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Seasonal mountain snowpack holds hydrologic and ecologic significance worldwide.  

However, observation networks in complex terrain are typically sparse and provide minimal 

information about prevailing conditions.  Snow patterns and processes in this data sparse 

environment can be characterized with numerical models and satellite-based remote sensing, and 

thus it is essential to understand their reliability.  This research quantifies model and remote 

sensing uncertainties in snow accumulation, snowmelt, and snow disappearance as revealed 

through comparisons with unique ground-based measurements. 

 The relationship between snow accumulation uncertainty and model configuration is 

assessed through a controlled experiment at 154 snow pillow sites in the western United States.  

To simulate snow water equivalent (SWE), the National Weather Service SNOW-17 model is 

tested as (1) a traditional “forward” model based primarily on precipitation, (2) a reconstruction 

model based on total snowmelt before the snow disappearance date, and (3) a combination of (1) 

and (2).  For peak SWE estimation, the reliability of the parent models was indistinguishable, 



 

while the combined model was most reliable.  A sensitivity analysis demonstrated that the parent 

models had opposite sensitivities to temperature that tended to cancel in the combined model.  

Uncertainty in model forcing and parameters significantly controlled model accuracy. 

Uncertainty in remotely sensed snow cover and snow disappearance in forested areas is 

enhanced by canopy obstruction but has been ill-quantified due to the lack of sub-canopy 

observations.  To better quantify this uncertainty, dense networks of near-surface temperature 

sensors were installed at four study areas (≤1 km2) with varying forest cover in the Sierra 

Nevada, California.  Snow presence at each sensor was detected during periods when 

temperature was damped, which resulted from snow cover insulation.  This methodology was 

verified using time-lapse analysis and high resolution (15m) remote sensing, and then used to 

test daily 500 m canopy-adjusted MODIS snow cover data.  Relative to the ground sensors, 

MODIS underestimated snow cover by 10-20% in meadows and 10-40% in forests, and showed 

snow disappearing 12 to 30 days too early in the forested sites.  These errors were not detected 

with operational snow sensors, which have seen frequent use in MODIS validation studies. 

The link between model forcing and snow model uncertainty is assessed in two studies 

using measurements at well-instrumented weather stations in different snow climates.  First, 

representation of snow surface temperature (Ts) with temperature and humidity is examined 

because Ts tracks variations in the snowmelt energy balance.  At all sites analyzed, the dew point 

temperature (Td) represented Ts with lower bias than the dry and wet-bulb temperatures.  The 

potential usefulness of this approximation is demonstrated in a case study where detection of 

model bias is achieved by comparing daily Td and modeled Ts.  Second, the impact of forcing 

data availability and empirical data estimation is addressed to understand which types of data 

most impact physically-based snow modeling and need improved representation.  An experiment 



 

is conducted at four well-instrumented sites with a series of hypothetical weather stations to 

determine which measurements (beyond temperature and precipitation) most impact snow model 

behavior.  Radiative forcings had the largest impact on model behavior, but these are typically 

the least often measured.
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“Mountains should be climbed with as little effort as possible and without desire.   

The reality of your own nature should determine the speed.   
If you become restless, speed up.   

If you become winded, slow down.   
You climb the mountain in an equilibrium between restlessness and exhaustion. 

 
Then when you are no longer thinking ahead,  

each footstep isn’t just a means to an end but a unique event in itself. 
This leaf has jagged edges. 

This rock looks loose. 
From this place the snow is less visible, even though closer. 

These are things that you should notice anyway. 
 

To live only for some future goal is shallow. 
It’s the sides of the mountain that sustain life, not the top. 

Here’s where things grow.” 
 

 
 -- Robert M. Pirsig, Zen and the Art of Motorcycle Maintenance: An Inquiry into Values
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Chapter 1 Introduction 

 
The “water towers of the world” [Viviroli et al., 2003] are mountainous regions where 

orographically enhanced snowfall [Roe, 2005] and the resulting seasonal snowpack permit 

storage of vast quantities of water relative to the lowlands [Viviroli et al., 2007].  Of interest are 

the three “life-cycle” stages of a seasonal snowpack, that is, (1) accumulation, (2) melt, and (3) 

disappearance, which influence downstream water resources (e.g., hydropower, water supply), 

watershed hydrology, and ecology.  About one-sixth of the global population lives where 

mountain snowpack supplements reservoir storage and where snowmelt is the dominant 

contributor to annual streamflow [Barnett et al., 2005].  Melting and disappearance of the 

snowpack during also marks the beginning of the growing season for many local ecological 

communities, which may impact species distribution [e.g., ribbon forests, Billings, 1969], 

diversity [Litaor et al., 2008], and productivity [Trujillo et al., 2012].  Quantifying uncertainty in 

tools that represent snow patterns and processes is therefore vital for understanding how the 

“water towers” work and for projecting the range of hydrologic responses to changes in climate 

and land cover.  However, uncertainties in snow distributions and melt drivers are not often well 

understood because of high spatial variability in snow [Scipión et al., 2013] and because ground-

based observations are sparse in complex terrain [Bales et al., 2006; Lundquist et al., 2003]. 

The goal of this dissertation is to provide new insights into the utility of models and 

remote sensing to capture the magnitude of snow accumulation and melt and the timing of snow 

disappearance through quantification of errors.  With advances in high-performance computing 

and the advent of satellite-borne remote sensing, the last three decades have witnessed continual 

refinements in modeling techniques and remote sensing of seasonal snow characteristics across 

different spatial and temporal scales [Nolin, 2010].  These tools have augmented the sparse 
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ground observations to provide more complete spatial and temporal coverage, and permitted 

predictions of future conditions.  Dozier [2011] suggested that the snow research community 

now has the ability to exploit “the fourth paradigm” [Hey et al., 2009], where large datasets from 

models and remote sensing are leveraged to address science questions.  This direction is worth 

pursuing, but advances in ground-based observations have not kept pace with those in models 

and remote sensing [Bales et al., 2006].  Therefore, the potential emerges for large model and 

remote sensing datasets to be analyzed with only a vague sense of the embedded uncertainties. 

Throughout this research, individual processes (i.e., snow accumulation, snowmelt, and 

disappearance) from models or remote sensing are isolated and compared to ground-based 

observations, which are assumed the most likely approximation of reality.  However, it is critical 

to note that no single method – ground observations, models, and remote sensing – lacks 

uncertainty, and that these imperfect tools can only be compared to each other (Figure 1.1), 

which is often complicated by differences in scale [Blöschl, 1999].  Several possible sources of 

uncertainty are imbedded in the ground-based observations, ranging from measurement precision 

[van den Broeke et al., 2004] to environmental errors [Huwald et al., 2009; Johnson and Marks, 

2004; Sieck et al., 2007] to spatial representativeness [e.g., Molotch and Bales, 2006].  

Uncertainty in the ground observations is considered via model sensitivity analysis and by 

sampling large populations of ground observations whenever possible. 

A central insight guiding the research is that accumulation, melt, and disappearance of 

seasonal snow are strongly linked, and knowledge of two of these components permits 

estimation of the third [Liston, 1999].  Consequently, uncertainties in one or two of the 

components will propagate into estimation of the third.  For example, using a traditional 

“forward” running snow model, uncertainty in modeled snow disappearance is the result of 
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uncertainties in snow accumulation and snowmelt [Shamir and Georgakakos, 2006].  Likewise, 

snow disappearance timing information and calculated snowmelt can yield retrospective 

estimates of maximum snow accumulation, in what has been called “snow water equivalent 

(SWE) reconstruction” [Molotch and Bales, 2005; Rice et al., 2011].  However, work presented 

in this dissertation and elsewhere [Slater et al., 2013] indicate that the uncertainty in SWE 

reconstruction, particularly the model forcing and parameters, must be carefully considered. 

 
Figure 1.1 Representation of reality with ground observations, snow models, and remote 
sensing.  Major sources of uncertainty are shown in the shaded areas.  The gray triangles indicate 
that those methods sense reality, while the gray box indicates that models have no direct 
connection to reality.  Opportunities for partial confirmation [Oreskes et al., 1994] between 
methods and models are indicated.  The photograph is at the Tioga Pass entrance to Yosemite 
National Park (courtesy of University of California San Diego). 
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A thorough understanding of the uncertainties in modeled and remotely sensed snow data 

is therefore critical to the successful use of these data.  Through the course of this dissertation, a 

variety of unique approaches are employed in order to achieve this overarching theme.  Where 

the data are available, the impact of snow climate and forest canopy on the uncertainty is 

considered.  Four research questions motivated this research: 

1. Which configuration (i.e., forward, reconstruction, or a combined forward-
reconstruction approach) of a snow model yields the most robust estimates of SWE and 
precipitation, given uncertainties in model forcing data and parameters? 

 
2. What is the accuracy of snow disappearance timing derived from MODIS fractional 

snow covered area at fine spatial scales (~1-2 km2) across sites with varying forest 
density and topography? 

 
3. Can standard height temperature and humidity approximate snow surface temperature, 

so as to allow detection of bias in a snowmelt model? 
 

4. Given the scarcity of meteorological stations in mountains areas, which meteorological 
forcings are most critical to measure for physically-based modeling of snow in different 
climates? 

 
The following chapters seek to address these four questions. 

Chapter 2 [Raleigh and Lundquist, 2012] tests how different configurations of the same 

snow model impact snow accumulation simulations to address Question 1.  This chapter 

primarily concerns uncertainties in snow accumulation using data from a network of 154 snow 

pillow sites in the western U.S. for model forcing and evaluation.  SWE is simulated with three 

different configurations of SNOW-17 [Anderson, 1976], the operational snowmelt model of the 

National Weather Service River Forecast Center.  Snow disappearance and air temperature (the 

primary forcing for snowmelt calculation) are assumed to be known, such that uncertainties in 

precipitation and maximum SWE accumulation can be quantified.  Sensitivity to forcing data and 

model (i.e., structure, calibration, parameters) uncertainty are also explored and discussed. 
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Chapter 3 [Raleigh et al., 2013c] develops a ground-based method for sampling snow 

covered area with networks of distributed near-surface temperature sensors, and then uses this 

approach to quantify errors in remotely sensed snow cover and snow disappearance in forest and 

meadow sites to address Question 2.  The investigation takes place during water years 2010 and 

2011 in the Sierra Nevada, California (USA).  Fractional snow covered area data from the 

physically-based MODIS Snow Covered Area and Grain Size [MODSCAG, Dozier and Frew, 

2009; Dozier et al., 2008; Painter et al., 2009] are corrected with a commonly employed forest 

canopy correction, and then compared with the unique ground-based datasets from dense 

networks of temperature sensors.  This study provides unique quantification of forest effects on 

remote sensing accuracy, and reports and discusses errors in remotely sensed snow cover and 

snow disappearance that cannot be quantified with existing observational networks. 

Chapter 4 [Raleigh et al., submitted 2013a] addresses Question 3 through an investigation 

of how standard-height temperatures (i.e., dry-bulb, wet-bulb, and dew point) compare to 

measured snow surface temperature (Ts) at seven different study sites.  The motivation of this 

study is to understand which standard temperature provides the most representative 

approximation (i.e., least bias) of Ts, which is strongly linked to the surface energy balance of the 

snowpack.  The study is therefore related to the uncertainty in snowmelt, as snowmelt is 

governed by energy exchanges at the snow surface.  After assessing how the standard 

temperatures compare to Ts and how these relationships change with atmospheric conditions and 

climate, the study demonstrates the potential utility of improved surface temperature 

approximation for detecting energy bias in snowmelt modeling. 

Chapter 5 [Raleigh et al., in prep 2013b] addresses Question 4 by evaluating the response 

of a physically-based snow model to data uncertainty and availability scenarios commonly 
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encountered.  The study’s goal is to identify the next “best” sensor to install at a weather station 

that already measures temperature and precipitation, and to identify which forcings may be 

adequately approximated with common methods.  A series of data availability scenarios are 

generated (i.e., “hypothetical weather stations”) and used to force a physically-based snow 

model.  The data availability scenarios employ common empirical methods for estimating 

missing forcings.  The sophisticated SNTHERM model [Jordan, 1991] is used to simulate 

snowpack at four sites from contrasting snow climates.  This experiment provides insights into 

the importance of forcing data, and aims to provide guidance for future research. 

When viewed from the context of global climate change, the research is particularly 

relevant.  Whether estimating historic distributions of snow or projecting future changes in 

snowpack, a ubiquitous challenge is the uncertainty in model forcing.  Modeling studies [e.g., 

Elsner et al., 2010] suggest that seasonal snowpack in regions with mild winter temperatures, 

such as the Pacific Northwest (USA), is particularly sensitive to increasing temperature due to 

climate change.  These changes in mountain hydrology have direct implications for irrigated 

agriculture [Vano et al., 2010], hydropower [Hamlet et al., 2002], aquatic habitat [Cristea and 

Burges, 2009], and the winter recreation industry [Nolin and Daly, 2006].  Ecological 

communities are also expected to shift or expire with earlier snow disappearance timing, 

although the ecological response may be complex because the spatial variability of snow results 

in microclimates that may create a buffer for some species [Ford et al., 2013].  Because 

numerical models are used to inform natural resource managers and decision makers of 

quantitative changes in future snowpack and snowmelt in the “water towers”, it is imperative that 

model uncertainties during the historic period are assessed thoroughly from a diversity of 

approaches.
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Chapter 2 Comparing and combining SWE estimates from the SNOW-17 model using 

PRISM and SWE reconstruction 

 
This chapter has been published in its current form in Water Resources Research [Raleigh and 

Lundquist, 2012].  Permission has been granted for reproduction in this dissertation.  Sections, 
figures, tables, and equations have been renamed here, and some citations (e.g. papers in press) 
may have been updated. 
 

Abstract 

Snow models such as SNOW-17 may estimate past snow water equivalent (SWE) using either a 
forward configuration based on spatial extrapolation of measured precipitation, such as with the 
Parameter Regressions on Independent Slopes Model (PRISM), or a reconstruction configuration 
based on snow disappearance timing and back-calculated snowmelt.  However, little guidance 
exists as to which configuration is preferable.  Because the two approaches theoretically have 
opposite sensitivities to model forcing, combining (averaging) their SWE estimates may be 
advantageous.  Using 154 snow pillow sites located in maritime mountains of the western United 
States, we compared forward, reconstruction, and combined configurations of a simplified 
SNOW-17.  We evaluated model errors in (1) annual precipitation and (2) peak SWE, and (3) 
mean SWE errors during the accumulation and ablation seasons.  We also conducted a separate 
analysis to assess the sensitivity of peak SWE to biased forcing data and parameters.  The 
forward model had the greatest precipitation accuracy, while the combined model had the 
greatest accuracy in peak SWE and SWE during the accumulation and ablation seasons.  In 
determining peak SWE, the forward and reconstruction models demonstrated opposite 
sensitivities to errors in air temperature and model parameters, and the combined model 
minimized errors due to temperature bias and parameter uncertainty.  In basins with precipitation 
gauges, we recommend PRISM for precipitation estimation and the combined model for SWE 
estimation.  In areas with high precipitation uncertainty, reconstruction is more viable.  Accurate 
model parameters dramatically improved reconstruction, so more work is needed to advance 
parameter estimation techniques in complex terrain. 
 

2.1 Introduction 

Snow hydrologists often ask the fundamental questions, “What is the snow water 

equivalent (SWE) at an ungauged location in a mountainous basin, and how does it change in 

time?”  These questions are important to hydrologists because understanding spatial distributions 

of SWE is essential for constructing depletion curves [Homan et al., 2010; Luce et al., 1999] 

which may be used to forecast seasonal runoff [Rango and Martinec, 1982].  The questions are 

also important for understanding seasonal snowpack interactions with fine-scale ecology.  The 
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magnitude of peak SWE (and snow depth) is positively related to snowpack persistence [Liston, 

1999], and these variables impact ecology, such as vegetation distributions [Barbour et al., 

1991], tree growth [Littell et al., 2008], and wildlife habitat [Millar and Westfall, 2010]. 

The answers to the above questions remain elusive because of extreme spatial variability 

in snow properties [Elder et al., 1989] and observational networks are sparse in many 

mountainous basins worldwide [e.g., California, USA: Lundquist et al., 2003; British Columbia, 

Canada: M Miles and Associates, 2003; New Zealand: Weingartner and Pearson, 2001].  

Furthermore, observation stations are typically located in flat clearings [Farnes, 1967], which 

often report systematically higher SWE than the surrounding area [Grünewald and Lehning, 

2011; Lee et al., 2005; Molotch and Bales, 2005].  Thus, the available observations are not likely 

to accurately represent the true spatial distribution of SWE, especially in mountainous basins 

with complex terrain and heterogeneous vegetation [Blöschl, 1999].  Researchers must either 

collect more snow data (e.g., field surveys, remote sensing) or use models forced by other 

information (e.g., terrain characteristics, precipitation, air temperature) to estimate SWE. 

To expand SWE observations, intensive ground-based field surveys [e.g., Cline et al., 

2003; Molotch and Bales, 2005] have been conducted in relatively small areas over 

discontinuous time periods.  These surveys are uncommon because they rely on intense manual 

labor operating in challenging terrain.  Observations of SWE or snow depth have also been 

provided by remote sensing, such as laser scanning technology [Grünewald et al., 2010; Prokop 

et al., 2008] or scanning microwave radiometers [e.g., Dahe et al., 2006].  Despite the promise of 

these remote sensing instruments, limitations remain.  Laser scanning technology is not routinely 

employed in most basins and microwave radiometers observe SWE in large footprints (e.g., 

0.5°), which are too coarse to resolve SWE variability in many basins.  Passive remote sensing 
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instruments (e.g., USGS/NASA Landsat, NASA MODIS, and ESA MERIS) provide global 

observations of SCA but do not observe SWE or snow depth. 

Because of these challenges, researchers are left to model SWE.  To interpolate and 

extrapolate SWE observations, studies around the northern hemisphere have utilized many 

techniques, such as multivariate statistical methods [e.g., Anderton et al., 2004], probabilistic 

approaches[e.g., Skaugen, 2007], masked interpolation methods [e.g., Fassnacht et al., 2003], 

global interpolation models [López-Moreno and Nogués-Bravo, 2006], and regression-trees 

based on terrain characteristics [e.g., Elder et al., 1998].  Methods that rely on snow observations 

alone may not accurately model SWE in areas above the highest observations [Rice et al., 2011], 

so a deterministic snow model [e.g., Anderson, 1976] that simulates SWE time series based on 

meteorological data (e.g., air temperature, precipitation) may be preferred.  Two different 

configurations of the same snow model may be employed to simulate SWE with time. 

In the first configuration, off-line estimates of precipitation are input into the snow 

model, which partitions the precipitation at each time step into rain and snow (typically with a 

threshold air temperature), and stores snowfall accumulation as SWE.  The model reduces SWE 

when environmental conditions favor snowmelt.  This precipitation-driven approach is common, 

and we refer to it herein as the “forward” model (Figure 2.1a).  If a gauge network exists nearby, 

the off-line estimates of precipitation can be estimated with analytic mapping models (such as 

the Parameter-elevation Regressions on Independent Slopes Model, PRISM [Daly et al., 1994]), 

multivariate regression [Marquı�nez et al., 2003], kriging[Garen and Marks, 2005], inverse-

distance weighting [Gemmer et al., 2004], or truncated Gaussian filters [Thornton et al., 1997].  

When few precipitation gauges are available in a mountainous basin, which is not uncommon, 
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uncertainty increases in precipitation inputs [e.g., Tsintikidis et al., 2002] and this uncertainty 

will propagate through the forward model [Shamir and Georgakakos, 2006]. 

With the second configuration, SWE is reconstructed by summing modeled snowmelt 

backwards in time starting from the date of snow disappearance, in order to estimate how much 

SWE must have existed before snowmelt commenced (Figure 2.1b).  Herein, we refer to this 

method as “reconstruction” [Molotch and Bales, 2005], though it has also been called the 

“depletion method” [Cline et al., 1998; Rice et al., 2011].  Several members of the snow science 

community (Appendix A) have selected reconstruction over forward modeling for various 

reasons.  First, reconstruction does not require precipitation observations to estimate peak SWE 

in years when no snow accumulates after peak SWE.  At a minimum, reconstruction requires air 

temperature to calculate snowmelt, and air temperature may be more reliably estimated than 

precipitation [Ninyerola et al., 2000].  Secondly, reconstruction incorporates observed snow 

disappearance timing (Figure 2.1b), which provides additional information because it is 

correlated with peak SWE and ablation season melt rates [Liston, 1999].  Thirdly, snow 

disappearance timing observations are available for most basins worldwide from SCA products 

derived from passive remote sensing imagery (e.g., Landsat, MODIS, and MERIS).  Thus, 

reconstruction is possible in most basins worldwide, regardless of the availability of precipitation 

observations. 

When estimating past SWE in locations that have nearby precipitation gauges, one must 

decide to use either a forward model or reconstruction, but there has been little research to guide 

this decision.  Studies have independently examined the accuracy and sensitivity of forward 

models [He et al., 2011a, 2011b; Shamir and Georgakakos, 2006] and reconstruction [Rice et al., 

2011; Slater et al., 2013], but no study has examined these together.  The critical premise of 
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reconstruction is that snowmelt can be modeled more accurately than snowfall with forward 

modeling, but this hypothesis has not yet been tested.  Additionally, if these models have 

opposite sensitivities to model inputs or parameters (see Section 2.2), then a “combined model” 

that averages SWE from forward and reconstruction models may reduce the likelihood of SWE 

errors.  No prior study has examined the hypothetical benefits of this type of combined model. 

The purpose of this study is to compare the accuracy and sensitivity of three 

configurations (forward, reconstruction, and combined) of the same snow model, in order to 

provide guidance for selecting a model configuration to estimate SWE and precipitation.  Two 

specific questions are addressed:  (1) Which model configuration (forward, reconstruction, 

combined) is likely to produce the most accurate estimates of (a) annual precipitation, (b) peak 

SWE, and (c) SWE during the accumulation and ablation seasons?  (2)  How sensitive are the 

model configurations to biases in model data and parameters when estimating SWE? 

To answer these questions, we employ a simplified version of SNOW-17 [Anderson, 

1976] to calculate snow accumulation and ablation.  We select a temperature-index model 

because it only requires air temperature and precipitation data; an energy-balance approach 

requires additional data (e.g., radiation, wind, humidity) which are not widely available in most 

mountainous basins.  We use air temperature, precipitation, and SWE data from 154 snow 

pillows in the western U.S. to calibrate SNOW-17 and test the three model configurations.  

Although these flat, clearing sites may not be representative of zonal or basin SWE, we use them 

because they readily provide a large pool of SWE, air temperature, and precipitation data that 

allow testing and comparison between the model configurations.  In contrast, observations are 

rarely available along sloped terrain [Pomeroy et al., 2003]. 
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 In testing each model configuration, we only assume that air temperature and snow 

disappearance timing data are known; the SWE data at each snow pillow site are used only for 

cross-validation and do not inform model calibration or the mass balance simulation at that site.  

For the forward model, we estimate precipitation using a PRISM precipitation map because 

PRISM has been shown to produce smaller errors and less bias than other techniques [Daly et al., 

1994].  The methodology was developed here to reflect the likely data available to a researcher 

who needs to estimate past SWE at ungauged locations. 

2.2 Forward and reconstruction models: theory, limitations, and opportunities 

Daily SWE time series with a forward snow model (Figure 2.1a) can be generalized as: 

∑∑
==

−=
n

t

t

n

t

tn MASWE
11

 (2.1) 

where n is the nth day of the water year (1 Oct – 30 Sept), At is estimated daily snowfall 

accumulation, Mt is estimated daily snowmelt, and t is the timestep (days).  At a minimum, 

forward models require precipitation and air temperature data, as well as model parameters for 

rain-snow threshold temperatures, snowmelt temperatures, and snowmelt factors. 

In contrast, a SWE time series from a reconstruction model (Figure 2.1b) is: 

∑∑
==

−=
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dt

t

n

dt

tn AMSWE  (2.2) 

where d is the date of snow disappearance (also known as the snow depletion or snow-free date, 

or the final day of seasonal snow cover), and n is the day of interest, which, by definition, must 

be before date d.  The reconstruction model runs in reverse from date d to date n (Figure 2.1b).  

Because the model runs in reverse during this time domain, calculated snowmelt increases 

reconstructed SWE while snow accumulation decreases reconstructed SWE.  At a minimum, 

reconstruction requires air temperature data and the snow disappearance date, as well as model 
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parameters for snowmelt temperatures and snowmelt factors.  Precipitation data and rain-snow 

threshold parameters are required by reconstruction when snow storms occur after day n (to the 

right of t=n in Figure 2.1b).  Many reconstruction studies have assumed no snowfall (i.e., At=0) 

after a specified date in March or April (see Appendix A).  This assumption was not made in this 

study because total observed snow accumulation during the melt season was typically 10% of 

peak SWE at the study sites, and in extreme cases, exceeded 35% of peak SWE.   

Forward models are intuitive because they operate in the same direction as time, and are 

practical because they can simulate past, current, or future conditions.  Reconstruction models 

are retrospective and can only simulate past SWE because they first require the snow to 

disappear.  Despite this limitation, reconstruction may yield the only viable estimate of past SWE 

when precipitation distributions are unknown because it does not require precipitation data.  

When using a temperature-index model, reconstruction will have comparable or improved 

accuracy relative to a forward model, given accurate air temperature data, low uncertainty in 

snow disappearance dates, and appropriate model parameters (see Section 2.4). 

In practice, both models are impacted by errors in data and parameters, and these are 

likely to impact SWE estimation.  At ungauged locations, air temperature is commonly estimated 

with a lapse rate, which may introduce error when not based on regional observations [Minder et 

al., 2010].  Slater et al. [2013] reviewed a variety of studies that estimated air temperature and 

summarized that errors of 1°C were typical across mid-elevations, and errors exceeding 1.5°C 

were common when extrapolating data to high elevations.  Precipitation biases of 10-50% may 

occur when windy conditions cause gauge undercatch [e.g., Goodison et al., 1998], while 

additional errors may arise during interpolation or extrapolation of gauge data across a basin 

(e.g., PRISM or kriging).  Snow cover from remote sensing may be inaccurate for various 
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reasons, such as cloud cover, missing scenes, concealment by forest canopy, or if the spatial 

scale of interest is smaller than the satellite instrument’s footprint [Dozier et al., 2008; Slater et 

al., 2013].  For temperature-index models, uncertainty in model parameters at ungauged 

locations may be large [He et al., 2011a]. 

In theory, forward and reconstruction models should exhibit varying sensitivities to 

model data and parameters when estimating peak SWE (Table 2.1).  One key observation to note 

is that the models have opposite sensitivities to air temperature and to the model parameters, 

though the magnitudes of these sensitivities should vary.  Additionally, the bias in model 

parameters depends on location and seasonal climate.  For example, forward model estimates of 

peak SWE are only sensitive to the snowmelt parameters in years when melt occurs before peak 

SWE, while reconstruction is sensitive to rain-snow threshold parameters only when storms 

bring rain and snow after peak SWE.  Bias in air temperature may impact the forward model 

through rain-snow partitioning [e.g., Minder et al., 2010; Moore and Owens, 1984], and 

reconstruction through snowmelt rates [e.g., Minder et al., 2010; Richard and Gratton, 2001].  

Minder et al. [2010] found that air temperature estimates with a warm bias may result in less 

snowfall and greater snowmelt rates. 

Therefore, forward and reconstruction models should have opposite sensitivities to 

accumulation and ablation processes, presenting an opportunity where averaging their peak SWE 

estimates may minimize the impact of biased data and/or parameters.  We hypothesize that this 

type of combined model is more likely to produce smaller SWE errors than either forward or 

reconstruction models because averaging the opposing sensitivities will reduce the overall error. 

 

2.3 Data 

2.3.1 Observational sites and quality control 
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The study was conducted at 154 snow pillows (Figure 2.2a) in the western U.S. maritime 

ranges, including the Cascades of Washington and Oregon, the California Sierra Nevada, the 

Blue Mountains of Oregon, the Pacific Northwest Coastal Range, and the California Klamath 

Range.  In these ranges, 85-95% of annual precipitation arrives between October and May 

[Baker, 1944].  In the subalpine areas of these ranges, 50-67% of annual precipitation is snowfall 

[Serreze et al., 1999], while 90-100% of alpine precipitation falls as snow [Kattelmann and 

Elder, 1991; Smith and Berg, 1982].  Site elevations ranged from 685 m (snow transition zone) 

to 3475 m (alpine zone); 42% of the study snow pillows were located below 1600m. 

All study sites in Washington, Oregon, and California (east of the Sierra Nevada crest) 

were drawn from the Natural Resources Conservation Service (NRCS) snowpack telemetry 

(SNOTEL) network (http://www.wcc.nrcs.usda.gov/snow/).  All California sites west of the 

Sierra Nevada crest were selected from the California Department of Water Resources (CDWR) 

network (http://cdec.water.ca.gov/), managed by the California Cooperative Snow Surveys.  

Observations between water years 1996-2004 were considered in Washington and Oregon, and 

between water years 1996-1998 in California; selection of these years was arbitrary.  Peak SWE 

observations ranged from 75mm to 2540 mm and annual precipitation ranged from 330mm to 

5275mm over the study.  All sites had daily observations of mean air temperature and SWE.  

Precipitation data were available at all analysis sites except at 26 of the CDWR sites.  Eight 

additional CDWR precipitation gauges (Figure 2.2a, red stars) augmented the California data 

pool.  At sites with precipitation data, undercatch correction was not attempted because wind 

speed data (not typically available) are required to correct undercatch for storage gauges [Sevruk, 

1983], which are standard at SNOTEL sites. 
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Daily air temperature, precipitation, and SWE data were quality controlled following 

Meek and Hatfield's [1994] framework.  Quality control flags were placed when values exceeded 

limits (Table 2.2), and flagged data were either accepted or rejected based on visual inspection.  

Temperature and precipitation time series from individual stations were also compared to 

observations at neighboring stations to find anomalies.  A station-year (i.e., one water year of 

data at a single station) was discarded if there were four or more consecutive days of missing or 

flagged data of any one variable during the observed snow season.  Station-years were also 

discarded if the snow disappearance date could not be determined from the SWE data.  Data gaps 

of less than four days in the temperature and SWE data were filled with interpolation from data 

immediately before and after each gap, while no precipitation was assumed during these gaps. 

After quality control, 388 station-years remained.  54 station-years (i.e., 18 stations, 3 

water years each) were isolated for snow model calibration (see Section 2.4) and were not used 

in evaluation statistics.  This left 334 station-years (136 snow pillow sites) of data available for 

the evaluation.  40 of these station-years were at the CDWR sites which lacked precipitation 

data. 

 

2.3.2 PRISM data 

Output data from the Parameter-elevation Regressions on Independent Slopes Model 

(PRISM) [Daly et al., 1994] were used to estimate precipitation for the forward model (see 

Section 2.5).  PRISM was selected because it is used widely to map precipitation in hydrologic 

and ecological models.  PRISM divides a digital elevation model into topographic facets based 

on slope orientation and coastal proximity.  For each topographic facet in a region, PRISM 

develops elevation-based regressions with gauge observations, and estimates monthly and annual 

grids of precipitation based on those regressions.  Daly et al. [1994] reported mean absolute 
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errors (MAE) of 10-17% in PRISM annual precipitation when using a 52 station network in 

Oregon.   

To estimate the 1971-2000 climatology of annual precipitation in the conterminous 

United States, the PRISM climate group (www.prism.oregonstate.edu) created a 30-arcsec (800 

m) “normals” product (Figure 2.2b) from observations at over 13,000 stations [Daly et al., 1994, 

2008].  This product incorporates historical precipitation data or snow course data from most 

major observational networks (e.g., SNOTEL, CDWR).  Data from 114 of the 136 analysis sites 

were used to produce the normals product [C. Daly, personal communication, 2010].  An 

annually varying 2.5-arcmin (4 km) PRISM “analysis” product is also available; we compared 

the two PRISM products but found that the normals product yielded improved results in our 

study.  Therefore, we only used the mean annual precipitation data from the 800m normals 

product (henceforth called PRISM). 

 

2.4 Snow accumulation and melt model 

The snow accumulation and melt model used in this study was SNOW-17 [Anderson, 

1976].  SNOW-17 is a single layer, temperature-index snow model used operationally by the 

National Weather Service (NWS) for flood forecasting.  SNOW-17 estimates SWE and outflow 

(snowmelt + rain) at each time step.  Although many past reconstruction studies (Appendix A) 

used snow models that required net radiation to calculate snowmelt, our study sites generally 

lacked radiation observations.  Accordingly, we selected SNOW-17 because it required data 

inputs (e.g., air temperature) that were available at our study sites, and because it has been shown 

to simulate snowmelt as well as energy balance methods in some studies [Franz et al., 2008]. 

We simplified the SNOW-17 model for the sake of computational efficiency.  Whereas 

the full NWS SNOW-17 has 10 model parameters, our simplified version has only five.  In the 
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simplified version, the rain-on-snow melt, light rain melt, ground heat melt, liquid water holding 

capacity, and heat deficit components of the full NWS SNOW-17 were deactivated.  If the heat 

deficit and liquid water holding routines were activated, reconstruction would have required an 

iterative solution [Raleigh, 2009] because these routines are dependent on snowpack conditions 

before that time step.  With these routines deactivated, the simplified SNOW-17 could 

reconstruct SWE without multiple iterations.  We repeated the analysis using iterations with the 

full NWS model, but found the results of the two versions were not significantly different at our 

study sites.  Thus, only the results from the simplified SNOW-17 were included here. 

The five parameters used in the simplified SNOW-17 are listed in Table 2.3.  Whereas 

the full NWS model has a single threshold temperature to distinguish rain and snow, we used 

two threshold temperature parameters (Tsnow and Train) because mixed rain-snow storms are not 

uncommon at many of our maritime sites.  In conjunction with mean daily air temperature (Tt), 

these two parameters were used to estimate the snowfall fraction (ft) of daily precipitation at each 

snow pillow.  All daily precipitation was assumed snow when Tt was less than or equal to the 

Tsnow parameter, all was rain when the Tt was greater than or equal to Train parameter, and the 

precipitation was a linear rain-snow mixture between those two parameters  [U.S. Army Corps of 

Engineers, 1956].  Snowfall was accumulated in the modeled snowpack while rainfall and melt 

water passed through the snowpack without being stored. 

The three remaining model parameters (MBASE, MFMIN, and MFMAX) were used to 

calculate snowmelt.  Snowmelt (Mt) on day t was calculated as [Anderson, 1976]: 

)( MBASETMFM ttt −⋅=   (2.3) 

where, MFt  is the daily-varying melt factor (mm °C-1 day-1), Tt is mean daily air temperature 

(°C), and MBASE is the minimum air temperature (°C) for snowmelt (no melt when Tt≤MBASE).  
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MFt is varied daily with a sinusoidal curve to reflect seasonal changes in net solar radiation, such 

that MFt equals MFMIN on 21 Dec and MFMAX on 21 Jun [Anderson, 1976]. 

All five model parameters required calibration.  18 snow pillows were designated as 

calibration sites and were selected on a regional basis (every 1° of latitude, with separate stations 

on the east and west slopes, Figure 2.2a).  The 18 calibration sites were excluded from the rest of 

the study.  Each site was independently calibrated using three water years of data.  At each 

calibration site, an optimization algorithm was used to find the single values of Tsnow, Train and 

for MBASE, MFMIN, and MFMAX that produced the lowest root mean squared error (RMSE) in 

snowfall accumulation and snowmelt, respectively.  The resulting calibrated parameters (Table 

2.3) were comparable to values reported in other SNOW-17 studies [e.g., Franz et al., 2008; He 

et al., 2011a; Shamir and Georgakakos, 2006].  The study results exhibited sensitivity to the 

model calibration.  This is demonstrated in Section 2.6.4 and discussed further in Section 2.7. 

 

2.5 Methods 

Forward, reconstruction, and combined configurations of the simplified SNOW-17 model 

were used to estimate annual precipitation and SWE at each study site (i.e., point scale).  All 

sites had snow pillows and most had precipitation gauges, which allowed evaluation of each 

model configuration at each study site; local observations of SWE and precipitation were not 

used as input into the model or the calibration.  Figure 2.3 shows the assumptions made 

regarding data availability at the study site (hereafter referred to as Site X) when estimating 

precipitation (PX) and snow water equivalent (SWEX).  These assumptions are described below. 
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1.) To assess the models’ applicability in locations without precipitation gauges, we assumed 

each study site (Site X) lacked a precipitation gauge and thus required estimation based 

on observations (PY) at the closest gauge, Site Y.  To estimate daily precipitation at Site 

X, a precipitation multiplier (S) was used to uniformly increase or decrease PY, to account 

for accumulation differences between locations, due to effects such as orographic 

enhancement of precipitation [Roe, 2005]. 

 

2.) Observations of air temperature and snow disappearance timing were assumed available 

at Site X.  The annual snow disappearance date was provided by the snow pillow at Site 

X and was assumed the first date with SWE=0 after peak SWE.  We assumed these two 

observations were available because point values may be observed easily with distributed 

temperature sensors in applications outside of this study [e.g., Lundquist and Huggett, 

2008; Lundquist and Lott, 2008]. 

 

3.) We assumed that the five snow model parameters from the nearest calibration station 

(Section 2.4) could be transferred to Site X and were constant from year-to-year.  This 

assumption is tested in Section 2.6.5 to evaluate the errors associated with transferring 

model parameters from regional calibration stations to study sites. 

 

4.) We assumed sublimation, wind transfer, and avalanches were negligible at Site X and 

thus did not require simulation.  Model simulations in western Idaho suggest that 

sublimation is a minor component of the mass balance, with an expected magnitude of 

3% of peak SWE during wet years and 10% during dry years [Reba et al., 2011b].  Snow 
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pillows (i.e. Site X) are typically located in flat clearings where mechanical 

redistributions are minimal or non-existent [Farnes, 1967].   

   

While the daily snowfall fraction and potential snowmelt were the same for each model 

configuration, the key differences were the precipitation multiplier (S), the direction of the model 

simulation (Figure 2.1), and the starting point of the forward and reconstruction models.  These 

differences impacted modeled precipitation and SWE, and are described further below. 

 

2.5.1 Forward model 

In the forward model, the PRISM mean annual precipitation map (Figure 2.2b) was used 

to estimate the mean precipitation ratio between Site X and Site Y (Figure 2.3).  For example, if 

PRISM showed mean annual precipitation of 1500mm at the Site X pixel and 1000mm at the 

Site Y pixel, then the multiplier used (SPRISM,XY) to map daily observations from Site Y to Site X 

would be 1.5.  This common methodology is used in distributed models [e.g., Shamir and 

Georgakakos, 2006; Smith et al., 2004] and mountain microclimate models [e.g., Running et al., 

1987]. 

Snowfall accumulation at Site X on day t was estimated with the forward model as: 

XYPRISMtXtYforwardtX SfPA ,,,, )()( ××=   (2.4) 

where PY,t was observed daily precipitation (mm) at the nearest offsite gauge (Site Y, Figure 

2.3); fX,t was the snowfall fraction of precipitation at Site X, based on the transferred Tsnow and 

Train parameters (see section 2.4); SPRISM,XY was the PRISM precipitation multiplier, PPRISM,X / 

PPRISM,Y.  SPRISM,XY was constant between years, as it was the mean precipitation difference 

between sites. 

Each year’s precipitation (Pann) at Site X was estimated with the PRISM multiplier as: 
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XYPRISMannYforwardannX SPP ,,, )( ×=  (2.5) 

Combining equations (2.1), (2.3), and (2.4), the forward model estimated SWE as: 

∑∑
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2.5.2 Reconstruction model 

We modeled snowfall accumulation (A) with the reconstruction model based on the mass 

balance across the snow season.  Every year at Site X, total snowfall must equal total snowmelt 

(equation (2.3)) over the course of the snow season (neglecting other mass transfers): 

 )( ,,,, MBASETMFPfS
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==

 (2.7) 

where, Srecon,XY is an annually and spatially varying multiplier that relates mass outflow (i.e., 

snowmelt) to mass inflow (i.e., unadjusted snow accumulation) at Site X, t=c denotes the first 

day of continuous snow cover modeled at Site X, and d is the observed snow disappearance date. 

During each year, Srecon,XY was solved in equation (2.7) and then used to model snowfall 

accumulation at Site X on day t with the reconstruction model: 

 XYrecontXtYrecontX SfPA ,,,, )()( ××=   (2.8) 

This addition to the reconstruction model permitted SWE modeling across the entire snow 

season and allowed estimation of annual precipitation with SWE reconstruction: 

 XYreconannYreconannX SPP ,,, )( ×=  (2.9) 

 Combining equations (2.2), (2.3), and (2.8), the SWE reconstruction method was 

finalized as: 
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While SPRISM could have been used in the SWE reconstruction model (Equation 2.10) in place of 

Srecon, we found that SPRISM did not improve SWE reconstruction (no results shown).  We include 

Srecon here to assess the accuracy of a basic approach of backing out precipitation from the 

snowpack mass balance (Equations 2.7 and 2.9). 

 

2.5.3 Combined model 

Annual precipitation and SWE were estimated with the combined model as: 

( )
( ) ( )
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2.5.4 Sensitivity analysis 

The study was designed to represent a best case scenario for the model configurations.  In 

practice, it is common that air temperature at Site X (Figure 2.3) is not observed and must be 

estimated from data at other stations.  Snow disappearance timing is most readily observed with 

remote sensing, which is also subject to various errors (see Section 2.2).  The study was further 

idealized because the PRISM map was trained by past data at 114 of the 136 study sites, so 

PRISM accuracy was likely maximized.  Because biases in model inputs and parameters should 

impact the models differently (Table 2.1), a sensitivity analysis (section 2.6.4) was conducted to 

quantify the impact of biases in model input data (air temperature, precipitation, and snow 

disappearance timing) and model parameters (rain/snow delineation, melt threshold temperature, 

melt factors) on peak SWE.  This was accomplished by introducing independent, artificial biases 

in each data input and model parameter, and observing the changes in peak SWE accuracy. 
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2.6 Results 

2.6.1 Annual precipitation 

Estimates of annual precipitation were compared to the uncorrected, on-site precipitation 

observations.  The most accurate estimates of annual precipitation were associated with the 

forward model (i.e., PRISM).  While median errors (Table 2.4) in annual precipitation from the 

three models were similar, the reconstruction and combined models had a higher frequency of 

larger errors as seen in Figure 2.4a.  The reconstruction and combined models had larger errors 

in precipitation because of errors associated with transferring the five model parameters (see 

Section 2.6.5).  Figure 2.4b presents the results as cumulative probability distributions and 

demonstrates that the forward model generally yielded smaller errors than the other two models.  

The reconstruction approach of estimating annual precipitation (equation (2.9)) was twice as 

likely as the forward model to produce an annual precipitation error exceeding 10%, and nearly 

12 times as likely to produce an error exceeding 50% (Figure 2.4b).  Not surprisingly, the 

combined model results fell between the extremes of the forward and reconstruction models.   

 

2.6.2 Peak SWE 

Median peak SWE errors (Table 2.4) from the three models were not significantly 

different and had negative biases (Figure 2.4c).  The negative bias for the forward model may be 

indicative of the median measurement error due to undercatch.  The combined model was more 

likely to produce smaller peak SWE errors than either the forward or reconstruction models 

(Figures 4c and 4d).  The forward and reconstruction models consistently demonstrated similar 

probabilities of absolute errors (Figure 2.4d); this indicated that neither approach was statistically 

preferable for modeling SWE at the study sites.  The forward and reconstruction models were 
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each 1.2 times as likely as the combined model to produce a peak SWE error exceeding 10%, 

and 3.2 times as likely to produce an error exceeding 50% (Figure 2.4d). 

 

2.6.3 SWE during the accumulation and ablations seasons 

To understand the accuracy of SWE estimation during specific seasons, mean absolute 

errors (MAE) in modeled SWE were recorded during each accumulation and ablation season.  

Seasonal errors were assessed because peak SWE errors (Figure 2.4d) may not be useful for 

seasonal-specific applications, such as development of snow depletion curves for the ablation 

season.  During the accumulation season, the forward and reconstruction models produced 

similar MAE (Figure 2.5 and Table 2.4) while the combined model produced lower MAE.  

During the ablation season, the forward model had significantly higher MAE, while the 

reconstruction and combined model had similar MAE (Figure 2.5).  Forward model errors were 

greater during the ablation season because errors from the accumulation season were carried over 

to the ablation season.  This caused major errors in estimated snow disappearance timing with 

the forward model; 65% of the forward simulations had at least a 7 day error in snow 

disappearance. 

 

2.6.4 Sensitivity of results to model inputs and parameters 

The sensitivity analysis (Figure 2.6) confirmed the expectations of Table 2.1.  As seen in 

Figure 2.6a, the forward (reconstruction) model SWE error was negatively (positively) correlated 

with air temperature bias.  The combined model was significantly less sensitive to air 

temperature errors because averaging overestimation and underestimation errors from the 

forward and reconstruction models resulted in median SWE errors closer to zero (Figure 2.6a).  

This implied that some SWE errors in the original analysis (no artificial bias) may have been the 
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result of errors in the observational air temperature data and/or the model calibration.  As 

hypothesized, these errors tended to cancel out in the combined model. 

The reconstruction model was insensitive to precipitation bias (Figure 2.6b) while 

forward model SWE errors were directly proportional to the introduced precipitation bias.  

Although our formulation of the SWE reconstruction method (equation (2.10)) included 

precipitation to allow modeling across the entire snow season, it was insensitive to precipitation 

bias.  This was explained by the multiplier development.  For example, a precipitation bias of -

50% (i.e., 0.5PY) would increase Srecon by a factor of 2 in equation (2.7), which would cancel the 

same -50% PY bias in equation (2.10).  This also explained why errors in reconstructed SWE 

during the accumulation season were not large (Figure 2.5), despite having large annual 

precipitation errors (Figure 2.4a). 

The forward model was independent of biases in snow disappearance timing by 

definition.  When reconstructing peak SWE, there was an average additional error of 4.3% for 

every 1 day of snow disappearance date bias (Figure 2.6c).  This error is similar in magnitude to 

the results of Slater et al. [2013], who reconstructed SWE with an idealized snow model at 

SNOTEL stations across the conterminous United States. 

When estimating peak SWE, the forward and reconstruction models had opposite 

sensitivities to the model parameters (Figures 6d, 6e, and 6f), but the magnitudes of their 

sensitivities varied.  The forward model was more sensitive to the rain-snow threshold 

temperatures (Tsnow and Train) than the reconstruction model (Figure 2.6d) because the forward 

model peak SWE is dependent on snowfall accumulation (Equation 2.1).  Likewise, the 

reconstruction model had greater sensitivity to bias in the snowmelt threshold temperature 

(MBASE) and the snowmelt factors (MFMIN and MFMAX), because reconstructed peak SWE 
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was primarily a function of calculated snowmelt (Equation 2.2).  The reconstruction model’s 

sensitivity to MFMAX (Figure 2.6f) was comparable to the forward model’s sensitivity to 

precipitation bias (Figure 2.6b). 

 

2.6.5 Parameter transfer accuracy 

The assumption that model parameters could be transferred (Section 2.5) was checked by 

running the calibration optimization routine (Section 2.4) at each study snow pillow during all 

available water years, such that a unique set of five parameters was developed on-site for each 

station-year.  These on-site parameters were considered as the best-case calibration for each 

station-year and eliminated any errors associated with transferring parameters from the regional 

calibration stations.  Figure 2.7 displays the results of this analysis, and generally shows that 

reconstruction benefited the most from improved model parameters.  For annual precipitation 

(Figures 7a and 7c), the reconstruction and combined models demonstrated increased accuracy 

with on-site parameters, while the forward model accuracy was unchanged because the forward 

model’s estimates of annual precipitation were independent of the snow model parameters.  Peak 

SWE accuracy dramatically increased for reconstruction when on-site parameters were used 

(Figures 7b and 7d).  With the forward and combined models, SWE accuracy increased only 

slightly with on-site calibration (Figures 7b and 7d).  Consequently, reconstruction became the 

most accurate peak SWE estimator when improved model parameters were available (Figure 

2.7b). 

 

2.7 Discussion 

2.7.1 Summary of key findings 
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This study answered the two study questions:  (1) When transferring model parameters 

(Figure 2.3), the PRISM-forced forward model generally estimated annual precipitation with the 

greatest accuracy, while the combined model typically estimated SWE with the greatest accuracy 

(Figures 4 and 5).  (2) As expected for peak SWE estimation, the combined model was least 

sensitive to air temperature errors (Figure 2.6a) and reconstruction was least sensitive to 

precipitation errors (Figure 2.6b).  The forward model was most sensitive to the rain-snow 

parameters (Figure 2.6d), while the reconstruction model was most sensitive to the melt 

threshold temperature (Figure 2.6e) and the melt factors (Figure 2.6f); the combined model was 

less sensitive in those cases.  In practice, uncertainty will exist in all model parameters and data, 

and the results here suggest that the combined model may yield the lowest overall sensitivity to 

uncertainty. 

  When transferring model parameters, the likelihood of errors in peak SWE was nearly 

identical for the forward and reconstruction models (Figure 2.4d), and thus the accuracy of 

estimating snowfall during the accumulation season was comparable to the accuracy of 

estimating snowmelt during the ablation season.  While this result did not support the implicit 

premise of reconstruction, that snowmelt can be estimated more accurately than snowfall, it 

implies that both approaches may be equally viable, given reasonable input data (Figure 2.3).  

With similar distributions of peak SWE errors, the combined model improves accuracy at 

locations where one model (forward or reconstruction) overestimates peak SWE and the other 

underestimates peak SWE.  This overestimation-underestimation situation, which is 

characteristic of errors in air temperature and model parameters (Figure 2.6a, 6d-f), occurred in 

58% of the station-years (n=334).  The combined model improved SWE estimation (Figure 2.4c) 

in 62% of those cases.  By construction, the combined model could never produce the largest 
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error at any given station-year because it was the average of the other two model estimates.  This 

guarantees that the combined model will always estimate peak SWE more accurately than at 

least one of the two models, a useful feature when uncertainty exists in the forcing data and 

parameters of both forward and reconstruction models.  Thus, the combined model will estimate 

SWE distributions more reliably than both the forward and reconstruction models only if those 

models have similar overall accuracy, which is the case here (Figures 4c and 4d). 

Because the forward and reconstruction models produced overestimation and 

underestimation errors at various station-years, it was evident that errors in observed air 

temperature and/or transferred model parameters must have corrupted the models’ estimates of 

peak SWE.  This was demonstrated with the forward model, which had high accuracy in annual 

precipitation in the original analysis (Figure 2.4a), and lower accuracy when estimating peak 

SWE (Figure 2.4c).  The forward model underestimation of peak SWE may be partially 

attributed to gauge undercatch, as the -8.9% median error was in the range of the  -4.8% to -9.5% 

mean undercatch errors reported in the study area [Serreze et al., 1999].  Errors in air 

temperature and model parameters limited the accuracy of reconstruction as well, as the accuracy 

of the reconstruction model dramatically increased with on-site calibration (Figure 2.7d), which 

corrected errors in model parameters and compensated for bias (if any) in observed temperature. 

Given improved (on-site) calibration parameters, the initial premise of reconstruction was 

supported, as the ablation season was simulated more accurately than the accumulation season 

(Figure 2.7b).  Because the forward model gained little improvement in peak SWE accuracy with 

on-site calibration, we found that the rain-snow partitioning parameters (Train and Tsnow) were 

difficult to calibrate with accuracy, but placed a major control on model performance.  Optimal 

parameters for snowmelt (MBASE, MFMIN, MFMAX) improved reconstructions of peak SWE 



 

30 

(Figure 2.7d), but in practice, the problem of deriving these optimal parameters remains [He et 

al., 2011a].  Until research demonstrates improved parameter transferability and estimation, 

errors in the model parameters are likely to be comparable to those in the original analysis, 

where the combined model produced more accurate peak SWE estimates (Figures 4b and 4d). 

Parameter transferability presents a significant obstacle to temperature-index models, and 

energy balance models are often advocated as an alternative.  However, energy balance models 

may have large uncertainties in data inputs and also have multiple parameters which must be 

estimated or transferred.  A complete energy balance model might have 25 or more terms of 

potential uncertainty [see Table 7 of Marks and Dozier, 1992], whereas the simplified SNOW-17 

reconstruction model had a total of seven terms of uncertainty (air temperature, snow 

disappearance timing, and the five model parameters).  Even if a simple energy balance model is 

employed, uncertainty in the radiative terms alone (on the order of 10-40 W m-2) may exceed the 

data uncertainty for a model like SNOW-17 [Slater et al., 2013].  Most energy balance models 

simulate the required inputs (e.g., radiation, humidity) through empirical relationships [e.g., 

Waichler and Wigmosta, 2003] that are defined by parameters.  These parameterized empirical 

equations must be transferred as well, and therefore parameter transfer is an inescapable issue for 

all types of snow models. 

 

2.7.2 Guidelines for model selection 

The purpose of this study was to evaluate the models’ accuracy and sensitivity, in order 

to understand which should be employed in practice.  The guidelines derived from the study’s 

results are summarized below and depend on data availability and the user’s objectives. 

1.  If a reliable precipitation gauge network exists near the study basin, then PRISM (or a 

comparable data interpolation method) should be used to estimate precipitation (Figures 4a and 
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4b).  However, the combined model should be employed to estimate peak SWE (Figures 4c and 

4d), especially in the context of data and parameter uncertainty (Figure 2.6).  Both the combined 

and reconstruction models are preferred over the forward model when developing snow 

depletion curves that relate SCA and SWE in the basin during the snowmelt season (Figure 2.5). 

2.  If a basin with a precipitation gauge network has high uncertainty in remotely sensed 

snow disappearance timing (e.g., cloudy conditions during the snowmelt season or infrequent 

sampling), then the forward model should be considered to estimate peak SWE (Figure 2.6c). 

3.  If the precipitation gauge network is sparse or non-existent, then SWE reconstruction 

should be employed because it is likely to produce similar errors as a forward model driven by 

PRISM (Figures 4c and 4d).  A crude estimate of spatially-distributed precipitation (Figures 4a 

and 4b) may be backed out using the reconstruction method with equations (2.7) and (2.9) if at 

least one precipitation gauge exists in the area. 

4.  In all cases, the accuracy of SWE estimation will vary with the spatial scale of 

interest.  For example, when estimating peak SWE across all station-years (n=334), the median 

bias was relatively small for all three models (Table 2.4).  This implies that when aggregating 

SWE estimates over a large spatial scale (e.g., a basin), any of the three models might have skill 

in estimating mean areal SWE, but at any one specific point location (e.g., an ecological study 

site), there is a high probability of producing an error that exceeds the median bias.  The median 

bias was less than 10% for all three models, but 65% of the combined model simulations and 

77% of the forward and reconstruction simulations exceeded 10% error (Figure 2.4d). 

 

2.7.3 Representativeness of the results 

The accuracy and sensitivity of model configurations were evaluated here at flat clearings 

located at mid-elevations in maritime mountain ranges, so the results are most applicable to sites 
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with similar characteristics and climate.  These sites can be found worldwide (e.g., New Zealand, 

Japan, eastern Russia, northwest Europe, Chile, and southwestern British Columbia).  Modeling 

SWE in these other areas may inevitably demand inclusion of other (scale-dependent) processes, 

discussed further below, which did not require representation at the study sites. 

Forested and sloped regions present additional uncertainties in all three models.  The 

forward model may need to represent canopy interception and sublimation dynamics, and this 

could introduce additional uncertainty in SWE estimation.  Likewise, the forest canopy may 

introduce uncertainty in the date of snow disappearance, which increases reconstruction 

uncertainty.  The forest canopy also places a major control on snowmelt dynamics by reducing 

incident shortwave radiation and reducing turbulent energy transfer, and the representation of 

these processes in a model requires the estimation of many additional model parameters [e.g., 

Storck, 2000].  Terrain aspect also controls snowmelt energy, although to a lesser extent than 

forest canopy [Coughlan and Running, 1997].  Additional work is needed to develop techniques 

for estimating model parameters at sloped and forested sites [Rutter et al., 2009]. 

Due to the study’s location (maritime mountains of the western U.S.), 10% of the SWE 

simulations were at sites located below 1000m, and nearly 50% were at sites below 1600m.  

Thus, the results presented here are most representative of sites in or just above the snow 

transition zone, where winter air temperatures are mild, and mixed rain/snow storms and mid-

winter snowmelt events are common [Marks et al., 1998].  In this zone, the forward model’s 

sensitivities to air temperature and rain-snow threshold parameters are high, which provides 

more incentive to use the combined model.  At higher elevations, alpine regions, and colder 

continental climates, all winter precipitation falls as snow.  In these locations the forward model 

may be less sensitive to air temperature, and estimates of snowfall will be impacted more by 
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precipitation extrapolation errors.  However, wind transfer and sublimation have larger impacts 

on the mass balance in these regions [Marks and Dozier, 1992] and may require representation. 

Because the analysis focused on snow pillow sites, this study showed results under an 

ideal scenario for data inputs (Figure 2.4) and model parameters (Figure 2.7).  In reality, the data 

inputs, precipitation multipliers, and model parameters will have increased uncertainty when 

estimating SWE at ungauged locations.  With heightened uncertainty in all model forcings 

(Figure 2.6), the results show that the combined model will reduce the magnitude of bias in peak 

SWE because of compensating errors (Table 2.1). 

 

2.8 Conclusions 

When estimating precipitation and SWE at study locations (assuming only air 

temperature and snow disappearance timing are known), the selection of a model configuration 

(i.e., forward, reconstruction, or combined) depends on the density and quality of the 

precipitation gauge network, the uncertainty of the model inputs and parameters, and the user’s 

objectives.  Precipitation-based studies should be guided by PRISM or similar off-line 

precipitation modeling (no snow model necessary).  Ablation-specific studies [snowmelt 

depletion curves, e.g., Homan et al., 2010; Lee et al., 2005] should utilize either reconstruction 

or a combined model (Figure 2.5). 

A snow model yields different estimates of peak SWE depending on the model 

configuration (forwards or reconstruction), partly because each configuration is uniquely 

sensitive to errors in model data and parameters (Figure 2.6).  The quality of the forward and 

reconstruction estimates cannot be known when estimating peak SWE at an ungauged point 

location (e.g., an ecological plot) because the magnitude and sign of the errors in the data and 

parameters are unknowable.  However, the simple averaging of the forward and reconstruction 
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estimates of peak SWE in the combined model may yield the most reliable estimate at point 

locations because the contrasting sensitivities of the models tend to minimize overall sensitivity 

to errors in data and parameters.  Based on our evaluation at snow pillow locations in the 

maritime region of the mountainous western U.S., forward and reconstruction configurations 

have comparable accuracy, and so we recommend the combined configuration in this region. 

When estimating SWE over larger domains (e.g., zonal areas of a basin) for subsequent 

streamflow analysis, the three configurations may yield similar SWE estimates when averaged 

across the basin, but may produce contrasting SWE estimates in each zone.  Similar mean SWE 

estimates will not change the seasonal flow volume, but the distribution of SWE across the zones 

will impact streamflow timing.  The combined model acts to eliminate large SWE errors (Figure 

2.4c) in these zones and therefore may improve estimation of streamflow timing. 

Improving snow model parameterization and transfer remains a challenging research 

endeavor, but is nevertheless important because model parameterization places a fundamental 

control on model accuracy, as demonstrated in this study.  Accurate snow model parameters may 

dramatically improve estimates of annual precipitation and SWE with reconstruction (Figure 

2.7). 

Because the study was restricted to flat clearings in the maritime zone, additional 

investigation is needed to compare the model configurations in areas with varying slope, aspect, 

and forest cover and in different snow regimes and climates.  If snow models are to represent 

fine-scale spatial variations in SWE in these areas, they must accurately model the associated 

accumulation and ablation processes.  Snow and meteorological data are not routinely collected 

along slopes and under forest canopies, but are nevertheless required for testing model 

performance in these environments.
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2.9 Tables 

 
Table 2.1 Theoretical sensitivity of forward and reconstruction models to biases in model inputs 
and parameters when estimating peak SWE.  We assume that mid-winter melt may occur before 
peak SWE (impacting the forward model) while some snow accumulation may occur after peak 
SWE (impacting the reconstruction model). 
Parameter Forward Reconstruction 
Model Inputs   
     Air Temperature Strongly Negative Strongly Positive 
     Precipitation Strongly Positive Negative 
     Snow Disappearance Date Independent Strongly Positive 
Model Calibration Parameters   
     Rain-snow transition temperature(s) 1 Strongly Positive Negative 
     Snowmelt threshold temperature 2 Positive Strongly Negative 
     Snowmelt factors (degree day factors) 3 Negative Strongly Positive 
1 The rain-snow threshold temperatures in this study are Train and Tsnow 
2 The snowmelt threshold temperature in this study is MBASE 
3 The minimum and maximum snowmelt factors in this study are MFMIN and MFMAX, 
respectively 
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Table 2.2 Data thresholds used to flag potentially erroneous data in the quality control process.  
All flagged values were visually inspected to make quality control decision.  The rate-of-change 
(ROC) limit was used to detect jumps in the data series while the no-observed-change (NOC) 
limit was used to detect constant data. 
Parameter Min. Limit Max. Limit ROC Limit NOC Limit 
Air Temperature -25°C 40°C 10°C day-1 3 days 
Precipitation 0mm 150mm day-1 150mm day-1 3 days 
SWE 0mm 3000mm 300mm day-1 10 days 
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Table 2.3 Descriptions and ranges of the calibrated snow model parameters.  Parameters were 
optimized at the 18 snow pillow sites (Figure 2.2a) that were isolated for regional calibration. 
Parameter Description Range 
Tsnow All precipitation is snow when Tair ≤ Tsnow -5 to 0°C 
Train All precipitation is rain when Tair ≥ Train 1.5 to 5°C 
MBASE Minimum temperature required for snowmelt 0 to 0.6°C 
MFMIN Minimum temperature-index snowmelt factor 0.36 to 3.6 mm °C-1 day-

1 
MFMAX Maximum temperature-index snowmelt factor 2.8 to 6.8 mm °C-1 day-1 
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Table 2.4 Summary statistics of errors (%) in annual precipitation (n=294) and peak SWE 
(n=334), and MAE (%) in seasonal SWE with the forward, reconstruction and combined models.  
SWE errors are relative to observed peak SWE.  All error distributions were non-normal, and 
thus the non-parametric statistics are of prime interest.  Parametric statistics are shown for 
reference only.  Seasonal MAE was taken during the observed accumulation and ablation 
seasons.  In the non-parametric statistics, the Interquartile Range (IQR) is the difference between 
the 75th and 25th percentiles. 
 Non-Parametric  Parametric 
 Median 25th 75th IQR  Mean Std. Dev. 

(σ) 
Variance 
(σ2) 

Annual Precipitation         
     Forward -0.4 -8.8 8.9 17.1  1.4 17.1 290 

     Reconstruction 1.4 -23.0 46.5 69.5  22.4 74.5 5550 
     Combined 2.4 -11.3 22.2 33.5  11.9 38.7 1500 

Peak SWE         

     Forward -8.9 -31.6 12.6 44.2  -5.1 45.0 2030 
     Reconstruction -6.0 -25.8 17.5 43.3  -0.3 40.5 1640 

     Combined -7.6 -18.6 6.5 25.1  -3.3 27.2 740 

MAE Accumulation SWE         

     Forward 13.8 7.1 23.5 16.4  19.4 19.8 390 

     Reconstruction 13.9 7.5 23.4 15.9  19.1 16.7 280 

     Combined 9.6 6.4 16.0 9.6  13.1 12.0 140 

MAE Ablation SWE         

     Forward 31.1 15.1 45.6 30.5  35.7 31.9 1020 

     Reconstruction 16.0 9.8 26.1 16.3  20.3 17.1 290 

     Combined 14.5 9.9 22.4 12.5  18.6 17.4 300 
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2.10 Figures 

 
Figure 2.1 Conceptual schematic of SWE simulations from (a) forward and (b) reconstruction 
configurations of the same snow accumulation and melt model.  SWE in (a) is simulated 
forwards in time from October 1st, while SWE in (b) is simulated backwards in time from the 
observed snow disappearance date.  In this example, peak SWE occurs at t=n.
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Figure 2.2 (a) Analysis sites and model calibration sites in Washington, Oregon, and California 
shown on top of a 1km digital elevation model.  Analysis sites are from the SNOTEL and 
CDWR networks in California.  (b) The PRISM 1971-2000 mean annual precipitation map with 
PRISM network stations revealed in three zones (dashed boxes).  The PRISM map was used to 
derive the precipitation multiplier to estimate precipitation in the forward model. 
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Figure 2.3 Conceptual schematic of available observations assumed when estimating annual 
precipitation and SWE at a study site (Site X).  The snow accumulation and melt model was 
calibrated at the nearest regional calibration site (e.g., a snow pillow site) and parameters were 
transferred to Site X.  Precipitation observations were taken from the nearest gauge (Site Y), 
which was not always located at the Calibration Site.  To estimate precipitation at Site X, 
observations from Site Y were uniformly increased or decreased by a precipitation multiplier, S.  
Local observations of air temperature and snow disappearance at Site X were assumed available.  
Note: the relative elevation between sites was not always consistent (e.g., Site X was sometimes 
lower in elevation than Site Y and/or the Calibration Site).
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Figure 2.4 Smoothed error histograms for (a) annual precipitation (n=294) and (c) peak SWE 
(n=334) from the three model configurations.  Histograms in (a) and (c) were smoothed across 
bins of 5% error in precipitation or SWE using kernel density estimation.  Absolute errors from 
(a) and (c) are shown in terms of cumulative frequency in (b) and (d), respectively, and are 
plotted against a logarithmic scale.  The snow model used regional calibration parameters 
transferred from the 18 calibration sites.
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Figure 2.5 Median values of the mean absolute error (MAE) in modeled SWE (with regional 
calibration) during the accumulation and ablation seasons.  For each station-year (n=334), the 
observed snow season was taken as the longest continuous period of observed SWE greater than 
0, and the timing of observed peak SWE divided the snow season into the accumulation and 
ablation seasons.  Seasonal MAE was normalized to observed peak SWE for each station-year.
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Figure 2.6 Sensitivity of median peak SWE errors (n=334) to artificial biases in model inputs (a-
c) and calibrated model parameters (d-f) with the three models.  Distributions about the medians 
were not presented for clarity; the original distribution (Figure 2.4c) was qualitatively preserved 
about the median.  Cases with two parameters (i.e., d and f) were shifted uniformly with each 
bias.  Initial calibration parameters were based on regional calibration.
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Figure 2.7 Smoothed error histograms for (a) annual precipitation (n=294) and (b) peak SWE 
(n=334) from the three models when using on-site (instead of regional) model calibration during 
each station-year.  Changes in error frequency with calibrated on-site parameters (relative to 
regional parameters) are shown for (c) annual precipitation and (d) peak SWE. 
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2.11 Appendix A 

Table 2.5 SWE and snow depth reconstruction studies to date. 
Reference Application 

[Location]
1
 

Melt Estimation Method SCA/Snow 

Disappearance 

Instrument 

Initial SWE Included 

snowfall 

accum.? 

Direct SWE 

Validation 

Regression Tree 

Comparison 

Bagchi [1979] Snow depth [H] Degree-Day approach 
 

Landsat 1 Apr No -- -- 

Martinec and 

Rango [1981] 
SWE distribution 
[RM], [SA] 

Degree-Day approach Landsat 1 Apr or 
1 May 

Yes +4.8% error 
 (n=1) 

-- 

Cline et al. 
[1998] 

SWE distribution 
[SN] 

Energy Balance Approach Landsat TM 21 Apr No +6% error  
(n=4) 

69-78% within 
1σ 

Molotch et al. 
[2004] 

Albedo comparison 
and snowmelt [SN] 

Degree-day with net radiation  AVIRIS 6 Apr No -- 64% of grids 
within 1σ 

Molotch and 

Bales [2005] 
Point/grid SWE 
scales  [RM] 

Same as Molotch et al. [2004] Landsat ETM 1 Mar No -- 8% mean error 
 

Molotch and 

Bales [2006] 
Albedo comparison 
and snowmelt [SN] 

Same as Molotch et al. [2004] AVIRIS 6 Apr No -- 1% mean error 

Molotch and 

Margulis 
[2008] 

Reconstruction with 
different instruments 
[RM] 

Same as Molotch et al. [2004] Landsat ETM, 
MODIS, 
AVHRR 

1 Mar No -- 23% MAE 
(Landsat ETM) 

Durand et al. 
[2008] 
 

Reconstruction with 
multiple instruments 
[RM] 

Same as Molotch et al. [2004] Landsat ETM, 
MODIS 

1 Mar No -- 55-60% max. 
error 

Molotch [2009] 
  

Large scale SWE 
reconstruction [RM] 

Same as Molotch et al. [2004] Landsat ETM 1 Mar No  -- 23% MAE, & 37-
55% within 1 σ  

Homan et al. 

[2010] 
Snow depletion 
curves [A], [I] 

Energy Balance Approach MODIS 2 Mar, 12 
May, 15 May 

No < 50% max. 
error  

-- 

Rice et al. 
[2011] 

SWE distributions 
and melt runoff [SN] 

Degree-Day approach MODIS Unspecified No 15-18% 
MAE 

-- 

Slater et al. 

[2011] 
Uncertainty analysis 
[WU] 

Degree-Day approach Snow Pillows Entire Year Yes 90% within 
10% error 

-- 

1 Study Locations: [A] = Alaska; [H] = Himalayas; [I] = Idaho; [RM] = Rocky Mountains; [SA] = Swiss Alps; [SN] = Sierra Nevada; [WU] = Western USA
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Chapter 3 Ground-based testing of MODIS fractional snow cover in subalpine meadows 

and forests of the Sierra Nevada 

 
This chapter has been published in its current form in Remote Sensing of Environment [Raleigh 

et al., 2013c].  Permission has been granted for reproduction in this dissertation.  Sections, 
figures, tables, and equations have been renamed here, and some citations (e.g. papers in press) 
may have been updated. 
 

Abstract 

The Moderate Resolution Imaging Spectroradiometer (MODIS) is used widely for mapping 
snow cover in climate and hydrologic systems, but its accuracy is reduced in forests due to 
canopy obstruction.  Prior validation datasets cannot quantify MODIS errors in forests, because 
finer-resolution passive sensors (e.g., Landsat) encounter the same canopy errors, and 
operational ground-based networks sample snow in clearings where snow dynamics differ from 
those in the forest.  To assess MODIS accuracy relative to forest cover, we applied a common 
canopy adjustment to daily 500 m fractional snow-covered area (fSCA) from the physically-based 
MODIS Snow-Covered Area and Grain size (MODSCAG) algorithm, and tested it at subalpine 
meadow and forest sites (0.25 km2 – 1 km2) in the Sierra Nevada, California during two snow 
seasons.  37 to 89 sensors monitored hourly ground temperature at these sites.  Damped diurnal 
variations provided a signal for snow presence due to the insulating properties of snow, yielding 
daily ground-based fSCA at each site.  Ground-based fSCA values were validated in a canopy-free 
area of a meadow site using time-lapse imagery and 15 m snow maps from the Advanced 
Spaceborne Thermal Emission and Reflection Radiometer (ASTER).  Ground-based fSCA had 
high correlation (R2=0.98) with time-lapse data and was within 0.05 of ASTER fSCA.  
Comparisons between MODSCAG and ground-based fSCA revealed that an underestimation bias 
remained in the canopy-adjusted MODSCAG fSCA, ranging from -0.09 to -0.22 at the meadow 
sites and from -0.09 to -0.37 at the forest sites.  Improved canopy adjustment methods are needed 
for MODIS fSCA. 
 

3.1 Introduction 

Seasonal snow cover is a critical component of the energy and water budgets of 

mountainous watersheds.  The high albedo and low thermal conductivity of snow reduce energy 

absorbed by the land surface, while snowpack stores water during the winter and releases it in 

the spring as snowmelt.  Spatial mapping of snow cover with the NASA Moderate Resolution 

Imaging Spectroradiometer (MODIS) [Hall et al., 2002] is convenient because of its frequent 

(daily) observations of snow at moderate spatial resolution (500 m).  MODIS has been used to 

evaluate the spatial distribution of snow cover in models [Shamir and Georgakakos, 2006], to 
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improve streamflow forecasting for reservoir operations [McGuire et al., 2006], to monitor 

climate change in areas with few snow observations [Bormann et al., 2012], and to reconstruct 

spatial distributions of snow water equivalent (SWE) [Homan et al., 2010; Rice et al., 2011; 

Rittger et al., 2011]. 

However, numerous factors limit the availability and accuracy of MODIS imagery, 

including cloud cover, large sensor view zenith angles (>30°), and the proportion and density of 

forest cover [Dozier et al., 2008; Hall et al., 1998; Nolin, 2010].  Forest cover is defined here as 

the fraction of the land surface obscured by tree canopy when viewed at nadir.  Optical remote 

sensing is less accurate in forests as trees cast shadows [Kane et al., 2008; Vikhamar and 

Solberg, 2003], and the canopy conceals the surface where snow may exist [Liu et al., 2004, 

2008].  Except in cases of abrupt disturbances (e.g., fire, wind storms, beetle outbreak, or timber 

harvest), coniferous forests change over annual to decadal time scales, and thus the canopy is the 

most persistent obstacle to remote sensing of snow in forested, temperate areas.  Forests are 

extensive, covering 40% of the North American snow zone (Klein et al., 1998), and as much as 

50% of the Sierra Nevada snow zone [Richards, 1959].  Quantifying MODIS errors in forests is 

critical for applications that rely on remotely sensed snow cover and snow disappearance timing 

[Raleigh and Lundquist, 2012]. 

Canopy or vegetation adjustments are typically made to binary snow presence and 

fractional snow-covered area (fSCA) MODIS products in forested areas.  Klein et al. (1998) found 

that the normalized difference vegetation index (NDVI) improved mapping of MODIS binary 

snow cover with the normalized difference snow index (NDSI) in forested areas.  For fSCA 

retrievals, sub-canopy snow cover has been assumed equivalent to snow cover in the viewable 

gap [Liu et al., 2004], which adjusts (i.e., increases) the pixel fSCA [Durand et al., 2008; Molotch 
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and Margulis, 2008; Rittger et al., 2011].  The accuracy of canopy adjustment methods for 

MODIS fSCA is of prime interest, as viewable (i.e., canopy-free) fSCA mapping with the 

physically-based MODIS Snow-Covered Area and Grain size algorithm (MODSCAG, Painter et 

al., 2009) has higher accuracy than NDSI-based empirical methods when using Landsat 

Enhanced Thematic Mapper Plus (ETM+) as validation [Rittger et al., 2012]. 

While prior studies have acknowledged the limitations of remote sensing of snow in 

forested regions [Hall et al., 1998, 2000, 2001; Klein et al., 1998; Liang et al., 2008; Liu et al., 

2004; Nolin, 2010; Simic et al., 2004; Vikhamar and Solberg, 2003], few studies have quantified 

the impact of increasing forest cover on MODIS snow mapping accuracy and the effectiveness of 

fSCA canopy adjustments.  Comparisons with Landsat TM in Alaska have indicated that the 

original MODIS binary snow mapping algorithm [Hall et al., 1995] has 96% accuracy in areas 

with < 50% forest cover and 71% accuracy in areas with > 50% forest cover [Hall et al., 1998].  

However, MODIS errors in forests cannot be reliably assessed with higher resolution sensors 

such as Landsat, because the Landsat sensor’s line-of-sight is also obstructed by forest canopy 

and is susceptible to snow mapping errors from forest self-shadowing effects [Kane et al., 2008].  

Satellite intercomparison studies can yield uncertain conclusions because the highest resolution 

sensor is assumed the most accurate [Hall et al., 2000], even though all passive instruments have 

common limitations (e.g., forest canopy).  Therefore, ground-based observations provide an 

independent and robust approach to validate MODIS and quantify snow cover mapping errors in 

forested areas. 

Most MODIS ground-based validation studies have used daily snow observation 

networks (e.g., SNOTEL stations in the United States) spread across regional and continental 

scales [Brubaker et al., 2005; Dong and Peters-Lidard, 2010; Klein and Barnett, 2003; Maurer 
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et al., 2003; Parajka and Blöschl, 2008; Pu et al., 2007; Simic et al., 2004; Tekeli et al., 2005; 

Zhou et al., 2005].  These networks provide insufficient information about the accuracy of 

MODIS or canopy adjustment methods in forested areas because measurement stations are 

typically located in clearings, which exhibit different snow accumulation and melt dynamics 

relative to forests [Varhola et al., 2010a].  Additionally, the spatial density of observational 

networks is relatively sparse, with an average of 1 station per 100 km2 in the most dense network 

[Parajka and Blöschl, 2008].  MODIS pixels rarely encompass more than one ground-based 

snow sensor. 

Intensive field surveys yield more dense spatial information to evaluate snow mapping in 

forests and the effectiveness of canopy correction methods.  For example, the NASA Cold Land 

Processes Field Experiment (CLPX) [Cline et al., 2003] measured snow properties in subalpine 

forests and alpine areas in Colorado that have allowed evaluations of microwave remote sensing 

and examination of MODIS view angle effects in forests [Liu et al., 2008; Xin et al., 2012].  

CLPX teams sampled snow depth at 500 locations in nine 1 km2 intensive study areas during 7 to 

9 day periods near peak snow accumulation (late February and late March) in 2002 and 2003 

[Elder et al., 2009].  While the CLPX density (500 measurements per 1 km2) is ideal, the timing 

of the observation periods (near peak accumulation) limits our understanding of potential snow 

cover mapping errors in the forest.  The largest errors in remotely sensed snow cover are likely to 

occur late in the melt season when snow may persist longer in clearings (e.g., Storck et al., 2002) 

or in forests (e.g., Pomeroy & Granger, 1997).  Field crews are rarely able to measure snow 

disappearance timing [Jost et al., 2007] because it requires frequent (e.g., daily) surveys through 

the melt season. 
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Shallowly-buried temperature sensors provide a robust, ground-based approach to 

monitor snow presence under the forest canopy and in clearings through an entire snow season 

[Lundquist and Lott, 2008].  In temperate regions, diurnal fluctuations in near-surface soil 

temperatures are significantly reduced or absent when snow is present [Lundquist and Lott, 2008; 

Tyler et al., 2008], allowing inference of snow presence during damped temperature cycles at 

each sensor.  By using a network of such sensors, fSCA can be inferred and used to test MODIS-

derived fSCA and canopy adjustment methods in ways that higher spatial resolution imagery (e.g., 

Landsat) or typical ground-based monitoring stations (e.g., SNOTEL) cannot. 

The purpose of this study is (1) to test the seasonal accuracy of fSCA from canopy-

adjusted MODSCAG through comparison with dense networks of daily ground-based 

observations at four sites in the California Sierra Nevada with varying forest cover, and (2) to 

validate the ground-based methodology.  We validated our ground-based fSCA during one 

snowmelt season at a meadow site using observations of daily snow depletion from time-lapse 

photography and high resolution (15 m) snow maps from the Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) [Yamaguchi et al., 1998]. 

 

3.2 Study sites and years 

We selected four study sites (0.25 km2 to 1.0 km2) in the California Sierra Nevada 

(Figure 3.1a, Table 3.1) across a range of forest cover.  These included subalpine meadow sites 

at Tuolumne Meadows (TUM) and Dana Meadows (DAN), and forest sites at the Onion Creek 

Experimental Forest (ONN) and the Yosemite Forest Dynamics Plot (YFDP).  All four sites have 

a Mediterranean climate, with the majority of annual precipitation falling between October and 

May, typically as snowfall [Baker, 1944; Serreze et al., 1999]. 
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TUM and DAN are located in the headwaters of the Tuolumne River Basin in Yosemite 

National Park.  TUM is located in a west-draining valley.  A forested north-facing slope is found 

to the south, while a mixture of forest and rock outcroppings along a south-facing slope is found 

to the north.  DAN is located 3 km west of Mt. Dana (3981 m) in a south-draining valley.  Both 

meadow sites are flat, with mean slopes of 1° in TUM and 5° in DAN.  Lodgepole pine (Pinus 

contorta) is the dominant tree species in these areas.  Mean forest cover in the area surrounding 

each site is 23% at TUM and 32% at DAN (Table 3.1).  The California Department of Water 

Resources (CDWR) measures SWE with snow pillows near each of these sites.  SWE data were 

available at both sites through most of the study period, except after mid-February 2011 at TUM. 

ONN is situated southwest of Donner Summit in the headwaters of the North Fork of the 

American River Basin.  The study area spans 125 m of relief.  Slopes are primarily southwest 

facing and average 15°.  The forest cover at ONN averages 65% and is primarily mixed-conifer 

forest, with communities of red fir (Abies magnifica), white fir (Abies concolor), Jeffrey pine 

(Pinus jeffreyi), and incense-cedar (Calocedrus decurrens), with discontinuous forest cover in 

montane chaparral and meadow.  A prominent thicket of chaparral is found along the 

northwestern edge of the ONN study site, while a 0.2 km2 dry meadow is located to the south.  In 

this meadow, the National Oceanic and Atmospheric Administration (NOAA), through their 

Hydrometeorological Testbed (HMT, Ralph et al., 2005), maintains a meteorological station that 

monitors snow depth.  This station provided reliable data until March 2011, when heavy snow 

accumulations buried and damaged the mast arms of the tower.  After March 2011, the snow 

depth data were suspect. 

YFDP (http://www.yfdp.org) is located in the Tuolumne River Basin near Crane Flat in 

Yosemite National Park [Lutz et al., 2012].  The site is predominantly north facing, with 18° 
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mean slopes, and a 115 m elevation span.  An old-growth forest comprised primarily of sugar 

pine (Pinus lambertiana) and white fir (Abies concolor) characterizes the site.  Of the four study 

sites, YFDP has the highest mean forest cover (79%), but also the lowest mean elevation (1860 

m). 

The study spanned water years (i.e., 1 Oct – 30 Sept) 2010 and 2011, which exhibited 

contrasting snow conditions according to monthly snow course measurements from the 

California Cooperative Snow Surveys (CCSS).  During water year (WY) 2010, near average or 

above average snow conditions were found on 1 April, and above average conditions were found 

on 1 May due to additional snow storms and/or low melt rates throughout April (Figure 3.1b).  

Water year 2011 featured anomalously high snow accumulations on both 1 April and 1 May 

(Figure 3.1c).  The CCSS surveys are made in clearings, where winter snow accumulations tend 

to be greater than under forest canopies.  To measure the magnitude of this difference at ONN, 

we conducted a snow survey on 17 April 2011 at 47 points in the meadow and 51 points in the 

adjoining forest.  Meadow SWE averaged 470 mm higher than forest SWE (Figure 3.1c).  The 

CCSS 1 April snow course measurements in ONN matched our 17 April meadow survey. 

 

3.3 Methods 

3.3.1 Ground-based fSCA 

In temperate snow zones such as the subalpine regions of the Sierra Nevada, diurnal 

fluctuations in sub-surface ground temperature (Tg) are damped or absent when snow is present 

because the low thermal conductivity of snow causes it to insulate the ground [Lundquist and 

Lott, 2008; Tyler et al., 2008].  Thus, by measuring hourly Tg with shallowly-buried temperature 

sensors, daily snow presence can be inferred during periods with a reduced diurnal cycle in Tg 

(Figure 3.2).  Maxim (San Jose, California) Thermochron iButtons (model DS1922L) and Onset 
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(Cape Cod, Massachusetts) HOBO Pendant data-loggers were deployed at TUM, DAN, and 

ONN to measure Tg every hour from August 2009 through July 2010, and from September 2010 

through August 2011.  Sensors measured hourly Tg at YFDP from November 2010 to July 2011.  

92% of all sensors deployed in the study were iButtons, while the remaining 8% were HOBO 

Pendants.  Sensors were buried 2 cm to 10 cm under the surface (Figure 3.2a), following the 

methods of Lundquist & Lott (2008). 

A network of temperature sensors sampled Tg across each study site at regular spatial 

intervals (Figure 3.3).  During WY 2010, paired sensors were located within 5 m to 10 m of each 

other, and all sets of paired sensors were located 100 m apart from each other on a quasi-regular 

grid (Figure 3.3a, 3.3c, 3.3e).  During WY 2011, the networks at TUM, DAN, and ONN were 

expanded to cover a larger area (Figure 3.3b, 3.3d, 3.3f).  Sensors were no longer paired at each 

location and were spaced every 100 m at TUM and ONN and every 100 m to 200 m at DAN.  

Sensors at YFDP (Figure 3.3g) were only deployed in WY 2011, and were spaced at 40 m 

intervals along two parallel transects.  Sensors at TUM, DAN, and ONN were geolocated with a 

handheld GPS unit while sensors at YFDP were installed at study points that were surveyed with 

a total station. 

After retrieving the sensors, all hourly Tg time series (Figure 3.2b) were converted to 

daily time series of binary snow presence (i.e., 0=snow-free, 1=snow) with the following simple 

algorithm.  To identify snow presence above a sensor, the algorithm required that the diurnal 

range in Tg did not exceed 1.0° C over a period of 48 hours (Figure 3.2c).  The resulting daily 

snow presence time series (Figure 3.2d) were visually checked against the original hourly Tg.  

Additional quality control was conducted by comparing the timing of snowfall events (as 

observed at nearby snow pillows or as calculated based on air temperature and precipitation) to 
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the snow time series at the study sites.  This eliminated spurious snow detection during cold, 

snow-free periods in the autumn with low diurnal temperature variations.  Averaged across the 

sites, spurious increases in fSCA occurred on 10 days during WY 2010 and 3 days during WY 

2011.  When spurious snow presence was detected, we reclassified the affected sensors as snow-

free. 

To derive daily fSCA time series at each site (hereafter called “ground fSCA”), the number 

of sensors reporting snow presence each day were summed and divided by the total number of 

sensors at that site (Table 3.1).  We checked the confidence of ground fSCA through a Monte-

Carlo type test at each site, where 10 sensors were randomly sampled to produce a unique fSCA 

time series.  This was repeated 100 times and the standard deviation of the 100 fSCA time series 

was computed during each day of the ablation season.  Averaged across the ablation season, the 

standard deviation of ground fSCA ranged from 0.045 to 0.092, suggesting that the ground 

networks adequately sampled the snow cover dynamics of each study area. 

 

3.3.2 Validation of ground fSCA 

 To test ground fSCA, we used two independent observations of snow cover depletion at 

TUM during the spring and summer of 2010.  These included a time-lapse camera, which was 

used to check the timing and rate of snow cover depletion, and three high-resolution (15 m) 

images from ASTER in a canopy-free area, which were used to further assess fSCA accuracy. 

 

3.3.2.1 Time-lapse analysis 

An east-facing time-lapse camera took a photograph of Tuolumne Meadows every four 

hours in May and June 2010 and recorded the depletion of snowpack from full cover to snow-

free conditions.  The camera was located approximately 2 km west of the TUM ground sensors 
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and focused on the western area of the meadow, which we assumed had similar snow depletion 

timing and rates to the meadow as a whole.  The camera, a Sony Cybershot (model DSC-W55) 

with 7.2 megapixel resolution, was placed in a protective casing and fixed to a tree for stability. 

Numerous studies have employed time-lapse photography to assess patterns of snow 

presence, to quantify spatial and temporal components of snow cover depletion at small scales, 

and to measure snow depth (see Parajka et al., 2012 for a review).  We employed a novel 

approach for detecting the temporal depletion of snow by mapping snow cover in each scene 

based on pixel brightness and then using singular value decomposition (SVD) (see Wall et al., 

2003) to extract the temporal depletion information.  SVD is the basis for Principal Component 

Analysis (PCA), which is essentially equivalent to Empirical Orthogonal Function (EOF) 

analysis.  SVD reduces a complex system into its principal modes of variability; in other words, 

it finds the signals that explain the most variance of the data set in space and time. 

Daily images (e.g., Figure 3.4a-4c) taken between 10AM and 2PM PST were retained to 

coincide with the overpass of Terra (10:30 AM equatorial crossing), to minimize shadows in the 

image, and to ensure relatively consistent lighting from day-to-day.  Cloudy images were 

removed because they introduced noise in the analysis by reducing the lighting in each scene.  

We converted each image from RGB to the 0 to 255 range (0=black and 255=white) in order to 

map snow cover based on grayscale brightness.  We confined the analysis to an area in the 

western extent of the meadow (i.e., closer to the camera) to reduce distortion of pixels, as pixels 

farther from the camera encompassed more land surface area than pixels closer to the camera. 

A snow mapping algorithm was used and demonstrated to be consistent with visually 

identified snow cover in each original RGB image.  To map snow in each grayscale image, we 

constructed a histogram and classified snow-covered pixels by finding pixel brightness values 
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greater than 155 (~60% brightness), which corresponds to the lower limit of snow albedo at 

visible wavelengths for shallow snow with a large grain radius [Wiscombe and Warren, 1980].  

The algorithm translated each grayscale image into a binary snow map.  The binary snow map of 

each image was reordered into a column vector, and a matrix (M) was constructed from all 

vectors, such that rows corresponded to spatial position and columns corresponded to time. 

  SVD was then used to derive the temporal component of snow depletion.  M was input 

into the SVD.m routine in MATLAB (Version 7.9), which output the spatial and temporal 

modes, ordered by the proportion of variance explained.  The first mode explained 34% of the 

variance in the time-lapse sequence, and the non-zero spatial weights indicated that this mode 

represented snow cover (Figure 3.4d).  Thus, the first temporal mode (Figure 3.4e) described 

how snow cover depleted through time.  To infer a time series of fSCA, the absolute value of the 

first temporal mode was scaled to the 0 to 1 range, hereafter called “time-lapse fSCA” (Figure 

3.4e). 

 

3.3.2.2 ASTER 

Cloud-free ASTER images of TUM were obtained on 25 April, 5 June, and 30 July in 

2010 to derive high resolution snow maps.  ASTER visible and near infrared (VNIR) bands in 

the green-yellow (0.520 – 0.600 μm), red (0.630 – 0.690 μm), and near-infrared (0.780 – 0.860 

μm) wavelengths were acquired.  Supervised mapping of snow cover was implemented based on 

the methods of Vogel (2002), which were developed for the 15 m panchromatic band (0.52 – 

0.92 μm) of Landsat 7 and found to have comparable performance to the NDSI approach.  The 

raw digital numbers of each ASTER channel were first converted to radiance and reflectance 

based on NASA (2001).  The VNIR reflectance values in each pixel were then averaged into a 

single panchromatic value.  Pixels with panchromatic reflectance > 40% were mapped as snow, 
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consistent with the NDSI threshold [Dozier, 1984].  This threshold provided the best visual 

match to false-color images of snow cover (Figure 3.5).  ASTER fSCA was acquired in a 465 m 

square box coincident with the study area, and sized to exclude adjoining forested areas. 

The number of snow-covered ASTER pixels divided by the total number of ASTER 

pixels (961) in the area (red box, Figure 3.5b) was taken as ASTER fSCA.  We carefully 

considered the accuracy of this approach, as fine resolution maps of binary snow cover may have 

bias when aggregated to a coarse fSCA value [Rittger et al., 2012].  As noted by Rittger et al. 

(2012), binary methods may underestimate snow cover at low fractions and overestimate snow 

cover at higher fractions.  However, we did not find evidence that a major bias in ASTER fSCA 

existed at TUM in 2010. 

 

3.3.3 MODIS snow-covered area and grain size (MODSCAG) 

The physically-based MODSCAG algorithm uses spectral mixture analysis on a pixel-by-

pixel basis to derive gridded 500 m daily fSCA.  Spectral mixture analysis finds the best linear 

combination of land surface endmembers (e.g., snow, soil, rock, vegetation, lake ice) that 

matches MODIS surface reflectance from the Terra MOD09GA product [Painter et al., 2009]: 

∑ +=
i

iiS RfR λλλ ε,,  (3.1) 

where RS,λ is the pixel-averaged surface reflectance from MOD09GA at wavelength λ, fi is the 

fraction of endmember i in the pixel, Rλ,i is surface reflectance for endmember i at wavelength λ, 

and ελ is the residual error for all endmembers.  Wavelength-dependent surface reflectance of 

non-snow endmembers (e.g., vegetation, soil) are acquired from a library of observations 

acquired in the field or in a laboratory.  Snow reflectance is estimated using a hemispherical 

directional reflectance factor and a discrete ordinates radiative transfer model.  Using the 
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approach in Equation 3.1, MODSCAG examines permutations of two or more endmembers and 

selects the model with the smallest error (relative to MOD09GA reflectance) and the fewest 

endmembers.  If this combination of endmembers includes snow, then the daily fSCA is computed 

as the fraction of the snow endmember, normalized by the fraction of photometric shade (e.g., 

due to terrain or vegetation shading) in the pixel.  The lower detection limit is fSCA=0.15 [Painter 

et al., 2009].  For a complete description of the MODSCAG algorithm, the interested reader is 

directed to the model development paper of Painter et al. (2009).  MODSCAG snow cover data 

are available through the NASA JPL Snow Data System Portal (http://snow.jpl.nasa.gov/). 

  After implementation of MODSCAG at all pixels and all daily scenes, cloudy and noisy 

pixels are filtered, producing gaps.  Noisy pixels usually occur when one or more spectral bands 

have high frequency dropouts to zero reflectance, which cannot be used to estimate the snow 

cover properties of a pixel [Dozier et al., 2008].  Therefore, noisy pixels require removal and 

estimation through interpolation.  MODSCAG scenes were interpolated in time using a 16-day 

smoothing spline on a pixel-by-pixel basis following Dozier et al. (2008) and Dozier & Frew 

(2009).  The implemented spline (csaps.m in MATLAB) was a weighted combination of a least-

squares fit and a cubic spline.  The best fit changed depending on the temporal spacing between 

available data, and therefore varied spatially as a result of non-uniformities in cloud cover and 

noisy data.  Estimates from the spline were additionally weighted according to the cosine of the 

sensor view zenith angle and the view-angle-dependent pixel area, such that near-nadir views 

had the greatest weights. 

Filtering and smoothing of the MODSCAG scenes produced a temporally continuous 

product of gridded daily fSCA across the Sierra Nevada.  Because the geolocation accuracy of 

MODIS (± 1.5 pixels) and the gridding procedure may introduce artifacts into a pixel-scale 
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validation [Tan et al., 2006], we aggregated (i.e., averaged) the MODSCAG fSCA in a 3x3 (i.e., 

1500 m x 1500 m) pixel window encompassing each site to ensure collocation with the area 

sampled by the ground-based observations [Xin et al., 2012]. 

 

3.3.4 MODSCAG canopy adjustments 

MODSCAG fSCA is created based on the land surface that is viewable by MODIS, which 

underestimates snow cover in forests due to effects such as canopy obstruction [Rittger et al., 

2012].  In forested areas, only the land surface in forest clearings, canopy gaps, and between 

canopy gaps is visible (Liu et al., 2008).  These viewable areas provide the basis for estimating 

fSCA with MODSCAG, which currently lacks a native canopy adjustment.  We adjusted the 

MODSCAG fSCA time series by the viewable gap fraction (VGF), which can be provided by a 

geometric optical model (Liu et al., 2004) or a satellite-derived product [Durand et al., 2008; 

Molotch and Margulis, 2008; Rittger et al., 2012]: 

can

obsSCA

adjustedSCA
f

f
f

−
=

1
,

,   (3.2) 

where fSCA,adjusted is MODSCAG fSCA adjusted for forest canopy, fSCA,obs is the fSCA from the 

gridded daily 500 m MODSCAG product, 1-fcan is the viewable gap fraction, and fcan is the 

fractional forest cover of each grid cell.  This adjustment increases fSCA in areas with trees to 

account for the area hidden by the canopy and the greatest fSCA adjustments occur in more dense 

forests.  fSCA,adjusted is constrained to the [0, 1] interval.  This canopy-adjusted MODSCAG fSCA is 

hereafter referred to as “MODSCAG fSCA”. 

For the value of fcan (Equation 3.2) at each site, we used the static (i.e., temporally 

constant) percent tree canopy from the 2001 National Land Cover Dataset (NLCD), which is 

derived from Landsat 5 and Landsat 7 data at 30 m resolution [Homer et al., 2004; USGS, 2011].  
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This dataset is freely available and commonly used in snow research (e.g., Durand et al., 2008; 

Young et al., 2009).  Changes in land cover at the sites were insignificant between 2001 and 

2011. 

 There are several well-known limitations inherent in this canopy adjustment [Rittger et 

al., 2012].  First, this correction assumes fSCA under the forest canopy is equivalent to fSCA in the 

viewable areas (e.g., meadows, clearings) [Durand et al., 2008].  However, snow studies across 

different climate zones show accumulation and melt rates change based on forest cover and type 

of tree (see Varhola et al., 2010a).  Viewable snow in a clearing is not likely to represent snow 

under the canopy, especially late in the melt season.  Second, the simplifying assumption of 

constant fcan for MODIS may not be robust in areas with trees, as a greater area of each tree (e.g., 

leaves, branches, trunks) will be included as the view angle increases [Hall et al., 1998; Liu et 

al., 2008].  While the smoothing algorithm weights fSCA,obs based on view angle and pixel area 

(see Section 3.3.3), a weighting scheme is ineffective for static values of fcan, and therefore the 

static approach may not be fully sufficient.  Third, a static adjustment is not robust when forest 

canopies are loaded with snow, as immediately following a precipitation event. 

 

3.3.5 Evaluation metrics 

 We adopted the same binary and fractional metrics for evaluation as prior MODSCAG 

studies [Painter et al., 2009; Rittger et al., 2012] and other MODIS snow cover studies (e.g., 

Dong & Peters-Lidard, 2010).  The binary metrics are first-order performance metrics that reveal 

the accuracy of MODSCAG in determining whether or not snow is present, regardless of the 

fractional value.  Fractional metrics are used to assess actual fSCA errors.  MODSCAG fSCA 

values below the MODSCAG detection limit (0.15) were set to 0 before calculating the binary 
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and fractional metrics.  Ground fSCA values below 0.15 were not changed in this manner, as this 

indicated the existence of patchy snow. 

 

3.3.5.1 Binary metrics 

During each day of the snow season at each study site, MODSCAG fSCA was evaluated 

based on the agreement or disagreement of snow presence with the ground fSCA.  Days when 

snow was present (i.e., fSCA≥0.15 for MODSCAG, fSCA≥0 for ground) in both ground fSCA and 

MODSCAG fSCA were classified as a true positive (TP), while days when both reported snow-

free conditions (i.e., fSCA<0.15 for MODSCAG, fSCA=0 for ground) were classified as a true 

negative (TN).  A false positive (FP) indicated that MODSCAG identified snow cover not 

observed by the ground network (i.e., commission), and a false negative (FN) signified that 

MODSCAG missed snow cover that the ground network observed (i.e., omission).  These daily 

values were input into three binary metrics to determine performance across the snow season: 

FPTP
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Precision tests for commission errors, Recall tests for omission errors, and the F score tests for 

both errors.  All three binary metrics vary from 0 to 1, with 1 indicating perfect performance.  

 

3.3.5.2 Fractional metrics 

Direct comparisons of MODSCAG fSCA and ground fSCA were achieved through the use 

of mean bias (i.e., mean difference), median bias, and root mean squared error (RMSE): 
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where N is the number of snow-covered days, as observed at each ground network.  Bias was 

taken as the difference between MODSCAG fSCA and ground fSCA, such that a positive (negative) 

bias indicated MODSCAG overestimated (underestimated) fSCA. 

 

3.4 Results 

3.4.1 Validation of ground fSCA at Tuolumne Meadows 

Comparisons of ground fSCA against time-lapse fSCA and ASTER fSCA in 2010 indicated 

that the ground fSCA methodology was accurate.  Time-lapse fSCA and ground fSCA matched each 

other in characterizing the timing and rate of snow cover depletion from late May to early June 

2010 (Figure 3.6a).  Both ground fSCA and time-lapse fSCA indicated that the majority of snow 

cover depletion occurred over a ten day period (29 May to 8 June).  During this critical melt 

period, ground fSCA had high correlation (R2=0.98) with time-lapse fSCA. 

  Ground fSCA tracked ASTER fSCA across the three available ASTER images (Figure 3.6a).  

Ground fSCA on 25 April 2010 (full snow cover) and 30 July 2010 (no snow cover) matched 

ASTER fSCA.  A comparison on 5 June 2010 supported the accuracy of ground fSCA during the 

critical melt out period, as ground fSCA was 0.62 and ASTER fSCA was 0.66 (Figure 3.5b).  

ASTER was valuable in that it provided additional fSCA information in early June 2010, when 

MODSCAG snow cover disappeared abruptly (see section 3.4.2.1). 

 

3.4.2 Time series comparisons 

3.4.2.1 Tuolumne Meadows (TUM) 

 Across the 2010 and 2011 snow seasons, MODSCAG had high Precision, Recall, and F 

score values at TUM (Table 3.2).  MODSCAG performance was better in 2011 than 2010 
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because omission errors (Recall) were present during the 2010 melt season, likely from cloud 

cover and view angle issues (described below).  Omission errors also arose when MODSCAG 

either missed early season storms or the smoothing algorithm removed snow storms in October 

2010 and 2011 (Figure 3.6). 

  The canopy adjustment reduced MODSCAG fSCA bias at TUM by 13% to 15% (Figure 

3.6), but canopy-adjusted MODSCAG still had a consistent negative bias at TUM during both 

years (Table 3.3).  During the winter months, MODSCAG fSCA oscillated between 0.60 and 0.95 

in a pattern possibly introduced by the smoothing method (section 3.3.3); these multi-day fSCA 

oscillations during the winter were a common feature of MODSCAG fSCA at all four sites.  At 

TUM, these oscillations did not consistently coincide with snowfall events, and therefore did not 

occur due to increased reflection from canopy interception. 

  A notable MODSCAG fSCA error at TUM occurred in spring 2010 when MODSCAG 

fSCA depleted rapidly and fell below the 0.15 threshold on 1 June, 7 days before the ground fSCA 

and 8 days before the time-lapse fSCA fell below 0.15 (Figure 3.6a).  An examination of 

atmospheric transmissivity (calculated from insolation observations) and MODIS visible 

imagery indicated that cloudy conditions persisted on 1 June, 3 June, and 4 June (Figure 3.7a).  

Additionally, the Terra satellite was off-nadir (i.e., >30°) on 31 May (31°), 2 June (43°) and 6 

June (49°).  The limited availability of near-nadir view angles on clear days within the short 

snow cover depletion period (29 May – 8 June) likely caused MODSCAG fSCA to decline rapidly 

on 1 June.  Interestingly, SWE at the TUM snow pillow disappeared on 3 June 2010, two days 

after MODSCAG fSCA fell below 0.15 (Figure 3.6a). 
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3.4.2.2 Dana Meadows (DAN) 

MODSCAG had the fewest omission errors at DAN, as noted by the high Recall values.  

However, MODSCAG had a slight tendency to map snow cover that did not exist at DAN, as 

noted by the Precision (Table 3.2).  These commission errors occurred in early October 2009 and 

2010, and briefly in mid-October 2010 (Figure 3.8). 

  The canopy adjustment reduced MODSCAG fSCA bias by 22% to 23% (Figure 3.8), but 

canopy-adjusted MODSCAG fSCA still had an overall negative bias at DAN (Table 3.3).  In both 

years, MODSCAG overestimated fSCA during the early accumulation season (e.g., October) but 

underestimated fSCA through the period of full snow cover (e.g., December through early June), 

with values typically fluctuating between 0.75 and 0.96.  During the 2010 ablation season, 

MODSCAG fSCA reasonably matched ground fSCA (Figure 3.8a).  During the 2011 ablation 

season, MODSCAG had a notable fSCA overestimation error from 28 June to 30 June (Figure 

3.7b, 8b), possibly introduced by cloud cover and off-nadir view angles.  After this period, 

MODSCAG fSCA reasonably tracked the ground fSCA for the rest of the 2011 ablation season.  

Complete depletion of MODSCAG fSCA (i.e., fSCA<0.15) was only 1 to 2 days earlier than ground 

fSCA depletion during the two years.  During 2010, snow disappeared at the DAN snow pillow on 

24 June, which was 1 day prior to MODSCAG and 2 days prior to the ground temperature 

network.  In 2011, snow disappeared at the DAN snow pillow on 1 July, 7 days prior to 

MODSCAG and 9 days prior to the ground network. 

 

3.4.2.3 Onion Creek Experimental Forest (ONN) 

MODSCAG yielded more omission errors at ONN than at DAN, as suggested by lower 

Recall (Table 3.2).  Omission errors occurred in November 2009, October 2010, and during the 
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second half of the melt season in both water years (Figure 3.9).  The high Precision indicated 

commission errors were rare at ONN, which increased the F score. 

The canopy adjustment had the greatest bias reduction at ONN, with bias reduced by 

35% to 42% (Figure 3.9).  However, canopy-adjusted MODSCAG fSCA had a negative bias 

through both years at ONN (Table 3.3).  The largest fSCA errors occurred during the early 

accumulation and late ablation seasons (Figure 3.9).  During the 2010 ablation season, 

MODSCAG fSCA abruptly depleted and dropped below the 0.15 detection threshold on 1 June 

2010 (Figure 3.9a).  This date of complete snow depletion at ONN was 2 days prior to the date of 

snow disappearance at the NOAA HMT snow depth sensor, but 11 days prior to the ground 

temperature sensors.  MODSCAG fSCA depletion was more gradual during the 2011 ablation 

season (Figure 3.9b), but reported systematically lower fSCA through this period and reached 

complete depletion 12 days prior to the ground sensors.  During both ablation seasons, 

MODSCAG snow cover disappeared (i.e., fSCA<0.15) once ground fSCA approached the forest 

cover fraction (Figure 3.7c). 

 

3.4.2.4 Yosemite Forest Dynamics Plot (YFDP) 

MODSCAG had the lowest Recall and F score at the heavily forested YFDP (Table 3.2), 

indicating that snow omission errors were most common at this site.  Omission errors were 

concentrated in May 2011 when the snow cover was melting (Figure 3.10).  Sporadic periods 

with MODSCAG omission errors were also present during periods of partial snow cover 

disappearance in the middle of the snow season (e.g., early December, early February).  Like 

ONN, commission errors were rare at the YFDP, as the Precision score was high. 

 While Precision was high at YFDP, errors in fSCA were prevalent throughout the snow 

season (Figure 3.10), as MODSCAG fSCA had a mean RMSE of 0.55 and a mean bias of -0.37 
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(Table 3.3).  In other words, MODSCAG reported snow cover existed throughout most of the 

snow season, but MODSCAG fSCA was generally too low.  MODSCAG fSCA was characterized 

by multiple cases with rapid increases to full snow cover and nearly equivalent drops in fSCA 

within 1 to 2 weeks.  These large fluctuations were not found in the ground fSCA (Figure 3.10). 

Comparing the MODSCAG fSCA time series to snow accumulation data at the nearby Gin 

Flat snow pillow indicated that the MODSCAG fSCA fluctuations often coincided with new 

snowfall events (Figure 3.10).  This suggested either MODSCAG was viewing intercepted snow 

in the forest canopy, or storm clouds were being misclassified as snow cover, or some 

combination thereof due to the smoothing algorithm.  However, not all fSCA fluctuations 

coincided with new snow events at YFDP (e.g., single peak in early November, two peaks in 

mid-April). 

 During the ablation season of 2011, MODSCAG only mapped snow cover at YFDP when 

the ground fSCA was greater than the forest cover fraction (Figure 3.7d), as at ONN.  A snowfall 

event in mid-May 2011 brought ground fSCA back to full cover and extended the snow season by 

9 days.  MODSCAG missed this snowfall event, as it reached complete depletion (fSCA<0.15) 

prior to this storm (26 April) and remained below the 0.15 threshold through the summer.  

Ground fSCA reached 0.15 on 26 May, 30 days after MODSCAG (Figure 3.10). 

 

3.4.3 Seasonality of errors 

We found MODSCAG errors varied relative to forest cover and time of year.  We 

examined how errors changed across three periods: the early accumulation season (first day of 

fSCA ≥ 0.15 through 31 December), the winter (1 January through 31 March), and the ablation 

season (1 April to the final day of fSCA ≥ 0.15).  At TUM, DAN, and ONN, MODSCAG errors 

tended to be most variable during the accumulation and ablation seasons (Figure 3.11a,c).  Errors 
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at these three sites were generally less variable during the winter months (Figure 3.11b).  At 

YFDP, MODSCAG tended to underestimate snow more severely and more consistently with 

time (Figure 3.11). 

 

3.5 Discussion and conclusions 

We demonstrated that networks of temperature sensors buried shallowly in the ground 

provide reliable values of daily fSCA, which can be used to test canopy-adjusted MODSCAG fSCA 

in forest locations not sampled by traditional methods (e.g. Landsat, SNOTEL sites).  At our 

Sierra Nevada sites, we found that (1) the static canopy adjustment (Equation 3.2) reduced 

MODSCAG fSCA bias (Figures 6, 8, 9, 10) but a consistent negative bias still remained (Figure 

3.11), (2) the accuracy of canopy-adjusted MODSCAG fSCA varied with forest cover, and (3) 

MODSCAG errors were usually most variable during the accumulation and ablation seasons.  

The results demonstrated the value of dense ground-based validations of remote sensing and 

underscored the need for improved canopy adjustments for MODIS fSCA. 

Canopy-adjusted MODSCAG fSCA was systematically lower than ground fSCA during the 

middle of winter (Figure 3.11b).  This result was particularly surprising at the meadow sites 

(TUM and DAN), as we expected full snow cover at these flat, lightly forested, high-elevation 

locations, which had considerable snow accumulation during the two study years (Figure 3.1).  

We investigated several possible reasons for this.  First, it was possible that the ground sensor 

sampling strategy (section 3.3.1) partially caused this difference, as sensors were not placed at 

potentially snow-free locations (e.g., rock outcroppings and open water).  However, these 

features covered a small fraction (generally < 0.05) of the land cover at each site.  Second, this 

difference may have resulted from a documented underestimation bias in the NLCD forest cover 

dataset, which has been reported at 9.7% across the USA [Greenfield et al., 2009] and 23.4% in 
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the Sierra Nevada zone [Nowak and Greenfield, 2010].  However, by checking the NLCD forest 

cover against lidar-derived forest cover at TUM and YFDP, we found that the difference 

between NLCD forest cover and lidar forest cover was generally less than 5% at our sites.  The 

mean fSCA bias ranged from -0.13 to -0.25 during the winter at TUM and DAN (Figure 3.11b), 

and therefore neither the sampling strategy nor the possible NLCD bias provide complete 

explanations for the difference between MODSCAG fSCA and ground fSCA. 

We hypothesize that the use of static forest cover data to adjust for canopy (Equation 3.2) 

was the primary cause of the MODSCAG fSCA underestimation bias during the winter.  Because 

canopy-adjusted MODSCAG fSCA oscillated to values as high as 0.95 and 0.96 during the winter 

at TUM and DAN, respectively, this suggested that the canopy adjustment was effective over 

specific periods with favorable view angles and cloud conditions.  MODIS band reflectance and 

viewable gap fraction (i.e., forest cover fraction) both change with view zenith angle, which 

changes daily for MODIS [Liu et al., 2008; Xin et al., 2012].  While MODSCAG accounts for 

the view angle-dependent changes in surface reflectance, the static canopy adjustment used here 

did not account for the variation of viewable gap fraction with view angle.  Therefore, the static 

adjustment may not be appropriate for adjusting fSCA from scanning sensors (e.g., MODIS).  

Concurrent estimates of fractional vegetation from MODSCAG that account for the changing 

view angle, larger pixel size, and different reflectance would likely provide superior snow maps.  

More work is needed to determine whether a view angle dependent forest cover fraction 

improves canopy adjustments. 

Canopy-adjusted MODSCAG also exhibited a fundamental limitation in that no snow 

cover was mapped once ground fSCA approached the forest cover fraction (Figures 7c, 7d).  This 

problem cannot be corrected with the current adjustment method (Equation 3.2), as fSCA,obs was 0 
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in these cases, inevitably resulting in fSCA,adjusted of 0, regardless of the forest cover value (fcan).  

This remains an outstanding challenge for satellite remote sensing of snow in forested areas. 

 The prevalence of omission errors (Table 3.2) at the forest sites (ONN and YFDP) and 

the inability of MODSCAG to map snow below the forest cover fraction (Figures 7c, 7d) 

suggested snow persisted longer under the canopy than in the viewable gaps and clearings at 

these two sites.  Snow lasted 12 to 30 days longer at the ground networks of the forest sites 

(Figures 9, 10) relative to MODSCAG snow cover.  This difference in snow persistence in 

forests vs. clearings was consistent with other studies in the Sierra Nevada.  Anderson (1956) 

found snow cover disappeared in a dense forest 16 days after snow in large forest openings near 

ONN, while Church (1914) noted snow persisted at least 7 to 10 days longer in pine and fir 

forests than treeless meadows near Lake Tahoe.  These studies provide confidence in our 

observations, but we recognize that these results cannot be generalized for all forests, as forest 

characteristics (e.g., canopy structure, species, age) interact with snow in complex ways, 

resulting in variability of snow persistence [Kittredge, 1953].  Nevertheless, we note that errors 

in snow disappearance timing impact applications such as SWE reconstruction.  An error of 12 

days in point snow disappearance has a potential error of 50% in reconstructed peak SWE, 

assuming a mean SWE error of 4.3% per day of snow disappearance date bias [Raleigh and 

Lundquist, 2012].  Slater et al. (2012) show similar median SWE errors given ±10 days 

uncertainty in snow disappearance. 

We also note that the operational snow depth and SWE sensors in clearings at our study 

areas did not reliably represent snow disappearance timing in the adjacent forests, and these 

sensors have had wide usage in prior MODIS validation studies.  Taking fSCA<0.15 for snow 

absence, the timing of snow disappearance in 2010 from MODSCAG was within 2 days of 
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observations at the operational snow sensors at TUM (Figure 3.6a) and ONN (Figure 3.9a).  

However, our ground temperature networks indicated that as much as 60% (ONN) to 84% 

(TUM) of the land was still snow-covered once snow disappeared at the operational sensors in 

2010.  In these cases, MODSCAG errors in snow disappearance were actually larger than the 

errors suggested by the operational data.  We also observed cases when the operational snow 

sensors overestimated the MODSCAG errors in snow disappearance timing.  For example, the 

DAN snow pillow data suggested MODSCAG had a 7 day error in snow disappearance date in 

2011 (Figure 3.8b), but our ground-based sensors showed MODSCAG only had a 2 day error.  

Thus, the issue of snow sensor representativeness [Rice and Bales, 2008] is critically important 

for comparisons between a MODIS pixel and a single snow sensor in that pixel.  Because most 

snow pillows were positioned to provide streamflow indices [Farnes, 1967] and not to represent 

the timing and duration of snow presence of an area, we conclude that a single snow depth or 

SWE sensor cannot validate a MODIS pixel with confidence, especially in forested pixels.  This 

has direct implications for prior studies that have used single snow sensors to validate MODIS. 

While MODSCAG is more accurate than empirical MODIS snow cover retrievals early 

in the accumulation season and late in the ablation season [Rittger et al., 2012], our results show 

that MODSCAG errors are often most variable during these periods (Figure 3.11 a,c).  This 

implies that intensive field surveys conducted near peak accumulation (e.g., CLPX) do not 

sample the largest MODIS snow cover errors in the seasonal snow zone.  As suggested by the 

results at YFDP, large MODIS errors are expected to occur frequently in the transient snow zone 

where snow may accumulate and disappear multiple times in a single snow season.  These 

difficulties support the use of distributed ground-based sensors to test MODIS snow cover, such 

as networks of ground temperature sensors (as in this study) or snow depth sensors [Musselman 
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et al., 2012; Varhola et al., 2010b].  Lidar observations of snow cover (e.g., Deems et al., 2006) 

may also test MODIS errors in forests, but the tradeoffs between timing, frequency, and costs of 

lidar flights must be considered carefully. 

Although our sample size (n=7 site years) is relatively small considering the large 

variability in forest cover across the globe, we have (1) demonstrated a new methodology for 

ground validation of MODIS and (2) identified errors in forests that cannot be detected with 

previously used validation techniques (e.g., comparisons with Landsat and SNOTEL).  Thus our 

results provide a first quantification of forest effects on fSCA errors and highlight the need for 

continued testing of MODSCAG and canopy adjustment methods over a more complete range of 

forest cover and environmental conditions.  This in turn will benefit users of MODSCAG for 

distributed applications, such as SWE reconstruction and snow model testing.
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3.6 Tables 

 

Table 3.1 Characteristics of the four Sierra Nevada study sites, ordered by increasing forest 
cover. 
 Tuolumne 

Meadows 

(TUM) 

Dana 

Meadows 

(DAN) 

Onion 

Creek 

(ONN) 

Yosemite Forest 

Dynamics Plot 

(YFDP) 

Mean Forest Cover A, fcan 0.23 0.32 0.65 0.79 
Latitude (N) 37° 52’ 30” 37° 53’ 58” 39° 16’ 40” 37° 45’ 59” 
Longitude (W) 119° 21’ 49” 119° 15’ 20” 120° 21’ 18” 119° 49’ 9” 
River Basin Tuolumne Tuolumne American Tuolumne 
Mean Elevation (m) 2615 2985 1950 1860 
Mean DJF Air Temp.B (°C) -3.6 -4.1 -0.9 2.2 
Mean Ann. Precip.B (mm) 830 970 1700 1060 
WY 2010 Ground Sensors 45 45 89 -- 
WY 2011 Ground Sensors 47 52 75 37 
A Average fractional forest cover of the 1500 m x 1500 m area encompassing each study site, based on 30 m 2001 
National Land Cover Dataset forest canopy product [Homer et al., 2004] 
B Based on PRISM 1971-2000 monthly climate normals product at 800 m resolution [Daly et al., 1994, 2008] 
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Table 3.2 Summary of binary metrics across each snow season at the four study sites. 

Metric Water Year TUM DAN ONN YFDP 

Precision 2010 1.00 0.96 1.00 -- 
 2011 0.99 0.97 0.99 0.96 
 Mean 1.00 0.96 1.00 0.96 
      
Recall 2010 0.78 0.94 0.80 -- 
 2011 0.91 0.98 0.88 0.61 
 Mean 0.84 0.96 0.84 0.61 
      
F score 2010 0.87 0.95 0.89 -- 
 2011 0.95 0.97 0.93 0.75 
 Mean 0.91 0.96 0.91 0.75 
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Table 3.3 Summary of fractional metrics across each snow season at the four study sites. 

Metric Water Year TUM DAN ONN YFDP 

RMSE 2010 0.28 0.19 0.24 -- 
 2011 0.23 0.19 0.17 0.55 
 Mean 0.25 0.19 0.21 0.55 
      
Mean Bias 2010 -0.24 -0.11 -0.11 -- 
 2011 -0.19 -0.08 -0.07 -0.37 
 Mean -0.22 -0.09 -0.09 -0.37 
      
Median Bias 2010 -0.25 -0.15 -0.03 -- 
 2011 -0.20 -0.12 -0.03 -0.41 
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3.7 Figures 

 
Figure 3.1 (a) Locations of Tuolumne Meadows (TUM), Dana Meadows (DAN), Onion Creek 
Experimental Forest (ONN), and Yosemite Forest Dynamics Plot (YFDP) in the Sierra Nevada, 
and snow course snow water equivalent (SWE) at or near the four study sites during water years 
(b) 2010 and (c) 2011.  Snow courses are from the California Cooperative Snow Survey network, 
taken routinely every year on or near 1 April and 1 May.  YFDP is represented by the Gin Flat 
snow course, 4 km east of YFDP and 300 m higher in elevation.  Also shown are the long-term 
(LT) means at each snow course on 1 April (n=65 years) and 1 May SWE (n=30 years); only 
years with snow at all four snow courses were used to calculate the LT mean.  An additional 
snow survey on 17 April 2011 was conducted at ONN to document the difference in SWE 
accumulation between a clearing and the adjoining forest.
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Figure 3.2 Ground-based method of determining snow presence at a point with a self-logging 
temperature sensor.  Temperature sensors were (a) buried at a depth of 2 cm to 10 cm and 
recorded (b) hourly ground temperature (Tg) through the study year.  (c) Diurnal temperature 
ranges were inspected and periods with diurnal temperatures below 1.0°C were (d) classified as 
snow-covered periods at that sensor. 
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Figure 3.3 Locations of ground temperature sensors at the study sites during water years 2010 
and 2011.  Shown in order of increasing forest cover are (a-b) Tuolumne Meadows, (c-d) Dana 
Meadows, (e-f) Onion Creek, and (g) the Yosemite Forest Dynamics Plot.  Most locations during 
WY 2010 (a, c, e) have two temperature sensors in close proximity (<10 m) but appear as a 
single dot.  Contour interval is 5 m in (a) and (b), and 10 m in all other subplots.
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Figure 3.4 Tuolumne Meadows time-lapse photo analysis with singular value decomposition 
(SVD) during May-June 2010.  Shown are sample RGB photographs taken to show progression 
of snow cover from (a) 31 May to (b) 5 June to (c) 15 June.  Also shown are the (d) spatial and 
(e) temporal weights of the 1st SVD mode, which is interpreted as snow cover depletion.  A 
fractional snow-covered area (fSCA) time series was inferred from the temporal weights of the 1st 
SVD mode.  The location of the time-lapse camera relative to the ground temperature sensors is 
indicated in Figure 3.5a. 
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Figure 3.5 (a) ASTER nadir false color image (RGB 321) of Tuolumne Meadows on 5 June 
2010, showing snow cover and melt water channels draining to the Tuolumne River.  The 
approximate location and view direction of the time-lapse camera (Figure 3.4) are indicated.  
ASTER VNIR resolution is 15 m.  (b) Mapped snow cover from the ASTER image on 5 June 
2010 (white = snow cover, black = snow-free or unknown).  The red box corresponds to the 
approximate location of the ground temperature sensors from Figure 3.3a.  Fractional snow cover 
in the red box was 0.66 on this date.
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Figure 3.6 Fractional snow-covered area (fSCA) at Tuolumne Meadows (TUM) during water 
years (a) 2010 and (b) 2011.  Shown in both years are fSCA from the ground temperature network, 
and MODSCAG fSCA before and after the canopy adjustment.  In May-June 2010, independent 
fSCA data from a time-lapse camera and ASTER were included for validation.  Also shown are 
periods when the TUM snow pillow reported snow presence (SWE>1cm) and when SWE data 
were missing.
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Figure 3.7 Ground fractional snow-covered area (fSCA) vs. canopy-adjusted MODSCAG fSCA at 
(a) Tuolumne Meadows, (b) Dana Meadows, (c) Onion Creek, and (d) the Yosemite Forest 
Dynamics Plot from 1 April to melt out during water years 2010 and 2011.  Time generally 
progresses from the upper right corner to the lower left as the snow cover disappears.  Points are 
classified based on whether cloudy or clear conditions prevailed, based on pyranometer data and 
MODIS visible imagery.  Points during a one week period in WY 2010 at TUM (a) and during a 
three day period in WY 2011 at DAN (b) are labeled to indicate a combination of cloudy days 
and off-nadir view angles (V) that introduced errors in MODSCAG fSCA.  The NLCD forest 
cover fraction is also plotted, showing that MODSCAG fSCA drops to 0 at the forest sites (c, d) as 
the ground fSCA approaches the forest fraction. 
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Figure 3.8 Fractional snow-covered area (fSCA) at Dana Meadows (DAN) from the ground 
temperature network and MODSCAG during water years (a) 2010 and (b) 2011.  MODSCAG 
fSCA is shown before and after the canopy adjustment.  Also shown are periods when the DAN 
snow pillow reported snow presence (SWE>1cm) and when SWE data were missing. 
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Figure 3.9 Same as Figure 3.8, except at the Onion Creek Experimental Forest (ONN), and with 
periods shown when snow depth (SD) exceeded 2 cm during 2010 and 2011.  Most snow depth 
measurements were unavailable after March 2011 when the snow depth sensor arm was bent by 
heavy snow accumulation.
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Figure 3.10 Same as Figure 3.8, except at the Yosemite Forest Dynamics Plot (YFDP) and 
during water year 2011 only.  SWE values are taken from the Gin Flat snow pillow, 4 km from 
YFDP and 300 m higher in elevation.  The shaded regions indicate periods when new SWE 
accumulation exceed 1 cm.  Also shown are periods when the Gin Flat snow pillow reported 
snow presence (SWE>1cm).  Note that the ground sensors did not begin recording data until 9 
November 2010, so the first snow storm reported by MODSCAG was not evaluated.
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Figure 3.11 Daily errors in canopy-adjusted MODSCAG fSCA during water years 2010 and 2011 
versus mean NLCD forest cover during (a) the early accumulation season (Start-Dec), (b) winter 
(Jan-Mar), and (c) the ablation season (Apr-Disappearance).  The starting date in (a) was the first 
day with fSCA≥0.15, while the disappearance date in (c) was the last day when fSCA≥0.15.  Mean 
errors are denoted by a circle and whiskers indicate 1 standard deviation from the mean error.  
The markers were displaced horizontally so the two water years could be shown without overlap 
at each site.  The four sites listed in increasing forest cover are TUM, DAN, ONN, and YFDP. 
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Chapter 4 Standard temperature and humidity approximate snow surface temperature: 

new possibilities for snow model calibration 

 
This chapter was submitted in its current form to Water Resources Research [Raleigh et al., 
submitted 2013a] in April 2013. 
 

Abstract 

Snow surface temperature (Ts) is an important variable in the snowmelt energy balance, land-
atmosphere interactions, weak layer formation (avalanche risk), and winter recreation, but is 
rarely measured at observational networks.  Reliable Ts datasets are needed to validate remote 
sensing and distributed modeling, in order to represent land-atmosphere feedbacks.  Previous 
research demonstrated that the dew point temperature (Td) close to the snow surface 
approximates Ts well because air is saturated immediately above snow.  However, standard 
height (2 to 4 m) measurements of the saturation temperatures, Td and wet-bulb temperature (Tw), 
are much more readily available.  There is limited understanding of how these standard variables 
approximate Ts, and how the approximations vary with climate, seasonality, time of day, and 
atmospheric conditions (stability and radiation).  We used sub-daily measurements from seven 
sites to test Ts approximations with standard height temperature and moisture.  Td produced the 
lowest bias (-2.2 °C to +2.6 °C) and root mean squared error (RMSE) when approximating Ts, 
but tended to underestimate daily extremes in Ts.  For comparison, air temperature (Ta) was 
biased +3.2 °C to +6.8 °C.  Ts biases increased with increasing frequency in nighttime stability 
and daytime clear sky conditions.  We illustrate that mean daily Td can be used to detect 
systematic input data bias in physically-based snowmelt modeling, a useful tool for model 
calibration in data sparse regions.  Thus, improved understanding of Td variations can advance 
understanding of Ts in space and time, providing a simple yet robust measure of surface feedback 
to the atmospheric energy budget. 
 

4.1 Introduction 

The surface (i.e., skin) temperature of snow (Ts) is a critical factor in the snow energy 

balance and in land-atmosphere interactions, modulating how much energy is used to warm or 

melt a snowpack and how much energy is returned to the atmosphere.  Specifically, Ts controls 

outgoing longwave radiation and regulates the near-surface profiles of temperature and vapor 

pressure that influence sensible and latent heat transfer.  Increases in Ts drive the growth of snow 

grains, reducing snow surface albedo and enhancing absorbed shortwave radiation [Wiscombe 

and Warren, 1980].  Ts is also a critical factor for slab avalanche formation, as large fluctuations 

in Ts can favor the development of unstable layers in a snowpack [Armstrong and Armstrong, 
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1987; Birkeland, 1998; Birkeland et al., 1998].  Finally, Ts is an important variable for winter 

recreation (e.g., downhill skiing and cross-country skiing races), as it has a non-linear 

relationship with surface friction [e.g., Wagner and Horel, 2011]. 

Despite its importance, Ts is rarely measured at existing observational networks [Bales et 

al., 2006] and must be acquired with remote sensing or modeling.  Satellite-based remote sensing 

of surface emission at infrared wavelengths has yielded Ts datasets, but atmospheric emission of 

longwave radiation complicates this methodology [Duguay, 1993], and few studies have 

validated remotely sensed Ts, as noted by Dozier and Painter [2004].  In modeling applications, 

Ts has been estimated with (1) empirical relationships that track hourly [Brubaker et al., 1996; 

Marks et al., 1992] or mean daily [Molotch, 2009] air temperature, (2) conceptual approaches 

based on air temperature that incorporate radiative cooling effects [Marsh and Pomeroy, 1996; 

Pohl et al., 2006],  (3) longwave-based psychrometric formulations [e.g., Ellis et al., 2010], and 

(4) physically-based approaches that solve for Ts in the surface energy balance using analytic 

[e.g., Essery and Etchevers, 2004; Kondo and Yamazaki, 1990] or iterative solutions [e.g., 

Jordan, 1991; Tarboton and Luce, 1996].  Due to the inherent scarcity of Ts observations, 

models generally lack validation of this important parameter.  Instead, snow models are typically 

evaluated only against snow water equivalent (SWE) [Essery and Etchevers, 2004], a practice 

which neglects the contributing processes and limits process-based understanding [Clark et al., 

2011].  Depending on model selection, uncertainty in mid-winter Ts may be as large as 8 °C to 10 

°C, [Essery et al., 2013; Slater et al., 2001], yielding up to 40 W m-2 of uncertainty in longwave 

emitted to the atmosphere, and signifying problems in the modeled surface energy balance. 

In contrast to the above methods for estimating Ts, Andreas [1986] hypothesized that the 

dew point temperature (Td) of air close to the snow surface approximates Ts.  The physical reason 
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for this approximation is that snow cover is a saturated surface, such that the vapor pressure (e) 

of air close to the surface equals the saturation vapor pressure (esat).  Air reaches saturation at Td 

and esat is a function of Ts alone; thus, it can be seen that Td close to the snow surface is expected 

be in equilibrium with Ts.  Supporting this reasoning, USACE [1956] notes that “The vapor 

pressure has a strong tendency to remain close to that of the snow surface since the snowpack is 

both a sink and a source for vapor pressure greater or less than that of the snow.  For air over a 

melting snowpack, the tendency is thus toward a vapor pressure of 6.11 millibars (the saturated 

vapor pressure at 32 °F).”  While Andreas [1986] focused on Td, there exists a second saturation 

temperature, the wet-bulb temperature (Tw) (see section 4.3), which is the temperature at which 

an air parcel becomes saturated reach through evaporative cooling.  For an unsaturated air parcel, 

Tw is always greater than Td.  The relationship between Tw and Ts has seen little attention in the 

literature. 

Andreas [1986] supported his hypothesis with theoretical analysis, and then demonstrated 

that Ts generally corresponded to Td measurements 10 cm above the snow surface during January 

1984 at a field site in Michigan.  His theoretical analysis showed Td is representative of Ts during 

periods with enhanced mixing (i.e., high wind speed) or when the near-surface vapor pressure 

gradient weakens (e.g., when eair comes into equilibrium with esat(Ts)).  Based on his field 

measurements, he found that approximation of Ts with Td was accurate to ±1 °C.  However, he 

found that Ts was higher than Td during sunny periods and assumed that solar heating had biased 

the infrared pyrometer that measured Ts.  Andreas et al. [2002] assessed the relationship between 

saturation temperatures and other components of the cryosphere, including polar sea ice.  They 

found that air was close to saturation with respect to ice during all months, and these 

temperatures differed from ice surface temperatures by less than 1.6 °C. 
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  To date, the results of Andreas [1986] have seen limited application in snow hydrology 

research, perhaps because Td measurements are rarely taken close to the snow surface [Marks et 

al., 1992].  Temperature sensors and hygrometers are typically installed at a standard height 2 m 

to 4 m above the ground surface at a climate station, with the height above the snow surface 

varying as the snow depth fluctuates with accumulation, wind scour/deposition, compaction, 

sublimation, and melt processes.  Therefore, it remains unknown how saturation temperatures at 

standard height relate to Ts, how these relationships vary with climate and local conditions (i.e., 

boundary layer stability and radiation), and whether they improve Ts approximation over 

traditional methods.  Furthermore, the relationship of Ts to saturation temperatures is uncertain 

during snowmelt periods, as the January experiment of [Andreas, 1986] was generally limited to 

Ts below -5 °C. 

  The purpose of this paper is to test representations of Ts with standard height 

measurements across a more complete range of seasonally-snow-covered environments, 

climates, and seasons.  We specifically address four key questions: (1) How do measurements of 

Ts compare to standard height dry bulb (i.e., air) temperature (Ta), wet-bulb temperature (Tw), and 

dew point temperature (Td)?  (2) How well does standard height Td represent Ts across different 

climates and seasons?  (3) How well does Td approximate Ts with variations in atmospheric 

conditions (i.e., radiation and stability)?  We address the above questions using measurements at 

seven sites located across North America and Europe.  To illustrate the relevance of these results 

to model calibration and validation, we also compared Td measurements with those simulated by 

a physically-based snow model [SNTHERM; Jordan, 1991] for both cases of best-available 

forcing data and of biased radiative energy balance forcing. 

 

4.2 Sites and Data 
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We selected study sites in both wet and dry climates that featured all surface observations 

required to test and compare the Ts approximations (Table 4.1, Figure 4.1).  Météo-France 

provided an 18-year dataset from the Col de Porte site (CDP) in a subalpine maritime 

environment [Morin et al., 2012].  The United States Army Corps of Engineers Cold Regions 

Research and Engineering Laboratory (CRREL) provided data at a low elevation, moist 

continental site (South Royalton Vermont, SRV) [Peck and Fiori, 1992].  The IP3 (Improved 

Processes and Parameterizations for Prediction in Cold Regions) Research Network 

(http://www.usask.ca/ip3/) provided data from stations in a wet alpine environment (Opabin, 

OPB) [Hood and Hayashi, 2010] and a subarctic bog in the zone of discontinuous permafrost 

(Scotty Bog, BOG) [Williams et al., 2013].  The University of Calgary provided data from a cold 

grassland prairie (Spy Hill, SPY) [Mohammed et al., 2013].  The Center for Snow and 

Avalanche Studies (http://www.snowstudies.org) provided data from paired weather stations in a 

dry continental climate (Colorado, USA), including a subalpine site (Swamp Angel Study Plot, 

SASP) and an alpine site (Senator Beck Study Plot, SBSP) [CSAS, 2012].  Although SASP and 

SBSP were located in the same climate, they provided insights into windy (SBSP) vs. sheltered 

(SASP) locations.  Mean winter (DJF) temperatures at the sites ranged from -0.90 to -22 °C 

(Table 4.1). 

 The study period depended on data availability at each site, and ranged from one to 18 

snow years (Table 4.1).  All sites recorded 30-min or hourly measurements of air temperature, 

humidity, wind speed, snow depth, downwelling shortwave and longwave radiation, and either 

infrared-measured Ts or upwelling longwave radiation (i.e., from the downward-pointing 

pyrgeometer on a net radiometer).  The meteorological measurements were made at a fixed 
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height above the ground at all sites except for CDP, where operators adjusted the instrument 

heights weekly to maintain a consistent height above the snow surface [Morin et al., 2012]. 

Upwelling longwave radiation was converted to Ts using the Stefan-Boltzmann equation 

with snow thermal emissivity (ε) equal to 1, for consistency with the published dataset at CDP 

[Morin et al., 2012].  However, we note that ε may be as low as 0.97 [Kondo and Yamazawa, 

1986], in which case reflected longwave radiation must be considered when calculating Ts from 

upwelling longwave data.  We checked the impact of ε selection at the four sites with 

pyrgeometers, and found that the mean difference between Ts(ε=1) and Ts(ε=0.97) was 0.2 °C, 

and therefore our selection of ε=1 did not significantly alter the results of the study.  At CDP, Ts 

was measured directly with an infrared thermometer and indirectly with a downward-pointing 

pyrgeometer; only the colder Ts measurement was reported each hour in the dataset published by 

Morin et al. [2012].  Infrared measurements of Ts were available during two winters to check the 

pyrgeometer measurements at BOG, and we found that the mean difference in the two sensors 

was ±2 °C in the -30 °C to 0 °C range, but larger differences were present when the temperature 

was below -30 °C.  This test provided confidence that the type of sensor (infrared sensor vs. 

pyrgeometer) did not significantly bias the results of the study.  However, due to site-to-site 

differences in sensor field of view, we qualitatively considered the impact of sensor type when 

interpreting the results of the study.  A full assessment of the relative uncertainties of these 

different sensors was outside the scope of the study.  Based on manufacturer’s specifications, 

both types of sensors had temperature-dependent uncertainties in measured Ts (Table 4.1). 

Only Ts measurements in the -50 °C to 0 °C range were considered in the analysis.  Ts 

observations exceeding 0 °C with snow cover present were manually set to the physical limit of 

0 °C.  Averaged across the sites, these cases represented 4.6% of observations, but 19% of 
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observations at CDP exceeded 0 °C (but all were less than 2 °C).  These erroneous values may 

occur due to calibration errors, radiative heating errors, or when non-snow surfaces (e.g., 

vegetation, bare ground) are located in the field of view of the infrared thermometer or 

pyrgeometer.  We further constrained the analysis to periods when measured snow depth 

exceeded 10 cm to minimize impacts from herbaceous vegetation protruding out of the snow.  

Debris on the snow surface may also alter the radiometric properties of the snow, and thus 

presents additional uncertainty in the Ts measurements.  This was relevant at CDP where tree 

litter and atmospheric dust have been documented [Etchevers et al., 2004], and at SASP and 

SBSP where dust deposition on the snow surface is common [Painter et al., 2007]. 

 

4.3 Calculation of meteorological variables and conditions 

 4.3.1 Wet-bulb temperature (Tw) 

The wet-bulb temperature (Tw) is the temperature that an air parcel would reach if cooled 

to saturation at constant pressure through evaporation of water into the parcel, where the parcel 

provides the latent heat for evaporation.  When temperature is below the freezing point, the wet-

bulb is sometimes referred to as the ice-bulb temperature.  Tw can be measured in the field with a 

sling psychrometer, but these measurements were not made at the sites.  In the absence of such 

measurements, Tw is commonly estimated with psychrometric charts or iterative numerical based 

on temperature, humidity, and atmospheric pressure (Patm).  To estimate Tw, we used the iterative 

solution described by Iribarne and Godson [1981], a common tool that is used both operationally 

(e.g., in the Advanced Weather Interactive Processing System of the US National Weather 

Service) and in research models (e.g., the Distributed Hydrology Soil Vegetation Model, 

[Wigmosta et al., 1994]).  Patm was estimated at a constant value using an empirical relationship 

between elevation and pressure at each site, except at CDP and SASP where hourly Patm 
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measurements were available.  Using observations at CDP and SASP, we tested the assumption 

of temporally constant Patm vs. hourly Patm for estimating Tw, and found a maximum difference of 

0.3 °C between the two approaches.  Thus, assuming temporally constant Patm introduced little 

error into Tw estimation. 

 

 4.3.2 Dew point temperature (Td) 

Td is defined as the temperature that an air parcel would reach if cooled to saturation with 

respect to water at constant pressure without changes in moisture content.  The frost point 

temperature is analogous to Td, except saturation is considered with respect to an ice surface 

instead of water.  For simplicity, we refer to both as Td, but note that we are actually calculating 

frost point when Ta ≤ 0 °C and the dew point when Ta > 0 °C.  Here we assume that there is no 

freezing-point depression for liquid water, and that the water vapor and snow have no impurities.  

For an unsaturated air parcel, Td is lower than the other standard temperatures, where Td < Tw < 

Ta.  For a saturated air parcel (i.e., e=esat), Td = Tw = Ta.  The difference between Ta and Td is 

called the dew point depression, which is a measure of air saturation. 

Td can be measured with a variety of hygrometers (e.g., capacitive, resistive, chilled 

mirror), but often saturation state or moisture content is instead reported as relative humidity 

(RH) or specific humidity in published datasets.  We therefore used a Magnus-Tetens approach 

[Murray, 1967] to calculate Td (°C) as a function of Ta (°C) and fractional RH at each time step: 
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Alduchov and Eskridge [1996] provide different coefficients for Equation 4.1 depending on 

whether saturation is taken with respect to water (esat,w) or with respect to ice (esat,i).  When Ta > 
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0 °C we use the esat,w coefficients b = 17.625 and c = 243.04 °C, and when Ta ≤ 0 °C we use the 

esat,i coefficients b = 22.587 and c = 273.86 °C.  Relative to other common approximations, 

maximum relative error with this approach is 0.384% for calculating vapor pressure  [Alduchov 

and Eskridge, 1996].  This maximum error in esat translates to a maximum error of 0.1°C in Td.  

Thus, uncertainty in Td arises primarily from uncertainties in measured Ta and RH. 

 

 4.3.3 Boundary layer stability 

We hypothesize that atmospheric stability plays a role in the representation of Ts with the 

standard height temperatures (i.e., Ta, Tw, Td).  Andreas [1986] suggested this relationship by 

considering how increasing wind speed and sensible heat flux impact the difference between Ts 

with Td, but atmospheric stability was not directly considered.  We expect that the standard 

height Td best represents Ts during unstable conditions when turbulent mixing reduces 

temperature stratification.  During stable conditions, Td at standard height should become 

decoupled from Ts.   

To characterize boundary layer stability, we calculated the bulk Richardson number (Rib) 

[Singh and Frevert, 2002] at each time step: 
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where g is gravitational acceleration (m s-2), z is the height of the temperature sensor above the 

snow surface (m), temperature values are in Kelvin, and U(z) is wind speed (m s-1) at height z.  

Because wind speed was not measured at the same height as temperature at every study site 

(Table 4.1), we rescaled the measured wind speed (Uobs) to the height z at each time step 

assuming a power law wind profile: 
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where zu is the height of the wind speed measurement (m) and α is 1/7, an average value assumed 

when the wind profile is unknown [Peterson and Hennessey, 1978]. 

The Richardson number compares buoyancy suppression of turbulence against turbulence 

generation to characterize stability conditions.  Based on previous studies, a critical Richardson 

number in the 0.15 to 0.25 range separates unstable and stable conditions, with unstable (stable) 

conditions prevailing below (above) the critical value.  We assume that the critical number is 

0.20 at the study sites, but note that there is disagreement about the critical number over snow 

[for a discussion, see Andreas, 2002].  We note that many physically-based models [e.g., Jordan, 

1991] implement a correction based on Rib when computing turbulent fluxes. 

 

 4.3.4 Radiative heating and clearness index 

Because incoming radiation is the primary energy source for heating and melting a 

snowpack in many climates, it is important to consider how radiative heating impacts Ts and 

approximations thereof.  Solar heating of instruments may also bias measurements of Ts 

[Andreas, 1986] and standard height temperature [Huwald et al., 2009].  Incoming shortwave 

and longwave radiation vary with slope, elevation, time of day, time of year, forest cover, and 

cloud cover.  For simplicity, we only consider how radiation changes in time and with sky 

conditions (i.e., clearness vs. cloudiness).  To approximate sky conditions, we calculated a 

dimensionless clearness index (CI) at each time step: 

potsi
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Q
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,

,
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where 0≤CI≤1, Qsi,obs is measured incoming shortwave radiation (W m-2) and Qsi,pot is potential 

(i.e. clear sky) incoming shortwave radiation (W m-2).  Qsi,obs was observed at all sites, however, 

we used the SBSP observations at SASP because of the tendency for the radiometer dome to 

become snow covered at SASP where it is less windy than SBSP.  Qsi,pot was calculated as a 

function of time of day, time of year, latitude, humidity, temperature, and elevation according to 

the equations of Crawford and Duchon [1999].  Equation 4.4 does not yield valid CI during the 

night, so we linearly interpolate between sunset and the following sunrise to approximate 

nighttime values of CI.  High values of CI indicate sunny conditions during the day, and surface 

cooling at night.  We assume clear sky conditions prevail when CI>0.5 and cloudy conditions 

prevail when CI<0.5.  No adjustments were made for shading in Qsi,pot, however we acknowledge 

that topographic shading is a significant issue in complex terrain [Duguay, 1993].  Because CI 

was only used to classify cloudy vs. clear sky conditions, we expected minimal impact in the CI 

analysis from topographic shading.  At sites and times of the year where topographic shading 

was important, this effect was similar to cloudy conditions near sunrise or sunset. 

 

4.4 Physically-based snow modeling experiment 

To illustrate how improved approximation of Ts might benefit snow modeling studies, we 

considered how biases in the energy balance of a physically-based snow model become 

manifested in Ts and whether Td can be used to detect the bias.  This was a relevant application, 

as data are rarely available to validate the energy balance or Ts in snowmelt modeling studies.  

We selected the 1-dimensional, multi-layer Snow Thermal Model (SNTHERM) [Jordan, 1991] 

for the physically-based simulation of Ts at the CDP site during water year 2006.  SNTHERM 

was developed specifically for the prediction of Ts based on energy exchanges at the snow-

atmosphere interface and is regarded as one of the more sophisticated and reliable snow models 
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available [Etchevers et al., 2004].  SNTHERM simulates various snowpack processes, including 

snow accumulation, frost development, compaction, metamorphosis, grain growth, sublimation, 

and snowmelt. Watson et al. [2006] argued that SNTHERM is the “benchmark model” for 

physically-based simulation of snowmelt processes, though the model complexity has limited its 

application in distributed modeling problems. 

SNTHERM simulates snowpack development by dividing new snowfall into horizontally 

infinite layers.  The governing equations for energy and mass balance are applied between these 

layers, with the meteorological conditions applied at the upper (i.e., snow-atmosphere) boundary 

and steady state conditions assumed at the lower (i.e., snow-soil) boundary.  An iterative 

numerical solution yields estimates of Ts, and layer specific states for thickness, density, 

temperature, and phase.  Iterative solution of Ts from the energy balance is possible because 

multiple processes are functions of Ts, including outgoing longwave radiation, sensible heat, 

latent heat, and heat conduction into the snowpack [Jordan, 1991; Liston and Elder, 2006; 

Tarboton and Luce, 1996].  Physically-based, iterative approaches for estimating Ts have 

disadvantages in that they require accurate forcing data for the other components of the energy 

balance [Pomeroy et al., 1998] and they can be computationally expensive to reach convergence 

[Wigmosta et al., 1994].  Despite being physically-based, some parameters in these models 

require calibration (e.g., thermal conductivity) [Essery and Etchevers, 2004; Tarboton and Luce, 

1996], which yields additional uncertainties in modeled Ts and the surface energy balance. 

 To understand the relationship between energy balance bias and Ts bias, we simulated 

snowpack with SNTHERM with a control simulation and with biased forcing data scenarios.  

For the control simulation, we used local observations (i.e., Ta, RH, wind speed, incoming 

shortwave radiation, outgoing shortwave radiation, and incoming longwave radiation) to drive 
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the model and compared modeled and observed values of Ts.  This provided a benchmark for 

understanding the accuracy of modeled Ts under an ideal driving data scenario.  We also 

compared Td and Ts for reference.  We then continued the experiment by introducing artificial 

biases in the incoming radiation data, ranging from -15% to +15%, and then modeled Ts with 

SNTHERM with these biased datasets.  These scenarios with biased radiation resembled the 

reality of snowmelt modeling in a data sparse environment, as biases in model data and/or model 

structure can propagate to model outputs (e.g. Ts, SWE) in ways that are not easily detected.  We 

then compared the Ts simulations generated with biased model data against both measured Ts and 

Td to determine whether these yielded similar relationships.  Finally, we compared the artificial 

energy balance biases against the mean difference between modeled Ts and Td, to determine 

whether Td could be used to detect bias in a snowmelt model.  All temperature values were 

aggregated from hourly to daily mean values in this modeling experiment for simplicity. 

 

4.5 Results and discussion 

 4.5.1 Comparing Ts with standard height temperatures 

Sub-daily comparisons of the standard height temperatures (Ta, Tw, and Td) and observed 

Ts are presented in Figures 2 and 3.  We summarize the results with three performance metrics 

(i.e., R2, bias, root mean squared error (RMSE)), assuming each has unique implications for 

different applications.  The comparisons showed that despite reasonable correlation between Ta 

and Ts, Ta was consistently higher than Ts, and the magnitude of this bias was inconsistent 

between sites (Figure 4.2a-g, Figure 4.3b).  Averaged across the sites, Ta > Ts in 95% of 

measurements.  For Ta, we also considered lagged correlations with Ts, but found that the 

greatest correlation was with no lag at four of the seven sites. 
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Like Ta, Tw also exhibited a consistent warm bias (Figure 4.3b), although this bias 

decreased with increasing Ts (Figure 4.2h-n).  Despite this warm bias, Tw had the strongest 

correlation with Ts at all seven sites (Figure 4.3a).  The correlation improved slightly at only two 

of the seven sites when a lag correlation was attempted (no figure.shown). 

Of the three standard height temperature variables, Td had the lowest absolute bias and 

RMSE when approximating Ts (Figures 3b, 3c), but underestimated Ts more frequently than Ta 

and Tw at warmer Ts (Figure 4.2o-u) and did not have stronger correlations with Ts than Tw had 

with Ts (Figure 4.3a).  When approximating Ts with standard height Td, the bias ranged from -2.2 

°C to +2.6 °C.  This error range was larger than the ±1 °C accuracy reported by Andreas [1986] 

when using 10 cm height Td.  However, at four of the study sites (SPY, SASP, OPB, BOG), the 

bias ranged from -1.0 °C to 0.0 °C, well within the range of Andreas [1986].  Thus, climate and 

environmental conditions may have played as large of a role in the bias as the measurement 

heights of Td.  These results were not linked to the type of instrument used to measure Ts. 

In approximating daily maxima and minima of Ts, the saturation temperatures (i.e., Tw and 

Td) provided improved representation over Ta (Figure 4.4).  At all sites, Ta overestimated daily 

maxima and minima of Ts.  At five of the seven sites, maximum daily Ts values were typically 

between Tw and Td (Figure 4.4a).  Both Tw and Td overestimated minimum daily Ts at all sites, 

except at SBSP where Td underestimated minimum daily Ts (Figure 4.4b).  Daily minimum Ts 

was typically colder than standard height Td, suggesting that stable conditions at night decoupled 

standard height Td and Ts (see section 4.5c). 

The results indicate that to first order, Td represents average and minimum daily Ts with 

the least bias, and that the saturation temperatures (Tw and Td) characterize maximum daily Ts 

more accurately than Ta.  None of the standard height temperatures captured both the daily 
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maxima and minima of Ts because their diurnal ranges tended to be much lower than the Ts 

diurnal range (Table 4.2).  Bias in maximum daily Ts might thus be reduced using both Tw and Td 

as predictors, but development of such a method was outside the scope of this study. 

These comparisons demonstrated the inherent difficulty in empirically estimating Ts based 

on Ta across different climates.  Methods of estimating Ts based on a static offset from Ta attempt 

to correct the estimation bias, which ranged from +3.2 °C to +6.8 °C at the seven study sites.  

However, the bias cannot be known a priori, and can vary from published values even within a 

single climatic zone.  For example, Brubaker et al. [1996] found that Ta was typically +2.5 °C 

higher than Ts at a site in Vermont, USA, but our data in Vermont (SRV) suggests the difference 

is +6.8 °C.  Using the 2.5 °C offset, a bias of 4.3 °C would remain, exceeding the 2.6 °C bias 

found from assuming that Td approximated Ts.  We therefore expect methods that estimate Ts 

based on an offset from Ta have limited usefulness because their transferability is questionable. 

 

 4.5.2 Variation of results with climate and season 

To characterize how the standard height approximations of Ts varied with climate, we 

tested correlations between daily RMSE statistics and six predictors (elevation, latitude, mean 

winter temperature, mean annual shortwave radiation, mean dew point depression, and mean 

wind speed).  The only significant correlation between these predictors was between elevation 

and mean annual shortwave radiation (p=0.036) and between elevation and mean dew point 

depression (p=0.023).  Mean winter temperature was not significantly correlated (p=0.14) with 

latitude, due to the variety of elevations and climates represented by the sites.   

When testing correlations between the six predictors and RMSE, we only found 

significant relationships between maximum daily Ts RMSE and shortwave radiation and dew 

point depression, and between mean daily Ts RMSE and latitude (Figure 4.5).  When 
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approximating maximum daily Ts with Td , RMSE significantly increased (r=0.827, p=0.022) 

with increasing shortwave radiation (i.e., sunnier conditions,) and significantly increased 

(r=0.823, p=0.023) with increasing dew point depression (i.e., drier conditions).  These 

predictors suggested that climatic conditions impacted the approximation of Ts with Td.  

Specifically, sites with more solar radiation and drier conditions tended to have more variable 

differences between Ts and Td.  RMSE of mean daily Ts declined with increasing latitude, and 

this was statistically significant for Ta (p=0.022) and Td (p=0.004), but not for Tw.  The 

relationship between latitude and RMSE was strongest (r=-0.913) when using Td to approximate 

mean daily Ts (Figure 4.5d). 

We also examined temperature variations with respect to time of day and season by 

averaging across all hours with snow (i.e., depth > 10 cm) in January and April (Figure 4.6).  

During the nighttime hours, Td generally provided the best approximation of Ts, although Td was 

typically higher than Ts by several degrees at three sites (CDP, SRV, SASP) where stable 

conditions prevailed (see section 4.5c).  This relationship did not appear linked to the instrument 

used to measure Ts, as Ts was measured with an infrared sensor at SASP, with a pyrgeometer at 

SRV, and with both types of instruments at CDP.  During the daytime hours, Td was generally 

lower than Ts at all sites except CDP and SRV.  At CDP and SRV, radiative heating raised Ts 

close to Td during midday, offsetting the nighttime positive bias of Td.  This effect was consistent 

in both winter (Figure 4.6a, c) and spring (Figure 4.6b, d).  At the other sites, however, the 

daytime difference between Ts and Td was more pronounced in April than in January (Figure 

4.6), which provided additional evidence that radiative heating from increasing insolation caused 

Ts observations to rise rapidly.  These results suggest that diurnal variations in stability and 

radiation, and seasonal variations in radiation impact how well standard height temperatures 
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represent Ts.  Andreas [1986] conducted his experiment in January, but our multi-year results 

suggest that larger midday differences between Ts and Td are found during times of the year with 

increased insolation.  Stability and radiation are considered more in depth in the next section. 

 

 4.5.3 Impacts of stability and radiation 

Because radiation interacts with boundary layer stability, it is difficult to completely 

distinguish their independent effects.  We used a compositing approach to examine how each of 

these factors contributed to bias when approximating Ts with standard height Td.  To assess how 

stability impacts the approximation, we first calculated the difference between Ts and Td and 

binned the results using the critical Rib as a classifier (Figure 4.7).  Relative to unstable 

conditions, the difference between Td and Ts tended to increase during stable conditions, such 

that Ts was generally lower than Td.  Such a cooling effect may arise at night due to surface 

cooling at night or during the day due to shallow stable layer formation over melting snow cover 

[Halberstam and Schieldge, 1981; Mahrt and Vickers, 2005].  Median Td – Ts was closest to 0 °C 

during unstable conditions at five of the sites with statistical significance (95% level, rank sum 

test). 

Averaging the hourly bias at each site provided further clarification on how radiation and 

stability each affected approximations of Ts with Td (Figure 4.8).  Clear sky periods generally had 

Ts < Td at night and Ts > Td during the day (Figure 4.8a).  Cloudy periods had similar differences 

between Ts and Td at night, but smaller differences between Ts and Td during the day.  The 

midday underestimation bias was a persistent feature at most of the sites.  Stable periods 

decoupled Ts and Td at night, such that Ts was 3.0 °C lower than Td when averaged across 

nighttime hours and across all sites (Figure 4.8b).  In contrast, Ts measurements were typically 

higher than Td by 0.5 °C or less during unstable periods at night.  Regardless of stability 
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conditions, the effect of radiative heating caused Ts > Td during the daytime hours.  When 

considering stability and radiation conditions together (Figure 4.8c), we found that cloudy and 

unstable periods had the lowest bias through the day.  The midday bias was most reduced during 

cloudy and stable periods, but this was the result of offsetting effects from surface cooling (due 

to stable conditions) and surface heating (due to radiation).  As noted previously, CDP exhibited 

this type of counteractive response due to stable and cloudy conditions. 

The frequency of stable conditions and clear skies helped explain why approximating Ts 

with standard height Td was more reliable at some sites and less reliable at others (Figure 4.9).  

Bias in approximating Ts with Td at midday was not significantly related to the frequency of 

stable conditions (Figure 4.9a), but was significantly (p=0.006) related to the frequency of clear 

sky conditions (Figure 4.9b).  At midnight, bias in the approximation was significantly related to 

both stability frequency (Figure 4.9c, p=0.009) and clear sky frequency (Figure 4.9d, p=0.044).  

However, we note there was uncertainty in clear conditions at night, as the clearness index was 

estimated from daytime measured solar radiation.  The midnight bias was closer to 0 °C at sites 

where stable conditions were less frequent.  In considering daily bias (Figure 4.3b), relationships 

with stability and clear sky frequencies were significant (p<0.05, Figure 4.9e-f).  Figure 4.9e-f 

suggests that an optimal range of stability and clear sky conditions may exist for which Td 

provides a reasonable approximation of Ts.  However, low bias in daily average Ts does not 

imply low bias in extreme daily values or hourly values of Ts.  For example, SASP had low bias 

in daily average Ts, but this was the result of compensating errors in midday underestimation bias 

and nighttime overestimation bias (Figure 4.6g). 

Andreas [1986] originally found that Td was lower than Ts on sunny days, but assumed 

that solar heating biased the infrared sensor that he used to measure Ts.  Radiative heating 
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presents a source of uncertainty in the Ts measurements of our study and may explain some of 

the midday bias in approximating Ts with Td.  However, we also note that snow has been shown 

to exhibit remarkable fluctuations in temperature over sub-daily time scales in response to 

fluctuations in energy.  In a controlled laboratory experiment, Shea and Jamieson [2011] 

documented that for a moderately dense snowpack (i.e., 270 kg m-3), Ts increased 14 °C in 

response to 3 minutes of 175 W of infrared heating, and cooled back to the original temperature 

minutes after the heat source was removed.  The field observations of Wagner and Horel [2011] 

also showed that Ts can exhibit large diurnal fluctuations, with temperature increasing from -17 

°C to -0.3 °C over a six hour period.  Our temperature data (Table 4.2) indicated that daily ranges 

of Ts were within these carefully measured values, and therefore we cannot attribute all of the 

midday bias to solar heating of the Ts sensors.  With the available data, we could not distinguish 

Ts measurement errors from actual increases in Ts.  However, simulations with the physically-

based SNTHERM model indicated that these midday fluctuations were plausible, supporting the 

hypothesis that the observed increases in Ts were not the result of sensor heating (no figures 

shown). 

 

 4.5.4 Case study: comparisons with SNTHERM 

The SNTHERM control simulation (i.e., all forcing data available) accurately represented 

Ts at CDP in water year 2006, with R2 = 0.97, bias = +0.74 °C, and RMSE = 1.14 °C for mean 

daily Ts (Figure 4.10a).  The control simulation tended to overestimate Ts mostly at colder 

temperatures but matched Ts better as the snow warmed to the melting point.  These results 

demonstrated that the sophisticated snow model produced realistic simulations of Ts under an 

ideal data input scenario.  For reference, the simple approximation of Ts with Td yielded a 

similar bias in Ts (bias = +1.02 °C), although this Td approximation had higher variability (R2 = 
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0.75 and RMSE = 2.7 °C), especially at colder temperatures (Figure 4.10b).  While the accuracy 

of the Td approximation was lower than the snow model, it was accomplished with fewer data 

inputs (i.e., only temperature and humidity).  The biases of both approaches were comparable to 

the highest accuracy (±0.7 °C) obtained with multiple snow models in the snow model 

intercomparison project [SnowMIP, Etchevers et al., 2004].  The RMSE of the Td 

approximation was also within the range (0.7-3 °C) for most models in SnowMIP. 

The artificial biases introduced in the energy balance were directly correlated with the 

resulting bias in Ts, such that underestimation (overestimation) biases in the energy balance 

yielded underestimation (overestimation) biases in Ts (Figure 4.10c,e).  Interestingly, similar 

biases were observed when comparing modeled Ts to observed Ts and Td in the -10% energy 

bias case (Figure 4.10c-d), and when comparing modeled Ts to observed Ts and Td in the +10% 

energy bias case (Figure 4.10e-f).  In fact, the bias in the energy balance was strongly correlated 

(p<0.001) with the mean difference between modeled Ts and Td (Figure 4.10g).  Because Td was 

shown to be a reasonable surrogate for Ts for daily averages (Figure 4.3b), the implication is 

that Td has potential use as a diagnostic tool for detecting bias when simulating snowpack with a 

physically-based model.  Specifically, our results suggest that large differences (i.e., exceeding 

2 °C) between modeled Ts and Td indicate the presence of bias in the energy balance (±10% or 

greater).  Although this does not reveal the source of the bias (e.g., model structure, parameters, 

process representation, driving data), it provides a previously unrealized method for assessing 

bulk model performance.  More work is needed to develop this methodology, but the results 

from this example show promise for model calibration and testing. 

 

4.6 Summary and conclusions 
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In this study, we assessed how standard near-surface measurements of temperature and 

humidity (Ta, Tw, Td) compared to measured values of Ts.  We examined how climate, 

seasonality, time of day, boundary layer stability and radiation impacted Ts representation.  We 

further compared Ts approximations based on Td against Ts simulations from a physically-based, 

energy balance snowmelt model (SNTHERM), and demonstrated that Td can be used to detect 

bias in the modeled snowpack energy balance .  The goal was to provide a practical extension of 

the work of Andreas [1986] in order to understand how well standard height dew point 

temperature approximates Ts over a wider range of climates, seasons, and environmental 

conditions.  The results demonstrated that the standard height saturation temperatures (Tw and Td) 

represented Ts more accurately than Ta (Figures 2-4).  Averaged across all samples, Td yielded 

biases closer to 0 °C and the lowest RMSE.  RMSE decreased with latitude and increased with 

shortwave radiation and dew point depression (Figures 5).  However, Td tended to be lower than 

maximum daily Ts and (at most sites) higher than minimum daily Ts (Figure 4.6).  Biases were 

related to the frequency of stability and radiation conditions, and these effects varied with time of 

day and the frequency of those conditions (Figures 7-9).  Results from a case study at CDP in 

water year 2006 showed that representing Ts with Td is a potential tool for diagnosing forcing 

data bias in an energy balance model (Figure 4.10). 

We therefore conclude that Td at standard height is a reasonable first-order approximation 

of daily average Ts in many environments, and that it is preferred over approaches that track Ta.  

Results from our modeling experiment strongly indicate that comparing mean daily Td to model 

estimates of mean daily Ts across the snow season has significant value for assessing model 

performance in mountainous areas, where validation data are rarely found at the location of 

interest.  It was beyond the scope of this study to test this model diagnostic tool, and future work 
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should develop the method further.  However, we expect that approximating Ts with Td is most 

robust at locations where turbulent mixing occurs frequently (e.g., alpine areas, windy ridges) 

and in climates where insolation is low.  Due to a lack of measurements in forested sites, we 

cannot comment on the accuracy of this approximation under forest canopies where turbulence 

and radiation dynamics are altered due to wind sheltering and canopy shading of solar radiation.   

While Td approximates Ts well for daily averages, we note that there are a few caveats.  

First, we note that errors were more variable for hourly values than for daily averages, and that 

none of the standard temperatures captured the daily extremes in Ts (Figure 4.4, Table 4.2).  This 

will impact different applications and the user must consider whether accuracy in hourly Ts 

values is a priority for their particular application.  Differences between Ts and Td were largest at 

midday, especially at sites that experience increased radiative heating (Figure 4.9).  This suggests 

that the vapor pressure of air at standard height is not in equilibrium with vapor pressure at the 

snow surface during sunny conditions, signifying a potential increase in the magnitude of latent 

heat flux.  Future work should investigate how to improve upon these findings, such that the 

maxima and minima in Ts are captured.  Second, we recognize that there is no vapor pressure 

gradient when Ts is assumed equal to Td (i.e., eair – esurf = 0).  Because radiation dominates the 

snowmelt energy balance in many climates, we do not expect this to be a major limitation for 

many applications.  However, in settings where latent heat exchange is important, we caution the 

use of this simple approximation.  Finally, we acknowledge that uncertainties in measured Ts 

may be large (Table 4.1), and our analysis assumed that Ts was measured accurately with the 

infrared sensors and pyrgeometers.  Using paired sensors at BOG, we found reasonable 

correspondence between paired infrared sensor measurements and pyrgeometer measurements.  

Likewise, we did not find a substantial relationship between sensor type and Ts representation 
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across the sites (e.g., Figure 4.5, 9).  Thus, instrument type did not significantly impact our 

results, but we recommend more research in how these instruments might influence 

interpretation of Ts.  Sites that measure the energy balance rarely have both types of sensors, and 

it would be helpful to have more paired measurements to better understand uncertainties in 

measured Ts. 

This study highlights the value in having improved temperature and humidity information 

in mountainous areas and provides motivation for expanded monitoring and improved 

understanding of humidity variations.  This adds to the recent results of Marks et al. [2013], who 

found that the timing of Td = 0 °C matched the measured timing of the precipitation phase 

transition (rain vs. snow) better than Tw = 0 °C and Ta = 0 °C during a winter storm in the 

Owyhee Mountains (Idaho, USA).  Harder and Pomeroy [2013] found that wet-bulb temperature 

was a better predictor of precipitation phase than Ta in the Canadian Rockies.  Thus, 

understanding spatial and temporal variations in both air temperature and humidity may yield 

improved representation of both Ts and event-scale precipitation phase across a watershed.  

Humidity variations can be monitored in a location of interest using networks of inexpensive 

thermometers and hygrometers [Feld et al., 2013], which can be obtained at a fraction of the cost 

of an infrared thermometer or pyrgeometer and are easier to maintain.  These inexpensive 

sensors can also yield reliable information about variations in temperature [Lundquist and 

Cayan, 2007] and snow covered area [e.g., Raleigh et al., 2013c] within a basin to test modeling 

and remote sensing.  More routine humidity observations in standard networks (e.g. NRCS 

SNOTEL in the US) would also advance knowledge of humidity variations. 

 Improved spatial and temporal information of Td would be beneficial for a number of 

applications with remote sensing and distributed snow models that are related to Ts.  For 
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validation purposes, remotely sensed Ts products from MODIS [Wan and Li, 1997] could be 

compared to spatial estimates of Td, especially at night when Td reasonably approximates Ts at 

many locations (Figure 4.6).  Spatial distributions of Td might also be used to downscale coarse 

scale Ts from MODIS to finer spatial resolutions.  Finally, while we illustrated how Td might 

serve as a diagnostic tool for checking daily averages of modeled Ts, we note that Td might be 

used as a reasonable prognostic representation of Ts (Figure 4.10a-b) for distributed modeling of 

the daily snowmelt energy balance across a mountainous catchment. 
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4.7 Tables 

Table 4.1 Site information.  Sites are sorted from warmest to coldest mean winter temperatures 
Characteristics        
Site Name Col de Porte South Royalton Spy Hill Swamp Angel Senator Beck Opabin Scotty Bog 

Acronym CDP SRV SPY SASP SBSP OPB BOG 
Site Climate Subalpine 

Maritime 
Continental 
Moist 

Continental 
Prairie 

Subalpine 
Continental 

Alpine 
Continental 

Moist Subalpine Permafrost 
Wetland 

Mean DJF Ta 
(°C) 

-0.90 -5.5 -6.7 -8.5 -10 -10 -22 

Elevation (m) 1325 150 1268 3371 3719 2230 283 
Latitude (°N) 45.3 43.8 51.2 37.9 37.9 51.3 61.3 
Country France USA Canada USA USA Canada Canada 
Study Period 1993-2011 1991-1993 2006-2011 2003-2012 2005-2012 2006-2009 2008-2009 
Data resolution 1 hr 30 min 30 min 1 hr 1 hr 30 min 30 min 
Sensors         

Ta PT 100/3, PT 
100/4 Wires 

Unknowna Vaisala HMP45 Campbell 
CS500-U 

Campbell 
CS500-U 

Vaisala HMP45 Vaisala HMP45 

Humidity Vaisala HMP35 
Vaisala HMP45 

Unknowna Vaisala HMP45 Campbell 
CS500-U 

Campbell 
CS500-U 

Vaisala HMP45 Vaisala HMP45 

U Chauvin Arnoux 
Tavid 87 

Unknowna RM Young 
05103 

Campbell 
Scientific RM 
Young 

Campbell 
Scientific RM 
Young 

RM Young 
05103 

Met-One 014A 

Ts or LWout 

(accuracy
b
) 

Testo term 
Pyroterm 
(unknown), 
Heitronics KT15 
(±1 °C) 

Net radiometer, 
unknown modela 
 (±3 °C) 

Kipp and Zonen 
CNR1 net 
radiometer 
(±7 °C at 0 °C, 
±6 °C at -35 °C) 

AlpuG SnowSurf 
infrared 
thermometer 
(±0.5 °C at 0 °C, 
±4 °C at -35 °C) 

AlpuG SnowSurf 
infrared 
thermometer 
(±0.5 °C at 0 °C, 
±4 °C at -35 °C) 

Kipp and Zonen 
CNR1 net 
radiometer 
(±7 °C at 0 °C, 
±6 °C at -35 °C) 

Kipp and Zonen 
CNR1 net 
radiometer 
(±7 °C at 0 °C, 
±6 °C at -35 °C) 

Measurement 

heights (m) 

above ground 

       

Ta 1.5c 2.0 1.6 3.4 3.8 1.7 1.9 
Humidity 1.5c 2.0 1.6 3.4 3.8 1.7 1.9 
U 10 2.0 1.9 3.8 4.0 4.4 2.0 
Ts or LWout 1.2c 2.0 1.7 3.2 3.5 1.5 1.5 

a Site was discontinued in 2005 and sensor records were unavailable [Peck, CRREL, 2013, personal communication].  Accuracy was taken from Peck [1994]. 
b Based on manufacturer’s specifications.  For the CNR1, accuracy may be better than this specification [van den Broeke et al., 2004] perhaps as low as ±2 °C. 
c Sensor heights were adjusted weekly to maintain consistent height above snow surface.
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Table 4.2 Mean daily temperature rangesa (°C) at the study sites during periods with snow depth 
exceeding 10 cm. 
 CDP SRV SPY SASP SBSP OPB BOG 
Ts 8.4 15 12 15 11 9.1 15 

Ta 6.2 14 9.2 12 7.8 6.4 14 
Tw 4.6 11 7.8 8.8 6.2 5.1 12 
Td 4.9 9.9 7.5 9.1 10 6.3 11 
a At each site, the largest temperature range is in bold.



 

113 

4.8 Figures 

 

Figure 4.1 Sites used to evaluate snow surface temperature approximations.  Acronyms are 
defined in Table 4.1.  Background colors represent DJF air temperature at standard height 
averaged over 1900-2006 [Legates and Willmott, 1990].
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Figure 4.2 Comparisons between observed sub-daily snow surface temperature (Ts) and standard 
height (a-g) air temperature, (h-n) wet-bulb temperature, and (o-u) dew point temperature at the 
seven study sites.  The sites are organized from warmest (left) mean DJF temperatures to coldest 
(right).  Comparisons are only shown during periods when snow depth exceeded 10 cm.
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Figure 4.3 Summary statistics for approximating sub-daily snow surface temperature with air 
temperature, wet-bulb temperature, and dew point temperature at the seven study sites.



 

116 

 
Figure 4.4 Bias in predicting (a) maximum daily surface temperature (Ts,max) and (b) minimum 
daily surface temperature (Ts,min) using air temperature (Ta), wet-bulb temperature (Tw), and dew 
point temperature (Td) at the seven study sites.  A positive bias indicates overprediction of Ts. 
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Figure 4.5 RMSE in simulating daily statistics of Ts vs. site characteristics.  Shown are RMSE 
values when simulating maximum daily Ts with maximum daily Td vs. (a) mean incoming 
shortwave radiation and (b) mean dew point depression (i.e., Ta – Td).  Also shown are RMSE 
values plotted against latitude when simulating average daily Ts with (c) average daily Ta and (d) 
average daily Td.  Symbols represent the type of sensor used to measure Ts.  Only periods with 
snow depth exceeding 10 cm are included in these statistics.
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Figure 4.6 Comparisons of snow surface temperature, air temperature, wet-bulb temperature, 
and dew point temperature averaged hourly at the seven study sites during (left column) January 
and (right column) April.  Ta, Tw, and Td data are constrained to an upper limit of 0 °C for 
prediction of Ts.
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Figure 4.7 Box plots showing the difference between dew point temperature (Td) and measured 
snow surface temperature (Ts) as a function of the bulk Richardson (Rib) number at the seven 
study sites.  Hours are binned based on unstable (Rib <0.2) and stable (Rib >0.2) conditions.  Td 
data are constrained to an upper limit of 0 °C for prediction of Ts.
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Figure 4.8 Difference between dew point temperature and measured snow surface temperature 
averaged across all seven sites during each hour of the day.  Results are separated based on (a) 
radiation conditions (as defined by the clearness index, CI), (b) stability conditions (based on 
critical bulk Richardson number, Rib), and (c) both radiation and stability conditions.  Td data are 
constrained to an upper limit of 0 °C for prediction of Ts.
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Figure 4.9 Frequency of stability conditions and clear sky conditions vs. mean bias when 
approximating Ts with Td at noon, midnight, and daily.  Td data are constrained to an upper limit 
of 0 °C for prediction of Ts.  Noon is taken as the average from 1100 to 1300 hrs, while midnight 
is taken as the average from 2300 to 0100 hrs.
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Figure 4.10 Modeling experiment results with SNTHERM at CDP in water year 2006.  Shown 
are (a) the control model simulation (no bias introduced in model data), (b) the approximation of 
Ts with Td, (c-d) model simulation with -10% radiation bias with comparisons to observed Ts 
with Td, (e-f) model simulation with +10% radiation bias with comparisons to observed Ts with 
Td, and (g) the relationship between energy balance bias (%) and the mean difference between 
modeled Ts with Td.  Only mean daily values are shown.  The shading in (g) represents the -2.2 
°C to +2.6 °C uncertainty range when approximating observed Ts with Td, as found in this study. 
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Chapter 5 Impacts of forcing data uncertainty and availability on a physically-based snow 

model: the need for improving radiation representation 

 
This chapter is in preparation [Raleigh et al., in prep 2013b] for submission to Water Resources 

Research. 
 

Abstract 

Physically-based snow models can help provide understanding of seasonal snow processes in 
data sparse regions but require additional forcing data (e.g., wind, humidity, radiation) that are 
often unavailable and instead represented with empirical estimates.  Forcing uncertainty 
propagates into model output in ways that cannot be readily understood without ground 
observations, and thus research is needed to understand which forcings require improved 
representation (e.g. through more frequent observation or robust approximation methods).  Here 
we conduct an experiment with a sophisticated 1-D physical model (SNTHERM) at four data-
rich sites in contrasting climates to compare the relative impacts of observed and empirically 
estimated forcings on model output across a range of data availability scenarios (n=128).  The 
goal is to quantify which forcings impact model behavior the most, so as to prioritize which 
measurements (beyond temperature and precipitation) should be made at weather station in 
snow-dominated catchments.  The results showed that model simulations diverged the most 
depending on the source of radiation data (observed vs. estimated).  Therefore, there is a need for 
improved representation and observation of Qsi, Qso, and Qli for realistic simulations of 
snowpack. 
 

5.1 Introduction 

Seasonal snow cover serves as a major water supply [Barnett et al., 2005; Viviroli et al., 

2003], acts as a natural reservoir for hydropower [Madani and Lund, 2009; Winther and Hall, 

1999], impacts ecological activity [Kudo, 1991; Trujillo et al., 2012], and alters weather 

[Hawkins et al., 2002; Jin and Miller, 2007] and climate [Qu and Hall, 2006] through land-

atmosphere feedbacks.  Despite the importance of seasonal snow, weather stations remain scarce 

in cold regions [Hijmans et al., 2005; Lundquist et al., 2003; Viviroli et al., 2011].  Extrapolation 

of available snow measurements is problematic because snow depth exhibits high spatial 

variability due to scale-variant topographic, vegetative, and wind effects [Blöschl, 1999; Deems 

et al., 2006; Scipión et al., 2013; Sturm and Wagner, 2010].  Thus, weather stations provide only 

a glimpse of a larger, more complex natural system.  Given scarce observations and high spatial 
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variability, numerical models are often employed to predict and better understand snow 

distributions and processes.  While physically-based models are useful for this purpose, the 

dearth of meteorological and snow observations limits confidence in modeled snow variables. 

Comprehensive testing of physically-based snow models is often impractical because few 

stations measure all of the forcings required [Bales et al., 2006].  These may include air 

temperature (Tair), precipitation (P), wind speed (U), relative humidity (RH), incoming 

shortwave radiation (Qsi), outgoing shortwave radiation (Qso), and incoming longwave radiation 

(Qli).  Outgoing longwave radiation (Qlo) may also serve as a forcing but is often solved as a 

model state variable in the energy balance [e.g., Essery and Etchevers, 2004; Jordan, 1991].  A 

survey of over 1300 stations that measure snow depth or snow water equivalent (SWE) in the 

western United States shows that Tair and P are most frequently measured (Figure 5.1).  

Radiation components are least frequently measured, even though net radiation dominates the 

snowmelt energy balance in many climates [Male and Granger, 1981; Ohmura, 2001; U.S. Army 

Corps of Engineers, 1956; Zuzel and Cox, 1975].  Thus, when testing a snow model at a typical 

station, only Tair and P are available to force the model, and the other forcings must be estimated.  

This practice injects additional uncertainty into the model and enhances the difficulty of testing 

modeled processes.  This survey neglects measurements of sensible and latent heat fluxes, which 

are even rarer in cold regions but may be important for snowmelt in some locations [e.g., Marks 

et al., 1998]. 

Given the current state of forcing data availability, the primary question driving this 

research is “Which additional forcings, beyond Tair and P, should be measured at a snow station 

to aid in the testing of physically-based snow models?”  This goes beyond an investigation of the 

relative importance of forcings for snow modeling [Zuzel and Cox, 1975], as investments in 
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sensors to measure an important forcing (e.g., Qsi, Qli)  may not be warranted if that forcing can 

be estimated reasonably from other data (e.g., Tair, RH).  Indeed, numerous empirical models 

have been developed for estimating forcings not measured in remote areas (see section 5.5), and 

these are regularly used in mountain climate models [MTCLIM; Hungerford et al., 1989] and 

distributed hydrologic models [VIC, Liang et al., 1994; DHSVM, Wigmosta et al., 1994].  Yet 

there is incomplete knowledge about how uncertainties in these forcings propagate to snow 

model output, as 99% of stations do not measure the complete set of forcings (Figure 5.1).  

Priorities need to be established about which forcings need improved representation. 

The purpose of this study is to assess how forcing data uncertainty, availability, and 

empirical synthesis impact the output of a physically-based snow model in different snow 

climates.  The basic premise is that Tair and P are measured at a hypothetical station at hourly or 

daily resolution (e.g., historic SNOTEL observations are archived as daily), and we wish to 

determine which empirically-estimated forcings, compared to directly-measured forcings, yield 

the most significant changes in snow model output.  By using data observed at four sites that 

measure all forcings required to run and evaluate a physically-based snow model, we are able to 

gain unique insights about model response to forcing uncertainty. 

To address the research question, we assemble 128 different forcing data scenarios at 

each site to correspond to all possible weather stations configurations that could be used to test a 

model that requires seven forcings (Tair, P, U, RH, Qsi, Qso, Qli).  When a hypothetical station 

lacks a specific forcing, we use a single method to estimate the missing forcing.  Selection of this 

method is based on performance in prior studies.  At each hypothetical station, we simulate 

snowpack to reveal the range of model responses to data availability and estimation.  Finally, we 
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quantify the aggregate effect of forcing representation (i.e. observed vs. estimated) on the model 

output uncertainty to understand which forcings need improved representation or observation. 

  We simulate seasonal snowpack with the snow thermal model (SNTHERM) [Jordan, 

1991].  SNTHERM was selected for several reasons: (1) it includes the most important process 

representations  (e.g., snow density, storage and refreezing of liquid water) needed for consistent 

results [Essery et al., 2013], (2) it is sophisticated and has been described as a “benchmark 

model” [Watson et al., 2006], (3) it has been widely tested and has yielded reasonable 

simulations of snowpack properties [Feng et al., 2008; Jin et al., 1999; Rutter et al., 2009], and 

(4) it attempts to be a generalized model that can achieve reasonable accuracy with “no 

calibration” [Melloh, 1999].  We assess how forcing uncertainty impacts modeled SWE, snow 

surface temperature (Tsurf), snowmelt rates, and snow disappearance dates (SDD). 

Because observed forcings are subject to uncertainties due to instrument accuracy and 

measurement errors [e.g., Helgason and Pomeroy, 2012; Huwald et al., 2009; Johnson and 

Marks, 2004; Melloh et al., 2004; Rasmussen et al., 2012], we remain cautious in our 

interpretation of differences between measured and estimated forcings.  While we make 

comparisons between these forcings, we carefully consider what may be concluded from model 

inference.  Under this framework, we do not discount the seemingly bizarre possibility that some 

empirical forcings may yield more “realistic” snow simulations than their measured counterparts.  

When we find large differences in model output for measured vs. empirical forcing cases, we can 

only conclude that those forcings need improved understanding and further research, with 

attention to both possible measurement errors and to the robustness of empirical approaches. 

5.2 Literature review 
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No prior study (to our knowledge) has used data-rich weather stations to examine the 

adequacy of empirical methods for estimating all model forcings in the context of modeling cold 

region processes.  Responses of snow models to forcing data uncertainty have been examined in 

several studies [e.g., Raleigh and Lundquist, 2012; Shamir and Georgakakos, 2006; Slater et al., 

2013].  Walter et al., [2005] suggested that a physical snow model could adequately simulate 

SWE using daily Tair and P, but did not provide guidance about the value of forcing data beyond 

these two forcings.  In other recent studies, there has been considerable interest in comparing and 

evaluating different empirical methods [e.g., Bohn et al., 2013; Feld et al., 2013; Flerchinger et 

al., 2009; Shook and Pomeroy, 2011] to understand comparative accuracy in different climates, 

but with little attention to how these various methods impact snow model output.  No study has 

attempted to understand how uncertainty in all estimated forcings propagates through a snow 

model. 

The most similar studies were conducted by Waichler and Wigmosta [2003] and 

Schnorbus and Alila [2004], where sub-daily forcing data scenarios were generated and used to 

force a distributed model in maritime basins.  These studies provided useful insights into the 

response of a model to a suite of forcing data scenarios, but were confined to a single climate and 

only provided partial understanding of forcing uncertainty due to the lack of key measurements 

(e.g., SWE, Qso, Qli, and Qlo).  Here we aim to fill this research gap with a more comprehensive 

test of forcing uncertainty on snow model behavior across a variety of climates. 

Model forcing is one of several sources of uncertainty when modeling a snowpack.  

Uncertainties in (1) model structure and parameterization and (2) evaluation data (e.g., SWE, 

snow surface temperature) also confound efforts to test the reliability of numerical models [Clark 

and Vrugt, 2006; Essery et al., 2013; Johnson and Marks, 2004; Kavetski et al., 2006; Kuczera et 
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al., 2006].  Considerable attention has been paid to model selection and intercomparison [e.g., 

Boone and Etchevers, 2001; Essery et al., 2012; Etchevers et al., 2004; Feng et al., 2008; Jin et 

al., 1999; Koivusalo and Heikinheimo, 1999; Rutter et al., 2009; Slater et al., 2001].  Whereas 

these comparison studies focus primarily on model uncertainty, we focus exclusively on forcing 

uncertainty and utilize a common model parameter set at all locations.  For the evaluation data, 

we qualitatively consider uncertainty by showing the available snow survey and snow pit data at 

each site. 

Alternative forcing estimation techniques have also been developed and implemented, 

such as geostatistical interpolations (e.g., kriging [Jabot et al., 2012]), output from mesoscale 

weather models [Wayand et al., 2013], and satellite-based estimates of forcings [Forman and 

Margulis, 2009; Ma and Pinker, 2012; Pinker and Laszlo, 1992].  While recognizing these other 

methods, we focus primarily on empirical approaches for forcing estimation due to their 

historical and sustained popularity in distributed hydrologic models. 

5.3 Study sites and observed data 

We selected study sites (Figure 5.2, Table 5.1) across a range of environments to assess 

how results may vary with climate.  The sites ranged in elevation from 930 m to 3370 m, and 

included Imnavait Creek (IC) [Kane et al., 1991; Sturm and Wagner, 2010] in Alaska (USA), 

Col de Porte (CDP) [Morin et al., 2012] in the Rhône-Alpes (France), the Reynolds Mountain 

East (RME) sheltered site [Reba et al., 2011a] in Idaho (USA), and the Swamp Angel Study Plot 

(SASP) [Landry et al., 2013] from the Senator Beck Basin Study Area in Colorado (USA).  All 

sites have sub-daily (i.e., hourly, 30-min, or 15-min) observations of Tair, P, U, RH, Qsi, and Qso.  

All sites except IC recorded measurements of Qli to force the model.  At IC, Qli was taken as the 
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residual from local measurements of net radiation (Qnet) and the other measured radiation 

components: 

( )lososinetli QQQQQ −−−=  (5.1) 

Sensor manufacturers and models are listed in Table 5.1. 

We only retained Qso observations in the 1100 to 1300 hr window, as pyranometers are 

less accurate in the early morning and late afternoon when the sun is lower in the sky and 

shadows are cast in the sensor field-of-view.  Further, measuring Qso under clear sky conditions 

is known to lead to non-negligible measurement errors due to the directional dependence of 

scattered radiation off rough or sloped surfaces [e.g., Warren, 1982].  The mid-day values were 

averaged each day, checked to ensure that calculated albedo fell within realistic limits, and then 

interpolated between days to get hourly values. 

Model evaluation data included SWE and Tsurf.  SWE was measured locally with a snow 

pillow at all sites except SASP.  At SASP, snow depth (SD) was measured hourly with an 

ultrasonic sensor.  We converted measured SD to SWE using bulk snow density (ρb): 

w

bSDSWE
ρ

ρ
=  (5.2) 

where ρw is the density of water (1 g cm-1).  To implement equation 5.2, we first calculated daily 

ρb from SWE and SD observations at three nearby NRCS SNOTEL sites (Red Mountain Pass, 

Idarado, and Mineral Creek), and then averaged these three values daily.  Because spatial 

variability in snow density is much lower than spatial variability in snow depth, we assumed that 

mean density at these nearby sites was representative of density at SASP [e.g., Sturm et al., 

2010].  To further constrain density, we fit the SNOTEL-based daily ρb time series to match ρb 

observations from routine (weekly to bi-weekly) snow pit excavations at SASP.  Thus, the 

SNOTEL density provided information on the temporal evolution of density, while the snow pit 
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density helped to control for any spatial differences in density.  Snow pit SWE showed 

reasonable agreement with this methodology (see section 5.6).  All sites had snow pit or snow 

survey data to help understand uncertainty in SWE evaluation data.  To ensure quality SWE data, 

we aggregated SWE to daily values, checked for consistency between SWE and SD, and tested 

for errors in snow pillow SWE [Johnson and Marks, 2004].  We found three notable errors at the 

IC snow pillow that required correction based on SD, and none at the other sites. 

 Tsurf was measured hourly with an infrared temperature sensor at SASP and CDP, but not 

at RME and IC.  Thus, Qlo measurements at RME and IC were used to calculate Tsurf (°C) using 

the Stefan-Boltzmann equation, assuming snow surface emissivity of 1: 

15.273
4/1

−







=

σ
lo

surf

Q
T  (5.3) 

where σ is the Stefan-Boltzmann constant (5.67 x 10-8 W m-2 K-4).  We assumed snow emissivity 

was 1 for consistency with the published CDP Tsurf dataset, which is based on observations from 

both an infrared temperature sensor and a pyrgeometer [Morin et al., 2012].  Snow is nearly a 

black-body radiator [Kondo and Yamazawa, 1986], so this was a reasonable simplification. 

At IC and CDP, all forcing and evaluation data were observed at the same location.  At 

RME all forcings except Qso and Qlo were taken from the snow pillow site.  These outgoing flux 

measurements were available at the snow pillow site, but we did not use them because they were 

measured on a 35 m tower, which presented significant field-of-view issues (e.g., trees in the 

sensor view).  Thus, we used Qso and Qlo data from a nearby station (RME exposed site), where 

field-of-view issues were minimized because the measurements were made 1.5 m above ground 

[Danny Marks, personal communication, 2013].  The tradeoffs were the radiometer (1) casted a 

shadow on the snow when the solar zenith angle was large (e.g., at noon in spring and summer), 

and (2) was not located at the RME snow pillow.  At SASP, all forcings were taken locally, 
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except radiation was used from a nearby exposed site (i.e., 1.3 km to the west, 340 m above 

SASP) where the radiometers were snow-covered less often. 

At each study site, a single year was selected based on initial data completeness and 

quality.  Table 5.2 shows the percentage of hours missing in the observations, and indicates that 

gaps were generally minimal.  These small gaps required filling in order to obtain serially-

complete (i.e., no missing values) datasets to drive the snow model.  A hierarchy of spatial and 

temporal approaches was used to fill these gaps.  The primary approach was to use regression 

analysis between nearby sites.  IC, RME, and SASP all had paired sites in close proximity that 

had high correlations.  When nearby sites were also missing data, temporal approaches were 

used.  For short gaps (i.e., less than 24 hours), we used temporal interpolation [e.g., Liston and 

Elder, 2006], which Henn et al. [2013] demonstrated is the method of choice for filling short 

gaps in Tair at single stations.  When gaps exceeded 24 hours (a case occurring in less than 0.5% 

of any record), the gap was filled using the monthly average observation at each hour.  These 

techniques were employed to ensure data consistency at each site (i.e., missing data were filled 

based on observations).  We assume these methods introduced negligible error into the analysis. 

We found systematic differences between SWE and cumulative P at all sites, and this 

required rectification.  When cumulative P was less than SWE, we assumed P undercatch bias 

was present [Rasmussen et al., 2012; Serreze et al., 1999; Sieck et al., 2007].  This was found at 

all sites except CDP and was most pronounced at IC, where problems in measuring P are well 

documented [e.g., Clagett, 1988; Kane et al., 1991; Yang et al., 2000].  Because the premise of 

the study is that we are evaluating a snow model at a station with observations of Tair, P, and 

SWE, we argue that P undercatch could be detected and corrected with the available data.  Thus, 

we corrected P based on observed SWE, an approach that has been used in other modeling 



 

132 

studies [e.g., Sturm and Wagner, 2010].  However, we note that undercatch “bias” in P is 

difficult to quantify with snow pillow data, as snow pillow SWE may be subject to effects from 

drifting snow [Meyer et al., 2012].  Mean correction factors varied from 0.82 (i.e., we decreased 

P) at CDP to 2.73 (i.e., we increased P) at IC. 

5.4 Snow model 

SNTHERM [Jordan, 1991] is a physically-based, 1-D, multi-layer snow model that was 

developed for prediction of thermal characteristics of seasonal snow and frozen soil.  The model 

accounts for snow accumulation, compaction, densification, metamorphosis, sublimation, liquid 

water retention, and melt processes for a snowpack on bare soil (i.e., no vegetation interactions).  

The model is based on mixture theory (i.e., snow and soil are porous matrices), allowing snow 

density and moisture content of layers to be simulated.  The equations governing heat and 

moisture exchange are numerically solved with a finite control volume approach across 

horizontal layers of snow and soil.  As snow accumulates in these layers (minimum and 

maximum thickness specified by the modeler) and the snowpack compacts with time, the 1-D 

grid compresses while maintaining the original finite element structure.  Energy exchanges at the 

snow-atmosphere interface are simulated based on meteorological forcings and at the snow-soil 

interface based on simulated soil temperature profiles.  Model accuracy is ensured by using a 

flexible time-step, such that shorter time-steps (e.g., 5 s) are invoked when convergence criteria 

are not met for a given layer.  The end result is that SNTHERM provides a detailed treatment of 

processes within a snowpack, but at the expense of high computational intensity. 

We ran SNTHERM at an hourly time step and provided the model with seven forcings: 

Tair, P, U, RH, Qsi, Qso, and Qli.  Each type of forcing was either the observed data (section 5.3) 

or empirically estimated data (section 5.5), depending on the particular hypothetical weather 



 

133 

station.  Although SNTHERM simulates snow grain growth and optical properties of the snow 

surface, we overrode this feature by providing Qso data from observed data or from empirical 

estimates [U.S. Army Corps of Engineers, 1956] prepared offline.  This was done to make the 

results more generally applicable to other studies, as many snow models do not provide detailed 

treatment of snow grain size and albedo. 

5.5 Methods 

5.5.1 Experiment design 

We wanted to understand the range of model responses as a function of both weather 

station configuration and empirical forcing accuracy, with the explicit goal of identifying which 

forcings need improved representation (i.e., “which additional sensor should be installed at a 

station?”).  For simplicity, we did not consider measurement accuracy for the observed forcings 

so that we could focus on differences between observed and estimated forcings. 

We first assembled a series of 128 different data availability scenarios at each study site.  

This can be envisioned as the 128 different weather station configurations that are possible to test 

a snow model that requires seven forcings.  The construction of these scenarios is conceptually 

shown in Figure 5.3a.  We started with all seven forcings (i.e., Tair, P, U, RH, Qsi, Qso, and Qli) 

observed at hourly resolution (i.e., the maximal data scenario), and then incrementally replaced 

the observed forcing data with empirically estimated forcings (see below), until only daily Tair 

and P were available to estimate the missing forcings (i.e., the minimal data scenario).  The 

minimal data scenario corresponded to the original premise of the study, where we assumed a 

typical snow station and wanted to find which forcings beyond daily Tair and P most need 

improved observation or representation.  After constructing the 128 data scenarios, we simulated 

snowpack with SNTHERM at each site to generate 128 time series of SWE and Tsurf (Figure 

5.3a). 
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To understand the impact of observed vs. estimated forcings, we divided the 128 data 

scenarios into two groups of 64 “stations” for each forcing, one group where that forcing was 

measured and the other group where that forcing was not observed and was instead estimated 

empirically.  Our null hypothesis was that mean model output for these two groups was similar 

because the observed and estimated forcings were not drastically different.  We then computed 

and compared the aggregate statistics for SWE, Tsurf, snowmelt, and SDD of these two groups to 

test and find cases when the model output was significantly (p<0.05) different based on a non-

parametric Wilcoxon ranked sum test. 

For each missing forcing, a single empirical estimation method was selected based 

(whenever possible) on prior comparison studies between alternative empirical methods and the 

popularity of usage (see section 5.5.2).  The goal of this study was not to find the “best” 

empirical method, but to apply a single method that has been shown to produce reasonable 

results in other studies.  We note that most of the empirical methods rely on other forcings, such 

that errors in the independent forcings may propagate into the dependent forcings (Figure 5.3b), 

an issue known to impact estimates of some forcings [e.g., Qli, Feld et al., 2013; Wayand et al., 

2013][Feld et al., 2013; Wayand et al., 2013].  Details about the selection and performance of 

the empirical methods are in section 5.5.2. 

5.5.2 Selection and description of data estimation methods 

For each forcing, a single estimation method was selected based (whenever possible) on 

prior comparison studies between alternative empirical methods and the popularity of usage (see 

below).  We only selected one empirical method instead of multiple methods to reduce 

computational expense.  Consideration of an additional empirical method for each forcing would 

yield 37 = 2187 simulations and take 17 times more computation time than the original binary 
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experiment.  Besides, the purpose of this study was not to find the “best” empirical method, but 

to apply a single method that has been shown to produce reasonable results in other studies.  To 

shed light on the performance of these methods at the study sites, we statistically evaluated the 

empirical forcings against the observed forcings.  We note that most of the empirical methods 

rely on other forcings, such that errors in the independent forcings may propagate into the 

dependent forcings (Figure 5.3b), an issue known to impact estimates of some forcings [e.g., Qli, 

Feld et al., 2013; Wayand et al., 2013].  Details about the empirical methods are reported below, 

while evaluation and comparisons to other studies are found in Appendix B. 

5.5.2.1 Air temperature (Tair) 

To supplement data scenarios (Figure 5.3) where hourly Tair was not observed, we used 

the semi-empirical model of Cesaraccio et al. [2001] to estimate Tair (°C) at hour t: 
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where Tmin and Tmax are the daily minimum and maximum temperatures (assumed available in 

our hypothetical experiment), DTR is the daily temperature range (i.e., Tmax - Tmin), tmin is the hour 

of Tmin (assumed at sunrise), tmax is the hour of Tmax (a model parameter), tset is the sunset hour, Tp 

is the minimum air temperature of the next day, which occurs at hour tp.  This temperature model 

was selected because it yielded lower errors than other methods in the method intercomparison 

presented by Cesaraccio et al. [2001] and is a parsimonious model.  Sunset and sunrise times 

were calculated based on solar geometry [U.S. Naval Observatory, 1990]. 
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5.5.2.2 Precipitation (P) 

In data scenarios where hourly P was not observed, the daily observed sum was divided 

evenly across all hours of the day.  To reiterate, we made the assumption that daily P was 

available because the study was framed to understand which forcings beyond Tair and P could be 

better represented at weather stations for snow modeling studies.  The daily P data were the 

observed data after rectification with the local SWE data (section 5.3).  The uniform sub-daily 

disaggregation method has precedence in other works, including the widely-used Maurer et al. 

[2002] dataset and in the experiment of Waichler and Wigmosta [2003].  We expected that 

uniform hourly precipitation was only a bad assumption at warmer sites (e.g., CDP) that 

experienced transient rain-snow conditions. 

5.5.2.3 Wind speed (U) 

Wind speed (U) estimation remains crude in hydrologic research, and to our knowledge, 

few methods have been developed that represent scalar wind speed accurately at the hourly scale.  

Part of the difficulty in estimating wind speed empirically is that it exhibits low correlation with 

other surface forcings [Parlange and Katz, 2000].  Common approaches include extrapolating 

the nearest available observation in space or to assume a constant value [Waichler and 

Wigmosta, 2003; Walter et al., 2005].  Many studies in the wind energy and atmospheric science 

communities have found that U follows a Weibull distribution [Justus and Mikhail, 1976; Justus 

et al., 1978], and thus stochastic estimation of U is possible with random values from this 

probably distribution.  However, doing so required knowledge of the distribution’s shape and 

scale parameters, which are location-dependent.  Based on our study’s premise, these parameters 

were unknowable and therefore we did not use the Weibull distribution. 
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In lieu of established methods for estimating hourly wind speed, we used NCEP/NCAR 

reanalysis data [Kalnay et al., 1996] in order to obtain a coarse resolution estimate of regional 

wind speed.  NCEP reanalysis was the basis for the Maurer et al. [2002] dataset that has been 

used in many studies with the VIC model.  We estimated hourly wind speed at the study sites 

based on the long-term mean 6-hourly dataset of scalar wind speed to capture typical diurnal and 

seasonal cycles in regional wind speed.  Methods of downscaling reanalysis based on terrain 

features might reduce any bias [Winstral et al., 2009].  However we elected not to incorporate 

these adjustments or other advanced techniques for modeling wind (e.g., GIS analysis, blowing 

snow models) because we did not have access to spatial snow data that would sufficiently help 

evaluate these methods.  Nevertheless, we acknowledge the significance of these processes in 

our study regions  [Sturm and Wagner, 2010; Winstral et al., 2002]. 

5.5.2.4 Relative humidity (RH) 

To estimate hourly RH, we implemented the approach of Running et al. [1987] because it 

is a commonly used empirical approach in areas without humidity observations for extrapolation.  

This method assumes that the daily dew point temperature (Tdew) equals Tmin.  Hourly values of 

RH are thus found by calculating the vapor pressure each hour as a function of Tair and 

comparing to the daily saturation vapor pressure.  This approach effectively assumes RH=100% 

everyday when Tmin = Tdew, and RH declines with as Tair increases through the day.  A new 

correction to this empirical method has been developed [Kimball et al., 1997] to improve RH 

estimation in arid regions.  We applied the Running et al. [1987] approach instead of the Kimball 

et al. [1997] because (1) the methods do not yield substantially different errors in humidity 

during the snow season [Feld et al., 2013], and (2) the Running et al. [1987] is easier to 
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implement, as it does not require simultaneous estimation with Qsi [Bohn et al., 2013; Thornton 

and Running, 1999; Thornton et al., 2000]. 

 

5.5.2.5 Incoming shortwave radiation (Qsi) 

We estimated incoming shortwave radiation using an empirical relationship between 

daily air temperature range (DTR) and atmospheric transmissivity.  DTR is correlated with 

atmospheric transmissivity, such that cloudy (clear) days tend to have a smaller (larger) DTR.  

The approach we used was originally developed by Bristow and Campbell [1984] and later 

refined by Thornton and Running [1999] to eliminate the need for site specific calibration.  

Several studies have compared different approaches for estimating incoming shortwave radiation 

with empirical approaches or reanalysis datasets [Abraha and Savage, 2008; Ball et al., 2004; 

Shook and Pomeroy, 2011; Slater et al., 2013; Yang and Koike, 2005].  Ball et al. [2004] 

compared the Thornton and Running [1999] model to other empirical approaches and found that 

the different methods had similar accuracy, despite large differences in model complexity.  We 

selected the Thornton and Running [1999] model because it is commonly used in mountain 

modeling [e.g., MTCLIM, Hungerford et al., 1989] and land surface models such as VIC [e.g., 

Bohn et al., 2013; Liang et al., 1994].  As noted above, we did not use the simultaneous approach 

for estimating Qsi and vapor pressure and instead implemented the method in “stand-alone” mode 

[Bohn et al., 2013]. 

5.5.2.6 Outgoing shortwave radiation (Qso) 

We calculated hourly outgoing shortwave radiation (Qso) from estimated albedo based on 

the USACE [1956] method because of its common usage in snow models [e.g., Letsinger and 

Olyphant, 2007; Livneh et al., 2010; Walter et al., 2005; Wigmosta et al., 1994].  Albedo is 
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simulated as a function of time since last snowfall based on decay curves for the accumulation 

and ablation seasons.  The time-decay in albedo is a representation of surface metamorphism 

processes (e.g., recrystallization) and litter.  Modeled snowmelt can exhibit high sensitivity to the 

selected decay curve.  While alternative methods exist for switching the curves [based on liquid 

water at the snow surface, Andreadis et al., 2009; based on Tsurf, Livneh et al., 2010] the ideal 

method for switching between the curves is unclear.  As a simplistic approach, we assumed that 

the accumulation season ran from 1 October to 1 March and that the ablation season ran after 1 

March.  Qso was estimated as the product between albedo and Qsi. 

5.5.2.7 Incoming longwave radiation (Qli) 

Many methods exist for estimating incoming longwave radiation (Qli), and some of these 

have been reviewed and compared in recent studies [Flerchinger et al., 2009; Herrero and Polo, 

2012; Juszak and Pellicciotti, 2013].  Based on the recommendations of Flerchinger et al. [2009] 

and Juszak and Pellicciotti [2013], we used the Dilley and O’Brien [1998] parameterization for 

clear-sky conditions and the Unsworth and Monteith [1975] parameterization for all-sky 

conditions.  These studies reported that the two parameterizations had a mean bias of 1.1 W m-2 

and RMSE ranging from 21 to 30 W m-2 when evaluated across a range of climates.  We 

assumed there was no way to calibrate these methods in the context of our study premise (i.e., 

only Tair and P observation available at a remote site) and therefore applied the original 

calibration coefficients at our sites.  However, we note that the errors in Qli parameterizations 

increase when applied at uncalibrated sites [Juszak and Pellicciotti, 2013].  The sensitivity to 

calibration and the scarcity of longwave observations in mountainous areas (Figure 5.1) may 

explain why Bohn et al. [2013] found that empirical longwave bias was highest in mountains. 

5.6 Results 
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We assessed how model output changed with respect to weather station configuration and 

empirical forcing synthesis (Figure 5.3a).  The SNTHERM simulations of SWE and Tsurf are 

shown in Figure 5.4.  Simulations tended to cluster together at CDP and RME (Figure 5.4 c,e) 

during mid-winter periods when Tsurf was brought to 0°C and surface melt occurred for some 

simulations but not others (Figure 5.4 d, f).  The major differences in SWE often resulted from 

these events.  Wayand et al. [2013] reported similar cases of mid-winter melting and subsequent 

offsetting of SWE at low elevations in a maritime basin, where warmer conditions and greater 

sensitivity to forcing errors prevail. 

Daily average SWE from each of the two groups of weather stations (observed forcing 

vs. estimated forcing) are shown in Figure 5.5.  All major differences in model output were 

related to radiation.  For Qsi, this was most evident at IC, CDP, RME (Figure 5.5 c, h, m).  These 

sites showed opposite responses to whether Qsi was observed or estimated, as SNTHERM SWE 

at IC was closer to observed SWE with the estimated Qsi, while SNTHERM SWE at CDP and 

RME was closer to observed SWE with observed Qsi.  Based on model inference, this peculiar 

result at IC suggested that the pyranometer had a positive measurement bias, but we cannot 

conclusively determine this given the large spatial variability in the snow evaluation data.  SWE 

differences due to Qso emerged at all four sites.  Qso observations seemed to help the SNTHERM 

simulations at IC (Figure 5.5d) but hindered simulations at the other three sites (Figure 5.5 i, n, 

s).  This analysis showed that the mid-winter melt events that caused “clustering” or results 

(Figure 5.5 c, e) were related to treatment of Qsi and Qso.  For example, a melt event in January at 

RME caused the observed and estimated groups to diverge in both the Qsi and Qso experiments 

(Figure 5.5 m, n).  Differences due to Qli (observed vs. estimated) were also apparent, but less 

dramatic than the responses due to Qsi and Qso (Figure 5.5 e, j, o, t).  In some cases, the observed 
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forcing yielded SWE closer to the observations (e.g., IC, RME) while at CDP, use of the Qli 

observations increased melt rates (Figure 5.5 j). 

5.7 Discussion 

The results of the analysis indicated that radiation placed a significant control on 

physically-based snow model output across multiple climate zones.  Empirical estimates of 

radiation generally were different enough from observed values to cause significant changes in 

model output (Figure 5.5).  This result had not been found in previous studies due to a lack of 

sites that measured the complete radiation balance. 

The strong relationship between model behavior and radiation representation holds 

implications for distributed hydrology and land surface models that utilize empirical approaches 

for estimating Qsi.  For example, the ranges in bias and mean absolute errors at the four study 

sites were smaller than what was reported by the global assessment of Bohn et al. [2013], yet 

these relatively smaller errors still yielded strong controls on the behavior of SNTHERM (Figure 

5.5).  Alternative approaches to empirical methods (e.g., reanalysis data) for estimating Qsi also 

have been shown to exhibit high errors  [Shook and Pomeroy, 2011; Slater et al., 2013], which 

provides additional motivation for future research to improve radiation data for modeling. 

One surprising result was the consistent divergence of modeled SWE depending on 

whether observed or estimated Qso forced SNTHERM.  Results at CDP, RME, and SASP (Figure 

5.5) provided compelling evidence that modeling snowpack with estimated Qso may produce 

more realistic snowmelt rates than with observed Qso.  This outcome was likely a result of the 

difficulties of measuring albedo and Qso accurately.  Measurement issues may have been related 

to dust-on-snow at SASP [Painter et al., 2010] and atmospheric dust deposition and tree-litter on 

the snow surface at CDP [Etchevers et al., 2004].  Qso measurements at RME were impacted by 



 

142 

shading issues in the spring [Danny Marks, personal communication, 2013], and were taken at 

an exposed site away from the snow pillow where snow tended to disappear two weeks earlier.  

Together, these issues in the observed data may have enhanced the SNTHERM melt rates due to 

lower albedo at RME.  These results resonate with the findings of Blöschl [1991], who found that 

uncertainty in albedo was more important than uncertainty in Tair and argued that more research 

was needed to understand albedo variations in time and space.  Indeed, further research is needed 

to assess the utility of Qso observations for testing snow models and remote sensing. 

We acknowledge that there were some limitations to the model, methods, sites, and data 

of this study.  First, we note that wind interacts with P uncertainty and may be strongly linked to 

SWE accumulation at exposed sites (e.g., IC); our analysis could not account for these effects, 

which may be substantial in tundra and alpine areas [Sturm et al., 2001].  Model sensitivity to 

wind cannot be tested completely with SNTHERM because it does not represent redistribution 

processes, which may significantly control snow accumulation patterns [Scipión et al., 2013; 

Winstral et al., 2013].  Second, snow distributions at IC were complicated when patches of 

snow-free tundra emerged during snowmelt, and the 1-D snow model could not account for these 

2-D effects [Liston, 1995].  Third, despite being in contrasting climates, the four study sites were 

in radiation-dominated environments, which made estimation of turbulent fluxes less important.  

We can only speculate that the relative importance of forcings might change in environments 

where turbulent fluxes are more dominant.  Finally, we did not address interannual variability in 

this study, as it was difficult to acquire measurements of all forcings for multiple years without 

extended gaps in observations (e.g., power or sensor failure).  Given a longer study period, we 

expect that the relative importance of forcings would be linked to the annual precipitation 

climate (i.e., wet vs. dry).  We hypothesize that wetter conditions would extend snowmelt into 
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the sunnier summer months, and that drier conditions would result in earlier snow disappearance 

and less energy contribution from shortwave radiation. 

 

5.8 Conclusions 

 We conducted a modeling experiment at four well-instrumented sites in varying snow 

climates.  This experiment was motivated by a need to understand which surface forcings, 

beyond temperature and precipitation, most impact output of a physically-based snow model and 

therefore need better representation (via more observations and/or improved estimation 

methods).  We found that the radiative forcings, which are measured least frequently in the 

western United States (Figure 5.1), caused the greatest divergences in model behavior.  This was 

not entirely surprising, given the widely-acknowledged importance of radiation in the snowmelt 

energy budget as cited in the literature [Male and Granger, 1981] and further confirmed here.  

However, because the estimated radiation forcings were reasonably close to the reported 

accuracy and precision found in the literature (see Appendix B), the empirical methods for 

estimating radiation are sufficiently different to alter model output with statistical significance. 

 Because we are unable to discriminate errors in measured radiation, model uncertainty, 

and snow evaluation data, we conclude from model inference that radiation needs to be a high 

priority for the snow hydrology research community.  The results of this study therefore 

advocate radiation sensors as the “next best sensors” to install at existing weather stations in cold 

regions for the purpose of testing and running snow model experiments.  This recommendation 

inevitably demands more detailed consideration of important factors not assessed here (e.g., 

sensor cost and access, maintenance, spatial variability of radiation, etc).  Future research should 

also continue to investigate methods for estimating and testing radiative forcings and methods 

for detecting and correcting errors in radiation measurements. 
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  While our conclusions focus on radiation, we note that we corrected for precipitation 

uncertainty in the controlled experiment.  At locations that lack precipitation observations, we 

expect that precipitation plays a significant role in the modeled snow variables (e.g., SWE, SDD) 

and this will be comparable (at a minimum) to the effect of melt-related data [Raleigh and 

Lundquist, 2012].  Ongoing and future research is evaluating the comparative sensitivity of the 

model to all forcing inputs at locations that do not have any measurements.  This work is being 

investigated with formal uncertainty/sensitive analysis methods [Matott et al., 2009] that are 

designed to assess and quantify the relationship in uncertainty between model inputs and outputs. 

Finally, a general conclusion that can be drawn from the results is that the particular 

configuration and location of a weather station will invariably impact a modeler’s perception of 

model performance.  Kuczera et al. [2006] notes that most modelers ignore forcing data errors 

and uncertainty, but the results of this study demonstrate that the source of the forcing data may 

significantly change model output.  Given the pervasive threat of equifinality in hydrology 

[Beven and Binley, 1992], a modeler must be ever critical of their forcings, model, and 

evaluation data. 

 

5.9 Appendix B: Performance of the empirical methods for estimating forcings 

The empirical methods used to estimate the “missing” forcings were evaluated against 

observed values and summary statistics were computed.  These statistics included mean bias 

(Table 5.4), mean absolute error (MAE, Table 5.5), and root mean squared error (RMSE, Table 

5.6) to allow comparisons with the variety of summary statistics reported in the literature [e.g., 

Bohn et al., 2013; Flerchinger et al., 2009; Shook and Pomeroy, 2011].  We do not show 

statistics for P, as bias was forced to 0 in our experiments and MAE and RMSE were generally 
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small.  We also only show statistics for the forcings computed from observed values, and not for 

the forcings computed from estimated forcings (Figure 5.3b) for simplicity.  We were unable to 

find studies that provided statistics on U errors and Qso errors, but report our evaluation of these 

forcings for reference. 

 Performance of the Tair estimation method was worse than prior studies (Table 5.6), as 

hourly RMSE ranged from 1.7°C (CDP) to 3.0°C (IC) and Cesaraccio et al. [2001] reported 

RMSE of 1.5°C when evaluated at five sites in California.  We assumed that there some climatic 

factors were involved, as CDP and California had similar RMSE and were both maritime 

locations, whereas IC was in the Arctic Tundra.  The dependency of the Cesaraccio et al. [2001] 

method on solar geometry was problematic at IC near the winter and summer solstices, when 

sunrise and sunset times were undefined. 

 The RH estimation method had a positive bias at all sites (Table 5.4), ranging from 0.6% 

to 11%.  For comparison, Bohn et al. [2013] showed bias ranging from -5.5% to 6.6% using the 

similar method of Kimball et al. [1997].  Averaged across the sites, the monthly MAE (Table 

5.5) of 10.2% fell within the 9.3% to 10.7% ranged reported by Bohn et al. [2013].  Vapor 

pressure was calculated from Tair and RH and statistics were computed to permit comparison 

with other studies. 

 The Thornton and Running [1999] method yielded a bias ranging from -23.7 W m-2 at IC 

to +27.8 W m-2 at CDP, with a bias of 1.3 W m-2 when averaged across the four sites (Table 5.4).  

Bohn et al. [2013] generally found a negative bias at their sites, ranging from -0.7 W m-2 to -47 

W m-2.  Monthly MAE (Table 5.5) at the four sites ranged from 10.9 W m-2 to 25.8 W m-2, 

whereas MAE ranged from 14.7 W m-2 to 51.6 W m-2 in the Bohn et al. [2013] evaluation.  Thus, 
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the Thornton and Running [1999] method had comparatively better agreement with the data at 

our study sites. 

  Finally, the combined approach for computing Qli [Dilley and O’Brien, 1998; Unsworth 

and Monteith, 1975] had mean bias (Table 5.4) ranging from -3.0 W m-2 to 15.7 W m-2, with a 

study average of 6.1 W m-2.  Mean RMSE across the sites was 34.1 W m-2 for hourly data and 

24.6 W m-2 for daily data (Table 5.6).  For comparison, Flerchinger et al. [2009] reported a bias 

of 1.1 W m-2 and RMSE of 24.5 W m-2 for hourly and 14.9 W m-2 for daily values.  While the 

performance of the Qli method was worse here, we note that Flerchinger et al. [2009] calibrated 

the method at their study sites and thus this discrepancy was not surprising. 
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5.10 Tables 

 
Table 5.1 Basic characteristics of the snow study sites, ordered by elevation 
Site Name Site ID Elevation 

(m) 

Study Period 

(Water Year) 

Snow Cover 

Classification
a
 

Sensors Operator(s) 

Imnavait Creek IC 930 2011 Tundra Tair: Vaisala HMP45C 
P: Campbell Scientific TE 525 
U: Met One 014A 
RH: Vaisala HMP45C 
Qsi: Kipp & Zonen CMA 6 
Qso: Kipp & Zonen CMA 6 

NRCS, CRREL, 
Ameriflux 

Col de Porte CDP 1330 2006 Mountain (maritime) Tair: PT 100/4 wires 
P: PG2000, GEONOR 
U: Chauvin Arnoux Tavid 87 – non-heated 
RH: Vaisala HMP 45D 
Qsi: Kipp & Zonen CM14 
Qso: Kipp & Zonen CM14 
Qli: Eppley PIR 

Météo-France 

Reynolds 
Mountain East 
(sheltered site) 

RME 2060 2007 Mountain 
(intermountain) 

Tair: Vaisala HMP 45 
P: Belfort Universal Gages 
U: Met One 013/023 
RH: Vaisala HMP 45 
Qsi: Eppley Precision Spectral Pyranometer 
Qso: Kipp & Zonen CNR1 
Qli: Eppley PIR 

Northwest 
Watershed 
Research Center, 
Agricultural 
Research Service 

Swamp Angel 
Study Plot 

SASP 3370 2008 Mountain 
(continental) 

Tair: Vaisala CS500 
P: ETI Noah II 
U: RM Young Wind Monitor 05103-5 
RH: Vaisala CS500 
Qsi: Kipp & Zonen CM21 
Qso: Kipp & Zonen CM21 
Qli: Kipp & Zonen CG-4 

Center for Snow 
and Avalanche 
Studies 

a Based on Sturm et al. [1995].  Three of the sites are considered “mountain” snow covers and it is therefore difficult to classify them 
with the Sturm et al. system.  The parenthesis denotes the most approximate climate description of the mountain sites. 
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Table 5.2 Percent of hours with missing data when snow was present at three of the study sitesa 
Site Tair P U RH Qsi Qso Qli 

IC 0.2% 4.1% 0.2% 0.2% 0.2% 0.2% 0.2% 
CDP 0% 0% 0% 0% 0% 0% 0% 
SASP 0% 0% 0% 0% <0.1% 1.3% <0.1% 
a Statistics at RME are not presented but Reba et al. [2011] notes that missing values “represent 
less than one half of one percent of the record” 
b Statistics at CDP are based on Figure 4 of Morin et al. [2012] 
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Table 5.3 Mean bias statistics for estimation of meteorological forcings.  Precipitation was 
excluded because it had no bias (by design). 
  Sites  

Hourly Forcing Dependencies IC CDP RME SASP Overall 

Tair (°C) f(Tmax, Tmin) -0.3 0.0 -0.2 -0.2 -0.2 
U (m s-1) NCEP -0.17 0.40 0.61 0.78 0.41 
RH (fractional) f(Tair) 0.062 0.060 0.20 0.106 0.107 
Qsi (W m-2) f(Tair, RH, P) -23.7 22.6 5.7 0.8 1.3 
Qso (W m-2) f(Tair, RH, P, Qsi) 13.4 37.6 13.1 27.8 23.0 
Qli (W m-2) f(Tair, RH, Qsi) 9.1 -3.0 15.7 2.5 6.1 
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Table 5.4 Same as Table 5.3, but for mean absolute error (MAE), and with statistics from 
different intervals for comparison with other studies.  Qso at the hourly scale was not shown 
because only daily observed values were retained at noon. 
   Sites  

Hourly Forcing Dependencies Interval IC CDP RME SASP Overall 

Tair (°C) f(Tmax, Tmin) Hourly 2.0 1.2 1.4 1.6 1.6 
  Daily 1.1 0.4 0.7 0.7 0.7 
  Monthly 0.7 0.2 0.2 0.3 0.4 
        
U (m s-1) NCEP Hourly 1.76 0.99 1.08 1.08 1.23 
  Daily 1.49 0.80 0.80 0.81 0.98 
  Monthly 0.86 0.41 0.64 0.78 0.67 
        
RH (fractional) f(Tair) Hourly 0.155 0.123 0.247 0.181 0.177 
  Daily 0.135 0.098 0.199 0.155 0.147 
  Monthly 0.067 0.069 0.153 0.117 0.102 
        
Qsi (W m-2) f(Tair, RH, P) Hourly 66.0 56.0 94.0 79.9 74.0 
  Daily 31.9 39.0 26.4 36.2 33.4 
  Monthly 24.0 25.8 10.9 19.0 19.9 
        
Qso (W m-2) f(Tair, RH, P, Qsi) Daily 26.4 39.2 -- 35.9 33.8 
  Monthly 21.2 37.4 -- 30.6 29.7 
        
Qli (W m-2) f(Tair, RH, Qsi) Hourly 28.7 21.1 29.0 35.3 28.5 
  Daily 20.5 13.1 20.5 28.7 20.7 
  Monthly 13.9 4.7 14.5 16.7 12.5 
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Table 5.5 Same as Table 5.4, but for root mean squared error (RMSE). 
   Sites  

Hourly Forcing Dependencies Interval IC CDP RME SASP Overall 

Tair (°C) f(Tmax, Tmin) Hourly 3.0 1.7 2.1 2.3 2.3 
  Daily 1.6 0.6 0.8 1.0 1.0 
  Monthly 0.9 0.2 0.2 0.4 0.4 
        
U (m s-1) NCEP Hourly 2.27 1.25 1.33 1.35 1.55 
  Daily 1.91 1.00 1.02 0.92 1.21 
  Monthly 1.06 0.48 0.79 0.81 0.79 
        
RH (fractional) f(Tair) Hourly 0.204 0.164 0.312 0.228 0.227 
  Daily 0.180 0.136 0.290 0.192 0.200 
  Monthly 0.086 0.075 0.229 0.137 0.132 
        
Qsi (W m-2) f(Tair, RH, P) Hourly 117.4 106.4 150.5 136.4 127.7 
  Daily 46.9 54.4 40.0 49.8 47.8 
  Monthly 32.3 37.0 9.9 22.6 25.5 
        
Qso (W m-2) f(Tair, RH, P, Qsi) Daily 40.3 56.9 31.7 47.4 44.1 
  Monthly 32.1 52.4 23.5 37.4 36.4 
        
Qli (W m-2) f(Tair, RH, Qsi) Hourly 35.6 24.6 35.3 40.8 34.1 
  Daily 25.2 15.5 24.3 33.3 24.6 
  Monthly 16.6 5.6 17.1 19.0 14.6 
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5.11 Figures 

 
Figure 5.1 A survey of variables measured at weather stations (n=1318) in the western United 
States (i.e., NRCS SNOTEL domain) where either snow water equivalent (SWE) or snow depth 
(SD) are measured.  Shown are the percentages of the snow stations measuring different 
meteorological variables.  Measurement acronyms are defined in the text.  Station operators 
include USDA (NRCS, USFS, Bureau of Reclamation), California Department of Water 
Resources, California Cooperative Snow Surveys, NOAA (NWS, COOP, HMT), Western 
Regional Climate Center, Desert Research Institute, US Army Corps of Engineers, US Army 
Cold Regions Research Laboratory, Fluxnet/Amerflux, Long Term Ecological Research sites, 
short-term research campaigns (e.g. NASA CLPX), NSF Critical Zone observatories, university 
research sites, state departments of transportation, airports (FAA), and avalanche centers.  
Lumped net radiation measurements are not tallied.  Quality and serial completeness of the data 
are not reflected. 
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Figure 5.2 Locations of the study sites.  The background shows an updated version of the Sturm 

et al. [1995] snow classification map [updated map courtesy of Glen Liston]. 
 

 



 

154 

 
Figure 5.3 Conceptual workflow diagrams showing (a) the sequence of all combinations of 
observed forcing data used to create the data scenarios for snow model forcing and (b) the 
dependencies of estimated forcing data. 
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Figure 5.4 Response of SNTHERM SWE and snow surface temperature (Tsurf) at the four study 
plots to uncertainty in model forcings based on n=128 data availability scenarios.  Shown are the 
range of modeled observations (gray), the model simulation with all observed forcings (max 
obs), and the model simulation with no observed forcings beyond temperature and precipitation 
(min obs).  Daily SWE evaluation data and snow survey/snow pit are also plotted.  At IC, the 
error bars are +/- 1 std. deviation from the mean in a 1km x 1km spatial snow survey. The period 
of the Tsurf plots is in the shaded region in the SWE plots.
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Figure 5.5 SWE simulations and evaluation data the four sites.  Modeled SWE was averaged across 64 data scenarios based on 
whether each forcing (columns) was observed (red solid line) or estimated (blue dashed line).
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Chapter 6 Conclusions 

 
My research has sought to quantify uncertainties in numerical snow models and remote 

sensing, so as to understand the utility of these tools for research and management of water 

resources in snow-dominated catchments.  Following the framework shown in Figure 1.1, the 

work has contributed to the field of snow hydrology through the comparisons and analysis of 

unique datasets and development of new methods for understanding snow states and processes.  

While comparing measurements, models, and remote sensing datasets is a useful approach for 

understanding relative uncertainties, it must be remembered that no single approach captures the 

complexity of the natural, real-world snowpack and that uncertainties of our tools must always 

be considered and quantified as rigorously as possible.  The four chapters of this dissertation 

have attempted to quantify specific uncertainties by addressing different science questions. 

In Chapter 2, I addressed the science question “Which configuration of a snow model 

yields the most robust estimates of SWE and precipitation, given uncertainties in model forcing 

data and parameters?”  This chapter indicated that forward and reconstruction snow models may 

yield very similar error distributions for SWE, and supported the hypothesis that a combined 

model reduced SWE errors because of offsetting sensitivities to air temperature.  More work is 

needed to understand how the advantages of the different model configurations may be best 

leveraged to reduce overall uncertainties in modeled SWE and precipitation, and whether more 

advanced methods of combing the model configurations is warranted.  A combined, spatial 

estimate of SWE might be achieved with a weighting function based on proximity to 

precipitation/snow pillow sites and fractional forest cover so as to merge a gridded forward 

model with a satellite-based reconstruction model. 
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In assessing remote sensing uncertainty, I addressed the question, “What is the accuracy 

of snow disappearance timing derived from MODIS fractional snow covered area at fine spatial 

scales (~1-2 km
2
) across sites with varying forest density and topography?” in Chapter 3.  This 

chapter developed and tested an original ground-based approach for measuring fractional snow 

covered area, which was used to test MODIS in four sites with varying forest cover and 

elevation.  The unique ground data showed that MODIS errors were on the order of 10-20% in 

meadows and 10-40% in forests, and showed snow disappearing 12 to 30 days too early in the 

forested sites.  While it is generally understood that remote sensing uncertainty is larger in 

forests than in clearings, there was little quantification of this uncertainty prior to the study.  

Additionally, the results showed that a common vegetation correction method for snow covered 

area products was not robust in forested sites, particularly later in the ablation season.  Future 

work should develop improved vegetation corrections for remotely sensed snow cover. 

 Chapter 4 explored the uncertainties in simple approximations of the snow surface 

temperature by addressing the question, “Can standard height temperature and humidity 

approximate snow surface temperature, so as to allow detection of bias in a snowmelt model?”  

Through comparing standard height temperature data with snow surface data at seven sites in 

different environments, it was found that the dew point temperature consistently had the lowest 

bias when approximating snow surface temperature.  While there was more scatter for hourly 

values, the relationship between daily dew point and snow surface temperature was most robust.  

A modeling experiment demonstrated that the dew point can help diagnose systematic errors in 

the energy balance, which offers promise for evaluating snow models in remote locations.  This 

study implied that more frequent monitoring of humidity at mountain weather stations and 

improved understanding of humidity fluctuations in space and time may be valuable for testing 
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energy balance snow models and remote sensing.  Future work is needed to extend and refine 

these methods for evaluating modeled and remotely sensed snow surface temperature with 

humidity-based temperatures. 

 Chapter 5 addressed the question, “Given the scarcity of meteorological stations in 

mountains areas, which meteorological forcings are most critical to measure for physically-

based modeling of snow in different climates?”  By using data from four well-instrumented sites, 

I was able to conduct a controlled modeling experiment where 128 hypothetical weather stations 

were considered at each location, and the impact of data availability and empirical synthesis on 

model output was addressed.  At all sites, the radiation components were the most critical 

measurements (assuming temperature and precipitation were already available).  While net 

radiation is the dominant source of melt energy in many climates, this study showed that 

empirical surrogates are sufficiently different from observed values to cause significant 

divergences in model output.  Future and ongoing work is considering how data uncertainty at 

unmonitored locations impacts snow model output (through formal sensitivity/uncertainty 

analysis) and how snow model selection interacts with forcing data uncertainty. 

 Taken as a whole, the research presented in this dissertation supports two ideas for 

advancing snow hydrology research in the future.  First, the results imply that the associated 

uncertainties with model inputs and outputs must be carefully considered and reported.  In the 

world of deterministic models, a single answer for a specific snow variable at each location in 

space and time is often given, but typically with little knowledge of the embedded uncertainties 

of that estimate.  Explicitly considering uncertainties might be best achieved with routine 

uncertainty/sensitivity analysis or by treating the model forcing from a probabilistic perspective 

instead of a “single number” deterministic view.  Second, the study supports the notion that 
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process-based snow models must be evaluated not only on the final product (i.e., SWE), but 

(possibly more importantly) the contributing processes as well [e.g., Essery and Etchevers, 

2004].  The modeled snow surface temperature is one variable which has previously been 

difficult to test, but this research shows it is vital to do so, given its strong linkage with the 

surface energy balance.  If applications of process-based models are to continue in the field, we 

must work to understand the uncertainties of these models and develop methods that test and 

evaluate their mechanics and contributing processes. 
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• President 2008 – 2009 
• Professional Liaison  2009 – 2010 
• Webmaster  2007 – 2013 

 
Tau Beta Pi Engineering Honor Society, Gonzaga University Chapter 

• President 2005 
• Vice President 2004 

 
 
Service 
Academic 

• 2012 Civil engineering graduate student representative – Hydrologic Extremes Faculty 
Search Committee 

 
Environmental 

• 2012 Watershed restoration volunteer – Duwamish Alive! 
 
Conference Chairing 

• 2012 Graduate Climate Conference – Terrestrial Impacts Session 
 

Conference Planning Committees 

• 2010 Graduate Climate Conference (Pack Forest Conference Center, WA) 
• 2009 American Water Resources Association National Conference (Seattle, WA) 
• 2008 Engineers Without Borders International Conference (Seattle, WA) 

 
Humanitarian 

• 2008 Engineers Without Borders Roadway Improvement Project (Acasio, Bolivia) – 
Design and Implementation Team 

 
Mentoring 

• 2008 Future Cities Competition – Team Engineer (McClure Middle School, Seattle) 
 

Tutoring 
• 2006-2007 Math and Science Tutor – Colorado Association of Black Professional 

Engineers and Scientists 
• 2005 Math and Physics Tutor – Tau Beta Pi 

 


