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Abstract 

 

OPERATIONAL APPLICATIONS OF MACROSCALE HYDROLOGIC MODELS  

FOR SEASONAL STREAMFLOW FORECASTS  

IN THE WESTERN UNITED STATES  

 

Eric A. Rosenberg 

 

Chair of the Supervisory Committee: 

Professor Anne C. Steinemann 

Department of Civil and Environmental Engineering 

 

Despite a number of benefits for seasonal streamflow forecasts, macroscale hydrologic 

models (MHMs) remain underutilized by the operational community, due partly to 

misalignments between experimental and operational methodologies.  This research 

addresses this problem through a series of conceptual frameworks that leverage 

unexploited strengths of MHMs and are demonstrated in the western United States.  A 

hybrid dynamical-statistical approach is developed and tested in the 14 major watersheds 

of California’s Central Valley drainage.  The approach employs gridded precipitation and 

snow water equivalent (SWE) simulated by the Variable Infiltration Capacity (VIC) 

MHM as predictors in equations generated via the principal components regression 

methodology of the Natural Resources Conservation Service (NRCS).  Results offer 

improvement over forecasts issued by California’s Department of Water Resources, with 

particular benefits in watersheds poorly sampled by observations.   

 

The approach is then modified to capitalize on its ability to identify locations with strong 

predictive power for network design applications.  The modified approach is applied 

toward the expansion of the NRCS SNOTEL network in 24 western U.S. basins using 
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two forecasting scenarios – one assuming the conventional predictors of SWE and 

precipitation, and one considering soil moisture as an additional predictor.  Results 

indicate that, for most basins, substantial skill improvements are only possible when soil 

moisture is considered.  Furthermore, locations identified as optimal for soil moisture 

sensors are primarily found at low- to mid-elevations, in contrast to the higher elevations 

typically occupied by SNOTEL stations.   

 

Finally, the significance of groundwater for seasonal streamflow forecasts is assessed by 

evaluating its contribution to interannual streamflow anomalies in the 29 Colorado River 

sub-basins.  Terrestrial water storage changes are simulated by a version of VIC modified 

to include an underlying aquifer.  These estimates are evaluated with satellite data and 

basin-scale water balances derived from observations.  Simulated groundwater storage 

changes are then compared to those derived via baseflow recession analysis.  Statistical 

analyses reveal little relationship between groundwater and streamflow anomalies, 

suggesting that operational forecasts are likely not degraded by the omission of 

groundwater conditions for the Colorado River.  Viewed collectively, the research 

provides conceptual and operational contributions toward the adaptation of MHMs to a 

forecasting environment.  
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I.  INTRODUCTION 

 

 

Water managers in the western United States have long faced the challenge of meeting a 

variety of demands with limited and uncertain supplies.  The history of the region is rife 

with examples of conflicts over this resource, resulting in the complex supply system and 

legal framework that exists today.  One such conflict, the “Lake Tahoe Water Wars” at 

the turn of the twentieth century, motivated the region’s first snow surveys and the 

genesis of modern-day seasonal streamflow forecasts.  Today, seasonal streamflow 

forecasts are critical for a broad array of sectors ranging from irrigated agriculture, flood 

control, and municipal water supply to endangered species protection, power generation, 

and recreation.  The scientific literature abounds with case studies that illustrate their 

consequences, including both success stories [e.g., Pagano et al., 2001] and failures [e.g., 

Glantz, 1982]. 

 

This dissertation is directed at the advancement of seasonal streamflow forecasting 

methodologies, the improvement of forecast skill, and the extension of forecast lead 

times.  These objectives are motivated by the enablement of more informed decisions for 

water allocation, management, and planning. 

 

Operationally, seasonal streamflow forecasting in the western U.S. is performed at the 

federal level by the Natural Resources Conservation Service (NRCS) and the National 

Weather Service (NWS), and at the state level (in California) by the Department of Water 

Resources (DWR).  Seasonal streamflow prediction models can be divided into two 

broad categories – those that are data-driven and those that are process-driven.  In the 

present context, data-driven models include the principal components regression (PCR) 

methodology of NRCS [Garen, 1992], the statistical water supply methodology of NWS 

[Hartman and Henkel, 1994], and the multiple regression methodology of DWR, all of 

which are derivatives of the region’s earliest forecasting models developed by Church 

[1935].  Process-driven models include the ensemble streamflow prediction (ESP) 

methodology of the NWS River Forecast System (NWSRFS) [Day, 1985], which gained 
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prominence around the time of the California drought of 1976–77 [Twedt et al., 1977, 

1978].  The NWSRFS employs the Sacramento Soil Moisture Accounting model 

[Burnash et al., 1973], a so-called “conceptual simulation model” that is a derivative of 

the Stanford Watershed Model of Linsley and Crawford [1960].  Both data-driven and 

process-driven models have their advantages and limitations, which are discussed in 

greater detail in the chapters that follow. 

 

Macroscale hydrologic models (MHMs) refer to a class of process-driven models that 

were developed to represent the land surface in general circulation models (GCMs).  

They are descendants of the “bucket model” of Manabe [1969] and the soil-vegetation-

atmosphere transfer schemes (SVATs) introduced in the 1980s to perform this function.  

Distinguishing features of MHMs include distributed or semi-distributed spatial 

discretizations and parameterizations based on physical principles, although most include 

some level of empirical generalization in their structure.  In addition to the typical GCM 

functions of climate change simulation and numerical weather prediction, MHMs are 

particularly well-suited for very large river basins and have been used in a multitude of 

“off-line” hydrologic studies at continental and regional scales over the past 20 years 

[e.g., Nijssen et al., 1997; Mitchell et al., 2004; Zaitchik et al., 2010].   

 

The utility of MHMs for seasonal streamflow forecasts has also been explored in a 

number of studies, some of which have focused on the western U.S. [e.g., Georgakakos et 

al., 2005; Wood and Lettenmaier, 2006; Koster et al., 2010].  Many of these studies have 

examined this issue through ensemble-based methods, which can exploit the ability of 

MHMs to incorporate weather and climate forecasts [e.g., Hamlet and Lettenmaier, 1999] 

and assimilate remote sensing data [e.g., McGuire et al., 2006], among other advantages.  

Yet MHMs contain strengths for statistical prediction approaches as well, including the 

ability to characterize current hydrologic variables in much greater spatial detail than can 

be provided by point observations alone, and the leveraging of physical algorithms to 

simulate hydrometeorological situations not found in the historic training period.   
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This dissertation develops new methods of exploiting MHMs for seasonal streamflow 

forecasts, expansion of the hydrometric infrastructure that is the foundation for statistical 

forecasts, and a more complete understanding of the hydrologic mechanisms of seasonal 

streamflow predictability.  The concepts are developed in the western U.S., with a 

specific focus on their operational utility.  Despite the demonstrated value of MHMs for 

seasonal streamflow forecasts in previous studies, experimental methods have been slow 

to infiltrate the operational community, partly because many established operational 

methodologies remain statistically based.  This dissertation is motivated by an 

overarching interest in the practical integration of MHMs within decision support 

settings, a vital need that has received inadequate attention in the scientific literature, 

despite an array of potential benefits for water resources management.  A central theme is 

therefore the adaptation of new approaches to the established methodologies, which is 

critical to their ultimate implementation [NRC, 2008]. 

 

The dissertation is divided into three parts, each of which presents a unique approach to 

this problem, and together which provide a cohesive analysis of underlying issues.  In the 

first, a hybrid dynamical-statistical methodology is developed that employs gridded 

observed precipitation and model-simulated snow water equivalent (SWE) data as 

predictors in statistical models generated via the principal components regression 

methodology of NRCS.  To simulate SWE, we employ the Variable Infiltration Capacity 

(VIC) macroscale hydrologic model [Liang et al., 1994], which is typical of the land 

surface models in GCMs and has been used in countless studies worldwide [e.g., among 

the most cited, Maurer et al., 2002; Barnett et al., 2005; Mote et al., 2005].  The 

approach is tested for 14 watersheds in California’s Central Valley drainage using 

calibration parameters adapted from DWR’s forecasting environment, and results are 

compared to DWR’s operational forecast skill.   

 

The second part of the dissertation was inspired by user feedback for the hybrid 

approach, which indicated a particularly useful feature to be the ability to identify 

predictor locations that most greatly contribute to forecast skill.  Here the approach is 

extended to adapt this strength for network design applications.  The concept is tested for 
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the expansion of the NRCS SNOTEL network in 24 western U.S. basins using two 

forecasting scenarios – one that assumes the currently standard predictors of SWE and 

water year-to-date precipitation, and one that considers soil moisture as an additional 

predictor variable.  Resulting improvements are spatially and temporally analyzed, 

attributed to dominant predictor contributions, and evaluated in the context of operational 

NRCS forecasts, ensemble-based NWS forecasts, and historical as-issued NRCS/NWS 

coordinated forecasts.   

 

The third part of the dissertation focuses more directly on the hydrologic mechanisms 

underlying seasonal streamflow predictability.  Despite the significance of initial 

hydrologic conditions for seasonal streamflow prediction in the western U.S. [Shukla and 

Lettenmaier, 2011], the role of groundwater in both statistical and ensemble-based 

operational forecasts has largely been ignored.  This issue is addressed by evaluating the 

contribution of groundwater storage to interannual streamflow anomalies in the 29 

tributary sub-basins of the Colorado River.  Monthly and annual changes in total basin 

storage are simulated by two implementations of VIC – the standard release of the model, 

and an alternate version that has been modified to include the SIMple Groundwater 

Model (SIMGM) [Niu et al., 2007], which represents an unconfined aquifer underlying 

the soil column.  These estimates are compared to those resulting from basin-scale water 

balances derived exclusively from observational data (gridded precipitation, naturalized 

streamflow observations, and satellite-based estimates of evapotranspiration) and changes 

in terrestrial water storage from the Gravity Recovery and Climate Experiment (GRACE) 

satellites [Swenson and Wahr, 2006].  Changes in simulated groundwater storage are then 

compared to those derived via baseflow recession analysis for 72 reference-quality 

watersheds from the GAGES-II database [Falcone et al., 2010].  Finally, estimates are 

statistically analyzed for relationships to interannual streamflow anomalies, and 

predictive capacities are compared to those of SWE and soil moisture.   

 

The overarching science questions and subordinate questions that this dissertation seeks 

to address are as follows:   
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1. Can a hybrid framework, which combines model-simulated initial conditions with 

the regression-based methods used operationally, improve seasonal forecast skill? 

Can such an approach provide the ability to generate late-season forecasts, when 

snow exists at higher elevations but most observing stations are snow-free? 

 

2. How can macroscale hydrologic models be employed to inform network design 

for statistical seasonal streamflow forecasts?  Can soil moisture provide additional 

predictive skill in a statistical framework beyond that given by conventional 

predictors? 

 

3. How significant are interseasonal and interannual groundwater anomalies for 

seasonal streamflow forecasts?  How does the coupling of a macroscale 

hydrologic model to an explicit groundwater model affect soil moisture estimates 

and their predictive capacity? 

 

These questions are addressed in the following three chapters. Chapter II [Rosenberg et 

al., 2011] describes the hybrid framework and tests the approach in California’s Central 

Valley drainage to address question 1.  Chapter III [Rosenberg et al., 2012a] adapts this 

framework for network design and evaluates its utility in the western U.S. to address 

question 2.  Chapter IV [Rosenberg et al., 2012b] evaluates the performance of a coupled 

surface-groundwater model in the Colorado River basin to address question 3.  Viewed in 

its entirety, the research is intended to offer insights into new applications of MHMs for 

seasonal streamflow forecasts, and to form a foundation for the advancement of MHMs 

in the operational forecasting context of the western U.S.  
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II. STATISTICAL APPLICATIONS OF PHYSICALLY BASED 

HYDROLOGIC MODELS FOR                                                     

SEASONAL STREAMFLOW FORECASTS 

 
This chapter has been published in its current form in Water Resources Research 

[Rosenberg et al., 2011].   

 

2.1 Introduction 

 

The scarcity of water has defined much of the history in the western United States and 

continues to be one of its most complex and pressing public issues today. Decisions 

related to water usage have significant economic consequences, often with far-reaching 

implications that affect the welfare of the general public [e.g., Glantz, 1982].  It is 

therefore critical to ensure that this public resource is used most efficiently, which 

inherently involves accurate forecasting of its future availability.  

 

The western U.S. is also distinctive in that over half of its annual streamflow is derived 

from snow, which acts as a natural reservoir at higher elevations until it runs off in the 

spring.  Since the 1930s, this relationship has been exploited by the Natural Resources 

Conservation Service (NRCS) [Helms et al., 2008], which now works with National 

Weather Service (NWS) River Forecast Centers (RFCs) to issue seasonal water supply 

forecasts throughout the western U.S. [Franz et al., 2003].  California, which began water 

supply forecasting in 1929, remains the lone state to conduct its own snow surveys and 

issue independent forecasts under the direction of its Department of Water Resources 

(DWR) [Hart and Gehrke, 1990].    

 

Notwithstanding more recent modifications to the mechanics of the approach [Garen, 

1992; Pagano et al., 2009], most early forecasting techniques remain largely in active use 

today.  The basic framework is similar for NRCS and DWR, with each relying on 

multiple regression techniques to relate a collection of predictors (snow water equivalent, 
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or SWE, accumulated precipitation, antecedent runoff, and in some cases, seasonal 

climate indices such as those based on the El Niño/Southern Oscillation) to a predictand 

(seasonal streamflow volume).  From January to June, NRCS produces monthly forecasts 

for various target periods at 732 locations throughout the West, with unofficial 

“guidance” outlooks released on a daily basis for a subset of locations [Pagano et al., 

2009].  DWR’s Bulletin 120 contains monthly forecasts of April–July streamflow for 

roughly 40 locations from February to May, with weekly updates issued from February to 

mid-June or as conditions warrant (DWR, 2008, personal communication).  Predictor 

data is acquired from various ground-based sources, including storage precipitation 

gauges and United States Geological Survey (USGS) streamflow data that have been 

adjusted (“naturalized”) to account for upstream anthropogenic effects such as reservoirs 

or diversions.  For SWE data, NRCS employs both manual snow course and automated 

snow sensor observations from its Snow Telemetry (SNOTEL) network.  DWR depends 

primarily on snow course data from California’s Cooperative Snow Surveys Program for 

its first of the month forecasts, using snow sensors to help estimate missing data or 

correct erroneous data and relying on them exclusively for its weekly updates.   

 

As a complement to statistical methodologies, Ensemble Streamflow Prediction (ESP) 

employs hydrologic and river routing models to produce forecasts of watershed runoff 

and streamflow [Day, 1985; Twedt et al., 1977].  In recent years, ESP has become a more 

central component of NWS water supply forecasting activities in the western U.S., as 

implemented in the NWS River Forecast System (RFS) [Anderson, 1973; McEnery et al., 

2005], and has also been applied on a limited basis by NRCS.  However, with a few 

exceptions [e.g., Kim et al., 2001, who evaluated the performance of ESP in Korea], 

studies that use “hindcasts” or “reforecasts” have not demonstrated that ESP can generate 

significantly more accurate volumetric forecasts than those from existing statistical 

systems [Pagano et al., 2009].  Yet efforts to incorporate ESP into operational decision 

support systems have advanced despite these and other hurdles [e.g., Georgakakos et al., 

2005].    
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Prediction approaches that incorporate physically based hydrologic models contain 

strengths not present in purely statistical systems.  These include the ability to 

characterize current hydrologic variables in much greater spatial detail than can be 

provided by point observations alone [Li et al., 2009; Wood and Lettenmaier, 2006].  

Another is the leveraging of physical algorithms to simulate hydrometeorological 

situations not found in the historic training period, which is also possible via stochastic 

weather generators [see, e.g., Wilks, 1992].  Distributed, physically based estimates are 

useful not only for dynamical simulations, but can expand the predictor set for statistical 

forecasting applications as well.  A hybrid approach that combines the initial conditions 

provided by a physically based hydrologic model with the regression-based methods used 

operationally has the potential to improve seasonal forecast skill.   

 

In this paper, we explore the utility of a hybrid prediction approach in a case study 

involving DWR’s seasonal forecasting system.  The study was motivated by an 

overarching interest in the practical integration of model-based hydrologic simulation and 

prediction methods within water resources decision support settings.  The approach was 

motivated by discussions with DWR personnel, who indicated that adaptations 

specifically tailored to their established statistical methodology were more likely to be 

implemented than a larger technological change toward purely model-based forecasting.  

We therefore give particular attention to comparisons of a hybrid approach with DWR’s 

operational water supply forecasts.   

 

2.2 Study area 

 

California’s high demand for water is fulfilled by a complex water supply system, 

including most notably the State Water Project (SWP), operated by DWR, and the 

Central Valley Project (CVP), operated by the U.S. Bureau of Reclamation.  Together, 

they deliver roughly one-third of the 34 billion cubic m (bcm) (28 million acre-feet 

[maf]) of water consumed annually statewide, with local projects, groundwater, and 

Colorado River imports providing the rest [CDWR, 2009].  Initial SWP water allocations 

are generally issued in late November/early December, although these are based mainly 
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on current reservoir conditions and conservative hydrologic projections (i.e., 

climatology).  Most key decisions regarding water supply usage (e.g., crop selection, 

groundwater needs) are reserved for January or February when the first snow surveys are 

conducted, and final allocations are typically issued in May (DWR, 2011, personal 

communication).    

 

Precipitation in California varies greatly from more than 3550 mm (140 in) in the 

northwestern part of the state to less than 100 mm (4 in) in the southeastern part [CDWR, 

2003].  With a climate dominated by the Pacific storm track, 75 percent of this 

precipitation falls between November and March, with the majority occurring from 

December through February [Carle, 2009].  Orographic effects generated by California’s 

massive granite backbone, the Sierra Nevada, cause much of this precipitation to fall as 

snow on its western slopes.  The resulting runoff forms the Central Valley drainage, 

which acts as a funnel for the state’s two longest rivers, the Sacramento and San Joaquin, 

as they make their way to San Francisco Bay and the Pacific Ocean.   

 

Contained within the Central Valley 

drainage are three distinct hydrologic 

regions, which together account for 

about half of the state’s average 

annual streamflow of 88 bcm (71 

maf).  The regions are further 

subdivided into 14 major watersheds 

whose seasonal streamflows are 

forecast by Bulletin 120 at the 

primary locations in Figure 2.1; 

typical response times for these basins 

range from about 6 hours (Tule) to 8 

days (Upper Sacramento) [USACE, 

2001].  Summary statistics for each of 

the hydrologic regions and watersheds 

 

Figure 2.1: The 14 watersheds of the Sacramento 

(blue), San Joaquin (green), and Tulare Lake 

(red) hydrologic regions, forming the study area 

for the paper. 
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are provided in Table 2.1.  The Sacramento region is the wettest of the three, providing 

the bulk of the SWP and CVP exports to the agricultural areas and population centers in 

the drier south.  The San Joaquin region is characterized by watersheds with higher  

 

 

 

Table 2.1: Average annual statistics for the 3 hydrologic regions and the 14 watersheds in the 

study.   For hydrologic regions, area and precipitation data are from CDWR [2009], and runoff 

data are from Dziegielewski et al. [1993] and CSWRB [1951].  For watersheds, drainage areas 

were calculated from USGS data, precipitation was calculated by areal averaging VIC forcing data 

over water years 1956–2005, and runoff was calculated from CDEC data of unimpaired 

streamflows at the points indicated in Figure 2.1 (also over water years 1956–2005).   The annual 

runoff ratio is defined as the ratio of annual runoff to annual precipitation. mcm = million cubic m; 

taf = thousand acre-feet. 

 Drainage    

Area 

[km
2
 (mi

2
)] 

Annual      

Prec 

[mm (in)] 

Annual  

Runoff 

[mcm (taf)] 

Apr-Jul 

Runoff 

[mcm (taf)] 

Annual      

Runoff        

Ratio 

Sacramento R. 70,600 (27,200) 930 (36.7) 27,600 (22,400) N/A 0.42 

   1 Upper Sac. 23,100 (8,900) 880 (34.7) 11,000 (8910) 3080 (2500) 0.54 

  2 Feather 9340 (3610)  1030 (40.7) 5700 (4620) 2200 (1780) 0.59 

  3 Yuba 3090 (1190) 1600 (62.8) 2930 (2380) 1240 (1010) 0.59 

  4 American 4890 (1890) 1270 (50.1) 3350 (2720) 1530 (1240) 0.54 

San Joaquin R. 39,400 (15,200) 670 (26.3) 9700 (7900) N/A 0.37 

  5 Cosumnes 1390 (540) 1000 (39.3) 480 (390) 160 (130) 0.35 

  6 Mokelumne 1500 (580) 1260 (49.5)  930 (750) 570 (460) 0.49 

  7 Stanislaus 2550 (990) 1110 (43.8) 1440 (1170) 870 (710) 0.51 

  8 Tuolumne 3980 (1540) 1060 (41.8) 2410 (1950) 1500 (1220) 0.57 

  9 Merced 2750 (1060) 970 (38.2) 1240 (1010) 780 (630) 0.47 

  10 San Joaquin 4340 (1680) 970 (38.2) 2260 (1830) 1550 (1260) 0.54 

Tulare Lake 44,100 (17,000) 390 (15.2) 4100 (3300) N/A 0.24 

  11 Kings 4000 (1550) 950 (37.5) 2120 (1720) 1510 (1220) 0.56 

  12 Kaweah 1450 (560) 910 (35.7) 560 (450) 350 (280) 0.42 

  13 Tule 1020 (390) 700 (27.4) 180 (150) 80 (60) 0.25 

  14 Kern 5370 (2070) 560 (21.9) 900 (730) 570 (460) 0.30 
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elevations that generally reach the peaks of their hydrographs later in the spring.  The  

Tulare Lake region is naturally an endorheic basin, separated from the San Joaquin by a  

low, broad ridge that is overtopped by the Kings River in the wettest of years [CDWR, 

2009; Carle, 2009].  Note that the Cosumnes and Mokelumne, while grouped in the San 

Joaquin region by Bulletin 120, are hydrologically distinct and more or less independent 

of the San Joaquin River system. 

 

2.3 Methods 

 

A summary of the forecasts compared in this study is presented in Table 2.2.  Both 

principal components regression (PCR) and Z-Score regression methodologies were 

adapted from NRCS as detailed below.  In contrast to the rest of the West, NRCS does 

not issue forecasts for watersheds in the Central Valley drainage, although it serves other 

parts of California such as the Klamath River and Lake Tahoe basins.  The NWS, on the 

other hand, is represented in the region by the California Nevada RFC (CNRFC), which 

issues its own water supply forecasts using a combination of ESP and its own version of 

NRCS’ PCR models (NWS, 2011, personal communication). 

     

Table 2.2: Summary of the forecasts compared in this study.  Note that “surrogate” SWE predictors 

are a subset of “simulated” SWE predictors, and “surrogate” P predictors are a subset of “gridded” 

P predictors. 
 

Source of Predictor Data   

SWE P RO Regression Methodology 
Calibration 

Period (yrs) 

Observed courses Observed gauges Observed Multiple Linear (DWR) 50 

Observed courses Observed gauges Observed PCR, Z-Score 50, 25 

Observed courses and sensors Observed gauges Observed PCR, Z-Score 25 

Surrogate courses Surrogate gauges Observed PCR, Z-Score 50, 25 

Surrogate courses and sensors Surrogate gauges Observed PCR, Z-Score 50, 25 

Simulated all Gridded all Observed PCR, Z-Score 50, 25 
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2.3.1 Statistical approach 

 

The statistical forecasting models of both DWR and NRCS can be represented as 

 

              

 

where the target period streamflow (Q) is a function of three general categories of 

predictor variables – snow water equivalent (SWE), accumulated precipitation (P), and 

antecedent runoff (RO).  DWR relies on standard multiple regression to develop its 

forecast equations, which employ various types of these predictor variables as listed in 

Table 2.3.  The two that are common to all watersheds, SWE and accumulated 

precipitation, are weighted indices of observations at multiple locations (typically 10–20 

for SWE and about 10 for precipitation) in and around the watershed boundaries.  For the 

six watersheds with more drastic ranges of topography (Feather, American, San Joaquin, 

Kings, Kaweah, and Kern), SWE is further divided into high-elevation and low-elevation 

indices.  Runoff, which is measured at the same stations for which the forecasts are 

issued, is more subjectively used depending upon the specific characteristics of each 

watershed; forecasts in the Upper Sacramento, for example, employ total runoff over the 

previous two water years in consideration of the greater water retention properties of the 

volcanic soils in that region (DWR, 2008, personal communication).  The form of the 

calibrated equation varies by watershed, but generally consists of a polynomial model 

with predictors that have been transformed (typically via a power function) to account for 

nonlinearities.   

 

Table 2.3 shows that several of DWR’s predictors describe conditions that may be 

unknown at the time of a forecast.  A forecaster working on February 1 does not know 

the current water year’s October–March precipitation, for example.  To account for this 

discrepancy, DWR relies on what are termed “future variables,” which (as the name 

suggests) extrapolate current conditions of predictor variables to future conditions using  
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Table 2.3: Predictor index variables used in DWR’s forecast equations for each of the 14 

watersheds in the study.  SWE = snow water equivalent; SWEhi = high elevation SWE; SWElo = 

low elevation SWE; POctMar = Oct–Mar precipitation for the current water year; PAprJun = Apr–

Jun precipitation for the current water year; ROOctMar = Oct–Mar runoff for the current water 

year; ROOctFeb = Oct–Feb runoff for the current water year; ROpreAprJul = Apr–Jul runoff for the 

previous water year; and ROpre2wy = total runoff for the previous two water years. 

 SWE SWEhi SWElo POctMar PAprJun ROOctMar ROOctFeb ROpreAprJul ROpre2wy 

1 x   x x  x  x 

2  x x x x x    

3 x   x x   x  

4  x x x x   x  

5 x   x x     

6 x   x x     

7 x   x x x    

8 x   x x     

9 x   x x   x  

10  x x x x x  x  

11  x x x x   x  

12  x x x x x    

13 x   x x x  x  

14  x x x x x  x  

          

their long-term medians.  Thus, using the same example, the observed precipitation from 

October to January is added to the long-term median precipitation for February and 

March to derive the total October–March precipitation used in the February 1 forecast.  

Similarly, SWE predictors always describe conditions on April 1 (when peak SWE is 

typically considered to occur), and forecasts always reflect the April–July target period, 

even when they are made later in the water year and a portion of the target period’s 

streamflow has already been observed.  This practice allows the use of a single equation 

for all dates forecasts are issued, achieving greater month-to-month consistency in 
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predictor variables and a larger sample size for equation calibration. Note that DWR’s 

final forecasts are the result of balancing predictions at several points in each watershed, 

regional comparisons of trends and relationships, and “forecaster feel” or experience 

(DWR, 2011, personal communication).    

 

In contrast to DWR, NRCS uses a regression approach based on principal components 

that dates to the early 1990s.  A well-known complication in multivariate regression is 

collinearity among the predictor variables.  DWR’s practice of constructing composite 

indices from data of like data type (e.g., a single SWE value that is a weighted index of 

multiple SWE observations) partially circumvents this problem, but because the weights 

are subjectively determined outside of the regression, they are not statistically optimal 

[Garen, 1992].  PCR is a method of restructuring the predictor variables into uncorrelated 

principal components, which become the regressors.  

 

The NRCS approach considers only data known at the time of forecast as candidate 

predictors, which leads to the use of separate equations with varying predictors for each 

forecast date.  Regression coefficients are determined by arranging principal components 

in order of decreasing eigenvalue (explained variance), developing an equation that 

sequentially retains only those principal components deemed significant via a t-test, and 

inverting the transformation so that coefficients are expressed in terms of the original 

predictor variables.  The routine employs an iterative search algorithm that optimizes 

variable combinations by developing all possible equations resulting from an increasing 

number of predictors.  With each additional variable, the standard error resulting from a 

jackknife procedure is used to order the equations, and the top 30 equations are identified.  

When the top 30 equations no longer change from one round to the next, a final equation 

is selected by striking a compromise between jackknife standard error and month-to-

month variable consistency.  NRCS’ complete regression methodology is fully detailed 

by Garen [1992] and Garen and Pagano [2007].  

 

Z-Score regression is a heuristic statistical method that takes advantage of predictor 

collinearity to relax the requirement for serial completeness [Pagano et al., 2009; Garen 
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and Pagano, 2007].  Individual predictors are first pooled into groups of like data type, 

and each observation is converted into a Z-Score, or standardized anomaly.  For each data 

type, the coefficient of determination (R
2
) between standardized predictors and 

standardized predictand are used to generate an index wherein each element is a weighted 

average of all available Z-Scores for that year.  The computed index for each data type is 

then itself standardized, and the process is repeated to create a single composite index 

reflective of all the predictor data available each year.  This composite index is then 

regressed against the standardized streamflow volumes using a least squares method.  

While PCR remains the official forecasting methodology for NRCS, Z-Score regression 

is currently used to provide daily objective guidance to users for a subset of forecast 

locations [Pagano et al., 2009]. 

 

2.3.2 Physically based simulation 

 

Regardless of the regression technique, all of the aforementioned methods employ 

observed data as predictors.  In this study, we contribute simulated SWE predictors using 

the snow model [Andreadis et al., 2009] contained in the Variable Infiltration Capacity 

(VIC) macroscale hydrologic model [Liang et al., 1994].  VIC is a semi-distributed grid-

based model that is typical of land surface models (LSMs) used in most numerical 

weather prediction and climate models [Wood and Lettenmaier, 2006].  Like other LSMs, 

VIC solves the water and energy balance at each time step, but is distinguished by its 

parameterization of subgrid variability in soil moisture, topography, and vegetation.  VIC 

has been successfully applied in a number of research studies involving major river 

basins worldwide [Nijssen et al., 1997], and was demonstrated to reproduce SWE, soil 

moisture, and runoff data that compared favorably with observed data for watersheds of 

varying size across the conterminous U.S. [Maurer et al., 2002]. 

 

Snow accumulation and ablation processes within VIC are simulated using a two-layer 

energy and mass balance approach.  A thin surface layer is used to solve energy exchange 

with the atmosphere, while the lower or pack layer is used as storage to simulate deeper 

snowpacks [Andreadis et al., 2009; Cherkauer and Lettenmaier, 2003].  The model 
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contains an explicit overstory canopy interception scheme that accounts for sublimation, 

meltwater drip, and mass release of intercepted snow.  

 

For this study, VIC implementations described in VanRheenen et al. [2004] and Tang and 

Lettenmaier [2010] were adapted to a spatial resolution of 1/16 degree (roughly 5–7 km 

at this latitude).  Each grid cell was further subdivided into as many as five elevation 

bands, depending on elevation range.  VIC as a whole was implemented at a 24-hour time 

step, with the embedded snow model using a 1-hour time step.  The model was forced by 

daily precipitation and maximum/minimum temperature data from National Oceanic and 

Atmospheric Administration (NOAA) Cooperative Observer stations, and daily wind data 

from the National Centers for Environmental Prediction–National Center for 

Atmospheric Research (NCEP–NCAR) Reanalysis Project, following the methods of 

Maurer et al. [2002].  

 

2.3.3 Hybrid model 

 

Two objectives guided the development of the hybrid models: first, to produce methods 

relevant to DWR’s current operational forecasting setting, and second, to allow objective 

comparisons between the respective skill of simulated and observed predictors.  Our 

regression approach is therefore a compromise between the aforementioned statistical 

techniques.  We employed the same predictor variables in each watershed as those listed 

in Table 2.3, and we calibrated our equations over the same 50-year period (water years 

1956 to 2005) used by DWR.  Instead of standard multiple regression, however, we 

adopted the PCR and Z-Score methodologies used by NRCS.  PCR forecasts were 

generated using the equation with the median jackknifed standard error of the best 30 

models resulting from the search algorithm.  This choice “handicapped” our results to 

match more closely those that might be expected operationally, which typically reflect 

models with slightly less than optimal skill due to the additional selection criterion of 

maintaining consistent predictors from month-to-month (see section 2.3.1).  In actuality, 

the difference in skill between the median equation and the best equation was negligible.   
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Unlike DWR’s methodology, predictor variables were used only as they were known at 

the time of the forecast; SWE data were not extrapolated to April 1, and data representing 

accumulated quantities were used only when in the past.  A forecast issued on February 1 

included just October–January precipitation in its value for the October–March 

precipitation predictor and did not use the April–June precipitation predictor at all, for 

example.  We also imposed the criterion that predictors have a correlation of at least 0.3 

with the predictand (as is the practice at NRCS) and at least 10 non-zero values over the 

50-year period.  In addition, rather than using a constant target period regardless of the 

forecast date, we predicted shrinking target periods reflecting only the months remaining 

in a season.  A forecast on April 1 was thus for the entire April–July season, but a 

forecast on May 1 was made just for May–July.  This choice has two benefits.  First, in 

contrast to DWR’s practice of using April 1 SWE as a predictor even in forecasts issued 

later in the season, our usage of current conditions would result in constant target period 

forecasts that employ late-season SWE to predict prior streamflow.  Second, by focusing 

our attention on just the water remaining in the snowpack, we are better able to test the 

late-season performance of a hybrid approach, which can integrate SWE simulated at the 

highest elevations at a time when snow courses or sensors at lower elevations may 

already be snow free. 

 

The hybrid model predictors included VIC-simulated SWE data and gridded precipitation 

forcing data as described in section 2.3.2.  Runoff predictors were obtained from 

observed records of unimpaired streamflow, archived at the California Data Exchange 

Center (CDEC) (available at http://cdec.water.ca.gov), for the locations shown in Figure 

2.1.  All SWE data occurred on the first of the month, as at DWR.  The domain from 

which the simulated data were selected depended on the locations of DWR’s snow and 

precipitation observing stations, many of which are located outside catchment boundaries 

(DWR, 2008, personal communication).  Watershed boundaries were expanded (“offset”) 

by either 1/4, 1/2, or 3/4 degree in latitude or longitude in order to encompass all of the 

observing stations, and simulated data were compiled for all grid points included in the 

expanded domains.  Since observations external to catchment boundaries are often 

considered proxies for unmonitored points within, some may question the need for 

http://cdec.water.ca.gov/
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external data when all internal data are simulated.  Yet the weather patterns resulting in 

precipitation and snow yield covariability at these locations as well, and thus the offsets 

offer an opportunity to assess the relationship of predictive skill to distance from 

watershed boundaries.  Figure 2.2 shows watershed areas, expansion offsets, and 

expanded areas (top), along with the numbers of simulated SWE and precipitation 

predictors (middle) for each watershed.  The greater numbers of SWE than precipitation 

predictors result from the multiple elevation bands present within each grid cell, as 

discussed in section 2.3.2.   

 

It should be noted that our hybrid approach does not account for structural uncertainty in 

forecasts, a topic that has received considerable attention in the recent hydrologic 

literature [e.g., Devineni et al., 2008; Sharma and Chowdhury, 2011].  Structural 

uncertainty, which concerns forecast errors that can be attributed to deficiencies in model 

formulations, is particularly relevant when models are based on a large number of 

candidate predictors.  A simple strategy for addressing this issue could involve a static 

combination of forecast models.  In the present context, such an approach might derive a 

weighted average of forecasts resulting from each of the 30 models selected by the PCR 

search algorithm, with weights determined based on model fitness.  While static 

combination has been shown to improve the stability of model predictions, however, 

unwanted side-effects such as biases in the estimation of high and low flows are likely to 

result [Sharma and Chowdhury, 2011].  Other strategies such as dynamic model 

combination could better address the issue of structural uncertainty but would increase 

system complexity and lie outside the scope of the study to investigate.   

 

2.3.4 Control models 

 

Our “control” forecast models were developed using the same approach as the hybrid 

models (i.e., PCR and Z-Score), but incorporated observed data obtained from CDEC for 
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Figure 2.2: Watershed and expanded predictor areas (top); numbers of simulated predictors 

(middle); and numbers of observed predictors (bottom). 
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stations used by DWR in their monthly forecasts.  In contrast to forecasts based on 

simulated data, however, forecasts based on observed data are less straightforward.  

Many observed records are serially incomplete, an issue that can be circumvented using 

an approach like Z-Score regression, but which complicates methods like PCR.  

Moreover, DWR’s official SWE predictors comprise manual snow course observations 

but not automated snow sensor observations, which occasionally suffer inaccuracies due 

to problems like “ice bridging” (DWR, 2008, personal communication).  Thus, official 

observations are generally taken only as needed in the months of February to May, 

precluding the development of control models at other times of the year.   

 

To address this issue, we incorporated snow sensor data by selecting a collection of snow 

sensors that mimicked the official snow courses.  Most snow sensor records, however, 

date only as far back as the late 1970s or early 1980s, whereas DWR’s official equations 

are calibrated over a 50-year period from water years 1956 to 2005.  To support a 

consistent comparison between prediction approaches, we devised two types of control 

models: one that included just snow course data and was calibrated over the full 50-year 

period used by DWR, and one that included both snow course and snow sensor data and 

was calibrated over a 25-year period from water years 1981 to 2005.  The numbers of 

snow courses, snow sensors, and rain (precipitation) gauges used for each watershed are 

indicated in Figure 2.2 (bottom).  We estimated missing SWE and precipitation 

observations (as required by PCR) by regressing stations with missing data against those 

of like data type within the same watershed, which is the practice preferred by NRCS 

(NRCS, 2010, personal communication).  Stations that had less than 80 percent of a 

complete record were excluded from the analysis.   

 

2.3.5 Surrogate observational data 

 

Despite the efforts detailed above, SWE records for many watersheds remained 

incomplete in June and July.  We therefore added an analysis based on “surrogate” 

observational data, which consisted of either gridded precipitation data or simulated SWE 

data at grid points adjacent to each observing station.  Surrogate SWE data were selected 
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from the model’s elevation band most closely corresponding to the elevation of the 

observing station.   

 

The surrogate approach allows us to quantify the benefit of additional predictor 

candidates in a statistical model, which is a central question of this study.  Comparisons 

between the predictive skill of simulated and observed data are complicated by 

differences between the two data sets.  The surrogate approach circumvents the 

uncertainty associated with these differences since the surrogate data are selected from, 

and thus a subset of, the simulated data.  The surrogate data also provide a baseline from 

which to compare the skill of actual observations, or to estimate their potential skill in 

months with insufficient data.  These comparisons are discussed in section 2.4, which 

also includes comparisons with forecasts retrospectively generated using DWR’s current 

regression equations, circa 2006 (DWR, 2008, personal communication).   

 

2.4 Results 

 

2.4.1 Forecast skill analysis 

 

We first present our results from the surrogate analysis to establish a baseline of 

performance.  Jackknifed standard error comparisons between forecasts based on the full 

suite of simulated data and those based on just the selected surrogate data are presented in 

Figure 2.3 for both Z-Score and PCR methodologies.  All results are based on forecasts 

generated using linear forms of regression models.  Similar experiments based on 

nonlinear equations did not yield more normally distributed residuals or lower standard 

errors than their linear counterparts.    

 

Several patterns emerge from the results of Figure 2.3.  For each watershed, PCR 

forecasts are comparable to or better than those produced using a Z-Score approach.  

Increasing the number of candidate predictors consistently results in superior forecast 

skill under the PCR approach, with models developed from all gridpoints in a domain 

(hybrid forecasts) 
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Figure 2.3: Jackknife standard error as a percentage of mean streamflow for a shrinking target 

period over water years 1956 to 2005. 
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achieving the lowest standard errors.  For almost all watersheds, including the Yuba and  

Merced in particular, the largest improvements occur late in the snowmelt season in the 

months of June and July, supporting the notion that a hybrid model can exploit the ability 

to simulate SWE at high elevations.  The greatest overall improvements occur in the 

Cosumnes and Tule, which are less snowmelt-dominant and have lower elevations and 

streamflows than other watersheds in the study.  These results appear to be mostly a 

reflection of the coverage offered by existing observation networks, which are less dense 

than in other catchments, and the particular performance of the hybrid forecasts in wet 

years (section 2.4.2), which tend to dominate standard error for all years because of the 

positive skew in the streamflow distributions.  Note, however, that even with these 

improvements, forecast error is still higher in the Cosumnes and Tule than other 

watersheds due to the higher coefficients of variation (CV) of their Apr–Jul streamflows 

(0.81 and 0.97, respectively).   

 

Results using a Z-Score approach tell a different story.  In most watersheds, forecasts 

based on the full set of simulated data are comparable to or, at best, marginally better 

than those based on just the selected surrogate data.  In the Kings River watershed, 

forecasts based on the full set of simulated data are actually worse than those based on 

just the selected surrogate data.  Interestingly, as in the PCR approach, the largest 

improvements occur in the Cosumnes and Tule River basins.  The poor performance of 

Z-Score was clearly due to a lack of a search routine to first screen out those predictors 

with negligible predictive skill, thus diluting the predictive skill of the group as a whole.  

As a test, we performed an additional analysis whereby only those stations selected for 

the PCR model were used as Z-Score predictors, and found the results to be comparable 

to those obtained by PCR alone.  However, because this screening routine was already 

embedded in the PCR approach, Z-Score was abandoned for the rest of the analysis. 

 

Figure 2.4 presents data reflecting the 10th and 90th percentiles of forecast residuals as a 

percentage of mean streamflow.  These “funnel plots,” so named because of their shape, 

compare DWR’s forecasts with PCR forecasts based on three types of predictor data – the 
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Figure 2.4: 10th and 90th percentiles of forecast residuals as a percentage of mean 

streamflow for a constant Apr–Jul target period over water years 1956 to 2005. 
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full set of simulated data for each domain, selected surrogate data, and observed data that 

have been filled using a Z-Score regression methodology (see section 2.3.4).  Because all  

four forecast types are calibrated over the 50-year 1956–2005 period, forecasts that 

employ observed or surrogate snow sensor data were excluded.  Residuals from DWR’s 

forecasts are shown beginning in February, which is the first month they are available 

each water year, and residuals from PCR forecasts based on observed data are shown 

only for February through May, since those were the only months that permitted the 

development of complete SWE records.   Funnel plots are typically employed by DWR 

as a measure of model skill (DWR, 2008, personal communication), and as such, reflect 

the entire Apr–Jul season rather than a shrinking target period as in Figure 2.3.  PCR 

forecasts issued after April 1 were therefore adjusted by adding streamflow observed 

since April 1 to account for the full period.  This unequal advantage should be noted 

when comparing them to DWR’s official forecasts in these plots. 

 

A striking result from Figure 2.4 is the close correspondence between forecast residuals 

based on observed data (green lines) and those based on simulated surrogate data at 

selected gridpoints (red lines).  Despite the differences between the two data sets, a 

surrogate approach appears to produce forecasts that are remarkably similar to those 

based on their observed counterparts.  The implications of this result suggest that forecast 

skill for months without sufficient observed data can be reasonably reproduced using 

forecasts based on surrogate (estimated) predictor data.  As a check on the interannual 

variability of modeled SWE, we calculated time series of composite indices that were 

weighted averages of the surrogate SWE data, and then compared these indices to those 

based on observed SWE data used by DWR.  Correlations between the two were high, 

ranging from 0.84 to 0.97 for April 1 SWE, depending on the watershed.  We also 

checked whether a relationship existed between the difference in modeled and observed 

indices and DWR’s historical forecast errors, but found only weak correlations at best. 

 

As in Figure 2.3, the funnel plots indicate that most forecasts based on the full set of 

simulated data offer at least some improvement over PCR forecasts based on either 

observed or surrogate data.  When averaged over both 10th and 90th percentiles, for 
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example, improvements in April 1 forecasts range from about 1-2% (Yuba and 

American) to 12-13% (Kaweah and Tule).  In terms of streamflow volume alone, the 

greatest improvement in April 1 forecasts occurs in the Upper Sacramento, where a 

difference of ~11% equates to a reduction in forecast error of about 340 million cubic m 

(mcm) (280 thousand acre-feet [taf]).  The apparent late-season superiority of PCR 

forecasts over DWR’s official forecasts should be tempered by the incongruity between 

them noted above.  However, the earlier season PCR residuals are relatively unbiased 

(i.e., well-centered around the zero percentile) in contrast to the official forecast 

residuals, which appear shifted in the positive direction.  This asymmetry is most likely 

due to the nonlinearity of DWR’s equations and will be addressed in greater detail in the 

next section.   

 

Efforts to incorporate snow sensor data as predictors offered little additional information 

about the late-season performance of observation-based PCR forecasts.  Despite the use 

of a smaller 25-year calibration period, the sparseness of these data still left most 

watersheds with incomplete SWE records in the months of June and July.  For exceptions 

such as the American River watershed, results corroborated the above findings that skill 

metrics for surrogate-based forecasts 

were reasonable indicators of skill for 

forecasts based on their observed 

counterparts (Figure 2.5).   

 

2.4.2 Analysis by water year type 

 

In addition to evaluating forecast 

performance in all years, we assessed 

performance in wet, normal, and dry 

year categories (defined by terciles).  

These groupings were analyzed via 

another commonly used skill metric, 

the Nash-Sutcliffe coefficient of 

Figure 2.5: Jackknife standard error for PCR 

forecasts with a shrinking target period and a 25-year 

calibration period (1981–2005) in the American.  

Incorporating snow sensor data as predictors allowed 

observation-based PCR forecasts to be generated in 

the additional months of December, January, and 

June. 
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efficiency (NS) [Nash and Sutcliffe, 1970].  An NS score of 1 is perfect, 0 indicates skill 

equal to that of climatology, and values less than 0 denote negative skill.   

 

NS scores for each of the 14 watersheds are given in Figure 2.6 for forecasts issued on 

April 1, which is considered the start of the melt season and thus a benchmark for 

comparison, and in Figure 2.7 for forecasts issued on May 1, when final allocations for 

SWP contractors are issued. Figure 2.6 (top) shows scores over all water year types and 

resembles the results in Figures 2.3 and 2.4.  PCR forecasts based on the full set of 

simulated data result in the best scores, those based on either observed or surrogate data 

result in slightly lower scores, while DWR’s official forecasts generally do not perform 

as well.  The next plot (wet years only) is similar to the top plot in its skill rankings, 

although the scores are lower for each watershed.  NS scores for normal and dry water 

years, however, are less coherent.  For normal years, DWR’s forecasts outperform PCR 

forecasts in the Sacramento watersheds, while PCR forecasts outperform DWR’s 

forecasts in many of the other watersheds; for dry years, the reverse is more often true.  

In Figure 2.7, which shows results for forecasts issued on May 1, scores are consistently 

higher.  Forecasts in the top two plots show similar patterns to those in Figure 2.6, with 

considerable wet-year improvements in both figures for the Cosumnes and Tule 

(watersheds 5 and 13).  Conspicuously, however, DWR’s forecasts score highest for 

normal and dry years in Figure 2.7.  Note that May 1 PCR forecasts are for streamflow 

from May to July while DWR’s forecasts are for streamflow from April to July, although 

the effect of this disparity on NS scores is most likely small.   

 

The variation in performance of the methods in Figures 2.6 and 2.7 is largely explained 

by the variations in mean forecast bias shown in Figures 2.8 and 2.9.  Note that the biases 

in these plots reflect forecasts minus observations, as opposed to the residuals presented 

in Figure 2.4, which reflect observations minus forecasts in accordance with DWR’s 

methodology.  The top three plots in Figure 2.8, which are all based on PCR forecasts, 

show similar patterns.  Biases calculated over all water years are consistently zero, as 

expected for PCR models.  Biases calculated for wet years are minimal, while those for 

normal and dry years are slightly larger.  In contrast, DWR’s forecasts exhibit a markedly 
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Figure 2.6: April 1 Nash-Sutcliffe efficiency scores for years of (from top to bottom) all, wet, 

normal, and dry water year types. 
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Figure 2.7: May 1 Nash-Sutcliffe efficiency scores for years of (from top to bottom) all, wet, 

normal, and dry water year types.  Note that PCR forecasts are for a shrinking target 

period while DWR forecasts are for a constant Apr-Jul target period. 
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Figure 2.8: April 1 forecast bias as a percentage of mean target period streamflow for 

(from top to bottom) PCR forecasts using observed data, surrogate gridpoints, all 

gridpoints, and DWR’s official forecasts.   
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Figure 2.9: May 1 forecast bias as a percentage of mean target period streamflow for (from 

top to bottom) PCR forecasts using observed data, surrogate gridpoints, all gridpoints, and 

DWR’s official forecasts.  Note that PCR forecasts are for a shrinking target period while 

DWR forecasts are for a constant Apr-Jul target period. 
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negative bias for each water year type, indicating a tendency to underpredict streamflow.  

This explains some of the difference in NS scores; where DWR’s forecasts are more 

biased than PCR forecasts (all and wet years), their scores are lower, but for the several 

watersheds in which their normal and dry year forecasts are less biased, their scores are 

higher.  An example of the latter condition occurs for normal year forecasts in the 

Sacramento watersheds, due in part to residual patterns that are less linear than in other 

parts of the domain.  Interestingly, DWR’s May 1 forecasts (Figure 2.9, bottom) are still 

negatively biased, but much less so than their April 1 forecasts.  PCR forecasts on May 1 

are generally also less biased, but for many watersheds DWR’s dry year biases are now 

smaller, thus explaining their better performance in that category.   

 

Despite the superior performance of the hybrid forecasts overall, their limitation in the 

dry year category warrants comment, especially given California’s sensitivity to water 

scarcity.  To its credit, the hybrid model’s dry year forecasts perform well in the 

Sacramento region, which is the source of most of the state’s water supply.  However, 

these forecasts are generally less skillful in other watersheds, and thus the model may 

benefit from a calibration strategy that better recognizes different hydroclimate regimes. 

 

2.4.3 Geospatial analysis of predictors 

 

Applying a search algorithm in combination with PCR also represents a systematic 

method of determining optimal variable combinations for predictive purposes.  In the 

context of a gridded set of candidate predictor data, the approach offers a means for 

analyzing predictor locations.   

 

To illustrate the potential utility of the method in this role, we assess predictor locations 

in the Feather and San Joaquin watersheds (Figures 2.10 and 2.11, respectively).  At the 

upper left of each figure is a topographic map of the watershed’s predictor domain, 

including offsets described earlier.  The plots in the lower two rows depict the April 1 

SWE (left) and Oct–Mar precipitation (right) predictors that were chosen by the hybrid 

model for the April 1 forecasts.  The black circles in the middle row represent all of the 
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Figure 2.10: (Left) April 1 SWE and (right) October–March precipitation predictor locations 

for April 1 hybrid forecasts in the Feather.  See text for more details. 
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Figure 2.11: (Left) April 1 SWE and (right) October–March precipitation predictor locations 

for April 1 hybrid forecasts in the San Joaquin.  See text for more details. 
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predictors that appear at least once in any of the top 30 equations, with the size of each 

circle proportional to the frequency with which the predictor appears in the equations.  

The red circles in the bottom row represent what we term the “mean water contribution” 

of each predictor in the final selected equation (i.e., the equation having the median 

jackknifed standard error of the best 30 models, as described in section 2.3.3).  Each 

predictor’s mean water contribution is the product of its regression coefficient in the 

selected equation and its mean value over the 50-year period, thus representing the 

average influence of the predictor on forecasted streamflows.  

 

Underlying the selected predictors are maps of climatology for each predictor type.  Grid 

cells shown in color were used as predictor candidates (i.e., those having a correlation of 

at least 0.3 with the predictand and at least 10 non-zero values over the 50-year period, as 

described in section 2.3.3).  Some initial patterns are discernable.  For both SWE and 

precipitation, the most frequently selected predictors seem to occur in clusters, indicating 

that those locations contain important information for streamflow prediction.  The 

relationship of these clusters to climatology is not obvious; some occur in regions of high 

average values (such as the SWE predictors in the south-central part of the Feather) and 

others occur in regions of lower average values (such as the SWE predictors in the 

southeastern corner of the Feather).  In terms of mean water contribution, predictors in 

regions of higher climatology generally have more influence, but those in regions of 

lower climatology are significant as well.  Similar patterns are evident for precipitation 

predictors and for the San Joaquin watershed.   

 

Additional statistical data for the predictors used in the selected equation are given in 

Tables 2.4 and 2.5.  The correlations and CVs presented are revealing.  There is generally 

a direct relationship between climatological averages and correlation; those predictors 

with higher means generally have higher correlations as well.  On the other hand, 

climatological average is generally inversely related to CV, with predictors having the 

lowest means possessing the highest CVs.  The two columns at right show the 

eigenvector loadings for each predictor in the two principal components deemed 

significant (the Apr 1 equations for both the Feather and San Joaquin just happened to  
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Table 2.4: Predictor statistics for the selected Apr 1 forecast equation in the Feather.  Freq. = 

frequency of predictor occurrence in the top 30 equations; Corr. = correlation between 

predictor and predictand; CV = coefficient of variation; Mean = mean climatological value in 

mm; Reg. Coef. = regression coefficient in the selected equation; and Mean Water Contr. = 

product of the mean and the regression coefficient, which is equivalent to the mean 

“contribution” of the predictor to the streamflow forecast in mcm.  The elements of PC1 and 

PC2 represent the loadings in the eigenvectors for each of the predictors, and explained 

variance was determined from the respective eigenvalues. 
 

ID Type Freq. Corr. CV 
Mean 

(mm) 

Reg. 

Coef. 

Mean 

Water 

Contr. 

(mcm) 

PC1 PC2 

X1  Apr 1 SWE 1 0.42 2.65 28.22 1.42 40.01 0.22 -0.04 

X2 Apr 1 SWE 7 0.81 0.80 428.40 0.59 250.83 0.39 0.14 

X3 Apr 1 SWE 29 0.82 0.96 313.50 0.69 217.03 0.39 0.21 

X4 Apr 1 SWE 24 0.43 2.80 1.38 22.77 31.35 0.24 -0.46 

X5 Apr 1 SWE 29 0.36 3.98 0.83 19.96 16.59 0.21 -0.55 

X6 Apr 1 SWE 13 0.36 3.99 0.57 29.14 16.49 0.21 -0.55 

X7 Apr 1 SWE 30 0.71 1.45 112.47 1.03 116.15 0.34 0.03 

X8 Oct–Mar Prec 30 0.83 0.37 808.40 0.68 552.87 0.39 0.14 

X9 Oct–Mar Prec 15 0.83 0.39 668.87 0.77 517.84 0.38 0.19 

X10 Oct–Mar Prec 29 0.67 0.59 368.16 0.79 292.32 0.31 0.26 

     Explained Variance (%) 49 24 

        

contain two principal components each).  For both watersheds, the first principal 

component represents the general spatial distribution of water availability in the basin, 

i.e., with higher weightings in areas with higher climatological averages.  The second 

principal component reflects variability from that pattern, according higher weights to 

predictors with lower climatological averages and higher CVs.  Note that the regression 

coefficients (described in section 2.3.1) have been inverted from the principal component 

transformation to allow expression in terms of the original predictor variables.  Thus,  

with the exception of the y-intercept (which is not shown), the regression coefficient 

column completely describes the final equation for the April 1 forecast.   
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Table 2.5: Predictor statistics for the selected Apr 1 forecast equation in the San Joaquin.  

Abbreviations are as defined for Table 2.4.   
 

ID Type Freq. Corr. CV 
Mean 

(mm) 

Reg. 

Coef. 

Mean 

Water 

Contr. 

(mcm) 

PC1 PC2 

X1  Apr 1 SWE 30 0.41 3.51 2.86 12.14 34.73 0.10 -0.76 

X2 Apr 1 SWE 30 0.96 0.57 681.50 0.25 167.85 0.31 -0.10 

X3 Apr 1 SWE 21 0.92 0.65 634.46 0.21 130.89 0.30 -0.04 

X4 Apr 1 SWE 4 0.88 1.21 134.67 0.36 48.24 0.30 0.17 

X5 Apr 1 SWE 19 0.86 0.86 417.06 0.16 66.94 0.29 0.16 

X6 Apr 1 SWE 30 0.88 0.66 465.78 0.28 129.91 0.28 -0.09 

X7 Apr 1 SWE 30 0.84 1.33 98.02 0.36 35.46 0.29 0.23 

X8 Apr 1 SWE 30 0.66 1.64 59.02 0.11 6.49 0.24 0.41 

X9 Oct–Mar Prec 26 0.93 0.40 397.33 0.55 217.34 0.30 -0.05 

X10 Oct–Mar Prec 30 0.92 0.40 612.12 0.40 247.36 0.29 -0.17 

X11 Oct–Mar Prec 30 0.93 0.39 960.14 0.26 251.46 0.30 -0.16 

X12 Oct–Mar Prec 19 0.91 0.40 937.98 0.26 242.94 0.29 -0.17 

X13 Oct–Mar Prec 30 0.76 0.63 111.19 0.65 72.04 0.26 0.18 

     Explained Variance (%) 76 8 

        

The results imply that most of the primary skill is derived from predictors with higher 

climatological averages, but important information is also contained on the “fringes” of 

these primary areas.  This finding is particularly relevant for SWE, which is “transient” at 

the lower elevation approaches to the high SWE areas.  Most ground-based observations 

of SWE are located in areas of relatively high and persistent (non-transient) snow 

accumulation, but these may co-vary more strongly with each other than with less 

measured transient areas (e.g., those that appear in the second principal components of 

this analysis).  In addition, many of the best predictors are located outside watershed 

boundaries, a result noted for other watersheds as well.  It will not surprise statistical 
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forecasters that a location need not be “in-basin” to contribute to streamflow 

predictability.  Although this analysis did not formally separate predictor selection, 

calibration, and validation, and thus some potential for predictor selection bias may exist, 

jackknifing reduces the risk of this bias by separating validation from predictor selection 

and calibration.   

 

Also shown on the maps in Figures 2.10 and 2.11 are the locations of existing ground-

based observing stations.  A comparison of these locations with those of the predictors 

selected by the hybrid model is instructive.   While some predictors, such as the SWE 

predictors in the south-central part of the Feather, are located in areas already well served 

by observing stations, many, such as the precipitation predictors in the northeast corner of 

the Feather, are not.  This suggests that distributed model simulations coupled with 

statistical analysis may provide a useful tool for improving or expanding existing 

networks, and is an area for future research. 

 

2.5 Conclusions 

 

By combining physically based predictor variables with statistically based prediction 

methods, we demonstrated a hybrid approach that leverages strengths from both in a real-

time, operational forecasting framework.  Hybrid forecasts are shown to attain skill 

comparable to those based on observed data when a selected number of predictor 

variables are employed, and superior skill when the full set of simulated data are 

considered.  Although this study focuses only on SWE in order to conform with 

operational practice, various studies have shown a contribution of soil moisture to 

streamflow predictability as well [Koster et al., 2010; Maurer et al., 2004; Wood and 

Lettenmaier, 2008]; thus along with other simulated fields such as runoff, it is worth 

examining as a potential input to this framework in future studies.    

 

By simulating SWE at the highest elevations, a hybrid approach also allows the 

generation of late-season forecasts when most observing stations are snow-free.  This 

feature of the model holds particular value for the catchments of the San Joaquin and 
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Tulare Lake regions, which contain peaks as high as 4400 m (14,500 ft) and typically 

experience longer snow persistence.  For the San Joaquin, Kings, and Kern specifically, 

roughly 10% of each watershed lies above the highest snow observations at 3400 m 

(11,000 ft), indicating sizable areas that are ungauged once the snowline has reached this 

elevation.  Benefits may be most notable for watersheds with relatively small reservoirs 

that must balance late-season water supply with flood control considerations.  The classic 

example of this scenario is the San Joaquin watershed’s Millerton Reservoir, whose 

capacity of 640 mcm (520 taf) must contend with an average Apr–Jul runoff of 1550 

mcm (1260 taf) (Table 2.1).  This low storage to runoff ratio prohibits carryover storage, 

amplifying the shortfall risks associated with late-season over-forecasts that are common 

in dry years (DWR, 2011, personal communication).  In wet years, it is not unusual for 

Jun–Jul runoff alone to reach 1300 mcm (1060 taf), for which even a respectable 5% 

under-forecast equates to 65 mcm (53 taf) of unanticipated runoff, or roughly 10% of the 

reservoir’s capacity, at a time when reservoir levels are likely to be high.  Similar issues 

occur in the Merced, Kings, Kaweah, and Kern watersheds, all of which struggle with 

low storage to runoff ratios and limited downstream capacities to manage snowmelt 

flooding, the most recent of which occurred in water year 2006 [see, e.g., Martin, 2006]. 

 

Beyond its forecasting ability, a hybrid model holds potential as a tool for rationalizing 

predictor locations.  While somewhat unique in the context of water supply forecasting, 

our geospatial analysis is similar to those that have long been common in the atmospheric 

sciences [see, e.g., Wallace and Gutzler, 1981].  One could conceive of additional 

experiments designed specifically to determine the next best location for an observing 

station within a ground-based system.  Thus, whether hybrid approaches find use in 

current systems of operational forecasts, statistical analyses of distributed datasets can 

help us to assess and improve the infrastructure that makes them possible. 

 

Results of the study have been well received by the Hydrology Branch of DWR’s 

Division of Flood Management.  Given the well-established use of its current system and 

the economic and computational expense of a physically based model, however, it is 

unclear whether DWR would switch to a hybrid approach in the near term (although it is 
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possible that they could use real-time simulations currently run by CNRFC, which could 

also be leveraged in case of ground equipment failure).  Perhaps most valued, therefore, 

is the geospatial capacity of the approach.  As DWR moves forward in preserving and 

expanding its data collection network, it has been increasingly asked to justify the cost 

and environmental impacts of its observing stations (e.g., disturbing a pristine wilderness 

area with a data collection tower).  A hybrid model provides the agency with a tool to 

rationalize its geographic choices, not to mention the trickledown effect of these locations 

on data quality and forecast improvements (DWR, 2011, personal communication).   

 

Opportunities for a hybrid approach exist in other parts of the western U.S. as well, 

particularly in snowmelt-dominant watersheds with relatively sparse observation 

networks.  Possible candidates include those with a considerable percentage of their 

domain in the National Wilderness Preservation System, for which observation 

equipment may be restricted [Landres et al., 2003]; examples include the Wind River 

(Wyoming), Flathead River (Montana), and Gunnison River (Colorado) basins (NRCS, 

2011, personal communication).  Benefits can also be realized in watersheds with a more 

transient snowpack, as demonstrated for the Cosumnes and Tule in the present study.   

 

Raw operational forecasts are subject to a great deal of scrutiny and adjustment before 

they are issued, and so the actual impact of a hybrid system is difficult to predict.  Yet the 

advantages of the approach should not be overlooked.  Physically based models forced by 

mostly low-elevation temperature and precipitation data simulate SWE with biases to be 

sure, but accurately enough to add value for statistical forecasts.  This paper presents one 

means of exploiting that information resource within an operational framework.  
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III. INFORMING HYDROMETRIC NETWORK DESIGN              

FOR STATISTICAL SEASONAL                                          

STREAMFLOW FORECASTS 

 
This chapter has been submitted in its current form to the Journal of Hydrometeorology 

[Rosenberg et al., 2012a].   

 

3.1 Introduction 

 

The design of hydrometric networks is a classical problem in hydrometeorology.  Central 

to this issue is that benefits produced by the possession of data should never be less than 

the data collection costs themselves [Rodríguez-Iturbe and Mejía, 1974].  One can 

approach the problem by either eliminating redundant stations to reduce costs, or 

augmenting a network to increase benefits, and countless studies have examined these 

strategies using a variety of methods for a range of data collection objectives [see, e.g., 

Mishra and Coulibaly, 2009].   

 

With respect to surface water networks, a number of network design studies have been 

motivated by the more accurate prediction of streamflow, such as for flood hazard 

management [e.g., Tsintikidis et al., 2002; Volkmann et al., 2010] or water supply [e.g., 

Peck and Schaake, 1990].  The methodology used by these studies is necessarily dictated 

by the prediction model for which the network data are intended.  Because many of these 

prediction models are either physically based or lumped conceptual runoff simulation 

models, an implicit assumption is that more accurate estimates of mean areal 

precipitation result in more accurate streamflow predictions, and often interpolation 

methods such as kriging are applied to historical observations for the network design 

approach [Pardo-Igúzquiza, 1998; Tsintikidis et al., 2002; Volkmann et al., 2010].  These 

methods, however, may be less appropriate for statistical prediction models based on 

point observations of hydrologic variables. 
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One such prediction model is that of the Natural Resources Conservation Service (NRCS) 

of the U.S. Department of Agriculture.  Since 1935, a principal responsibility of NRCS 

has been the publication of water supply forecasts in the American West [Helms, 2008].  

End users of the forecasts serve a broad array of objectives ranging from irrigated 

agriculture, flood control, and municipal water supply to endangered species protection, 

power generation, and recreation [Pagano et al., 2009].  Traditionally, NRCS has 

coordinated with the National Weather Service (NWS) to publish forecasts at the 

beginning of each month from January through June for several hundred locations 

throughout the region.  

 

To generate forecasts, NRCS relies on a multivariate principal components regression 

(PCR) methodology based primarily on point observations of initial hydrologic 

conditions (IHCs) [Garen et al., 1992].  The source of the IHCs is an extensive network 

of roughly 1200 snow courses and 850 SNOw TELemetry (SNOTEL) sites scattered 

throughout the western U.S. (NRCS National Water and Climate Center, personal 

communication, 2012).  Over the past 10–15 years, roughly 40% of SNOTEL stations 

have been retrofitted with sensors of soil moisture and several other environmental 

parameters (so-called “enhanced” SNOTEL stations).  Data from the NRCS Soil Climate 

Analysis Network (SCAN) [Schaefer et al., 2007] are also available, although most 

records are still too short for use in statistical forecasts.   

  

New SNOTEL installations have averaged roughly 13 per year since about half of the 

currently active stations were installed in 1979 and 1980, with the frequency of new 

installations varying highly from state to state.  Equipment costs for a standard 

installation total $25,000, a sum that is quickly outpaced by annual operation and 

maintenance costs (NRCS NWCC, personal communication, 2012).  Site selection for 

new SNOTEL stations is generally an ad hoc process that may be influenced by the offer 

of funding cooperation from a user group, land availability, road proximity, and a 

qualitative perception of monitoring network needs.  For years, the guiding philosophy 

was simply to situate new stations at existing snow courses, providing continuous 

monitoring at locations that otherwise would have monthly or less frequent reports, and 
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enabling intercomparison between SNOTEL and snow course observations.  A 

Geographic Information System (GIS) tool was recently developed to identify monitoring 

gaps [Perkins et al., 2010], but does not employ quantitative metrics that evaluate 

impacts of new stations on streamflow forecast accuracy.  Yet budgetary limitations 

argue that network augmentation to support hydrologic prediction should prioritize 

drainage basins for which skillful forecasts are most critical and identify sites with the 

best potential to offer skill improvements.   

 

This paper presents a hydrometric network design approach toward the objective of 

enhancing statistical prediction models.  The specific focus of the paper is the 

development of a forecast skill-oriented technique for informing NRCS SNOTEL 

network expansion decisions.  We employ a hybrid dynamical-statistical approach that 

combines the dimension-reducing power of the NRCS PCR methodology with the 

spatially distributed nature of a physically based, macroscale hydrology model.  Principal 

components analysis is a longstanding network design technique in its own right [e.g., 

Fiering, 1965; Morin et al., 1979] and, as described previously, physically based 

hydrologic models have been used extensively in these types of studies as well.  The 

innovations presented herein are in the combination of these techniques for network 

design and the usage of simulated data as surrogates for point observations in the 

prediction model. 

 

3.2 Study areas  

  

A collection of study basins was selected to represent the diversity of physiographic, 

climatic, and existing operational network conditions across the western U.S.  Selection 

criteria stipulated that watersheds be headwater basins, since forecasts for points further 

downstream are typically based on routed relationships with upstream forecasts rather 

than point observations of IHCs.  NRCS hydrologists were each asked to select 5–10 

watersheds of interest from their respective forecast regions, for a total of 24 study basins 

from six water resource regions (Table 3.1).  Reasons for selection tended to vary from 

basin to basin.  Some, such as DTTM8 and HLWM8 in the Missouri water resource  
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Table 3.1: Identification data for the 24 basins in the study. 

 

NWS ID NWS Name USGS ID Water Resource Region 

BITM8 Bitterroot R nr Missoula, MT 12352500 Missouri 

BMDC2 Gunnison R at Blue Mesa Res, CO 09124700 Upper Colorado 

CHSO3 Sprague R nr Chiloquin, OR 11501000 California 

CLLU1 Weber R nr Coalville, UT 10130500 Great Basin 

CROW4 Wind R nr Crowheart, WY 06225500 Missouri 

DNRC2 Rio Grande R nr Del Norte, CO 08220000 Rio Grande 

DTTM8 Teton R nr Dutton, MT 06108000 Missouri 

DURU1 Duchesne R nr Randlett, UT 09302000 Upper Colorado 

EGLC2 Colorado R nr Dotsero, CO 09070500 Upper Colorado 

EGLN5 Cimarron R at Eagle Nest Res, NM 07206000 Arkansas-White-Red 

GBRW4 Green R nr Fontenelle Res, WY 09211200 Upper Colorado 

HALI1 Big Wood R at Hailey, ID 13139500 Pacific Northwest 

HHWM8 S Fork Flathead R at Hungry Horse Dam, MT 12359800 Pacific Northwest 

HLWM8 Musselshell R at Harlowton, MT 06120500 Missouri 

HRDM8 Little Bighorn R nr Hardin, MT 06294000 Missouri 

HREN2 Humboldt R nr Elko, NV 10318500 Great Basin 

JLKW4 Snake R at Jackson Lake Dam, WY 13010065 Pacific Northwest 

MBLC2 Yampa R nr Maybell, CO 09251000 Upper Colorado 

MONO3 N Fork John Day R at Monument, OR 14046000 Pacific Northwest 

MPHC2 Dolores R at McPhee Res, CO 09167500 Upper Colorado 

NGTC2 N Platte R at Northgate, CO 06620000 Missouri 

NVRN5 San Juan R nr Navajo Res, Archuleta, NM 09355500 Upper Colorado 

PRTI1 Priest R nr Priest River, ID 12395000 Pacific Northwest 

RCEN5 Rio Chama R at El Vado Res Inflow, NM 08285500 Rio Grande 

    

region, were chosen because of highly variable climatologies, rendering forecasting for 

these basins more difficult.  Others are critical forecast points for larger river systems 

such as the Klamath (CHSO3), Bighorn (CROW4), and North Platte (NGTC2).  Those in 

the Colorado and Rio Grande were selected as a general cross section of the major 

tributaries across their respective regions.  Still others, such as MONO3 and PRTI1 in the  
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Table 3.2: Summary statistics for the 24 basins in the study. Mean values were calculated over the 

calibration period. The annual runoff ratio is defined as the ratio of annual runoff to annual 

precipitation.   

 

NWS ID Drainage 

Area  

(km
2
) 

Mean 

Elevation 

(m)  

Forecast 

Calibration 

Period 

Forecast 

Target 

Period 

Mean 

Annual 

Prec   

(mm) 

Mean 

Annual 

Runoff 

(mm) 

Annual 

Runoff 

Ratio 

Mean 

Annual 

Runoff 

(mcm) 

Mean 

Target 

Period 

Runoff 

(mcm) 

BITM8 7290 1780 1981–2010 Apr–Jul 860 280 0.33 2020 1430 

BMDC2 8940 3050 1986–2010 Apr–Jul 640 130 0.20 1130 790 

CHSO3 4050 1610 1981–2010 Apr–Sep 560 130 0.23 530 260 

CLLU1 1130 2430 1981–2010 Apr–Jul 670 170 0.25 200 100 

CROW4 4900 2730 1984–2010 Apr–Jul 590 150 0.25 720 470 

DNRC2 3420 3220 1986–2010 Apr–Sep 800 220 0.28 770 630 

DTTM8 3390 1360 1981–2010 Apr–Jul 440 30 0.07 100 50 

DURU1 9820 2390 1986–2010 Apr–Jul 480 70 0.15 680 440 

EGLC2 11,380 2900 1981–2010 Apr–Jul 720 210 0.29 2330 1700 

EGLN5 430 2870 1981–2010 Mar–Jun 650 40 0.06 20 10 

GBRW4 11,090 2470 1981–2010 Apr–Jul 470 120 0.26 1350 910 

HALI1 1660 2350 1983–2010 Apr–Jul 740 240 0.32 400 280 

HHWM8 3000 1900 1986–2010 Apr–Jul 1260 620 0.49 1850 1460 

HLWM8 2910 1750 1984–2010 Apr–Jul 520 30 0.06 100 60 

HRDM8 3350 1470 1981–2010 Apr–Jul 460 60 0.13 200 120 

HREN2 7200 1930 1981–2010 Apr–Jul 380 30 0.08 230 170 

JLKW4 1260 2510 1986–2010 Apr–Jul 1250 630 0.50 790 580 

MBLC2 8830 2390 1986–2010 Apr–Jul 680 150 0.22 1310 1080 

MONO3 6530 1380 1981–2010 Mar–Jul 610 190 0.31 1250 950 

MPHC2 2120 2750 1987–2010 Apr–Jul 610 200 0.33 420 330 

NGTC2 3710 2760 1984–2010 Apr–Jul 680 100 0.15 360 270 

NVRN5 8440 2520 1987–2010 Apr–Jul 620 150 0.24 1240 840 

PRTI1 2340 1150 1984–2010 Apr–Jul 1000 610 0.61 1420 940 

RCEN5 2270 2610 1981–2010 Mar–Jul 640 140 0.22 320 280 

          



46 
 

Pacific Northwest, were chosen because of sparse existing networks but numerous 

options for new installations.   

 

Table 3.2 presents various physiographic and climatic statistics for each of the basins in 

the study.  Study basin locations are shown in Fig. 3.1, which also includes a map of the 

National Wilderness Preservation System, for which observation equipment is restricted 

[e.g., Landres et al., 2003].  As shown, several of the study basins occupy land within 

this system.  Thus, an additional motivation in this study is to determine whether parts of 

these wilderness areas are important for seasonal streamflow prediction.  HHWM8 is a 

classic example of this scenario, but others (e.g., EGLC2, GBRW4, and NVRN5) contain 

wilderness areas as well, primarily at higher elevations near basin boundaries. 

 

Figure 3.1: The 24 basins in the study. Water resource regions are delineated by dashed lines, 

and federally protected wilderness areas are shown in green. 
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3.3 Data and methods 

 

We formulated our approach to specifically address the question, “Given an existing 

hydrometric network for a particular watershed, where is the next best location to install a 

SNOTEL station?”  The elements of this approach are detailed in the sections that follow. 

 

3.3.1 NRCS methodology 

 

The statistical forecasting approach of NRCS treats each point (i.e., station) observation 

as an independent predictor in forecasts of seasonal streamflow.  Principal components 

are used to circumvent the well-known problem of predictor collinearity in multivariate 

regression.  Forecast models are developed by restructuring predictor variables into 

principal components, arranging principal components in order of decreasing eigenvalue 

(explained variance), developing an equation that sequentially retains only those principal 

components deemed significant via a t-test, and inverting the transformation so that 

coefficients are expressed in terms of the original predictor variables.  In addition to snow 

water equivalent (SWE) and water year-to-date precipitation from NRCS snow courses 

and SNOTEL stations, other predictors such as NWS Cooperative Observer precipitation 

observations, U.S. Geological Survey streamflow observations, and teleconnection 

indices are occasionally used. 

 

The NRCS procedure employs an iterative search routine that optimizes variable 

combinations by developing all possible equations resulting from an increasing number 

of predictors. With each additional variable, the jackknifed standard error (JSE) is used to 

order the equations, and the top 30 equations are identified.  When the top 30 equations 

cease to evolve, a final equation is selected by balancing the objectives of a low JSE and 

month-to-month variable consistency [for details, see Garen, 1992; Garen and Pagano, 

2007].   

 

For the present study, current operational forecast equations and historical naturalized 

streamflow observations were obtained directly from NRCS.  Table 3.2 lists the forecast 
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target periods for each of the basins; for those in which forecasts are issued for multiple 

target periods, the Apr–Jul period was arbitrarily selected for the study.  Historical 

predictor data were downloaded from http://www.wcc.nrcs.usda.gov/reportGenerator/.  

Calibration periods for the forecast models described herein were set to water years 1981 

to 2010 unless insufficient predictor or predictand data were available, in which case the 

calibration period was adjusted as listed in Table 3.2. 

 

3.3.2 Hybrid approach 

 

The hybrid framework of Rosenberg et al. [2011] exploits the distributed nature of 

macroscale hydrologic models to expand predictor sets for statistical forecasting 

applications.  As developed for the pilot study of California’s Central Valley drainage, 

the method uses the Variable Infiltration Capacity (VIC) macroscale hydrology model 

[Liang et al., 1994] to simulate SWE at a 1/16-degree (~5–7 km) spatial resolution for a 

given watershed.  SWE and the gridded precipitation model forcing data are then used as 

predictors in the NRCS PCR methodology described in section 3.3.1.  Rosenberg et al. 

[2011] found hybrid forecasts to achieve superior skill to observation-based PCR 

forecasts, with particular benefits late in the snowmelt season, when VIC provides insight 

into SWE at the highest elevations after snow courses or sensors at lower elevations may 

already be snow free.  As in the NRCS methodology, a noteworthy feature of the hybrid 

approach is the ability to generate parsimonious models from a large number of predictor 

candidates, with those in Rosenberg et al. [2011] sometimes numbering in the thousands.   

 

In this study, we employed the 1/16-degree VIC forcing and simulated water balance 

variables of Livneh et al. [2012] as predictors for hybrid forecasts.  As in Rosenberg et al. 

[2011], predictors with fewer than 10 nonzero entries or correlations with the predictand 

(i.e., streamflow observations) of less than 0.3 were removed from the candidate pool.  In 

addition, the optimal forecast equation for each forecast month was selected simply as the 

model with the lowest JSE for that month, and did not incorporate the aforementioned 

NRCS preference for predictor consistency.    

 

http://www.wcc.nrcs.usda.gov/reportGenerator/
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3.3.3 Augmented predictor analysis 

 

We examined the predictability afforded by SNOTEL-observed variables to determine 

those to include in the network design.  Variables known to influence the water balance 

and consequently seasonal streamflow were evaluated.  Candidate variables included the 

traditional predictors of SWE and water year-to-date precipitation, and also two 

additional variables, soil moisture and air temperature.  Soil moisture has long been 

recognized for its potential to improve seasonal streamflow forecasts [e.g., Boardman, 

1936; Clyde, 1940] and has also been the subject of some recent work on SNOTEL data 

[e.g., Lea and Harms, 2011], but has not been directly incorporated by NRCS in an 

operational statistical framework.  Air temperature influences the cold content of snow, 

which in turn affects the timing and possibly the efficiency of snowmelt runoff [Speers et 

al., 1996].  Yet daily temperature information, which is available from most SNOTEL 

stations, has not, to our knowledge, been used in a statistical runoff prediction context. 

 

The comparison of predictor skill was based entirely on VIC forcings and simulated 

hydrologic variables.  Accumulated water year-to-date precipitation and average water 

year-to-date minimum/maximum temperature were calculated at monthly intervals from 

daily forcing data, which were interpolated from NOAA Cooperative Observer station 

data and scaled (in the case of precipitation) to match climatology data from the 

parameter-elevation regressions on independent slopes model (PRISM) [for details, see 

Maurer et al., 2002].  Soil moisture data were taken from VIC simulations for each of 

three model soil layers (termed SM1, SM2, and SM3) on the first of each month.  First-

of-the-month SWE data were drawn from simulations for up to five elevation bands for 

each grid cell.  Basin-wide data were compiled for the calibration periods indicated in 

Table 3.2 and processed through the PCR algorithm described in section 3.3.1.  Results 

corroborated the well-known predictive role of SWE, particularly for those basins at 

higher elevations.  Soil moisture and precipitation, which (like streamflow) can be 

viewed as a proxy for soil moisture in statistical forecasts [Speers et al., 1996], 

demonstrated comparable and useful skill in most basins.  Temperature, on the other 

hand, added little skill to forecasts and was excluded from further analysis.  
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Two experiments were used to examine the potential for improvement beyond current 

operational forecast skill.  In the first (EXP1), gridded precipitation and simulated SWE 

for all grid cells and snowbands in each basin were added to NRCS predictors in the pool 

of predictor candidates.  In the second (EXP2), basin-wide soil moisture simulations for 

each of the three soil layers were added to the pool of predictor candidates in EXP1.  The 

results of these experiments estimate the limits of skill that are possible by completely 

sampling major water balance variables in each basin at the modeled spatial resolution of 

1/16 degree.   

 

3.3.4 Network design 

 

The network design approach was formulated as a variation on the experiments described 

above.  Instead of adding modeled data for all grid cells to the pool of predictor 

candidates at once, we iterated through the grid cells and sequentially added data from 

just one grid cell at a time.  This ensured that improvements in forecast skill were due 

exclusively to predictor data from that grid cell, whereas in the prior experiments, it 

would have been impossible to isolate the effects of a single gridded/simulated predictor.  

Any improvement in JSE over that of the baseline pool of NRCS predictors was then 

recorded.  If multiple elevation bands were present for a given grid cell, this step was 

repeated for each of the elevation bands, and only the largest improvement was recorded.   

 

We then identified the modeled predictor variable(s) underlying each improvement and 

generated spatial images of key statistics for each of the five predictor types (SWE, water 

year-to-date precipitation, SM1, SM2, and SM3).  Results were tallied by computing the 

grid cell offering the best forecast improvement each month and the grid cell offering the 

best average improvement over all forecast months, which was selected as the best 

location for a new station.  This latter computation was performed in terms of millions of 

cubic meters, rather than percentage of mean target period streamflow, so as not to give 

undue weight to forecast improvements later in the snowmelt season.  While having the 
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effect of biasing results towards earlier-season forecasts, this was deemed a more 

acceptable tradeoff from the perspective of streamflow volume. 

 

3.3.5 Evaluation metrics 

 

A central premise of the study is that gridded/simulated data used in the analysis are 

suitable proxies for observed conditions.  Although some studies have suggested that 

mean SNOTEL SWE values are generally unrepresentative of mean grid element SWE 

[e.g., Molotch and Bales, 2005], a more meaningful measure for statistical forecasts is the 

correspondence of variance.  Accordingly, we computed correlations between SWE and 

precipitation observations from existing NRCS stations in each of the 24 basins and 

gridded/simulated data for the nearest grid cell.  Because PRISM data are partially based 

on NRCS SNOTEL observations, precipitation correlations were expected to be high, but 

are nonetheless useful.  Computations were performed only on data relevant to 

operational forecasts, i.e., those occurring on the first of the month.   

 

For soil moisture, SNOTEL stations within each of the study basins were scanned for 

historical observations, and soil moisture records beginning in water year 2006 or earlier 

were obtained (checks of SCAN stations did not result in any meeting this criteria).  This 

ensured at least five years of data for comparison with simulations, which extended 

through water year 2010.  In total, soil moisture observations were obtained for 59 

SNOTEL stations in 17 basins.  Each station had records for at least three depths – 

typically 2”, 8”, and 20” (~50 mm, 200 mm, and 500 mm), and occasionally 4”,11”, and 

40” (~100 mm, 280 mm, and 1000 mm).  Soil moisture correlations were computed for 

the simulated soil layer nearest in depth to each observation (typically SM1 for 2”/4”, 

SM2 for 8”/11”, and SM2 or SM3 for 20”/40”).   

 

As another means of validating modeled data, we used imagery from the Moderate 

Resolution Imaging Spectroradiometer (MODIS), specifically the MOD10C2 data set 

available since February 2000 [Hall et al., 2006].  This data set consists of fractional 

snow cover data at a 0.05-degree spatial resolution for eight-day periods, offering a 
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significant reduction in the number of cloud-obscured pixels over the daily snow cover 

products.  For each of the locations selected in the network design that were associated 

with a SWE predictor, we determined the nearest MODIS pixel to the respective VIC 

grid cell, and extracted data for the eight-day period that fell nearest the first of each 

month (over water years 2001–2010) for which simulated SWE were included in the 

prediction model.  We then performed binary snow cover comparisons between the 

MOD10C2 and VIC-simulated data, assigning a value of 1 to any nonzero MODI10C2 

fractional snow cover data and any nonzero simulated SWE data.   

 

We also assessed the relative contributions of the predictor variables in each prediction 

model using standardized partial regression coefficients.  Let  

 

 ̂     ∑      

 

   

 

 

represent a multivariate prediction model, where  ̂  is the prediction in year i, b0 is the y-

intercept, bk is the partial regression coefficient of the k
th

 predictor, and xi,k is the value of 

the k
th

 predictor in year i.  The standardized partial regression coefficient (or “beta-

weight”) of the k
th

 predictor can then be calculated as      (     
  ⁄ ), where      

 and 

   are the standard deviations of the k
th

 predictor and the predictand, respectively 

[McCuen, 1985].  We squared the standardized coefficient to obtain the variance in the 

predictand that is explained by the k
th

 predictor, and divided by the sum of all the squared 

standardized coefficients to express in percentage form. 

 

3.3.6 Operational application 

 

Finally, we evaluated the potential impacts of a new SNOTEL station in the context of 

operational forecast skill.  Recall that an important difference between the NRCS 

forecasting approach and the one adopted herein involves the NRCS practice of 

maintaining consistent predictors from month to month.  To account for this discrepancy, 
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we reformulated our optimized forecast models to conform to this approach, i.e., forced 

these models to include all current NRCS predictors in addition to gridded/simulated data 

from the grid cell selected in the network design analysis.  We employed some 

subjectivity in these models and only included the new predictor data if an improvement 

in skill resulted. 

 

As an additional basis for comparison, we generated seasonal streamflow hindcasts for 

study basins in the Upper Colorado water resource region.  Hindcasts were produced 

using current (as of 2012) operational implementations of the NWS ensemble streamflow 

prediction (ESP) and statistical water supply (SWS) methodologies for the same periods 

used in the calibration of our forecast models (Table 3.2).  ESP involves forcing the 

Sacramento Soil Moisture Accounting model with recently observed meteorological data 

in order to “spin it up” to current conditions, and then with a series of historical 

meteorological data beginning on the same Julian day to generate an ensemble of 

projected streamflows [Day, 1985]; the SWS approach is similar to the PCR 

methodology of NRCS [Hartman and Henkel, 1994].  We also obtained historical as-

issued NRCS/NWS coordinated forecasts as available (NRCS NWCC, personal 

communication, 2012).  Because of its utility in comparisons of this type, here we used 

R
2
 between predicted and observed streamflows as our skill metric.   

 

3.4 Results 

 

We present the results of our analyses in the order they were described above.  Section 

3.4.1 provides skill results for the augmented predictor analysis and the network design 

exercise, and section 3.4.2 examines the network design results in a geospatial context.  

Section 3.4.3 presents verification metrics for the gridded/simulated data and evaluates 

the relative contributions of predictor variables.  Section 3.4.4 provides a final assessment 

of forecast skill from an operational perspective. 
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Figure 3.2: Forecast skill for the augmented predictor analysis. The y-axis represents standard 

error as a percentage of mean streamflow for a shrinking target period. Lines labeled “NRCS” 

reflect operational NRCS forecast skill; lines labeled “NRCS predictors” reflect forecasts for 

which the requirement of month-to-month predictor consistency is relaxed. 
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Figure 3.3: Forecast skill for the network design analysis. The y-axis is as in Fig. 3.2, with 

various labeling schemes as indicated.  Note that the lines labeled “NRCS predictors” and 

“All grid cells” (EXP1 and EXP2) match those in Fig. 3.2.  For some plots, lines may be 

obscured by others with similar values. 
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3.4.1 Analysis of forecast skill 

 

Fig. 3.2 compares the skill of the different forecasting approaches in the augmented 

predictor analysis in terms of relative standard error (standard error as a percentage of the 

mean of the predictand).  Here the predictand is streamflow for a shrinking target period, 

i.e., only the portion of the entire target period remaining for a given forecast month.  

Differences between NRCS forecast skill with and without the month-to-month 

consistency requirement are generally small, with the consistency requirement degrading 

skill between near zero (HALI1, PRTI1) and ~10% (HREN2).  In most basins, 

improvements over the baseline equations (i.e., NRCS predictors without the month-to-

month consistency requirement) are fairly nominal for EXP1 (which uses precipitation 

and SWE as predictors), with the more pronounced improvements occurring in basins 

that are sparsely sampled (e.g., HLWM8) or later in the snowmelt season as in Rosenberg 

et al. [2011].  Improvements for EXP2 (which also uses soil moisture as predictors), 

however, are more conspicuous, particularly in basins such as DURU1 and HREN2.   

 

Fig. 3.3 presents results from the network design analysis.  For each of the basins, results 

are given in two panels for EXP1 and EXP2, with the gray lines (the uppermost line in 

each panel) and the blue and brown lines (the lowermost line in the top and bottom 

panels, respectively) matching those in Fig. 3.2.  Immediately below the gray lines, the 

red lines represent forecast skill for the best grid cell overall in the network design 

analysis, while the green lines (immediately below the red lines) represent forecast skill 

for the best grid cell each month.  In general, improvements resulting from the inclusion 

of predictor data for a single additional grid cell are proportional to those found from the 

inclusion of predictor data for all grid cells basin-wide, a correspondence that is not 

surprising.  Although improvements are typically possible for at least one grid cell in 

every forecast month, the grid cell offering the best improvement overall tends to 

improve forecasts either during the accumulation season or the ablation season, but rarely 

both.  For EXP1, for example, ablation season improvements occur in BMDC2 and 

DTTM8, while accumulation season improvements occur in HLWM8 and HREN2.  For 

EXP2, most of the best grid cells overall offer improvements exclusively during the 



57 
 

 

accumulation season.  This is a consequence of the grid cell locations, which typically 

differ for the two seasons as described in greater detail below. 

 

3.4.2 Geospatial analysis 

 

Analysis of the spatial patterns associated with the improvements provides insight into 

the hydrologic mechanisms from which they arise.  For a representative set of study 

basins, Fig. 3.4 shows the locations of grid cells that resulted in forecast improvements 

for a given month, including the best grid cells that month and over all months.  Results 

for June forecasts using EXP1 predictors at BMDC2 are typical of the late-season 

improvements that occurred in some of the basins.  Comparison of this map with its 

corresponding plot in Fig. 3.3 indicates that the best grid cell for that month provides an 

Figure 3.4: Selected spatial results from the network design analysis. The sizes of the black 

circles are proportional to the improvements in forecast skill offered by their respective grid 

cells, and the green and red circles correspond to the green and red lines in Fig. 3.3. 
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improvement of 5–10% in relative standard error; the best grid cell overall is situated 

nearby.  Both are located at relatively high elevations, though lower than the basin’s peak 

elevation.  Inspection of the top two rows in Fig. 3.5 reveals information about the 

predictor variables underlying these improvements, the most dominant of which is SWE.  

The leftmost spatial image depicts average June 1 SWE for those grid cells that were 

considered predictor candidates (see section 3.3.2).  The climatological value for both 

best overall and month-optimized locations is less than ~200 mm, with the latter location 

falling on the fringe of the zone with any measurable SWE that time of year.  The right 

two plots in this row reveal that patterns for correlation (with the predictand) tend toward 

the inverse of those for coefficient of variation (CV, i.e., the ratio of the standard 

deviation to the mean), a result noted for other basins as well.  The selected locations fall 

in areas of relatively high correlation, but also somewhat higher CV than most of the 

other grid cells considered as predictor candidates, indicating that these locations add 

some measure of SWE variability to the predictor pool.   

 

Note that the stations used as predictors in the NRCS forecast models are a subset of all 

the existing stations in the vicinity of the basin.  This subset was selected by NRCS 

hydrologists to maximize forecast skill, discarding predictor data from other stations 

because they did not improve forecast performance.  The results for BMDC2 also 

illustrate two limitations of our approach, which is that the locations of existing stations, 

and issues of scale between the grid and the point element, are not explicitly accounted 

for in the selection methodology.  Forecast improvements in grid cells occupied by 

existing stations sometimes occurred, particularly in basins with dense existing networks.   

 

A different scenario is presented for February forecasts at HRDM8 in Fig. 3.4.  This is an 

example of a relatively ungauged basin, where NRCS relies on data from nearby stations 

for predictors in their current forecast models.  Improvements tend to increase toward the 

northwesterly direction, with the largest occurring in the same grid cell as the basin 

outlet.  The corresponding plots in Fig. 3.5 indicate that these improvements are due 

almost entirely to precipitation, with snow covered area accounting for just a small 
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Figure 3.5: Spatial statistics for the dominant predictor types corresponding to the forecast 

improvements in Fig. 3.4. Grid cells for which the specified predictor type was selected for the 

forecast model are indicated in the leftmost plots by black dots, with the green and red dots 

corresponding to the green and red circles in Fig. 3.4.  Climatology plots for SWE and water 

year-to-date precipitation (PCP) are shown in units of mm. 
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Figure 3.5 (continued): Spatial statistics for the dominant predictor types corresponding to 

the forecast improvements in Figure 3.4. Climatology plots for SM2 and SM3 are shown in 

units of volumetric water content. 

 



61 
 

percentage of the basin at its southern tip.  As in the prior example, the grid cell identified 

as best is located in an area of both high correlation and variability and, additionally, in a 

region of low intercorrelation with the other predictors in the forecast model.  For March 

forecasts at MONO3, the selected locations also occupy an ungauged area of the basin.  

Fig. 3.5 indicates that these improvements are due to both SWE and precipitation, 

suggesting that the ability to exploit the predictive power of multiple variables is yet 

another reason for selection.  

 

Fig. 3.4 also presents examples of forecast improvements from EXP2, which, as depicted 

by the sizes of these circles, are larger than those for EXP1.  Other commonalities include 

the forecast months, which are at various points in the accumulation season, and the 

locations of the grid cells offering improvements, which occur primarily in the basin 

valleys.  The predictor patterns underlying these improvements (Fig. 3.5), however, are 

slightly different for each basin.  For BITM8, the dominant two predictor types are SWE 

and SM3 (the deeper, larger soil layer).  Both best-overall and month-optimized locations 

are found in areas of high variability and somewhat higher correlations for each predictor 

type.  One striking result is the low 

correlation for SM3 at the higher 

elevations along the basin’s periphery, 

despite these locations being generally 

wetter than those in the center.  This 

pattern occurs again at DNRC2, where 

the largest improvements seem to 

follow the river’s course.  For GBRW4, 

SM2 and SM3 combine to offer the 

largest forecast improvements, also in 

the lowlands of the basin.  Inspection of 

soil types for areas offering 

improvements from soil moisture 

predictors revealed no consistent 

patterns.  For BITM8, DNRC2, and 

Figure 3.6: Ranges of correlations between 

observed and gridded/simulated predictor data.  The 

numbers of observed data records are shown at top 

for their respective predictor types. 
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GBRW4, for example, predominant soil types include sandy loam, clay loam, and silt 

loam, respectively, at the depth of the third soil layer [Miller and White, 1998].  Note 

that, in general, we found SNOTEL installations to be unjustified in wilderness areas; for 

HHWM8, for example, we found little to no improvement in forecast skill, and in other 

basins, comparable improvements were found both within and outside wilderness 

boundaries.   

 

3.4.3 Analysis of predictor variables 

 

A summary of the correlations between station observations and their gridded/simulated 

counterparts is shown in Fig. 3.6.  In general, correlations for SWE and precipitation 

were strong, while those for soil moisture were more divergent, a result consistent with 

other studies [see, e.g., Koster et al., 2009].  Since, as noted above, many of the locations 

selected in the network design analysis were associated with SWE predictors at the 

fringes of annual snowpack, satellite snow cover comparisons for these sites acquired 

additional importance.  The results (Fig. 3.7) varied from basin to basin, but generally 

indicated a binary match percentage of about 80%.  Thus, the correspondence of 

observed and gridded/simulated variables generally supported the network design 

assumptions, particularly for SWE and precipitation, though somewhat less so for soil 

moisture.   

 

Figure 3.7: Results of binary snow cover comparisons between VIC and MODIS for those grid 

cells selected as best overall in the network design analysis.  The single-digit numbers above 

each bar represent the number of forecast months for which comparisons were performed. 
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An examination of predictor 

contributions for various forecast 

models and basins reveals some 

interesting patterns (Fig. 3.8).  When 

only the standard predictors are 

considered   (EXP1), the contribution 

of precipitation is generally large, 

while the influence of SWE tends to 

increase as the year progresses, 

depending on the basin.  When soil 

moisture is included (EXP2), 

however, the contribution of 

precipitation is diminished, while the 

influence of soil moisture appears 

stronger in the early part of the water 

year and weakens as the year 

progresses.  These results are similar 

to the improvements in forecast skill 

for EXP1 and EXP2, which tended to 

be greater during the ablation season 

and accumulation season, 

respectively, and consistent with 

expectations for the western U.S. 

[e.g., Wood and Lettenmaier, 2008].  Interestingly, soil moisture predictors are mostly 

from the bottom two soil layers during the accumulation season, transitioning to the top 

two layers during the ablation season.  Note that, for some of these basins, streamflow 

observations are used in the NRCS forecast models as described in section 3.3.1.  Also 

note the relatively strong presence of observed predictors for forecast models labeled “All 

Grid Cells,” even though the vast majority of predictor candidates for these models are 

gridded or simulated.   

 

Figure 3.8: Percentage of seasonal streamflow 

variance that is explained by each predictor for 

forecast models labeled at top. 
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3.4.4 Operational analysis 

 

Skill results for the reformulated forecast models are shown for six of the seven Upper 

Colorado study basins in Fig. 3.9.  The shaded areas represent the range of skill that can 

be expected by adding a predictor to the NRCS forecast models, with the lower bounds 

determined as described in section 3.3.6 and the upper bounds equivalent to the lines 

representing the best grid cell overall in Fig. 3.3.  Given the subjective nature of the 

NRCS forecast model selection process, we expect actual skill to fall somewhere in 

between.  Comparisons of these plots with those representing NWS forecast skill reveal a 

mixture of results.  In two of the basins (BMDC2 and NVRN5), current NRCS skill is 

comparable to or better than that of NWS.  In the other four basins, current NWS/ESP 

forecasts show slightly greater skill than their NRCS counterparts, but the addition of a 

predictor to the NRCS forecast models is expected to equalize their performance. 

 

Figure 3.9: Skill of various operational forecasts for 6 of the 7 basins in the Upper Colorado 

water resource region. Lines labeled “NRCS” correspond to those in Fig. 3.2.  Shaded blue 

and brown areas indicate expected skill for NRCS forecasts that incorporate data from an 

additional observation station under the EXP1 and EXP2 scenarios. 
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3.5 Discussion and conclusions 

 

We have demonstrated a skill-oriented, hybrid dynamical-statistical methodology to 

inform the expansion of hydrometric networks for statistical seasonal streamflow 

forecasts.  While the approach was developed and tested in the western U.S., it is 

appropriate for any setting in which seasonal streamflow forecast skill is strongly 

influenced by IHCs.  Similarly, the foundation of the approach can be generalized to 

other water resources applications involving the use of point observations for statistical 

prediction models, such as those involving groundwater networks or water quality 

networks.   

 

Evaluation of the method in the western U.S. revealed that locations identified as optimal 

for SNOTEL placement are primarily concentrated in regions of high correlation with 

seasonal streamflow, with additional commonalities including high predictor variability, 

low intercorrelation with existing predictor data, and the ability to exploit the predictive 

power of multiple water balance variables.  When only SWE and precipitation predictors 

are considered, these tend to occur at the margins of the average snowpack for a given 

forecast month, though resulting improvements in skill are only notable for basins with 

sparse existing networks or late in the snow ablation season.  One can speculate that the 

mechanism behind this relationship is related to a second mode of lower-frequency 

variability that is not captured by predictors with higher climatological averages.  

Another possibility involves the concept of the snow depletion curve [see, e.g., Shamir 

and Georgakakos, 2007], with the binary snow cover signal at the identified location 

implicitly providing some indication of snow covered area in the basin and, consequently, 

the mean areal SWE of the snowpack.   

 

When soil moisture is added as a predictor, improvements in skill are more significant.  

As above, the mechanism responsible for this result is potentially related to an 

uncorrelated mode of lower-frequency variability; the power spectra of soil moisture, for 

example, has been shown to exhibit a strong coherence to that of indicators of climatic 

extremes like the Palmer Drought Severity Index [Lakshmi et al., 2004].  The largest 
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improvements are found during the accumulation season, when selected locations are 

typically concentrated in low- to mid-elevations, transitioning to higher elevations as the 

water year progresses.  These patterns are likely also related to snow cover, which shields 

soil from moisture variations at higher elevations where winter precipitation falls entirely 

as snow and no winter melt occurs.  In contrast, soil moisture at lower elevations, where 

soil profiles are typically deeper, is more active and better able to reflect the degree of 

water year-to-date precipitation.  As the melting snow exposes the underlying ground 

surface, the once dormant high elevation soil moisture is again altered in relation to the 

snowpack volume.   

 

Several recent studies have focused on characterizing the importance of IHCs [e.g., Wood 

and Lettenmaier, 2008; Shukla and Lettenmaier, 2011], and soil moisture in particular 

[Koster et al., 2010; Mahanama et al., 2012], for water supply forecasts.  Mahanama et 

al. [2012] found that, outside of spring, the impact of soil moisture initialization on 

ensemble forecasts dominated over that of snow initialization, and fall soil moisture 

initialization contributed to skill at particularly long leads.  This study shows that such 

soil moisture predictability can be harnessed in operational statistical water supply 

forecasts, particularly during the accumulation season via (in most basins) data from low- 

to mid-elevations.  For many basins, even a single soil moisture predictor can enhance 

forecast skill, and the approach described herein can be used to rank basins in order of 

those with the most to gain.     

 

The distinction between observed and modeled data represents an important issue in this 

study.  One potential reason for the nominal improvements found for EXP1 is that the 

gridded precipitation data used in the analysis are partially based on the same SNOTEL 

observations already in the NRCS statistical models.  At the same time, it is uncertain 

whether the greater forecast improvements found for EXP2 can be expected from in-situ 

observations.  Correlations between simulated and observed soil moisture are generally 

inconsistent, possibly because of fundamental differences between these two quantities; 

Koster et al. [2009], for example, have described simulated soil moisture as a “model-

specific index of wetness” with no direct observational analog.  Nonetheless, the strong 
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presence of observed predictors in forecast models for which the majority of predictor 

candidates are simulated or gridded (section 3.4.3) suggests that soil moisture 

observations should be at least as useful as proxy simulated data for statistical forecasts, 

although at present, their short record lengths preclude testing this hypothesis.  

Incidentally, because the methodology described herein employs forcings based on fixed 

PRISM climatology data, it does not account for spatial distributions of precipitation that 

may vary in a given year from the long-term mean, which can result in large forecast 

errors where statistical models are based on point observations [Lundquist et al., 2010].  

While installing strategically placed in-situ sensors could alleviate this problem, using the 

methodology for this purpose would require changes to orographic precipitation gradient 

assumptions and modifications to the PRISM forcing scheme. 

 

An ancillary finding of this research is that simulated hydrologic data can also be 

combined with observations to improve operational statistical water supply forecasts, a 

strategy that may prove more effective than network augmentation in the near term.  

Indeed, an interesting question is whether advances in computing power and numerical 

models will render investments in new observations less worthwhile from a forecast skill 

perspective than those in simulation model- (and ensemble-) based prediction methods.  

This research demonstrates that, at present, statistical forecasts are comparable in skill to 

model-based forecasts, and synergies result from their combination.  Nonetheless, 

forecast benefits resulting from SNOTEL installations today are difficult to realize in a 

statistical framework until enough time has elapsed to develop a statistical climatology.  

The effects of climate change on hydrologic forecast methods are also a relevant topic, 

since nonstationarity implies that the statistical properties of future events will no longer 

resemble those of the past [e.g., Milly et al., 2008; Wood, 2007; Brekke et al., 2010].  We 

suggest, however, that well-placed observations provide important indications of actual 

conditions in any climate, and that statistical forecasts will remain useful both for their 

ability to capture linear predictability at relatively low cost, and as benchmarks against 

which to evaluate the skill of more intensive prediction approaches.   
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IV. ON THE CONTRIBUTION OF GROUNDWATER STORAGE              

TO INTERANNUAL STREAMFLOW ANOMALIES                                          

IN THE COLORADO RIVER BASIN 

 
This chapter has been submitted in its current form to Hydrology and Earth System 

Sciences [Rosenberg et al., 2012b].   

 

4.1 Introduction 

 

Among the most important contributors to the skill of a streamflow forecast are the 

estimation of initial hydrologic conditions (IHCs, i.e., basin water storage at the time of 

forecast) and prediction of future meteorological anomalies [Mahanama et al., 2012].  

Despite some demonstrated skill in seasonal climate forecasting [see, e.g., Stern and 

Easterling, 1999; Troccoli et al., 2008], most meteorological forecasts for leads longer 

than about a month are of limited skill [Shukla and Lettenmaier, 2011].  Thus, at seasonal 

lead times, accurate streamflow forecasts are possible mostly in situations where future 

runoff is more strongly related to catchment water storage than to meteorological 

anomalies during the forecast period [Wood and Lettenmaier, 2008; Shukla and 

Lettenmaier, 2011].  In the American West, this condition is the basis for the statistical 

seasonal streamflow forecasts issued by the Natural Resources Conservation Service 

(NRCS) [Garen, 1992] and is an implicit attribute of the dynamically generated ensemble 

streamflow predictions issued by the National Weather Service (NWS) [Day, 1985].  

 

For many rivers in the western U.S., more than half of the annual streamflow is derived 

from snowmelt, and snow water storage has historically been the single most significant 

predictor for statistical streamflow forecasts [Church, 1935].  The opportunity to exploit 

the relationship between soil moisture and runoff in statistical streamflow forecasts was 

also recognized in early studies [e.g., Boardman, 1936; Clyde, 1940], although 

accumulated precipitation is more typically used as a proxy due to a paucity of in-situ soil 

moisture observations [Speers et al., 1996; Koster et al., 2010].  Nevertheless, recent 
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modeling studies have demonstrated that early-season soil moisture can have a significant 

influence on seasonal streamflow, even where annual hydrographs are dominated by 

spring snowmelt [Koster et al., 2010; Mahanama et al., 2012].   

 

One contribution to basin storage that traditionally has received less attention in 

streamflow forecasts is groundwater.  By sustaining baseflow and laterally redistributing 

subterranean water, groundwater discharge provides an important link in the hydrologic 

cycle.  With the exception of arid climates where it can be essentially disconnected from 

the land surface, groundwater also receives surplus during wet periods and offsets deficits 

during drought [Fan et al., 2007], providing the ability to carry over storage from one 

year to the next.  Although known to be the largest of the storage terms in quantity, 

however, the magnitude of groundwater’s temporal variability relative to that of soil 

moisture and snow is often poorly understood.  How significant are interseasonal and 

interannual groundwater anomalies for seasonal streamflow forecasts?   

 

The answer to this question has several important implications.  One concerns the 

accuracy of operational seasonal streamflow forecasts, which do not explicitly account 

for groundwater conditions, although they are sometimes indirectly accounted for by 

terms such as previous year runoff in statistical forecasts.  Another involves the 

representation of the subsurface in land surface models (LSMs).  Notwithstanding their 

physical basis, LSMs are fundamentally simplifications of natural processes.  Until 

recently, most have lacked a groundwater representation entirely, typically formulating 

lower boundary conditions either as zero flux or as drainage under gravity [Maxwell and 

Miller, 2005].  Yet such simplifications can significantly bias the estimation of soil water 

flux and streamflow, and without an explicit representation of the water table, the land 

surface water budget may not close other than on very long time averages [Yeh and 

Eltahir, 2005].  Consequently, a number of groundwater parameterizations have been 

proposed [e.g., Liang et al., 2003; Niu et al., 2007], and some research has suggested that 

inclusion of an explicit aquifer model can reduce the sensitivity of model performance to 

incorrect parameter choices [Gulden et al., 2007].  Fewer studies, however, have been 
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devoted to understanding the effect of these modifications on variations in total basin 

storage, particularly at the interannual scale.   

 

The objective of this paper is to evaluate the contribution of groundwater storage to 

interannual streamflow anomalies, and hence to seasonal and interannual streamflow 

predictability, in the Colorado River basin, which is iconic in the American West.  It has 

been described as the most regulated and over-allocated river in the world [NRC, 2007], 

with some recent research suggesting that current water deliveries are not sustainable 

[Barnett and Pierce, 2009].  Yet modeling studies of the potential effects of climate 

change on Colorado River streamflow have been notably incongruent [Hoerling et al., 

2009], suggesting a misunderstanding of catchment processes.  Thus, while our study is 

motivated by seasonal streamflow forecasts, an additional interest is in evaluating 

hydrologic models, which are typically validated only by streamflow, by providing an 

observation-based assessment of total basin storage anomalies.   

 

We give particular attention to results over the last decade for several reasons.  First, 

conditions have been especially dry in the Colorado River basin during this period 

[Quinlan, 2010], rendering accurate water supply forecasts particularly important.  

Second, focusing on the recent past permits better assessment of results from institutional 

memory.  Finally, we are able to supplement hydroclimatic data sets over the last decade 

with remote sensing observations that were previously unavailable, specifically, estimates 

of evapotranspiration derived from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) and total water storage estimates based on the Gravity Recovery and Climate 

Experiment (GRACE) satellites. 

 

4.2 Study area 

 

The Colorado River flows for 2300 km (1450 mi) through seven U.S. and two Mexican 

states to its mouth at the Gulf of California (Figure 4.1).  Its 630,000 km
2
 (240,000 mi

2
) 

drainage area was divided for purposes of the Colorado River Compact of 1922 (and 

consequently for many water management purposes) into an Upper Basin and a Lower 
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Basin at Lee’s Ferry, Arizona.  The hydrograph of the Colorado is dominated by 

snowmelt, with roughly 70% of its annual streamflow derived from this source.  

Furthermore, an estimated 85% of its streamflow originates from just 15% of the basin 

area located in the headwaters of the Southern and Middle Rocky Mountains 

[Christensen and Lettenmaier, 2007].  The majority of the basin is comprised of desert or 

Figure 4.1: The Colorado River basin, including the 29 flow locations monitored by USBR, 

and the principal aquifer systems as given by Miller (1999), Robson and Banta (1995), and 

Whitehead (1996).  Lee’s Ferry (station 20) is indicated in blue. 
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semiarid rangeland, which generally receives less than 250 mm (10 in.) of precipitation 

per year.  Most precipitation in the high elevation streamflow source areas occurs in 

winter and spring and comes from eastward-tracking Pacific storm systems [Robson and 

Banta, 1995].  The Colorado has a combined reservoir storage capacity of over 74.0 

billion cubic meters (60.0 million acre-feet), or roughly four times the mean annual flow 

at Lee’s Ferry, providing a buffer against a significant temporal variability that includes 

an historic range in annual streamflow at Lee’s Ferry of 6 to 28 bcm (5 to 23 maf) 

[Christensen and Lettenmaier, 2007; USDOI, 2000].  85% of this storage is in Lakes 

Powell and Mead, operated by the U.S. Bureau of Reclamation (USBR).  Table 4.1 lists 

average annual statistics for the 29 sub-basins in which naturalized streamflow is 

estimated by USBR. 

 

Three principal aquifer systems, as defined by the U.S. Geological Survey (USGS), are 

included in the basin (Figure 4.1) [Miller, 1999].  The largest of these is the Colorado 

Plateaus aquifer system, which contains predominantly sandstone whose porosity is low, 

such that groundwater moves primarily along joints, fractures, and bedding planes.  

Surficial aquifers in this system include the Uinta-Animas, Mesaverde, Dakota-Glen 

Canyon, Coconino-De Chelly, Laney, and Wasatch-Fort Union [Robson and Banta, 

1995; Whitehead, 1996].  The remaining two aquifer systems are located within the 

Lower Basin and include the Basin and Range basin fill aquifers, generally consisting of 

unconsolidated gravel, sand, silt, and clay, and the Basin and Range carbonate rock 

aquifers, consisting of limestone and dolomite [Robson and Banta, 1995].  Notably, the 

Rocky Mountain regions of the basin are not associated with principal aquifer systems. 

 

4.3 Data and methods 

 

Our experimental approach consisted of two stages.  First, we estimated monthly and 

annual changes in total basin storage and its three main elements – snow water equivalent 

(SWE), soil moisture, and groundwater – using a combination of physically based 

hydrologic models (section 4.3.1), basin-scale water balances (section 4.3.2), remote 

sensing data (section 4.3.3), and baseflow recession analyses (section 4.3.4).  Second, we  
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Table 4.1: Average annual statistics for the 29 sub-basins over water years 1950–2008.  The annual 

runoff ratio is defined as the ratio of annual runoff to annual precipitation.  The mean annual contribution 

represents the percentage of the total runoff at Imperial Dam (station 29). 

 

 Drainage  

Area 

(km
2
) 

Annual    

Precip 

(mm) 

Annual 

Runoff 

(mm) 

Annual   

Runoff       

Ratio 

Annual 

Runoff 

(bcm) 

Mean 

Annual 

Contrib 

1 Colorado R. at Glenwood Springs, CO 11,805 658 211 0.32 2.50 13.0% 

2 Colorado R. near Cameo, CO 20,850 658 202 0.31 4.21 22.0% 

3 Taylor R. below Taylor Park Res., CO 658 726 269 0.37 0.18 0.9% 

4 Gunnison R. below Blue Mesa Dam, CO 8943 615 139 0.23 1.24 6.5% 

5 Gunnison R. at Crystal Res., CO 10,269 618 148 0.24 1.52 7.9% 

6 Gunnison R. near Grand Junction, CO 20,534 566 135 0.24 2.77 14.5% 

7 Dolores R. near Cisco, UT 11,862 475 79 0.17 0.94 4.9% 

8 Colorado R. near Cisco, UT 62,419 558 128 0.23 7.97 41.6% 

9 Green R. below Fontenelle Res., WY 11,085 497 144 0.29 1.60 8.4% 

10 Green R. below Green River, WY 36,260 364 47 0.13 1.71 8.9% 

11 Green R. near Greendale, UT 50,117 367 47 0.13 2.35 12.3% 

12 Yampa R. near Maybell, CO 8832 685 166 0.24 1.46 7.6% 

13 Little Snake R. near Lily, CO 9661 451 57 0.13 0.56 2.9% 

14 Duchesne R. near Randlett, UT 9816 481 95 0.20 0.93 4.9% 

15 White R. near Watson, UT 10,412 472 64 0.14 0.67 3.5% 

16 Green R. near Green River, UT 116,162 411 55 0.13 6.41 33.5% 

17 San Rafael R. near Green River, UT 4217 400 45 0.11 0.19 1.0% 

18 San Juan R. near Archuleta, NM 8443 640 144 0.23 1.22 6.4% 

19 San Juan R. near Bluff, UT 59,570 362 39 0.11 2.34 12.2% 

20 Colorado R. at Lee’s Ferry, AZ 289,562 405 61 0.15 17.56 91.6% 

21 Paria R. at Lee’s Ferry, AZ 3652 296 6 0.02 0.02 0.1% 

22 Little Colorado R. near Cameron, AZ 68,529 304 3 0.01 0.19 1.0% 

23 Colorado R. near Grand Canyon, AZ 366,744 384 49 0.13 17.98 93.8% 

24 Virgin R. at Littlefield, AZ 13,183 370 16 0.04 0.21 1.1% 

25 Colorado R. below Hoover Dam, AZ/NV 444,703 368 42 0.11 18.58 97.0% 

26 Colorado R. below Davis Dam, AZ/NV 448,847 366 42 0.11 18.88 98.5% 

27 Bill Williams R. below Alamo Dam, AZ 11,999 335 9 0.03 0.10 0.5% 

28 Colorado R. below Parker Dam, AZ/CA 473,193 360 40 0.11 19.07 99.5% 

29 Colorado R. above Imperial Dam, AZ/CA 488,215 353 39 0.11 19.16 100.0% 
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analyzed the contribution of groundwater storage to interannual streamflow anomalies 

using the statistical techniques described in section 4.3.5.  

 

4.3.1 Hydrologic models 

 

We estimated total basin storage anomalies using two versions of the Variable Infiltration 

Capacity (VIC) macroscale hydrology model [Liang et al., 1994].  VIC is a semi-

distributed grid-based model that is typical of LSMs used in numerical weather prediction 

and climate models [Wood and Lettenmaier, 2006], and has been successfully applied in 

studies of regions across the conterminous US (CONUS) and worldwide [e.g., Sheffield 

et al., 2009; Mishra et al., 2010; Mahanama et al., 2012].  Like other LSMs, VIC solves 

the water and energy balance at each time step, but is distinguished by its 

parameterization of subgrid variability in soil moisture, topography, and vegetation.  In 

the standard release of VIC (4.0.6 in this study, herein referred to as VIC), no distinction 

is made between saturated and unsaturated zones in the subsurface.  

  

For our second version (herein referred to as VIC-SIMGM), we modified VIC 4.0.6 to 

incorporate the SIMple Groundwater Model (SIMGM) of Niu et al. [2007].  SIMGM is 

one of several recent models that parameterize groundwater as a lumped, unconfined 

aquifer beneath a multi-layer soil column [e.g., Gedney and Cox, 2003; Yeh and Eltahir, 

2005].  It is included in Community Land Model (CLM) versions 3.5 [Oleson et al., 

2008] and 4.0 [Oleson et al., 2010] and Noah-MP [Niu et al., 2011].  In SIMGM, 

groundwater discharge is parameterized as an exponential function of the water table 

depth: 

 

          
       (1) 

 

where   max is the maximum groundwater discharge when the water table depth is zero, 

   is the water table depth, and   is the decay factor.  Groundwater recharge (  ) is 

parameterized by Darcy’s law and is positive when water enters the aquifer: 
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 (2) 

 

where    is the aquifer hydraulic conductivity,  bot is the depth to the bottom of the soil 

column, and  bot is the matric potential of the bottom soil layer.  The time rate of change 

of aquifer storage (     ⁄ ) is then equal to      , and the water table depth is 

computed by scaling aquifer storage by the specific yield (  ).  To incorporate SIMGM 

in VIC, we added a lumped, unconfined aquifer directly to the base of the lowest (third) 

soil layer and replaced VIC’s baseflow scheme with that of SIMGM (eq. 1).  As in CLM, 

the water table is allowed to move within and between soil layers and the aquifer, in 

which case eq. 2 is modified following Niu et al. [2007].  Hydraulic conductivity between 

soil layers is computed as a function of soil texture and water content, whereas hydraulic 

conductivity of the aquifer decays exponentially with depth from the saturated hydraulic 

conductivity (    ) of the lowest soil layer.  In VIC-SIMGM, the surface runoff 

parameterization is identical to that of VIC.  Because of differences between VIC and 

CLM, we do not expect the parameter values in eq. 1 to match those of Niu et al. [2007]. 

 

A limitation of SIMGM is the lack of a direct connection between surface water and 

groundwater in its parameterization.  Because bank storage potentially accounts for a 

large portion of the interannual hydrologic storage that affects interannual streamflow 

variations [see, e.g., Meyboom, 1961], this likely has implications for our analysis.  A 

second limitation is the lack of a representation of inter-grid cell (lateral) groundwater 

flow in SIMGM.  Nonetheless, with the exception of some very recent work by Zampieri 

et al. [2012], most of the land surface groundwater models that have been proposed have 

similar drawbacks.  Thus, we note these limitations but offer results from VIC-SIMGM 

for comparative purposes. 

 

Meteorological forcing data were gridded from precipitation and maximum/minimum 

temperature data from National Oceanic and Atmospheric Administration (NOAA) 

Cooperative Observer stations and wind data from the National Centers for 

Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) 

Reanalysis Project.  These data were derived for the period 1949 to 2010 at a 1/8-degree 



76 
 

resolution using the methods of Livneh et al. [2012], who have extended the data set of 

Maurer et al. [2002].  The first nine months of 1949 were reserved for model spin-up, so 

that the period of analysis effectively began at the start of water year 1950.  Model 

parameters for VIC were adopted from Christensen et al. [2004; subsequently used by 

Christensen and Lettenmaier, 2007].  For VIC-SIMGM, calibration was performed to 

monthly naturalized streamflow data for water years 1971–1980 by adjusting   max,  , 

  ,  mid (the depth of the middle soil layer),  bot (the depth of the bottom soil layer), and 

 inf (the infiltration shape parameter in VIC).  Naturalized streamflow data for the 29 

stations in Table 4.1 were obtained for the period 1906 to 2008 from USBR 

(http://www.usbr.gov/lc/region/g4000/NaturalFlow/current.html).  For each of the nested 

sub-basins, calibration was performed in a stepwise fashion, with parameters for the 

upstream-most sub-basins estimated first.  Those parameters were then retained for 

calibrations to streamflows further downstream.   

 

The VIC-SIMGM implementation required the additional step of first achieving an 

equilibrium water table depth (WTD) prior to running the simulation.  To spin up this 

Figure 4.2: Average annual precipitation over water years 1950–2008 (left) and equilibrium 

water table depth as simulated by SIMGM (right). 

 

http://www.usbr.gov/lc/region/g4000/NaturalFlow/current.html
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term, we ran the model using the observed forcings back-to-back for a period of 2000 

years.  The process was expedited by removing the exponential decay function for      in 

the aquifer and simultaneously increasing      by up to a factor of 10
6
.  Results ranged 

from a depth of 1.3 m to 80 m and generally resemble the pattern of annual precipitation 

for the basin (Figure 4.2).   

 

4.3.2 Basin-scale water balance 

 

A central question in our study is how well VIC captures the variability in hydrologic 

storage for the Colorado River basin.  This is not unlike a more traditional problem in 

water resources, which is how well a reservoir’s stage-storage relationship captures the 

variability in its contents.  Langbein [1960] addressed such a question for Lake Mead by 

carefully comparing changes in reservoir volumes as determined by a stage-storage 

relationship from a recent bathymetric survey with changes in volumes as calculated 

through a water budget of observed inflows and outflows.  He found that gains in volume 

as derived from the water budget exceeded those derived from the stage-storage 

relationship in wet years, and losses in volume as derived from the water budget 

exceeded those derived from the stage-storage relationship in dry years, with the 

magnitudes of the residuals proportional to the changes in volume.  He attributed these 

residual quantities to a “hidden” storage term that was neglected in the stage-storage 

relationship, namely, bank storage in the sediment of the reservoir, which he estimated at 

roughly 3 million acre-feet, as compared to the lake’s usable capacity of 27 million acre-

feet at the time.  In a similar study, Murdock and Calder [1969] estimated about 6 million 

acre-feet of bank storage for Lake Powell, which also has a usable capacity of 27 million 

acre-feet.  

 

In this study, we adopted a similar approach to assess any “hidden” components in the 

modeled storage quantities by comparing them with changes in storage that are derived 

exclusively from observational data.  Rather than a single reservoir, however, we adopted 

each of the 29 sub-basins as our control volumes, and computed changes in storage using 

the hydrologic continuity equation: 
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           (3)  

 

We used gridded precipitation data (at a 1/8-degree spatial resolution) and naturalized 

streamflow taken from the monthly USBR data described in Section 4.3.1.  For ET, we 

used a satellite-based product from MODIS [Tang et al., 2009], aggregated from 0.05-

degree to a 1/8-degree resolution.  The MODIS-based product is one of several recent ET 

datasets derived primarily or entirely from remote sensing data [e.g., Ferguson et al., 

2010; Zhang et al., 2010].  These data, arguably, are the nearest alternative to ET 

observations available at this scale. 

 

For the pilot study area of the Klamath River basin, Tang et al. [2009] found daily ET 

biases of less than 15% when compared with ground flux tower observations and 

Landsat-based estimates, with a tendency for the MODIS-based product to underestimate 

seasonal ET.  They noted that the algorithm was most effective over areas containing a 

substantial diversity in vegetation types.  In an analysis of a similar product, Ferguson et 

al. [2010] found that satellite-based ET was also biased low when compared with VIC-

simulated ET for the continental US, except for the Colorado and Great Basins, where it 

was biased high.  They suggested that the most likely explanation for the high bias was 

the lack of a constraint of soil water availability for the remote sensing product.    

 

4.3.3 Satellite-derived terrestrial water storage change 

 

As an additional basis for comparison, we analyzed estimates of terrestrial water storage 

change (TWSC) from the GRACE satellite mission since its 2002 launch.  Despite a 

relatively coarse effective spatial resolution of several hundred kilometers, GRACE data 

have demonstrated utility for quantifying changes in hydrologic storage in a number of 

recent studies.   Syed et al. [2008] found good agreement between GRACE-derived 

TWSC and Global Land Data Assimilation System simulations at global and continental 

scales.  Strassberg et al. [2009] found that GRACE-derived data were highly correlated 

with in-situ soil moisture and groundwater observations for the High Plains aquifer, and 



79 
 

Grippa et al. [2011] showed that GRACE data adequately reproduced the interannual 

variability of water storage estimated by nine LSMs over West Africa.  In a study of nine 

major US river basins, Gao et al. [2010] found that GRACE data tended to underestimate 

TWSC when compared with VIC simulations, although they noted that errors tended to 

be of smaller magnitude than those for satellite-based ET and precipitation.   

 

The GRACE data sets used here were processed by the Center for Space Research (CSR) 

at the University of Texas and were filtered to remove spatially correlated errors that 

result in north-south data “stripes” [Swenson and Wahr, 2006].  Data were provided at a 

1-degree spatial resolution for the period 2002–2010 and represent “equivalent water 

thickness” as computed from observations collected continuously over monthly intervals. 

 

4.3.4 Baseflow recession analysis 

 

We inferred storage changes for subsets of the domain using baseflow recession analysis. 

For this we used daily streamflow data 

from 72 “reference-quality” gages in 

the GAGES-II database 

(http://water.usgs.gov/GIS/metadata/u

sgswrd/XML/gagesII_Sept2011.xml; 

Figure 4.3).  This is an update to a 

compilation of all USGS stream gages 

in CONUS that are either currently 

active or have at least 20 years of 

complete-year flow records since 

1950, and for which watershed 

boundaries can be reliably delineated 

[Falcone et al., 2010].  

 

We adopted two separate approaches 

for our recession analysis.  The first, 

Figure 4.3: The locations of the 72 “reference-

quality” watersheds (in blue) used in the baseflow 

recession analysis. The 29 USBR gauges and sub-

basins are shown for reference. 

 

http://water.usgs.gov/GIS/metadata/usgswrd/XML/gagesII_Sept2011.xml
http://water.usgs.gov/GIS/metadata/usgswrd/XML/gagesII_Sept2011.xml
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more conventional, approach utilizes the classical forms of the recession equation as 

proposed by Barnes [1939] and Maillet [1905]: 

 

       
 
 (4) 

 

where    is the streamflow at some arbitrary time     and    is the recession constant. 

For each of the 72 GAGES watersheds, we derived a single recession constant    using 

the semi-automated methodology of RECESS, available for download from 

http://water.usgs.gov/software/lists/groundwater and described by Rutledge [1998].   

 

Our second approach is based on the work of Brutsaert and Nieber [1977], who described 

a family of recession curves by the derivative of the nonlinear equivalent of eq. 4:  

 

     ⁄       (5) 

 

where   and   are constants.  Vogel and Kroll [1992] further showed that   can be 

assumed to be one, in which case only   needs to be estimated from streamflow data.  

The reciprocal of   has been labeled as the recession timescale   [Eng and Milly, 2007], 

which is thus equal to         ⁄   and can be used to relate streamflow   to basin 

water storage  .  For each streamflow record, we identified recession periods using the 

same criteria as in RECESS, which assumes discharge originates entirely from 

groundwater at        days following each streamflow peak, with   representing the 

drainage area in square miles [Linsley et al., 1982].  We then followed the methodology 

of Kirchner [2009] and Krakauer and Temimi [2011] to compute   from streamflow 

observations during these recession periods and develop     curves for each 

watershed.  Values of   were derived for the beginning of each water year (Oct. 1) as 

those corresponding to the minimum streamflow during the 30-day window of Sep. 16 to 

Oct. 15, thus assuring at least a high probability that this streamflow was baseflow-

dominant, even if it did not fall during a recession period in the strict sense.  We then 

computed annual storage changes for comparison with our other estimates.   

http://water.usgs.gov/software/lists/groundwater
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Kirchner [2009] further argued that storage-discharge relationships derived from periods 

of recession could be assumed for other parts of the hydrograph, as evidenced by the 

ability to invert these relationships to successfully infer        from streamflow 

observations for his two test basins in the United Kingdom.  Krakauer and Temimi 

[2011] later used this assumption to estimate monthly storage as the mean of hourly   

derived from observed  , finding that it did not necessarily hold in 61 small watersheds 

across the U.S.  Bearing these results in mind, we tested this approach to also infer 

monthly storage changes from our daily streamflow data.   

 

4.3.5 Statistical analysis 

 

We performed several first-order statistical analyses on the estimates of storage and 

storage change.  Recognizing that a key issue in our study’s main objective relates to the 

contribution of carryover storage from the previous water year, we proposed the naïve 

hypothesis that interannual hydrologic storage contributes most to streamflow during 

years of drought, much like a reservoir is drained to compensate for dry conditions.  We 

tested this hypothesis by evaluating the relationship between change in total water year 

storage and water year streamflow volume, assuming that, except for losses to 

evapotranspiration, any negative change in water year storage can be considered a 

contribution to streamflow from the previous water year.  We also examined relationships 

between water year storage change and Oct. 1 storage anomaly, and water year storage 

change and previous water year streamflow volume, as a basis for comparison.   

 

We then explored the utility of groundwater estimates for seasonal streamflow forecasts, 

which are typically issued for the target period April–July in the Colorado River basin by 

the NWS Colorado Basin River Forecast Center.  Here we adapted the dimensionless 

parameter κ, which was introduced by Mahanama et al. [2012] as the ratio of the 

standard deviation of total basin storage (at a forecast lead of zero) to that of precipitation 

during the forecast target period.  As such it is essentially a comparison between the 

known and unknown water volumes that determine streamflow, providing an 
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approximate measure of the predictability that can be derived solely from IHCs.  Using 

ensemble streamflow forecasts for periods ranging from one to six months, Mahanama et 

al. [2012] and Shukla and Lettenmaier [2011] found first order relationships between   

and forecast skill for 23 basins and 48 hydrologic sub-regions across CONUS, 

respectively.  We extended the   concept to measure the predictive capacity of IHCs at 

leads greater than zero, and also to compare the variability of individual storage terms in 

addition to total basin storage: 

 

       ⁄  (6) 

 

where   is the standard deviation of groundwater, soil moisture, SWE, or various 

combinations thereof on the forecast issue date, and    is the standard deviation of 

precipitation up to and including the forecast target period.  We then developed simple 

forecasts of April–July streamflow volume via multiple linear regression with the basin-

averaged storage terms, and examined the co-variability of the skill (R
2
) of these 

forecasts and our estimates of  .   

 

4.4 Results 

 

We present our findings in a similar fashion to the methods described above.  Sections 

4.4.1 to 4.4.3 provide results from the model simulations, satellite data comparisons, and 

recession analyses in order to establish a most plausible set of storage change estimates.  

Section 4.4.4 analyzes these estimates to assess the contribution of groundwater storage 

to interannual streamflow anomalies. 

 

4.4.1 Model performance 

 

Figure 4.4 shows Nash-Sutcliffe scores for both VIC and VIC-SIMGM in each of the 29 

sub-basins.  The performance of the two models was quite similar.  At Lee’s Ferry, 

scatter plots of simulated vs. observed annual streamflows appeared almost identical, 
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showing good agreement between the two terms over the study period.  Results for other 

sub-basins were comparable.  For VIC-SIMGM, basin-averaged WTDs exhibited a clear 

seasonality and ranged from an average of 1.2 m (sub-basin 18) to 27.5 m (sub-basin 19).  

As a check of these values, we referred to an inventory of USGS wells in CONUS that 

were opened in surficial, unconfined aquifers hydraulically linked to the land surface 

[Miguez-Macho et al., 2008].  When we screened for records long enough to evaluate 

interannual variability, however, only 64 wells in the study domain resulted, including a 

majority in the Lower Basin where they were less relevant for the purposes of the study.  

The remaining wells were too sparse to be useful for our analysis.    

 

Details on subsurface storage simulations are given for Lee’s Ferry and its largest 

headwater basin (Glenwood Springs) in Figure 4.5.  As noted by Niu et al. [2007] for 

CLM, VIC-SIMGM resulted in bottom soil layers that were wetter by volumetric water 

content than in VIC.  Differences in wetness were proportional to WTDs and were most 

evident during the snow accumulation season.  On the other hand, bottom layer soil 

moisture volumes were generally smaller for VIC-SIMGM in sub-basins with shallow 

WTDs, and total soil moisture anomalies were likewise smaller for VIC-SIMGM.  These 

differences, however, were approximately equal to aquifer storage anomalies, so that total 

subsurface storage anomalies were roughly the same for both models.  The mechanism 

behind these differences is apparent upon examination of the soil layer depths – for those 

headwater sub-basins with the shallowest WTDs, calibration resulted in soil columns that 

Figure 4.4: Nash-Sutcliffe efficiency scores for VIC and VIC-SIMGM in each of the 29 sub-basins.  
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were shallower in VIC-SIMGM than in VIC in order to conserve mass.  Differences 

between the models in total basin storage were likewise negligible.   

 

Comparisons of flux terms for the two models were generally unremarkable, despite 

different baseflow parameterizations and independent calibrations.  In VIC-SIMGM, 

baseflow constituted a slightly higher percentage of runoff for regions of shallow WTDs, 

and the annual recession of the simulated hydrograph was noted to typically better match 

that of the observed hydrograph.  ET was also somewhat lower in VIC-SIMGM than in 

VIC, a result that is consistent with other studies of LSM groundwater parameterizations 

[e.g., Liang et al., 2003]. 

 

Figure 4.5: Time series of the subsurface storage terms (from top to bottom): third layer soil 

moisture by volumetric water content, third layer soil moisture in mm, total soil moisture 

anomaly, aquifer storage anomaly, and total subsurface storage anomaly. 
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Modeled storage terms were verified against observations to the extent possible.  

Measured SWE data were obtained for all active NRCS snow courses and SNOTEL 

stations within the basin from http://www.wcc.nrcs.usda.gov/reportGenerator (116 snow 

courses and 186 SNOTEL sites total).  In each sub-basin, April 1 SWE was computed by 

averaging the available observations for each water year.  VIC-derived estimates were 

similarly obtained by averaging SWE simulated at the grid cells in which the 

observations were located.  Direct comparisons of these averages generally showed 

significant differences in magnitude, with observed estimates consistently higher than 

simulated estimates, a result that is not surprising given the mismatch in scale from point 

to grid cell.  Standardized Z-scores of these estimates, however, compared more 

favorably.   

 

4.4.2 Satellite-derived storage changes 

 

As a precursor to performing the basin-scale water balance, we compared MODIS-

derived estimates of ET with VIC estimates of ET for each sub-basin.  As shown in 

Figure 4.6 (left), the two estimates generally matched well over the period of MODIS 

observations.  Some slight discrepancies can be seen, such as a tendency for VIC to 

estimate more ET than MODIS for winter months in sub-basin 12 and for summer 

months in sub-basin 22.  The most consistent difference between the two products occurs 

in water year 2002, for which MODIS estimates substantially more ET than VIC.  Since 

2002 was an extremely dry year (driest or second driest for most sub-basins), this is likely 

a result of the lack of a constraint of soil water availability for the MODIS product (see 

Section 4.3.2).  

 

Monthly changes in storage as derived from the basin-scale water balance and VIC are 

shown in the center column of Figure 4.6, and for comparative purposes, simulated and 

observed streamflow hydrographs are shown for the same time period at right.  The two 

storage estimates match quite well for all sub-basins, except for water year 2002 due to 

the previously noted discrepancy in ET.  Following the work of Langbein [1960], annual 

changes in VIC-simulated storage were plotted against the residuals of the two quantities 

http://www.wcc.nrcs.usda.gov/reportGenerator


86 
 

 

 

(not shown) to infer any element of hydrologic storage that is not captured by VIC (see 

Section 4.3.2).  Despite the good agreement at a monthly time step, however, no 

consistent relationship was found at an interannual time scale, due in part to the 

inadequacy of the sample size.  

 

Figure 4.7 compares simulated and GRACE-derived changes in storage for the sub-basins 

of Lee’s Ferry (20) and Imperial Dam (29).  Reasonable agreement between the estimates 

can be seen, although those derived from GRACE are noticeably noisier than those 

simulated by VIC.  Interestingly, the GRACE data generally indicate more modest 

changes in storage than VIC, particularly during the summer months of June and July; 

VIC-SIMGM only slightly reduces this difference.  

 

 

Figure 4.6: Comparisons between MODIS-derived and VIC ET (left), results of the basin-

scale water balance (middle), and comparisons between simulated and observed streamflow 

(right) for selected sub-basins. 
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4.4.3 Recession analysis 

 

Baseflow recession constants as derived from RECESS were generally consistent across 

watersheds.  Most results for watersheds in headwater basins fell in the upper part of the 

typical range at about 0.96–0.99, with only one watershed in sub-basin 9 indicating a 

recession constant smaller than 0.95.  Recession constants for watersheds in the lower 

part of the Upper Basin were somewhat lower, with a few near 0.85.   

 

Recession plots of      ⁄  vs.   are given for four representative watersheds in Figure 

4.8.  The gray dots in these plots represent all recession observations for each watershed, 

while the black dots are binned averages following the methodology of Kirchner [2009].  

Recession timescales ( ) derived from the fitted curves tended to increase with 

decreasing streamflow but generally were in the 45±15 day range cited by Brutsaert 

[2008]; for the watersheds shown in Figure 4.8, for example,   ranged from ~20 days 

(gauge #09352900) to ~80 days (gauge #09075700) at a   of 1 mm/day.  Storage 

functions derived from these recession plots are shown in the inset graphs of Figure 4.8 

(note that the y-axis on these graphs is labeled with respect to an arbitrary datum), and 

annual changes in groundwater storage estimated from these functions are shown below 

their respective recession plots.   For comparative purposes, we also show changes in 

VIC-SIMGM aquifer storage for the grid cell nearest the centroid of each watershed, 

Figure 4.7: Comparisons between VIC-simulated and GRACE-derived changes in storage. 
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Figure 4.8: Recession plots and associated storage functions (insets) for four reference 

watersheds. Annual changes in groundwater storage as derived from storage functions are 

compared with those derived from VIC-SIMGM below their respective recession plots. 

Watersheds are located in sub-basin 2 (09075700), sub-basin 3 (09107000), sub-basin 9 

(09208000), and sub-basin 18 (09352900), with drainage areas provided in parentheses. 
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which typically covered an area about 

the same size (and no larger than 2 or 

3 grid cells at most).  For the 

watersheds shown here, the ranges of 

variability in the two estimates are 

roughly similar, with storage changes 

for gauge #09107000 and 09208000 

matching particularly well.  For some 

of the other watersheds, we noticed a 

tendency for the simulated 

groundwater storage to have greater 

interannual variability than the storage 

inferred from the recession analysis. 

 

Figure 4.9 presents results from the 

monthly storage analysis, which 

assumed that storage-discharge 

relationships derived from periods of 

recession could be applied to other 

parts of the hydrograph as well.  To 

obtain sub-basin-wide estimates of 

storage change, storage time series 

were developed for all watersheds with 

complete records for 2001–2010, and 

storage averages (weighted by 

watershed area) were then computed 

where possible (about half of the sub-

basins).  Somewhat remarkably, these 

estimates matched up well with those 

derived from VIC-SIMGM for sub-

Figure 4.9: Comparison of monthly change in 

groundwater storage (y-axis, in mm) as derived from 

VIC-SIMGM and recession analysis.  The number of 

reference watersheds used for each sub-basin is 

provided at lower right. 
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basins 1, 3, and (to a lesser extent) 9.  The agreement in 3 is perhaps less surprising given 

that the reference watershed (gauge #09107000, which is also shown in Figure 4.8) 

accounts for roughly half the area of the sub-basin, but the same cannot be said for sub-

basins 1 and 9.  For sub-basins further downstream (11, 20, and 25), recession-derived 

storage changes tend to vary more greatly than those derived from VIC-SIMGM, which 

can probably be attributed to the headwater bias of the reference watersheds.   

 

4.4.4 Statistical analysis 

 

As tests of the hypothesis that interannual hydrologic storage contributes most to 

streamflow during dry years, 

comparisons among simulated storage 

estimates and annual streamflow 

observations are shown for Lee’s 

Ferry in Figure 4.10; for these plots 

streamflow records were divided into 

terciles of dry (red circles), normal 

(yellow circles), and wet (blue 

circles) water years.  As shown in the 

top two plots (a), correlations 

between simulated total water year 

storage change and observed water 

year streamflow volume are weak at 

best, with a slight tendency to lose 

storage in dry years that is modestly 

more pronounced in VIC-SIMGM.  

Correlations between simulated 

annual storage change and simulated 

Oct. 1 storage anomalies (b), on the 

other hand, are somewhat stronger, 

which is fairly intuitive – what goes 

Figure 4.10: Scatter plots for Lee’s Ferry of: (a) 

annual storage change v. annual streamflow, (b) 

annual storage change v. Oct. 1 storage anomaly, 

and (c) annual storage change v. previous water year 

streamflow. Annual storage changes were calculated 

between Oct. 1 and Oct. 1 of the following year.  Red, 

yellow, and blue circles denote dry, normal, and wet 

water years, respectively.   
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up must come down and vice versa.  We therefore hypothesized that simulated annual 

storage changes were related to observed streamflow volumes from the previous water 

year (c), but again found only weak correlations, due in part to the fact that previous 

water year streamflow volumes are poor indicators of the previous water year's storage 

change (and hence Oct. 1 storage anomalies) to begin with, as shown in (a).  Results for 

other sub-basins were comparable, as were comparisons between simulated storage 

estimates and simulated streamflow volumes.  Thus, annual streamflow volumes appear 

to bear little relation to interannual hydrologic storage, and whether interannual 

hydrologic storage (and consequently, interannual groundwater storage) contributes to 

streamflow appears to be more a function of the initial storage conditions, being more or 

less equally likely in a wet or dry year.   

 

Figure 4.11 provides an alternative perspective on this issue by comparing the range of 

simulated annual storage change as a percentage of that year’s streamflow observation for 

each of the 29 sub-basins.  Expressed in this way, the ranges are smallest for sub-basin 1, 

the single largest contributor of runoff among the headwater basins, and are minimal for 

similarly significant sub-basins 2, 8, and 12.  On the other hand, ranges are largest for 

Lower Basin sub-basins that yield much smaller runoff volumes.  Thus, interannual 

hydrologic storage appears of least importance where streamflow matters most, and most 

 

Figure 4.11: Ranges of simulated annual storage change as a percentage of annual streamflow 

observations for VIC (gray boxes) and VIC-SIMGM (white boxes). The central mark in each 

box indicates the median, and the edges of the box are the 25th and 75th percentiles. Whiskers 

extend to a maximum of ~2.7 standard deviations from the median, and outliers are indicated 

by dots. 
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where streamflow matters least.  As noted in Section 4.4.1, it is difficult to discern any 

consistent difference between storage changes for VIC and VIC-SIMGM; the range of 

variability is wider for VIC in sub-basins 7 and 11 and for VIC-SIMGM in sub-basins 15 

and 17, but by and large the two are comparable.  At Lee’s Ferry, both suggest a lower 

quartile of about -25% and an upper quartile of about +25%.   

 

Results from the κ analysis are shown in Figure 4.12.  The top two plots compare skill 

(here expressed as R
2
) for regression forecasts of an April–July target period against κ at 

lead zero, with each dot representing a different sub-basin, and each color a different 

simulated storage term or combination of terms.  The largest dots in each plot are for 

Lee’s Ferry.  For VIC, SWE and soil moisture exhibit comparable estimates of κ, 

although κ is more variable for SWE across sub-basins, and forecasts based on SWE are 

noticeably more skillful.  As expected, total storage results in values of R
2
 and κ that are 

greater than for either of the individual storage terms.  These patterns are largely 

replicated for VIC-SIMGM, although soil moisture exhibits marginally lower values of κ 

than for VIC (as discussed in Section 4.4.1), despite seemingly no loss in forecast skill.  

Aquifer storage has the lowest κ of all, with (somewhat disproportionately) little to no 

forecast skill.  A first order relationship between R
2 

and κ is not particularly obvious from 

these plots, perhaps due to the small sample size. 

 

The middle two plots in Figure 4.12 compare individual simulated storage terms at leads 

up to six months (i.e., forecasts issued on Oct. 1), with the numbers inside the larger dots 

denoting the lead time for Lee’s Ferry.  Similar patterns can again be seen: SWE exhibits 

the highest skill, VIC-SIMGM soil moisture exhibits lower values of κ than for VIC, and 

aquifer storage exhibits the lowest values of κ with negligible forecast skill.  Though 

somewhat noisy, a first order relationship between R
2 

and κ is here more apparent, with 

the odd exception of aquifer storage.  For the bottom two plots, which show results for 

total basin storage, this first order relationship is clearly visible, demonstrating that the κ 

concept can be extended to lead times beyond zero, at least where total basin storage is 

concerned. 
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Figure 4.12: Scatter plots of forecast skill v. kappa for various storage term combinations, 

reflecting an Apr.-Jul. target period.  The larger dots in each plot are for Lee’s Ferry, with the 

numbers inside indicating the lead time in months. 
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The apparently counterintuitive result for aquifer storage merited additional investigation.  

Correlations between basin-averaged aquifer storage and Apr.-Jul. streamflow were 

found to be lower than for other storage terms, but the reason was not obvious.  

Autocorrelation functions were strong and, somewhat logically, higher than for other 

terms.  We tested whether different combinations of grid cells resulted in greater 

predictive capacity than the collective basin average using a search routine based on 

principal components regression [Rosenberg et al., 2011].  Skill improved only 

marginally, however, and negligibly in relation to the improvement found by adopting 

this approach for other storage terms.   

 

4.5 Summary and conclusions 

 

Our analysis quantitatively assessed the significance of groundwater storage to 

interannual streamflow anomalies in the Colorado River basin.  We compared several 

estimates of total basin storage change and found that VIC simulations yield similar 

results regardless of whether a groundwater representation is included.  We also found 

that these estimates compare favorably with those obtained from observation-based 

basin-scale water balances and GRACE measurements.  Further, we found that changes 

in VIC-SIMGM-simulated groundwater storage were similar to those derived from a 

baseflow recession analysis.   

 

Assessments of the co-variation between simulated annual storage change and water year 

streamflow volumes revealed essentially no relationship between these two terms for any 

of the 29 sub-basins.  Similarly, interannual hydrologic storage accounted for only a 

small percentage of annual streamflow in the headwater sub-basins from which most of 

the basin’s runoff originates.  Simulated estimates of groundwater storage exhibited less 

variability and weaker seasonal streamflow predictive skill than either SWE or soil 

moisture at every lead time.  Thus, we conclude that groundwater storage does not 

provide a significant contribution to interannual streamflow anomalies in the Colorado 

River basin. 
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The implications of these results are noteworthy for both operational and long-term 

planning purposes.  Operationally, they suggest that current statistical and ensemble-

based water supply forecasts, neither of which account for groundwater conditions, are 

likely not detrimentally affected by this omission in the Colorado River basin.  With 

respect to a longer timeframe, the results imply that there is little dependence of one 

year’s discharge on that of the previous year, an issue that has been cited as potentially 

helping to reconcile modeled projections of climate-change-induced reductions in 

Colorado River streamflow [Hoerling et al., 2009].  Nonetheless, the contribution of 

groundwater storage to interannual streamflow anomalies on a global scale is an 

important and relatively unexplored issue.  The methods presented herein can be used to 

evaluate this issue for other locales.  
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V. CONCLUSIONS 
 

 

This dissertation has presented conceptual and operational contributions to the field of 

water resources engineering.  Original concepts exploiting MHMs for operational 

seasonal streamflow forecasts were developed, demonstrated, and evaluated through 

applications in the western U.S.  Central to this research was the premise that a 

significant barrier for many prior efforts has been the misalignment between 

experimental and operational methodologies.  Accordingly, the three preceding chapters 

offered different but complementary approaches to this problem.   

  

Chapter II addressed the first science question, “Can a hybrid framework, which 

combines model-simulated initial conditions with the regression-based methods used 

operationally, improve seasonal forecast skill?”  The results presented in this chapter 

suggest that a hybrid framework offers an effective alternative to more conventional 

forecasting methodologies.  Hybrid forecasts based on simulated data acting as surrogates 

for ground-based observations were found to perform comparably to those based on their 

observed counterparts. When a larger selection of grid points was considered, hybrid 

forecasts achieved greater skill, with the greatest benefits in watersheds that are poorly 

sampled by ground-based observations.  For California’s Central Valley drainage, hybrid 

forecasts demonstrated skill superior to that of DWR’s operational forecasts, with 

particular improvements for the Cosumnes and Tule.   

 

To the question, “Can such an approach provide the ability to generate late-season 

forecasts, when snow exists at higher elevations but most observing stations are snow-

free?” Chapter II showed that, by providing estimates of SWE along mountain peaks, a 

hybrid framework can improve forecasts in the latter parts of the ablation season.  The 

implications of this result are perhaps most significant for watersheds with relatively 

small reservoirs that must balance late-season water supply with flood control 

considerations, including those in the San Joaquin and Tulare Lake hydrologic regions in 

the context of the study area. 
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The second science question was addressed in Chapter III.  To the question, “How can 

macroscale hydrologic models be employed to inform network design for statistical 

seasonal streamflow forecasts?” this chapter described a skill-oriented approach based on 

a variation of the hybrid methodology presented in Chapter II.  The approach was 

demonstrated to provide the ability to both rank basins in order of those with the most to 

gain from a new station, and identify locations within each basin that most appreciably 

improve forecast skill.  Under a forecasting scenario that assumed the currently standard 

predictors of SWE and water year-to-date precipitation, these locations tended to occur at 

the margins of the climatological snowpack, providing a second mode of lower-frequency 

variability that is not captured by predictors with higher climatological averages.  As in 

Chapter II, improvements were most significant for sparsely sampled basins such as the 

Musselshell and Humboldt. 

 

To the question, “Can soil moisture provide additional predictive skill in a statistical 

framework beyond that given by conventional predictors?” Chapter III indicated that, for 

basins with dense existing networks, substantial improvements were only possible when 

soil moisture was considered, particularly during the accumulation season.  Furthermore, 

locations identified as optimal for soil moisture sensor installation were primarily found 

in regions of low- to mid-elevation, in contrast to the higher elevations where SNOTEL 

stations are traditionally situated.  These results corroborate prior research while 

demonstrating that soil moisture data can explicitly improve operational water supply 

forecasts, and that statistical forecast skill is comparable to ensemble-based skill.  In 

addition, the study demonstrated that simulated hydrologic data can be combined with 

observations to improve statistical water supply forecasts, a strategy that may prove more 

effective than new hydrometric installations in the near term.   

 

Chapter IV addressed the final question, “How significant are interseasonal and 

interannual groundwater anomalies for seasonal streamflow forecasts?”  The methods in 

this chapter form a foundation for the assessment of this problem on a global scale.  The 

corresponding results suggest that groundwater storage bears little relation to interannual 
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streamflow anomalies, and that groundwater anomalies do not provide a significant 

contribution to seasonal streamflow predictability, in the Colorado River basin.  

Operationally, the implication of these results is that current statistical and ensemble-

based water supply forecasts, neither of which account for groundwater conditions 

implicitly or explicitly, are likely not detrimentally affected by this omission in the 

Colorado River basin.  Over a longer time frame, the results imply that there is little 

dependence of one year’s discharge on that of the previous year, an issue that has been 

cited as potentially helping to reconcile modeled projections of climate-change-induced 

reductions in Colorado River streamflow. 

 

Finally, to the question, “How does the coupling of a macroscale hydrologic model to an 

explicit groundwater model affect soil moisture estimates and their predictive capacity?” 

Chapter IV indicated that a groundwater model substantially increases soil moisture 

estimates by volumetric water content, particularly during the accumulation season for 

regions of shallow WTD.  Conversely, these same estimates were shown to be smaller 

than those without a groundwater model in terms of soil moisture volume, an outcome 

attributed to the propensity of the coupled surface-groundwater model to result in 

shallower soil layer depths in order to offset the aquifer storage term and conserve mass.  

Despite these variations, however, statistical analyses revealed essentially no difference 

in predictive capacity between soil moisture estimated with and without a groundwater 

representation.  

  

Taken as a whole, the research presented in this dissertation provides an important basis 

for the adaptation of MHMs to the operational forecasting environment.  In the western 

U.S., where IHCs are so critical to forecast skill, MHMs can help to improve the 

assessment of catchment storage conditions in an operational context.  The three studies 

in this dissertation explicitly demonstrated this ability for the three main elements of 

catchment storage: SWE, soil moisture, and groundwater.  They also demonstrated how 

MHMs, which were intended for global and continental applications, can be adapted for 

analyses at the more focused watershed scales appropriate to operations.  The case studies 
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described provide evidence that MHMs can move beyond the limitations of more 

conventional approaches and offer insights unavailable by other means. 

 

Future work will seek to transfer the methods developed in this dissertation to other 

regions.  For example, the hybrid methodology of Chapter II may be suitable for 

environments other than snowmelt-dominant.  The network design approach of Chapter 

III is promising for areas of intensifying water development.  The methods of Chapter IV 

may prove useful in humid settings where the role of groundwater is potentially more 

significant.   

 

From a conceptual perspective, a noteworthy issue explored in this research is the 

synergistic skill of data-driven (i.e., statistical) and process-driven (i.e., ensemble-based) 

prediction models.  As computing power and numerical algorithms progress, it will 

become important to analyze improvements in process-driven models within the context 

of less intensive prediction frameworks.  Furthermore, the implications of climate change 

for statistical prediction approaches warrant further work.  The water resources 

community is at a crossroads of management paradigms.  While continued research on 

the effects of nonstationarities is essential, there is also a critical need to provide 

guidance within established models today.   
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