, for Hoek Brown Model

increases, indicating a strain-hardening effect. Although the overall impact of the choice of

dilation angle is similar to that of the Hoek-Brown constant, it can be stated that at lower

ranges, the choice of mi is more important while the opposite is true at higher values.

Two parameters that also represent a relatively large effect on model response are the

shear modulus, G, and in situ stress, po. The trends and effects of both these parameters is

similar. The influence of both parameters decays as the parameter value is increased. As is

stated previously, although the impact of these parameters is important, the shear modulus

can be determined using the pressuremeter test data and a range for the in situ stress is

generally known or can be established based on the pressuremeter data and other sources.

A large error in either choice, however, could lead to erroneous results.

The choice of the damage parameter, D, has the smallest impact by a large margin. As

is expected, a choice which represents no damage (0) is reflected in the model output as

a larger resistance to loading. As this parameter is largely aimed toward tunnel blasting

and not drilling disturbance for a pressuremeter test, it’s importance to this model is less
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significant. However, it should not be ignored in cases where obvious drilling disturbance is

present.

It should be noted that these trends discussed are based on the default parameters chosen

and use of a different set of default parameters could affect the results. However, these

values are representative of this study and qualitatively represent the overall model response

relating to changes in the input parameters. Most importantly, the input parameters that

impact the model output the greatest are established; a significant consideration in analyzing

pressuremeter data.

3.4 Multiscale Damage Model

The two models established thus far in this chapter are developed directly for pressuremeter

analysis and are utilized in analyzing pressuremeter data in rock (presented in Chapter 4).

While the two models, Mohr-Coulomb and Hoek-Brown, are the main focus of this thesis,

other constitutive rock models were explored for development into a pressuremeter analysis

framework. One of particular interest and perhaps greater complexity is that established

by Kondo, Zhu, Shao and Pensee in [8] (Additionally [9], [15], and [14]).

The Hoek-Brown and Mohr-Coulomb models as presented in this thesis are aimed at

capturing rock mass behavior as a continuum accounting for fracture, crack formation and

propagation through empirical equations and induced dilation. Both models could, however,

be adopted into a finite element mesh allowing for crack propagation at predetermined

locations at a macroscopic scale (see Haberfield [10]). The model developed by Kondo et

al (which from here on will be referred to as the Kondo model for convenience) considers

another approach by relating damage induced by microcrack development to the response

of the macroscopic rock mass; hence the model is multiscale.

The multiscale damage model attempts to account for the many effects microcracks

can have on the rock mass structure including: non-linear stress-strain relations, deteriora-

tion of elastic properties, induced anisotropy, irreversible deformation, volumetric dilatancy,

hysteresis, and the effect of microcrack closure [8]. These effects are accounted for by con-

sidering microcrack density (number of microcracks per unit volume), while individually

determining the size of open cracks and frictional resistance to sliding along closed crack
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faces. This is achieved using an Eshelby based solution in a standard thermodynamics frame-

work. Knowledge of micromechanics, damage modeling, Eshelby homogenization schemes,

energy-based material modeling and tensor mathematics is required to fully appreciate the

intricacies of the development of the Kondo model. However, descriptions of these topics

is beyond the scope of this thesis and although many sources are available, information

relevant to the Kondo model can be found in [3], [21], [8], [9], [15], and [14]. Highlights of

the model framework developed in these sources will be presented here.

Four major components necessary to establishing a thermodynamics material model are

a free energy function, state equations, a yield condition and evolution laws for internal

variables. The Kondo model was developed within this framework. The development of

each of these components will be discussed in successive order.

3.4.1 Free Energy

An expression describing the free energy (in this case the macroscopic free energy) is accom-

plished for the Kondo model by considering a composite material where zones are weakened

by microcrack inclusions for which the Eshelby solution for penny-shaped cracks is assumed.

Dimension and orientation of the penny-shaped cracks is described by radius, a, half open-

ing, c, and unit normal vector n as illustrated in Figure 3.33. Considering a representative

n

2c

a

Figure 3.33: Penny-Shaped Crack Schematic

elementary volume of the composite material with uniform macroscopic stress (Σ) applied
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to the boundary, the macroscopic strain can be written as

E = Es +Ec (3.59)

where Es and Ec are both second order tensors representing strain contributions from the

solid (uncracked) matrix and microcracks respectively. The microcrack contribution can be

defined in terms of kinematic parameters as follows

Ec = β(n⊗ n) + γ ⊗s n (3.60)

where β tracks the open/closure state of a crack and γ characterizes sliding along the crack

interface. This expression can be related to the local stress at the crack interface, σc,

(σc = 0 for the case of open cracks) by again decomposing the problem into two parts with

defined macroscopic strains at the boundary of which the details can be found in [8]. The

resulting solution is

β(n⊗ n) + γ ⊗ n = ϕcAc : (E− Ss : σc) = Epl (3.61)

where ϕc is the volume fraction of cracks, Ac is the fourth order concentration tensor as-

sociated with a family of microcracks (this can be defined in terms of the Eshelby tensor

for penny-shaped cracks), and Ss = (Cs)−1 with Cs defined as the fourth order elasticity

tensor for the solid matrix (as typically defined for a linear elastic isotropic continuum).

Adding the contribution of the solid matrix, the following stress-strain relationship can be

established

σc = Σ− Cpl : Epl (3.62)

with

Cpl =
[
ϕcAc : (I− ϕcAc)−1 : Ss

]−1
(3.63)

where I is the fourth order identity tensor. Finally, using Equation (3.62) and Equation

(3.60) the free energy relationship can be established for a cracked material.

W =
1

2
(E−Epl) : Cs : (E−Epl) +

1

2
Epl : Cpl : Epl (3.64)

Utilizing the free energy equation above, thermodynamic forces associated with internal

variables Epl, β, and γ can be established as follows

Fpl = − ∂W

∂Epl
= Σ− Cpl : Epl = σc (3.65)
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F β = −∂W
∂β

= σc : (n⊗ n) (3.66)

F γ = −∂W
∂γ

= σc · n · (1− n⊗ n) (3.67)

where 1 is the second order identity tensor. Considering a family of microcracks and using

the thermodynamic forces defined above, Kondo et al developed the following expression

for the Gibb’s free energy

Ψ = 1
2Σ : Ss : Σ+ 1

2Σ :

No∑
r=1

wrdr
(

1

H0
E2,r +

1

2H1
E4,r

)
: Σ

+Σ :

Nc∑
r=1

wr
[
βr(nr ⊗ nr) + γr ⊗s nr

]
− 1

2

Nc∑
r=1

wr

dr
[
H0(β

r)2 +H1γ
r · γr

] (3.68)

where superscript r represents the rth microcrack family, d is an internal damage vari-

able, w is a weighting factor for each microcrack family, No represents the number of open

microcracks, and Nc is the number of closed microcracks. Additionally

E2,r = nr ⊗ nr ⊗ nr ⊗ nr (3.69a)

E4,r =
1

2
[nr ⊗ nr⊗(1− nr ⊗ nr) + (1− nr ⊗ nr)⊗nr ⊗ nr] (3.69b)

and

H0 =
3Es

16 [1− (νs)2]
(3.70a)

H1 = H0

(
1− νs

2

)
(3.70b)

where Es is the Young’s Modulus and νs is Poisson’s ratio of the solid material matrix.

3.4.2 State Parameters

With the energy functions fully defined, the state parameters can be determined in the same

manner as the thermodynamic forces in Equations (3.65) through (3.67). The two state laws

needed for the Kondo model include a macroscopic stress-strain relationship (which is always

necessary) as well as a thermodynamic force related to the internal damage parameter d,

defined by E = ∂Ψ/∂Σ and F d
r
= ∂Ψ/∂dr respectively. The resulting equations can be

written as follows

E = Ss : Σ+

No∑
r=1

wrdr
(

1

H0
E2,r +

1

2H1
E4,r

)
: Σ+

Nc∑
r=1

wr
[
βr(nr ⊗ nr) + γr ⊗s nr

]
(3.71)
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where for open microcracks

F d
r
=

1

2
Σ :

(
1

H0
E2,r +

1

2H1
E4,r

)
: Σ (3.72)

and

F d
r
=

1

2(dr)2
[
H0(β

r)2 +H1γ
r · γr

]
(3.73)

for closed microcracks.

3.4.3 Yield Criterion

In order to account for both damage and friction (and the coupling between them) encoun-

tered on the closed microcrack faces, two yield criterion are developed for the Kondo model.

The yield criterion concerning frictional resistance adopts a Coulomb criterion which can

be expressed in terms of the thermodynamic force associated with internal variables β and

γ

g(σc) = |F γ |+ µcF
β = 0 (3.74)

where µc is the coefficient of friction for a microcrack face. The yield criterion concerning

damage resulting from microcrack growth is based on a generic energy release rate and is

defined as follows

f(F d, d) = F d −R(d) = 0 (3.75)

where

R(d) = co + c1d (3.76)

and co and c1 are energy coefficients that represent a damage threshold and the kinetics of

damage evolution respectively.

3.4.4 Evolution Laws

The evolution laws define the rate of change for the internal variables through an associative

or non-associative flow rule. The internal variables identified for the Kondo model are plastic

strain, Epl, the damage variable, d, the opening/closing mechanism for microcracks, β, and
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the frictional sliding parameter, γ. Adopting a normality rule, Kondo et al defined the

following evolution laws

ḋ = λ̇d
∂f(F d, d)

∂F d
= λ̇d (3.77)

γ̇ = λ̇γ
∂g

∂F γ
= λ̇γv (3.78)

β̇ = µcλ̇
γ (3.79)

Ėpl = β̇(n⊗ n) + γ̇ ⊗s n = λ̇γ (v ⊗s n+ µcn⊗ n) (3.80)

where λ̇d and λ̇γ are multipliers that can be determined by simultaneously satisfying the

condition where ḟ = 0 and ġ = 0. The vector v represents a unit vector in the direction of

sliding defined by v = F γ/|F γ |.

3.4.5 Discussion

All the information presented thus far in Section 3.4 can be found in greater detail in the

sources previously mentioned, however, further discussion of the model in the framework

of this thesis is warranted. Implementation of the Kondo model in general requires the

determination of the tangent operator, which relates the rate form of macroscopic stress to

the rate form of macroscopic strain. A numerical scheme (such as the Newton-Raphson)

is also required for implementation due to the model non-linearity. Both these pieces of

information are described in [8]. In order to use this model for pressuremeter analysis,

however, further modifications would be necessary.

Although tensors can be considered dimensionless, they typically need to be interpreted

in matrix or vector form in order to implement them into a computer code, which requires

choice of a coordinate system. Often a Cartesian coordinate system is adopted and indeed

this is the system utilized by Kondo et al in testing their model against data collected. Thus

it is best to first test the implementation of the model in this system against a solution

produced by Kondo et al, as is illustrated in Figure 3.34. Figure 3.34 represents a material

subjected to a simple shear monotonic loading path with one crack family in the e3 direction

(i.e. n = {0, 0, 1}). An initial compressive stress Σ33 = 10 MPa is applied to ensure that

cracks remain closed during the loading process. The model input parameters for Figure



99

Table 3.4: Input Parameters for Figure 3.34

Young’s Modulus, Es 33, 330 MPa

Poisson’s Ratio, νs 0.23

Energy Coefficient, co 2.5X10−3 Jm2

Energy Coefficient, c1 0.08 Jm2

Coefficient of Friction, µc 0.4

Initial Damage Parameter, do 0.1

3.34 are summarized in Table 3.4. The dashed lines in Figure 3.34 are reference points for

comparison between the two graphs. It should be noted that while the two stress-strain

curves are in good agreement, the volumetric strain curve produced by the author is slightly

different than that published by Kondo et al. This must be looked into further.

Once it can be confirmed that the implemented model is functioning properly, addi-

tional steps must be taken to adapt the Kondo model to analyzing pressuremeter data. A

cylindrical coordinate system should be adopted and thus transformation from the carte-

sian system would be required. Restrictions would also need to be put in place to account

for plain strain conditions. The horizontal in situ stress would be added as another input

parameter. The addition of this parameter, however, could be accomplished in a similar

manner to the loading scenario above where an initial load Σ33 was applied. Lastly, a choice

must be made on the number and direction of microcrack families that should be considered

when analyzing pressuremeter data, a potentially difficult, but crucial decision.
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.
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Chapter 4

DATA INTERPRETATION AND RESULTS

A number of pressuremeter models along with a framework for model development have

been introduced. The focus of this chapter is on the application of these models to analyzing

pressuremeter data. Corrections to the raw data and determination of common parameters

(such as the shear modulus) are discussed. Analysis of pressuremeter tests in soil is briefly

touched upon, but attention is mainly aimed at the analysis of weak rock. Specifically, use of

the Mohr-Coulomb and Hoek-Brown models for interpreting pressuremeter data collected in

weak rock is discussed. As many techniques for analysis of pressuremeter data are available,

the methods discussed here should be considered in no way exhaustive.

4.1 Rock Data

Pre-bored pressuremeter data was collected at five different sites as part of geotechnical

investigation for infrastructure projects. The locations of these sites and project specific in-

formation not publicly distributed will not be disclosed here. Pertinent information required

for data analysis, such as rock type, depth of test location and static ground water table

are most easily presented in a boring–log–type format as exhibited in Figures 4.2 through

4.9. A key for these figures is provided in Figure 4.1. For convenience Table 4.1 can be

used as a quick reference, listing all rock types encountered, depth range and number of

tests performed on each site. Appendix A at the end of this document provides stress-strain

plots of all the data modeled using the Hoek-Brown method. Each pressuremeter test is

given a reference name with a letter designation followed by a number (i.e. kaz01 for the

first test performed on site 3). This designation is useful for reviewing the plots given in the

Appendix. The designation for each site is given in Table 4.1. Additionally, a more specific

version of this information with test name, depth, and rock type for each test is presented

in Appendix A for each site.
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Table 4.1: Rock Data Information by Site

Site Depth Range (m) # Tests Designation Rock Types

1 40 - 75 4 CRCXX Cemented Cobble

& Gravel Matrix

2 15 - 25 22 I–90–XX Meta Welded Tuff

3 1 - 17 40 kazXX Gruss, Loam,

Mudstone, Siltstone

4 29 - 122 31 sr710-XX Diorite, Sandstone,

Siltstone, Conglomerate

5 10 - 27 18 WallerXX Limestone, Shale

KEY

PM Test Location

Water Table

.
Figure 4.1: Key For Figures 4.2 through 4.9

The data was collected using a Cambridge type pre-bored pressuremeter where applied

pressure versus average cavity strain (change in radius/initial radius) is measured by a

pressure sensor and three feeler arms equipped with strain gauges spaced equidistantly

around the cylindrical instrument, respectively. Test pockets for the instrument on all sites

were formed using either mud-rotary drilling methods or coring methods. If mud-rotary

was employed a 2–15/16” tricone bit was typically used to form the test pocket, while an

NQ core barrel was used if the rock was cored. Further detail of the equipment used and

data collection techniques was provided in Chapter 1, Section 1.1. The remainder of this

chapter will focus on interpretation of the data collected.
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4.2 Data Interpretation

Many methods of data interpretation, typically graphical in nature, are available and dif-

ferent methods can be employed on a site by site, and even test by test basis. The interpre-

tation techniques described here should not be considered applicable to all pressuremeter

tests. However, some of the methods introduced can be generally applied for pressuremeter

analysis. Other methods discussed are more specific to this data set and the models intro-

duced, something the author attempts to note throughout. It would be overwhelming to

present analysis details for each of the 115 pressuremeter tests utilized in this study. Thus,

interpretation of a few representative tests is presented here and general trends from the

entire data set are discussed. Plots of all the tests analyzed by the Hoek-Brown model are

given in Appendix A at the end of this document.

4.2.1 Corrections of Raw Data

Before any analysis is performed, corrections must be made to the raw pressuremeter data

collected in the field. Factors that can affect the data include end effects, disturbance due

to stress relief, drilling action and probe installation, electronic drift, membrane thinning,

membrane compression and membrane strength. End effects result from the coupling of the

membrane at each end of the pressuremeter causing an irregular shape during membrane

expansion (i.e. the ends of the membrane do not expand as a right cylinder). Typical

expansion is on the order of twelve millimeters diametrically for the system used in this

study and the length of the expanded zone is 6 times the probe diameter (i.e. L/D = 6).

Studies have shown that end effects for probes with a length to diameter ratio of 6 can

be significant for soft clays [24], [7], however, for overconsolidated materials, end effects

have been found to be negligible [24]. The type of pressuremeter probes considered in

these studies of end effects is not specified, but could have significant impact. The amount

of expansion for a Menard type pressuremeter is typically significantly greater than the

system used for this study, which would lead to an increased influence in end effects. The

influence of end effects is typically ignored for the type of pressuremeter used in this study

and thus the effects were not considered in interpreting the data presented here. The other
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factors listed affecting the data can be accounted for through membrane corrections and

zeroing of the data.

Membrane Corrections

During a pressuremeter test, as the rubber membrane expands under pressure, the strength

of the membrane provides resistance to expansion. Thus a certain amount of pressure is

required to overcome the membrane strength, which must be removed from the data. By

expanding the membrane in air (with no additional resistance) a measure of the resistance

from the membrane is achieved. An example of a air membrane correction is given in

Figure 4.10. The membrane is loaded and unloaded several times to determine the overall

trend in the membrane behavior. The slope and y-intercept of the line fitted to the air

membrane correction can be used to adjust the pressuremeter data. The result of this

membrane calibration is more pronounced, and hence more important, for tests in which a

lower overall applied pressure is achieved.

Figure 4.10: Air Membrane Calibration Test With Fitted Slope for Data Correction
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The membrane stiffness and compressibility will also affect the recorded pressuremeter

data. At high pressures, compression of the membrane against the borehole wall and mem-

brane thinning will occur. Electronic drift can also result from high amounts of applied

pressure on the signal receiving computer board in the instrument. The combination of

these effects can be captured by expanding the membrane against a rigid steel tube. An

example of a tube membrane correction is given in Figure 4.11. Again the membrane is

loaded and unloaded multiple times. As the pressure is increased, it can be noted that a

fairly constant slope is achieved. A line fitted to the slope of the tube membrane calibration

can be applied to the pressuremeter data leading to a slight shift in the measured stiffness.

This membrane correction is more applicable for tests in which pressures greater than 1

MPa are reached. It should be noted that the initial loading and final unloading portion

of the membrane calibration tests in both Figure 4.10 and 4.11 has been removed as this

information is not needed and introduces clutter to the plots. Note that the strain in Figure

4.11 begins at 9%, the required strain for the membrane to reach the walls of the steel tube

for this particular membrane.

The influence of applying the membrane corrections in Figures 4.10 and 4.11 to raw

pressuremeter data is illustrated in Figure 4.12. It can be seen that shifts in both stress

and strain values occur, influencing the apparent stiffness and strength of the material. The

result is that the true material strength is less than that of the membrane and material

combined, while the material stiffness is greater for this case.

Origin Shift and Water Pressure

The origin shift and shift accounting for water pressure should not necessarily be considered

corrections, but rather adjustments to the data to aid in analysis. While the membrane cor-

rections discussed above can and should be applied to all data, the origin and water pressure

adjustments are introduced on a test by test basis and are sometimes not required. These

two shifts were touched upon earlier in Section 3.3 in the Validation of Model subsection,

however, more insight is provided here.

Adjusting the data to account for water pressure is only necessary when considering
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Figure 4.11: Tube Membrane Calibration Test With Fitted Slope for Data Correction

drained analysis. For undrained analysis, total stress analysis is often utilized and thus

accounting for the water pressure through a data shift is not required.

For drained analysis, the static water pressure present must be subtracted from the

measured pressure to ensure effective stress analysis is established. If the water table is

known, the water pressure at a given depth can be calculated as follows

pw = γwDw (4.1)

where γw is the unit weight of water (9.81kN/m3) and Dw is the depth of water (the

difference between the depth of the water table and the point of interest). If the water

table is unknown, the water pressure can be estimated by the pressuremeter curve. In a

free draining material (such as sand, gravels and fractured rocks), there is a point during

the final unloading that can be identified where the water pressure outside the membrane

has overcome the applied pressure inside the membrane causing the membrane to rapidly

collapse. The pressure at which this collapse occurs can be used as an estimate for the
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Figure 4.12: Change in raw data after applying membrane corrections for test kaz28 at 7.9
meters depth. The solid line represents the data after the membrane corrections have been
applied. The dashed line represents the raw data.

ambient water pressure for the formation tested. For test kaz28 in Figure 4.12, it was

determined the water table is at a depth of 4 meters. The test was performed at 7.9 meters

and thus the water pressure at the test location is 0.04 MPa. Had the water table been

unknown, it could have been concluded that a small amount of water pressure was present

for test kaz28. This is apparent through inspection of Figure 4.12. A well defined membrane

collapse resulting from water pressure exists, but after applying membrane corrections, this

collapse appears to occur near a pressure value of zero. The result of removing the water

pressure from the total applied pressure for test kaz28 is given in Figure 4.13.

Use of a pre-bored pressuremeter often results in the necessity of a shift in origin or

zeroing of the data (typically this is not necessary for a self-boring pressuremeter test).

Depending upon the formation drilled and drilling techniques used, a test pocket can either

have a diameter too large or too small for the pressuremeter or can be prone to drilling

disturbance. Disturbance can also occur from instrument installation and stress relaxation
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Figure 4.13: Change in data after applying water pressure shift for test kaz28 at 7.9 meters
depth. The solid line represents the data after the shift has been applied. The dashed line
represents the data before the shift.

at the borehole wall. If the test pocket diameter is slightly too small, and the pressuremeter

is forced in (as is possible in a clay), then some strain has already been applied to the forma-

tion and the resulting origin will be less than the measured 0% strain by the pressuremeter.

If, however, the test pocket diameter is slightly large, or drilling disturbance is present,

then the measured strain will be greater than the actual strain applied to the undisturbed

formation. Therefore, the origin must be adjusted to account for these effects.

Ideally the origin should define a point on the pressuremeter curve in which the in

situ horizontal stress (in this case effective stress) coincides with 0% strain. In an ideal

test, once the applied pressure is greater than the combination of in situ stress, water

pressure and membrane strength (of which the membrane effects and water pressure have

been removed for analysis), then the pressuremeter would begin to expand against the

surrounding undisturbed formation. However, tests are typically not ideal and thus for the
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same reasons a shift in the data is necessary in a non-ideal case, the point in which the

applied pressure equals the in situ stress may not coincide with the point that should be

considered as the strain origin. This can be illustrated through inspection of test kaz28 in

Figure 4.14.
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Figure 4.14: Test kaz28 in gruss - an example of a pressuremeter test in weak rock.

At point A in Figure 4.14, deemed the lift-off point, the pressuremeter begins to ex-

pand against the rock formation. Point B marks a significant change in the slope of the

pressuremeter curve, revealing the presence of disturbance and possible failure in extension

from stress relief at the borehole wall between points A and B. Between points B and C, it

appears that the measured stress and strain are representative of the undisturbed rock for-

mation. However, at point C, a small inflection can be identified, suggesting the presence of

an annulus of softened material around the expanding pressuremeter. Thus, it is after point

C that the data captured is truly representative of the undisturbed rock formation. Given

the depth of this test (7.9 meters) and considering the weathered nature of the formation, it

is highly unlikely that the horizontal in situ stress is as high as the value recorded at point

C. However, point C can be considered the strain origin for the undisturbed rock formation.
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Figure 4.15: Test kaz28 After Origin Shift Applied

It should be understood from this example that the choice of a natural origin can be

difficult and requires judgement. The goal is to identify a point in which disturbance to

the rock formation at the borehole wall is overcome and zero the strain readings at this

point, as is displayed for test kaz28 in Figure 4.15. This allows the pressuremeter data to

be modeled with an ideal pressuremeter curve. Due to the inherent difficulties in selecting

the proper origin, this choice is often iterative, with adjustments made during the modeling

or curve fitting process as is discussed in more detail in the following sections.

4.2.2 Determination of Common Parameters: Horizontal In Situ Stress and Shear Modulus

Two parameters that are typically determined from pressuremeter data and often required as

inputs to pressuremeter analysis models are the horizontal in situ stress and shear modulus.

This section is dedicated towards commonly used methods and thoughts on determining

these values.
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Shear Modulus

The shear modulus is an elastic parameter and therefore is determined by the elastic portion

of the pressuremeter curve. The two areas of the pressuremeter curve in which elastic

behavior occurs are the initial loading (and unloading) curve and the unload-reload loops.

As was defined in previous sections, the shear modulus can be determined as follows

G = 0.5
a

ao

dp

dϵc
(4.2)

where a is the probe radius, ao is the initial probe radius, dp is the change in pressure and

dϵc is the change in cavity strain. For the initial loading curve a/ao will be close to unity

and thus the initial shear modulus can be defined as

Gi = 0.5
p− po
ϵc

(4.3)

because dϵc = ϵc − 0. The unload-reload modulus is the average of the unloading and

reloading secant shear modulus and can be defined over small strain ranges as

Gur = 0.5
∆p

∆ϵc
(4.4)

Therefore, the initial shear modulus can be determined by half the slope of the initial loading

portion of the pressuremeter curve and the unload-reload shear modulus can be determined

by taking half the slope of a best fit line to an unload-reload loop.

Typically the initial loading portion of the pressuremeter curve is prone to disturbance

resulting in unreliable shear modulus values. For this reason, the unload-reload loops are

often utilized for determining the shear modulus that is more representative of the sur-

rounding formation.

Figure 4.16 is a close-up view of an unload-reload loop performed for test kaz28 (the

middle or second unload-reload loop in the test). Unloading occurs between points A and

B, while reloading occurs between points B and C. The unload-reload shear modulus, Gur,

is marked by the dashed line (this slope is actually twice the shear modulus).

A number of factors should be considered in performing and analyzing unload-reload

loops. During unloading, the surrounding material initially behaves elastically, but even-

tually will fail in extension if the pressure is reduced too far. Therefore, it is crucial that
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Figure 4.16: Close-up view of unload-reload loop. The dashed line represents the unload-
reload shear modulus.

reloading be initiated (point B in Figure 4.16) prior to reaching this threshold for failure.

The point at which extensional yield occurs will vary due to loading conditions (drained

or undrained) and material properties, however, a typical recommendation is to avoid ex-

ceeding 36% of the pressure at the initiation of loading (point A in Figure 4.16) for drained

frictional materials or twice the shear strength for undrained clay [7]. Typically, this point

can also be identified during the testing process by a sudden change in the slope of the

unloading curve. This gives the field operator an indication to initiate reloading. In Figure

4.16 point B is at a pressure 70% of that at point A, indicating the response should be

elastic in nature.

Material creep (movement under a constant load) can affect the unloading portion of

an unload-reload loop. The tendency to creep outward can offset the tendency towards

inward movement during unloading. This effect can be reduced or eliminated by allowing

the material to creep prior to unloading, represented by the flat portion of the curve prior

to point A in Figure 4.16. It is not always possible to perform a creep test during a
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pressuremeter test, but at least one should be performed when conditions allow.

Another factor to consider is the hysteresis of the unload-reload loop. Typically linear-

elastic behavior is assumed and a constant unload-reload modulus is chosen based on the

average of the unloading and reloading portions of the loop (as in Figure 4.16). However,

in reality non-linear elastic behavior is often observed, especially in soft clays. While this

is not considered in this study, it is worth noting, with further information available in [7]

and [4].

Finally, the location (or strain at the initiation of unloading) of the unload-reload loop

should be considered. For the shear modulus to be representative of the material, any dis-

turbance present should be sufficiently overcome before unload-reload loops are performed.

The first unload-reload loop in test kaz28 in Figure 4.17 is an example of a unload-reload

loop subject to disturbance. The shear modulus represented by this loop is greater than

the initial modulus measured but noticeably much less than those obtained later in the test

from the other unload-reload loops. It is recommended that this modulus value not be con-

sidered for analysis. For a material that is neither strain-softening nor strain-hardening, the

unload-reload loops should be parallel as the shear modulus should be constant and not de-

pendent upon material strain. However, some rocks and denser sands under drained loading

conditions will exhibit strain-hardening behavior and thus the shear modulus obtained from

unload-reload loops should increase as the load is increased. An example illustrating this

point is given in Figure 4.17 where an increase in modulus from 1,400 MPa to 2,000 MPa is

observed. The opposite would occur for a material exhibiting strain softening behavior in

that a noted decrease in the shear modulus values would be observed with increased strain.

All shear modulus values obtained that are not considered heavily affected by disturbance

should be reported as the value used for design may vary depending upon strain levels

considered for the given problem. The initial shear modulus should be considered as a lower

bound for the material, but should not typically be considered in design unless disturbance

is expected. If a shear modulus value is required for modeling the pressuremeter curve, a

range of values can be used to check for the best fit to the data. Knowledge of other input

parameters, judgement of the best fit and trends in the data for a given formation can all
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Figure 4.17: Shear Modulus Values for Test kaz28

provide guidance.

Shear modulus values were determined using software developed by In Situ Engineering

for the data set used in this theses. These values were used as inputs into the MATLAB codes

developed by the author for modeling the rock data. The shear modulus values reported

on the plots in Appendix A represent the modulus values determined by the unload-reload

loops. The plots in which the modulus values are determined are not included, but follow

the method described here and displayed in Figure 4.17.

Lateral In Situ Stress

The horizontal in situ stress, σho, can often be difficult to define for pre-bored pressuremeter

tests, especially in the presence of disturbance. A number of methods have been developed

to aid in the determination of in situ stress, however, these typically apply to soils and still

require a high quality (little disturbance present) test. This section will touch upon some

of these methods and discuss typical approaches to determining in situ stress.
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The most basic approach to determining in situ stress is the lift-off method. The in situ

stress is considered equal to the pressure at which the pressuremeter expansion begins. This

can be applied to self-boring pressuremeter tests and tests in which minimal disturbance is

present. Difficulties, however, arise in using this method in oversized and undersized test

pockets or tests in which large amounts of disturbance exists. This can be illustrated by our

earlier example in Figure 4.14 for which point A would be considered the lift-off pressure

around 0.1 MPa. While this may be the correct choice, it could also be argued that the

inflection marked at point B around 0.3 MPa is more appropriate as it appears any stress

relaxation caused has been recovered. Therefore, this method is not applicable to all cases

and should be used with caution. An incorrect choice in in situ stress can lead to incorrect

estimates in the peak shear strength of the material. An example of a test where the lift-off

method may be more appropriate is given in Figure 4.18 for test sr710-12, for which an

origin shift is not required.
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Figure 4.18: Test sr710-12 in interbedded siltstone and sandstone. No origin shift is required
thereby allowing the lift-off in situ stress method to be applied.
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Iterative procedures involving the yield point and estimates of the material shear strength

have also been developed. However, these methods are typically only applicable to clay or

sand, in which the yield criterion can be defined in terms of only two parameters, such as in

situ stress and either cohesion or the peak angle of shearing resistance (friction angle) for

clay and sand respectively. Elastic-perfectly plastic behavior is often assumed and typically

the methods require that the pressuremeter data has an identifiable point of yield. One such

method worth noting is the Marsland and Randolph method, which has been successively

applied for clays. Details of this method and others of this nature can be found in [7] and

[17]. Unfortunately, it would be difficult to apply these methods to most tests in rock.

Typically a well defined yield point does not exist for tests in rock due to the non-linear

nature of failure. Further complications also arise from the increased number of parameters

necessary to define the rock mass strength and yield criterion.

Other methods to be considered include curve-fitting methods using mathematical func-

tions and empirical correlations to external data. Currently a testing method deemed the

balance pressure test is under development, in which the pressure is held constant at differ-

ent increments during unloading and the amount of creep is recorded and compared. This

method proves to be a promising alternative method for future use.

Another approach is to estimate the horizontal in situ stress based on knowledge of the

local geology, material type and vertical in situ stress, which is often known or can be easily

determined. This estimate can then be used in modeling the entire pressuremeter curve

and the original value adjusted along with other inputs until a best fit is achieved. If other

material parameters are known or determined externally, this method can be especially

powerful.

In essence, the last approach requires knowledge or an estimate of ko, or the coefficient

of earth pressure at rest for the soil or rock tested. While this can be a more straightforward

approach in normally consolidated soils, difficulty does arise in considering overconsolidated

soils and rock. Stress present in rock formations is complicated by fractures, locked in stress

resulting from the formation of the rock or regional movement and anisotropy. In fact, the

major principal stress axes in a rock formation may not be vertical and horizontal, as is

typically assumed in soil, further invalidating the assumption of ko. However, at shallower
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depths, where regional stress impacts may be less or in more intact rock formations, an

estimate of stress using ko may be useful. Considering smaller regions (such as adjacent

tests within a borehole), it may be possible to use ko as a measure of consistency between

boreholes. Typically a number of pressuremeter tests are conducted in a given formation

over a finite range of depths. For certain tests the horizontal in situ stress is more easily

determined, such as in Figure 4.18. Using this test then as a reference, a ko value can be

identified and applied to similar tests conducted under similar stress conditions in the same

formation. Thus, using trends in the data set as a whole, the in situ stress can be more

easily identified. While this method may be applicable in some cases, it should be used with

caution, particularly for tests in rock. However, the method should at the very least provide

a range of stress values, that coupled with the information pulled from the pressuremeter

data can narrow the choice of the horizontal in situ stress. Keep in mind that it is not

unusual in rock for ko values to be greater than 1.

In absence of other data, or in addition to the data collected, regional stresses can also

typically be identified on the World Stress Map online. This map can give an indication

of the regional stresses in many areas throughout the world and should be viewed when

performing stress analysis in rock.

What should be gained from the discussion above is that determination of the in situ

stress for pre-bored pressuremeter tests with imperfect test pockets can be difficult. Fur-

thermore, one method cannot always be relied upon and thus it may be practical to try

multiple methods. Furthermore the process is subjective and requires good judgment.

The in situ stress was determined using the ko approach for the data analyzed for this

thesis. To start a ko value of 1 was assumed. Adjustments were then made while modeling

the entire pressuremeter curve. This data set had also been previously analyzed by other

methods and thus the previously determined in situ stress values were considered. As the

aim of this study was to test the feasibility of using the Mohr-Coulomb and Hoek-Brown

models to analyze rock data, determining the exact value for the in situ stress was not

of concern. It was more important that given a realistic range of values for the input

parameters, a good fit to the data could be achieved thereby testing the applicability of the

two models.
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4.2.3 Determination of Shear Strength of Soils

While the elastic portion of the pressuremeter curve can be defined by the in situ stress and

shear modulus, the inelastic portion of the curve is a function of the material shear strength.

Shear strength is defined by different parameters depending upon the constitutive model

chosen to represent inelastic behavior. Modeling of soil behavior subjected to pressuremeter

loading is typically less complicated than modeling of rock behavior. This section will

be dedicated toward determining the shear strength of soils, providing a bridge to the

discussion of modeling for the determination of rock strength thereby allowing the additional

complications associated with rock modeling to be fully realized.

For soils, it is typical to assume a Mohr-Coulomb failure criterion, whereby soil shear

strength is defined by cohesive strength and/or frictional resistance through parameters

cohesion, c, and angle of shearing resistance (friction angle), ϕ, respectively. In considering

measures of cohesion and friction angle of soil, further considerations, such as drainage

conditions and soil state must be included. For the case of free drainage, volume changes

must be considered and effective stress analysis employed, making cohesion and friction

angle effective parameters, typically denoted by a (′) symbol, such as ϕ′. For undrained

conditions, soil volume remains constant, but pore pressure values will change and either

total stress analysis or effective stress analysis may be considered. In the case of clays, if

undrained conditions are expected, shear strength is often defined as the undrained shear

strength, denoted cu or Su. The state of the soil (loose or dense relative to the confining

pressure applied to the soil) will also determine soil behavior when subjected to loading.

However, regardless of the initial state the loading stress path for all soils eventually will

culminate at the critical state condition as illustrated in Figure 4.19. Once the critical state

is achieved, shearing occurs at constant volume and material strength in this state may

differ from the initial peak strength values. Thus, in considering sands it is important to

note whether the peak friction angle, ϕ′, or critical friction angle (also deemed the friction

angle at constant volume), ϕcv is relevant.

In analyzing pressuremeter data in soil, it is typical to consider idealized material behav-

ior such as that of undrained clay defined by the undrained shear strength, Su, or drained
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Figure 4.19: Critical State Soil Diagram: CSL = Critical State Line; V = Volume; p =
Average Stress State

sand defined by the peak friction angle, ϕ′. A number of methods and models have been

developed to analyze pressuremeter data in this idealized manner and some have been dis-

cussed in detail in Sections 2.2 and 2.3 for clay and sand respectively. One method described

in Sections 2.2 and 2.3 is to graphically fit an idealized pressuremeter curve to recorded pres-

suremeter data in order to determine material shear strength parameters. While this is not

the only method available, it is a robust method and allows consideration of the entire pres-

suremeter curve, including the interaction of other controlling parameters, such as shear

modulus and in situ horizontal stress. The remainder of this section will focus on modeling

pressuremeter data using these types of models.

A model typically used for analyzing pressuremeter data in clay is the Gibson & An-

derson model. The Gibson & Anderson model assumes undrained conditions, and a purely

cohesive material that fails at a constant volume with a constant shear strength. Under

these assumptions, an idealized pressuremeter curve can be defined by three material pa-

rameters: shear modulus, total in situ lateral stress and undrained shear strength. These

three values can be adjusted until an appropriate fit is achieved between the idealized curve
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and the recorded data. Because total stress is used, the static water pressure should not be

removed from the data prior to analysis. If the shear modulus and lateral stress are known

or can be confidently determined by the methods listed in the previous sections, then the

undrained shear strength can be found with little adjustment. However, if, for instance

the shear modulus is determined by the unload-reload loops, but the lateral in situ stress

is not known or difficult to determine, then adjustments can be made to the lateral stress

and shear strength input parameters in an iterative fashion until a good fit to the data is

achieved.

The Gibson & Anderson model considers the loading portion of the pressuremeter curve,

however, the unloading 1 portion of pressuremeter data can also be modeled through a

method developed by Jefferies. Following the same assumptions as the Gibson model, the

origin of the modeling curve can be shifted to coincide with the beginning of the final

unloading (i.e. point B in Figure 4.20) and the shear strength can be determined. In

unloading, due to the reversal of stress, the apparent shear strength should be twice that of

the shear strength determined by the initial loading, as is illustrated in Figure 4.20. While a

new origin must be chosen, modeling the unloading curve essentially eliminates the input of

in situ stress, thereby narrowing the judgment required for determining the shear strength.

Furthermore, modeling the unloading curve provides further confirmation of the modeling

performed on the loading portion of the curve. Typically both the loading and unloading

portions of the pressuremeter curve will be modeled simultaneously providing a measure of

consistency in the shear strength values determined by the two methods.

A model typically used to analyze pressuremeter data collected in sand is that developed

by Hughes et al. The Hughes model assumes drained, purely frictional, elastic-perfectly

plastic behavior. Volume change is considered via a dilation angle, which, using Rowe’s

dilatancy theory is correlated to the critical friction angle. With these assumptions, an

idealized pressuremeter curve can be formed using the shear modulus, effective in situ

lateral stress, critical friction angle and peak friction angle. Already, the introduction of

1Modeling the unloading portion of a pressuremeter curve is less straightforward in drained materials.
Therefore it is typical to only model the loading curve in such materials. The rest of the thesis will focus
on modeling of only the loading portion of the pressuremeter curve.
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Figure 4.20: Stress Path (left) and Ideal Pressuremeter Curve (right) for an undrained test
in clay in which shearing occurs at constant volume during loading and unloading.

drained conditions and therefore volume change, (as is assumed in modeling rock behavior)

has further complicated the modeling process by introducing a fourth input parameter.

Fortunately, the critical friction angle for a number of different sand types if often known or

can be more easily determined by other testing methods. The critical friction angle should

not vary significantly for a given sand and therefore, when a number of tests are performed

in a particular sand formation, the critical friction angle can be held constant throughout

the analysis of all such tests. Again, an iterative procedure is used to determine a best fit

of the idealized pressuremeter curve to pressuremeter data.

It is important and typical to have more than one test in a particular sand or clay

formation. As was discussed in detail in the subsection for in situ stress, in analyzing a

number of tests, overall trends in the data can be found. If strength parameters determined

are fairly consistent with depth or around a particular testing location, confidence in the

strength determined is gained. With many tests in a borehole, outliers can be discovered in

a fairly homogenous formation, or in layered formations, relatively weak and strong layers

can be identified.

When pressuremeter data is collected, typically other forms of testing, such as standard

penetration tests, are also being performed in the same borehole, which helps identify the
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type of soil or rock in which a pressuremeter test is performed. However, even if other in-

formation about the formation tested is unavailable, noted differences in the pressuremeter

data can be used as indicators of the material characteristics. Figure 4.21 highlights the

differences typically found between a pressuremeter test performed in sand and a test per-

formed in clay. Once the yield strength is reached in clay, the pressuremeter curve tends to

curl over quickly and then flatten out as additional pressure and cavity strain are induced.

The unloading curve will ideally follow a similar path to the loading curve as the stresses are

reversed and the applied pressure may approach zero before the membrane has completely

collapsed. In sand, beyond the yield point, the pressuremeter curve will often continue on

a relatively steeper slope than clay. Resistance continues to build as applied pressure and

cavity strain are induced. During unloading, there is less rebound from the sand and often

the unloading path will follow a steep gradient until the static water pressure is reached. At

the static water pressure the pressuremeter membrane is forced to collapse, a result not seen

in clay due to differences in porosity. Finally, in clay, unload-reload loops typically exhibit

higher levels of hysteresis than tests performed in sand, a difference illustrated in Figure

4.22. These indicators listed can help identify which model should be used in analyzing the

data collected.

What happens if a pressuremeter test can’t be modeled effectively by a clay or sand

model? Some overconsolidated or cemented soils may have components of both cohesion

and friction that should be considered in strength analysis. Rock strength will be a function

of both cohesive and frictional strength components and is even further complicated by the

introduction of fractures, both preexisting and those created due to applied loading. The

tests presented in Figure 4.22 represent a more sand-like or clay-like response, but in fact test

kaz13 was performed in gruss - a weathered siltstone - and test sr710-12 was performed in

interbedded siltstone and sandstone. Even though similar materials are tested, the response

is completely different for the two tests and in reality both have components of cementation

or cohesion and frictional resistance. For this reason, different strength parameters must be

considered in modeling rock and hence different pressuremeter models used in analysis.
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4.2.4 Determination of Rock Strength

The focus of this section is on the models considered for pressuremeter analysis by the author

in this thesis, Haberfield’s Mohr-Coulomb model with a tensile cutoff, and the Hoek-Brown

model. The author is in no way claiming that these models are the only means of analyzing

pressuremeter rock data or that the strength values determined through this analysis are

exact or should be considered for design. The aim was to calibrate the Hoek-Brown model

against a data set while using realistic input values. A comparison was then made to the

Mohr-Coulomb model using equivalent inputs. The methodology for comparing the two

models along with sample results is presented. Discussion of model performance is reserved

for the next chapter.

Methodology

The introduction of additional required input parameters for the two rock models provides

additional complexity in the modeling of pressuremeter rock data. As discussed above,

modeling sand required four input parameters. Both the Mohr-Coulomb model and Hoek-

Brown model require three additional input parameters to be defined. The result is the loss
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Figure 4.22: Test kaz13 (test that achieves a higher overall pressure with tight unload-reload
loops) represents a frictional or more sand-like response. Test sr710-12 (test that achieves a
lower overall pressure and unload-reload loops with large amounts of hysteresis) represents
a more clay-like response.

of uniqueness. A pressuremeter curve can be uniquely defined by as few as three parameters.

Thus in using the rock models some of the parameters must be determined externally, while

the modeling of the pressuremeter curve provides confirmation or can help determine those

parameters not defined by other methods. Drained analysis is used so effective stress analysis

is assumed throughout the section.

For this study, there was no prior knowledge of the values of the material parameters

with the exception of Site 2. For Site 2, the Hoek-Brown strength parameters for the meta-

welded tuff tested were learned from [1]. The data from this site was used to validate the

Hoek-Brown model and ensure that it was functioning correctly (refer to Section 3.3). For

the other test sites, however, a range of parameters could be determined for the Hoek-Brown

inputs based on the charts and information provided in [6], [18] and [13] as well as figures

3.15 through 3.18. Particularly [18] focuses on defining parameter ranges for weak rock
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Table 4.2: Established Hoek-Brown Parameter Ranges for Rocks Types Analyzed

Rock Type σc(MPa) GSI mi

Diorite > 250 50–90 20 ± 3

Siltstone 25 – 50, 5 – 25 20–45, 5–25 brecciated 7 ± 2

Mudstone 25 – 50, 5 – 25 20–45, 5–25 brecciated 4 ± 2

Sandstone 50 – 100 45–90, 30–45 brecciated 17 ± 2

Shale 5 – 25 20–45, 5–25 brecciated 6 ± 2

Limestone 50 – 100 45–90, 30–45 brecciated 10 ± 4

and even interbedded formations. Using this information ranges were established for the

Hoek-Brown parameters and are provided in Table 4.2 (Tuff is excluded as those ranges

were not determined in this manner and are given in Section 3.3). Some of the rock types

analyzed, such as the cemented cobble & gravel matrix, could not be defined as easily. For

those tests more broad guidelines were followed. In [13] examples for good quality, average

quality and poor quality rocks is given. The values chosen for those examples were used as

a broader guideline and are presented in Table 4.3. Included in this table is a measure of

the dilation angle, not provided for individual rock types listed in Table 4.2.

The variable ranges listed in Tables 4.2 and 4.3 could be adjusted for the different rock

types if the level of fracture was considered extreme or the test appeared weaker than

average for the given rock type. These judgments were made based upon the recorded

pressuremeter data on a case by case basis. The Rock Quality Designation (RQD) was

also used as a measure of fracture level and rock quality for each of the tests in which this

information was available.

The required input parameters to create an idealized pressuremeter curve using the

Hoek-Brown model are shear modulus, G, lateral in situ stress, po, Geologic Strength In-

dex, GSI, Hoek-Brown parameter, mi, uniaxial compressive strength, σc, dilation angle, ψ,

and damage parameter, D. The shear modulus was determined by the unload-reload loops

for each test, and the in situ stress was determined in the manner described at the end



134

Table 4.3: Broad General Guidelines

Rock Quality σc(MPa) GSI mi ψ

Good Quality 150 75 25 11.5o

Average Quality 80 50 12 4o

Poor Quality 20 30 8 0o

of the Lateral In Situ Stress section. GSI, the Hoek-Brown parameter and uniaxial com-

pression strength were determined as just discussed, leaving the dilation angle and damage

parameter. The damage parameter was created by Hoek to consider blasting damage and

stress relaxation. Because the strain origin is shifted to compensate for disturbance present

and the influence of the damage parameter is small compared to other inputs, it was decided

that the damage parameter would be set to 0 for analysis (i.e. no damage). This allowed the

one free variable, dilation angle, to be determined by fit to the pressuremeter data given all

the other parameters and adhering to the general guidelines in Table 4.3. It should be noted

that dilation (or increase in volume), for the case of rock analysis is physically associated

with the movement along fractures or joints as illustrated in Figure 4.23.

Figure 4.23: Dilation Caused by Shearing Along a Fracture.

After defining input parameters for the Hoek-Brown model, comparable parameters had

to be established for the Mohr-Coulomb model. In initially establishing the Hoek-Brown

failure criterion, Hoek recognized that many engineering programs were set up for analysis

using the Mohr-Coulomb failure criterion. For this reason, Hoek established a method

to determine an equivalent cohesion and friction angle based on the inputs for the Hoek-

Brown criterion. An average linear relationship is fit to the Hoek-Brown failure envelope by
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balancing areas above and below the Mohr-Coulomb failure criterion for a minor principal

stress range of σt < σ3 < σ3max. This is graphically illustrated in Figure 4.24. The

equivalent Mohr-Coulomb parameters are calculated as follows

ϕ = sin−1

[
6bmb (s+mbσ3n)

b−1

2(1 + b)(2 + b) + 6bmb (s+mbσ3n)
b−1

]
(4.5)

c =
σc [(1 + 2b)s+ (1− b)mbσ3n] (s+mbσ3n)

b−1

(1 + b)(2 + b)

√(
6bmb (s+mbσ3n)

b−1
)
/ ((1 + b)(2 + b))

(4.6)

where mb, s, and b are as defined in Equations (3.42), (3.43) and (3.44) respectively and

σ3n = σ3max/σc.

Figure 4.24: Principal Stress Plot of Hoek-Brown (curved solid line) and Equivalent Mohr-
Coulomb (straight dashed line) failure envelopes for the case of σ3max = 8

The importance of establishing an appropriate σ3max is significant as it greatly impacts

the equivalent c − ϕ calculated. Through inspection of Figure 4.24, where σ3max = 8, it

can be identified that a lower σ3max value would result in a higher friction angle and lower

cohesion due to the relative steepness of the Hoek-Brown failure envelope at lower stresses.

The value chosen for σ3max depends upon the application to which it is being applied. In
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[6], Hoek establishes a definition of σ3max for the case of tunnels and slopes. Given the

nature of loading applied here, it was determined that the equation for tunneling was more

appropriate as it more closely mimics loading during a pressuremeter test. It can be written

as
σ3max
σcm

= 0.47

(
σcm
γH

)−0.94

(4.7)

where σcm is defined as the global rock mass strength and can be equated as follows

σcm = σc
(mb + 4s− b(mb − 8s)) (mb/4 + s)b−1

2(1 + b)(2 + b)
(4.8)

Due to orientation of loading for the pressuremeter, and the fact that most often a ko = 1

is assumed for the analysis, γH in Equation (4.7) was replaced with po. It should be noted

that σ3max can be determined more generally and it is recommended that a range of values

be used in determining equivalent c− ϕ values.

The required input parameters to establish an idealized pressuremeter curve using the

Mohr-Coulomb model with a tensile cutoff are shear modulus, G, lateral in situ stress, po,

cohesion, c, friction angle, ϕ, tensile strength, σt, dilation angle, ψ, and Poisson’s ratio, ν.

The same shear modulus, in situ stress and dilation angle used to analyze the data with

the Hoek-Brown model were used as inputs to the Mohr-Coulomb model. Cohesion and

friction angle were determined as just described. As with cohesion and friction angle, the

tensile strength can also be calculated using the Hoek-Brown failure envelope as follows

σt =
sσc
mb

(4.9)

leaving only Poisson’s ratio to be determined. Typically, Poisson’s ratio is somewhere

between 0.15 and 0.35 for rock [11]. Using this range along with the other established

parameters a fit to the data was achieved for each test. By using equivalent parameters

or the same identical inputs when possible, an ample comparison between the Hoek-Brown

and Mohr-Coulomb models could be established.

Sample Results

Using the methodology outlined above, the following steps were used to analyze the data

and compare the two models.
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1. Using the range of inputs established in Table 4.2 and Table 4.3 the data was fit using

the Hoek-Brown model and an equivalent cohesion and friction angle were determined.

2. Due to the difference in nature of the two models, the shift required to locate a

proper strain origin (see subsection 4.2.1) was usually slightly different for the two

modeling approaches. For this step the origin shift used for the Hoek-Brown model

was maintained. Then using the equivalent c− ϕ values, Poisson’s ratio was adjusted

until a good fit to the beginning of the pressuremeter curve was established. This

often resulted in a poor fit to the latter portion of the pressuremeter data.

3. In the above step, the tensile cutoff may have been reached as a result of the given

inputs of in situ stress, po, and tensile strength, σt, and the yield value determined

(as defined by Equation (4.9)). If the cutoff was reached, a cracked response defined

by Haberfield’s empirical equation was compared to the data. The tensile strength

was then shifted to a higher value forcing a non-cracked response in order to continue

the analysis using the Mohr-Coulomb model.

4. Next a shift in the strain origin was made as appropriate. The input value for Poisson’s

ratio was also changed to a more realistic value if an unrealistic input was required

in Step 2. The data was then modeled by setting c = 0, thus modeling the data as

if the material response was purely frictional. This provided a maximum limit to the

material friction angle.

5. The input for cohesion was then set to be equal to the equivalent cohesion value

determined in Step 1 and the friction angle was lowered until a good fit to the data

was achieved.

6. The fit from Step 5 was then further adjusted by tweaking the friction angle and

cohesion values. Typically, the friction angle was set somewhere between the maximum

limit and the Hoek-Brown equivalent and cohesion between zero and the Hoek-Brown

equivalent. If a good fit to the data could not be achieved in this way, the values
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would either be increased or decreased as was appropriate. Typically these changes

in the input values were not extreme.

7. Finally, if it seemed an appropriate fit was still not achieved, the equivalent cohesion

and friction angle determined in Step 1 were used as inputs and Poisson’s ratio was

adjusted (within reason) until a good fit to the data was achieved. The strain origin

was also shifted during this step when necessary.

By following the steps outlined above, the Mohr-Coulomb model could be tested against

the Hoek-Brown model without bias. Essentially a range of values for friction angle and

cohesion was established using extremes and the equivalent cohesion and friction angle

determined through the Hoek-Brown modeling. The overall fit accomplished by the two

models could be observed during this process. Equally important it could be established

whether or not a good fit to the data could be achieved using the equivalent c−ϕ determined

by the Hoek-Brown model (or at least values near those) thereby further calibrating and

validating the use of the Hoek-Brown model.

Using the system outlined in Steps 1 − 7, the average equivalent friction angle and

cohesion determined by the Hoek-Brown model were 50.6o and 0.38 MPa respectively. After

final adjustments were made in analyzing data with the Mohr-Coulomb model, the average

friction angle and cohesion determined were 48.6o and 0.6 MPa respectively. Two of the

sites tested (Site 2 & Site 5) consisted of data in rock formations that pushed the bounds of

what could be considered weak rock (in that the rocks tested were towards a higher strength

range). Not including data from these two sites, the average equivalent friction angle and

cohesion determined by the Hoek-Brown model were 46.9o and 0.12 MPa respectively. After

final adjustments the average friction angle and cohesion determined were 44.8o and 0.17

MPa respectively by the Mohr-Coulomb model. It is clear then that little adjustment of the

equivalent friction angle and cohesion established by the Hoek-Brown model was required

to achieve a good fit for the Mohr-Coulomb model, thus providing confidence in the Hoek-

Brown modeling process. It should be noted here again, that the author is not claiming,

however, that the values determined are exact or should be used in design, but given realistic

values a good fit was achieved. The determination of the equivalent c−ϕ values is sensitive
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to the determination of σ3max; using a higher σ3max would result in lower friction angles and

higher cohesion values, which may be more representative of the material than the values

reported here.

Walking through the steps, Figure 4.25 is an example of Step 1 in the modeling process.

Good fits to both tests, I–90–19 and kaz28 are achieved using the Hoek-Brown model.

Both required origin shifts due to enlarged test pockets and disturbance (likely due to

stress relaxation) of the borehole wall. Pressure due to the static water level has also been

removed. Both these values are recorded below the plot box to the left. The parameter

inputs are given in a box in the upper right hand corner of the plot. The equivalent cohesion

and friction angle are also reported here.
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Figure 4.25: Step 1: Two pressuremeter tests with data (dashed line) fitted with the Hoek-
Brown model (solid line). Left: I–90–19 in meta-welded tuff; Right: kaz28 in gruss.

Figure 4.26 represents Steps 2 and 3 for test kaz28 and I–90–19 respectively. Using the

tensile strength determined by the Hoek-Brown inputs, the tensile cutoff was not reached for

test kaz28 resulting in a ductile response modeled by the Mohr-Coulomb failure criterion.

Poisson’s ratio was increased forcing the fit of the idealized model curve to follow the same
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Figure 4.26: Steps 2 & 3: Top: the tensile cutoff has not been reached for test kaz28.
Bottom: the tensile cutoff has been reached for test I-90-19 triggering use of the empirical
model for cracked response.
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Figure 4.27: Steps 4 & 5: Top: test kaz28 modeled with a frictional component only.
Bottom: test kaz28 modeled with frictional and cohesive components.
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Figure 4.28: Steps 6 & 7: Test kaz28 modeled with adjusted frictional and cohesive compo-
nents.
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path as the beginning of the Hoek-Brown idealized model curve produced in Step 1. The

result is a poor overall fit. For test I–90–19 the tensile cutoff was reached prior to the Mohr-

Coulomb yield, triggering the use of the empirical equation designed to capture the material

response resulting from crack formation and propagation. It can be seen that although the

overall shape of the idealized model curve is appropriate, the magnitude is incorrect. This

result was typical of most tests in which the cracked model response was triggered. Of the

115 tests analyzed, 44 induced a cracked model response, of which only 5 resulted in a good

fit to the data. The formulation of the cracked response model was based on pressuremeter

data in mudstone in idealized conditions and thus is likely not suitable for many other rock

types. Therefore adjustments must be made before future use of this method is applied.

The top plot in Figure 4.27 represents Step 4 for kaz28 in which the cohesion is set

to zero and the test is modeled using friction angle as the only measure of strength. The

strain origin was shifted from Step 2. Poisson’s ratio was maintained because, although

high for weak rock, the value is not unrealistic. The overall fit to the data is fairly poor, an

expected result because most rocks will have some component of cohesive strength. However,

modeling in this way provides an upper bound for the friction angle of the material. It should

be noted that the upper bound determined for test kaz28 is 44o, while the equivalent friction

determined via the Hoek-Brown method is 51o. This is a case in which the choice of σ3max

is likely too conservative resulting in a higher than realistic equivalent friction angle.

The bottom plot in Figure 4.27 represents Step 5 for kaz28 in which the equivalent Hoek-

Brown cohesion has been introduced as an input and the friction angle has been lowered

until a best fit with the data is achieved, occurring when ϕ = 40o. The overall fit is better

than in Step 5, but not great in comparison to the Hoek-Brown fit from Step 1.

Steps 6 & 7 are represented in Figure 4.28 for test kaz28 in which final adjustments are

made to the input values for cohesion and friction angle. Little further improvement of the

model fit to the data from Step 5 was achieved in this case.

Test kaz28 is a clear example in which a better overall fit was achieved by the Hoek-Brown

model over the Mohr-Coulomb model. However, the equivalent friction angle determined

by the Hoek-Brown method was significantly higher than that determined by the Mohr-

Coulomb model, an important insight that could have resulted from a poor determination
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of in situ stress or incorrect formulation for determining σ3max. Therefore valuable insight

can be gained by modeling the test with both methods.

The results of analyzing test sr710-12 in interbedded siltstone and sandstone is presented

in Figure 4.29. Despite the additional complications arising from dealing with two different

types of rock behavior, both the Hoek-Brown model and Mohr-Coulomb model adequately

fit the pressuremeter data curve. This is a case of fairly weak sedimentary rock which may

have characteristics similar to soil, aiding in the nice fit accomplished by the Mohr-Coulomb

model. No shift in strain origin was required for this test indicating low levels of disturbance

from drilling action and stress relief. Without disturbance, it is easier to determine the in

situ lateral stress, which leads to easier determination of other input parameters. Perhaps

not coincidentally then, the equivalent Hoek-Brown friction angle matches that used in the

Mohr-Coulomb model. However, the equivalent cohesion did require a small adjustment

from an initial value of 0.018 MPa to 0.05 MPa.

Disturbance can heavily influence the initial part of the pressuremeter data curve, which

in turn affects the ease in which that data can be analyzed. Greater judgment is required for

a disturbed test, which can affect the input parameters required to achieve a good fit and

thus alter strength parameters determined. Typically the initial disturbance is overcome as

loading is increased during a test and a new strain origin can be established for analysis,

but this requires experience, judgment and some imagination. Highly disturbed tests should

not be analyzed for strength properties. Test sr710-12 is ideal for pressuremeter analysis in

that it represents very high quality data. That is not to say, however, tests that require a

shift in origin or have small levels of disturbance are not representative of high quality data.

An example of a high quality test with minor disturbance is given in Figure 4.30 for

test crc06 in cemented cobbles & gravels. Test crc06 represents a much stiffer and stronger

formation than test sr710-12, but yields similar results. The fit achieved by both models

is reasonably good, with a slightly better fit achieved by the Hoek-Brown model (likely

a result of the non-linear yield criterion). In this case, the data was ably modeled by the

Mohr-Coulomb model using the exact equivalent c−ϕ values determined by the Hoek-Brown

analysis.
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Figure 4.29: Comparison of Hoek-Brown modeling of data (top plot) versus Mohr-Coulomb
modeling of data (bottom plot) for test sr710-12 in interbedded siltstone and sandstone.
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Figure 4.30: Comparison of Hoek-Brown modeling of data (top plot) versus Mohr-Coulomb
modeling of data (bottom plot) for test crc06 in cemented cobbles & gravel.
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The plots presented in this section were included to provide insight into the methodol-

ogy used in modeling the data and show examples of how the Mohr-Coulomb model and

Hoek-Brown model compared to one another for different rock formations. Typically, the

equivalent c − ϕ values determined through the Hoek-Brown method could be used as in-

puts to the Mohr-Coulomb model to accomplish a reasonable fit to the data. However,

some of the data, such as test kaz28, required shifts of the equivalent c− ϕ parameters and

thus the method was not always reliable. This is likely a result of the formulation used

to determine the equivalent strength values and should not suggest that the Hoek-Brown

modeling parameters are invalid. The Hoek-Brown model typically was able to provide an

ample fit to the data given a realistic range of inputs for each test, the results of which are

presented in Appendix A. There were some tests in which the material behavior was more

erratic or large amounts of disturbance was present. For these tests a poor fit was achieved

with both models, however, this is an expected result as it is not realistic for an idealized

pressuremeter curve to accurately model a much less than ideal data curve. Overall, the

Hoek-Brown model showed much promise and performed well in modeling a large data set

with many different rock formations. The Mohr-Coulomb model also performed well, but

usually provided a qualitatively worse fit to the data than the Hoek-Brown model. Fur-

ther discussion of the two models and possible reasons for this result are presented in the

following chapter.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

Three models were explored for the analysis of pressuremeter data in weak to moderately

weak rock. A Mohr-Coulomb model with a tensile cutoff developed by Haberfield and a

Hoek-Brown model initiated by Yang et al. and further developed by the author were

implemented and tested against a data set consisting of 5 sites and 115 pressuremeter tests.

Development of a multiscale damage model established by Kondo et al. was begun, but

requires further work. The framework for these models and methods of analysis have been

laid out extensively in the previous chapters and sample plots of the Hoek-Brown model

for all tests is given in the following Appendix. This section will provide some concluding

remarks and thoughts on the models explored.

The main focus of this thesis was the calibration and comparison of the Hoek-Brown

pressuremeter model to the Mohr-Coulomb model with a tensile cutoff. It was determined

that given a realistic range of parameter input values, a good fit could be achieved between

the idealized Hoek-Brown pressuremeter model and the pressuremeter data. Using an equiv-

alent cohesion and friction angle (determined through the Hoek-Brown formulation), while

keeping overlapping parameter inputs constant, a good fit between the Mohr-Coulomb model

and the pressuremeter data could also be achieved. Therefore, both models could feasibly

be used for pressuremeter analysis for a number of different rock types and formations.

In general the Hoek-Brown model produced a qualitatively better overall fit to the data

analyzed. However, there are advantages and disadvantages to each.

5.1 Discussion of Models

Mohr-Coulomb

Advantages

• The tensile cutoff provides separation between analysis as a continuum with no frac-
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turing and analysis of a medium in which cracks form and propagate.

• Cohesion and Friction Angle are directly determined, parameters required in many

engineering programs which use a Mohr-Coulomb failure criterion for modeling.

• The input of dilation angle (which is more abstract and can be difficult to determine

unless other methods are used) can be replaced with the residual friction angle using

Rowe’s dilatancy theory or the more simple relationship proposed by Haberfield [10]

of ϕ = ϕr+ψ, which is often known or more easily determined for different rock types.

σ1

c

ϕ

σn

τ

σ3

Figure 5.1: Different Mohr-Coulomb Failure Envelopes for the Same Failures Stress State.

Disadvantages

• If the tensile cutoff is reached, the empirical equation applied for modeling a fractured

media did not provide a good fit for most of the data analyzed. Thus a new equation

must be developed for rock types other than the mudstone analyzed by Haberfield.

• The model does not account for preexisting fractures which are almost always present

in rock formations. Due to the existing fractures, it may not be realistic for the

additional circumferential stress induced by the pressuremeter loading to create new

fractures because the tensile stress at the preexisting fractures faces would be zero.

Likely the result would be movement or further propagation of preexisting fractures,

which were not considered in the development of this model.
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• The Mohr-Coulomb failure criterion is linear, which is not true of rock mass behavior.

• Many possible combinations of cohesion and friction angle can produce a similar ideal-

ized pressuremeter curve. Thus, the choice of correct values for these two parameters

would be difficult to determine realistically through modeling pressuremeter data.

This idea is demonstrated in Figure 5.1 for a given failure stress state. This issue is

reduced for a non-linear failure criterion.

Hoek-Brown

Advantages

• The Hoek-Brown failure criterion was developed for the purpose of rock analysis (un-

like Mohr-Coulomb which was developed for soil analysis) and has been updated

continuously as more rock data and knowledge become available.

• The failure criterion is non-linear, which is true of typical rock behavior. A result of

the non-linearity is to provide a cap to potential rock strength at higher stresses.

• Some model input parameters, such as GSI andmi, can be determined qualitatively or

through use of charts for different rock types. This allows focus to be on determining

other strength parameters through the modeling of pressuremeter data. Typically

coring is part of the process for pressuremeter testing in rock and thus parameters

such as GSI could be determined at the location of pressuremeter tests.

• Preexisting fractures are accounted for through the GSI system. Intact rock can also

be considered by setting GSI = 100.

• Equivalent cohesion and friction angles as well as other rock mass properties (such as

tensile strength) can be determined if engineering programs requires such inputs for

design analysis.

• Model is valid for both weak and strong rock and has been extended to interbedded

rock formations.
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Disadvantages

• Determination of equivalent cohesion and friction angles is highly sensitive to the

choice of σ3max. Because typically low values of σ3max were used in this analysis,

it is likely that equivalent friction angles determined were unrealistically high and

equivalent cohesion values determined unrealistically low.

• Determination of the dilation angle could be difficult unless most of the other input

parameters are defined by other methods. Relations such as Rowe’s dilatancy theory

could be applied using the equivalent friction angle determined. However, this could

have error due to the reasons listed in the bullet above.

Weighing the advantages and disadvantages of the two models, it appears the Hoek-

Brown model is better suited for analyzing pressuremeter tests in rock. In particular it

should be emphasized that the Hoek-Brown model can account for preexisting fractures

(almost always present) through the GSI system, while the Mohr-Coulomb model cannot,

which may, along with the inclusion of failure criterion non-linearity, be the reason that

better modeling results were accomplished. Furthermore, determination of an equivalent

cohesion and friction angle is becoming less important as a number of engineering programs

have implemented the Hoek-Brown failure criterion for modeling purposes. However, chal-

lenges still exist. The level of dilation that occurs can have a significant effect on material

behavior and choice of the input value for dilation angle can have a large impact on the ide-

alized pressuremeter curve produced (see Figure 3.31). Unless extensive external analysis is

performed, the dilation angle would likely always be a parameter that must be determined

through analysis of pressuremeter data. This narrows the ability to model the pressureme-

ter data for the purpose of determining other parameters such as the lateral in situ stress

or uniaxial compressive strength. Perhaps then it would be wise to attempt to model data

with both models as was done in this study. Doing so provided a check for the equivalent

cohesion and friction angle values determined by the Hoek-Brown model, while providing

insight into adjustments that could be made to the input parameters. It is also possible

that for certain rock formations, the Mohr-Coulomb model would provide a better fit to the
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data than the Hoek-Brown model and vice versa and thus both models should be checked.

The use of either model would always require that some variables are determined through

external testing. For this reason, Haberfield suggested that pressuremeter data in rock

should not be analyzed for strength properties and perhaps should only be used in de-

termining the shear modulus [11]. However, it is unrealistic to expect that all strength

properties can be analyzed through one form of testing, especially in working with the com-

plexities that exist in a rock mass, where many potential fracture patterns can exist. This

requires knowledge on a site by site basis. The pressuremeter is unique in that it has the

capability to test rock mass strength in situ while considering a much larger volume of a

rock formation than a laboratory test on a core sample can provide. Thus, if some strength

parameters, such as GSI, can be determined through other means, the pressuremeter data

can be used to then define those parameters left undetermined. In the best case, if all vari-

ables controlling rock behavior are known, pressuremeter data can be used as confirmation

of those parameters.
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Figure 5.2: Test kaz46 Fitted with Idealized Hoek-Brown Pressuremeter Curve.
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Judgment will always be required in the use of proper analysis techniques. As more

knowledge is gained, techniques and models improve. There will always be pressuremeter

tests in rock that are difficult to analyze or to fit a proper idealized model to as illustrated

in Figure 5.2, in which rapid brittle failure occurs. However, the data collected by pres-

suremeter testing can be a very powerful tool for determination of material parameters if

analyzed properly. These parameters can then be used as inputs into engineering and mod-

eling programs for design. For this reason, it is important that model development and

proper analysis techniques continue to be explored for pressuremeter data collected in weak

rock.

5.2 Future Work

A number of different directions could be pursued for analyzing weak rock pressuremeter

data. They are listed here in bullet form.

• Further exploration of the Hoek-Brown model. More data in which input parameters

are determined by external methods could be used towards calibrating the model

further. The Hoek-Brown model could also be implemented into a finite element

program in an attempt to model different fracture patterns directly instead of modeling

as an equivalent continuum.

• More research could be performed on the best choice for σ3max in determining equiv-

alent cohesion and friction angles from the Hoek-Brown parameters in regards to

pressuremeter loading. The empirical equation determining σ3max for tunnels was

used in this research.

• Non-linear elastic behavior could be explored as opposed to the linear elastic behavior

assumed here. Using a power law function, this has been employed with success by

Bolton and Whittle for clay in [4].

• Development of the multiscale damage model into a pressuremeter framework. A

feasibility study could be performed. The multiscale model requires a similar number
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of inputs, but allows for the inclusion of fractures at different orientations. There

would be added complexity due to the choice of fracture orientation. Therefore the

effect of the number of fractures and orientation of those fractures would have to be

explored.

• Exploration of other rock models and methods not covered or discussed in this thesis.

Finite element modeling and mathematical curve fitting are two such methods that

could be explored. Many other constitutive rock models could be found and tested

against rock data sets.

We have reached the end! Any questions regarding this thesis can be directed towards

the author at dafnij@uw.edu.
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Appendix A

HOEK-BROWN MODELING PLOTS FOR ALL DATA

This Appendix consists of 115 pressuremeters tests in weak to moderately weak rock.

The data has been compared to an idealized pressuremeter curve to establish a best fit to

the loading portion of the data. A Hoek-Brown model was used to create the idealized

pressuremeter curve. Typically pressuremeter data is modeled in this way (using a chosen

pressuremeter model based on the material formation) in order to determine material pa-

rameters for use in geotechnical design. The data analyzed here was used as a calibration,

or test, of the Hoek-Brown model against data from a wide range of weak rock formations.

Each of the figures on the following pages represents a pressuremeter test with an ideal-

ized pressuremeter curve fit to the data. The dashed line represents the pressuremeter data,

while the solid line represents the idealized pressuremeter curve. The input parameters are

given in the text box in the upper right-hand corner of the figures. The equivalent Mohr-

Coulomb parameters determined as described in Chapter 4 are given in the lower portion

of the text box. The origin shift and shift due to water pressure are given below the graph

in each figure. The test depth and test name are given in the graph title of each figure.

The data has been divided by the site in which the pressuremeter tests were performed.

A summary of the test names, rock type and test depth are given for each site in each

section prior to the plotted data.
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A.1 Site 1

Table A.1: Test Information for Site 1

Borehole Test Name Depth (m) Rock Type

1 CRC02 73.9 Cemented Cobble & Gravel Matrix

1 CRC01 74.4 Cemented Cobble & Gravel Matrix

2 CRC05 39.8 Cemented Cobble & Gravel Matrix

2 CRC06 45.5 Cemented Cobble & Gravel Matrix

Tests are organized by borehole and are presented from the shallowest to deepest for each

borehole. Numbering of tests is according to the order in which the tests were performed. It

is common that a deeper test is performed first in a given test pocket and thus the shallowest

test will not necessarily correspond to the lowest test number. Note that the ordering of

the tests is CRC02, then CRC01.

Expected tests not listed (such as CRC03 or CRC04 - there is a jump from CRC02 to

CRC05 in the table above) were not analyzed because the data was either badly disturbed

or the test pocket was too large to collect any useful data. This data therefore could not

be analyzed.
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A.2 Site 2

Table A.2: Test Information for Site 2

Borehole Test Name Depth (m) Rock Type

1 I-90-03 22.6 Meta Welded Lapilli Tuff

1 I-90-02 23.0 Meta Welded Lapilli Tuff

1 I-90-01 23.5 Meta Welded Lapilli Tuff

1 I-90-06 25.0 Meta Welded Lapilli Tuff

1 I-90-05 25.5 Meta Welded Lapilli Tuff

1 I-90-04 25.9 Meta Welded Lapilli Tuff

2 I-90-09 19.2 Meta Welded Lapilli Tuff

2 I-90-08 19.7 Meta Welded Lapilli Tuff

2 I-90-07 20.1 Meta Welded Lapilli Tuff

2 I-90-11 21.0 Meta Welded Lapilli Tuff

2 I-90-10 21.5 Meta Welded Lapilli Tuff

2 I-90-14 23.2 Meta Welded Lapilli Tuff

2 I-90-13 23.6 Meta Welded Lapilli Tuff

2 I-90-12 24.1 Meta Welded Lapilli Tuff

3 I-90-17 15.2 Meta Welded Lapilli Tuff

3 I-90-16 15.9 Meta Welded Lapilli Tuff

3 I-90-15 16.5 Meta Welded Lapilli Tuff

3 I-90-20 17.4 Meta Welded Lapilli Tuff

3 I-90-19 18.1 Meta Welded Lapilli Tuff

3 I-90-18 18.9 Meta Welded Lapilli Tuff

3 I-90-22 19.8 Meta Welded Lapilli Tuff

3 I-90-21 20.4 Meta Welded Lapilli Tuff

The same organization as discussed for Site 1 applies here.
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A.3 Site 3

Table A.3: Test Information for Site 3 - Part I

Borehole Test Name Depth (m) Rock Type

1 kaz01 2.0 Gruss

1 kaz03 3.0 Gruss

1 kaz02 4.0 Gruss

1 kaz05 5.0 Mudstone

1 kaz04 6.0 Mudstone

1 kaz07 7.0 Mudstone

1 kaz06 8.0 Mudstone

1 kaz08 9.0 Mudstone

2 kaz10 1.4 Gruss

2 kaz09 1.9 Gruss

2 kaz12 2.9 Gruss

2 kaz11 3.9 Gruss

2 kaz14 4.9 Gruss

2 kaz13 5.9 Gruss

2 kaz15 7.4 Crushed Stone

2 kaz17 8.4 Gruss

2 kaz16 9.4 Gruss

2 kaz19 11.3 Gruss

2 kaz18 12.3 Gruss

2 kaz21 16.4 Loam

2 kaz20 17.1 Loam

The same organization as discussed for Site 1 applies here.
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Table A.4: Test Information for Site 3 - Part II

Borehole Test Name Depth (m) Rock Type

3 kaz27 4.9 Loam

3 kaz26 5.9 Gruss

3 kaz29 6.9 Gruss

3 kaz28 7.9 Gruss

3 kaz31 8.9 Siltstone

3 kaz30 9.9 Crushed Stone

3 kaz33 10.9 Crushed Stone

3 kaz32 11.9 Siltstone

4 kaz35 1.2 Loam

4 kaz34 1.7 Loam

4 kaz38 5.9 Gruss

4 kaz41 6.9 Gruss

4 kaz40 7.4 Gruss

5 kaz47 7.9 Gruss

5 kaz46 8.9 Mudstone

5 kaz48 11.8 Mudstone

6 kaz49 6.2 Siltstone

6 kaz50 9.9 Siltstone

6 kaz51 13.5 Siltstone
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A.4 Site 4

Table A.5: Test Information for Site 4 - Part I

Borehole Test Name Depth (m) Rock Type

1 sr710-05 69.2 Quartz Diorite/Granitic Gneissic Rock

2 sr710-12 38.9 Interbedded Siltstone & Sandstone

2 sr710-11 39.3 Interbedded Siltstone & Sandstone

2 sr710-14 42.2 Interbedded Siltstone & Sandstone

2 sr710-13 42.7 Interbedded Siltstone & Sandstone

3 sr710-16 29.0 Sandy Siltstone

3 sr710-15 29.4 Sandy Siltstone

3 sr710-19 41.5 Sandy Siltstone

4 sr710-21 54.1 Sandstone

4 sr710-22 62.2 Sandstone

5 sr710-23 41.4 Sandstone

5 sr710-26 76.1 Sandstone

5 sr710-25 76.5 Sandstone

6 sr710-27 61.9 Siltstone with Interbedded Sandstone

6 sr710-28 74.7 Siltstone with Interbedded Sandstone

6 sr710-32 100.8 Siltstone with Interbedded Sandstone

6 sr710-31 101.2 Siltstone with Interbedded Sandstone

The same organization as discussed for Site 1 applies here.
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Table A.6: Test Information for Site 4 - Part II

Borehole Test Name Depth (m) Rock Type

7 sr710-30 68.4 Sandstone with Interbedded Siltstone

7 sr710-29 68.8 Sandstone with Interbedded Siltstone

7 sr710-34 76.5 Sandstone with Interbedded Siltstone

7 sr710-33 77.0 Sandstone with Interbedded Siltstone

7 sr710-36 82.3 Sandstone with Interbedded Siltstone

7 sr710-35 82.8 Sandstone with Interbedded Siltstone

8 sr710-37 84.8 Sandstone

8 sr710-42 105.3 Sandstone

8 sr710-41 105.8 Sandstone

8 sr710-44 121.3 Sandstone and Siltstone

9 sr710-40 100.8 Sandstone and Siltstone

10 sr710-43 40.2 Conglomerate

10 sr710-47 50.8 Conglomerate

10 sr710-46 51.2 Conglomerate
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A.5 Site 5

Table A.7: Test Information for Site 5

Borehole Test Name Depth (m) Rock Type

1 WALLER02 10.2 Austin Limestone

1 WALLER01 10.7 Austin Limestone

1 WALLER04 16.3 Eagle Ford Shale

1 WALLER03 16.8 Eagle Ford Shale

1 WALLER05 21.3 Limestone/Shale with Bentonite Seams

1 WALLER10 23.9 Cloice Formation

1 WALLER09 24.4 Cloice Formation

1 WALLER08 25.5 Pepper Shale

1 WALLER07 25.9 Pepper Shale

2 WALLER12 10.4 Austin Limestone

2 WALLER11 10.8 Austin Limestone

2 WALLER14 17.8 Eagle Ford Shale

2 WALLER13 18.3 Eagle Ford Shale

2 WALLER15 22.7 Limestone/Shale with Bentonite Seams

2 WALLER18 25.5 Cloice Formation

2 WALLER17 25.9 Cloice Formation

2 WALLER20 26.7 Pepper Shale

2 WALLER19 27.1 Pepper Shale

The same organization as discussed for Site 1 applies here.
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