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While the exponential growth of data brings us tremendous opportunities of research, it also creates 

key challenges that will need to be tackled. As of 2012, we create approximately 2.5 exabytes of 

information each day, which equals the total amount of data stored on magnetic tape in 2001. The 

way people create, store, maintain, access, share, and utilize the data leads to a brand new outlook 

called big data. It motivates and inspires scientists and researchers to develop new infrastructure 

for better exploiting and exploring huge amount of multidisciplinary data. In 1999, Jon Taylor, the 

Director General of Research Councils in the UK, first introduced the term “eScience”, which 

defines the novel generation of infrastructure that enables researchers from multidisciplinary areas 

collaborate with each other to achieve better, faster, and diverse research capabilities. 

Inspired by the concept of eScience, the on-line transportation platform Digital Roadway 

Interactive Visualization and Evaluation Network (DRIVENet) is developed aimed at 

transportation data sharing, integration, visualization, and analysis. The major research goals for 

the DRIVENet system can be summarized in threefold. First, it provides the repository service to 

facilitate data sharing and integration. Second, one of the primary purposes DRIVENet serve is to 
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visualize the large sets of transportation data, helping users to perceive and understand the data. 

Third, the interactive and computational functions built in the DRIVENet system allow users to 

perform a variety of statistical analysis on multiple data sources, assisting users to draw meaningful 

inferences and make informed decisions. This research thus attempts to propose an innovative 

system architecture to address the aforementioned challenges, and develop an eScience approach 

to effectively utilize the existing data resources for transportation applications. Specially, a new 

approach that automates real-time freeway performance measurement is developed and 

implemented on DRIVENet, which further demonstrates the capability of DRIVENet in solving 

transportation problems. The new approach also provides quantitative evaluation of network-wide 

freeway performance to facilitate decision making in transportation operations and management.  
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Chapter 1: Introduction 

1.1 General Background 

While the exponential growth of data brings us tremendous opportunities of research, it also creates 

key challenges that will need to be tackled. As of 2012, we created approximately 2.5 exabytes 

(quintillion bytes) of information each day (Eaton et al., 2012), which equals the total amount of 

data stored on magnetic tape in 2001 (Marcella et al., 2002). The data can be generated from 

everywhere in any format, such as messages, social networking updates, videos, GPS locations, 

transaction records, etc. The study conducted by IDC Digital Universe demonstrates that world’s 

information is more than doubling every 2 years, which is faster than Moore’s Law (Gantz et al., 

2011). The way people create, store, maintain, access, share, and utilize the data leads to a brand 

new outlook called big data. 

Big data motivates and inspires scientists and researchers to develop new infrastructure for 

better exploiting and exploring petabytes of multidisciplinary data. In 1999, John Taylor, the 

Director General of Research Councils in the UK Office of Science and Technology, first 

introduced the term “eScience” (Hey et al., 2002). The concept of eScience captures the novel 

generation of infrastructure that enables researchers from multidisciplinary areas collaborate with 

each other to achieve better, faster, and more diverse research capabilities. In 2001, the United 

Kingdom government funded a £250 million 5-year eScience research project aiming to develop 

technologies, tools, and infrastructure to facilitate interdisciplinary collaboration, while U.S. 

government targets more than $200 million for big data projects in 2012 (Gianchandani, 2012). 

The CERN laboratory in Geneva, as a representative eScience research institute, conducts data-
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oriented and computationally intensive experiments with the collaboration of more than 8000 

researchers from over 100 worldwide institutions. A global eScience infrastructure, the LHC 

Computing Grid, has thus been built to distribute and analyze the huge amount of experimental 

data over the world to eventually realize the computational/data resource sharing (Hey et al., 2005). 

1.2 Research Goals 

Inspired by the concept of eScience, the on-line transportation platform Digital Roadway 

Interactive Visualization and Evaluation Network (DRIVENet) was developed in 2008 (Ma et al., 

2011) aimed at data sharing, integration, visualization, and analysis. The system provides users 

with the capability to store, access, and manipulate data from anywhere as long as they have 

Internet connections. The major research goals for the DRIVENet system can be summarized in 

threefold. First, it provides the repository service to facilitate data sharing and integration. The 

existing data sources integrated amongst various organizations include roadway geometric data, 

loop detector data, Bluetooth data, INRIX speed data, incident data, weather data, freeway travel 

time, etc. Second, one of the major purposes DRIVENet serve is to visualize the large sets of 

transportation data, helping users to perceive and understand the data. Third, the interactive and 

computational functions built in the DRIVENet System allow users to perform a variety of 

statistical analysis on multiple data sources, assisting users to draw meaningful inferences and 

make informed decisions. The system benefits not only transportation practitioners and researchers 

but also the public by providing both historical and real-time transportation information and 

numerous performance measures in the broader context of an interdisciplinary framework. 

1.3 Problem Statement 
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Despite many years of development, several challenging problems remained unsolved in the 

previous version DRIVENet 2.0. One critical issue is that the earlier versions have little geo-

processing power, which makes it difficult to store, analyze, and manipulate geographic data. 

Previous solutions include manually recording series of spatial locations (latitude and longitude) 

for lines and polygon in relational database. However, this ad hoc method is inefficient, unreliable 

and not able to meet the needs of modeling complex spatial relationships.  

Additionally, DRIVENet 2.0 has severe bugs and is vulnerable to intensive visits due to 

the incompatibility issues amongst the development tools. Google Web Toolkit (GWT) is one of 

the major tools adopted in this earlier version, which allows developers to write in Java and the 

GWT compiler translates Java code into JavaScript. Although GWT is a widely used tool to 

develop JavaScript front-end applications, it requires a steep learning curve and needs developers 

to keep up with new technologies very often. Huge amount of time and efforts are demanded for 

maintaining and updating the system because of rapidly changing features of GWT. Therefore, 

more productive and straightforward development process is desired to ensure the stability of such 

online platforms. Another concern induced by the Google Maps in DRIVENet 2.0 is the licensing 

model revision announced by Google, Inc. in early 2012 (Google, 2012). Only the first 2,500 

geocoding web services will be offered free daily. Access to Google Maps will not be granted if a 

system continuously exceeds usage limits. Potential maintenance costs thus urge the transfer of 

DRIVENet system to a more flexible yet reliable alternative web-mapping products, such as 

OpenLayers and OpenStreetMap (OpenLayers, 2013; OpenStreetMap, 2013). These led to the 

development of DRIVENet 3.0 to be described in this thesis. 

1.4 Scope of Study 
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Addressing the aforementioned challenges is especially critical during the new framework design 

of DRIVENet system. Meanwhile, although DRIVENet conceptually provides an eScience 

platform for data-driven discoveries and decision making, it is still unclear how well it performs 

in reality. In this research, automating real-time freeway performance measurement is selected as 

a case study to test such functionality. Considering the fact that freeway performance analysis 

involve complicated interactions among geometric, environmental, political, behavioral, and 

technological features, it is an ideal example to examine and demonstrate the capability of 

DRIVENet from an eScience perspective. 

The remainder of the thesis is organized as follows: Chapter 2 gives an overview of the 

state-of-the-art in transportation web-based GIS systems, followed by background on freeway 

performance measurement in Chapter 3. Chapter 4 describes the research originality, more 

specifically, the innovative system architecture adopted by DRIVENet, followed by an elaboration 

on the data warehouse and system implementation. In Chapters 5 and 6, the author presents an 

application of DRIVENet, automating real-time freeway performance measurement, with 

discussion of proposed methodologies and implementation results. Finally, Chapter 7 concludes 

the thesis and offers future research directions. 
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Chapter 2: State of the Art 

During the past few years, much research in Intelligent Transportation System (ITS) has been 

focusing on developing web-based transportation information system, aiming to be user-friendly 

and real-time. In this section, several representative online transportation systems related to 

DRIVENet are presented. 

2.1 Freeway Performance Measurement System (PeMS) 

Established in 1998, PeMS is a freeway performance measurement system jointly developed by 

the University of California, Berkeley, California Department of Transportation (Caltrans), and the 

Partners for Advanced Transportation Technology (PATH). With the support from Caltrans and 

local agencies, the system provides various traffic data sources including traffic detectors, census 

traffic counts, incident logs, vehicle classification data, toll tag based data, roadway inventory, etc. 

These traffic data have been automatically collected and archived for over ten years and real-time 

information are updated from over 25,000 detectors (Chen et al., 2001; Chen et al., 2003). 

As the critical component of Caltrans performance measurement system, PeMS shown in 

Figure 2-1 provides a variety of freeway evaluations in terms of speed, occupancy, travel time, 

vehicle miles traveled, vehicle hours traveled, vehicle hours of delay, etc. The success of PeMS on 

freeway triggers the development of arterial performance evaluation. Following the basic principle 

of PeMS, Arterial Performance Measurement System (APeMS) was then implemented to estimate 

intersection travel time, control delay, and progression quality on arterials every 5 minute, using 

mid-block loop detectors (Tsekeris et al., 2004; Petty et al., 2005). Different from the open 
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availability of PeMS, APeMS has designated usage for stakeholders and is not accessible by the 

public. 

 

Figure 2-1 Screenshot of PeMS 

2.2 Regional Integrated Transportation Information System (RITIS) 

RITIS is an automated data archiving and integration system developed by the Center for 

Advanced Transportation Technology Laboratory (CATT Lab) at the University of Maryland. As 

one of most representative online transportation systems, RITIS targets to improve transportation 

safety, efficiency, and security by fusing and mining the transportation-related data in Maryland, 

Virginia, and the District of Columbia. The system provides both real-time and historical data to 

users with access credentials, including incident, weather, radio scanners, and other sensors. 
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Numerous visualization and analysis tools are developed to enable the interactive exploration and 

analysis of performance measures from data archival.  DOT or public safety employees could 

possibly use the RITIS service by applying online. The system is not accessible to the general 

public (CATT Lab, 2012). 

2.3 Portland Oregon Regional Transportation Archive Listing (PORTAL) 

Originally established in 2004 with simple user interface and single data source – freeway loop 

detector data, PORTAL shown in Figure 2-2 has improved significantly over the past eight years. 

In addition to the loop detector data from the Portland-Vancouver metropolitan region, now 

PORTAL 2.0 archives about one-terabyte transportation data including weather data, incident data, 

freight data and transit data. The system takes advantages of Adobe Flash and Google Maps 

technologies to display transportation data spatially. Additionally various graphical and tabulated 

performance information are available on the website, such as incident reports, transit speed map, 

traffic count, vehicle miles traveled, and vehicle hours traveled (Tufte at el., 2010). 
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Figure 2-2 Screenshot of PORTAL 2.0 

2.4 Freeway and Arterial System of Transportation Dashboard (FAST) 

FAST dashboard, released online in September 2010 (http://bugatti.nvfast.org), is a web-based 

system developed to control and monitor the traffic in the Las Vegas and Nevada Metropolitan 
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areas (Xie et al., 2012). In collaboration with the Nevada Department of Transportation, the system 

collects and archives real-time traffic data retrieved from loop detectors, radar detectors, and 

Bluetooth sensors deployed on freeways and ramps. Traffic data including lane occupancy, volume, 

and speed, are further processed as the major source for performance measurement. Also integrated 

in the system are incident data in the report format collected from the general public, and weather 

data shared by Nevada DOT Road Weather Information System. 

The performance measures FAST dashboard uses includes average speed, traditional travel 

time performance measure, delay volume, and temporal and spatial extension of congestion. 

Meanwhile, the website is updated every 1-minute to display the real-time traffic map, as shown 

in Figure 2-3. By ensuring the delivery of timely and accurate information to traffic managers, 

operators, and planners as well as the general public, FAST dashboard significantly enhances the 

interchangeability of traffic data, helps improve the freeway and arterial system, and optimize the 

operation strategies in southern Nevada region. 
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Figure 2-3 Screenshot of FAST Dashboard 

 

1.1  

1.2  
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Chapter 3: Background for Freeway Performance 

Analysis 

This chapter gives readers the necessary background information for understanding freeway 

performance analysis in this thesis. It first introduces FREEVAL – 2010, a computational engine 

that implements Highway Capacity Manual (HCM) 2010 methodologies. The second part of the 

chapter describes the concept of Level of Service. In the end, it presents speed-density model as 

well as K-means Clustering used in this study. 

3.1 FREEVAL – 2010 

FREEVAL (FREeway EVALuation) is a computational engine built in the Microsoft Excel 

worksheet environment, to fully implement the computation for freeway facilities performance 

(Rouphail et al., 2011). The computational procedure in FREEVAL implemented the methods 

presented in HCM 2010 Chapters 11, 12, and 13, for basic freeway segments, weaving segments, 

and merge and diverge segments, separately. The freeway facility with up to 70 analysis segments 

and 24 15-min time intervals are allowed to be queried at one time. In addition, some special 

requirements need to be satisfied due to the limitations of HCM methodologies. For instance, the 

temporal and spatial boundaries of analysis domain should have a demand-to-capacity ratio d/c 

less than 1. Before FREEVAL, most of the analysis were performed manually, which was time-

consuming, inefficient, and sometimes unrealistic. FREEVAL enables the analytical automation 

as long as all necessary input requirements are fulfilled, which greatly reduces the cost and boost 

the productivity.  
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However, the success of automated computation provided by FREEVAL triggers other 

questions, e.g. how can we take advantage of huge volume of available transportation data to 

further avoid on-site data collection and manual data input? In Chapters 5 and 6, the proposed 

innovative data fusing techniques is aimed to solve this problem by presenting a prototype study 

on automating freeway performance measurement. 

3.2 Level of Service  

Level of service (LOS) is the most important and fundamental concept introduced by the 

Transportation Research Board (TRB) Highway Capacity Committee in early 1963. With the HCM 

evolvement over the past 50 years, LOS is now defined as a qualitative service measure of traffic 

operational conditions experienced by travelers with specific environmental characteristics. LOS 

simplifies the complex numerical results and further categorizes service condition into six levels 

from A to F, in which A represents the best condition while F describes traffic breakdown/failure.  

Density is selected as the performance measure to define LOS on a basic freeway segment 

for three reasons: (1) Speed is insensitive to flow rates between 1,000 pc/h/ln to 1,800 pc/h/ln as 

shown in Figure 3-4; (2) Density naturally describes the headway between vehicles in traffic 

stream, which further reflects the ability to change lanes. (3) Density, more importantly, is sensitive 

to traffic flow rates. Therefore, LOS is primarily determined by traffic density for freeway facilities. 
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Figure 3-4 Speed-Flow Model for Basic Freeway Segments (HCM, 2010) 

HCM defines the freeway LOS with the letters A through F as follows (HCM, 2010): 

LOS A. LOS A describes roadway performance under the free flow conditions. Travelers have full 

freedom to choose speed and change lanes. The level of mobility and comfort travelers perceived 

is extremely high. It could reduce the effects of traffic breakdowns or incidents to the greatest 

extent. 

LOS B. LOS B describes operations at or near the free-flow speeds. Travelers are slightly restricted 

to maneuver in the traffic stream compared to LOS A. The perceived level of mobility and comfort 

is still high. 



14 

 

 

LOS C. LOS C represents operations at or near the free-flow speeds. Travelers are noticeably 

restricted to change lanes and operate. More attention is required at the travelers’ side. The level 

of mobility and comfort experienced by travelers remains at a reasonable level.  

LOS D. LOS D represents the level at which speed drops with increasing flows. Travelers are more 

noticeably restricted to maneuver in the traffic stream. The impact of incidents or breakdown is 

severe, since there is little space to absorb disruptions. 

LOS E. LOS E describes the operation at capacity. The state is vulnerable to any minor disruptions. 

The level of mobility and comfort travelers perceived is low.  

LOS F. LOS F represents a traffic breakdown with low speed and little maneuverability. Facility 

undergoes considerable delay. In general, LOS F appears at facilities having more demand than 

capacity. 

3.3 Speed-density model 

The fundamental relationships of traffic flow describe the linkage amongst traffic characteristics 

of space mean speed v, density k, and flow q as follows: 

Equation 3-1 

𝑞 = 𝑘 × 𝑣 
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The quantitative relationships between any two of the three variables are of general interest. 

In 1935, Greenshields proposed the linear speed-density model illustrated in Equation 3-2 and 

Figure 3-5 (Greenshields, 1935).  

Equation 3-2 

𝑣 = 𝑣𝑓 (1 −
𝑘

𝑘𝑗
) 

Where 𝑣𝑓 represents free flow speed and 𝑘𝑗 represents the jam density. 

 

Figure 3-5 Greenshields Model 

Although equations greatly simplify the problem elegantly, in reality the linear relationship 

hardly describes empirical observations well. Hence, a variety of single-regime models has been 
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proposed as listed in Table 3-1, in which 𝑣𝑓 is free-flow speed, 𝑘𝑗 represents jam density, 𝑣𝑜 is 

optimal speed, and 𝑘𝑜 is optimal density. 

Single-regime Model Function 

Greenshields Model (1935) 𝑣 = 𝑣𝑓(1 − 𝑘/𝑘𝑗) 

Greenberg Model (1959) 𝑣 = 𝑣𝑜ln (𝑘𝑗/𝑘) 

Underwood Model (1961) 
𝑣 = 𝑣𝑓 e

−
𝑘

𝑘𝑜 

Northwestern Model (1967) 
𝑣 = 𝑣𝑓 e

−
1
2

(
𝑘

𝑘𝑜
)2

  

Drew Model (1968) 
𝑣 = 𝑣𝑓 (1 − (

𝑘

𝑘𝑗
)𝑛+

1
2) 

Pipes Model (1967) 
𝑣 = 𝑣𝑓 (1 − (

𝑘

𝑘𝑗
)𝑛) 

Table 3-1 Single Regime Models 

Recognizing the inability of single-regime models to fit the empirical observations, Edie 

first introduced two-regime model using Underwood’s model for free-flow regime and Greenberg 

model for congested regime (Edie, 1961) as follows: 

Equation 3-3 

v = {
54.9 exp(−𝑘/163.9) 𝑓𝑜𝑟 𝑘 ≤ 50

26.8 ln(162.5/𝑘) 𝑓𝑜𝑟 𝑘 > 50
 

Following the idea of multi-regime models, Drake et al. (1965) proposed two two-regime 

models and one three-regime model based on the single-regime models listed in Table 3-1: 
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Equation 3-4 

v = {
60.9 − 0.525𝑘 𝑓𝑜𝑟 𝑘 ≤ 65
40 − 0.265𝑘 𝑓𝑜𝑟 𝑘 > 65

 

Equation 3-5 

v = {
48  𝑓𝑜𝑟 𝑘 ≤ 35

32 ln (145.5/𝑘)𝑓𝑜𝑟 𝑘 > 35
 

Equation 3-6 

v = {

50 − 0.098𝑘 𝑓𝑜𝑟 𝑘 ≤ 40
81.4 − 0.913𝑘 𝑓𝑜𝑟 40 ≤ 𝑘 ≤ 65

40 − 0.265𝑘 𝑓𝑜𝑟 𝑘 ≥ 65
 

However, the number of regimes and breakpoints in multi-regime models to be chosen is 

highly dependent on the engineering judgment, which is largely subjective and unscientific. To 

address this issue, Sun et al. (2005) proposed a methodology to automate the multi-regime 

regression from the data mining perspective. In general, traffic flow demonstrates two patterns: 

free flow and congested flow. Most of the time, there appears to be a third pattern called transition 

flow. In Sun et al. (2005)’s method, k-means clustering is adopted to naturally partition the 

empirical observations into clusters. Then, single-regime models are applied to fit each cluster and 

determine the breakpoints automatically. 

3.4 K-means Clustering 

K-means clustering (MacQueen, 1967; Steinhaus, 1957) is an unsupervised machine learning 
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approach that segments n observations (𝒙1, 𝒙2, … , 𝒙𝑛) into k clusters S = (𝑆1, 𝑆2, … , 𝑆𝑘), which 

seeks to minimize the following objective function: 

Equation 3-7 

arg min
𝑆

∑ ∑ ‖𝒙𝑗 − 𝝁𝑖‖
2

𝒙𝑗∈𝑆𝑖

𝑘

𝑖=1
 

In which 𝝁𝑖 is the mean value of points in cluster 𝑆𝑖 

 The cluster analysis is a good method to produce relatively homogeneous groups of 

observations based on selected features. The most common algorithm to realize K-means 

clustering is the iterative refinement technique given as follows: 

1. Initialize: randomly select k points as cluster centers 

2. Repeat: 

a) Assign each data point to the closest mean 

b) Update each cluster mean to be the average of its assigned points 

3. Stop: when the assignments no long change 
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Chapter 4: DRIVENet 3.0 Framework 

This chapter is organized as follows: it first proposes the novel DRIVENet architecture design; 

then it presents the data warehouse and available data sets; in the end, implementation and user 

interface design are demonstrated. 

4.1 DRIVENet System Architecture 

The new system adopts the “thin-client and fat server” architecture with three basic tiers of web 

application, i.e. presentation tier, logic tier, and data tier, as showed in Figure 4-6. Presentation tier 

includes the user interface terminal via which users interact with the application. Logic tier, which 

is also called computational tier, is the core component of DRIVENet system. It performs 

computations in assisting customized analysis and decision making based on users’ interactive 

input. Analytical tools developed include incident-induced delay forecasting using deterministic 

queuing theory (Yu et al., 2011), Bluetooth-based pedestrian trajectory re-construction 

(Malinovskiy et al., 2012), GPS-based truck performance measure (Ma et al., 2011), etc. Data tier 

organizes and supports data requested for analysis. Normally the client handles the user interface 

while the server is responsible for the data. The significant difference between “thin-client and fat 

server” and “fat-client and thin server” is the shifted responsibility for the logic/computational Tier 

(Lewandowski, 1998). In fat server systems, the server fully takes over the logic/computation tier 

while the client only hosts the presentation tier for displaying user interface and dealing with user 

interaction.  

There are three reasons to adopt a thin-client architecture: First, no plug-in and installation 
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is required at the client side except a basic browser, which ensures compatibility to the greatest 

extent. Considering the fact that the system is designed for customers with constrained network 

functions, minimal requirements at the client side is most desirable. Second, there is less security 

concern since all the data and computational tasks are manipulated and performed at the server 

side, while the client is only responsible for user interaction and results presentation. Third, mature 

frameworks for building thin client web application could be re-used to boost development 

productivity. For example, Vaadin is a Java framework that supports server-driven programming 

model (Vaadin, 2013). Since the coding is mainly based on Java, there is no need to learn other 

technologies such as JavaScript, potentially leads to less bugs and learning overhead. However, 

thin-client architecture does have its drawbacks. One major disadvantage is that the performance 

of system solely depends on the server and excessive user requests would greatly affect system 

efficiency. This can be remedied nowadays with the continuous advancement of cloud computing 

technologies such as Amazon Web Service, where the cloud servers are fully utilized to improve 

system performance. 

The data communication flows in the DRIVENet system could be summarized as follows: 

1. The end-user sends an HTTP(S) request to the web server.  

2. The web server looks into the request and retrieve the related data information from 

data warehouse. 

3. The warehouse sends back the requested data and the web server performs the 

computational tasks using either the built-in analytical tools or external statistical 

modules provided by R Server. 

4. If geospatial analysis is involved, the web server will connect to the OpenStreetMap 

Server and request the map. 

5. Analysis results as well as the map are then returned to the client. Web browser 

displays the results or visualizes the returned objects on the map. 
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Figure 4-6 DRIVENet 3.0 Architecture 
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4.2 DRIVENet Data Warehouse 

To achieve the integration and interoperability of various data sources, a DRIVENet data 

warehouse is designed and built for big data analysis. A variety of data are archived, replicated, 

transformed, and integrated in the data warehouse by web downloading (FTP, HTTP, or SOP), 

XML transferring, flat file exchanging, or direct collecting. These data sources are maintained by 

different agencies as indicated in Table 4-2. One reason that DRIVENet warehouse backs up data 

collected by cooperated agencies is that some of them may only keep the data for a limited time 

period due to storage constraints. Archived data provides historical information on the 

transportation system operations. Additionally, being an essential online tool, DRIVENet provides 

convenient and timely access to numerous data to support large scale analysis and decision making. 

The warehouse with integrated data further enables users to explore interdisciplinary relationships 

among transportation, environment, and human behaviors temporally and spatially. Users could 

either use the analytics modules in DRIVENet or directly download raw data for further analysis. 

Some example datasets are explained in the following subsections. 

Data Source Description Coverage Agency 
Inductance Loop Data Volume, occupancy, speed, 

and vehicle type 

Washington State WSDOT 

Incident Data Incident locations/types Washington State WSP 

Surveillance Video Roads and highways video Puget Sound Area WSDOT 

Weather Data Temperature/wind speed Washington State NOAA 

Inductance Loop Data Volume, occupancy, speed, 

and vehicle type 

Bellevue City of Bellevue 

Sensys Data Vehicle speed/volume Seattle City of Seattle 

Inductance Loop Data Second-by-second event data Lynnwood City of Lynnwood 

Truck GPS Data Freight movement data Puget Sound Area Commercial fleet 

companies 

Speed Data Based on vehicle GPS   Washington State INRIX 
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Bluetooth Data Travel time and speed UW Campus, SR-

520, I-90 

STARLab, WSDOT 

Geometric Factors Shoulder width, number of 
lanes, lane width, etc. 

Washington State WSDOT 

Freeway Data Alerts, cameras, travel time Washington State WSDOT 

Border Crossings Wait time I-5, SR-543, SR 539, 

SR-9 

WSDOT 

Mountain Pass 

Conditions 

Weather, temperature, and 

conditions 

Washington State WSDOT 

Table 4-2 Data Sources 

4.2.1 Roadway Geometric Factors 

WSDOT GIS and Roadway Data Office (GRDO) produces and maintains the GeoData 

Distribution Catalog online at http://www.wsdot.wa.gov/mapsdata/geodatacatalog/. The 

geospatial data in the format of ESRI Shapefile is available to the general public, promoting data 

exchange and data sharing. Various roadway geometric datasets are available, including number 

of lanes, roadway widths, ramp locations, shoulder widths, surface types, etc. State route ID and 

locations marked by mileposts and accumulated mileage are also included in the WSDOT linear 

referencing systems.  

4.2.2 Loop Detectors 

WSDOT deploys thousands of inductance loop detectors on freeway and highway networks in 

Washington State. Most of the loop detectors are set as single loop, providing real-time volume 

and occupancy aggregated every 20 seconds. Dual loop detectors comprises two paired single-loop 

detectors separated by several meters, used to measure speed and vehicle length. DRIVENet 

periodically archives and maintains both single and dual loop detector data from WSDOT. There 

are a total of 9729 single loops and 3671 dual loops included in the DRIVENet database. Being 

the main information source for traffic operations and decision making, loop data quality is a 
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critical issue as the loop malfunction and/or sensitivity level shift can result in significant detection 

bias. Data quality control strategies developed by STARLab are applied to ensure data quality 

(Wang et al., 2009). 

4.2.3 Washington Incident Tracking System (WITS) 

Traffic incident data is collected and maintained by Washington State’s Incident Response (IR) 

Team in the Washington Incident Tracking System (WITS). WITS includes majority of incidents 

happened on freeways and Washington State highways, which totaled 550,376 by March 2013. 

For each incident, Washington State IR team logs details such as incident location, notified time, 

clear time, closure lanes, etc. DRIVENet team obtained the WITS datasets from 2002 to 2013 and 

integrated them into the DRIVENet database. Using the methodology developed by Yu and Wang 

(Wang et al., 2008; Yu et al., 2011), incident-induced travel delays are further calculated and 

visualized in the DRIVENet system as showed in Figure 4-7. 
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Figure 4-7 Incident Induced Delay 

DRIVENet team recently retrieved INRIX speed datasets for 2008 through 2012 from WSDOT 

that purchased the license. As one of the major companies that produces traffic, INRIX analyzes 

and computes traffic information mainly based on measurement from GPS devices and loop 

detectors. The produced speed data was aggregated into 5-minute intervals for 2008, 2009, and 

2010 and into 1-minute intervals for 2011 and 2012. It covers almost the entire State’s roadway 

network, including freeway, highways, and most arterials and side streets. Considering that most 

of traffic evaluation in the previous DRIVENet system is based on loop detector data, the INRIX 

speed datasets are a great complement to the system. Traffic Message Channel (TMC), a common 

industry convention developed by leading map vendors, is adopted by INRIX as their base 
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roadway network. Each unique TMC code is used to identify a specific road segment. For example, 

in Table 4-3, TMC 114+0509 represents the WA-522 road segment with start location (47.758321, 

-122.249705) and end location (47.753417, -122.277005). However, since WSDOT follows a 

linear referencing system on the basis of mileposts, it poses challenges to match the two different 

roadway layouts for data fusion. 

TMC road direction intersection county zip start point end point miles 

114+05099 522 

EASTBOUN

D 80th Ave KING 98028 

47.758321,  

-122.249705 

47.755733,  

-122.23368 0.768734 

114-05095 522 

WESTBOUN

D 

WA-523/145th 

St KING 98155 

47.753417,  

-122.277005 

47.733752,  

-122.29253 1.608059 

Table 4-3 INRIX Speed Data 

4.2.4 Trucking GPS Data 

DRIVENet team periodically and automatically fetches and imports GPS truck data collected by 

trucking companies into the data warehouse for freight performance measurement via an FTP 

connection. UW, WSDOT, and Washington Trucking Associations (WTA) signed contracts with 

three GPS vendors to acquire the data. Table 4-4 provides general information on the data obtained 

from each vendor (Ma et al., 2011). Common variables such as longitude, latitude, truck ID, travel 

heading, and timestamp are included in each datasets. Due to privacy concerns, vendor information 

is masked in this thesis. 

Vendors Average Daily 

Records 

Total trucks per 

day 

Frequency of 

Reads (min) 

Data Type 

Vendor A 94,000  2,500 5 ~ 15 In-car GPS with a 

cellular 

connection 

Vendor B 12,000 25 0.5 In-car GPS with 
cellular 

connection 



27 

 

Vendor C 3,000 60 1 ~ 5 GPS mobile 

phone 

Table 4-4 GPS Vendors (Ma et al., 2011) 

4.3 System Implementation 

As mentioned in the previous section, DRIVENet architecture has been re-designed to meet 

challenges. To reduce costs and boost productivity, multiple open source products are utilized for 

the system implementation. Relying on open source products, the DRIVENet team not only takes 

advantages of code-sharing and collaboration with a broad community of developers, but also 

contributes to open source projects. Core open source products combined into DRIVENet system 

are explained in the remainder of this section. 

4.3.1 OpenStreetMap and OpenLayers 

OpenStreetMap (OSM) is a collaborative project to create a comprehensive worldwide map that 

is free to use and editable (Haklay et al., 2008). With the outlook that geospatial data should be 

freely accessible to the public, the OSM project was established by University College London in 

July 2004 and treated as one of the most prominent and famous examples of Volunteered 

Geographic Information, the concept introduced by Goodchild (2007, 2008). The process of 

maintaining OSM data is described as crowdsourcing which is also being used by other 

commercial companies such as Google and TomTom. The crowdsourcing, a term defined by 

Brabham as “online and distributed problem-solving and production model”, distributes the labor-

intensive tasks to large groups of users and allows volunteers to create and update geospatial data 

on the Internet. By January 2013, OSM has over one million registered contributors and 20,000 

active users worldwide and the number keeps rising dramatically (Wood, 2013). Additionally, 
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OSM obtained strong support from commercial companies as well as governments. For instance, 

Yahoo Maps made their vertical aerial imagery available to OSM as a backdrop for map production 

in 2006 and Microsoft Bing Maps donated part of its satellite imagery to the OSM in 2010 (Bing 

Blogs, 2010). 

One major reason for DRIVENet to choose OSM is its low cost compared to commercial 

datasets as well as its data sharing nature. With the Open Data Commons Open Database License 

(ODbL), developers are free to use, distribute, and modify the OSM data as long as OSM and its 

contributors are credited (OpenStreetMap, 2013). On the one hand, using OSM to replace Google 

Maps helps DRIVENet avoid potential charges by Google, Inc in the future that might eventually 

prevent the project from growing. On the other hand, with the theme of eScience, DRIVENet 

prefers open source products over commercial ones, which could help share ideas, drive innovation, 

and boost productivity for the entire community. 

High-resolution and qualitative geographic information as showed in Figure 4-8 makes 

OSM an appealing replacement of Google Maps. Recent research confirms the good quality of 

OSM and its capability to compete against professional geodata, especially for urban areas. Zielstra 

and Hochmair (2011) used commercial datasets NAVTEQ and TeleAtlas as well as freely available 

dataset TIGER/Line to quantitate the coverage of OSM in the United States. The results indicate 

that “there is strong heterogeneity of OpenStreetMap data for the US in terms of its completeness”. 

Similar study has been done by Zielstra and Zipf in 2010 for Germany (Zielstra et al., 2010). The 

paper states that some projects already replace proprietary data with rich OSM data in larger cities. 

In U.K, Haklay (2010) performed a comparison using the Ordnance Survey (OS) Meridian dataset 

by evaluating accuracy, completeness, and consistency of it position and attributes. The analysis 
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reached the conclusion that “OSM information can be fairly accurate” with the positional accuracy 

of about 6 meter, and an approximately 80% overlap of motorway objects compared to OS datasets. 

 

Figure 4-8 High Resolution OpenStreetMap near University of Washington 

Figure 4-9 describes how clients dynamically interact with OpenStreetMap in the 

DRIVENet system and the backend processes. When a web server receives clients’ request for a 

map, it transmits the request to the OSM mapping server for retrieving map contents. The OSM 

mapping server renders the map with specified geospatial information and sends it back to the web 

server. Web server then passes map contents to clients. At the client side, OpenLayers provides the 

service to obtain map images from servers and display map tiles on the screen (Haklay et al., 2008). 



30 

 

OpenLayers is an open-source JavaScript library running at the client side which helps users 

interact with dynamic maps from disparate services.  Extra features are provided by OpenLayers. 

Specifically, it allows developers to lay numerous data on top of map layers, such as vector layers, 

markers, and pop-up windows, as Figure 4-10 demonstrates. 
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Figure 4-9 How to interact with OpenStreetMap 
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Figure 4-10 Multiple Layers on Top of Map 

4.3.2 PostgreSQL, PostGIS, and pgRouting 

The biggest challenge in the previous DRIVENet system is the lack of geo-processing power, 

which makes it lose the capability of spatial modeling. In the new system, PostgreSQL with 

extender PostGIS and pgRouting is adopted to maintain geo-data and perform spatial modeling, as 

the relationships outlined in Figure 4-11. Those three products are all free, open source, and well-

supported by their active communities. Although some commercial software such as 

ArcGIS/ArcServer could perform same jobs, open source projects are always more academic in 
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nature despite the fact that commercial products usually have expensive license and usage 

restrictions. In the rest of this section, more details about PostgreSQL, PostGIS, and pgRouting 

are introduced. 

PostGIS

pgRouting

PostgreSQL

extender

 

Figure 4-11 PostgreSQL, PostGIS, and pgRouting 

PostgreSQL is a sophisticated and feature-rich object-relational database management 

system under an open source license (PostgreSQL, 2013). Its powerful functions and efficient 

performance make it the most popular open source database and be able to compete against well-

known commercial products, such as Oracle, IBM DB2, and Microsoft SQL server. Some 

advanced and unique features make it distinguished from others, including table inheritance, 

support for arrays, multiple-column aggregate functions etc. Moreover, the active global 

community of developers keep updating PostgreSQL with the latest database technology.   

With the capacity of PostgreSQL as a tabular database, PostGIS is a spatial database 
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extender built on PostgreSQL (Obe, 2011). The PostgreSQL/PostGIS combination offers supports 

to store, maintain, and manipulate geospatial data, making it one of the best choices for spatial 

analysis. Besides the geo-data storage extension, PostGIS has nearly 300 geo-processing operators 

or functions. The ability to analyze geographic data directly in the database by SQL sets 

distinguishes PostGIS from commercial competitors. For example, the following spatial query 

creates a polygon buffer with size of 10,000 feet: 

 Select ST_Buffer(the_geom, 10000) from county_polygon 

pgRouting is the extension of PostGIS/PostgreSQL geospatial database, which provides a 

set of routing-related SQL functions (pgRouting, 2013). Various routing algorithms are supported 

by pgRouting, including shortest path Dijkstra, shortest path A*, shortest path shooting*, traveling 

salesperson problems, and driving distance calculation. Meanwhile, its open source feature makes 

it convenient to develop user-specified algorithm and integrate it into pgRouting. More advanced 

algorithms such as Multimodal Routing support, Two-Way A*, time-dependent/dynamic shortest 

path algorithm is going to be included soon.  

4.3.3 R and Rserve 

R is a free and powerful statistical analysis tool utilized by more than two million people for 

machine learning, statistical modeling, and data visualizations (R, 2013). With thousands of active 

contributors from academia, R keeps evolving with the latest efficient and innovative algorithms. 

Meanwhile, R provides excellent tools for creating graphics, which enable users get better insights 

via data visualization. Rserve, a TCP/IP server connecting to R, integrates R into the DRIVNet 



34 

 

system so that it takes full advantages of R’s statistical computation capability (Rserve, 2013). 

Several modules in the system use the combination of Rserve and R as the major tool for statistical 

analysis and data visualization, as Figure 4-12 and Figure 4-13 demonstrate. By integrating R and 

its countless statistical and graphic packages, DRIVENet offer an easy and customizable interface 

to perform complex analysis and data visualization for users even without any background 

knowledge of R scripts. 

 

Figure 4-12 Travel Time Performance Measurement 
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Figure 4-13 Corridor Sensors Comparison 
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Chapter 5: Real-time Freeway Performance Measurement 

To demonstrate the data sharing, integration, visualization, and analysis in the DRIVENet eScience 

transportation platform, a pilot research on automating network-wide real-time freeway 

performance measurement is described in Chapter 5 and Chapter 6. 

5.1 Background 

Real-time freeway performance measurement quantitatively describes traffic conditions to 

transportation researchers, operators, planners, and the general public in a timely manner. With the 

network-wide real-time information, decision makers can not only quickly evaluate the quality of 

service on transportation facilities and identify the congestion bottlenecks, but also perform prompt 

coordination and may refine policy and investment decisions. The ultimate goal of measuring 

freeway performance is to improve transportation mobility and accessibility.  

The most widely used guidance for measuring freeway performance is the HCM 2010, which 

has been undergoing constant revision ever since 1944 (Kittelson, 2000). The 2010 version HCM, 

published by TRB of the National Academies of Science, is a collection of the state-of-the-art 

methodologies for quantifying the quality of service on transportation facilities. One important 

concept introduced by HCM is the LOS, which represents a qualitative ranking of traffic 

performance ranging from A to F. LOS A represents the best traffic operational condition, while 

F is the worst. In this study the HCM 2010 methods are applied for quantifying freeway 

performance. Although real-time traffic data as well as roadway geometric data are collected by 

every DOT, there is no universal procedure developed to utilize available datasets and automate 
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the network-wide freeway operational analysis. FREEVAL 2010, the computational engine 

executed in Microsoft Excel, is one alternative solution to freeway facilities analysis (HCM, 2010). 

However, FREEVAL requires users to manually input geometric and traffic demand information 

for each segment, which can be extremely cumbersome when analyzing long roadway segments 

across multiple time periods. With the significant computational power and comprehensive data in 

the data warehouse (such as mainline loop detector data, freeway geometric factors, INRIX speed, 

etc.), DRIVENet apparently provides a mature platform to perform real-time LOS analysis for 

freeway segments. Due to the limited information on ramp geometrics, on-ramp volume, off-ramp 

volume, and weaving volume, this study will only focus on quantifying traffic operational 

performance for basic freeway segment.  

5.2 Challenges 

The methodologies in HCM 2010 has limitations. First, HCM methods can only be applied to local 

oversaturated conditions but not system-wide. Second, some special conditions are not taken into 

account, such as segment near toll plaza, free-flow speed above 75 mph, or free-flow speed below 

55 mph. Although HCM recommends potential alternative tools to fill those gaps, most of them 

are commercialized simulation tools. Considering the cost and technical challenges, it is not an 

ideal solution if we perform the real-time analysis in DRIVENet.  

Measuring network-wide performance poses challenges on integrating multiple geospatial 

data layers. Different GIS data layers have different line segments, even when they share the same 

route, start point, and end point. For example, in Figure 5-14, the same route I-5 northbound from 

milepost 0 to milepost 10 is segmented into different lines in different GIS data layers. One 
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possible solution is to use line-to-line vector overlay, as Figure 5-15 shows. However, the 

operation of network-wide multi-layer overlay on the fly is inefficient and time-consuming. Better 

spatial data fusion techniques needs to be used for integrating multiple geo-data sources with 

efficiency and accuracy. 

 

Figure 5-14 Geospatial Data Fusion Challenge 
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Figure 5-15 Vector Overlay 

The objective of this case study is to automate the freeway performance measurement in a 

consistent, efficient and accurate manner, given existing resources including geometric factors, 

loop detector data and INRIX speed data. The DRIVENet platform is utilized to implement the 

automation, not only because of its interoperable data framework but also its customizable 

computing power. The rest of this chapter elaborates on the spatial modeling framework of 

network-wide freeway performance measurement. 

5.3 Modeling Framework 

The modeling process is divided into two main phases as shown in Figure 5-16. In the first stage, 

the roadway network is segmented using an innovative spatial data fusion technique - pixel-based 
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segmentation. Once the segmented network is formed, three different methods are applied to 

compute LOS in phase 2, namely, HCM 2010 Method, HCM 2010 Method with INRIX Speed 

Data, and Multi-regime Prediction Method. 

Phase 1: Segment Roadway Network & Integrate 
GIS Layers (Pixel-based Segmentation)

Determine FFS

Adjust Demand 
Volume

Calculate Density & 
Determine LOS Calculate Density & 

Determine LOS

INRIX Speed

Finalize LOS

Multi-Regime 
Regression

Predict LOS

Input real-time INRIX Speed

Input historical adjusted demand volume

Input historical speed data sets

Input real-time demand volume

Input historical 
data

Input real-time 
data

Loop 
Detector 

Data

Input volumes

 

Figure 5-16 Modeling Framework 
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5.3.1 Segment Roadway Network and Integrate GIS Layers 

With heterogeneous datasets, it is inevitable to perform multi-layer geospatial data processing, to 

superimpose multiple GIS layers to generate an output layer. To calculate performance 

measurements, a fundamental network layer needs to be prepared, in which each basic roadway 

segment has the same attribute data as input value. Particularly, the HCM 2010 requires roadway 

to be segmented uniformly. Uniform segments must share the same attribute data, including 

geometric features and traffic features. In GIS, vector overlay is the common and major solution 

to combine both the geographic data and attribute data from multiple input GIS layers as Figure 

5-15 presents. However, in our case, the network-wide large volume spatial data makes the overlay 

analysis time consuming and computational intensive. Additionally, if a new GIS layer is imported 

into the DRIVENet data warehouse, it is not realistic to re-perform the entire overlay operations.  

Therefore, pixel-based segmentation, a novel method to model the geospatial data, is proposed, 

which borrows the concept of pixel in digital imaging. A pixel is generally treated as the 

fundamental unit of a digital photo, extracted from the words “PICture ELement” (Wikipedia, 

2013). Millions of pixels are combined together to resemble the original seemingly. The quality of 

the image highly depends on the total number of pixels used, which is defined as resolution. As 

Figure 5-17 indicates, the more pixels the image contains, the more details it is able to reveal. 
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Figure 5-17 Image Resolution (Wikipedia, 2013) 

Similarly, pixel-based segmentation subdivides a roadway network into basic segments of 

equal length, called line pixel. The length of line pixel defines the resolution of segmentation. The 

shorter the pixel length is, the more details the output network contains. For instance, Table 5-5 

illustrates I-5 northbound with start milepost 140.4 and end milepost 140.9, is subdivided into 5 

basic segments of equal length (0.1 mile each). Attribute data of output network use the 

combination of route ID, start milepost, and end milepost as the unique key to link with the 

geographic data. With the geographic data being segmented into equal line pixels already, the 

process of superimposing multiple GIS layers can be accomplished in attribute data side only. As 

the Linear Referencing System (LRS) WSDOT adopts to identify the locations of features is based 

on state route ID and feature distance in miles from route beginning (WSDOT’s Linear 

Referencing System, 2013), it is easy and fast to retrieve corresponding feature given the route ID, 

start milepost and end milepost. Pseudocode for integrating attribute data from multiple GIS layers 

can be found below: 

function integrateGISLayers

for each route r in network

for k = 0; k < r.length; k = k + pixel_length

start_mp = k;

end_mp = k + pixel_length;

for each input GIS Layers l

# look up attribute data of l 

# given routeid, start_mp and end_mp

outputLayer[r, start_mp, end_mp, l] 

= getAttributeDate(I, r, start_mp, end_mp);

end

end

end

output outputLayer;
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Route Start 

MP 

End 

MP 

Directi

on 

Should

er 

width 

Rdwy 

width 

NumL

ns 

Avg 

width 

Urban

Rural 

Terrai

n 

TRD Upper

Ramp

MP  

Lower

Ramp

MP 

5 140.4 140.5 North 10 48 4 12 U Level 0.8333 141.64 138.04 

5 140.5 140.6 North 10 48 4 12 U Level 0.8333 141.64 138.04 

5 140.6 140.7 North 10 48 4 12 U Level 1 141.64 138.04 

5 140.7 140.8 North 10 48 4 12 U Level 1.1666 141.64 138.04 

5 140.8 140.9 North 10 48 4 12 U Level 1.1666 141.64 138.04 

Table 5-5 Segmented I-5 

The pixel-based segmentation is used in this study for the following reasons: First, it separates 

the attribute data from geographic data. Compared to the vector overlay operations, the integration 

of attribute data based on LSR is more efficient, fast and easy to implement. Second, the fixed 

segmentation makes it convenient to integrate more GIS layers into existing network in the future, 

as long as the pixel resolution remains the same. Third, the value of pixel resolution is flexible for 

us to decide the level of accuracy to achieve. If the line pixel is infinitely close to 0, the output 

attribute table will capture perfect details no matter how many GIS layers are imported. In reality, 

pixel size 0.1 mile is a good choice to balance the efficiency and accuracy. 

5.3.2 Calculate LOS using the HCM 2010 methodology 

Due to limitation of available datasets, this study will only focus on the LOS calculation for basic 

freeway segments. The HCM 2010 provides a comprehensive method for analyzing the LOS as 

demonstrated in Figure 5-16 Phase 2.1. Notice that there is no measured FFS available for the 

entire network layer, FFS is computed by lane width adjustment and lateral clearance adjustment 

in this study. The HCM 2010 is unable to handle system-wide oversaturated flow conditions, and 

only focuses on analyzing under-saturated flow conditions. Over-saturated flow conditions are 

discussed in the next section. 
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Step 1: Input Data 

In this step, demand volume, number and width of lanes, right-side lateral clearance, total ramp 

density, percent of heavy vehicles, peak hour factor, terrain, and the drive population factors are 

retrieved from the DRIVENet data warehouse.  

Demand Volume 

Real-time demand volume are mainly estimated from loop detectors. The system automatically 

fetches all the cabinets between the Nearest Upstream Ramp (NUR) and the Nearest Downstream 

Ramp (NDR), and then queries corresponding latest 15-min flow. Demand volume is calculated 

using the following equation: 

Equation 5-1 

𝑉 = 4 × 𝑚𝑒𝑑𝑖𝑎𝑛({𝑙𝑎𝑡𝑒𝑠𝑡 15𝑚𝑖𝑛𝑢𝑡𝑒 𝑓𝑙𝑜𝑤 |𝑐𝑎𝑏𝑖𝑛𝑒𝑠𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑁𝑈𝑅 𝑎𝑛𝑑 𝑁𝐷𝑅}) 

𝑉: ℎ𝑜𝑢𝑟𝑙𝑦 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑣𝑒ℎ/ℎ) 

Median is selected to measure the central tendency since it naturally eliminate the outliers. 

It is then multiplied by 4, which projects into hourly volume. For instance, in Figure 5-18, there 

are a total of six cabinets between upstream and downstream ramps. The 15-min flows fetched are 

shown as 500, 100, 450, 450, and 550. Hence, hourly volume for the segments between upstream 

and downstream ramps equals to 450×4=1800 veh/h. Notice that if there are no cabinets/loop 

detectors between the upstream and downstream ramps, the system will mark there is no demand 

volume input for segments and it will use real-time INRIX speed and historical regression model 
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to predict LOS, which will be introduced later in this chapter. 

 

Figure 5-18 Nearest upstream and Downstream Ramps 

Total Ramp Density (TRD) 
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Total ramp density is defined as the total number of ramps (both on and off with one direction) 

within 2miles of midpoint of segment under study. Given the study segment start milepost and end 

milepost, the following equation could be used to calculate TRD: 

Equation 5-2 

𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 =
𝑠𝑡𝑎𝑟𝑡 𝑚𝑖𝑙𝑒𝑝𝑜𝑠𝑡 + 𝑒𝑛𝑑 𝑚𝑖𝑙𝑒𝑝𝑜𝑠𝑡

2
  

𝑇𝑅𝐷 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟({𝑟𝑎𝑚𝑝𝑠│𝑟𝑎𝑚𝑝 𝑟𝑜𝑢𝑡𝑒

= 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑟𝑜𝑢𝑡𝑒 𝒂𝒏𝒅 𝑟𝑎𝑚𝑝 𝑚𝑖𝑙𝑝𝑜𝑠𝑡 𝑏𝑒𝑤𝑒𝑒𝑛 (𝑚𝑖𝑑𝑒𝑝𝑜𝑖𝑛𝑡

+ 3)𝑎𝑛𝑑 (𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 − 3) })/ 6 𝑚𝑖𝑙𝑒𝑠 

Other Input Data 

The geometric data, including number and width of lanes, right-side lateral clearance and terrain, 

are originally downloaded from WSDOT Roadway Datamart for GIS. Geospatial data fusion has 

performed using the methods introduced in the previous section. Since there is no site-specific data 

available for the remaining features, default values recommended by NCHRP Report 599 (Zegeer 

et al., 2008) are adopted. 

Required Data Default Values 

Peak Hour Factor Urban: 0.92, Rural: 0.88 

Driver Population Factor Urban: 1.0, Rural: 0.975 

Percentage of heavy vehicles (%) Urban: 5%, Rural: 12% 

Table 5-6 Default Values for Basic Freeway Segments 

Step 2: Determine Free-Flow Speed 
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Since the site-specific measured FFS is not available, the following equation developed by HCM 

2010 is used to estimate FFS. Lane width, right-shoulder lateral clearance, and ramp density are 

taken into account to adjust the Base Free-Flow Speed (BFFS). The estimated FFS is then rounded 

to the nearest 5 mph as HCM suggests. The adjustment value can be found in HCM 2010. 

Equation 5-3 

𝐹𝐹𝑆 = 75.4 − 𝑓𝐿𝑊 − 𝑓𝐿𝐶 − 3.22 𝑇𝑅𝐷0.84 

Where 

𝐹𝐹𝑆 = 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑓𝑟𝑒𝑒 𝑓𝑙𝑜𝑤 𝑠𝑝𝑒𝑒𝑑 𝑖𝑛 𝑚𝑝ℎ 

𝑓𝐿𝑊 = 𝑙𝑎𝑛𝑒 𝑤𝑖𝑑𝑡ℎ 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑖𝑛 𝑚𝑝ℎ 

𝑓𝐿𝐶 = 𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑖𝑛 𝑚𝑝ℎ 

𝑇𝑅𝐷 = 𝑡𝑜𝑡𝑎𝑙 𝑟𝑎𝑚𝑝 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑖𝑛 𝑚𝑝ℎ 

Step 3: Adjust Demand Volume 

Demand volume obtained from loop detectors needs to be converted into service flow rate under 

equivalent base conditions. According to the HCM 2010, the base conditions for a basic freeway 

segment are specified as 

 12-ft lane widths 

 6-ft right shoulder clearance 

 100% passenger cars in the traffic stream 
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 Level terrain 

 A driver population of regular users familiar with roadway in general 

Equation 5-4 below is then utilized for the conversion: 

Equation 5-4 

𝑣𝑝 =
𝑉

𝑃𝐻𝐹 × 𝑁 × 𝑓𝐻𝑉 × 𝑓𝑝
 

Where 

𝑣𝑝 = 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑑𝑒𝑚𝑎𝑛𝑑 𝑣𝑜𝑙𝑢𝑚𝑒 𝑢𝑛𝑑𝑒𝑟 𝑏𝑎𝑠𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑝𝑐/ℎ/𝑙𝑛 

𝑉 = ℎ𝑜𝑢𝑟𝑙𝑦 𝑑𝑒𝑚𝑎𝑛𝑑 𝑣𝑜𝑙𝑢𝑚𝑒 𝑢𝑛𝑑𝑒𝑟 𝑝𝑟𝑒𝑣𝑎𝑙𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑣𝑒ℎ/ℎ 

𝑃𝐻𝐹 = 𝑝𝑒𝑎𝑘 ℎ𝑜𝑢𝑟 𝑓𝑎𝑐𝑡𝑜𝑟 

𝑁 = 𝑛𝑢𝑚𝑒𝑟 𝑜𝑓 𝑙𝑎𝑛𝑒𝑠 

𝑓𝐻𝑉 = ℎ𝑒𝑎𝑣𝑦 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 

𝑓𝑝 = 𝑑𝑟𝑖𝑣𝑒𝑟 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 

The heavy-vehicle adjustment factor could be calculated by the following equation 

Equation 5-5 

𝑓𝐻𝑉 =
1

1 + 𝑃𝑇(𝐸𝑇 − 1) + 𝑃𝑅(𝐸𝑅 − 1)
 

Where 

𝑓𝐻𝑉 = ℎ𝑒𝑎𝑣𝑦 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 

𝑃𝑇 = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑡𝑟𝑢𝑐𝑘𝑠 𝑎𝑛𝑑 𝑏𝑢𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑠𝑡𝑟𝑒𝑎𝑚 

𝑃𝑅 = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑟𝑒𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑠𝑡𝑟𝑒𝑎𝑚 

𝐸𝑇 = 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑐𝑎𝑟 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑡𝑟𝑢𝑐𝑘𝑠 𝑎𝑛𝑑 𝑏𝑢𝑠 

𝐸𝑅 = 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 𝑐𝑎𝑟 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑟𝑒𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 



49 

 

As HCM suggests, the proportion of recreational vehicles in the traffic stream is small and close 

to 0 in many cases. Hence, in this study, 𝑃𝑅 is set to be 0 as the default value. The value of 

passenger car equivalent factors 𝐸𝑇 and 𝐸𝑅  are also recommended by HCM 2010 based on type 

of terrain or grades.  

Step 4: Calculate Density and Determine LOS 

Given the FFS from Step 2 and adjusted volume 𝑣𝑝 from Step 3, the average passenger car 

speed S can be found in Figure 5-19 or computed by speed-flow equation in Table 5-7. Then the 

density 𝐷ℎ𝑐𝑚 can be derived: 

Equation 5-6 

𝐷ℎ𝑐𝑚 =
𝑣𝑝

𝑆
 

Once the density is computed, the LOS 𝐿ℎ𝑐𝑚 can be determined from Table 5-8. 
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Figure 5-19 HCM Speed-Flow Model (HCM, 2010) 

 

Table 5-7 Speed-Flow Equations (HCM, 2010) 

Density LOS 

11 A 

18 B 

26 C 

35 D 

45 E 
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Table 5-8 LOS Criteria for Basic Freeway Segments 

5.3.3 Incorporate the real-time INRIX speed into LOS calculation 

One of the limitations of the HCM method is that it cannot analyze system-wide oversaturated 

conditions. In other words, once demand is greater than capacity, HCM is unable to estimate space 

mean speed as well as density. However, in reality, it is critical to identify oversaturated conditions 

spatially and temporally so that operators and planners can understand bottleneck (formation, 

propagation, and dissipation) of the facilities. As suggested by Figure 5-20, under oversaturated 

conditions, the traffic speed drops dramatically, typically below 35 mph. To fill the gap of 

analyzing oversaturated conditions, INRIX speed data is utilized in the study and incorporated in 

the LOS calculation. With the demand volume still obtained from loop detectors and adjusted by 

the HCM 2010 methodology, INRIX speed 𝑆𝑖𝑛𝑟𝑖𝑥  is utilized to estimate the density as shown in 

Equation 5-7: 

Equation 5-7 

𝐷𝑖𝑛𝑟𝑖𝑥 =
𝑣𝑝

𝑆𝑖𝑛𝑟𝑖𝑥
⁄  

𝛿 = {
1 𝑖𝑓 𝐷𝑖𝑛𝑟𝑖𝑥 ≤ 45
0 𝑖𝑓 𝐷𝑖𝑛𝑟𝑖𝑥 > 45

 

𝐷ℎ𝑐𝑚 = 𝛿 ∙ 𝐷ℎ𝑐𝑚 + (1 − 𝛿) ∙ 𝐷𝑖𝑛𝑟𝑖𝑥 

 

where 

𝐷𝑖𝑛𝑟𝑖𝑥 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑐𝑎𝑙𝑐𝑢𝑎𝑡𝑒𝑑 𝑏𝑦 𝐼𝑁𝑅𝐼𝑋 𝑠𝑝𝑒𝑒𝑑 

𝐷ℎ𝑐𝑚 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑐𝑎𝑙𝑐𝑢𝑎𝑡𝑒𝑑 𝑏𝑦 𝐻𝐶𝑀 𝑚𝑒𝑡ℎ𝑜𝑑𝑠 

𝑣𝑝 = 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑑𝑒𝑚𝑎𝑛𝑑 𝑣𝑜𝑙𝑢𝑚𝑒 𝑢𝑛𝑑𝑒𝑟 𝑏𝑎𝑠𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑝𝑐/ℎ/𝑙𝑛 

𝑆𝑖𝑛𝑟𝑖𝑥 = 𝑟𝑒𝑎𝑙 𝑡𝑖𝑚𝑒 𝐼𝑁𝑅𝐼𝑋 𝑠𝑝𝑒𝑒𝑑 
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Additionally, using INRIX speed to estimate LOS also provides ground-truth data to validate the 

feasibility of HCM methodologies, which is discussed in Chapter 6. 

 

 

Figure 5-20 Undersaturated, Queue Discharge, and Oversaturated Flow (HCM, 2010) 

5.3.4 Develop Empirical Speed-Density Regression Equations to Predict LOS 

As one of the primary concerns, the quality of traffic data greatly influences the accuracy in 

performance estimation. The data quality issues involve at least (1) missing data, (2) suspicious or 

erroneous data, and (3) inaccurate data (Turner, 2001). While erroneous data do not follow 

accepted principles or go beyond thresholds, inaccurate data contains inexact values due to 

measurement error. In this study, these three types of errors are all treated as the invalid traffic data 

entry. The data quality issues trigger two major challenges: (1) How to identify the bad data? (2) 
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How to compensate for the invalid data input?  

Much efforts have been made to develop comprehensive and sophisticated quality checking 

methods. In practice, threshold approach is often adopted to ensure the sensor value fall within a 

reasonable range. The combination of volumes, speed, and occupancies provides relatively 

straightforward yet robust way to check data error. Jacobson et al. developed an algorithm which 

uses volume-to-occupancy ratios to examine the reliability of loop detector data (1990). In addition, 

time series of traffic samples can be used for comparison. For example, Chen et al. (2003) proposed 

a diagnostics algorithm to efficiently find malfunctioning single-loop detectors based on sequence 

of volume and occupancy measurement for the entire day. Ishak (2003) developed a fuzzy-

clustering approach to measure the uncertainties of freeway loop detector. Moreover, spatial 

relationship between detectors also turns out to be an effective tool to accurately detect errors. 

Kwon et al. (2004), for instance, utilized the strong measurement correlations between upstream 

and downstream sensors to detect spatial configuration errors. 

All those advanced algorithms demonstrate robust solutions in identifying the quality issue 

of loop detectors. It thus leads to another question on how to estimate real-time density or LOS 

when the input demand volume is invalid. With the relatively comprehensive speed dataset from 

INRIX, this research focuses on predicting real-time density given the historical traffic data and 

real-time speed, as the solution to deal with invalid input volume.  

Empirical speed-density relationships provides the most abundant source to perform 

predictions. Over the past few decades, much research has been done on developing speed-density 

model. Considering the data-driven nature, multi-regime model based on cluster analysis (Sun et 
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al., 2005) is adopted to fit empirical speed-density observations. This method first applies K-means 

algorithm to traffic datasets, which naturally partitions the data into homogenous groups. It then 

applies a series single-regime models to find out the one that best fits the data, such that breakpoints 

can be automatically determined. Notice that Sun’s method chooses k value by trial-and-error, in 

this study, the optimal number of clusters are determined by the average Silhouette criterion instead 

of trial-and-error. For conceptual testing purpose, only linear, logarithmic, and exponential models 

are included. Pseudocode for building multi-regime traffic model can be found below: 

function PerformSpeedDensityRegression

# Given traffic datasets observations

# Choosing k using the Sihouette

k = DetermineKbySihouette(observations);

clusters = kmeans(observations, k);

for each cluster c in clusters

# three basic functions chosen to fit c

lmReg = lm(c.speed ~ c.density, data = c);

logReg = lm(c.speed ~ ln(c.density), data = c);

expReg = lm(c.speed ~ exp(c.density), data = c);

#choose the regression model fits best

bestReg = max(lmReg.Rsquare, logReg.Rsqaure, expReg.Rsquare);

output bestReg;

end
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Chapter 6: Implementation Results 

The aforementioned modeling framework is implemented in a real-world network for pilot testing 

purposes. I-5 Northbound corridor in Seattle, Washington from milepost 140 to milepost 195 is 

selected as the study site. It is the primary travel route connecting Tacoma-Everett through 

Downtown Seattle and has the most comprehensive traffic data available. Figure 6-21 shows 

cabinets deployed by WSDOT along the corridor totaled 140. In the next several subsections, 

network segmentation and data preprocessing is briefly introduced, followed by an elaboration on 

LOS results computed from three proposed methods, namely, the HCM 2010 method, the HCM 

2010 method with INRIX speed, and the multi-regime regression method. The satisfactory results 

further confirms the reliability and feasibility of proposed modeling framework. 
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Figure 6-21 I-5 Northbound Corridor (Tacoma - Everett) 

6.1 Network Segmentation  

Applying pixel-based segmentation on geographic data introduced in Chapter 5, the corridor is 

subdivided into 550 basic freeway segments with pixel length 0.1 mile. The corresponding 
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attribute data are then fused according to route ID (I-5), start milepost, and end milepost. Table 6-

9 presents the sample attribute data. Notice that roadway geometric data is relatively static and not 

updated very often. It is more efficient and effective to pre-process the attribute data fusion instead 

of running it on the fly. 

Route Start 

MP 

End 

MP 

Directi

on 

Should

er 

width 

Rdwy 

width 

NumL

ns 

Avg 

width 

Urban

Rural 

Terrai

n 

TRD Upper

Ramp

MP  

Lower

Ramp

MP 

5 140.4 140.5 North 10 48 4 12 U Level 0.8333 141.64 138.04 

5 140.5 140.6 North 10 48 4 12 U Level 0.8333 141.64 138.04 

5 140.6 140.7 North 10 48 4 12 U Level 1 141.64 138.04 

5 140.7 140.8 North 10 48 4 12 U Level 1.1666 141.64 138.04 

5 140.8 140.9 North 10 48 4 12 U Level 1.1666 141.64 138.04 

Table 6-9 Fused Attribute Data 

6.2 Volume and Speed Data Sets 

Real-time volume data are collected from single loop detectors every 20 seconds and INRIX speed 

is aggregated every 1 minute based on GPS data, respectively. Both datasets are archived in the 

DRIVENet database. For the pilot testing purpose, 2-day observations are extracted and utilized 

in the later computation. The two traffic datasets are further aggregated into 15-min time interval 

as recommended by HCM. Data quality control techniques are applied to ensure data accuracy. 

For example, several thresholds are set to eliminate obvious outliers. Comprehensive data quality 

control is critical to the DRIVENet system. For more detail, please refer to (Wang et. al., 2009). 

Figure 6-22 shows the scatter plot of adjusted volume 𝑣𝑝  vs. speed 𝑆𝑖𝑛𝑟𝑖𝑥   as well as density 

𝐷𝑖𝑛𝑟𝑖𝑥  vs. speed 𝑆𝑖𝑛𝑟𝑖𝑥  for a total of 95,040 observations. Notice that the service volume 𝑣𝑝  used 

in Figure 6-22 is under base conditions, converted from real-time traffic counts following the HCM 

2010 methods.  
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Figure 6-22 INRIX Speed, Adjusted Volume, and Density 

6.3 HCM Method with/without INRX Speed Data 

The HCM method with volume only and HCM method with volume and speed are applied to 

compute 𝐿ℎ𝑐𝑚  and 𝐿𝑖𝑛𝑟𝑖𝑥   respectively. Since HCM method is unable to analyze oversaturated 

conditions (LOS = F), the comparison between 𝐿ℎ𝑐𝑚 and 𝐿𝑖𝑛𝑟𝑖𝑥   is conducted for undersaturated 

flow only. With a total of 92,400 observations fall into the undersaturated conditions, 83.83% of 

𝐿ℎ𝑐𝑚 is equivalent to 𝐿𝑖𝑛𝑟𝑖𝑥, which totaled 77,458 data points. The match rate increases to 98.98% 

if adjacent LOSs are treated as approximately equal (e.g. LOS A≅LOS B). The fact that these two 

methods have a high consistency in estimating LOS delivers several important messages: (1) the 

proposed methodologies such as pixel-based segmentation can generate satisfying accuracy; (2) 
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Using INRIX speed to determine oversaturated condition is feasible and cost-effective; and (3) the 

quality of INRIX speed data has been justified to some extent, considering the consistency with 

those results computed by HCM methods in Phase 2.1 (without INRIX speed) and Phase 2.2 (with 

INRIX speed).  

Table 6-10 and Figure 6-23 show the comparison of the LOS category counts produced by the two 

methods. Note that LOS computed by using INRIX speed usually underestimate service quality. 

The results are consistent with recent research on transportation sensor comparison conducted by 

Dr. Yegor Malinovskiy from University of Washington, who found that INRIX speed data usually 

has smaller standard deviation and underestimate traffic conditions. 

LOS HCM Method  HCM Method with INRIX Speed 

A 37430 35994 

B 30343 25188 

C 18677 20324 

D 5756 8077 

E 194 2817 

F 2640 2640 

Table 6-10 LOC Count by Phase 2.1(without INRIX Speed) and Phase 2.2(with INRIX Speed) 
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Figure 6-23 LOS by Phase 2.1(without INRIX Speed) and Phase 2.2(with INRIX Speed) 

6.4 Regression Analysis 

To compensate for missing data or those of low quality, empirical multi-regime density-speed 

model is used to predict density in this study. During the implementation, the two-day datasets are 

then divided evenly into training set (November 07 2011) and testing set (November 08 2011) to 

avoid the overfitting problem. 
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function PerformSpeedDensityRegression

# Given traffic datasets observations

# Choosing K using the SilHouette 

K = DetermineKbySilhouette(observations);

clusters = kmeans(observations, K);

for each cluster c in clusters

# three basic functions chosen to fit c

lmReg = lm(c.speed ~ c.density, data = c);

logReg = lm(c.speed ~ ln(c.density), data = c);

expReg = lm(c.speed ~ exp(c.density), data = c);

#choose the regression model fits best

bestReg = max(lmReg.Rsquare, logReg.Rsqaure, expReg.Rsquare);

output bestReg;

end

 

Following the procedures described in the pseudocode above, K value is chosen to be 2 

using the Silhouette. According to suggestions from Sun et al. (2005), using the original data for 

K-mean algorithm would outperform the normalized data. Hence, this study applies K-mean 

algorithm to the training set without normalization. Clustering results can be found in Figure 6-24 

and Table 6-11. As expected, Cluster 1 has high speed and low density which represents free-flow 

regime, while Cluster 2 has lower speed and high density which represents congested-flow regime. 

Three single-regime models, namely, linear, logarithmic, and exponential functions, are 

then used to fit Cluster 1 and Cluster 2 respectively. The one with the greatest R squared value is 

chosen to represent the empirical speed-density relationship. The following equation shows the 

final two-regime model obtained from training set: 

Equation 6-1 

𝑢 = {
66.3237 − 0.1851𝑘 𝑖𝑓 𝑘 ≤ 24.6

exp(4.657 − 0.02169𝑘) 𝑖𝑓 𝑘 > 24.6
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Figure 6-24 Training Set: Two Clusters by K-means Algorithm Analysis 

Traffic Dataset  Cluster 1 Center Cluster 2 Center 

I-5 Northbound Speed (mile/h) 63 53 

Density (pc/mile) 16.94186 32.87736 

Percentage  80.27% 19.73% 

Table 6-11 Training Set: Clustering Centers by K-means Algorithm 

As Figure 6-24 demonstrates, the two-regime model fits the training set quite well. 

Comparison between the ground-truth value 𝐿𝑖𝑛𝑟𝑖𝑥  and predicted value 𝐿𝑟𝑒𝑔 for both training set 

and testing set is further conducted. The testing set yields an even lower error as indicated in Table 

6-12. If adjacent levels are treated as approximately equal, both training error and test error are 

less than 5% (shown in Accuracy of ±1 in Table 6-12). It thus proves the feasibility and accuracy 

of the modeling framework proposed in Chapter 5. 
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Date Set Accuracy Accuracy of  ±1  

Training Set 57.7% 95.38% 

Test Set 59.84% 95.01% 

Table 6-12 Test Results 

6.5 User Interface Design and Data Visualization 

Figure 6-25 demonstrates the user interface designed for freeway performance measurement 

module. The control panel is located on the left side, while interactive map is on the right. Users 

are free to input date, time, route ID, route direction, start milepost, and end milepost and query 

the corresponding LOS map by clicking button “LOS Map”. As long as the system receives the 

user request, it will visualize LOS map based on criteria described in color legend on the left. As 

Figure 6-26 shows, the LOS map gives a straightforward way to demonstrate LOS spatially, which 

enables users identify the bottleneck easier. Additionally, related statistics report would be 

prepared and automatically popped up for downloading if users click the button “Statistics Report”. 

The reports includes detailed information such as segments, geometric factors, speed, density, and 

LOS, which enables users further analyze the data. 
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Figure 6-25 User Interface Design 



65 

 

 

Figure 6-26 Data Visualization: LOS Map 
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Chapter 7: Conclusion and Future Work 

This research presents an eScience transportation platform, namely, DRIVNet 3.0, to model the 

transportation data. New architecture design is proposed with motivations to facilitate 

transportation data-driven research. To demonstrate the computational capability of DRIVENet, 

a pilot study of automating real-time freeway performance measurement is conducted. The study 

proposed and implemented modeling framework for freeway performance measurement in 

DRIVENet, enabling users to probe traffic condition timely and avoid time-consuming manual 

input for analysis. Particularly, it utilizes innovative spatial data fusion technique - pix-based 

segmentation – to spatially integrate multiple datasets. Applying HCM 2010 methodologies and 

multi-regime model, the system leverages network-wide datasets to give accurate and real-time 

evaluation of freeway facilities, which great facilitates users understanding of the traffic data and 

assists with drawing useful inferences and decision making.  

DRIVENet research is still ongoing. System is under constant refinement to keep up with 

the latest technologies. However, the goals of this research has never changed, which aims to 

efficiently make big transportation data reliable, accessible, interoperable, and understandable. 

The contributions from this study are thus summarized as follows: 

Reliability 

A novel architecture is proposed and implemented with the theme of “thin-client” and three basic 

tiers, including presentation tier, computational/logic tier and data tier. Comparing with the 

previous version DRIVENet 2.0, the new system is more robust, supporting a variety of services 

mining datasets. Moreover, due to the “thin-client” design, no requirement except browsers is 

needed at the client side, ensuring the system compatibility to the maximal extent. In addition, 
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forking open source projects improves the reliability of DRIVENet by taking advantage of 

developer communities all over the world.  

Accessibility 

The web-based interface makes historical and real-time transportation data as well as a variety of 

functionalities available through Internet: (1) the user interface is designed in a way that users 

can easily perceive and interpret; (2) a huge amount of transportation data is currently delivered 

on the website for use by the transportation researchers, practitioners, and the general public; (3) 

The system supports various ways for users to explore and exploit data, including downloading, 

interacting with map, statistically analyzing, visualizing, etc.  

Interoperability 

The richness of the data provides the resources to probe interdisciplinary and the computational 

tier enables in-depth data analysis. On the one hand, multidisciplinary data inspires new 

approaches to reveal insights from data. On the other hand, the flexibility and customizable 

capability makes DRIVENet an effective tool to develop methods and automate algorithms stand 

alone, which is fully demonstrated in the case study. The integration of the tool R further equips 

the system with the latest statistical models from academia. 

Understandability 

A variety of measurement analysis built in DRIVENet allows users to understand the 

performance of facilities easily. For instance, the real-time freeway performance measurement 

introduced in Chapters 5 and 6 qualifies the freeway quality of service into LOS ranging from A 
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through F. In addition, tubular and visual analytical tools, as one of key components in 

DRIVENet, deliver the information in a straightforward and effective fashion. 

Future work involves using DRIVENet to provide solutions to other practical problems, 

such as safety performance assessment, active traffic management decisions, and HOT lane 

strategy evaluation and optimization, travel time reliability and delay quantification, and 

congestion analysis. Meanwhile, the DRIVENet team at STARLab is actively seeking 

collaborations with researchers in other disciplines, which aligns well with the theme that 

“eScience is about global collaboration in key areas of science and the next generation of 

infrastructure that will enable it” as Dr. John Taylor stated. 
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