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Parsimonious methods to estimate potential evapotranspiration (ET) based on 

temperature and solar radiation data are attractive alternatives to more data intensive 

methods in areas with limited data availability or when developing algorithms for 

estimating ET from remotely sensed data. In the first part of this dissertation, the 

performances of the most commonly used ET models have been investigated and 

methods to improve their performance in a variety of climates have been proposed. In 

addition, linear models to evaluate potential ET at annual and seasonal time scales have 

also been developed. These models have a simple structure and are useful for 

evaluating spatial distribution of ET, assessing historical annual and growing season ET, 

performing baseline checks, or evaluating ET trends based on output from global climate 

models. 
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In the second part of this work, a complex Richards equation based hydrologic model 

has been used in which soil parameterization was varied. Model simulation results 

showed that both the soil moisture retention curve and the saturated hydraulic 

conductivity control the level and spatial variability of soil moisture and affect the 

shape, timing, and magnitude of the hydrograph. Results from these virtual experiments 

provide insights for model calibration and for the site locations useful for field data 

collection to best inform the distributed hydrologic model.  

 

Finally, the last topic investigates hydrologic modeling at a larger scale and in the 

context of climate change. A fine-scale, distributed hydrologic model, DHSVM, has been 

used to investigate the role of the vegetation cover density and extent on streamflow 

timing and magnitude for a high elevation basin located in the Sierra Nevada Mountains, 

California. Model simulations have indicated that in this area, when temperatures are 

rising, snow melts faster in the presence of forests mostly due to increases in net 

longwave radiation. The findings from this study are important to identify forest 

management actions in the Sierra Nevada that have the potential to increase snow 

retention at high elevations and increase summer flows. 
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Chapter 1. Introduction 

 

This dissertation is concerned with three separate topics: i) reliable means for 

estimating evapotranspiration when measurements needed to solve the full land 

surface energy budget are not available (Chapter 2 and 3), ii). The detailed soil-water 

dynamic behavior of a fine-scale hydrologic model implemented over the 10.5 ha 

Tarrawarra catchment in Victoria, Australia (Chapter 4), and iii) an assessment of the 

influence of vegetation cover on the timing and amount of runoff from a high mountain 

snow dominated catchment in the context of a warming climate (Chapter 5).   

 

Chapters 2-5 are self-contained papers, each with its own abstract, conclusions, and 

references. Chapter 2 has been published as Cristea et al (2012a). Chapter 3, Cristea et 

al (2012b) is in press. Chapter 5 has been submitted for publication in Hydrological 

Processes.  

 

Evapotranspiration, the amount of water evaporating from soil and transpired through 
plants, is a key component of the water budget. Its quantitative evaluation is important 
for estimating agricultural water needs, quantifying the water balance in the natural 
environment, assessing climate change effects on water resources, etc. Physically based 
estimates of actual and potential evapotranspiration (e.g. using the Penman Monteith 
approach) require observations of solar radiation, temperature, relative humidity and 
wind speed (Allen et al., 1998). While the extent and quality of observing networks have 
been greatly improved during the past decade, in many hydrologic applications the 
observed meteorological variables are unavailable at the desired spatial resolution, or 
are completely unavailable in remote areas (Dent, 2012). In these cases, as well as in 
others, such as in remote sensing applications methods to compute evapotranspiration 
based on fewer variables, typically solar radiation and temperature, are used (e.g. Jiang 
and Islam 2001; Wang et al. 2006a; Bois et al. 2008). These methods however were 
developed under specific, local, conditions and their use outside these conditions may 
be inappropriate.  
 

In Chapter 2 a comparison of two simple radiation based methods to calculate potential 

evapotranspiration against a more comprehensive approach for a range of climates is 

presented. This comparison was made to identify the conditions in which the simpler 

methods diverge from the performance of the more comprehensive method. Equations 

were developed to correct the empirical coefficients of the simple models. This 

correction allowed the simpler models to perform much better over a relatively large 

range of climate conditions.  
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Chapter 3 covers the evaluation of potential evapotranspiration at large spatial and 

temporal scales. For this application, linear models based on averages of weather 

variables at annual and seasonal scales were developed. The linear models constitute an 

improvement over the other approaches such as those based on temperature and 

latitude alone. The proposed new models can be used to evaluate spatial distributions 

of potential evapotranspiration, as well as climate change effects on evapotranspiration, 

due to projected changes in temperature and relative humidity.  

 

Hydrologic modeling is used to account for the water and energy fluxes and states in 

hydrologic systems. Hydrologic models often serve as tools to address science or 

engineering questions. The most sophisticated hydrologic models (e.g. fine-scale 

spatially distributed, physically based models, integrating surface and subsurface 

processes), require detailed and accurate observations. However, detailed observations 

about system states are rarely available, even at the scale of a small catchment. In 

Chapter 4 an alternative scheme to gain understanding about the hydrology of a small, 

gently sloping, 10.5 ha catchment is used. This method involves the use of synthetic 

hydrologic datasets to analyze the hydrologic behavior of the catchment as a function of 

the soil type. The assemblage of potential evapotranspiration timeseries as part of the 

input datasets to the models was one of the first steps taken in this analysis. This step 

prompted the investigation of potentially useful methods to calculate 

evapotranspiration, which finally led to the results detailed in the first two chapters of 

this work.  

 

Chapter 5 presents a second hydrologic modeling analysis. In this case, the role of the 

vegetation cover in the catchment hydrologic behavior is evaluated for a case study of a 

high-elevation system. Previous work indicated that canopy cover manipulation can 

serve as a means to alter streamflow patterns. Here, the role of vegetation in the 

system response is analyzed for both the historic meteorology and a for a future climate 

scenario. The changes in water and energy balance components when air temperature 

is increasing and the differences between the vegetated and open sites are discussed.  
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Chapter 2.  Revised coefficients for Priestley-Taylor and Makkink-Hansen equations 
for estimating daily reference evapotranspiration 

 

Abstract 

 
Many applications require estimation of reference evapotranspiration in areas where 
meteorological measurements are limited. Previous studies have shown that the data 
parsimonious radiation-based reference evapotranspiration (ETo) model, Priestley-
Taylor (PT), performs relatively well in humid climates, but it under-predicts ETo in drier 
and windier climates. In this paper, we compiled meteorological measurements at 106 
locations in the contiguous US and calculated ETo using the PT and the Makkink with 
Hansen correction (MK-Ha) models. We compared these models to the more 
comprehensive Penman-Monteith equation (FAO-56 PM) estimates of ETo. Results 
showed that the simpler models were closest to the FAO-56 PM at sites where the 
annual mean relative humidity (RH) was about 70% and annual 2-m wind speed (U) was 
less than 2 m·s-1. We then developed equations for adjusting the PT and MK-Ha model 
coefficients using annual averages of RH (or vapor pressure deficit, VPD) and U to 
improve the performance of these models for drier and windier sites. Publicly available 
datasets of spatial distributions of annual RH and U were used to estimate local 
coefficients for the contiguous United States. The new coefficients were tested with 
additional data from 22 sites, not used for coefficient development. At the test sites, the 
performance of both PT and MK-Ha ETo models improved with the revised coefficients. 
Depending on the model, 63-90% of the stations had ETo within 10% of the FAO-56 PM 
ETo for the growing season. The revised coefficients can be used to improve estimation 
of reference ETo in data-limited applications such as remote sensing and distributed 
hydrologic modeling.  
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2.1. Introduction and background 

 

Radiation based evapotranspiration models such as Priestley and Taylor, 1972 (PT) are 

widely used in hydrologic modeling (e.g. Bandaragoda et al. 2004; Wang et al. 2006b; 

Schramm et al. 2007; Soylu et al. 2011) and many other ecological applications. The PT 

model was derived for saturated conditions and open water sites where wind effects 

were negligible. The wind function multiplied by the vapor pressure deficit term in the 

Penman (1948) equation was eliminated, and the evaporative coefficient α was 

introduced, with an estimated average value of 1.26. This coefficient was later found to 

vary, depending on land cover and site conditions, and a relatively wide range of α (0.6 - 

2.47) has been reported (Table 2.1). High values of α were found at dry and windy sites, 

and low values of α were found at humid sites, mostly in Canada, but also in other parts 

of the world (e.g. Kustas et al. 1996; Eaton et al. 2001). Compared with lysimeter data, 

the Priestley-Taylor model with α = 1.26 was found to under-predict significantly in 

windy and arid conditions (Berengena and Gavilàn 2005; Benli et al. 2010), and to over-

predict slightly in humid conditions (Yoder et al. 2005). 

 

Table 2.1 Estimated values of the PT evaporative coefficient α for a range of climates 
and terrain covers. 

Reference  α  Local conditions and study site 

Pereira, 2004 1.26 perennial ryegrass, semiarid, Davis, CA, USA 

1.27 grass, humid tropical, Piracicaba, SP, Brazil 

Zhang et al, 2004 1.17, 1.26 winter wheat, semiarid monsoon climate. North China Plain 

1.06, 1.09 maize, semiarid monsoon climate North China Plain 

Castellvi et al., 2001 1.2-1.9 reference grass, semiarid, north-east Spain, monthly α 

Kustas et al., 1996 0.6-1.0 mixture of rangeland, pasture and cropland, continental climate, 
Chickasha, OK, USA, half-hourly time step 

Flint and Childs, 1991 0.9 partially vegetated clearcut forest site in southwest Oregon, USA 
water limited, α was related to soil moisture 

Fisher et al, 2005 0.73, 0.94 ponderosa pine forest ecosystem at an AmeriFlux site in Northern 
California 

Daneshkar Arasteh and 
Tajrishy, 2008 

1.20-2.47 open water, arid conditions, Chahnimeh Reservoir, southeast Iran  

Gavin and Agnew, 2004 0.8 - 1.25 wet grassland, Southeast England 

Eaton et al., 2001 1.51-2.32 deep lake (Great Slave Lake), Northwest Territories, Canada 

1.17-1.45 shallow lake (Golf Lake), Churchill, Manitoba, Canada 

1.07-1.10 wetland tundra, Trail Valley Creek basin, Northwest Territories, 
Canada 

0.83-1.46 sedge wetland, Churchill, Manitoba, Canada 

1.00-1.08 shrub tundra, Trail Valley Creek basin, Northwest Teritories, Canada 

0.95-1.20 shrub tundra, Churchill, Manitoba, Canada 

0.81-1.00 upland tundra, Churchill, Manitoba, Canada 

0.77 forest, Havikpak Creek, Northwest Territories, Canada 

0.94-0.95 Churchill spruce–tamarack forest Manitoba, Canada 
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Souch et al, 1996 1.035 wetlands in the Indiana Dunes National Lakeshore near Lake 
Michigan, Indiana, USA, hourly time step 

*Stewart and Rouse,1976 1.26 shallow lake, Hudson Bay Coast, Ontario, Canada 

*Bello and Smith, 1990 1.35 shallow lake, Northern Manitoba, Canada 

*Rouse et al., 1977 1.26 wetland, Hudson Bay Coast, Ontario, Canada 

*Price et al., 1991 1.20 wetland, Lake Melville, Newfoundland, Canada 

*Rouse et al., 1977 0.95 upland tundra, Hudson Bay Coast, Ontario, Canada 

*Rouse et al., 1977 1.13 coniferous forest, Lake Athabasca, Northwest Territories, Canada 

**Jury and Tanner, 1975 1.57 strongly advective conditions 

**Mukammal and Neumann, 
1977 

1.29 grass, soil at field capacity 

**Davies and Allen, 1973 1.27 irrigated ryegrass 

**McNaughton and Black, 
1973 

1.18 wet Douglas-fir forest 

**De Bruin and Holtslag, 1982 1.12 short grass 

**McNaughton and Black, 
1973 

1.05 Douglas-fir forest 

**Barton, 1979 1.04 bare soil surface 

**Black, 1979 0.84 Douglas-fir unthined 

0.8 Douglas-fir thinned 

**Giles et al., 1984 0.73 Douglas-fir forest (daytime) 

**Shuttleworth and Calder, 
1979 

0.72 spruce forest (daytime) 

* cited in Eaton et al., 2001 

** originally cited in Flints and Childs (1991) and relisted in Fisher et al., 2005 

 
Another radiation based model for calculating evapotranspiration, Makkink (1957), was 
also derived from Penman’s 1948 model and was validated with lysimeter 
measurements collected in the Netherlands for short grass. De Bruin (1981, 1987) 
proposed modifications of the original Makkink model. Based on further research in the 
Netherlands and Denmark, the Makkink evaporative coefficient C was established equal 
to 0.7 (Hansen, 1984). The Makkink method with the Hansen correction, henceforth 
referred to as the Makkink-Hansen (MK-Ha) method, compared well with lysimeter data 
at a humid location in Germany (Xu and Chen 2005). Descriptions of both Priestley-
Taylor and Makkink-Hansen models are given in the model description section of this 
paper.  
 
A more comprehensive physically based model used to compute evapotranspiration is 
the Penman-Monteith model. The Food and Agriculture Organization of the United 
Nations (FAO) Irrigation and Drainage Paper 56 version of the Penman-Monteith model 
(FAO-56 PM) established the computational steps needed to calculate reference 
evapotranspiration ETo from a well watered surface of green grass of specified height, 
albedo, and surface resistance (Allen et al. 1998). The FAO-56 PM model has been 
shown consistently to perform well against measured data in a variety of climates 
(Garcia et al. 2004; Yoder et al. 2005; Lòpez-Urrea et al. 2006; Gavilàn et al. 2007; Benli 
et al. 2010). Compared with the radiation based models, PT and MK-Ha, that use as 
inputs net radiation (Rn), or solar radiation (Rs), and temperature (T), the FAO-56 PM 
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model is more data intensive, requiring, in addition to Rs and T, relative humidity (RH), 
and wind speed at 2 m height (U). Even though the PT and MK-Ha models have shown 
varying effectiveness in prior studies, the parsimonious structure and limited data 
requirements make these models attractive alternatives to the Penman-Monteith model 
in applications with limited data or in remote sensing applications (e.g. Jiang and Islam 
2001; Wang et al. 2006a; Bois et al. 2008).  
 
To improve the PT and MK-Ha performance, we have developed relationships to adjust 
the PT and MK-Ha evaporative coefficients using mean annual values of RH (or vapor 
pressure deficit, VPD) and U. The coefficients are estimated for grass but can be 
modified for other land cover types via crop factors. Because of the limited availability 
of observed ETo datasets, we used the FAO-56 PM ETo estimates as surrogate for 
measured data. Due to its broad acceptance, the FAO-56 PM is now routinely used as a 
base for comparison for simpler ETo calculation methods (Irmak et al. 2003a), to adjust 
or calibrate other ETo methods (Tabari and Hosseinzadeh Talaee 2011), or to develop 
new methods (e.g. Irmak et al. 2003b). The coefficients developed in this paper can be 
estimated from publicly available GIS datasets and can provide reliable ETo estimates in 
situations with limited meteorological data.  
 
The objectives of this paper are to: i) characterize the annual RH and U conditions for 
which the PT and MK-Ha ETo predictions differ from FAO-56 PM ETo and quantify the 
magnitude of these discrepancies, ii) develop and test coefficient adjustment 
relationships for the PT and MK-Ha models based on annual average RH (or VPD) and U, 
and provide maps of the adjusted coefficients, and iii) show which of the two methods 
performs best in comparison with FAO-56 PM at a daily time scale when using the 
original and newly developed coefficients. All findings are for the daily time step PT and 
MK-Ha models with applicability for the contiguous US.  
 

2.2. Daily evapotranspiration models  

 

2.2.1. FAO 56 Penman-Monteith 

The daily time step FAO-56 PM model (1) estimates ETo for the reference surface, 

defined as the “hypothetical reference crop with an assumed crop height of 0.12 m, a 

fixed surface resistance of 70 s m-1 and an albedo of 0.23, resembling “an extensive 

surface of green, well-watered grass of uniform height actively growing and shading the 

ground” (Allen et al. 1998): 
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where: ETo = FAO-56 PM reference evapotranspiration [mm d-1]; Rn = calculated mean 

daily net radiation at the grass surface [MJ m-2 d-1]; T = mean daily air temperature at 2-

m height [°C]; U = mean daily wind speed at 2-m height [m s-1]; es = saturation vapor 

pressure [kPa], calculated as the average of saturation vapor pressures at the maximum 

and the minimum air temperatures; ea = daily mean actual 2-m height vapor pressure 

[kPa]; Δ = slope of the saturation vapor pressure-temperature curve [kPa °C-1]; γ = 

psychrometric constant [kPa °C-1]. Details for calculating the daily values of Δ, γ, Rn, es, 

and ea are provided in Allen et al. (1998). The vapor pressure deficit, VPD, was estimated 

as VPD = es- ea [kPa].  

2.2.2. Priestley-Taylor  

The equation used to compute daily ETo rates with the PT model is: 


 n

PT

R




oET       (2.2) 

where: EToPT = PT reference evapotranspiration [mm d-1]; α = 1.26, the PT evaporative 
coefficient [-]; λ = latent heat of vaporization at 20oC [2.45 MJ kg-1]. Values of Δ, γ and Rn 
are calculated using the same procedure as for the FAO-56 PM model.  

2.2.3. Makkink-Hansen 

We used the Makkink method with the Hansen (1984) correction (MK-Ha) to compute 
daily ETo rates as: 


s

HaMK

R
C




oET ,      (2.3) 

where: EToMK-Ha =  reference evapotranspiration [mm d-1]; C = 0.7 the evaporative 
coefficient proposed by Hansen (1984); Rs is the mean daily solar radiation [MJ m-2 d-1], 
and the remaining variables are defined using the same procedure as in the FAO-56 PM 
model. 
 

2.3. Methods 

 
To develop and test the ETo equations, we retrieved weather datasets from 106 
locations that represent a range of climates across the contiguous US (see Appendix 2A-I 
for data sources). We checked these data for integrity and quality. We then compared 
the PT and MK-Ha daily ETo estimates using the original coefficients at the 106 study 
sites with the FAO-56 ETo for the growing season period. This period may vary between 
the study sites as a function of climate, but for consistency, we used the period April 1 
to September 30 for all stations and refer to this time range henceforth as the growing 
season period.  
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In the second step for each station we calibrated the PT and MK-Ha evaporative 
coefficients, α and C, by minimizing the sum of the squared residuals between the 
benchmark FAO-56 PM ETo, and the PT and MK-Ha models. We then re-evaluated the 
calibrated PT and MK-Ha model predictions. Next we applied multiple linear regression 
techniques and the results from the previous step to develop coefficient adjustment 
relationships for the PT and MK-Ha models based on annual averages of RH and U. Once 
the equations were established, spatial distributions of annual RH (New et al., 1999) and 
U (National Renewable Energy Laboratory, NREL, 1996) were used to generate PT and 
MK-Ha coefficient maps for the contiguous US. In the fourth step we tested the 
performance of the conditional coefficients with weather data from 22 stations, not 
included in the original dataset.  For these test stations, we used both coefficient values 
estimated with the annual RH and U from the station records and the map values 
calculated in the third step.  
 
The effectiveness of the adjusted coefficients was evaluated using the root mean square 
error RMSE, the index of agreement d (Willmott 1982), and the ratio between the PT 
and MK-Ha ETo and FAO-56 PM ETo, for the growing season, r. Equations used for these 
measures are:  
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where i is the index for the day, ETo,pi refers to daily ETo rates from either PT or MK-Ha, 
and ETo,i is the FAO-56 PM daily ETo rate. The PT and MK-Ha methods approximate best 
the FAO-56 PM when the RMSE is small and when d and r approach unity. 
 

2.4. Meteorological datasets 

 
The meteorological datasets were retrieved primarily from agricultural weather network 
sites that recorded hourly values of T, Rs, RH and U. Selected stations are from 106 
locations shown in Figure 2.1 as open circles, where circle size represents the estimated 
United Nations Environment Programme (UNEP, 1992) aridity index class AIu, defined as 
the as the ratio between the annual precipitation and annual potential 
evapotranspiration. Larger circles are shown for humid climates, smaller circles for dry 
climates. Twenty-two additional stations in Figure 2.1, shown as solid triangles, were 
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used as test sites. The map was produced from USGS (2003) Geographic Information 
System (GIS) datasets. 

 
Figure 2.1 Locations and UNEP aridity index of study and test sites displayed on the 
annual average air temperature US map. 

The criteria for selecting the locations shown in Figure 2.1 were: (i) availability of 
continuous and consistent hourly meteorological data (T, RH, U and Rs) for 3 to 5 years; 
and (ii) representativeness for a range of climates and latitudes. The weather data time 
series from all stations were checked for continuity and quality. Linear interpolation was 
used for records with missing periods of less than 3 hours. For longer periods, we used 
the filling guidelines provided in Allen et al. (1998). Less than 5% of the data required 
any fill-in procedures. For 100 of the 106 stations, 5 years of data were used from each 
station, while for the remaining 6 stations, 4 years (5 locations) and 3 years (1 location), 
respectively, were considered. Daily average values of input weather variables were 
derived from the hourly data series. 
 
Based on the Köppen-Geiger classification, the climate conditions vary significantly 
between the 106 sites (open circles) shown in Figure 2.1. In Region A, California and 
Arizona, they range from Mediterranean in the southern part to more continental 
towards the inland, and to semi-arid and arid in the southeastern areas. Most arid 
stations are located in Arizona, where annual averages of RH are low, and mean annual 
T can reach 20-21 °C. Region B has a continental climate, with the eastern part 
characterized by humid continental conditions with warm summers and cold winters 
and the western part by drier conditions, with less precipitation. Generally, region B has 
relatively low mean annual T, 3.8-7.2 °C, and high mean annual U, 3.2 -5.4 m·s-1. The 
stations in region C are mostly located in the Texas High Plains area characterized by a 
semi-arid climate, with hot summers and significant temperature changes from day to 
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night, and mild winters. Stations in region D have a humid continental climate with 
about 12-14°C mean annual T, with cold winters and hot summers and, at times, 
significant swings in air temperatures during the summer months. The climate of region 
E (Florida) is humid subtropical in the north and tropical in the south, with long, humid, 
warm summers and mild winters with positive temperatures. Region E generally has 
high mean annual T, 20-24°C, high mean annual RH, 74 – 79% and low mean U, typically 
less than 2 m·s-1.  
 
Regions A - E span a range of different climate types across the contiguous US, as shown 
in the updated Köppen-Geiger map of Peel et al. (2007). (See Appendix 2A-III for details 
for accessing the Köppen-Geiger maps).  Of the 22 test stations, shown as solid triangles 
in Figure 2.1, 8 were selected from regions A, B, and D and 14 from locations outside 
regions A-E.  These additional locations include the mountainous areas in Idaho, 
maritime and humid Western Washington, semi-arid Eastern Washington and Colorado, 
and continental Wisconsin. The annual average T at the test stations ranges from 4.8 to 
22.7 °C; the annual average RH and annual average U range from 46.7 to 79.1%, and 1.1 
to 4.4 m·s-1, respectively. Site characteristics are summarized in Appendix 2B.  
 

2.5. Results  

 

2.5.1. Daily ETo estimates before and after local calibration  

 
To compare PT and MK-Ha models to the FAO-56 PM equation, we calculated the ratios 
between the total growing season ETo from the simpler models to the FAO-56 PM ETo, 
referred to as rPT and rMK-Ha. At humid and lower wind speed sites, the two methods 
estimated relatively well the FAO-56 PM ETo. Figure 2.2a shows that the PT model was 
within about 5% of the FAO-56 PM ETo at sites where the annual RH ranged between 
68% and 75%, and annual U was less than about 2 m·s-1. For annual RH larger than 75% 
and annual U less than 1.5 m·s-1, the daily PT model overestimated the FAO-56 PM ETo. 
Figure 2.2b shows that the MK-Ha ETo approximated best the FAO-56 PM ETo at sites 
where the annual RH was generally higher than 70% and annual U was lower than 2 m·s-

1.  
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Figure 2.2 Ratios rPT of the growing season PT ETo to FAO-56 PM ETo (a), and MK-Ha ETo 
to FAO-56 PM ETo (b), as function of annual RH and U.  Dots represent station-based 
calculations of rPT and rMK-Ha, and filled areas are developed from a projected triangle 
based linear interpolation grid. 

 
Figure 2.3 shows examples of local calibration of the PT and MK-Ha daily ETo models at 
two different stations: Buckeye, Arizona, and Wishek, North Dakota. The first station is 
located in an arid region characterized by high annual average T (21-22 ºC), low annual 
average RH (38-40%), high annual average Rs (235 W·m-2) and moderate annual average 
U (2 m·s-1). In contrast, the second station has low annual average T (5-6 ºC), high RH 
(73-75%), low Rs (160 W·m-2) and high U (5.6 m·s-1). Figure 2.3a and b show that for the 
Arizona station at low RH conditions and relatively low U, the discrepancies between the 
simpler models and the FAO-56 PM ETo were reduced through calibrating the 
evaporative coefficients, with the resulting residuals having a more uniform spread 
around zero. For the windy North Dakota site, the calibrated coefficients, α and C, 
corrected the general trend of the PT and MK-Ha ETo daily variations, but the highest 
FAO-56 PM ETo rates remained under-predicted by the simpler models, even with the 
calibrated coefficients (Figure 2.3c and d). Plots are shown for the 2006 growing season.  
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Figure 2.3 Examples of local calibration of the PT and MK-Ha models for April to October 
2006 daily evaporation at Buckeye, AZ (a-d), and Whishek, ND (e-h). 

 
The variability of the estimated rPT and rMK-Ha at all stations is also shown in Figure 2.4a 
as box-and-whisker plots before calibration (rPT and rMK-Ha) and after local calibration (rPT-

c and rMK-Ha-c). Outliers are defined to be outside of the Q1-1.5*(Q3-Q1) to Q3+1.5*(Q3-Q1) 
interval, where Q1 is the 25th percentile and Q3 is the 75th percentile in each of the four 
datasets. The values of rPT and rMK-Ha range over intervals from 0.62 to 1.14 and 0.70 to 
1.10, respectively, with the lowest values at arid and windy sites and the highest values 
for the humid sites, as illustrated also in Figure 2.2. Median values are 0.86 for both 
methods. Both rPT and rMK-Ha intervals were substantially reduced after calibration to 
0.97 to 1.01, and 0.96 to 1.01, respectively (Figure 2.4a, last two boxplots), with a 
median of 0.99 in both cases. The values of the calibrated PT αc and MK-Ha Cc 
coefficients ranged between 1.11 to 2.00 and 0.63 to 1.01, with higher values at low RH 
and windy sites and lower values at humid sites (Figure 2.4b).  
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Figure 2.4 (a) Ratios of the growing season PT ETo to FAO-56 PM ETo and MK-Ha ETo to 
FAO-56 PM ETo before and after local calibration; (b) ranges of the calibrated α and C. 

2.5.2. Daily evaporative coefficients relationships  

 
Figure 2.3 and Figure 2.4a show that the site-calibrated evaporative coefficients 
improved the performance of the PT and MK-Ha ETo models, especially at dry and windy 
sites. To develop prediction equations for local α and C we used multiple linear 
regressions with mean annual RH (or mean annual VPD) and mean annual U as 
independent variables. The equations have the following generic form, for which 
coefficients b1, b2 and b3 were determined:  

  UbbbC  321 VPDor  RH, ,    (2.7) 

where RH varies between 0 and 1, VPD is in [kPa], and U is in [m·s-1] (Figure 2.5). Table 
2.2 lists the b1,2,3 coefficients, the 95% confidence intervals (CI) for each b, and the 
explained variance, r2. 
 
Table 2.2 Multiple linear regression coefficients b1,2,3, 95% CI and r2 

 b1 95% CI b1 b2 95% CI b2 b3 95% CI b3 r
2
 

(α)RH, U 2.214 2.116 - 2.311 -1.526 -1.668  -1.384 0.079 0.065  0.092 0.84 

(C)RH, U 1.036 0.984 - 1.089 -0.527 -0.604  -0.450 0.041 0.033  0.048 0.72 

(α)VPD, U 0.717 0.647  0.786 0.387 0.349  0.426 0.122 0.107  0.138 0.85 

(C)VPD, U 0.493 0.467  0.519 0.152 0.137  0.166 0.058 0.052  0.064 0.82 
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Figure 2.5 Multiple linear regressions based on mean annual RH and U (a), or VPD and U 
(b), for the PT, and MK-Ha, ETo models’ evaporative coefficients, α and C. 

The variables, RH, and U, (or VPD and U) used in Eq. 2.7 were tested for linear 
dependence (r2 = 0.01 and 0.14, respectively) and can be treated as independent. 
Coefficients α and C had the strongest correlation (as a second order polynomial) with 
annual RH (VPD), with the PT α having the highest correlation (r2 = 0.65 with RH and r2 = 
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0.40 with VPD). The correlation was weaker with U and Rs and zero with annual T.   The 
calibrated values of α and C followed a linear relationship (Figure 2.6). 

 
Figure 2.6 Linear relationship between the calibrated PT α and MK-Ha C coefficients. 

2.6. Maps of evaporative model coefficients  

 
Maps of the PT and MK evaporative coefficients were generated for the contiguous US 
based on Eq. 2.7 and the spatial distributions of annual average RH (New et al., 1999; 
Figure 2.7a) and U derived from the NREL, 1986 dataset (see Appendix 2A-II for online 
resources). The NREL dataset provides wind speed at 10m height, U10, shown in Figure 
2.7b. This was further converted into U at 2-m height using the following correction 
formula (Allen et al. 1994):  

 










42.58.67ln

87.4

z
UU z , where Uz = U10 and z = 10m.  (2.8) 

The maps in Figure 2.7c-d show that larger values of α and C were estimated for windy 
locations (e.g. mountainous areas) and low annual average RH areas (e.g. Arizona and 
eastern California), while smaller values were estimated for the humid and less windy 
areas such as the warm and humid southeastern region of the US (Figure 2.7c-d). Details 
for obtaining ArcGIS coefficient maps are given in Appendix 2A-IV. 
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Figure 2.7 Spatial distributions of annual average RH (a), annual average U10 (b), α (c),  
and C (d) for the contiguous US. 

2.7. Model tests 

 
We estimated the PT and MK-Ha evaporative coefficients α and C at the test stations in 
two ways: i) using the annual average RH (or VPD) and U data from the station records 
in Eq. 2.7, and ii) extracting the coefficients from the generated coefficient maps 
showed in Figure 2.7c-d. The two sets of α and C estimates are listed in Appendix 2B, 
which shows that generally there was good agreement between the station and map 
estimates of α and C. All performance measures (Eq 2.4-2.6) showed improvements in 
the PT and MK-Ha ETo predictions when using either the station or the map coefficients, 
compared with the original coefficient values. All models with revised coefficients show 
reduced ranges of RMSE, d, and r values relative to the values with the original 
coefficients (Figure 2.8). The r performance statistic shows the greatest improvement, 
with median values increasing from <0.9 for the original coefficients to between 5% of 
unity for all models with the revised coefficients (Figure 2.8c).Changes in RMSE and d 
were more variable between models. With the original coefficients, median RMSE 
values were close to 1 for both models and were reduced to 0.78-0.85 for the revised 
coefficients using either the RH and U equation or the map coefficients (Figure 2.8a). 
Median RMSE values did not change between the original coefficients and the 
coefficients from the VPD and U equation. Median values of d were around 0.9 for the 
original coefficients and did not significantly improve for the RH and U equation and the 
map coefficients, but the spread was greatly reduced (Figure 2.8b). Median values of d 
did not improve for the VPD and U equation.  
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The best performing method based on the r criterion is the MK-Ha model with the 
coefficients adjusted based on the RH and U equation and station data, for which all 
values in the inter-quartile range fell within ±5% of the FAO-56 PM ETo. The map derived 
coefficients improved the PT and MK-Ha model predictions and provided results 
comparable with those obtained by using the station coefficients.  
 

 
Figure 2.8 Box plots of RMSE (a), d (b), and r(c) at the test stations for the original, 
station specific, and map derived, α and C coefficients. Dotted lines in (c) identify the 
0.95 and 1.05 values. 

In addition to numerical measures, scatterplots are useful to highlight discrepancies 
between the FAO-56 PM ETo estimates and those of the simpler models (Willmott 
1982). Scatterplots are shown for four example test stations (Puyallup, WA; Spring 
Green, WI; Kettle Butte, ID, and Oasis, CA), with site characteristics summarized in 
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Appendix 2B. The PT and MK-Ha daily ETo were plotted against the FAO-56 PM ETo using 
the original coefficients (Figure 2.9a-d and i-l) and the station specific coefficients for 
both sets of independent variables RH and U, and VPD and U, respectively (Figure 2.9e-h 
and m-p). At the humid station (Puyallup, WA) the PT and MK-Ha models approximated 
best the FAO-56 PM ETo, at both low and high rates. As the annual average RH 
decreased and annual average U increased (Spring Green, WI, and Kettle Butte, ID), the 
scatter increased around the one-to-one line, especially at the more windy location 
(Kettle Butte, ID), where the highest FAO-56 PM ETo rates remained under-predicted by 
both the PT and MK-Ha models. At the low RH station (Oasis, CA), the adjusted 
coefficients corrected the general magnitude of the PT and MK-Ha ETo, but considerable 
scatter around the one-to-one line remained. The RMSE, d, and r measures indicate that 
in general, performances of the PT and MK-Ha models, with RH and U as independent 
variables for the evaporative coefficients α and C, were better than when using VPD and 
U as independent variables for a range of climates (Figure 2.8). Among the sites shown 
in Figure 2.9, the PT and MK-Ha models with the coefficients estimated using VPD and U 
approximated better FAO-56 PM at the Spring Green station only. The predicted PT and 
MK-Ha ETo rates with RH and U as independent variables for the evaporative coefficient 
in Eq 2.7 were slightly higher (less than 5%) than those estimated with VPD and U at all 
stations in Figure 2.9, with the exception of the arid Oasis, CA location, where they were 
5% lower.  



 20 

 
Figure 2.9 Scatterplots of the FAO-56 PM ETo and PT and MK-Ha ETo in mm d-1, 
estimated with the original coefficients ((a) – (d) and (i) – (l)) and with coefficients 
estimated based on the RH and U (grey color), and VPD and U (red color) relationships, 
respectively ((e) – (h), and (m) – (p)) at four test stations. Dotted line is the one-to-one 
relationship. 

2.8. Discussion 

 
The PT model with the original coefficient α = 1.26 underestimated the FAO-56 PM 
growing season ETo at dry and windy sites. This behavior, also noted in studies that 
compared the PT ETo estimates with lysimeter data (e.g. Berengena and Gavilàn 2005, 
Benli et al. 2010), is expected because the original PT model was derived for low wind 
conditions (Priestley and Taylor 1972). The largest discrepancies were found at arid and 
semi-arid sites, where the estimated growing season ETo was as low as 62 to 70% of the 
FAO-56 PM ETo (Figure 2.2). We found that the original PT model approximated the 
growing season FAO-56 PM ETo within about 5% at humid sites where the annual 
average RH ranged from 68 to 75%, and U was less than 2 m·s-1.  
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At sites where annual average RH was higher than 75%, and annual average U was less 
than 1.5 m·s-1, the PT model overestimated the FAO-56 PM growing season ETo (Figure 
2.2a). For this dataset, rPT exceeded unity at 16 stations where annual RH varied 
between 68 and 79%. These stations were mostly located in Florida, Missouri, and 
coastal areas of California. Overestimations of the FAO-56 PM ETo or lysimeter data by 
the original PT model were also reported for other humid sites. Suleiman and 
Hoogenboom (2007) found that the daily PT model overestimated the FAO-56 PM in the 
humid climate of Georgia, and Yoder et al. (2005) showed that the PT model 
overestimated lysimeter measurements in the humid climate of Eastern Tennessee 
during the summer months, when the monthly averages of RH and U varied between 
76.4 and 83.5% and 0.9 and 1.2 m·s-1, respectively.  
 
The MK-Ha model with the original coefficient, C = 0.7, compared well against lysimeter 
data at a humid site in Germany (Xu and Chen 2005), but we found no studies where 
this model was applied for drier conditions and compared with the FAO-56 PM or 
measured data. At our study locations, the MK-Ha model with C = 0.7 shows the same 
tendency as the PT model to underestimate the FAO-56 PM growing season ETo, albeit 
to a slightly smaller degree (Figure 2.2b). The method approximated the FAO-56 PM 
best at sites where annual average RH was larger than 70%, and U was less than 2 m·s-1 
(Figure 2.2b).  
 
Use of equation 2.7 to estimate the PT and MK-Ha coefficients improved the 
performance of the simpler models when compared with FAO-56 PM. Jensen (1990) 
recommended a value of α between 1.7 and 1.75 to improve the PT ETo predictions at 
arid sites. The equations we developed offer greater flexibility for a range of RH (or VPD) 
and U conditions. Spatial distributions (maps) of the PT and MK-Ha coefficients for the 
contiguous US were also provided. Despite uncertainties associated with using the map 
coefficients (Figure 2.7c-d), the PT and MK-Ha model predictions at 22 test stations 
improved over the original estimates and were of comparable accuracy with the 
corresponding predictions using the coefficients estimated from Eq. 2.7 and the station 
annual average RH and U data (Figure 2.8). Uncertainties associated with the map 
coefficients are unquantifiable, but depend primarily on the quality of spatial datasets 
for RH and U, which in turn depend on the accuracy and robustness of point measured 
data, uneven spatial coverage, and map interpolation techniques. The wind speed 
spatial dataset includes additional uncertainty related to using the NREL dataset to 
represent U10, and the conversion from U10 to U at 2-m height using Eq. 2.8.  
 
Although the proposed relationships were developed using only weather station data 
from the contiguous US, they covered a relatively large range of climate conditions 
represented by the annual average RH and U intervals shown in Figure 2.2.  Therefore, 
these relationships may be valid in other parts of the world within similar ranges. 
Extrapolation beyond these intervals will require additional testing.  
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The MK-Ha model is used much less frequently than the PT model, but our results show 
that, compared with the PT model, the MK-Ha model offers three advantages. First it 
uses air temperature, T, and solar radiation, Rs rather than the net radiation, Rn as input 
data. Net radiation Rn is not typically measured at standard weather stations, and its use 
in most Rn-based ETo equations requires approximations and additional computational 
steps (e.g. Allen et al. 1998). Second, the MK-Ha model with the original C coefficient 
approximates the FAO-56 PM ETo slightly better than the PT with the original 
coefficients (Figure 2.2, Figure 2.3a). Third, the variability of the calibrated C is smaller 
than the variability of calibrated α (Figure 2.3b), increasing the chance for better 
prediction of the FAO-56 PM ETo.  
 
We chose the FAO-56 PM model as a base for comparison in place of observations due 
to the lack of measured reference evapotranspiration data over a wide enough range of 
climates. Similar approaches have been used (e.g. Irmak et al. 2003b), based on the 
recommendation of the FAO Expert Consultation on Revision of FAO Methodologies for 
Crop Water Requirements (Smith et al. 1991) that empirical methods should be 
calibrated or validated for new regions using the FAO-56 PM equation. Limitations 
associated with datasets we used include any undetected measurement errors in the 
weather variables and uncertainties associated with the annual average RH and U 
spatial distributions shown in Figure 7a-b.  
 

2.9. Summary and Conclusions 

 
We compared the performance of the Priestley-Taylor (PT) and Makkink-Hansen (MK-
Ha) reference evapotranspiration (ETo) models with their original coefficients, α = 1.26, 
and C = 0.7 respectively, to the FAO-56 PM ETo model using meteorological data from 
106 stations that represent a relatively large range of climates across the contiguous US. 
The original PT and MK-Ha models approximated best the FAO-56 PM ETo at humid and 
less windy sites and under-predicted at drier sites and windier sites. The simpler models 
were closest to FAO-56 PM at sites where the annual mean relative humidity (RH) was 
about 70% and annual 2-m wind speed (U) was less than 2 m·s-1. Local calibration 
significantly improved the performance of the PT and MK-Ha models. At the study sites, 
locally calibrated PT and MK-Ha evaporative coefficients, αc and Cc, ranged between 
1.11 to 2.00, and 0.63 to 1.01, respectively.  
 
We developed equations to estimate α and C (Eq. 2.7) for the PT and MK-Ha ETo daily 
models using mean annual RH (or VPD) and 2-m elevation wind speed U as independent 
variables. The efficiency of these equations was tested at 22 stations not included in the 
original dataset in two scenarios: i) assuming that station annual average RH (or VPD) 
and U data are available, and ii) assuming that the RH and U data are not available, in 
which case site-specific model coefficients were taken from coefficient maps generated 
using existing spatial datasets of annual average RH and U. In both cases, the 
performance of the PT and MK-Ha models improved when compared with the estimates 
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that used the original model coefficients. At the test sites, the improved models 
predicted ETo values for the growing season within 5% of the FAO-56 PM ETo values at 
45-72% of stations and within 10% of FAO PM at 63-90% of stations. The best 
performing model was MK-Ha with coefficients estimated from annual average RH and 
U. The new PT and MK-Ha models can be used to improve ETo estimates when spatial 
distributions of ETo may be needed, such as in distributed hydrologic modeling or 
remote sensing applications.  
 
Our analysis shows that the MK-Ha model is preferable to the PT model because of its 
lower data requirements and smaller model coefficient variability over a range of 
climates. In cases where only air temperature T is recorded at a station, solar radiation 
Rs needed as input in the MK-Ha model can be estimated with available Rs models (see, 
e.g. Allen et al. 1998).  
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Appendix 2A 

 
I) Online resources for hourly weather data: 
 
1. Arizona Meteorological Network, AzMet (http://ag.arizona.edu/AZMET/)  
2. California Irrigation Management Information System, CIMIS 
(http://wwwcimis.water.ca.gov/cimis/welcome.jsp), 
3. Colorado Agricultural Meteorological Network, CoAgMet 
(http://ccc.atmos.colostate.edu/~coagmet/) 
4. Florida Automated Weather Network (http://fawn.ifas.ufl.edu/) 
5. Missouri Historical Agricultural Weather Database 
(http://agebb.missouri.edu/weather/history/)  
6. North Dakota Agricultural Weather Network (http://ndawn.ndsu.nodak.edu/) 
7. Pacific Northwest Cooperative Agricultural Weather Network, AgriMet 
(http://www.usbr.gov/pn/agrimet/). 
8. Texas High Plains evapotranspiration network 
(http://txhighplainset.tamu.edu/index.jsp) 
9. Washington State University Weather Network (http://weather.wsu.edu/) 
10. Wisconsin and Minnesota Cooperative Extension Agricultural Weather network 
(http://www.soils.wisc.edu/wimnext/index.html), 
 
II) Online resources for the spatial datasets of relative humidity and wind data: 
 
1. Relative humidity dataset: http://www.sage.wisc.edu/atlas/index.php 
2. Wind power density class dataset: http://www.nrel.gov/gis/wind.html 
All links were last accessed on March 3, 2011.  
 
III) Updated Köppen-Geiger climate classification maps (Peel et al., 2007): 

http://ag.arizona.edu/AZMET/
http://wwwcimis.water.ca.gov/cimis/welcome.jsp
http://ccc.atmos.colostate.edu/~coagmet/
http://fawn.ifas.ufl.edu/
http://agebb.missouri.edu/weather/history/
http://ndawn.ndsu.nodak.edu/
http://www.usbr.gov/pn/agrimet/
http://txhighplainset.tamu.edu/index.jsp
http://weather.wsu.edu/
http://www.soils.wisc.edu/wimnext/index.html
http://www.sage.wisc.edu/atlas/index.php
http://www.nrel.gov/gis/wind.html
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http://people.eng.unimelb.edu.au/mpeel/koppen.html 
http://people.eng.unimelb.edu.au/mpeel/Koppen/North_America.jpg 
 
IV) ArcGIS Priestley-Taylor and Makkink-Hansen revised coefficients for the continental 
US: 
https://catalyst.uw.edu/workspace/cristn/26054/166779.  
 
Appendix 2B 

 
Table 2.B1. Test stations and their latitude and longitude, annual average temperature, 
T, relative humidity, RH, 2-m wind speed, U, solar radiation, Rs, and α and C values 
estimated with either station mean annual RH and U or with the coefficient maps in 
Figure 2.7c-d 
 

Station year Lat Long 
Elevation 

[m] 
T 

[°C] 
RH 

[%] 

U 
[m·s-

1] 

Rs 
[W·m-

2] 

(α)RH, 

U
1 

[-] 

(C)RH, 

U
2 

[-] 

(α)VPD, 

U
3 

[-] 

(C)VPD,U
4 

[-] 
αmap

5 

[-] 
Cmap

6 

[-] 

Aberdeen, ID 2002 42.9 112.8 1341 6.5 64.7 2.9 164 1.45 0.81 1.35 0.77 1.6 0.87 

Spring Green, WI 2003 43.2 89.9 220 7.9 73.4 2.2 159.6 1.27 0.74 1.18 0.70 1.39 0.80 

Kettle Butte, ID 2006 43.5 112.3 1565 6.8 63.9 3.2 154 1.49 0.83 1.40 0.79 1.60 0.87 

Monteview, ID 2005 44.0 112.5 1480 5 69.4 2.0 153.8 1.31 0.75 1.20 0.70 1.65 0.89 

Rolla, ND 2006 48.8 99.6 552 4.8 74.4 3.9 157.2 1.39 0.8 1.37 0.79 1.36 0.80 

Grand Forks, ND 2002 47.8 97.1 257 5.3 75.4 3.5 145.7 1.34 0.78 1.31 0.76 1.40 0.81 

Fingal, ND 2002 46.8 97.8 438 5.2 76.5 4.4 149.7 1.39 0.81 1.42 0.82 1.42 0.82 

Linneus, MO 2003 39.8 93.1 246 11.5 70.3 3.1 175.1 1.38 0.79 1.36 0.78 1.41 0.80 

Oasis, CA 2002 33.5 116.2 4 22.7 46.7 2.2 233.6 1.67 0.88 1.76 0.92 1.64 0.86 

Charleston, MO 2004 36.9 89.3 98 14.5 74.8 2.7 173.2 1.29 0.75 1.28 0.74 1.28 0.74 

Temecula East II, CA 2003 33.5 117.0 468 16.1 65.1 1.8 212.6 1.36 0.77 1.37 0.77 1.39 0.77 

Dixon, CA 2004 38.4 121.8 37 14.5 74.0 3.3 207.7 1.34 0.78 1.45 0.82 1.50 0.84 

Puyallup, WA 2003 47.2 122.3 60 11.3 79.1 1.1 138.7 1.09 0.66 1.03 0.63 1.24 0.72 

Wenatchee, WA 2008 47.4 120.3 237 9.96 64.3 1.3 168.5 1.33 0.75 1.20 0.70 1.51 0.84 

Grand Junction, CO 2005 39.2 108.6 1484 11.3 50.9 1.9 194.8 1.59 0.85 1.41 0.78 1.60 0.85 

Dove Creek, CO 2006 37.7 108.9 2010 9.1 50.3 3.0 220.9 1.68 0.89 1.43 0.80 1.68 0.87 

Wapato, WA 2009 46.4 120.5 252 10.3 68.3 1.4 181.3 1.28 0.73 1.20 0.70 1.45 0.79 

PK McClenny, WA 2009 46.4 118.8 168 10.5 66.2 2.4 177.5 1.39 0.79 1.33 0.76 1.60 0.87 

South Tonasket, WA 2009 48.7 119.5 351 9.42 61.1 1.2 160.8 1.37 0.76 1.23 0.71 1.30 0.74 

Walla Walla, WA 2009 46.1 118.3 353 11.1 64.4 1.7 162.2 1.37 0.77 1.26 0.72 1.45 0.79 

Idalia, CO 2006 39.7 102.1 1212 10.8 60.73 3.5 191.3 1.561 0.86 1.51 0.84 1.66 0.90 

Fort Collins, CO 2003 40.6 105.13 1561 9.6 61.96 1.9 158.4 1.422 0.79 1.27 0.73 1.51 0.81 
1 

(α)RH, U is the PT coefficient predicted using Eq. 7 and station RH and U as independent variables. 
2
 (C)RH, U is the MK-Ha coefficient predicted using Eq. 7 and station RH and U as independent variables.  

3
 (α)VPD, U is the PT coefficient predicted using Eq. 7 and station VPD and U as independent variables. 

4
 (C)VPD, U is the MK-Ha coefficient predicted using Eq. 7 and station VPD and U as independent variables.  

5
 αmap  is the PT coefficient read at the site location from Figure 7c. 

6
 Cmap  is the MK-Ha coefficient read at the site location from Figure 7d. 

http://people.eng.unimelb.edu.au/mpeel/Koppen/North_America.jpg
https://catalyst.uw.edu/workspace/cristn/26054/166779


 29 

Chapter 3. Linear models for estimating annual and growing season reference 
evapotranspiration using averages of weather variables 

 

Abstract 

 

We develop linear regression equations to estimate location specific average annual 

reference evapotranspiration (ETo) using one or more of annual averages of: incoming 

solar radiation (Rs), air temperature (T), relative humidity (RH), and wind speed (U). We 

also provide two sets of equations to estimate growing season ETo, either using one or 

more of annual averages of Rs, T, RH and U, or using growing season averages of the 

same variables. The equations are developed using the FAO-56 Penman Monteith model 

ETo estimates as a reference. Supporting weather data to develop the regression 

equations were from 102 locations (494 station-years) across the contiguous United 

States (US). The models were tested with additional data from 32 stations (114 station-

years). To illustrate potential applications of the regression models, we estimate spatial 

patterns of annual ETo and growing season ETo across the contiguous US using existing 

spatial datasets of annual averages of Rs, T, RH, and U. Other applications of the models 

provided may include rapid assessments of historical annual and growing season ETo, 

evaluation of past ETo trends, or evaluation of ETo projected trends based on output 

from global climate models.  
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3.1. Introduction 

 
Evaluation of evapotranspiration, broadly defined as the amount of water evaporating 
from soil and transpired through plants, is important for hydrologic modeling, 
agricultural water planning, and water budget and climate assessments. The Food and 
Agriculture Organization of the United Nations Irrigation and Drainage Paper 56 (Allen 
et al., 1998) defines reference evapotranspiration, ETo, as the evapotranspiration from a 
reference surface, termed as a “hypothetical grass reference crop with an assumed crop 
height of 0.12 m, a fixed surface resistance of 70 s m-1 and an albedo of 0.23”, which 
“closely resembles an extensive surface of green, well-watered grass of uniform height, 
actively growing and completely shading the ground”. The computed reference 
evapotranspiration can be used to calculate actual evapotranspiration for particular 
vegetation types and soil conditions and facilitates the selection and transferability of 
crop coefficients (Irmak and Haman, 2003).  
 
The FAO-56 paper provides guidance to estimate ETo from standard meteorological 
measurements of air temperature (T), relative humidity (RH), wind speed at 2-m height 
(U), and incoming solar radiation (Rs), based on the Penman-Monteith model (Allen et 
al., 1998). This version of the Penman-Monteith method, referred to as FAO-56 PM, was 
shown to perform well against ETo measurements across a range of climates (e. g. Garcia 
et al., 2004; Yoder et al., 2005a, Lòpez-Urrea et al., 2006; Gavilàn et al., 2007; Benli et 
al., 2010). Due to limitations in availability of observed ETo datasets, the FAO-56 PM 
model has been used extensively to calculate ETo in model inter-comparison studies 
(Irmak, 2003a, Suleiman and Hoogenboom, 2007, Trajkovic and Kolakovic, 2009) or as 
the basis for developing ETo models that require fewer variables than FAO-56 PM (e.g. 
Irmak et al., 2003b). 
 
A sensitivity analysis study designed to evaluate the relative influences of weather 
variables on ETo in the Southeast region of China showed that ETo was most sensitive to 
changes in RH, followed by Rs, T, and U (Gong et al., 2006). Similar results were obtained 
by Irmak et al. (2006) for a range of climate conditions in the United States (US). They 
showed that ETo was most sensitive to vapor pressure deficit at all stations, followed by 
U in semiarid areas. Solar radiation, Rs, was the main driver at humid locations. Using 
factor analysis, Nanadagiri and Kovoor (2006) also indicated that U is important in arid 
climates, while sunshine hours are important for humid and sub-humid climates.  
 
Predictions of ETo rates are central to many planning applications in water resources and 
agriculture. Large changes in irrigation water demand are expected for many parts of 
the world, yet relatively little work has been done on estimating past or future 
evapotranspiration trends (Bates et al, 2008). For many applications, complex 
reconstructions of ETo rates are infeasible, and it is common for planners to rely on 
temperature-based ET equations since these equations are relatively simple to apply, 
and temperature data are more widely available than other meteorological variables (Xu 
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and Singh, 2001). Because ETo is sensitive to a range of different variables depending on 
the region of application, a temperature-based calculation method can introduce biased 
ETo estimates. We therefore propose an alternate method of ETo prediction using 
regression equations. This approach maintains the structural simplicity and minimal 
data requirements needed for many practical applications but also accounts for the key 
variables that affect ETo in different climates. The linear models provided here to 
calculate annual and seasonal ETo can be used for location-specific or for regional scale 
evaluations of annual and seasonal ETo, for analyzing ETo in the past and for projected 
future trends, and for estimations of ETo in areas where no meteorological 
measurements are available. The models have the advantage of a simple structure 
enabling them to be used with existing weather datasets or with generated datasets 
from climate models.  
 
While regression-based models to predict evapotranspiration from weather variables 
have been previously employed at the daily time scale (e.g. Irmak et al., 2003b, Kovoor 
and Nandagiri, 2007), they have not yet been developed for annual or seasonal time 
scales. Thus, in this paper we: i) investigate the relationships between the controlling 
weather variables Rs, T, RH, and U and annual and seasonal ETo and, ii) provide linear 
functional forms to estimate annual ETo from annual averages of Rs, T, RH, and U and to 
estimate growing season ETo either from annual averages of Rs, T, RH, and U, or from 
growing season averages of Rs, T, RH, and U. We also provide similar equations for the 
three-month peak growing season (Appendix C). As an example of the applicability of 
the various models we generate maps of annual and growing season ETo for the 
contiguous US using existing spatial datasets of average Rs and T (Thornton et al., 1997, 
Thornton et al., 1999, Thornton et al., 2000), RH (New et al., 1999), and U (NREL, 1986). 
 

3.2. Data and methods 

 
We use weather data from 102 stations across the contiguous United Sates that 
recorded hourly weather data at agricultural network sites for a range of climate 
conditions. Data resources are listed in Appendix A. Weather data were retrieved from 
agricultural weather stations; these sites were selected because the agricultural 
monitoring stations are placed in locations with land cover conditions suitable for 
calculating reference crop evapotranspiration. These types of site conditions, as well as 
high data quality, are important for the accuracy of ETo estimations (Irmak et al., 2003b, 
Itenfisu et al., 2003). Weather station locations are shown as circles in Figure 3.1,which 
is the evapotranspiration map estimated by the United States Geological Survey (USGS) 
using mean monthly temperature and latitude and the Hamon (Hamon, 1961) equation 
(USGS, 2003). 
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Figure 3.1. Study and test station locations shown on a map of ET calculated with the 
Hamon (1961) equation (USGS, 2003). 

 
The selected weather stations have at least 3 years of consistent hourly records of Rs, T, 
RH, and U for a total of 494 station-years. Five years were used at 91 stations, 4 at 9 
stations, and 3 at 1 station. We checked the datasets for quality and continuity using 
guidelines from Allen et al. (1998). Less than 5% of the total dataset had missing 
records, but for any missing periods, we followed the fill-in procedures detailed in Allen 
et al. (1998). In addition to our tests, most of the datasets used were checked for quality 
and integrity before they were made publicly available. For example, the data from the 
CIMIS network (32 stations in our dataset) were quality checked before being used to 
estimate ETo in several studies (e. g. Irmak et al., 2005).  
 
Stations located in the western US experience the largest climate variability, with 
conditions ranging from arid desert and steppe to temperate and cold. The remaining 
stations cover four major climate types in the central and eastern US. The central region 
is characterized by arid steppe-cold, whereas the eastern half experiences a cold climate 
in the north and center, and the south experiences a temperate climate. Some stations 
located in the Southeastern region of the US (Florida) experience tropical influences. 
The 102 sites include locations in the most common climate types and sub-types of the 
contiguous US, according to the updated Köppen-Geiger climate classification map of 
Peel et al. (2007). Climate descriptions are based on Peel et al. (2007), where additional 
details are provided about climate classification, climate sub-types and variability across 
North America.  
 
We calculate the average annual and growing season ETo for the 494 station-years as 
sums of hourly ETo rates estimated with the FAO-56 PM model equation given in 
Appendix B.The length of the growing season varies between climates, but for 
consistency we use the period of April 1 to September 30 at all locations. We use an 
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hourly time step to account for non-linearities associated with changes in T, RH, and U 
over the course of the day (Irmak et al., 2005).  
 
Based on the FAO-56 ETo results, we then develop regression relationships to estimate 
the annual and growing season ETo directly from annual averages of Rs, T, RH, and U. 
Additionally, for the growing season ETo, we use growing season averages of Rs, T, RH, 
and U as predictors; details are provided in Section 3. In this procedure, the same 
weather variables that are used to calculate hourly ETo with the FAO-56 PM equation 
are also used as predictor variables for regression models of annual and growing season 
ETo. The FAO-56 PM equation was designed to work best for sub-daily to daily time 
scales, so we use the regression models to determine the time-integrated effect of 
these weather variables on ETo predictions. The variables are employed in a different 
model structure (linear) and on much coarser timescales than those for PM calculations 
where data are averaged over hourly to daily, and at a maximum, one month, time 
steps.  
 
We use multiple linear regressions to derive linear models to estimate average annual 
and growing season ETo, with the generic equations: 
 

URHTRET 543s21o  bbbbb      (3.1) 

  URHTRET 543s21gso  bbbbb     (3.2) 

           gs5gs4gs3gss21gso URHTRET  bbbbb ,    (3.3) 

 
where ETo, and (ETo)gs, are the annual and growing season reference evapotranspiration 
[mm], respectively; Rs and (Rs)gs are the annual and growing season averages of direct 
solar radiation [W·m-2]; T and Tgs are the annual and growing season averages 
temperature [°C]; RH and (RH)gs are the annual and growing season averages relative 
humidity [%], and U and (U)gs are the annual and growing season average wind speeds 
[m·s-1]. Additional equations are developed for the period June-July-August (JJA) and the 
results are provided in Appendix C in Table C1. The additional JJA ETo equations are 
provided for estimating summer peak ETo. 
 
We start with one predictor, Rs, and sequentially add the rest of predictors with a prior 
test of significance in the regression. The order of adding variables to the regression is 
chosen based on both their correlation strength with ETo and our estimated likelihood 
of either calculating or obtaining the necessary weather data, particularly in data scarce 
situations. Air temperature, T, is generally the most commonly measured weather 
variable. If not measured, solar radiation, Rs, can be calculated, and RH can be 
approximated using T but not reliably at all sites (Allen et al., 1998). For wind speed, 
averages from regional climate are recommended, or a value of 2 m·s-1 where no data 
are available (Allen et al., 1998). Given these criteria, the variables are added in the 
following order: Rs, T, RH and U.  
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We test each regression model’s prediction accuracy with weather data from 32 
stations, shown as solid triangles in Figure 3.1, and multiple years, for a total of 114 
station-years. Test stations are located both in and outside the study regions (Figure 3.1) 
and include climates varying from tropical in southern Florida, to cold (with high winds) 
in North Dakota, temperate in the center US, and arid in Southern California. Using the 
relationships found, we generate annual ETo and growing season ETo maps for the 
contiguous US using existing spatial datasets of annual averages of Rs and T (Thornton et 
al., 1997, Thornton et al., 1999, Thornton et al., 2000), RH (New et al., 1999), and U 
(NREL, 1986).   
 
Spatial patterns of annual averages of Rs and T are from the Daymet US database 
(Thornton et al., 1997, Thornton et al., 1999, Thornton et al., 2000). The RH dataset is 
from New et al. (1999) and the annual average U map was derived from the National 
Renewable Energy Laboratory (NREL) wind power density class dataset (NREL, 1986). In 
the NREL dataset each class is assigned a variation interval for wind speed at 10-m 
height, U10. We estimate the spatial distribution of U (at 2-m height) assuming U10 as the 
mean value for the class and converting U10 to U using the wind conversion formula 
(equation 1.63) from Allen et al., 1994. Data resources for the spatial datasets are listed 
in Appendix A.  
 

3.3. Results  

 

3.3.1. Multiple regression relationships  

 
All variables, in all equations in Table 3.1, passed the test of significance in the 
regression at a p-value of 0.05. Table 3.1 lists the coefficient of determination R2, the 
regression coefficients found for each relationship and their corresponding 95% 
confidence intervals. Goodness of fit (Table 3.1) is quantified for both study and test 
sites using the standard error of the estimate: 
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where ETo,pi is the predicted annual (or growing season) ETo with each regression 
equation, ETo,i is the annual (or growing season) ETo calculated with the FAO-56 PM 
model, and i is the station index.  
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Table 3.1 Regression relationships, regression coefficients, 95% confidence intervals, the 
coefficient of determination (R2) and SEE at study and test sites. Models i-iv are for 
annual ETo, and models v-xii are for the growing season ETo. 

Model 
no. 

Regression 
relationship 

Regression 
coefficients 

95% confidence 
intervals 

R
2
 

SEE study 
sites, mm 

SEE test 
sites, mm 

i ETo (Rs) 
b1 = -875.1 -952.2  - 798.1 

0.86 132.7 122.7 
b2 = 11.0 10.6  11.4 

ii ETo (Rs, T) 

b1 = -702.0 -798.0  -642.6 

0.88 122.0 98.9 b2 = 9.4 8.9  9.9 

b3 = 12.2 9.7  14.8 

iii ETo (Rs, T, RH) 

b1 = 962.9 814.2  1111.5 

0.94 83.3 73.6 
b2 = 4.6 4.1  5.2 

b3 = 19.1 19.1  17.3 

b4 = -13.2 -14.3  - 12.1 

iv ETo (Rs, T, RH, U) 

b1 = 458.7 369.3  548.2 

0.98 47.1 47.7 

b2 = 4.5 4.2  4.8 

b3 = 32.5 31.2  33.8 

b4 = -11.5 -12.1  -10.9 

b5 = 84.6 79.4  89.7 

v ETogs (Rs) 
b1 = -374.9 -433.7  -316.7 

0.79 101.3 85.8 
b2 =6.6 6.4  6.9 

vi ETogs (Rs, T) 

b1 = -405.4 -469.5  -341.2 

0.79 100.8 86.6 b2 = 6.9 6.6  7.4 

b3 = -2.4 -4.5  -0.3 

vii ETogs (Rs, T, RH) 

b1 = 892.7 761.3  1024.2 

0.89 73.7 67.6 
b2 = 3.2 2.8  3.8 

b3 = 2.9 1.3  4.5 

b4 = -10.2 -11.1  -9.2 

viii 
ETogs (Rs, T, RH, 
U) 

b1 = 572.1 459.4  684.7 

0.92 59.3 59.4 

b2 = 3.2 2.8  3.6 

b3 =11.4 9.7  13.1 

b4 =-9.1 -9.9  -8.3 

b5 =53.8 47.3  60.2 

ix ETogs (Rs)gs 
b1 = -555.0 -631.5  -478.5 

0.74 112.4 102.9 
b2 = 5.7 5.4  5.9 

x ETogs (Rs, T)gs 

b1 = -633.6 -693.3  -573.8 

0.84 86.8 74.4 b2 = 4.5 4.3  4.8 

b3 = 18.3 16.3  20.2 

xi ETogs (Rs, T, RH)gs 

b1 = 498.7 398.7  598.8 

0.93 58.6 57.7 
b2 = 2.2 1.9  2.4 

b3 = 17.2 15.8  18.5 

b4 =-8.1 -8.8  -7.5 

xii 
ETogs (Rs, T, RH, 
U)gs 

b1 = -5.2 -74.9  64.4 

0.97 35.6 29.0 

b2 = 2.7 2.5  2.8 

b3 = 22.9 22.0  23.8 

b4 = -6.1 -6.5  -5.7 

b5 = 48.2 45.0  51.5 
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In our dataset, the strongest inter-predictor correlations are between growing season Rs 

and RH, and annual Rs and RH, respectively (Table 3.2). Temperature T correlations with 

Rs and U are stronger at the annual scale and weaker at the growing season scale. The 

relationship between RH and T is relatively weak at both time scales, and the correlation 

between RH and U is negligible (Table 3.2). The distributions of the model residuals are 

approximately normal (Figure 3.2). Model accuracy increases with the increasing 

number of predictors. Thus, the percentages of predictions falling within 10 % accuracy 

are the smallest in models i and ii (74%, 77%), models v and vi (64%, 64%) and models ix 

and x (61% and 70%), but increase in models iii (82%), vii (85%) and xi (91%), and are the 

highest in the four-variable models iv (97%), viii (88%) and xii (97%). The most accurate 

models are iv, vii, and xii, in which 80%, 60% and 82% of the predictions, respectively 

are within 5% accuracy.  

 

 
Figure 3.2 Histograms and fitted theoretical normal distributions of residuals in mm (a-l) 
for models i – xii, which are defined in Table 3.1. 
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Table 3.2 Correlation matrices between predictors: I) annual averages of Rs, T, RH and U 
and II) growing season averages of Rs, T, RH and U. 

I Annual  

 Rs T RH U 

Rs 1.00 0.68 -0.77 -0.36 

T 0.68 1.00 -0.38 -0.69 

RH -0.77 -0.38 1.00 0.08 

U -0.36 -0.69 0.08 1.00 

II Growing season  

 (Rs)gs (T)gs (RH)gs (U)gs 

(Rs)gs 1.00 0.46 -0.79 -0.15 

(T)gs 0.46 1.00 -0.40 -0.42 

(RH)gs -0.79 -0.40 1.00 -0.03 

(U)gs -0.15 -0.42 -0.03 1.00 

 
Because we use weather variables, it is expected that collinearity between predictors 
exists. We evaluate the variance inflation factors (VIFs), as a measure to detect 
collinearity for all variables simultaneously, as the diagonal elements of the inverse of 
the sample correlation matrix. In our datasets, individual VIFs do not exceed 5 (the 
largest was 4.4) in any of the combinations shown in Table 1.  
 
Figure 3.3 displays annual and growing season FAO-56 PM ETo linear relationships with 
each predictor. Linear models appear to be suitable in columns one and three. Linear 
relationships are not valid in columns two and four, as evidenced by heteroscedasticity 
of the residuals about the fitted lines. While at the annual scale, Rs has the strongest 
correlation with ETo, followed by RH and T (Figure 3.3, first row), at the growing season 
scale, the correlation between Rs and ETo decreases compared with the annual scale, 
and the correlation between RH and ETo increases (Figure 3.3, third row).  
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Figure 3.3 Correlations of the annual (a-d) and growing season ETo (e-l) with each 
individual predictor. 

3.3.2. Test results  

 
We test the equations developed in Table 1 on independent weather datasets from 32 
stations (shown as solid triangles in Figure 3.1) and 114 station-years of data. Table 1 
indicates that the best performing models in terms of the smallest standard error of 
estimate (SEE) have four variables: equations iv; viii; and xii, for which the percentages 
of explained variance range between 92 and 98, and the SEE at the test stations are 
relatively small (Table 1). The ranges of r, defined as the ratios between the calculated 
FAO-56 PM ETo and the predicted ETo with the linear models i-xii from Table 1, are 
shown as box-and-whisker plots in Figure 3.4. For models iv and xii, most of the r values 
are within the 0.95-1.05 interval (Figure 3.4). Similar results were obtained for the JJA 
period (Figures not shown), where the JJA averages of Rs, T, RH and U are more effective 
predictors than the annual averages (Appendix C). For the JJA period, Rs and (Rs)JJA are 
weaker single predictors compared with the corresponding models for the annual and 
growing season periods. However, the addition of the JJA average T first, and then RH 
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and U significantly increases R2 and improves model performance for the JJA period 
(Appendix 3C).  
 

 
Figure 3.4 Box and whisker plots of the ratio r for models i-vi (a), models v – vii (b), and 
models ix – xii (c) at the test stations. Dotted lines correspond to r = 0.95 and r = 1.05. 

 

Figure 3.5 shows scatterplots of the calculated ETo with the FAO-56 PM model and 
predicted ETo using the regression models. Measured incoming solar radiation Rs is a 
better predictor at the annual scale in the simplest, single variable models (Figure 3.5a), 
providing more accurate estimates at humid sites (lower evapotranspiration), than at 
drier and windier sites (higher evapotranspiration). The scatter around the one-to-one 
line decreases in all models with the sequential addition of predictor variables (Figure 
3.5).  
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Figure 3.5 Scatterplots of the calculated FAO-56 PM ETo and predicted ETo with models i-
vi (a-d), models v – viii (e-h) and models ix – xii (i-l) at the test stations. Dashed line 
shows the one-to-one relationship. 

3.3.3. Example application  

To generate spatial patterns of annual and growing season ETo for the contiguous US, 
we use models iii and iv for the annual ETo and models vii and viii for the growing season 
ETo (Table 1), with input variables taken from the spatial datasets previously described. 
The predictor variables in Figure 3.6a-d are: (a) Rs, (b) T, (c) RH, and (d) U. Figure 3.6e-f 
and g-h show the resulting spatial patterns of annual and growing season ETo estimated 
with models iii-iv and vii - viii, respectively. Figure 3.6i-j shows the relative differences 
between models iii and iv annual ETo (Figure 3.6g-h) and potential evapotranspiration 
estimated with the temperature-based Hamon (1961) model (USGS, 2003; Figure 3.1). 
The resolution in Figure 3.6 is 0.21 degree. 
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Figure 3.6. Spatial patterns of Rs (a), T (b), RH (c), U (d), annual ETo from model iii (e), 
annual ETo from model iv (f), growing season ETo from model vii (g), growing season ETo 
from model viii (h) and relative differences between ETo from models iii and iv and the 
ETo map of Figure 3.1 (i-j). 
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3.4. Discussion 

 
Due to limited availability of lysimeter datasets to measure ETo directly, we use the FAO-
56 PM model with weather station measurements of hourly input data as a reference to 
develop the linear regression ETo models listed in Table 1. Uncertainties in the FAO-56 
PM ETo estimates primarily relate to the model itself and to the accuracy of the input 
data. The FAO-56 PM is considered the most reliable and robust model to estimate ETo 
at both dry and humid sites and has been recommended (Smith et al., 1991) and used 
(e.g Irmak et al., 2003b) in prior research as a base to develop simpler ETo models for 
data-limited locations. The FAO-56 PM ETo equations require additional computational 
steps to estimate Rn (e.g. Allen et al., 1998), which is not typically measured at the 
weather stations. The calculated ETo may differ if measurements of Rn (Gavilàn et al., 
2007) or other Rn models are used (Yoder et al., 2005b, Temesgen et al., 2007), but 
Gavilàn et al. (2007) showed that the calculated Rn with the FAO-56 equations is 
accurate enough to be used as replacement for measured Rn in ETo calculations. 
Additional uncertainty in the FAO-56 PM model is related to how the soil heat flux 
density G is represented (Irmak et al., 2005), which may not be appropriate at all sites 
and is subject to measurement errors or undetected inconsistencies in the input data.  
 
In the process of developing these regression-based ETo models, we considered 
alternative regression techniques, based on principal components or partial least 
squares, but we ultimately opted for multiple linear regressions. The resulting models 
(Table 1) have a simple structure, do not require additional manipulations 
(transformations) of the input data, and rely on relatively few variables that do not lose 
interpretability. While regression-based models are most appropriate when applied 
using independent predictor variables, some degree of collinearity is inherent to our 
dataset, as, for example, incoming solar radiation influences air temperature and 
relative humidity.  
 
If collinearity is significant, its effect increases the variances of the regression 
coefficients and reduces the stability of the model. Some studies have suggested a VIF 
threshold of 5 to indicate significant collinearity, whereas others suggest that VIFs larger 
than 10 indicate significant collinearity (Marquardt, 1970, Neter et al., 1989, Hair et al., 
1995, Haan, 2002). O’Brien (2007) showed that a higher degree of collinearity (VIFs 
larger than 10 or 20, even higher than 40) is not necessarily harmful for model 
predictions. In our case, the largest VIFs were between 4 and 5, indicating that 
collinearity is present but not important. Tests on the independent dataset (Figure 3.5) 
show that the models are unbiased.  
 
Figures 3.6e and 3.6g show that the predicted annual and growing season ETo spatial 
patterns using 3-variable models iii and vii are similar to the spatial patterns of the 
dominant predictor, solar radiation Rs (Figure 3.6a).The addition of the fourth predictor, 
U, in models iv and viii improves the accuracy of predictions at the test sites compared 
with the 3-variable models (Figures 3.4 and 3.5) and increases the spatial variability in 
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the annual and growing season ETo maps (Figures 3.6f and 3.6h). Uncertainties in all ETo 
maps shown in Figures 3.6e-h are related to the accuracy of ETo predictions by the linear 
models and to the Rs, T, RH, and U spatial datasets used, which are generally associated 
with the spatial coverage of the stations, periods of investigation and interpolation 
techniques.  
 
The choice of the potential evapotranspiration model to represent annual average 
spatial variability at the global scale is important, as models available vary in underlying 
assumptions and input data requirements, resulting in differences in predictions for the 
non-growing season (Weiß and Menzel, 2008). In our case, all the annual and growing 
season ETo maps shown in Figures 3.5e-h have spatial patterns similar to Rs (Figure 
3.6a). This is different from how spatial variability of annual ETo is represented in the 
USGS (2003) ETo map (Figure 3.1), where ETo, calculated based on the Hamon (1961) 
model has a spatial distribution similar to that of T (Figure 3.6b). Figure 3.6 i-j shows 
that the Hamon (1961) model produces ETo estimations that are most similar to annual 
ETo from models iii and iv in the humid, less windy (advective) region of the 
Southeastern United States, but it significantly underestimates ETo in the drier, higher 
solar radiation and windier regions located in the western half of the contiguous US.  
 
The magnitudes of the estimated annual ETo also vary between the Hamon (1961) 
equation (Figure 3.1) and the regression models (Figure 3.6e and f). The models we used 
are likely to have improved accuracy over the Hamon (1961) temperature-based 
estimates because they were developed using the FAO-56 PM model hourly ETo 
estimates, which capture time variations in weather data and the effects of wind speed 
and relative humidity. Our results show that temperature is not as important as Rs and 
RH in predicting spatial patterns of ETo. Further verification of these models comes from 
comparison with the map of average annual evaporation from shallow lakes (contour 
map) from Kohler et al. (1959). Annual ETo maps generated with models iii and iv have 
similar spatial patterns to the shallow lake evaporation map.  
 
The maps shown in Figure 3.6e-h are developed assuming potential conditions and are 
suitable for estimating agricultural water needs. Actual evapotranspiration can be much 
lower as a function of vegetation cover and local water and energy limitations (see e.g. 
Zhang et al., 2010). The relationships found (Table 1) are based on data from the 
contiguous US weather stations and cover a relatively large range of climate conditions. 
Extrapolation beyond these conditions will require testing against location specific data. 
Further work could apply these regression models using other spatial datasets of climate 
variables such as the North America Land Data Assimilation System (NLDAS) or output of 
GCMs. The regression models can also be used as a reference to compare with ET 
estimates derived from land surface models or reanalysis products. 

3.5. Summary and Conclusions 
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We estimated the annual and growing season (April-September) reference 
evapotranspiration ETo, as the sum of hourly rates calculated with the FAO-56 Penman-
Monteith (PM) model with weather data from 102 locations that include a wide range of 
common climate types across the contiguous US. At the annual scale, the calculated ETo 
has the strongest correlations with annual average solar radiation, Rs, followed by the 
annual averages of relative humidity (RH) and air temperature (T). The growing season 
ETo has strongest correlations with annual and growing season averages of Rs and RH, 
followed by the growing season and annual averages of T.  
 
We developed linear regression-based models to predict annual average reference 
evapotranspiration ETo using annual averages of Rs, T, RH, and two-meter elevation 
wind speed (U) as predictors. Models to predict growing season ETo using either annual 
averages of Rs, T, RH, and U or growing season averages of Rs, T, RH, and U are also 
provided. Dormant season ETo can be estimated by subtracting the growing season ETo 
from the annual ETo. All regression models have been developed starting with one 
predictor Rs, and adding the remaining predictors sequentially: T, RH, and U, in order, 
resulting in 1-, 2-, 3-, and 4-predictor models, for a total of 12 models. We used the FAO-
56 PM model as a reference for model development in place of direct ETo 
measurements. The relationships found were tested on an independent weather 
dataset from 32 stations.  
 
The best performing models (R2 = 0.92 to 0.98) overall have the 4- variables: Rs, T, RH, 
and U, followed by the 3-variable models that use Rs, T, and RH (R2 = 0.89 to 0.94). For 
these models, the percentages of values within 10% accuracy range between 82% 
(model iii) and 97% (model iv), and for models iv and xii, 80 and 82% of the values fall 
within 5% accuracy. The simplest models based on one variable, solar radiation, are 
more efficient at humid sites, but the inclusion of all predictors is important for 
prediction accuracy at dry and windy sites. As an application example, we generated 
maps of the spatial patterns of annual and growing season ETo across the contiguous US. 
The equations provided are simple, yet effective for predicting average annual and 
growing season ETo.  
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Appendix 3A 

 
I) Hourly weather data sources: 
 
1. Arizona Meteorological Network, AzMet (http://ag.arizona.edu/AZMET/)  
2. California Irrigation Management Information System, CIMIS 
(http://wwwcimis.water.ca.gov/cimis/welcome.jsp), 
3. Colorado Agricultural Meteorological Network, CoAgMet 
(http://ccc.atmos.colostate.edu/~coagmet/) 
4. Florida Automated Weather Network (http://fawn.ifas.ufl.edu/) 
5. Missouri Historical Agricultural Weather Database 
(http://agebb.missouri.edu/weather/history/)  
6. North Dakota Agricultural Weather Network (http://ndawn.ndsu.nodak.edu/) 
7. Pacific Northwest Cooperative Agricultural Weather Network, AgriMet 
(http://www.usbr.gov/pn/agrimet/). 
8. Texas High Plains evapotranspiration network 
(http://txhighplainset.tamu.edu/index.jsp) 
9. Washington State University Weather Network (http://weather.wsu.edu/) 
10. Wisconsin and Minnesota Cooperative Extension Agricultural Weather network 
(http://www.soils.wisc.edu/wimnext/index.html), 
 
II) Spatial data sources: 
 
1. Solar radiation and air temperature (1980-1997): http://www.daymet.org/  
2. Relative humidity (1961-1990) http://www.sage.wisc.edu/atlas/index.php 
3. Wind power density class dataset: http://www.nrel.gov/gis/wind.html 
All links were last accessed on March 3, 2011.  
 
Appendix 3B 

 
 
Hourly FAO 56 Penman-Monteith  
 
The hourly FAO-56 PM model (Allen et al., 1998) used for calculating reference 
evapotranspiration ETo is:  
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where: ETo = FAO-56 PM reference evapotranspiration [mm h-1], Rn = calculated net 
radiation at the grass surface [MJ m-2 h-1], G = soil heat flux density at the soil surface 
[MJ m-2 h-1]; T = mean hourly air temperature at 2-m height [°C]; U = mean hourly wind 
speed at 2-m height [m s-1]; es = saturation vapor pressure at 2-m height [kPa]; ea = 
mean hourly actual vapor pressure at 2-m height [kPa]; Δ = slope of the saturation vapor 
pressure curve at T [kPa °C-1]; γ = psychrometric constant [kPa °C-1]. Values of Δ, γ, Rn, G, 
es, and ea and other supporting equations are calculated according to Allen et al. (1998), 
where complete details on ETo model assumptions and equations are provided.   
 
The saturation vapor pressure (es) is dependent on temperature (T), while the actual 
average hourly actual vapor pressure (ea) is calculated based on es and the hourly 
relative humidity RH [%]:  
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The slope of the saturation vapor pressure curve at temperature T, Δ, and the 
psychrometric constant, γ, are given by: 
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where: cp is the specific heat at constant pressure, equal to 1.013 10-3 [MJ kg-1 °C-1] for 

average atmospheric conditions,  is the latent heat of vaporization, equal to 2.45 [MJ 

kg-1],  is the ratio of molecular weight of water vapor/dry air = 0.622, and p is the 
atmospheric pressure [kPa], calculated as a function of z, the elevation above the sea 
level [m]:  
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The hourly soil heat flux density (G) in equation B1 was estimated as G = 0.1*Rn during 
daytime and G = 0.5*Rn during nighttime, while the hourly net radiation (Rn) is calculated 
as the difference between the net shortwave radiation, Rns [MJ m-2 h-1], and the net 
longwave radiation, Rnl [MJ m-2 h-1]: 

nlnsn RRR  ,     (B7) 

in which the hourly net shortwave radiation Rns is given by: 

  sns Rα-1R  ,     (B8) 

where α is the albedo, equal to 0.23 for grass, and Rs is the measured incoming solar 
radiation [MJ m-2 h-1].  
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The hourly net longwave radiation Rnl was calculated as: 
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with σ the Stefan-Boltzmann constant equal to 2.043 10-10 [MJ m-2 h-1], Thr,K the hourly 
mean temperature [K], and Rso [MJ m-2 h-1] the clear sky radiation as calculated based on 
the station elevation z [m] and the extraterrestrial radiation Ra [MJ m-2 h-1] as: 
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where: Gsc is the solar constant equal to 0.0820 [MJ m-2 min-1], dr is the inverse relative 
distance Earth-Sun: 
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in which J is the (Julian) number of the day in the year, δ is the solar declination [rad]:  
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φ is the latitude [rad], ω1 and ω1 are the solar angles at the beginning and end of the 
period: 
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where ω is the solar time angle at the midpoint of the hourly period [rad], and t1 = 1 [h]. 
The solar angle ω is given by: 

   12SLL0.06667t
12

π
ω cmz  ,     (B15) 

in which t is the standard clock time at the midpoint of the period [h], Lz is the longitude 
of the centre of the local time zone [degrees west of Greenwich], equal to 75, 90, 105 
and 120° for the Eastern, Central, Rocky Mountain and Pacific time zones in the United 
States, and Lm is the longitude [degrees west of Greenwich]. The seasonal correction for 
solar time Sc[h] was calculated as: 
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Appendix 3C 

 
 
Table 3.C1. Regression relationships, regression coefficients, 95% confidence intervals, 
the coefficient of determination (R2) and standard error of the estimate (SEE) at study 
and test sites for the June-July-August (JJA) period. 

Model 
no. 

Regression 
relationship 

Regression 
coefficients 

95% confidence 
intervals 

R
2
 

SEE study 
sites, mm 

SEE test 
sites, mm 

i ETo-JJA (Rs) 
b1 = -153.3 -195.6  -111.0 

0.66 72.9 67.1 
b2 = 3.4 3.2  3.6 

ii ETo-JJA (Rs, T) 

b1 = -218.9 -263.2  -174.7 

0.69 69.4 63.9 b2 = 4.1 3.8  4.4 

b3 = -5.2 -6.6  -3.7 

iii ETo-JJA (Rs, T, RH) 

b1 = 575.2 476.6  673.8 

0.80 55.2 42.9 
b2 = 1.9 1.5  2.2 

b3 = -1.9 -3.2  -0.7 

b4 = -6.2 -6.9  -5.5 

iv 
ETo-JJA (Rs, T, RH, 
U) 

b1 = 442.7 343.5  541.9 

0.82 52.2 44.1 

b2 = 1.8 1.5  2.2 

b3 = 1.6 0.1  3.0 

b4 = -5.8 -6.5  -5.1 

b5 = 22.2 16.5  27.9 

v ETo-JJA (Rs)JJA 
b1 = -251.6 -300.7  -202.5 

0.65 73.6 65.9 
b2 = 2.7 2.6  2.9 

vi ETo-JJA (Rs, T)JJA 

b1 = -459.1 -495.5  -422.7 

0.84 48.8 44.0 b2 = 2.3 2.2  2.4 

b3 = 13.9 12.8  15.0 

vii 
ETo-JJA (Rs, T, 
RH)JJA 

b1 = 210.1 147.5  272.7 

0.92 33.9 32.2 
b2 = 1.2 1.1  1.3 

b3 = 9.8 9.0  10.7 

b4 = -4.2 -4.6  -3.8 

viii 
ETo-JJA (Rs, T, RH, 
U)JJA 

b1 = 17.1 -25.5  60.8 

0.96 22.2 17.0 

b2 = 1.3 1.2  1.4 

b3 = 12.3 11.7  12.8 

b4 = -3.5 -3.8  -3.3 

b5 = 26.6 24.6  28.7 
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Chapter 4. Evaluating a distributed hydrologic model at the catchment scale against a 
hypothetical reality dataset – tests of soil parameterization 

 

Abstract 

 
Hydrologic data scarcity, mostly observed head and soil moisture states, is often 
identified as the one of the most important limitations in evaluating distributed 
hydrologic models. To overcome data limitation issues, we propose a framework for 
evaluating the sensitivity of distributed hydrologic models at the catchment scale that is 
based on a hypothetical reality (HR) dataset. The HR is a synthetically generated dataset 
using the finite element 3D fully coupled surface-subsurface Integrated Hydrology 
Model (VanderKwaak, 1999), that emulates the hydrologic behavior of the Tarrawarra 
catchment located in southeastern Australia. A second model, MODHMS (Panday and 
Huyakorn, 2004), is used against the HR for model calibration and subsequent sensitivity 
tests. We use test examples from long-term simulations to investigate the effects of soil 
parameterization, on both the integrated and distributed MODHMS hydrologic 
responses. Simulations show that at Tarrawarra, both the water retention curve and the 
saturated hydraulic conductivity Ksat, control the soil moisture spatial distribution and 
runoff generation during wet periods. For the same Ksat, more water retentive soils are 
less prone to pattern formation and less conducive to runoff generation than sandier 
soils, which are more responsive and have higher soil moisture spatial variability. For the 
same water retention curve, Ksat controls the level and spatial variability of soil moisture 
and affects the shape, timing, and magnitude of the hydrograph. During dry periods the 
water retention parameters and Ksat control the saturation level, but have little influence 
on pattern formation and spatial variability. 
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4.1. Introduction: why use hypothetical reality datasets to evaluate distributed 

hydrologic models?  

 

4.1.1. Challenges related to applying physically-based distributed hydrologic models 

Physically-based distributed hydrologic models that follow the blueprint of Freeze and 

Harlan [1969] numerically solve the partial differential equations governing water 

movement on the surface and through the soil. These models can incorporate spatial 

variability in the characterization of land cover, soil types, and driving data such as 

precipitation and potential evapotranspiration. They simulate spatial and temporal 

patterns of the distributed response (e.g. internal fluxes and states) and temporal 

variation of the integrated response (discharge). Examples of such models, many 

reviewed by Kampf and Burges [2007a], include THALES [Grayson et al., 1992a, 1995], 

SHE [Abbott et al., 1986a, 1996b], DHSVM [Wigmosta et al., 1994, 2002], InHM 

[VanderKwaak, 1999], tRIBS [Ivanov et al., 2004], MODHMS [Panday and Huyakorn, 

2004] and many others. Although applications of distributed models often assume that 

the incorporation of spatial variability improves confidence in model predictions, in 

many cases these predictions are plagued by a relatively high degree of uncertainty in 

model parameters, scale, and process representation. The conflicting and confusing 

effects these uncertainties have on the simulated discharge have intrigued many 

hydrologists to the point where even distributed model concepts were questioned 

[Grayson et al., 1992b], and many discussions about over-parameterization [e.g., Beven, 

1989], parameter uncertainty [e.g., Beven and Binley, 1992], model parsimony and 

equifinality followed [e.g., Beven, 1993, 2006; Ebel and Loague, 2006]. Despite the many 

challenges related to applying such models, the interest in their capabilities to 

investigate environmental processes such as distributed hydrologic response, effects of 

land use changes, erosion and non-point sources, and contaminant transport among 

many others grew over time, and more models became available and were increasingly 

applied in many parts of the world. 

 

The evaluation of distributed response is often difficult due to the scarcity in the 

observed soil states and scale discrepancies between instrument point measurements 

and models. However, the evaluation of hydrograph representation alone should not be 

considered sufficient in testing and evaluating distributed models [Beven, 1989]. Limited 

datasets of distributed hydrologic variables exist for a small number of experimental 

catchments around the world, and a few studies have considered model evaluation 

using both integrated and distributed responses [e.g., Ebel et al., 2008; Feyen et al., 

2000; Anderton et al., 2002a, 2002b; Heppner et al., 2007; Maneta et al., 2008a].  
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At the catchment scale, applications of physically-based distributed hydrologic models 

have revealed that successfully simulating the hydrograph does not necessarily mean 

runoff mechanisms [Grayson et al., 1992a] or internal states are unique or equally well 

represented [Ebel and Loague, 2006; Kampf and Burges, 2007b; Ebel et al., 2008; 

Maneta et al., 2008]. Studies that have examined how simulated internal states 

compared with field observations, have found differences in the model performance 

between the calibration and validation periods [e.g., Refsgaard, 1997; Feyen et al., 2000; 

Anderton et al., 2002a, 2002b; Vázquez et al., 2008]. Using continuous simulations, Ebel 

et al. [2008] reported that a physically based surface-subsurface model was unable to 

reproduce observed pore water pressure at sites where flow through bedrock fractures 

occurs. Heppner et al. [2007] found that while the peak flow rates and sediment 

discharges were well simulated with a physically-based model, the distributed soil 

moisture content was inadequately represented. Other studies have examined the way 

the simulated internal states relate to geographic and terrain attributes [e.g., Ivanov et 

al., 2004; Wu et al., 2007].  

Model parameterization has been identified by many hydrologists as one of the biggest 

sources of uncertainty in applying distributed hydrologic models. Physically-based 

models are designed to work based on a-priori soil parameterization, with values 

directly measured in the field, or derived from other measurements. This approach can 

be challenging, due to the issues of heterogeneity and discrepancies between point 

measurements and model scale [Binely et al., 1989; Christiaens and Feyen, 2001; 

Christiaens and Feyen, 2002; Anderton et al., 2002b; Zehe et al., 2006], and most often 

due to the complete lack of measured data. Measuring and/or deriving soil parameters 

is costly and time consuming, even at small scales. In the absence of any field 

measurements, parameters describing hydraulic soil properties can be directly extracted 

from existing databases using soil textural descriptions, if available, but many times 

these assigned parameter values are modified during calibration so that simulations 

match the observed hydrograph [e.g., Senarath et al., 2000; Zhang and Savenije, 2005] 

and/or other internal nodes [e.g., Feyen et al., 2000; Anderton et al., 2002b; Maneta et 

al., 2008a]. Changes to parameters during calibration are necessary to compensate for 

the uncertainties in the original parameter estimates as well as for other shortcomings 

related to model structure. This parameter adjustment process can lead to 

counterintuitive results, especially when automated calibration is used [e.g., Senarath et 

al., 2000].  

 

The direct use of database soil hydraulic parameters is also subjective, as the 

parameters depend on the on the number, type, and location of soil samples available in 

the data base used and may not be representative for the study catchment (see 

discussions by Beven, 1989; Christiaens and Feyen, 2001; Mirus, 2009). Investigating 
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four ways to obtain soil hydraulic parameters from pedo-transfer functions (PTFs), 

Christiaens and Feyen [2001] found that ROSETTA neural network model [Schaap et al., 

1999] predictions were least erroneous. Parameter uncertainty analysis emphasized the 

importance of soil moisture observations to identify effective soil hydraulic parameters 

[Christiaens and Feyen, 2001; Christiaens and Feyen, 2002]. 

 

4.1.2. Motivation for introducing a hypothetical reality dataset to support distributed 
hydrologic model testing at the catchment scale  

 

Detailed long term field measurements have helped improve our understanding of 

distributed catchment hydrologic processes. However, the resources needed for 

gathering such information are substantial, and no existing data set has the spatial and 

temporal scope of measurements needed for a rigorous evaluation of any distributed 

model. Here we propose the use of a synthetic dataset termed hypothetical reality (HR) 

developed for this purpose. This concept has been previously explored using different 

types of models [e.g., Troch et al. 1993; Loague, 1988; Gan and Burges, 1990]. Tests 

against a HR of hydrologic response are a first step towards overcoming some of the 

issues encountered with extrapolating conclusions based on a series of unique, data-

limited field sites. The use of HR instead of field measured data has the advantage of a 

significantly increased level of detail in hydrologic states and variables both spatially and 

temporally, and the HR is assumed to be error free.  

 

4.1.3. Objectives of this study 

 

The main objective of this work is to illustrate the use of a framework for evaluating 

distributed hydrologic models at the catchment scale based on a HR dataset. The HR 

hydrologic response is designed to emulate the hydrologic response of the Tarrawarra 

catchment, Australia in great detail (see [Mirus et al., 2009]). A distributed model can be 

evaluated against the HR dataset using both the integrated (discharge) and distributed 

responses (e. g. total head and degree of saturation). As a second model, we use 

MODHMS [Panday and Huyakorn, 2004; HydroGeoLogic, Inc, 2006], to show the 

flexibility and functionality of the proposed framework. In the following sections we 

describe: i) the HR dataset, ii) MODHMS application to Tarrawarra, iii) testing objectives, 

model scenarios and evaluation strategies, iv) provide examples of test scenarios that 

include tests of soil parameters, and v) results and discussion.  
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4.2. Tarrawarra-like Hypothetical Reality  

 

The zero-order Tarrawarra catchment (37°39'S, 145°26'E, 100 m elevation) is a 10.5 ha 

grass pasture located about 50 km east of Melbourne, in southern Australia (Figure 

4.1a). The area has a temperate Mediterranean climate with mild winters with no snow 

and warm dry summers. Most of the rainfall occurs during the May to October period. 

The hydrology of the catchment has been extensively investigated [e.g., Western and 

Grayson, 1998; Grayson and Western, 1998; Western et al., 1998a, 1998b, 1999, 2001; 

Thierfelder et al., 2003; Park and van de Giesen, 2004; Wilson et al., 2004; Teuling and 

Troch, 2005; Teuling et al., 2006; Perry and Niemann, 2007, 2008]. There are no 

permanent channels within the catchment, but ephemeral surface runoff occurs during 

some storms. The dominant runoff generation mechanism is saturation excess (Dunne) 

overland flow [Western and Grayson, 1998; Mirus et al., 2009].The relief consists of 

gently sloping hills forming two converging depressions in which water accumulates and 

flows downhill to the catchment outlet. Soil depth varies between 0.4m on the higher 

elevation areas to 1.5m in the depressions, and the hills have slopes of about 11-14% 

with the main drainage line of about 4% [Western and Grayson, 1998]. Topographic 

features define the spatial patterns of soil moisture during the wet season; more water 

accumulates in the depressions than in the rest of the catchment, driven by lateral 

surface and subsurface flow [Grayson et al., 1997; Western et al., 1999]. During 

summer, when the landscape is dry, there is relatively little spatial organization of soil 

moisture [Western et al., 1999]. The catchment has a structure and topography that is 

representative of many zero order catchments around the world with temperate to 

Mediterranean sub-humid climate conditions where water movement through soil is 

influenced by local topography and soil characteristics.  

 

Figure 4.1 a) Tarrawarra location, Australia and b) example of snapshot of degree of 
saturation from the HR hydrologic response in the top 2 cm, 12 May 1996, 0:00AM. 
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The Tarrawarra-like HR hydrologic response is generated using the high resolution fully 

coupled 3D variably saturated subsurface and 2D surface flow Integrated Hydrologic 

Model (InHM) [VanderKwaak, 1999]. This HR was developed in two steps. First, InHM 

was set up to simulate the dominant hydrologic features of the Tarrawarra catchment 

using the original data collection described in Western and Grayson [1998]. Details of 

the first step, the development of InHM boundary value problem for Tarrawarra, 

parameter evaluation and simulation results are thoroughly described in Mirus et al 

[2009]. In the second step we used a different, 11-year long meteorological record from 

the closest available station (37°73'S, 145°41'E, elevation: 83 m), located about 12.1 km 

driving distance southwest from Tarrawarra. We selected the period Jan 1, 1996 – Dec 

31, 2006 because it had data with high enough resolution and quality to be assembled 

into half-hourly potential evapotranspiration (PET) rates using the Penman-Montieth 

[Monteith, 1981; Allen et al., 1998] model. Precipitation time series were prepared from 

measurements at the same station. The calendar year 1996 was the most balanced year, 

with the annual PET within 2% of annual precipitation of 950 mm. The remaining 10 

years were marked by unusual dry weather in Australia [Pincock, 2007], with annual PET 

at Tarrawarra exceeding annual precipitation by percentages ranging from 25% in 2004 

to 63 % in 1997.  

 

Using the 11-year long half-hourly time series of PET and precipitation, assumed 

uniformly distributed across the catchment, as inputs to the Mirus et al., [2009] 

Tarrawarra InHM boundary value problem, an HR response was generated for long term 

assessments. The resulting 11-year long time series of hydrograph output and internal 

states at 55 observation nodes (at four depths: 0.02m, 0.1m, 0.5m and 1m, for each of 

the 11 locations shown in Figure 4.1b) as well as daily “snapshots” of the distributed 

response at all nodes, 73,425 in total, during the 6-month long (May to October) wet 

season each year. 

 

4.3. Distributed model testing and evaluation methods 

 

4.3.1. Test model, MODHMS 

 

To illustrate the functionality of the proposed model evaluation framework, we use a 

three dimensional fully-coupled surface-subsurface distributed model, MODHMS 

[Panday and Huyakorn, 2004; HydroGeoLogic, Inc, 2006], as a test model. MODHMS is a 

complex model suitable for catchment-scale applications where lateral flow is important 

for topography driven soil moisture patterns to form. The modular flexible structure 
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allowed MODHMS to be used previously in variety of problems such as parameter 

exploration and optimization [Vrugt et al., 2004; Shoups et al. 2005; Maneta et al., 

2008], estimation of shallow water evaporation in irrigated regions [Young et al., 2007] 

and tropical catchment simulations [Werner et al, 2006]. 

 

MODHMS is a grid-based model, built on the original USGS MODFLOW [McDonald and 

Harbaugh, 1988] platform for groundwater flow that numerically solves a finite-

difference form of Richards’ equation, for unsaturated subsurface flow and the diffusive 

wave approximation to the de Saint Venant equations for the shallow water overland 

flow derived by Gottardi and Venutelli [1993]. Model equations are described by Panday 

and Huyakorn [2004] and HydroGeoLogic, Inc [2006] and briefly summarized in 

Appendix 4A. The van Genuchten formulations are used for the functional forms of the 

relative permeability, krw, and soil moisture retention curves, (Eq.3 and 4 in Appendix 

4A). 

4.3.2. Evaluation objectives and model scenarios 

4.3.2.1. Testing objectives 

 

The evaluation objectives constitute the main model sensistivity questions to be 

addressed (e.g. how does the soil depth affect soil moisture patterns in MODHMS?).  

Here we address two specific testing objectives related to the MODHMS configuration 

of soil parameters: I) how does the shape of the soil moisture retention curve affect 

MODHMS hydrologic response, and II) what is the sensitivity of the saturated hydraulic 

conductivity, Ksat, to hydrologic response for the same soil moisture retention curve? In 

our approach, we first configure a MODHMS reference scenario using a similar 

parameterization to the model used to generate the HR dataset (see [Mirus et al., 

2009]). The purpose of the reference scenario was not to re-create the HR or to 

compare the two models, but rather to establish a base case run with similar soil 

stratigraphy and soil parameterization, where only the ET module was minimally 

calibrated to match the HR. From this reference scenario we explore how the soil 

parameters and soil depths affect MODHMS hydrologic response through model 

exploratory/behavioral runs.  

4.3.2.2. Testing scenarios 

4.3.2.2.1. Reference case scenario 

 

In the reference case scenario, the Tarrawarra catchment is represented in MODHMS by 

a plan view grid of 20 rows and 40 columns of cells of 14.25 by 13.50 m size. The domain 

is discretized vertically into 38 layers of variable depth from the surface as follows: 0.02 
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m (layers 1-11), 0.05m (layers 12-23), 0.1m (layers 24-28), and 0.2-0.33 m, with 

progressively increasing thickness (layers 29-38). The soil is stratified in three layers: A 

horizon, B horizon, and bedrock, with layer depths of 0.22, 1.1 and 14.5 m, respectively. 

The saturated hydraulic conductivities Ksat are 2x10-6, 2x10-7 and 2x10-9 m·s-1, 

respectively, and the van Genuchten parameters α are 4, 4.5, and 6 m-1, and β are 2.5, 

2.0, and 1.5, respectively [Mirus et al, 2009]. Residual water content was set constant 

for all layers: θr = 0.3 m3·m-3 while the saturated water content, θs,was 0.48, 0.38 and 

0.2 m3·m-3 for the three hydrogeologic layers, respectively [Mirus et al, 2009]. The main 

difference between the MODHMS reference case scenario and HR InHM soil 

parameterization is the use of constant, rather than Kriged soil depths for the A horizon 

layer (Fig.2 in [Mirus et al, 2009]). The catchment bottom and lateral boundaries are 

considered as no-flow boundaries and the surface boundary condition is set to a zero 

depth gradient. The digital elevation model (DEM) grid cell size was 5m and the overland 

flow parameterization was similar to InHM [Mirus et al, 2009]. 

 

4.3.2.2.2. Model scenarios for objectives I and II 

 

In the model scenarios designed for objectives I and II, we test the sensitivity of 

simulations to soil parameterization, specifically the saturated hydraulic conductivity Ksat 

and the van Genuchten parameters for both the relative permeability (Eq.3) and soil 

moisture retention curve (Eq.4) in Appendix 4A. We used the ROSETTA soil database and 

computer program for estimating soil hydraulic parameters with hierarchical PTFs 

[Schaap et al., 2001].  

 

ROSETTA’s simplest model provides a look-up table of class-average values of hydraulic 

parameters for the twelve United States Department of Agriculture (USDA) textural 

classes along with one standard deviation (SD) uncertainties of the class average values. 

ROSETTA can also provide estimates of the hydraulic characteristics from other types of 

soil information such as field soil texture measurements, bulk density, and one or two 

water retention points with a neural network based model. Perusal of the ROSETTA 

look-up table (a section is shown in Table 4.1 for three textural classes in ROSETTA’s 

units and format, with SD in parentheses) shows that θr, θs, α, and β have widely 

overlapping variation intervals between soil textural classes. An example of the 

relatively high scatter around the average retention curve for loam is also illustrated in 

Fig.7, Schaap et al. [2001]. 
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Table 4.1 Excerpt from ROSETTA textural class look-up table. 

Textural 
class 

θr 

cm3·cm-3 
θs 

cm3·cm-3 
log(α) 

log10(1/cm) 
log(β) 
log10 

Ksat 
log(cm·day-1) 

Clay loam 0.079 (0.076) 0.442 (0.079) -1.801 (0.69) 0.151 (0.12) 0.913 (1.09) 
Loamy sand 0.049 (0.042) 0.390 (0.070) -1.459 (0.47) 0.242 (0.16) 2.022 (0.64) 

Silty clay 0.111 (0.119) 0.481 (0.080) -1.790 (0.64) 0.121 (0.10) 0.983 (0.57) 

 

We establish MODHMS A, B, and C primary scenarios assuming the average values for 

θr, α, and β, representative for the clay loam, loamy sand, and silty clay textural classes 

in ROSETTA, shown in Table 4.1. The θr, α, and β values that define the shape of the soil 

moisture retention curve varied between the A, B, and C scenarios, but we maintained 

Ksat and θs fixed at 3.26x10-6 m·s-1, and 0.45 m3·m-3, respectively, values within one 

standard deviation interval for all three textural classes. For comparison, the averaged 

measured soil hydraulic conductivities Ksat at Tarrawarra in the top 30 cm and between 

30 and 60 cm are 3.74x10-6 m·s-1 and 1.17x10-6 m·s-1, respectively after removing the 

outliers.  

 

To test the influence of Ksat, in the secondary scenarios A1, A2, B1, B2, C1, and C2 we 

maintained the same θr, θs, α, and β and changed Ksat sequentially to the upper and 

lower limits of one SD interval for Ksat for each textural class. The three shapes of soil 

moisture retention curve cover a range of potential behaviors among classes or even 

within the same class. An example showing the variability of the shape within a class is 

illustrated in Figure 4.2a for clay loam where the average for the class is drawn as well 

as the curves assuming a one SD shift from the average for all van Genuchten 

parameters. Soil parameterizations for all scenarios are summarized in Table 4.2. For 

comparison again, the soil moisture retention curve drawn using the van Genuchten 

parameters predicted by ROSETTA based on soil samples collected at the site for the top 

30 cm is similar to ROSETTA’s clay loam textural class (Figure 4.2a). Figures 4.2b, 4.2c 

and 4.2d show the soil water retention curves for the three soil layers used in the 

MODHMS reference scenario and the clay loam, silty clay, and loamy sand textural 

curves from the ROSETTA look-up table, respectively, for θs equal to 0.45 m3·m-3 used in 

the A, B, and C scenarios. We use the same soil depth and ET representation as in the 

reference case scenario. All scenarios assume one homogenous layer type (clay loam, or 

loamy sand, or silty clay, respectively), overlaying a bedrock layer having the same depth 

and soil parameters as in the reference case scenario. Half-hourly precipitation and 

potential evapotranspiration rates were assumed constant across the catchment in all 

scenarios.  
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      c)               d) 

Figure 4.2 a) Clay loam water retention curves and the approximate curve at Tarrawarra 
predicted by ROSETTA; b), c), d) soil water retention curves of the three layers used in 
the MODHMS reference scenario and the clay loam, loamy sand, and silty clay curves 
used in the MODHMS A, B, and C scenarios. 

Table 4.2 Summary of soil parameterization in all scenarios addressing testing objectives 
I and II. 

Scenario 
Testing 

objective 
Ksat 

log(cm·day-1) 
log(α) 

log10(1/cm) 
log(β) 
log10 

θr 

m3
·m

-3 
Soil depth 

m 
Soil class 

A I 1.450 -1.801 0.151 0.079 1.32 Clay loam 
A1 II -0.177 -1.801 0.151 0.079 1.32 Clay loam 
A2 II 2.003 -1.801 0.151 0.079 1.32 Clay loam 
B I 1.450 -1.459 0.242 0.049 1.32 Loamy sand 

B1 II 1.382 -1.459 0.242 0.049 1.32 Loamy sand 
B2 II 2.662 -1.459 0.242 0.049 1.32 Loamy sand 
C I 1.450 -1.790 0.121 0.111 1.32 Silty clay 

C1 II 0.413 -1.790 0.121 0.111 1.32 Silty clay 
C2 II 1.553 -1.790 0.121 0.111 1.32 Silty clay 
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4.3.2.3. Scenario evaluation  

 

As part of the model sensitivity tests we employ continuous long-term simulations from 

which we select representative runoff events or dry periods for a closer analysis. This 

approach allows us to avoid the use of periods that are influenced by the choice of initial 

conditions and that may or may not be representative of the catchment hydrologic 

behavior. Because Tarrawarra is an ephemeral catchment, during the wet periods we 

evaluate both the hydrograph and soil moisture states, whereas during the dry period 

when no runoff occurs only the soil moisture patterns are examined.  

 

We analyze the 1 June 1999 to 11 November 2000 period, which included two wet 

seasons separated by a dry season. For all scenarios, we first simulate a warm-up 

period, 1 August 1996 to 1 June 1999, which begins in the wet season of 1996. The 

initial conditions are specified as a fully saturated domain, in accordance with the HR 

states on 1 August 1996 0:00 AM. At Tarrawarra, the estimated PET typically exceeds 

accumulated precipitation during the summer months, and is the opposite during the 

winter months [Western and Grayson, 1998]. During the 1999 and 2000 wet seasons, 

that are part of the evaluation period, precipitation exceeded PET by 8% in 1999 and 

was lower than PET by about the same amount in 2000. In the dry season of 1999-2000, 

PET was higher than the accumulated precipitation by approximately 50%. For 

comparison, during all wet seasons of the 1996-2006 HR period, precipitation to PET 

ratios ranged between 1.16 and 0.66 and between 0.29 and 0.74 during the dry seasons.  

 

We show the simulated MODHMS hydrograph for the entire evaluation period for the 

reference case scenario and compare the HR temporal soil moisture variation patterns 

at 4 different depths at a “wet” location (node 4 in Figure 4.1b) and a “dry” location, 

(node 11 in Figure 4.1b). The “wet” node (4) is located in a swale, the “dry” node (11) is 

near the upper catchment boundary where water movement is vertical with little lateral 

supplemental delivery. We show soil moisture variations at node 4 at 0.02m and 0.5 m 

depth and node 11 at 0.1 and 1 m depth to illustrate a range of distributed response 

between wet and dry locations and for a range of depths. For the 9 scenarios 

investigated we extract two shorter time periods from the evaluation period for a closer 

examination: an 11-day wet period, 6 August 1999 4:00 PM to 17 August 1999 2:00 AM 

(Figure 4.3a, period A), and an 8-day dry period 20 January 2000 8:00 AM to28 January 

2000 10:30 AM (Figure 4.3a, period B).  

 

We show how different parameter configurations listed in Table 4.2 affect the near 

surface MODHMS generated hydrologic response; the distributed response is illustrated 

with modelled soil moisture time series at 0.02 m and 0.1 m for the wet (4) and the dry 
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(11) nodes and for the wet and the dry periods (A and B). Soil moisture spatial patterns 

for the top 2 cm are shown every 24 hours; there are 8 patterns during the wet period 

A, and 9 during the dry period B.  

 

Soil moisture temporal and spatial distribution patterns for the MODHMS simulation 

results can be compared visually with those from the HR. We quantify the MODHMS 

hydrograph output for all scenarios relative to the HR hydrograph using the Nash-

Sutcliffe efficiency criterion NSE [Nash and Sutcliffe, 1970] NSE.  
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where MODHMSQ  is the MODHMS discharge generated for each scenario, HRQ  is the HR 

discharge and HRQ  is the average HR discharge for the period of interest.  

 

4.4. Simulation results  

 

4.4.1. MODHMS Reference case scenario 

During the 1 June 1999 to 11 November 2000 evaluation period, 19 HR hydrograph 

events larger than 5 l·s-1 occurred, 5 in the wet season of 1999, and 14 in the wet season 

of 2000, with peak magnitudes ranging between 6.2 l·s-1 to 77.7 l·s-1. The timing and 

magnitude of the simulated reference case scenario MODHMS hydrographs match well 

with the HR, with a NSE of 0.86 (time increment 30 minutes) for the entire evaluation 

period (Figure 4.3a and Table 4.3). The larger peak flow rates are simulated better, 

especially when antecedent soil moisture conditions are closer to saturation. Smaller 

peak flow rates are at times overestimated, mostly when they have drier antecedent 

conditions, such as the peaks occurring during the wet period A for which the NSE 

dropped to 0.25.  
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Figure 4.3 a) HR and MODHMS reference case scenario (RCS) hydrographs, b) - i) HR and 
MODHMS RCS saturation at node 4 and node 11, depths 0.02, 0.1, 0.5 and 1 m during 
the evaluation period. 

 

Figures 4.3b – 4.3i, which show time series of saturation, s, indicate that the MODHMS 

reference case scenario approximates very well the HR saturation at wet node 4 at all 

depths: 0.02, 0.1, 0.5 and 1m. At dry node 11, s is well simulated during the dry period, 

but tends to reach saturation faster near the surface during the wetter periods as shown 

in Figure 4.3 f and g. Deeper soil saturation levels at node 11 differ slightly in timing and 

magnitude from the HR, but the temporal variation patterns are generally consistent 

with the HR (Figure 4.3g and h). These discrepancies are likely due, among other factors, 

to the differences in soil depth representation (Krieged in InHM and constant in 

MODHMS) and to the ET parameterization in MODHMS.  

4.4.2. MODHMS A, B, and C scenarios, wet period A  
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The wet period A is characterized by long duration, relatively low intensity rain events, 

typical of the Tarrawarra wet seasons. During wet period A, two HR runoff events 

occurred: the first peak hydrograph, with a magnitude of 12.3 l·s-1, occurred 9 h after 

the beginning of the 11-hour long rain event (maximum intensity of 2.5 mm/30 min) 

(Figure 4.4a). The antecedent soil moisture states ranged from saturation values on the 

upper slopes of about 0.6 to about 0.8 in the depressions (Figure 4.4f, first HR (i)). A 

second higher peaked hydrograph followed, influenced by the wetter soil moisture 

conditions associated with a 4-h duration antecedent rain event shown in Figure 4.4f, 

HR (vi); the depressions are largely saturated and the upper slopes have saturation of 

about 0.8. The peak flow rate was18.1 l·s-1 and the total rain duration was 13 h 

(maximum intensity of 1.3 mm/30 min). During wet period A the surface at node 11 

remained unsaturated (Figure 4.4 d-f) and the HR peak hydrographs were of small to 

medium size compared with the range of peak flow rates simulated during the 

evaluation period (Figure 4.3) and during the entire HR (1996 – 2006) period, for which 

most of the peaks ranged between 10 to 75 l·s-1 with only three peaks higher than 100 

l·s-1.  
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Figure 4.4 a) HR and A, B, and C MODHMS hydrographs during the wet period A; b) - e) 
HR and A, B, and C MODHMS saturation at node 4 and node 11, depths 0.02 and 0.1 m; 
f) spatial distribution of HR and A, B, and C MODHMS saturation in the top 2 cm at 24 h 
intervals, 8 August 1999, 0:00 AM to 15 August 1999, 0:00 AM. 
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The A, B, and C scenarios assume the same Ksat and soil porosity and different soil 

moisture retention curves (Table 4.2). Figure 4.4a shows that only the MODHMS B 

scenario produced both HR hydrograph events during the wet period A, while the A, and 

C scenarios produced only the second peak, with a smaller magnitude in both cases, and 

lower NSE values (Table 4.3). The B scenario had the highest saturation level at the wet 

observation node 4 and the lowest at the drier region of node 11 (Figure 4.4 b-f). After 

the first rain event, the soil remained saturated in the wetter region 4 for all scenarios, 

while at the drier node 11 none of the A, B, and C soil moisture scenarios yielded 

saturation (Figure 4.4 b-f). The spatial distributions of saturation, shown every 24 hours 

beginning on 8 August 1999 0:00 AM in Figure 4.4f, indicate that the loamy sand B 

scenario approximates best the HR soil moisture patterns.  

 

Table 4.3 MODHMS efficiency criterion NSE for the 10 MODHMS scenarios during the 1 
June 1999-11 November 2000 evaluation period and wet and dry periods A and B. 

Scenario 

NSE 
evaluation 

period 

NSE 
wet 

period, A 

Reference case 0.86 0.25 
A 0.28 0.26 

A1 -2.9 0.10 
A2 0.28 0.61 
B 0.62 0.75 

B1 0.65 0.75 
B2 0.13 0.48 
C 0.24 0.40 

C1 -0.35 -0.15 
C2 0.29 0.42 

 

4.4.3. MODHMS A, B and C scenarios, dry period B  

 

The dry period B (Figure 4.5a) is characterized by two different rain events: a 14.5-hour 

long duration, low intensity (2.6 mm/30 min) event, followed by a 3.5-hour short 

duration, higher intensity (9.2 mm/30 min) summer storm. After the first rain event, the 

HR soil moisture increased from a relatively uniform saturation of about 0.4 to about 0.8 

(Figure 4.5 b –e). The soil dried relatively uniformly for about 4.5 days, when a second 

event produced a very small peak hydrograph of only 0.6 l·s-1 (Figure 4.5a).  

 

Compared with the wet period A, during which the dry and the wet node had noticeably 

different temporal variation patterns, the HR saturation varies similarly, in shape and 
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magnitude (Figure 4.5 b-e) during dry period B at both wet node 4 and dry node 11,. 

Saturation levels simulated for the A, B, and C MODHMS scenarios also vary uniformly at 

wet and dry nodes 4 and 11, with the loamy sand B scenario approximating best the HR 

(Figure 4.5 b-e). The spatial distributions of saturation, (every 24 hours from 22 January 

2000, 0:00 AM), show that during dry period B there are no clear soil moisture 

organization patterns and that the wet (in the depressions) and the dry regions 

(upslope) vary relatively uniformly with different magnitudes for the three (A, B, and C) 

scenarios, irrespective of the shape of soil moisture retention curve (Figure 4.5 f). No HR 

soil moisture spatial distributions are available for dry period B, however, Figure 4.5 b-e 

and other nodes examined (Figures not shown) indicate that the HR soil moisture,  s is 

relatively uniformly distributed across the catchment during the summer season. No 

peak hydrographs were simulated for the A, B, and C scenarios during dry period B.  
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Figure 4.5 a) HR and A, B, and C MODHMS hydrographs during the dry period;  B b) - e) 
HR and A, B, and C MODHMS saturation at node 4 and node 11, depths 0.02 and 0.1 m; 
f) spatial distribution of HR and A, B, and C MODHMS saturation in the top 2 cm at 24 h 
interval, January 21 2000, 0:00 AM to January 29 2000, 0:00 AM. 
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4.4.4. MODHMS A1, A2, B1, B2, C1, and C2 scenarios, wet period A 

 

The A1, A2, B1, B2, C1, and C2 scenarios assume the same class average soil moisture 

retention curve of clay loam, loamy sand, and silty clay, respectively, for which Ksat was 

sequentially set to the lower and upper values of the 1-SD interval from the class mean 

according to the ROSETTA database (Table 4.2). The integrated response for wet period 

A varied from not simulating the peak hydrographs at all in the C1 scenario to 

approximating relatively well the HR in the B1 scenario; the NSE ranged between -0.15 

and 0.75 (Table 4.3). Figures 4.6 b, c, g, h, l, and m show that at wet node 4, the soil is 

saturated or near saturation in all cases, but the integrated response (Figure 4.6 a, f, k), 

and saturation levels at dry node 11 (Figure 4.6 d, e, i, j, n, o), vary widely between 

scenarios.  
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Figure 4.6 a), f), k) HR and A1, A2, B1, B2, C1, and C2 MODHMS hydrographs during the 
wet period A;  b) - e), g) - j) and l) - o) HR and A1, A2, B1, B2, C1, and C2 MODHMS 
saturation at node 4 and node 11, depths 0.02 and 0.1 m. 
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The wet period A spatial distributions of saturation (Figure 4.7) show a wide range of 

soil moisture distribution patterns, that vary in both shape and magnitude across the 

catchment. For the more moisture retentive soils, such as the low Ksat clay loam and the 

silty clay (A1 and C1 scenarios), no discernable patterns were generated; these two 

scenarios have the lowest NSE values, estimated for both the entire evaluation period 

and for wet period A (Table 4.3), indicating an inappropriate soil parameterization for 

Tarrawarra. The high Ksat A2, and C2 scenarios saturation distributions show the typical 

soil moisture distribution pattern, with the water at or near saturation in the 

depressions, but for a smaller area than the HR (Figure 4.7); the near surface saturation 

variability is generally lower than for the HR and the upslope areas are wetter in both 

cases, with scenario C2 the wettest. MODHMS scenario B1 (loamy sand, low Ksat) spatial 

saturation distributions approximated best the HR near surface saturation, and 

consequently the integrated response of all scenarios investigated. A different soil 

moisture spatial distribution pattern was simulated for the high Ksat, B2 scenario, where 

water drained readily towards the depressions leaving the upslope area very dry (Figure 

4.7).  

 

Figure 4.7 Spatial distribution of HR and A1, A2, B1, B2, C1 and C2 MODHMS saturation 
in the top 2 cm at 24 h interval, 8 August 1999, 0:00 AM to 15 August 1999, 0:00 AM 
during the wet period A. 
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4.4.5. MODHMS A1, A2, B1, B2, C1, and C2 scenarios, dry period B 

 

During the dry period B, soil moisture varied with relatively little spatial variability across 

the catchment for all A1, A2, B1, B2, C1, and C2 scenarios, regardless of soil 

parameterization (Figures 4.8 and 4.9). The soil moisture magnitude varied between 

scenarios. In the case of the low Ksat clay loam and silty clay A1 and C1 scenarios the 

saturation level was relatively high after the first rain event and the catchment 

therefore reached saturation faster during the second high intensity storm, promoting 

high peak hydrographs during the summer period where no HR peaks occurred.  
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Figure 4.8 a), f), k) HR and A1, A2, B1, B2, C1, and C2 MODHMS hydrographs during the 
dry period B;  b) - e), g) - j) and l) - o) HR and A1, A2, B1, B2, C1, and C2 MODHMS 
saturation at node 4 and node 11, depths 0.02 and 0.1 m. 
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Figure 4.9 Spatial distribution of HR and A1, A2, B1, B2, C1, and C2 MODHMS saturation 
in the top 2 cm at 24 h interval, January 21 2000, 0:00 AM to January 29 2000, 0:00 AM 
during the dry period B. 

4.5. Discussion  

 

4.5.1. Influence of the soil moisture retention curve and saturated hydraulic 
conductivity on the near surface hydrologic response  

 

The A, B, and C scenarios address the question of how does the shape of the soil 

moisture retention curve affect the MODHMS integrated response (discharge) and 

distributed response (soil moisture), assuming the same Ksat, soil porosity, soil depth, 

overland flow, and ET parameterization. Wet period A simulation results show that 

different curves affect the soil moisture spatial distribution patterns, which in turn, 

influence the hydrograph shape, timing, and magnitude (Figure 4.4). The loamy sand B 

scenario has a larger near saturation or saturated area adjacent to the depressions prior 

to the storms compared with the more water retentive A, and C scenarios (Figure 4.4 f); 

these  soil hydraulic properties allow the water to move faster through the soil, 
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approximate better the HR spatial distribution of soil moisture, and generate timely 

runoff.  

 

The first peak hydrograph of the wet period A, which was associated with dry initial 

conditions was simulated in the B scenario with higher magnitude than the HR but 

relatively adequate shape and timing, while in the A, and C parameterizations very little 

runoff was produced (Figure 4.4a). A second peak, associated with wetter, but not 

completely saturated initial conditions, was simulated for all A, B, and C scenarios; these 

hydrographs had smaller peak magnitudes than the HR and shifts in timing and shape. 

The more water retentive soils (A, and C) had generally higher levels of saturation, with 

less spatial variability across the catchment, however, their hydraulics allow for smaller 

and delayed peak hydrographs during wet period A when the surface soil was 

unsaturated.  

 

In contrast with wet period A, during dry period B, when ET effects are more significant, 

there was very little spatial organization of soil moisture for all A, B, and C MODHMS 

scenarios (Figure 4.5 f). This behavior is consistent with field observations at Tarrawarra 

[Western et al., 1999]. As expected, the van Genuchten parameters affected the 

saturation level of each scenario, with the loamy sand the driest, and silty clay the 

wettest, but patterns were not easily discernable following rain events (Figure 4.5 a-f).  

 

The wet period A, A1, A2, B1, B2, C1, and C2 MODHMS simulations, addressing the 

sensitivity of Ksat for the same water retention curve, confirm the conclusions of several 

other studies [e.g., Binley et al., 1989; Mirus, 2009] that the saturated hydraulic 

conductivity Ksat plays an important role in the spatial variability of soil moisture and for 

runoff generation. Figure 4.7 shows that a low Ksat tends to increase the area of the 

saturated region around the depressions and reduce the spatial variability of soil 

moisture across the catchment area during rain events, while a high Ksat is more 

favorable to pattern formation for all water retention curves. The combination of a 

“sandier” van Genuchten parameterization and high Ksat values tends to increase soil 

moisture spatial variability and favors pattern formation, while a more water retentive 

soil parameterization and low Ksat tends to maintain the soil wetter with less spatial 

variability. Figure 4.6 and Figure 4.7 show that Ksat appears to have greater influence on 

the level of saturation and pattern formation for a sandy soil parameterization and less 

influence for more water retentive soils.  

 

The A2, and C2 scenarios illustrate the importance of adequately simulating the 

antecedent spatial distribution of soil moisture and the need for model 

parameterization evaluation under wet and dry season conditions and precipitation 

patterns and for both dry and wet periods within them. During wet period A, the A2 and 
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C2 scenarios saturation distributions captured, to a certain extent, the HR patterns, with 

lower spatial variability and generally higher moisture content (Figure 4.7). However, 

despite their NSE values of 0.61 and 0.40, respectively, during the wet period A, their 

overall performance for the entire evaluation period is poorer than the loamy case B, 

and B1 scenarios (Table 4.3). This is partly due to several peak hydrographs simulated 

during the intermediate dry period between the two wet seasons of the evaluation 

period (Figures not shown).  

 

The antecedent conditions, expressed as level of soil saturation, influenced by soil 

parameterization, play a critical role for runoff generation during dry periods when 

storms have relatively high intensity and short duration. An example in Figures 4.8a, c 

and Figure 4.9 shows that more water retentive soils and lower Ksat values (A1, and C1 

scenarios) tend to increase summer saturation and favor the simulation of peak 

hydrographs during high intensity summer rain events.  

 

Dry period B, A, A1, A2, B1, B2, C1, and C2 simulation results show, that for the same 

water retention curve, the low and high Ksat values affect only the level of saturation 

across the catchment, and have little influence on soil moisture spatial variability and 

pattern formation (Figure 4.9). Figures 4.5f and 4.9 indicate that during the dry period, 

soil moisture spatial distributions are insensitive to both water retention curve shape 

and Ksat parameterization  

 

4.5.2. Implications for model calibration  

 

In many distributed model applications there is little or no information on soil, or soil 

water properties, and the problem of how to parameterize soil hydraulic properties 

remains subjective. The virtual experiments at Tarrawarra detailed in this study have 

illustrated a large range of catchment responses as a result of varying soil hydraulic 

parameters. In practice, model calibration of soil hydraulic parameters depends on the 

scale of the modeled domain. For larger areas, these parameters are typically 

established by the hydrological modeler based on generic soil information (data bases) 

and scarce (if any) field observations about the soil characteristics. The quality of 

information in the database and the domain spatial heterogeneity play an important 

role in model performance. At the small catchment spatial scale (e.g. Tarrawarra) model 

applications typically benefit more from model parameterizations based on field 

characterization of soil data, but the issue of spatial heterogeneity remains. For 

example, based on soil data collected at Tarrawarra, ROSETTA predicted a water 

retention curve similar to the average class for clay loam (Figure 4.2). However, 
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MODHMS scenarios showed that a more “sandier” behavior is needed to simulate soil 

moisture patterns similar to the HR and comparable appearance, timing, and peak 

magnitude of the hydrograph. Such a “sandier” curve can however lie in the clay loam 

class interval; the van Genucthen parameters vary within the same soil class (see 

example in Figure 4.2) and overlap between classes.   

 

MODHMS tests illustrate the consequences of a plausible range of soil parameterization 

and underline the importance of behavioral parameterization. For gently sloping 

catchments such as Tarrawarra and for periods when the soil remains unsaturated and 

the water movement is controlled by soil hydraulics and topography, a potentially useful 

strategy would be to identify the behavioral shape of the soil moisture retention curve 

(based on the data base or field observed data) that controls the internal states and 

spatial patterns and then test the effects of Ksat on runoff during both dry and wet 

periods. For this approach, distributed soil moisture observations across dry and wet 

areas (or transects) at different depths are most useful. In some cases, the water 

retention parameters have little influence on the simulated hydrograph [e.g Vázquez et 

al., 2008] and only Ksat is calibrated. Other applications, however report sensitivities of 

the unsaturated parameters [e.g., Christiaens and Feyen, 2001; Christiaens and Feyen, 

2002; Mirus, 2009]. The virtual experiments at Tarrawarra showed that soils with the 

most sensitive response have a “sandy” behavior of the soil moisture retention curve 

and high values of Ksat. For heterogeneous soils and larger domains this approach is 

more complicated due to the distributed nature of the parameter sets across the 

modeled domain.  

 

Model scenarios investigated here support the conclusions of other studies (e.g. 

Christiaens and Feyen [2002]) that soil moisture measurements are critical for model soil 

parameterization. Distributed observations during both dry and wet periods and across 

dry and wet areas are especially informative to characterize the hydrologic behavior of 

ephemeral catchments. In addition to field data, remotely sensed soil moisture 

measurements are a promising source of information on pattern formation. Advances in 

soil moisture pattern analysis for calibrating distributed hydrologic models [e.g., 

Wealands et al., 2005] show promise and need to be explored.  

 

 

4.6. Summary and conclusions 

 

We address two testing objectives related to configuration of soil parameters in a 

complex distributed hydrologic model: how does the shape of the soil moisture 

retention curve affect the integrated and distributed response, and what is the influence 
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of the saturated hydraulic conductivity for the same water retention curve? We select 

two different periods for closer investigation from the long term simulations: a wet 

period, characterized by cold weather patterns when the water movement through soil 

is controlled by the topography and soil hydraulics and a dry period, during which the 

soil is dry and the ET influence is more significant.  

 

Simulation results show that the shape of the water retention curve, representing the 

nonlinear relationship between the pressure head and soil water content, influences the 

soil moisture spatial patterns, which in turn influence the timing, shape and magnitude 

of the simulated hydrograph. During wet periods when soil moisture patterns are 

forming, the more water retentive soils, such as clay loam, and silty clay, were less 

prone to pattern formation, had higher levels of saturation and less spatial variability 

and, overall, were less conducive to runoff generation than the sandier soil. For the 

same water retention curve, the saturated hydraulic conductivity Ksat plays an important 

role in both soil moisture spatial variability and runoff generation. More water retentive 

soils with low Ksat are more resistant to pattern formation, while sandy soils with high 

Ksat are more prone to pattern formation and have higher spatial variability. In general, 

low Ksat tends to decrease spatial variability of soil moisture and high Ksat to increase it. 

In contrast with the wet period when soil moisture patterns are forming, during the dry 

period very little spatial organization was simulated for all scenarios. During this period 

the water retention parameters and Ksat affect the level of saturation only, which is 

relatively uniformly distributed across the catchment, and are less influential for pattern 

formation and spatial variability.  

 

We conclude that for gently undulating catchments such as Tarrawarra, for which the 

subsurface flow is important, the form of MODHMS parameterization of both soil 

moisture retention curve and saturated hydraulic conductivity Ksat are important for 

adequate representation of soil moisture patterns and timely runoff production. In this 

regard, if available, observed distributed hydrologic variables are valuable to assist a 

behavioral parameterization. The use of the hypothetical reality dataset opens the door 

for many other models, scenarios, and variables to be investigated in a hybrid approach, 

such as this work, between model testing and concept-development simulations of 

Mirus [2009] and Loague [2010].  
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Appendix 4A 

The three-dimensional variably-saturated subsurface and the surface flow equations 
that are solved numerically by MODHMS are: 
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where: Kxx, Kyy , and Kzz are the principal hydraulic conductivities in the x, y, and z 
directions, respectively [L T-1]; krw is the relative permeability, a function of water 
saturation; hG is the hydraulic head of the subsurface flow system defined as hG = Ψ + z , 
where Ψ is the pressure head [L] and z is the gravitational head [L], with z defined 
positive upwards; W represents the flux per unit volume of sources  or sinks of water [T-

1]; qgo is the flux per unit volume to the subsurface from the 2-D overland flow domain 
[T-1]; qgc is the flux per unit volume to the subsurface from the 1-D channel or surface 
water feature domain [T-1]; Φ is the porosity; Sw is the water saturation estimated from 
the moisture retention curve as a function of the pressure head; Ss is the specific storage 
of the porous media [L-1]; and t is time [T].  
 
In Eq.A2 ho = zo + d is the water surface elevation [L]; d is the flow depth; zo is the surface 
elevation [L]; qog is the flux per unit volume from surface to subsurface, with qgo = -qog, 
[T-1]; qoc is the flux per unit volume of overland flow from the channel [T-1]; kx and ky are 
conductance terms [LT-1], derived by Gottardi and Venutelli [1993].  
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In Eq.A1, when the saturation Sw equals 1, the equation solves the 3-D flow for the fully 
saturated domain. The Sw derivative with time is eliminated from the first term of the 
left hand side of Eq.A1 and Eq.A1 becomes equivalent to the equation used to describe 
the fully saturated groundwater flow originally implemented in MODFLOW [McDonald 
and Harbaugh, 1988]. The surface characterized by Sw = 1 is the position of the water 
table.  
 

The van Genuchten [1980] formulation for both krw and pressure heads ψ as functions 

of water saturation are Eq. A3 and Eq. A4:  
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where krw is the relative permeability, Se is the effective water saturation, Sw is the water 
saturation, equal to the water content θ divided by porosity Φ, Swr is the residual water 
saturation, equal to the residual water content θr divided by porosity Φ, α and β are 
empirical, fitting parameters and γ = 1-1/ β. Eq. A4 is the functional form of the soil 
moisture retention curve.  
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Chapter 5. Modeling how vegetation cover affects climate change impacts on 
streamflow timing and magnitude in the upper Tuolumne Basin, Sierra Nevada 

 

Abstract 

 
Many studies have shown that onset of snow-melt based streamflow occurs earlier in 
the spring in North America due to warming temperatures. However, the role 
vegetation cover plays in the rate of advance has been less investigated. In the 
Tuolumne river basin of the Sierra Nevada, California, most river water is provided by 
high elevation snowmelt. This water is especially important during summer conditions 
for mountain ecosystems and for downstream water supply. We investigated, through 
hydrologic modeling, the impact of the extent and density of canopy cover on the rate 
of streamflow timing on the peak and late summer flows in the upper Tuolumne basin 
(2,600-4,000 m) of the Sierra Nevada. We used the Distributed Hydrology Soil 
Vegetation Model (DHSVM) for the hydrologic modeling of the basin, assuming four 
vegetation scenarios: current forest (partial cover, 80% density), all forest (uniform 
coverage, 80% density), barren, and thinned forest (partial cover, 40% density) for a 
medium-high emissions scenario (A2) from the Geophysical Fluid Dynamics Laboratory 
(GFDL) CM2.1 model. Significant advances in streamflow timing, quantified as the center 
of mass, COM, of over one month were projected for all vegetation scenarios. However, 
there were differences between these scenarios for the same climate dataset from the 
GFDL CM2.1 model. When forest covered the entire area, the COM occurred on average 
12 days earlier, with the rate of advance higher by about 0.06 days·year-1 over 100 years 
compared to the case assuming current forest coverage. On average, over the 100-year 
period the all forest peak and late summer flows were lower by about 20% and 27%, 
respectively compared to the corresponding values for the current forest scenario. 
Under barren and reduced canopy cover conditions the COM occurred later by about 7 
and 5 days, respectively, with lower rates of COM advance and 19% higher peak and 
23% higher late summer flows in the barren case, and 13% higher peak flows and 9% 
higher late summer flows in the case of thinned forest compared with the current forest 
scenario over the simulation period. Peak summer flows decreased with increasing 
temperatures in time by 22%, 27%, 16% and 18% for the current forest, all forest, 
barren and thinned forest, respectively. Examination of modeled changes in energy 
balance components at forested and barren sites when temperature is increasing 
indicated that increases in net longwave radiation are higher in the forest case and have 
a higher contribution to melting earlier in the season when shortwave radiation is 
smaller. These increases contributed to increased midwinter melt at temperatures 
above freezing and caused decreases in accumulation, and faster melt rates. The higher 
accumulation at barren sites increased snowpack retention and had the potential to 
decrease the rate of streamflow advance to earlier dates and to increase summer flows 
in the Tuolumne basin. 
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5.1. Introduction 

 
Mean timing of snowmelt runoff has advanced by approximately 1-3 weeks in many 
mountainous catchments across western North America (Stewart et al. 2005; Regonda 
et al., 2005). This trend toward earlier snowmelt and earlier streamflow timing has been 
attributed to the broad-scale increase of winter and spring temperatures by about 1°–
3°C over the past 50 years (Stewart et al., 2005). These changes appeared to be 
sensitive to the effects of increased air temperature, primarily in basins below about 
2500 m (Regonda et al., 2005), and are expected to continue in the future, due to 
anticipated climate change effects (Leung and Wigmosta 1999; Hamlet and Lettenmaier, 
1999; Leung et al., 2004).  
 
In addition to climate, vegetation cover type and extent also affect streamflow patterns 
(Jones and Post, 2004), and watershed managers have options in how they choose to 
manage the vegetation cover to control streamflow patterns (Grant et al., 2008). 
Therefore, the role vegetation plays in the magnitude of these changes in a warming 
climate is of interest.  Forests interact with snow through altering its spatial distribution 
and energy exchanges with the environment. Forests reduce ground-level incoming 
shortwave radiation while increasing longwave radiation (Hardy et al. 2004; Link et al. 
2004; Boon, 2009), and reduce turbulent energy transfer at the snow surface (Hardy et 
al. 1997). The absence of vegetation causes snow accumulation and melt rates to 
increase and evapotranspiration to decrease (Whitaker et al., 2002). Melt rates were 
found generally to be higher in the barren areas than under the forest in Canada (Boon, 
2009; Burles and Boon 2011; Winkler et al., 2005). However, differential snowmelt rates 
between the barren regions and the forest may vary with elevation. At lower elevation, 
snowmelt rates in Canadian forests were lower than in the clear-cut areas, whereas at 
higher elevation, snowmelt rates of forested and barren areas approached equality 
(Whitaker et al., 2002). At temperatures above freezing, melt rates were higher under 
the forest, but at near-freezing temperatures melt rates in the barren areas were higher 
in the central Pyrenees; these differences were attributed to increased net longwave 
radiation at temperatures above 0°C, and to the lower albedo under the forest (López-
Moreno and Latron, 2008).  
 
The effects of vegetation changes on streamflow have long been investigated due to 
their economical and ecological importance. Historically, paired watershed experiments 
have evaluated forest harvesting effects on the magnitude of peak summer flows 
(Hewlett, 1971; Hewlett, 1982; Robinson et al., 2003; Jones and Post, 2004; 
Andréassian, 2004; Grant et al., 2008). In general, changes in streamflow as a result of 
vegetation disturbance varied with the nature of basin, vegetation type, elevation and 
climate, but in most cases higher peak flows have been reported in the clear cut basins 
compared with control vegetated basins. More recently, in addition to paired watershed 



 90 

studies, hydrologic modeling has been used as a means of identifying changes in the 
magnitude and frequency of the peak flows in response to vegetation cover changes 
(e.g., Schnorbus and Alila, 2004; Alila et al., 2009; Cuo et al., 2009; Kuraś et al., 2012). 
Hydrologic modeling allows for comparisons of streamflow time series generated 
assuming different land cover scenarios, while maintaining the same climatic and 
precipitation patterns (same model forcing data). In these modeling experiments, partial 
or total removal of forest canopies was found to increase both the magnitude and 
frequency of annual peak discharge in watersheds located in British Columbia, Canada 
(Schnorbus and Alila, 2004; Kuraś et al., 2012).  
 
In this study we use hydrologic modeling to explore the role of vegetation on 
streamflow timing and magnitude under a warming climate for the upper Tuolumne 
River basin of the Sierra Nevada, California. The regional hydrology is very important for 
California water, as part of the Tuolumne River snowmelt is stored in the downstream 
Hetch Hetchy reservoir, which is a major component of the San Francisco water supply 
system. The timing of snowmelt and the amount of water available are therefore of 
great interest for resource managers concerned with water supply for agricultural, 
urban and industrial use. Previous studies of Sierra Nevada basins have shown that 
streamflow timing will likely occur earlier as a result of climate change, leading to longer 
periods of lower flows during the summer, when water is most needed (Maurer et al., 
2007; Null et al., 2010). These prolonged low flow conditions are detrimental not only 
for downstream water supply but also to the region’s mountain ecosystems (Lowry et 
al., 2010; Lowry et al., 2011).  
 
The upper Tuolumne River basin drains to Tuolumne Meadows, where the stream 
depths are closely linked to groundwater levels and distributions of meadow vegetation 
(Loheide et al., 2009; Loheide and Lundquist 2009; Lowry et al. 2011). Meadow 
vegetation, and associated restoration strategies are intimately tied to local stream 
hydrographs, which in turn, are controlled by integrated processes across their 
contributing watershed (Lowry et al. 2011). Park managers developing long-term 
conservation plans are interested in how climate warming is likely to affect the meadow 
hydrology.  
 
To address this question, we use the Distributed Hydrology Soil Vegetation Model 
(DHSVM, Wigmosta et al. 1994) to simulate historic and projected future streamflows 
and additionally to explore how the vegetation cover influences streamflow timing and 
magnitude. Within the model, we create virtual experiments by specifying different 
vegetation scenarios to emulate paired watershed experiments, while applying the 
same future meteorology from a medium-high emissions scenario, A2 (IPCC, 2001) of 
the Geophysical Fluid Dynamics Laboratory (GFDL) CM2.1 model.  
 
DHSVM explicitly models the effects of shading and vegetation cover, and has previously 
been applied to evaluate effects on streamflow patterns from climate change (Leung 
and Wigmosta 1999; Battin et al., 2007; Wiley and Palmer, 2008) and forest harvesting 
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(Whitaker et al., 2002; Schnorbus and Alila, 2004; Kuraś et al., 2012). In a review of 
hydrologic models for applications studying forest management and climate change, 
DHSVM was identified to be the most suitable model to address questions related to 
forest effects on streamflow (Beckers et al. 2009). The model was previously applied in 
the upper Tuolumne river basin to simulate boundary conditions that were then used as 
input in a groundwater model to evaluate hydrologic conditions for the Tuolumne 
Meadows ecology (Lowry et al. 2010; Lowry et al. 2011).  
 
We chose the upper Tuolumne area as a case study for this investigation because: i) it is 
a high elevation basin important for providing snowmelt water during the critical 
summer low flow conditions, ii) the basin is sensitive to changes in climate which will 
affect the meadow ecology, and, iii) forest cover manipulation was identified as a means 
to increase snow retention in other high elevation regions of the Sierra Nevada (e.g. 
Bales et al., 2011b). Streamflow series derived from four different vegetation scenarios 
and the same climate scenario from the GFDL CM2.1 model were analyzed for changes 
in timing, peak magnitude and frequency, and summer low flow magnitude and 
frequency. These stream flow metrics are important for the meadow ecology and for 
downstream reservoir management. The main purpose of this analysis was to 
determine how land cover affects the basin sensitivity to climate change (i.e. is a 
forested basin more or less sensitive than a barren basin?). Section 2 of this paper 
describes the study site, Section 3 provides details on models and methods, Section 4 
discusses the results and implications, and Sections 5, and 6 provide a summary of the 
findings, and conclusions, respectively.  
 
 

5.2. Study site and data sources 

 
The upper Tuolumne basin, located in Yosemite National Park in the Sierra Nevada of 
California is a high elevation basin, ranging from 2600 to 4000m above sea level (Figure 
5.1). Its area of 186 km2 comprises about 16% of the downstream Hetch Hetchy 
reservoir’s drainage area. The underlying soils are thin (typically less than 1m deep) and 
are derived from low permeability intrusive rocks (granodiorite), which erode slowly and 
interact little with streamflow (Huber, 1987). High elevation, complex topography, and 
low infiltration make the system snowmelt dominated. The climate is Mediterranean, 
with cold and wet winters and warm and dry summers. Over 80-90% of annual 
precipitation (800-1000mm) falls as snow, but there is significant seasonal and inter-
annual variability in precipitation (Epke et al., 2010). The basin is covered at lower 
elevations by dense forest (Pinus contorta, 39% of the total basin area) and by 
herbaceous meadow vegetation (meadow, 36%), and is barren (granitic bedrock, 24%) 
at higher elevations (Figure 5.1).  
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Figure 5.1 Upper Tuolumne basin, Sierra Nevada, California. 

 
Streamflow data were collected as part of the Yosemite Hydroclimate Monitoring 
Project beginning in August of 2001 (Lundquist et al. 2003; Lundquist et al. 2004). 
Stream stage was manually measured during the summer season, and was also 
recorded half-hourly with Solinst Levelogger © pressure transducers at the location 
shown as a solid triangle in Figure 5.1. Observed stream stage timeseries were 
transformed into streamflow using rating curves relating water level to discharge 
calculated from manual measurements (Rantz et al., 1982). 
 
The 2003-2009 period used for model calibration experienced a relatively large range of 
climate conditions and hydrologic variability which is representative of the region. An 
analysis of the long-term historic streamflow record (1916-2009) in the neighboring 
Merced basin (United States Geological Survey, USGS, gage 11264500) showed that the 
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2003-2009 period encompassed conditions ranging between the 9th percentile (2007, 
the driest year) and 95th percentile (2008, the wettest year). Meteorological data were 
obtained from the Dana Meadows (Lat: 37.9°N, Long: 119.3°W, 2966 m) and Tuolumne 
Meadows (Lat: 37.6°N, Long: 119.7°W, 2600 m) snow pillow sites (Figure 5.1), which are 
managed by the California Department of Water Resources.  
 
 

5.3. Hydrologic modeling, climate data, and methods for streamflow analysis 

 

5.3.1. Hydrologic model description and model set-up 

 
The Distributed Hydrology Soil Vegetation Model, DHSVM, calculates the full surface 
energy balance independently at each model grid cell, including terrain shading effects, 
radiation attenuation, wind modification, and snow-canopy processes (Wigmosta et al. 
1994; Storck 2000; Storck et al. 2002). DHSVM represents the seasonal snowpack as a 
two-layer system, and solves the full surface energy balance at each time step. The 
surface (top) layer actively exchanges energy and mass with the atmosphere. The pack 
(bottom) layer acts as a mass and energy reservoir and exchanges inputs of heat and 
melt water with the surface layer. 
 
Vegetation is represented in DHSVM as a two-level coverage, with the overstory 
covering a specified fraction of the pixel, typically the canopy closure, and an 
understory. Interception is modeled as a function of precipitation and snow interception 
efficiency, until a maximum value is reached. Intercepted snow is subject to sublimation, 
mass release from the canopy (added to the snowpack as rain), and melt (estimated 
through an energy balance equation). Evapotranspiration is represented by the 
Penman-Montieth approach (Shuttleworth, 1992), assumed to occur at the potential 
rate from the wet surfaces and dependent on the soil moisture under unsaturated 
conditions. Calculations of evapotranspiration are based on weather variables, 
aerodynamic resistance (dependent on the wind velocity profile and vegetation 
characteristics), and canopy resistance (dependent on temperature, vapor pressure 
deficit, photosynthetically active radiation and soil moisture). Above the overstory a 
logarithmic (flat plate boundary) wind profile is assumed, whereas through the 
overstory and understory wind decreases exponentially until it meets a new (lower 
velocity) logarithmic profile near the surface (Wigmosta et al., 1994). DHSVM simulates 
overland flow and both saturated and unsaturated subsurface flow. Streamflow is 
routed through a network in which each stream section is treated as a linear reservoir 
using a Muskingum-Cunge algorithm. Model equations representing the snowpack 
energy balance are given in Appendix 5A.  Additional model details and 
conceptualization of hydrologic processes and model equations are described in 
Wigmosta et al., 1994 and Wigmosta et al. 2002, and summarized in several subsequent 
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studies in which DHSVM was used (e.g. Thyer et al. 2004; Jost et al. 2009 or Bewley et 
al. 2010).  
 
For the upper Tuolumne basin, DHSVM was run at a three-hour time step with a 150-m 
grid resolution. This resolution was chosen to best resolve the stream networks and 
water transfers between grid cells, while remaining coarse enough to maintain 
computational efficiency. Spatial inputs of elevation, vegetation, soil type and depth, 
geology, and terrain shading were pre-processed from available NPS and USGS datasets. 
Temperature was distributed across the basin with a constant lapse rate of -6.5°C km-1, 
which was the average found from a distributed network of over 40 sensors in this 
region (Lundquist and Cayan, 2007). Precipitation was distributed using relative 
weighting derived from maps of monthly climate normal precipitation from the 
Parameter-elevation Regressions on Independent Slopes Model (PRISM; Daly et al. 
1994; Daly et al. 2002; Daly et al. 2008). Forest coverage (Figure 5.1) was represented as 
a single class (conifers, predominantly lodgepole pine Pinus contorta,) of uniform 80% 
fractional coverage (of the pixel). Vegetation parameters have been established based 
on data from personal communications with park managers and from the literature, 
primarily from studies that applied DHSVM at sites where lodgepole pine forests were 
present (e.g. Thyer et al., 2004; Bewley et al., 2010). Model parameters are given in 
Table 1.A1, Appendix 5A. 
 
Temperature, relative humidity, incoming shortwave radiation, and wind speed data 
used for calibrating the model for years 2003-2009 were recorded at Dana Meadows 
(Figure 5.1). Because the precipitation data record at this station was affected by 
instrument failure during 2006 to 2009, we used precipitation measured at Tuolumne 
Meadows (Figure 5.1), which was scaled by a factor of 1.3 to match the Dana Meadows 
records. Thus, PRISM precipitation weights were referenced to the Tuolumne Meadows 
site location. The factor of 1.3 matched the ratio of the two stations during the years of 
overlap. The air temperature lapse rate (-6.5°C km-1) was checked through lapsing the 
air temperature recorded at Tuolumne Meadows and comparing it to air temperature 
recorded at Dana Meadows.  This comparison revealed a relatively uniform scatter 
around the 1:1 line and indicated that this lapse rate is suitable for representing air 
temperature distribution across the upper Tuolumne basin. In addition to this 
comparison, and given the importance of varying temperature with elevation, we also 
examined the model’s sensitivity to constant lapse rates of -4.5 °C km-1 and -8.5 °C km-1, 
relative to the base case of -6.5°C km-1. Although variations in lapse rates have been 
found to affect basin hydrology in other basins (e.g., Minder et al. 2010), varying the 
lapse rate had little effect on streamflow in our study area because the overall elevation 
range in the basin is relatively small, and the forcing temperature is located near the 
middle of the overall range (Figure 5.1). The -8.5/-4.5 °C km-1 lapse rate resulted in slight 
increase/decrease in late-season discharge, and a shift of ±2 days in COM. Therefore, we 
kept the lapse rate constant at -6.5°C km-1, which was found to better represent 
temperature variations with elevation for all further simulations. 
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Incoming shortwave radiation was distributed using solar geometry calculations, then 
corrected for terrain shading effects using monthly maps of terrain shadowing 
constructed using the solar geometry from day 15 of each month (Wigmosta et al. 
1994). Soil saturated hydraulic conductivity values were estimated using the USDA soil 
classifications (USDA NRCS 2006) and mean saturated conductivity values provided by 
Carsel and Parrish (1988) for each soil class (Table 1.A1, Appendix 5A). During 
preliminary sensitivity tests, these were varied by one order of magnitude (both higher 
and lower), but model results were relatively insensitive to these variations. Soil depths 
were checked during field visits and found to be less than 1m in most locations and less 
than 3m in most meadow locations, which is consistent with reported values (USDA 
NRCS 2006) and those used in DHSVM (Lowry et al., 2010). Forest parameters were set 
to 80% fractional coverage, 5.0 leaf-area-index (LAI), and 30% radiation attenuation (k, 
Eq. A5, Appendix 5A) based on park vegetation surveys, discussions with park foresters, 
and values reported in the literature (Table 1.A1, Appendix 5A). Additional discussion of 
model parameter sensitivity is provided in Appendix 5A. 
 
The stream network was developed from a hydrologically-conditioned 150-m DEM; 
small (1-3 m) adjustments to individual elevation pixels were made to force the derived 
stream network to match the NPS stream map, which was developed from site surveys. 
These adjustments were necessary because some streams in the area are routed via 
incised bedrock channels that are not represented on a 150-m DEM. Modeled 
streamflow was routed at each time step using the stream channel network, with each 
stream section treated as a linear reservoir. Water also entered the channel via overland 
flow and saturated subsurface flow in the soil layers. Because the majority of the basin 
is made up of intrusive igneous granodiorite, influences from deep groundwater were 
negligible.  
 

5.3.2. Climate data and model scenarios  

 
To explore potential changes in the basin hydrology as a result of increasing 
temperature and as a function of vegetation cover, we performed two types of 
simulations. First we ran model ΔT sensitivity tests on the historical record and then we 
used long-term climate data based on output from Geophysical Fluid Dynamics 
Laboratory (GFDL) CM2.1 model (Stouffer et al. 2006; Delworth et al. 2006; Knutson et 
al. 2006). For the ΔT temperature sensitivity tests we considered the two extreme 
vegetation scenarios, forest and barren, for the historic 2003-2009 period. The 
temperature was raised by ΔT= 3°C in the forcing dataset, and the results were 
compared with the simulations run using the historic meteorology. This ΔT was chosen 
to represent the approximate temperature increase by the last decades of the century 
in the GFDL scenario. The purpose of running the ΔT sensitivity tests (model scenarios 1-
4, Table 5.1) was to allow comparisons of the energy balance components, snow water 
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equivalent (SWE) and streamflow between forested and barren cases for the historic 
temperature T and increased, historic T + 3°C forcing data.   
 
Table 5.1 DHSVM scenarios for ΔT sensitivity tests. 

Scenario Vegetation cover  Scenario assumptions 

1 All forest Historic T 
2 All forest Historic T + 3°C 
3 Barren Historic T 
4 Barren Historic T + 3°C 

 
The climate scenario is a medium-high emissions scenario (A2) from the GFDL model 
that assumes emissions increase continuously to near 30 Gt yr-1 by 2100 (IPCC 2001). 
This scenario was chosen to be compatible with other climate impacts studies in the 
region, and was identified as appropriately representing plausible future conditions in 
California (e.g. Maurer 2007; Cayan et al., 2008). We initially considered a range of four 
climate scenarios based on the Parallel Climate Model, PCM (Washington et al. 2000; 
Meehl et al. 2003) and GFDL CM2.1 models’ output for both B1 and A2 IPCC scenarios 
for a range of projected temperature increases ranging from 1.7 °C (PCM B1) to 3.9 °C 
(GFDL A2) following Cayan et al., 2008. While exact numbers vary, the qualitative nature 
of the impacts was the same across scenarios. For clarity, we chose the A2 GFDL 
scenario to illustrate the findings for this study. 
 
Downscaled climate data for the A2 GFDL scenario for the 2001-2100 period (daily 
minimum and maximum temperature and daily precipitation) were retrieved from 
http://tenaya.ucsd.edu/wawona-m/downscaled, where a data collection representing 
future climate scenarios was made available as part of USGS CASCaDE (Computational 
Assessments Scenarios of Change for the Delta Ecosystems) project.  The downscaling 
procedure of transforming the coarse resolution information from the A2 GFDL model 
(2.5° x 2.5°) to a finer resolution (1/8° x 1/8°) followed the method of constructed 
analogues described in Hidalgo et al., (2008).  
 
For the Tuolumne area, the 1/8° cell closest to the Dana Meadows station was selected 
for the climate data. Because this cell had a mean elevation different than the Dana 
Meadows elevation, we bias-corrected the projected climate dataset for differences in 
temperature and precipitation. Monthly biases in air temperature and precipitation 
were estimated based on the climate model output averaged over the 1971-2000 
historic period and PRISM averages for the same period. Air temperature was corrected 
using these monthly biases, and precipitation was scaled by a factor of 1.2 (the mean 
1971-2000 bias) for the entire 2001-2100 period. The total annual precipitation and 
annual average temperature for the climate change scenario are shown in Figure 5.2. 
While there was no quantified trend in precipitation, the last two decades were drier 
than the average. There is a significant increase in air temperature of about 3.5-3.9 °C by 
the end of the century (Figure 5.2).  

http://tenaya.ucsd.edu/wawona-m/downscaled
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Figure 5.2 a) Mean annual temperatures and b) total precipitation for the climate 
simulation period 2001-2100.   

 
Once the climate input data were established, we set up DHSVM to simulate 
streamflows for the 2001-2100 period assuming four different vegetation scenarios: 1) 
current forest, spatially distributed on the extent shown in Figure 5.1, as the base case, 
2) entire basin covered by forest, 3) entire basin is barren, and 4) current forest extent, 
but fractional coverage is reduced, presumably as a result of thinning or controlled fire. 
The four vegetation scenarios are summarized in Table 5.2. These scenarios were 
considered to explore the basin sensitivity to climate warming as a function of forest 
cover extent and density to address the question of whether a more forested basin is 
more or less sensitive than a less forested basin to changes in climate. For all of these 
runs, we used the DHSVM setup for the calibration period, in which we only changed 
the extent and fractional cover, keeping the remaining forest parameters constant, with 
climate forcing for the years 2001-2100.  
 
Table 5.2 DHSVM vegetation scenarios for the A2 GFDL climate data. 

Model scenario  Scenario assumptions 

current forest 
distributed forest ( on 39% of the basin surface, extent shown in Figure 5.1), 80% 
fractional coverage over each forested pixel 

all forest uniform forest cover, 80% fractional coverage over each pixel 

barren barren 

thinned  
distributed forest (on 39% of the basin surface, extent shown in Figure 5.1), 40% 
fractional coverage over each forested pixel 
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5.3.3. Methods to analyze changes in streamflow patterns  

 
Changes in streamflow patterns were evaluated using the center of mass, COM (as in 
Stewart et al. 2005), the date on which fractional cumulative discharge reaches 50%, 
and monthly fractional flows (MFF), the ratio of flow volume in each month to the total 
flow volume of the water year. To test for existence of trends in the COM and MFF 
timeseries we applied the Mann-Kendall test (Mann, 1945, Kendall, 1975, Helsel and 
Hirsch, 2002), a robust non-parametric test for trend, in which the null hypothesis 
assumed that COM and MFF are independent random variables (no trend). Prior to 
assigning the trend, we tested if the presence of autocorrelation in the timeseries was 
affecting the significance of the trend with algorithms provided in Yue et al., 2002. 
Because the Mann-Kendall test detects only the existence and direction of a trend, it 
was used in conjunction with Theil-Sen or Sen’s slope estimator (Theil 1950a-c, Sen, 
1968), which quantified the magnitude of the linear trend (applied in Lettenmaier et al., 
1994; Yue and Hashino, 2003). All trends are reported for 5% significance level.  
 
To test whether the COM timeseries for the four vegetation scenarios are stochastically 
different (do not follow the same distribution), we used the non-parametric Mann 
Whitney U test (Mann and Whitney 1947), also known as the Wilcoxon rank-sum test, 
for equality of the medians. The test has no underlying distribution of the data, and the 
null hypothesis assumes that any two COM series are drawn from the same distribution. 
The purpose of this test is to asses the uncertainty in the projected COM series for the 
four vegetation scenarios and to assign statistical confidence if the difference between 
scenarios is significant.   
 
The changes in summer flows are important for meadow ecology and for estimating the 
water volumes that are to be distributed downstream for water supply. We used the 
Mann-Kendall trend tests to determine if trends exist in the lowest 7-day average low 
flows during the July-August period. Because the climate data are non-stationary, the 
typical probability distribution fitting technique to examine changes in frequency (e.g. 
Schnorbus and Alila, 2004, Kuràs et al., 2012) is not suitable, as the probability of 
occurrence of extreme events may change in time (Wigley, 2009). Instead, we used the 
simple discharge threshold technique (e.g. Tague et al., 2008) to illustrate the 
differences in frequency of occurrence of low flows between the model scenarios, in 
which for each scenario, a relative frequency is calculated as the number of years in 
which the lowest 7-day average low flow is less than a threshold value, divided by the 
total number of years. 
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5.4. Results  

 

5.4.1. Model evaluation for the historic period, 2003-2009  

 
DHSVM performance for the 2003-2009 period was evaluated through comparing the 
modeled and observed hydrographs (Figure 5.3a, b) and SWE at the two snow pillow 
locations in the basin, Dana Meadows and Tuolumne Meadows for the available record 
(Figure 5.3c,d). The Nash-Sutcliffe efficiency, NSE (Nash and Sutcliffe, 1970) and sum of 
the error squared (R2) model evaluation criteria for the hydrograph (daily timestep) 
were both equal to 0.87, indicating a “very good” performance of the model to capture 
patterns of the observed hydrograph (where the “very good” category, as classified by 
Moriasi et al., 2007, was assigned a range of NSE between 0.75 and 1). Other 
classifications of NSE are more restrictive, such as that of James and Burges (1982) who 
suggest a NSE in excess of 0.95 as a very good performance. Errors are due to both 
model uncertainty and rating curve extrapolation at high flows. The model was able to 
represent the snow accumulation and melt for a range of climate conditions at the two 
snow pillow sites, Dana Meadows and Tuolumne Meadows as shown in Figure 5.3c,d. 
The missing SWE observations in Figure 5.3c,d were due to instrument failure.  
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Figure 5.3 DHSVM calibration: a) simulated and observed daily hydrographs, b) 
hydrograph residuals, c) and d) simulated and observed SWE at Dana Meadows and 
Tuolumne Meadows sites, respectively. 

Special consideration was given to representing the hydrograph recession limbs and the 

late summer low flows, as the simulated DHSVM fluxes in the meadow area were used 

as boundary conditions for a groundwater model in a study designed to evaluate the 

effects of dry soil conditions on the Tuolumne Meadow plant communities (Lowry et al., 

2010). Because summer precipitation is low (only 3% of the annual total during July-

August period for 2003-2009), most of the summer flow results from high-elevation 

melt. Figure 5.3c,d shows that snow is disappearing at Dana Meadows (2966 m) around 

mid-June and at Tuolumne Meadows (2600 m) at the end of May, with an average 

difference of about two weeks. This difference is consistent with observations by Rice et 

al., (2011) that for elevations between 1800 and 3900m, for each successively higher 

300m elevation band, snow has disappeared 2-3 weeks later than the 300-m band 
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below it. At higher elevations snow persists until the end of August or September, or 

remains present during the entire year (Lundquist and Loheide, 2011; Rice et al., 2011). 

 
 

5.4.2. Simulated changes in streamflow timing and magnitude as a function of 
vegetation cover in a warming climate  

 

5.4.2.1. Temperature sensitivity tests  

 
To explore the differences in hydrograph characteristics and SWE, as well as the changes 
in the energy balance components at forested and barren sites when temperature 
increases, we analyzed the model output using the sensitivity tests described in Section 
3.2. These tests were run for the calibration period 2003-2009, from which we extracted 
the October 1st 2003 – October 1st 2004 period (water year 2004) to illustrate the 
results. The 2003-2009 period included a range of conditions (Figure 5.3). While water 
year 2004 was an average year, it was found representative for the types of changes 
seen in both wet and dry years. In the first set of tests (scenarios 1-4, Table 5.1), in both 
temperature cases, historic T and historic T + 3 °C, the forest COM occurred earlier than 
the barren COM, with decreased peak hydrographs (Figure 5.4a,c). In the case of the 
higher temperature this difference was larger, increasing from 9 to 14 days. Winter 
temperatures exceeded 0 °C more frequently in the increased temperature scenario 
(Figure 5.4f, region C), generating snowmelt runoff (Figure 5.4a, region A). These 
midwinter peaks are more pronounced in the case of the forest (Figure 5.4a, region A) 
than in the case of barren (Figure 5.4c region B,), due to increases in net longwave 
radiation, as further discussed in this Section. Midwinter melt was not apparent in any 
of the historic T tests (Figure 5.4a,c).  
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Figure 5.4 a) Simulated hydrographs assuming historic and increased air temperatures 
for uniform forest scenario and for b) barren scenario; c) and d) SWE levels for the same 
scenarios at Dana Meadows, respectively; e) forest cumulative actual 
evapotranspiration; f) historic and increased air temperature daily timeseries. Vertical 
lines identify COM for each hydrograph. All plots are shown for water year 2004. 
Horizontal (a, c) and vertical (b, d) continuous lines are reference thresholds. 

The differences in streamflow timing depend on the snow accumulation and melt 
dynamics in the barren areas and under the forest. The simulated SWE at the flat Dana 
Meadows location (Figure 5.4b, d) show that accumulation is higher when trees are not 
present due to the lack of canopy interception. While snow accumulation on bare 
ground is similar in both temperature scenarios, during the melt period the higher air 
temperature melts the snow earlier (Figure 5.4d), leading to earlier streamflow timing 
(Figure 5.4c). Higher air temperatures produced more winter melt than in the forest 
case (A in Figure 5.4a) than in the barren case (B in Figure 5.4c). The snow accumulation 
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under the forest was therefore lower under warmer temperatures (Figure 5.4b) due to 
winter melt events (Figure 5.4a and 5.4b). This thinner forest snowpack melted earlier 
than the barren snowpack in the increased temperature scenario (vertical line in Figure 
5.4b and 5.4d). Forest evapotranspiration increased only 3% with temperature (Figure 
5.4e); therefore the changes in the forest hydrographs were mostly driven by the 
changes in snowmelt due to temperature increases.  
 

 
Figure 5.5 Monthly simulated energy balance components for the snowpack at Dana 
Meadows using historic temperatures for a) forested, and for b) barren; monthly energy 
balance components using a 3°C increase in temperature for c) forest, and for d) barren; 
monthly differences in energy balance components between the two temperature 
scenarios for e) forest, and for f) barren. 

Increases in temperature increase the energy balance components both in the barren 
areas and under the forest. Figure 5.5a-d shows the monthly energy balance 
components of the snowpack (estimated by summing the three-hourly timeseries 
generated by the model described in Appendix 5A) for water year 2004 at Dana 
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Meadows for the two vegetation scenarios. The absolute magnitudes of net SW and net 
LW radiation were consistently larger for the barren scenario (Figure 5.5 b,d) than the 
forest scenario (Figure 5.5 a,c), but the net increases in the combined fluxes were larger 
for the forest case (Figure 5.5e) than the barren case (Figure 5.5f) for all months except 
May, June, and July. Time-series of turbulent fluxes, latent and sensible heat, were 
higher in the barren than in the forest case, but variations around zero caused monthly 
values to be small for all scenarios. For the forest case, the net longwave radiation 
increases most, followed by increases in latent heat flux and sensible heat flux, and in 
March and April, increases in net shortwave radiation (Figure 5.5e). The model 
simulated changes in shortwave radiation (Figure 5.5e, f) because the albedo algorithm 
is based on the simulated snow surface temperature (Eq. A6, A7, Appendix 5A), which 
was higher in the increased temperature scenario.  
 
These changes are most evident in the spring and summer, although the smaller winter 
increases were enough to cause December and January melting in the +3°C forest 
scenario when no melt occurred in those months during the base case run (Figure 5.4 
and Figure 5.6). Increases in energy balance components were larger in the forest case 
than the barren case in March, due primarily to greater increases in net longwave 
radiation (Figure 5.5e,f). Although the monthly melt rates were still higher in the barren 
case during March and April for both the base-case and warmer scenarios (Figure 5.6), 
the combination of interception (a thinner initial snowpack, Figure 5.4b), midwinter 
melt (Figure 5.4a), and greater increases in melt rates in Dec, Jan, and March (Figure 
5.6b and 5.6c) led to the snowpack under the forest melting earlier than the snowpack 
on the bare ground in the +3°C scenario.  
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Figure 5.6 a) Monthly melt rates at Dana Meadows using historic and increased 
temperature for forest and for barren scenarios, b) difference in monthly melt rates 
using historic and increased temperature for forest, c) difference in monthly melt rates 
using historic and increased temperature for barren surface. 

5.4.2.2. Climate change scenario 

 
The ΔT sensitivity tests helped identify the changes in the hydrograph and energy 
balance components when temperature alone is increasing. By using a long-term (2001-
2100) climate change scenario in which both temperature and precipitation change in 
concert we tested if the patterns were robust in a projected future scenario for the 
Tuolumne region. All DHSVM climate vegetation runs assumed the same future scenario 
derived from the GFDL global climate model A2 warming scenario, as previously 
described. The COM corresponding to the current vegetation scenario advanced by 
approximately 40 days, with an estimated Sen’s slope of about 0.4 days·yr-1 (Figure 5.7a, 
b). The trends of earlier, simulated center of mass, COM, were found to be statistically 
significant for all vegetation scenarios, using the Mann-Kendall tests at the 95% 
confidence level. COM advances exceeded one month in all vegetation scenarios (Figure 
5.7a). Figure 5.7b shows Sen’s slopes magnitudes representing the rates of COM 
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displacement, which correspond from highest to lowest to all forest, current forest, 
thinned and barren, respectively.  
 
Wilcoxon rank-sum tests on the COM vegetation timeseries indicated pairwise 
differences in the medians between the current forest, all forest and barren scenarios, 
respectively, showing that these COM series are stochastically different at a 95% 
confidence level (Figure 5.7c,d). However, no significant difference was found between 
the current forest and the thinned forest, and between the barren and the thinned 
forest scenarios, respectively (Figure 5.7c,d). 
 

 
Figure 5.7  a) Center of mass, COM, for the four vegetation scenarios, b) Sen’s slope of 
COM change, c) boxplots of the COM series, and d) diagram showing results from the 
Wilcoxon rank-sum test for the medians between combinations of any two COM series 
of the four vegetation scenarios: 0 indicates that the null hypothesis that the two COM 
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series are drawn from the same distribution cannot be rejected at the 95% confidence 
level, and 1 indicates a rejection of the null hypothesis. 

 
Vegetation cover affects not only timing, but also the streamflow magnitude. This is 
illustrated in Figure 5.8a-d that shows the 20-year average monthly hydrographs during 
the 2001-2100 simulation period for the four vegetation scenarios. In the all forest 
scenario (Figure 5.8b), the hydrograph peak was smaller than in both the current 
vegetation (Figure 5.8a) and all barren (Figure 5.8c) scenarios, as there were increased 
losses to interception, sublimation and evapotranspiration. This effect is consistent with 
observations from both paired watershed and from modeling studies (e.g. Jones and 
Post, 2004; Schnorbus and Alila, 2004). Modeled differences in peak flows in DHSVM are 
mostly explained by the interception effects (e. g. Whitaker et al., 2002).  
 
The largest monthly flows of the year (May-July) were on average about 20% smaller in 
the all forest scenario (Figure 5.8b) compared with the base case current vegetation 
(Figure 5.8a) scenario, while barren (Figure 5.8c) and thinned (Figure 5.8d) forest flows 
were both on average higher (19% and 13%, respectively) than the base case vegetation 
scenario (Figure 5.8a), over all time periods simulated. However, early spring (March-
April) flows were consistently the largest in the all forest (Figure 5.8b) scenario, resulting 
in earlier COM timing. Late-winter and early spring flows (January-March) were higher 
by 30%-40% in the all forest (Figure 5.8b) scenario and lower by about 24% over the 
same time period in the all barren (Figure 5.8c) scenario compared with the current 
vegetation (Figure 5.8a) scenario. Peak summer flows decreased with increasing 
temperature over the 100-year simulation period by about 22%, 27%, 16% and 18% for 
the current forest, all forest, barren and thinned forest scenarios, respectively. These 
larger differences are due to the lower precipitation during the last 20 years of the 
series (Figure 5.2b). 
 



 108 

 
Figure 5.8. a) Twenty-year average monthly hydrographs at the beginning (dotted line) 
and end (continuous line) of the simulation period for current forest, b) all forest, c) 
barren and d) thinned forest scenarios, respectively; e) Sen’s slope for monthly 
fractional flows for the entire 2001-2100 simulation period. 

Changes in the hydrograph were determined by the trends in monthly fractional flows, 
MFF, shown in Figure 5.8e along with the 95% confidence intervals for the slope. Trends 
are significant if the 95% confidence intervals do not intersect the zero line. The 
steepest trends for all vegetation scenarios were in May (increases in MFF) and July 
(decreases in MFF), while during the fall months (October, November and December) 
there were no significant trends.   The winter to spring MFF trends (January through 
April) are significantly steeper in the all forest scenario than in the all barren scenario 
(Figure 5.8e). This effect is also illustrated by the ΔT sensitivity runs (Figure 5.4a, b), 
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where COM advanced at a higher rate in the all forest scenario determining the steeper 
trends in winter monthly fractional flows shown in Figure 5.8e. Thus, when the forest is 
present, there is an increased tendency for midwinter melt than under barren 
conditions. This difference is driven by the trends in the energy balance components. 
For example, trend tests at the flat Dana Meadows location for forest and barren, the 
two extreme cases, showed that the temperature dependent components such as the 
monthly latent heat, sensible heat and net radiation (for functional forms see Appendix 
5A) have positive trends for under the forest, compared to no trends or negative trends 
in the barren case during the January-April period. 
 
The earlier snowmelt led to lower summer flows in all vegetation scenarios, with the 
most significant change occurring in July (Figure 5.8a-d). Thus, the Mann-Kendall tests 
showed significant declining trends in the 7-day average lowest flows for the July-August 
period. Barren conditions were likely to provide the highest summer flows, followed by 
thinned, current forest and all forest conditions (Figure 5.9a, b). The all forest scenario 
had the highest frequency of 7-day low flows below 2.0 m3s-1, followed by current 
forest, thinned and barren (Figure 5.9c). The fixed threshold value used to calculate the 
relative frequencies was 2.0 m3s-1, the average summer (July-August) lowest flows in the 
current forest scenario for the entire climate model period (Figure 5.9a, b). Compared to 
this value, the same average lowest flows for barren and thinned are 23% and 9% 
higher, while for all forest is 27% lower. 
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Figure 5.9 a) Lowest 7-day average low flow during July-August each year for the four 
vegetation scenarios, b) duration curves for the July-August 7-day average lowest flows, 
and c) relative frequencies, as the number of years in each the lowest 7-day average was 
below a threshold value (2 m3s-1) divided by the total number of years. 

5.5. Discussion 

 
Hydrologic simulations in the upper Tuolumne basin in the Sierra Nevada Mountains 
showed that forest cover plays an important role in the rate of streamflow advances to 
earlier dates in response to climate warming. The idealized modeling experiments 
designed to address the sensitivity of the basin response to land cover (Table 5.2) have 
shown that a less vegetated basin maintains a thicker and colder snowpack that melts 
later in the season. This thicker snowpack was able to delay the rate of COM (center of 
mass) advancing, and to provide higher peak and late summer flows. Assuming the 
current vegetation cover, the COM was projected to occur earlier by about 40 days by 
the end of the century under the A2 warming scenario from the GFDL CM2.1 global 
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climate model. The most important changes in streamflow patterns determining the 
COM displacements were shifts to earlier snowmelt due to increased temperature, with 
higher winter flows and reduced peak and late summer flows. Similar hydrologic 
changes in response to climate warming were found at a lower elevation in the 
Tuolumne basin based on hydrologic simulations encompassing a much larger drainage 
area (3970 km2), stretching over 1600 m elevation range (Maurer, 2007).  
 
The basin sensitivity to increasing temperature was tested under different vegetation 
scenarios. Under barren conditions the modeled accumulation was higher by about 10-
30 %, than under the forest, mostly due to the lack of canopy interception. This range is 
consistent with field measurements in lodgepole pine (Pinus contorta) stands that have 
shown that snow accumulation in the barren areas can be 10-40% higher than under the 
forest and as high as 80-85% in some locations (summary from Table 2 in Murray and 
Buttle, 2003). With increasing temperature, the modeled difference in accumulation 
tended to widen with temperature as a result of increasing midwinter melt, and it was 
more pronounced at lower elevations (Figure 5.A1b,d,f,h).  
 
Modeled melt rates were higher in the barren areas than under the forest during the 
spring-summer melting period (Figure 5.6), but the thinner snowpack under the trees 
melted earlier, especially at lower elevations (Figure 5.4b,d; Figure 5.A1b,d,f,h). Snow 
disappearing earlier under the forest or in the barren areas may depend on the 
snowpack thickness (Strasser et al., 2011). At the flat Dana Meadows and Tuolumne 
Meadows locations modeled snow disappeared earlier under forested conditions during 
average years (e.g. 2004, Figure 5.4b,d; Figure 5.A1b,d,f,h), and also during dry and wet 
years of the 2003-2009 period (Figures not shown). This under the forest melting 
pattern was robust despite uncertain forest parameterization, as shown in Appendix 5A, 
Figure 5.A1b,d,f,h. Midwinter melt was higher when the snowpack under the forest was 
thinner. Figure 5.6b,c show that in contrast to the warm period (May-July), during the 
cold period (October-January) under the influence of higher winter temperatures, melt 
rates have a more significant increase under the forest. Midwinter melt was most 
evident during December and January, when for historic temperatures there was little 
to no melt in both forested and barren cases, but when temperatures were increased 
above 0°C values for several days, melt occurred under the forest (Figure 5.6a).  
 
Slope, aspect and elevation all play an important role in the snow accumulation and 
melt patterns. For example, on the south facing slopes the snow melted faster in the 
barren areas than under the forest, while on the north facing slopes the snow melted 
faster under the forest in an eastern Canadian Rocky Mountain basin (Ellis et al., 2011). 
The upper Tuolumne basin has both north and south facing slopes, but the north facing 
slopes are predominant. Most of the currently non-forested regions are north-facing, 
topographically shaded (Figure 5.1). Thus, the overall effect of the increase in the net 
longwave radiation was to melt the snow under the forest faster. The increased 
midwinter melt under warming temperatures enhances this faster melting under the 
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forest. In the barren areas, the thicker snowpack lasted longer, providing higher and 
later peak spring flows and higher late summer flows.  
 
Field studies also reported that melt rates during the spring were generally higher in the 
barren regions or in clearcut areas than under the forest (Murray and Buttle, 2003, 
Boon, 2009, Burles and Boon 2011, Winkler, 2011), but the date of snow disappearance 
was found to vary as a function of location, aspect, snowpack thickness and canopy 
density. For example, snow cover loss occurred earlier by several days in a damaged 
forest or a clear cut than in a mature forest in the interior of British Columbia, Canada 
(Boon, 2009; Burles and Boon 2011; Winkler, 2011), while in central Ontario, for the 
same slope aspect, the snow disappeared simultaneously in the barren areas and under 
the forest (Murray and Buttle, 2003). These sites were located in a colder climate than 
the Tuolumne site, with lower chances of midwinter melt events.  
 
Although there is significant spatial variability, as discussed above, reported field 
measurements in the Sierra Nevada Mountains indicate that snow in this region 
generally disappeared earlier or at about the same time under the forest than in the 
barren areas (Kittredge 1953, Lundquist and Lott, 2008; Bales et al., 2011a, Kerkez et al., 
2012). Early historical observations from the 1930s and 1940s in the Central Sierra 
showed that snow disappeared earlier in regions with lower percentages of canopy 
cover (figure shown on page 54, Kittredge 1953). Spring (after March 9) melt rates were 
higher in the open than under the forest, but winter (before March 9) melt rates were 
higher under the forest for several years and most forest types (Table 28, Kittredge 
1953). DHSVM SWE simulations in the Tuolumne area showed that at the two snow 
pillow locations the snow cover loss occurred earlier under the forest than in the barren 
areas (Figure 5.4b,d, Figure 5.A1b,d,f,h). This effect is more pronounced with increasing 
temperatures and midwinter melt events. Recent areal imagery taken in mid-June of 
2011 near the Tuolumne area (Lat:  38°48’56’’, Long: 120°06’35’’) exemplifies these 
findings (Figure 5.A2). This image shows the snow disappearing first around the trunks 
of the trees, where melt rates have been found to be higher (Pomeroy et al., 2009; 
Veatch et al., 2009). Additional observational evidence of where and analysis of why 
snow lasts longer under forest cover versus in the barren areas remains a topic for 
future investigation. 
 
The dynamics of snowmelt change with increasing temperature in both barren and 
forested scenarios. Field and modeling studies have found that incoming shortwave 
radiation and turbulent fluxes were higher in the barren regions than under the forest 
(Hardy et al., 1997; Link and Marks, 1999a 1999b; Sicart et al., 2004; Boon, 2009). 
Ablation in the barren areas is controlled by the shortwave radiation, whereas net 
longwave radiation has a smaller contribution to melting (Boon, 2009). In contrast, 
under the forest, longwave radiation has a higher contribution to melting (Boon, 2009; 
Burles and Boon, 2011). In the Tuolumne area, model temperature sensitivity tests 
showed that increases in temperature determined increases in both the net longwave 
radiation and turbulent fluxes under the forest that are higher than the increases in the 
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barren areas. These changes triggered higher melt rates under the forest, causing even 
earlier snow disappearance dates and exacerbating the effects of climate change in 
terms of streamflow timing advancing towards earlier dates. Temperature increases had 
a modest effect (3%) on simulated forest evapotranspiration. This effect is similar to 
findings of Safeeq and Fares (2011) who reported small increases of modeled DHSVM 
evapotranspiration with temperature alone (0.5 and 2% for a temperature increase of 
1.1 and 6.4 °C).  
 
Uncertainties in the upper Tuolumne simulations fall into three general categories, 
related to: i) the trend of future carbon emissions, ii) the climate model output and 
downscaling procedures, and iii) the hydrologic model. Current observations suggest 
that the A2 emissions scenario may be a conservative estimate of temperature change 
given current global trends in CO2, and that the large-scale temperature increases may 
be even larger than those considered in this study. There is recognized uncertainty 
about the GCMs’ ability to predict changes in large scale weather patterns, particularly 
as they relate to precipitation (e.g., Dai 2006, Maraun et al. 2010). This uncertainty from 
the GCMs may be larger than the uncertainty from the hydrologic models (Teng et al., 
2012), which primarily stems from the hydrologic model structure and model 
parameterization. In the Tuolumne area, the model tests showed that even when 
considering a relatively large uncertainty in forest parameterization the model 
simulated snow disappearing faster under the forest than in the barren regions, with 
this effect enhanced at higher temperatures.  
 
Management decisions in snowmelt-dominated areas like Tuolumne Meadows, which 
are dependent on streamflow timing and magnitude for ecological purposes, can expect 
differing sensitivities to vegetation cover in a warming climate. The upper Tuolumne 
area is in Yosemite National Park, where timber is not harvested. However, results from 
the virtual experiments evaluated in this study can be extrapolated to other regional 
basins where forest management actions are considered for summer flow 
augmentation. For example, Bales et al., (2011b) investigated forest management 
actions that can increase summer water yield on the west-side of the Sierra Nevada at 
1500-3600m elevation, and suggested that canopy reduction through forest thinning 
has the potential to improve snow retention and increase streamflows. Preliminary 
results indicated that a reduction in forest cover by about 40% could increase the water 
yield by about 9% (Bales et al., 2011b). These estimations are in agreement with the 
results from this study and the earlier findings of Kittredge (1953). Model simulations 
performed in the upper Tuolumne for the thinned forest scenario, in which the canopy 
cover is reduced to 50% of the current levels showed similar ranges: increases in the 
peak and late summer flows by about 13% and 9%, respectively. In addition to summer 
flow augmentation, forest thinning may also reduce fire risks, which are becoming 
higher with increasing temperatures (Graham et al., 2004). 
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5.6. Summary and Conclusions  

 
In the Tuolumne and Merced River basins of the California Sierra Nevada mountain 
range, 85-90% of annual snowmelt has been estimated to come from snowpack above 
2100 m (Rice, et al. 2011). The amount of snowmelt water in the streams and the 
streamflow timing are important for the montane ecosystems and for downstream 
water supply. Maximizing snowpack retention above 2000m has the potential to 
decrease the rate of streamflow timing advancing to earlier dates and to increase 
summer flows. In this study we investigated, through hydrologic model simulations, the 
role of the vegetation cover in the rate of advancing of snowmelt timing in the upper 
Tuolumne River basin. We employed four different vegetation scenarios: current forest, 
forest on the entire basin, barren and thinned forest for the same climate warming 
medium-high emissions scenario from the GFDL 2.1 GCM. We also used sensitivity tests 
to evaluate changes in modeled energy balance components as a result of increasing 
temperatures and to assess the uncertainty in model forest parameterization. Analysis 
of the model simulations results indicated that:  
 

 In the current forest cover scenario, warming temperatures caused earlier 

snowmelt timing, with increased midwinter melt and decreased peak and late 

summer flows. The center of mass, COM, the date on which fractional 

cumulative discharge reaches 50%, advanced by 40 days earlier in the season. 

Peak summer flows decreased with increasing temperatures by about 22%. 

 The streamflow timing advanced towards earlier dates by over a month in all 

vegetation scenarios. The COM date at the beginning of the simulation period 

was dependent on the vegetation type, ranking from earliest to latest: all forest, 

current forest, thinned and barren (Figure 5.7a). The rate of advance varied 

between scenarios (Figure 5.7b) Relative to the starting date for each case, the 

COM advanced by 46, 37 and 39 days, respectively in the all forest, barren and 

thinned forest scenarios.  

 The presence of forest on the entire basin area enhanced the effects of climate 

warming in the sense of advancing of streamflow timing. The center of mass 

occurred earlier in the season by about 12 days on average, and the rate of its 

advancing was higher by about 0.06 days·year-1 than in the case of current forest 

scenario over the 100-year period.Midwinter melt was increased. On average 

peak and late summer flows were decreased by about 20% and 27%, 

respectively, compared to the corresponding flows for the current forest 

scenario over the 100-year period. Peak summer flows decreased with 

temperature in time by about 27%.  
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 In contrast, a less vegetated basin maintains a thicker snowpack that disappears 

later in the season, increasing peak and late summer flows, and delaying 

streamflow timing. Compared with the current forest, in the barren and the 

thinned forest scenarios (in which canopy cover was reduced to 40%, half of the 

original value), COM occurred later by about 7-, and 5-days on average per 100 

years, respectively. The rates of COM advancing were lower and the peak and 

late summer flows were higher by about 19% and 23%, respectively in the case 

of barren, and 13% and 9%, respectively in the case of thinned forest compared 

with the current vegetation scenario. Peak summer flows decreased in time on 

average by 16% and 18% respectively for the barren and thinned forest scenarios 

during the 100-year period.  

 Modeled accumulation was lower under the forest than in the barren areas due 

to interception and midwinter melt. Melt rates were higher in the barren regions 

than under the forest, but the thinner snowpack under the forest disappeared 

earlier.  Both melt rates in the barren areas and under the forest increase with 

increasing temperatures.  

 Temperature controlled energy balance components (longwave radiation and 

turbulent fluxes) increased more under the forest than in the barren regions in a 

warming climate. These changes increase melt rates and midwinter melt. 

 Longwave radiation has a higher contribution to melting in early spring when 

shortwave radiation is lower. In a warmer climate the forests melted the snow 

faster due to increases in net longwave radiation that are more significant at 

temperatures higher than 0°C.  

Understanding forest hydrologic processes in the context of climate change is important 
for identifying management actions that have the potential to mitigate climate change 
effects such as the advancing of streamflow timing and diminished summer flows. The 
results presented here showed that reducing canopy cover increased snow retention, 
delayed streamflow timing and increased peak and late summer flows in the upper 
Tuolumne River basin located in the Sierra Nevada Mountains. Studies in other regions 
of the world are needed to provide additional insights about the role of vegetation in 
other climatic conditions and vegetation cover. Further work may also include sensitivity 
tests of precipitation to understand better the consequences of changes in both 
precipitation and temperature on streamflow patterns.  
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Appendix 5A 

 
5A-1. Description of snowpack energy balance 
 

The snow pack energy balance equation and its components are described below 
following Wigmosta et al., 1994. The snowpack energy balance equation implemented 
in DHSVM is based on the formulation:  

mplsns
s

s QQQQR
dt

dT
SWEc      (A1) 

where cs is the ice specific heat, SWE is the snowpack water equivalent, Ts is the 
temperature of the snow surface, t is time, Rns is the net radiation, Qs is the sensible 
heat, Ql is the gained latent heat from condensation or lost to sublimation, Qp is the 
advected heat to the snowpack from rainfall, and Qm is the internal latent heat gained 
from refreezing of liquid water for Ts below 0°C or lost by melting for Ts above 0°C. 
Equation A1 is solved though a finite difference scheme. If Ts is equal to 0°C during the 
computational timestep, Qm is the melt energy calculate d as:  

t

ssplsnsm TSWEcQQQRQ      (A2) 
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where Ts
t is the snowpack temperature during the timestep t.  

Net radiation Rns is composed of the net shortwave radiation Rss and the net longwave 
radiation Rls:  

lsssns RRR   .      (A3) 

The amount of shortwave radiation Rss at the snow surface is estimated based on the 
total amount of incident solar radiation Rs and the filtering effects from the canopy as: 

    FFRR ossss  11  ,     (A4) 

where αs is the snow reflection coefficient (albedo), F is the forest fractional cover, and 
τo is the fraction of Rs transmitted by the overstory canopy, calculated based on a form 
of Beer’s law as: 

)exp( oo kLAI ,      (A5) 

where k is canopy attenuation coefficient and LAIo is the overstory leaf area index.  
In the absence of site specific albedo data, the curves modeling albedo in the Tuolumne 
area were parameterized identically for both barren and forested areas. Separate decay 
functions were used for below and above freezing conditions, driven by the simulated 
surface temperature Tss, with albedo decreasing more rapidly during melting, based on 
the equations proposed by Laramie and Schaake (1972):  
 

 Forest Subfreezing: 
58.0)/(

0 92.0* sd

s   ,  minimum 0.7, Tss < 0°C (A6) 

 Forest Melting: 
46.0)/(

0 87.0* sd

s   , minimum 0.5, Tss > 0°C (A7) 

 
where α0 is set to 0.85, the albedo of fresh snow, d is the number of days since the last 
snowfall and, s is the number of time steps per day. 
The net longwave radiation Rls is estimated as: 
 

   sdols LFLFLR  1      (A8) 

 
in which Ld is incoming longwave radiation, L0 is the upward overstory longwave 
radiation flux, and Ls is the upward longwave radiation from the snow surface. Both L0 
and Ls are given by similar expressions of the form: 
 

 40 273 TLo   and  4273 ss TL      (A9) 

 
in which T0 is the overstory temperature and σ is the Stefan-Boltzman constant.  
The sensible heat flux Qs is estimated as: 
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where ρ is the density of air, cp is the specific heat of air, Ta is the air temperature and ras 
is the surface resistance corrected for atmospheric stability and vegetation effects.  
The latent heat term Qe in the energy balance equation is given by: 
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in which λi either represents the latent heat of vaporization during melting conditions, 
or the latent heat of fusion during freezing conditions, Pa is the atmospheric pressure, 
and e and es are the vapor pressures at Ta and Ts, respectively. 
Finally, the internal latent heat gained from melting or refreezing for snow surface 
temperatures different than 0°C is calculated as: 
 

MQ wim  ,       (A12) 

 
where M is the depth of snowmelt (negative flux), or the volume of refrozen liquid 
water (positive flux).  
DHSVM code, additional documentation and pre-and post processing tools are available 
to download at: 
http://www.hydro.washington.edu/Lettenmaier/Models/DHSVM/index.shtml 
 
5A-2. DHSVM model setup and sensitivity tests 
 
Radiation attenuation by the canopy was sensitive to representing the timing of 
streamflow. Parameterizations of the albedo curves, also part of the shortwave 
radiation model (Eq. A6, A7) were found in other studies to influence the modeled SWE 
under the forest (Thyer, et al., 2004, Jost et al., 2009, Bewley et al., 2010). However, 
albedo observations under the forest canopy were not available in the Tuolumne basin, 
therefore model default albedo functions were used in model simulations (Eq. A6, A7). 
The remaining final DHSVM calibration parameters are listed in Table 1.A1.  

http://www.hydro.washington.edu/Lettenmaier/Models/DHSVM/index.shtml
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Table 5.A1. DHSVM parameters used for the upper Tuolumne area, Sierra Nevada. 

Forest parameters Value References 

Overstory vegetation height (m) 13.6 R1 
Understory vegetation height (m) 0.5 R1 
Overstory fractional coverage (%) 80 R1 
Understory fractional coverage (%) 80 R1 
Overstory leaf area index, LAI (-) 5.0 R1 
Understory leaf area index, LAI (-) 3.0 R1 
Radiation attenuation 0.3 R2 
Maximum snow interception capacity (m SWE) 0.02 R2 
Snow interception efficiency (-) 0.6  R3 
Mass release drip ratio  0.4 R3 
Minimum melt needed for mass release (m SWE) 0.002 R3 
Snow mass release/drip ratio (-) 0.4 R3 
LAI multiplier for rain (m) 0.0001 R4 
LAI multiplier for snow (m) 0.005 R5 
Aerodynamic attenuation coefficient 2.0 R4 
Maximum stomatal resistance (sm-1) overstory 5000 R6 
Maximum stomatal resistance (sm-1) understory 3000 R6 
Minimum stomatal resistance (sm-1) overstory 650 R6 
Minimum stomatal resistance (sm-1) understory 200 R6 
Vapor pressure deficit causing stomatal closure ovrestory 
(Pa) 

4000 R2 
Vapor pressure deficit causing stomatal closure understory 
(Pa) 

4000 R2 
Moisture threshold below which transpiration is restricted 
overstory  (-) 

0.33 R4 
Moisture threshold below which transpiration is restricted 
understory (-) 

0.13 R4 
Albedo  0.2 R6 
Overstory root fractions in soil layers 1,2,and 3  0.2; 0.4; 

0.4; 
R6 

Understory root fractions in soil layers 1,2,and 3 0.4; 0.6; 
0.0; 

R6 
Soil parameters 

Sand 
Lateral saturated hydraulic conductivity Klat (m·s-1), porosity 
(-) 

8.2e-5; 0.43 R7 

Loamy Sand 
Lateral saturated hydraulic conductivity Klat (m·s-1), porosity 
(-) 

4.05e-5; 
0.42 

R7 

Sandy Loam, 
Lateral saturated hydraulic conductivity Klat (m·s-1), porosity 
(-) 

1.3e-5; 0.4 R7 

Bedrock 
Lateral saturated hydraulic conductivity Klat (m·s-1), porosity 
(-) 

1.0e-8; 0.4 R7 

Other parameters 
 

Snow roughness (m) 0.01 R8 
Minimum air temperature for snow (°C) 3.0 R9 
Minimum air temperature for rain(°C) 0.0 R9 
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References listed are: R1: NPS vegetation survey data; R2: Thyer et al., 2004; R3: Storck, 
2000; R4: Waichler et al., 2003, R5: Bewley et al., 2010, R6: Zhao et al., 2009, R7: Ranges 
provided in Carsel and Parrish, 1988, based on USDA soil classifications (USDA NRCS 
2006), R8: Andreadis et al. 2009; R9: Lundquist et al., 2008. 
 
Daily climate data were disaggregated into 3-hourly values using the existing pre-
processing tools accompanying DHSVM, in which few adjustments were made specific 
to this project. Within these algorithms the following assumptions were included. 
Precipitation was distributed uniformly throughout the day. Diurnal temperature 
variations were established based on the daily extremes from the climate data and the 
site location for estimating the approximate times of the day when these extremes are 
likely to occur. The daily minimum and maximum temperatures were then interpolated 
for 3-hourly variations using hermite polynomials. The minimum relative humidity was 
assumed to occur at the minimum air temperature, which was taken equal to the dew 
point temperature. Diurnal relative humidity fluctuations were then established based 
on the ratios of vapor pressures at a given temperature during the day and the vapor 
pressure at the minimum temperature based on a model by Running et al. (1987). The 
3-hourly solar radiation series was generated using an algorithm proposed by Bristow 
and Campbell (1984) that was calibrated to best match the hourly rates recorded at 
Dana Meadows during the 2003-2009 period. Incoming longwave radiation was 
generated using the Idso (1981) method. For each day of the year, the 3-hourly wind 
speed values were assumed to be equal to the daily average wind speed recorded at 
Dana Meadows during the 2003-2009 period.  
 
We assessed the uncertainty of the most sensitive forest parameters and their effects 
on model response when temperature increases. These additional tests were 
considered because direct measurements of snow under the forest were not available 
for the 2003-2009 calibration period, and therefore direct comparisons of the simulated 
and observed SWE under the forest were not possible. However, the forest effects at 
the basin scale were explicitly taken into account through distributed modeling and 
canopy parameterization, as described in Section 3.1, and through model calibration on 
the streamflow data as the model integrated response. Alila and Beckers (2001) 
identified the most sensitive forest parameters for snow accumulation and melt in 
DHSVM as the fractional cover, leaf area index, LAI, radiation attenuation k, and wind 
(aerodynamic) attenuation a.  
 
During preliminary runs, we tested k, LAI and a for the historic 2003-2009 meteorology. 
The base parameters were k = 0.3, LAI =5.0, and a = 2.0, respectively established during 
calibration (Appendix 5A, Table 1.A1). These values were varied sequentially from k = 
0.1 to k = 0.5 (for k), LAI = 3.0 to LAI = 7.0 (for LAI), and a = 1.0 to a = 3.0 (for a), while 
maintaining all the remaining parameters constant. These tested parameters influenced 
the simulated SWE more significantly during the melt season than during the 
accumulation season, with patterns of SWE sensitivity similar to those shown in Figure 4 
in Alila and Beckers, 2001. Fractional cover was not part of these preliminary tests, as its 
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sensitivity was previously considered within the vegetation scenarios in the climate 
change model runs (Table 5.2). Because SWE during the melt period was most sensitive 
to the radiation attenuation k, we chose this parameter to further illustrate the 
uncertainty in forest parameterization in the historic T and historic T + 3°C temperature 
scenarios. The calibration k was set to 0.3, corresponding to a value of τo, the fraction of 
incoming solar radiation Rs transmitted by the canopy (Eq. A5, Appendix 5A), of 0.22. 
The k value was subsequently ranged from 0.1 (τo = 0.60) to 0.5 (τo = 0.08), the same 
levels of sensitivity used in Alila and Beckers, 2001 (scenarios 1-4, Table 1.A2).   
 
Table 5.A2. DHSVM scenarios for radiation attenuation sensitivity tests. 

Scenario Vegetation cover Scenario assumptions 

1 Distributed forest k =0.1 (τo = 0.60), historic T 
2 Distributed forest k =0.5 (τo = 0.08), historic T 
3 Distributed forest k =0.1 (τo = 0.60), historic T+ 3°C 
4 Distributed forest k =0.5 (τo = 0.08), historic T+ 3°C 
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Figure 5.A1. a), c), e), g)  Simulated daily hydrographs assuming historic and increased 
air temperatures for barren scenario and for uniform forest scenario with variable 
radiation attenuation parameter k; b), d), f), h) SWE levels for the same scenarios at 
Dana Meadows and Tuolumne Meadows locations. Vertical lines identify COM for each 
hydrograph. All plots are shown for water year 2004. 

 
The results from this sensitivity analysis are illustrated in Figure 5.A1b, d, f, h that show 
the simulated SWE at Dana Meadows (Figure 5.A1b, d) and Tuolumne Meadows (Figure 
5.A1f, h) as a result of varying k, the radiation attenuation coefficient, corresponding to 
fractions transmitted of 0.60 (k = 0.1), 0.22 (k = 0.3, calia1bration value) and 0.08 (k = 
0.5) for the two temperature scenarios. Examination of Figure 5.A1b, d, f, h leads to two 
observations: i) the snowpack under the forest melted earlier in the increased 
temperature scenario than the snowpack on bare ground even considering the relatively 
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large uncertainty in shortwave radiation parameterization (Figure 5.A1d, h), and ii) the 
sensitivity of simulated SWE to k during the melting season decreases when 
temperature increases (Figure 5.A1b, d, f, h). This effect is more apparent at the lower 
elevation snow pillow site, Tuolumne Meadows than at the higher elevation site, Dana 
Meadows (Figure 5.A1d, h). The variations in k were also reflected in the simulated 
hydrograph (Figure 5.A1a, c, e, g). Assuming k = 0.3 (calibration value), in the historic T 
scenario, the forest COM occurred 9 days earlier than the barren COM (Figure 5.A1a). 
This difference increased to 26 days for k = 0.1, while for k = 0.5, the forest COM 
occurred 12 days later than the barren COM (Figure 5.A1a, c). In the increased 
temperature scenario forest COM occurred earlier than barren COM by 32 days (k = 
0.1), 14 days (k = 0.3) and 3 days (k = 0.5), respectively. Figure 5.A2 shows a snow 
covered landscape in the spring of 2011 in the Sierra Nevada near the Tuolumne area 
(Lat:  38°48’56’’, Long: 120°06’35’’). The snow under the forest has largely disappeared 
while snow remains in the barren areas.  
 

 
Figure 5.A2. Google Earth 6.2.image (June 14, 2011) approximately 124.2 km from the 
Tuolumne Meadows in the Sierra Nevada centered at 38°48’56’’N Lat and 120°06’35’’W 
Long and 2158 m elevation, showing snow lasting longer in the barren areas than under 
the forest. Available through: http://www.google.com/earth/index.html [Accessed June 
2012]. 

http://www.google.com/earth/index.html
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