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ABSTRACT 

Fabricators and contractors need accurate prediction of the camber in precast, prestressed, 

concrete girders. Large differences in the camber between adjacent girders lead to significant 

construction difficulties that often have financial and/or legal ramifications. Many factors affect 

the time-dependent deflections of these girders including; creep and shrinkage of concrete, 

prestressing relaxation, temperature variations and numerous fabrication conditions. The current 

models used to predict the deflection history are largely empirical and, although they account 

approximately for some of the important effects, they do not explicitly consider the interactions 

among these factors.  

The goal of this research was to generate a camber prediction algorithm that links the 

time-dependent constitutive models and explicitly considers the fabrication conditions. This was 

done by using classical structural analysis techniques and combining them with explicit, time-

dependent material models. 

The analysis was divided into four time phases that encompass a girder’s life-span, from 

fabrication through it service life. These phases are: 

 Strand jacking: The phase during which the prestressing strands are brought up to their 

specified jacking stress, 

 Pre-bonding: The phase during which the prestressing strands are anchored to the 

abutments in the casting bed, but the strands have not yet bonded to the surrounding 

concrete, 
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 Post-bonding: The phase during which the concrete has bonded to the strands, but the 

girder is still resting in the casting bed, and the strands are still restrained by the 

abutments. 

 Post-release: The phase during which the prestressing strands have been released from 

the abutments and the girder is removed from the casting bed. This phase includes the 

entire service life. 

In each of these four phases, the boundary conditions are different and the system is 

analyzed to determine the stresses, deformations and deflected shape. The calculations are 

necessarily iterative because the constitutive laws for the strand and concrete are time-dependent. 

The foundation of this analysis method is the proper time-dependent constitutive models. 

A time-dependent constitutive model was developed for concrete creep using basic 

Kelvin-Voigt rheological models, modified to include time-dependent parameters. This new 

model was then calibrated against currently accepted creep models in order to optimize model 

parameters for a specific girder concrete.  

For the time-dependent strand relaxation model, the model proposed by Bazant and Yu 

(2012) was used. Unlike the commonly used Magura model (1964) this model is capable of 

addressing variable stress loading. It also accounts for the key factors that affect relaxation, 

including temperature and variations in strain. This model was calibrated against relaxation data. 

Using these calibrated material constitutive models, the camber prediction algorithm was 

used to predict the pre-release material stresses as well as the camber history for a girder. The 

resulting predictions were compared with measured cambers at release and up to ten hours after 

release. The resulting predictions were reasonable and resulted in expected trends. The 

predictions also compared favorably with the AASHTO (2012) model for long-term predictions. 
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CHAPTER 1 INTRODUCTION 

The development of prestressing has greatly increased the range of capabilities of 

concrete as a structural engineering solution. One of its most common applications is for bridge 

girders. Prestressed, precast, concrete girders are used throughout the world because of their 

economy and speed of construction. Because these girders can be manufactured off-site and 

delivered when requested by the contractor, they are an economical and rapid construction 

material for bridges. Structural members that are similar in principle but smaller are also used in 

building structural systems.  

Prestressing compensates for the concrete’s poor tension behavior. Prestressing 

introduces pre-compression stresses in the regions of a member likely to experience tension to 

ensure that the stress in the concrete does not exceed the tensile capacity during service. 

Although this is a successful and widely used method for improving the behavior of concrete, the 

prestressing has significant ramifications for the long-term performance of the member. 

Concrete suffers both elastic and time-dependent deformations. Deformations that occur 

without the presence of loads (or changes in temperature) are referred to as shrinkage.  

Additional deformations that occur under sustained loading are referred to as creep deformations. 

Prestressing a girder introduces a sustained compression stress in the concrete, which inhibits 

cracking but also leads to additional creep deflections. 

The prestressing force in precast girders is commonly applied with prestressing strands. 

These strands are made from high-strength steel, and they are stressed very highly before release 

after the girder concrete has hardened. The strands lose stress over time, both due to relaxation 

(the loss of stress in a material subjected to a constant strain) and due to the shortening of the 
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concrete in compression. The combined time-dependent effects of concrete creep and strand 

relaxation cause the time-dependent changes in girder camber.  

The demand for ever-longer girder spans has led to an increasing need for accurate 

predictions of these time-dependent deflections. Accurate prediction is necessary to avoid 

construction problems. A girder that cambers upwards too much at the time of construction may 

interfere with the slab reinforcing bars. On the other hand, a girder that has insufficient camber 

requires additional concrete to fill the space beneath the deck slab. This results in additional 

concrete being added to the top of the girder, which is expensive and increases the vertical 

deflections of the girder. Both of these conditions have economic and possibly legal 

ramifications. 

The analysis of these time-dependent phenomena is difficult because of the simultaneous 

occurrence of concrete creep and strand relaxation. It is further complicated by a variety of 

factors including: 

 The fabrication process used by the manufacturer to make the girder. Some plants use a 

one-day turnaround time for girders while others use longer processes. Some plants 

manufacture components out of doors and others manufacture components within a 

building.  These differences impact the material behavior after release, and therefore, the 

camber. 

 Shrinkage and creep deformations vary with environmental factors, such as relative 

humidity and temperature. 

 The geometry of the member. 

 Variations in concrete chemistry. 
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In previous approaches, the inter-dependence of concrete shrinkage, concrete creep, 

strand relaxation and temperature variations have not been linked explicitly.  For example, the 

reduction in stress due to relaxation would need to change the creep behavior of the concrete and 

visa-versa.   

In this research, a new approach was applied to the problem of predicting time-dependent 

camber. This research applies the standard methods of structural analysis to solve this problem in 

terms of constitutive models and kinematic and equilibrium relationships. 

In this research, a new approach was applied to the problem of predicting time-dependent 

camber.  The method uses a time-stepping approach.  At each step, the curvature is established at 

a number of cross-sections along the girder, and is integrated to give the deflected shape.  The 

curvature is computed for the relevant axial force and moment using time-dependent constitutive 

relationships.  The calculations are iterative to account for the time-dependence. This algorithm 

has the following advantages over current methods 

 The time-dependent concrete behavior, as well as its interdependence with strand 

relaxation and environmental loading in the form of shrinkage and thermal effects, is 

analyzed explicitly at every time step. 

 The analysis starts when the strand is first stressed and includes all of the pre-release 

activities, so their effects on camber can be analyzed explicitly for a wide range of girder 

histories. 

 The algorithm is modular which allows the exploration of alternative constitutive models 

for the material behavior.  
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CHAPTER 2 PREVIOUS WORK 

The problem of predicting time-dependent camber is not new. The first prestressed pre-cast 

concrete girders were used in the early 1950’s in the United States (Naaman, 2004). In the 

intervening time, the time-dependent issues described in Chapter 1 have been researched by 

many investigators. This chapter reviews the previous work that has been done in the various 

areas of importance. 

2.1 Creep Modeling Methods 

The most important factor in determining the time-dependent cambers is the creep of 

concrete. Many models have been proposed for predicting creep deformations in concrete. The 

most commonly used are:  

 ACI 209R-08 (ACI Committee 209, 2008) 

 Bazant-Baweja B3 (Bazant and Baweja, 1995) 

 CEB MC90-99 (Muller and Hilsdorf, 1990) 

 GL2000 (Gardner, 2004) 

 AASHTO model (AASHTO 2013) 

Creep is influenced by many attributes of the concrete, and each of the foregoing constitutive 

models considers a different subset of those attributes.  This section outlines the key features of 

each model as described in the ACI Report 209.2R-08 (2008). Table 2.1 shows the different 

attributes and the models that consider them. This is not an exhaustive list of all the things that 

may affect concrete creep but these are the ones that have been studied. 
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Table 2.1 Effects considered by current creep models 

Effect 

Model 
ACI 

209R-08 
Bazant- 

Baweja B3 
CEB 

MC90-99 GL2000 AASHTO 

Age of concrete 

when drying begins 
X X X X X 

Age of concrete at 

time of loading 
X X X X X 

Curing method X X 
   

Relative humidity X X X X X 

Volume-surface 

ratio 
X X X X X 

Cement type X X X X X 

Aggregate Content 
 

X 
   

Cement content 
 

X 
   

28-day compressive 

strength  
X X X 

 

Specimen shape 
 

X 
   

Water content 
 

X 
   

Rate of strength 

gain     
X 

 

 The model proposed by ACI Committee 209 was developed by Branson and Christiason. 

It is generally considered to under-predict the creep experienced in the measured results. 

 Bazant and Baweja’s model, known as B3, is a much more mathematically intense model 

that explicitly models different attributes affecting creep. The compliance function developed in 

the model is based on three separate attributes; elastic deformation, drying creep, and basic 

creep. Although it is quite thorough in its accounting for the many different effects shown in 

Table 2.1, it is the most complicated to implement. 

Muller and Hilsdorf developed the CEB MC90-99 creep model in 1990, and it was then 

modified in 1999 (ACI Committee 209, 2008) to include separate considerations for basic and 

drying creep. This model is highly sensitive to the relative humidity factor. 
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 Gardner and Lockman developed the GL2000 model in 2001. Gardner then modified it 

slightly in 2004 (ACI Committee 209, 2008). This model is useful because it uses only the 

parameters available at the time of design. The ACI 209.2-08 report, from which this information 

was taken from, discusses how each of these models was calibrated and how they compare. 

 The AASHTO model (not included in the ACI 209 report) uses a series of factors to 

modify the creep coefficient as a function of time. This model is tailored for use in highway 

applications and is suited to modeling the creep in bridge girders (AASHTO, 2011). These 

models are discussed in more detail in Chapter 4. 

2.2 Relaxation Loss Prediction Methods 

The second, less important time-dependent factor to be accounted for is the relaxation of 

prestressing strands. This behavior is better understood than concrete creep because steel is a 

homogeneous material with consistent properties. The two commonly accepted models for 

predicting relaxation losses are the Magura (1964) model and the CEB (1990) model.  Both 

describe the change in stress over time when the steel is subjected to constant strain.  

The model proposed by Magura et al (1964) has been used for many years. It is based on 

a logarithmic degradation of stress due to a constant strain scenario. The original model was 

developed to replicate the relaxation of stress-relieved strands.  Later, low-relaxation strand was 

developed and the model was modified by changing a numerical coefficient to account for the 

lower relaxation. Today low-relaxation strand is used almost exclusively.  It loses about 1% of 

its initial stress over 1000 hours.  

In the CEB (1990) model the stress decay is described by an exponential function. Again, 

the parameters in the CEB model have different values according to the type of strand being 

used.  



16 

 

Neither model is able to exactly match the stress decay measured in constant strain tests.  

Furthermore, and perhaps more important for use with girders, neither model is able to account 

for an applied strain that varies with time. Each these models and the selected model proposed by 

Bazant and Yue (2012) are discussed in detail in Chapter 5. 

2.3 Camber Prediction Methods 

In order to predict girder camber, the effects of creep and relaxation must be combined to 

develop a time-dependent camber response. This analysis is greatly complicated by the fact that 

both behaviors occur simultaneously and contribute to prestress loss. There are many different 

way in which this can be done and this section will discuss two of the main approaches used.  

They depend heavily on the way that prestress losses are computed.  

2.3.1 Single Step Methods 

In this approach, the total prestress loss at specific times is computed, and the 

corresponding camber is calculated.  The total prestress loss is caused by the combination of 

creep, shrinkage and strand relaxation, but the way that these behaviors interact depends on 

properties such as the section shape.  The interaction is accounted for by reduction factors on 

each effect, which leads to a solution that is simple but inevitably approximate.  The PCI Method 

(2010) uses this approach. It applies empirically determined magnification factors to camber due 

to; prestressing force, self-weight deflections, and super-imposed dead load, to compute the 

predicted camber at the time of fabrication and the long-term camber. A separate set of factors is 

used for calculation at release and long-term. This method is useful due to its simplicity but has 

been shown to provide inaccurate results (Stallings and Eskildsen, 2001). 
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2.3.2 Time-Stepping Methods 

In a time-stepping method, stresses and deformation in the girder and the deflected shape 

are computed at a number of explicit time intervals. The change in stress in each material is 

computed during each step, and the new stress is used to compute the changes in the next time 

step. The advantage over single step methods is that, for short enough time steps, the interaction 

of the stress changes in the different materials are properly accounted for.  

In the conventional approach to implementing the time stepping method, the constitutive 

laws are the conventional ones (such as the Magura model for relaxation and the ACI 209 model 

for creep) that were derived from constant stress or strain tests. The consequence is that, at every 

step, a change in the stress on the concrete means that a new load-case must be added and 

tracked in addition to the previously existing time-varying stress. Thus, if N time steps are used 

and the stress changes during each one, it becomes necessary to superimpose N load-cases by the 

end of the analysis. If shrinkage and thermal effects are treated as uniform throughout the cross-

section, the member can be analyzed using section properties and the computational effort is 

acceptable. Rosa (2007), for example, used this approach. If shrinkage and thermal effects are 

treated as varying over the girder height, the section must be broken into layers and each layer 

needs the superposition of N load-cases over N time steps, and the computational effort increases 

significantly. 

To compute the camber at a given time, the following camber contributions are added 

together: 

 Camber due to prestressing strands. This accounts for the prestress losses due to 

relaxation, elastic effects and in some cases the creep. 
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 The elastic camber due to self-weight and any superimposed loads applicable for the time 

step. 

 The camber caused by creep under sustained loads from self-weight and superimposed 

dead loads. 

 There are several models which employ this method. The difference in these models is 

the way they account for each of these effects.  

 The AASHTO (2012) model uses the Magura (1964) model to predict relaxation losses 

and the AASHTO creep model to compute losses due to relaxation. These losses are 

combined with the elastic losses computed at release to generate a prestressing force. 

This force can then be used to compute the camber due to prestressing. The creep 

deflections employ the AASHTO creep model to magnify the cambers due to sustained 

loadings including self-weight. Note that a separate creep function must be used for loads 

applied at different times (i.e. slab weight at the time of construction).  The total camber 

at any time is then computed as the summation of these various affects. The American 

Concrete Institute proposes a similar method for predicting cambers (ACI Committee 

435, 1995). 

 The second possible approach to implementing the time-stepping method is to use rate-

type constitutive laws.  These do not depend on constant stress or strain loading, so they 

are inevitably more complex than their constant load counterparts.  However, for any 

given time, if the stress and strain are known, then the change in response during the 

ensuing time step can be computed with the need to know or record the previous history.  

This is essential if, for example, a full 3-D FEA is to be conducted.  However, until 

recently it has seldom been undertaken because satisfactory material models have not 
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been available. (A conventional visco-elastic model is such a rate-type model and can be 

used.  However, because the properties, such as the elastic modulus, remain constant over 

time, it fails to describe the true time-dependent behavior). Bazant, Yu, and Wendner 

were successful in applying this approach to the analysis of the Koror-Babeldaob Bridge 

in Palau (Yu et. al. 2012).  

 There have also been several studies on prestress loss prediction. Prestress loss and 

cambers are closely linked and so these studies are also worth mentioning in the same 

context. Tadros et. al. (2003) and Zia et. al. (1979) each completed a comprehensive 

study on prestress losses in girders. These studies include the losses that result from 

elastic deflections, creep, and relaxation.  

In his research, Mike Rosa (2007) generated a comprehensive program for analyzing 

several of these time-stepping methods for a given scenario. For this approach, Rosa used 

superposition to account for changing load conditions. This method is highly computationally 

expensive. 
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CHAPTER 3 ANALYSIS FORMULATION 

3.1 Overview 

This chapter discusses the analysis algorithm developed to predict camber in 

pretensioned concrete girders.  The impetus for developing the algorithm is the need for an 

incremental time-stepping approach. This approach removes the need for superposition, creates a 

consistent method of tracking material behaviors, explicitly allows for the interaction between 

time dependent material behavior and all loadings, and allows the explicit analysis of pre-release 

effects. In Chapter 6, the predicted cambers are compared with cambers measured in the field. It 

should be noted that this comparison is a proof-of-concept calibration rather than a detailed, 

optimized calibration. 

3.1.1 Analysis Setup and Geometry 

Before discussing the details of the analysis procedure, it is important to understand the 

problem for which the algorithm has been formulated. Because the methods of fabricating 

prestressed girders vary among fabricators, the algorithm has been formulated to handle a wide 

range of scenarios. Figure 3.1 shows the typical setup for a fabrication system:  

 

Figure 3.1 Typical casting bed configuration 
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This configuration includes the key features used in many precasting plants. As the girder is 

produced, different parts of this configuration are added, and the solution process for the analysis 

must change accordingly. Examples of differences in production methods include: 

 Some fabricators use harped (or “depressed”) strands, while others use only straight 

strands, partially de-bonded at the ends as necessary to avoid excessive top tension.   

 Some plants use forms that are thermally insulated and electrically heated, while others 

use a heating blanket over the form under which steam heat is introduced. Differences in 

heating procedures lead to different thermal profiles in the girder. 

 Some plants use a “Sure-cure” system that allows test cylinders to be cured in cylinders 

whose temperature is computer-controlled to be the same as the internal temperature in 

the girder. Others use cylinders that are cured under the heating blanket alongside the 

girder. These differences may affect the ratio of actual to design concrete strength at 

release. 

 At release time, procedures for releasing the strand stress differ.  Most fabricators lift at 

least one end of the girder to avoid its dragging in the form as the girder shortens 

elastically, but the ways in which this is done vary. 

Several assumptions that are made in the entire analysis are summarized in Figure 3.1 

and listed here. 

 The casting bed length, defined as the distance between the two abutments, does not 

change during the fabrication process. 

 The temperature under the heating blanket and in the exposed regions is assumed to be 

constant with respect to the height above the casting bed except within the girder 

concrete.  
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 The harping hold-downs and strand supports are frictionless and do not cause a change in 

stress along the strands. 

 All material properties remain elastic with respect to instantaneous deformations. 

Any necessary dimensions and properties of the system are defined in the subsequent discussion. 

 An important aspect of this analysis algorithm is that it accounts for variation in the 

girder temperature, both over time and over the height of the girder. Concrete in the girder is 

likely to experience a temperature profile over the height of the girder. This gradient is caused by 

the variation in the rate of heat loss due to differing volume-to-surface ratios along the height of 

the girder. The hydration of concrete also generates heat. This temperature profile changes with 

time as the girder. This algorithm accounts for the temperature profile and history by applying 

user-defined temperature histories at several locations along the height of the girder. 

3.1.2 Analysis Sequence 

The program uses a time-stepping method, in which conditions at time t are known, and 

those at time      are computed based on instantaneous material properties and the applied 

loading.  

The analysis is broken down into four phases: 

 Strand Jacking (Section 3.2) 

 Pre-Bonding (Section 3.3) 

 Bonded, Pre-Release (Section 3.4) 

 Post-Release (Section 3.4) 

The separate treatment of the four phases is necessary because, although the same principles are 

used throughout, the topology and boundary conditions differ in each of the phases. For example, 

no concrete exists in the first phase, the concrete exists but has no stiffness or strength in the 
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second phase (but it can register temperature), whereas it is fully engaged in the third and fourth 

phases. 

The flow chart in Figure 3.2 outlines the algorithm at its highest level and shows how 

these separate phases are integrated into the algorithm. The sections refer to the sections of this 

chapter in which that part of the algorithm is described in detail.  In Figure 3.2, the third level of 

the flow-chart shows four options, one for each phase. The algorithm contains a conditional 

statement that selects only the analysis option appropriate for that phase 

 

Figure 3.2 Top level algorithm flow chart 

The strand jacking operation was treated as a separate phase in order to account for 

relaxation that occurs during the jacking of the strand. Relaxation occurs at its fastest rate during 

the time immediately after jacking, and because the jacking process is not instantaneous, it may 

be important to consider the relaxation that occurs during this time. Throughout this phase all 
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strands are assumed to be the same length (i.e. they are assumed to be stressed simultaneously) 

and are assumed to have a constant temperature. 

The pre-bonding phase occurs after the strands have been jacked and anchored. During 

this phase the concrete is cast and may be externally heated with either a heating blanket or 

heated forms in addition to the inherent heat of hydration. These fabrication practices create 

significant variations in strand temperature along the length of the bed, and these variations 

affect the stress in the strands. During this phase the strands are not yet bonded to the concrete, 

and the total length of the strand is assumed to be constant. However, local longitudinal 

movement of the strand is possible in response to variations in temperatures along the length of 

the strand. 

The post-bonding phase refers to the period of time when the concrete is assumed to have 

hardened and bonded to the strand and rebar, but the strand stress has not yet been released from 

the abutments. At this point the girder is modeled as a one-dimensional, axial element resting on 

the bed, which is treated as a foundation that is vertically rigid but has longitudinal flexibility. 

The system consists of five finite elements; one heated strand element and one exposed strand 

element on either side of the girder element. As the concrete hardens, it “locks” in a thermal 

profile to the concrete and strands within the girder. This temperature profile at bonding 

contributes to the post-release cambers and is investigated later in this document. Again, the 

casting bed length cannot change, and each of the three element types, exposed strands, heated 

strands, and hardened concrete elements, may be subjected to different temperature histories. 

The post-release phase is the period likely to be most familiar to the reader. This phase 

begins once the prestressing strands have been cut and the girder is free to lift off the casting bed. 

Upon release, the girder is analyzed at several cross section locations to determine the curvature 
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and axial strain. The curvatures are then integrated to determine the deflected shape and camber 

of the beam. Allowance is made for a range of support conditions (e.g. lifting loops) at locations 

other than the end of the girder. 

In this chapter, these four phases of the analysis are discussed in chronological order.  

3.1.3 Analysis Approach 

Some aspects of the analytical approach are the same for all four phases.  For example, in 

all phases, the girder is modeled as a beam, in which plane sections are assumed to remain plane.   

This assumption was made in the interests of simplicity, because it allows the use of one-

dimensional material models and the consideration of longitudinal strains alone. 

The analysis is conducted using an incremental, time-stepping algorithm. Because the 

material properties and loads (including environmental loads) are time dependent, the 

calculations within each time step are iterative and are conducted using a Newton-Raphson 

procedure. Although the topology and boundary conditions are different for each phase, the final 

solution consists of a combination of force and displacement values that satisfy the applied 

equilibrium and kinematic constraints. The general formulation for this procedure is outlined in 

Figure 3.3  with a flowchart and in Figure 3.4 with a force-deformation plot. 
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Figure 3.3 Flow chart for Newton-Raphson iteration scheme 
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Figure 3.4 Graphical illustration of Newton-Raphson iteration scheme. 

In Figure 3.4, the superscripts on K and F denote the iteration number for which these were 

input, and the superscripts on U denote the iteration number for which it was the result. For 

example,      
     [    ]

  
      and      

          
          

   .  

This approach is used for the iterations in each of the four phases, but, in each case, the 

variables F and U represent different force and displacement quantities, and the governing 

equilibrium and kinematic constraints change. 

 During the strand jacking phase, the force term, F, represents the stress in each strand and 

FTarget is the target stress for the end of the time-step. U is the mechanical strain in the strand. 

The goal of the analysis is to compute the mechanical strain required to reach the target stress in 

the presence of relaxation during the non-instantaneous jacking. 
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 Phase two is the pre-bonding phase during which the total strand length remains constant, 

albeit with possible temperature variations along its length. In this case, the displacement is 

known, and the stress in the strand is the dependent quantity. The variable representation from 

Figure 3.3 is less intuitive in this case, because F is used to denote the change in length of the 

strand and U represents the stress in the strand. In this case, the overall length of the strand must 

remain constant (target quantity) and the stress in each strand segment must remain equal for 

equilibrium. The strain in each segment is determined such that the change in length      

 . 

 Phase three is the most complicated scenario in which a finite element formulation is 

used. Here the concrete has hardened and five distinct elements and four internal nodes exist 

between the two abutments. F in this case represents the applied nodal forces and, in a typical 

scenario where there are no external loads, F should converge to a target value of zero for each 

node. U is displacement of the internal nodes. 

 After release of the prestressing strands, the system becomes statically determinate and 

the iteration takes place at the cross-section level. Here, F is a vector containing the moment and 

axial force for the cross-section, and U is a vector containing the curvature and axial strain for 

the cross-section. 

3.2 Strand Jacking Process Formulation 

Strand jacking is the first event to occur in the time history of a prestressed girder. Before 

jacking, the strands are routed through the specified harping points and fixed to the abutment at 

one end of the casting bed. After the strands have been routed, a hydraulic jack is attached to the 

free end, and the strands are brought up to the specified jacking stress over a finite length of 

time. This setup is shown schematically in Figure 3.5. 
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In the jacking portion of the analysis, the following assumptions are made within a single 

time step: 

 All strands within each group (e.g. straight, harped) are stressed simultaneously with 

identical elongations, forces and temperatures. 

 The strands are jacked to a specified target stress for the time interval 

 Relaxation is allowed to occur during the process, so the final strain after jacking will 

be greater than 
   

  
. 

 There are no temperature changes during the time step. This is a reasonable 

assumption, because jacking is a relatively fast process and significant changes in air 

temperature in the fabrication facility during jacking are unlikely. There are no other 

sources of heat as neither the concrete nor heating blanket is present during jacking. 

The effects of temperature on the rate of relaxation are considered. Thus the 

relaxation that occurs in girders cast during the summer may be expected to be 

slightly more than those cast in winter. 

 The length of the casting bed between abutments does not change during jacking. 

With these assumptions, the strand constitutive model (discussed in Chapter 5) is used to 

compute the mechanical strain required to reach the target stress for the end of the time step. For 

the analysis within this phase, each strand group (straight, harped, temporary) is considered 

separately so that differing jacking stresses can be applied. 

Figure 3.5 Strand jacking configuration 
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Analysis of the jacking requires a target stress or strain path over time.  Here, the stress 

was assumed to vary linearly with time. Using this relationship, the total time for jacking can be 

split into separate time steps for an incremental analysis. Note that, as will be discussed in 

Chapter 5, there is a threshold below which relaxation does not occur (this is noted in Figure 3.6 

as    ). For this reason, the first time step length was selected so that the target stress at the end 

of the interval would be at this threshold, and the remaining stress increase should be split into a 

number of steps, N. This concept is shown in Figure 3.6. 

 

Figure 3.6 Jacking sequence time-step distribution 

 With the time steps and corresponding target stress values set, it is possible to complete 

the iteration for each step using the Newton-Raphson scheme and the strand constitutive model. 

For this analysis, stress is the dependent variable F, and mechanical strain is the independent 
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variable U. The constitutive model, which will be discussed in Chapter 5, can be expressed for 

now as: 

               (3.1) 

where:    = the stress increment during the time step as a function of mechanical strain 

and time increments. This is the constitutive function that will be discussed in 

Chapter 5. 

During the jacking phase, the assumption of zero temperature change means that there are no 

environmental strains and therefore              . Using this equation within the Newton-

Raphson procedure, the mechanical strain value required to reach the target stress can be 

determined. 

The flow chart in Figure 3.7 outlines the process by which a time step occurring within 

the jacking phase of the girder time history is solved for the mechanical strain. 
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Figure 3.7 Jacking process flow chart 
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Notice that the flow chart has a Newton-Raphson procedure nested within the for-loop to deal 

with each of the input strand groups. This Newton-Raphson iteration has the same general 

approach outlined in Section 3.1.3.  

Step 3 from the general Newton-Raphson procedure (finding the instantaneous stiffness) 

is omitted from Figure 3.7, because it is given by Ep and no further calculation is needed. For this 

iteration the true stiffness should be a tangent stiffness that is a function of the stress, strain, and 

time as described by the constitutive model. The simpler approach of using Ep is used. Note that 

after the calculation in each time step has converged, the final residual stress   , is saved as an 

unbalanced load and is used to modify the target stress in the next time step. This step is 

followed for each of the strand groups at each time interval. 

                               (3.2) 

After the stresses have converged, the stress and strain for each of the strand groups are 

stored. 

3.3 Pre-Bonding 

Once all strands are jacked to the target stress, the girder fabrication can begin. In the pre-

bonding phase, the strands remain free to move independently from the surrounding concrete 

while the girder forms are placed and the concrete is poured. In most production plants, the 

fabrication schedule is critical to maintaining profits. For this reason, heat is applied to the 

concrete during curing so that higher concrete strengths are reached much faster. This is usually 

done in the form of either heated steel forms or by placing a large heating blanket over the length 

of the girder. This latter method creates three distinct regions of strand; the exposed region where 

strand is exposed to the ambient air temperature, the heated region where strand is within the 

heated blanket but outside the girder, and the girder region where the strand is affected by both 
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the hydration of the concrete and the supplementary heating mechanism. Figure 3.8 below shows 

the three types of regions of the strand that make up the entire system for which a solution is 

required. 

 

Figure 3.8 Pre-Bonding strand segment diagram 

The heated region of the strand shown in Figure 3.8 may or may not exist depending on the type 

of heating system used by the fabricator. If a heated form system is used then this “heated” 

region shown above becomes part of the exposed region. For the purpose of this portion of the 

analysis both heated regions are lumped together into one length and the same is done for the 

exposed region. The result is three different segments of strand considered in the analysis. 

 The goal for each of the time steps in the pre-bonding phase is to converge on a single 

stress value for each strand group that accounts for the variations in temperature along the length 

as well as the relaxation that occurs during the time step. This process is governed by the fact 

that the length of the casting bed does not change. Each of the three segments of strand are 

subjected to its own temperature histories that have a significant impact on the stress in the 

strand due to the thermal expansion coefficient and the effect of temperature on the rate of 

relaxation. 

While completing this analysis the following key assumptions are made: 

 The total length of the strand groups does not change. 
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 The temperatures in the heated and exposed regions of the strand are constant with 

respect to the height, while the girder region may register a vertical temperature profile 

from the heat flow properties of the girder that arise due to applied heat and the heat of 

hydration. 

 Each strand group has a constant stress over its entire length, (i.e., the harping points are 

frictionless). 

For the strands to maintain equilibrium under these conditions, the mechanical strains must 

change so that the stress in each segment of strand is the same as in adjacent segments. It is 

important to note that if the thermal changes are ignored there would be no change in mechanical 

strain, and the problem becomes one of constant strain relaxation. 

3.3.1 Solution Procedure 

 The governing parameter for this phase of the time history is the kinematic equation that 

defines the change in length of the casting bed. 

        ∫        
    

 
 (3.3) 

By breaking the total strain into a mechanical and an environmental component, and assuming 

that the strain in each strand region is constant, Equation 3.3 can be written in the form of a sum: 

           ∑                   
    
    (3.4) 

where: Nreg = the number of strand regions being considered (three in this case – heated, 

exposed, and girder). 

 Li = length of the region 

Notice that stress does not appear in this equation. The stress enters via the constitutive relation 

between the mechanical stress and strain. The same constitutive model used in the strand jacking 
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formulation above is used here, but it is re-formulated to give the change in strain due to an 

increment in stress. 

               (3.5) 

where:       = is the increment in mechanical strain during the time step as a function 

of stress and time increments. This is the constitutive function that will be 

discussed in Chapter 5. 

Using this in Equation 3.4: 

        ∑                          
    
    (3.6) 

This governing equation is defined by a nonlinear relationship in time and must therefore 

be solved iteratively. In Equation 3.4, it is assumed that the change in bed length is zero and in 

order to ensure that this is true, the stress in the strand is iterated to change the mechanical strain 

to this end. The resulting equation is: 

            ∑ [                    ]   
    
    (3.7)  

where:    = the residual change in length that results from the increment in time, stress, 

and specified environmental strain. 

       = is the specified change in bed length. This is typically set to zero but is 

included in the formulation for completeness. 

Equation 3.7 is now formulated in a manner that can be used in a Newton-Raphson scheme. 

Notice that the change in the independent variable.   , is specified in terms of an increment in 

the dependent variable  . Notice that this is the opposite variable dependence from the general 

formulation described above. This is because the governing Equation, 3.3, in this case is not 

equilibrium but is instead a kinematic relation. The Newton-Raphson iteration is continued until 

this resulting    is within the specified tolerance of zero. 
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 In order to complete the Newton-Raphson formulation, the additional change in stress 

must be expressed in terms of the residual change in length. This is done by applying the elastic 

stiffness for strand and results in the following stiffness equation. 

        
  

    
   (3.8) 

where:    = the change in bed length resulting from Equation 3.7 

 
  

    
 = the inverse stiffness term K

-1
, from the general Newton-Raphson 

formulation above. 

The implementation of this Newton-Raphson formulation is outlined in the flow chart in 

Figure 3.9. 
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Figure 3.9 Pre-bonding analysis flow chart 
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As before, each strand group is analyzed individually. For the first iteration it is assumed that the 

total change in stress (     ) is zero. The time and environmental changes in the system are 

included in the residual stress that results after the first iteration when the assumed stress change 

is zero. 

 Due to the kinematic formulation of this problem, there are several differences from the 

general Newton-Raphson algorithm. In Step 4, the change in stress (dependent variable) is 

calculated based on the exact solution for    rather than using an approximate stiffness 

approach. Because the exact solution at any point in the iteration is known,    should always be 

zero. This increment in stress (from Equation 3.8) is then added to the total stress change for the 

time step (Step 5). The final difference is the computation of error. For this system, the error is 

calculated from the dependent variable, stress, rather than the independent variable, change in 

length. Although either could be used to generate an iteration error, a ratio between the stress 

change increment and the yield stress is used for a relative error. For an exact solution, the term 

      would be zero and is therefore a good representation of the accuracy of the iteration. The 

yield stress is chosen as a convenient normalizing parameter. 

 After completing this phase of the analysis, the stress and mechanical strain for each of 

the strand groups in each region is stored. 

3.4 Post-Bonding, Pre-Release Analysis 

The next portion of the girder’s time history occurs after the concrete in the girder has 

bonded to the strands and the girder becomes a composite steel-concrete element. For the sake of 

this analysis it is assumed that the concrete bonds suddenly at a specified time rather than 

gradually. The concrete is assumed to harden gradually with the elastic modulus increasing from 

zero to a release value in a linear fashion (see Chapter 4 for more details). 
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When bonding occurs two important things happen:  

1) The girder is heated by both the intrinsic heat of hydration and external heating 

mechanism, if present. This may cause a vertical thermal profile. 

2) The girder becomes a composite element containing prestressing strands, reinforcing 

bars, and concrete.  

The girder typically rests on a casting bed raised above the ground, both to facilitate 

leveling and to allow access to the hold-down anchor points. The bed is supported on posts. 

Bending of the bed support posts leads to some shear flexibility between the bed and the ground. 

It is modeled here as an elastic foundation that deforms in shear. The stiffness of the bed is 

included because it affects any changes in length of the girder. 

The problem is simplified into a one-dimensional system of axial elements. This 

idealized system is shown in Figure 3.10 below: 

 

Figure 3.10 Post-Bonding idealized element configuration 

In this figure the elements A and E are strand-only elements exposed to the external temperature 

of the casting facility, and elements B and D are strand-only elements that are under the heating 

blanket, if it exists. Element C is the girder resting on an elastic foundation. When completing 

this analysis the following assumptions are made: 

 In the strand only elements (i.e., elements A, B, D, and E), the strand groups go through 

the same nodal displacements. This is different than the assumption made in previous 

phases, for which each strand group was analyzed separately and allowed to deform 

independently. This assumption is made because, in the girder element, the strands are 
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bonded to the concrete and forced to undergo the same nodal displacements. In the 

strand-only elements there are no driving factors that would lead do differential motion 

between strands. This assumption has the added advantage that all of the strands can be 

analyzed together as a single element, and the stiffness is related to the total area of 

strands. 

 The girder does not undergo any curvature until release. It is assumed that the 

combination of self-weight and hold-down anchors counteracts any moment that could 

be induced on the girder due to thermal/shrinkage profiles. 

3.4.1 Numerical Formulation 

In the post-bond/pre-release phase of the girder history, the goal is to determine the stress 

and strain in each of the active materials. This means analyzing the strand-only elements as well 

as the composite girder element. This is accomplished using finite elements to determine the free 

node displacements that result in an equilibrium state. Because this is a non-linear solution in 

time, the Newton-Raphson approach is again used to iterate on the nodal displacements based on 

the nodal forces.  

It is important to note that, although the final solution is in terms of nodal displacements, 

the actual data of importance is the final stress and strain results from each material element. The 

final nodal displacements are unimportant and for this reason it is only the change in nodal 

displacements during each time-step that are actually important to determining the material state 

at the end of the interval. 

There are two constraints on this problem. The first is the kinematic requirement of zero 

change in length of the casting bed. This constraint is satisfied by using free nodes only, labeled 

as 1, 2, 3, and 4 in Figure 3.10; the two abutments are specified to have zero displacement. The 
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second requirement is for nodal equilibrium to be achieved at each of the four free nodes. 

Because there are no applied nodal forces, equilibrium requires that the force on either side of 

the node be equal, as shown in Figure 3.11. 

 

Figure 3.11 Nodal equilibrium requirement 

With no applied loads, nodal equilibrium is achieved when       . For the Newton-Raphson 

iteration, a residual nodal load is needed to determine the next increment in displacement. 

              (3.9) 

where the residual nodal force is zero once equilibrium is achieved. In terms of the Newton-

Raphson scheme for this phase, nodal forces, F, are the dependent variables while the nodal 

displacements, U, are the independent variables to be iterated on. 

The residual nodal forces and nodal displacements are related using the classical finite 

element approach where: 

     [ ]       (3.10) 

where:      = a 4x1 vector of residual nodal forces. 

 ΔU = a 4x1 vector of free nodal displacement increments 

 K = the stiffness matrix relating nodal forces and displacements. 

For the stiffness matrix, K, the instantaneous linear-elastic stiffness provides an acceptable 

approximation for iteration purposes.  
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For the strand only elements where a simple 1-D element is used, the resulting stiffness 

for a single strand only element,  

 [ ]   
    

    
[
   
   

] (3.11) 

where:    = the total area of strands from all groups in the element. This is the same for 

all of the strand-only elements. 

    = the elastic modulus of the strand (typically 28500 ksi) 

      = the length of the element 

The girder element is more complicated due to the effects of the elastic foundation it is resting 

on. The derivation of the stiffness matrix for this 1-D element is shown in Appendix B and 

results in the element stiffness equation: 
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} (3.12) 

 

where: L = the length of the girder 

 KBed = the total shear stiffness of the elastic bed along the entire length of the 

girder 

   √
 

  
 , in which β is the bed stiffness per unit length given by 

    

 
, and       

is the cross sectional axial stiffness of the composite girder. 

It should be noted that the total bed stiffness, KBed, is specified as a user input. This stiffness 

matrix gives the standard axial element stiffness shown in Equation 3.11 if the term KBed 

approaches zero. 
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Using these element stiffness matrix types, the global stiffness matrix for the free nodes 

can be assembled as follows: 
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(3.13) 

Using this stiffness and Equation 3.10, the change in displacement due to residual nodal loads 

can be determined.  

 Equation 3.10 provides an estimate for the nodal displacements due to residual nodal 

loads, but in order to complete the iteration circle, a method of calculating the “exact” residual 

nodal loads due to prescribed nodal displacements. This is done through kinematics and the 

constitutive relation. 

 Equation 3.9 provides the residual nodal force provided the element forces are known. 

The forces in the strand-only elements are computed from the nodal displacements as follows: 

        
        

  
 (3.14) 

where:     and     are the increments in nodal displacements at the right and left ends of 

the element respectively. 

    = the element length 

The mechanical strain increment in the element can then be determined using the relationship: 

                      (3.15) 

where:       are the free thermal strains given by    . 

Using this mechanical strain, the force in the element can be calculated using the constitutive 

relation that will be discussed in Chapter 5.  
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     ∫                (3.16) 

For the strand-only elements this equation becomes a summation of the force in each strand 

group. Each strand group must be considered individually because, although the change in strain 

is the same for each group, the beginning state differs from the result of the previous phase. So 

the total force in a strand-only element is: 

     ∑    
    
                 (3.17) 

The girder element is more difficult because of the elastic foundation on which it rests. In 

order to compute the actual force on the element, the total strain must be related to the nodal 

displacements. This is complicated by the fact that the total strain is not constant along the length 

due to the bed stiffness contribution. The derivation of the governing equations for an axial 

element resting on an elastic bed with shear stiffness is shown in Appendix B. The resulting 

strain at any location along the girder is given by. 
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} (3.18) 

where: x = the location along the girder measured from the left side of the girder and is 

positive to the right. 

Note that because of the assumption of zero curvature in the girder element, the total strain does 

not vary over the height of the girder. This is not true for the thermal (and possibly shrinkage) 

strains which are likely to vary over the height of the girder. With this the mechanical strain 

increment may be computed at any height as follows: 

                               (3.19) 

where:          = the environmental strain increment at height y due to thermal and 

shrinkage effects depending on material type. 
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           = the mechanical strain increment at a location y in the girder at a 

given location x, along the girder. 

Applying the same principle as before, the force at the location, x, can be calculated as: 

        ∫                   (3.20) 

Notice that this integral is more complicated, because the stress changes along the height of the 

girder and there are also different types of material active in this cross-section. Equation 3.20 

includes the integration of the stress in the prestressing strands, rebar and girder concrete. The 

method for dealing with this integration will be discussed in greater detail in Section 3.5.4. 

 The force in each of the five elements can now be calculated using Equations 3.17 and 

3.20. These now are combined to generate the residual forces on each of the free nodes. This can 

be done as follows using Equation 3.9 to define the residual forces 

 {    }   {

  

  

  

  

}   {

      

         

          

      

} (3.21) 

where: (x) indicates the location in the girder element where the force was computed. 

3.4.2 Numerical Implementation 

The derivation above was completed with a Newton-Raphson iteration scheme. Figure 

3.12 displays the flow chart for the implementation of this scheme. 
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Figure 3.12 Post-bond, pre-release analysis flow chart. 
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The step numbering above matches that from the general Newton-Raphson scheme outlined in 

Section 3.1.3. Step 3 (computing the stiffness matrix) has been moved outside of the while-loop 

because it is not updated at each iteration. This is because the stiffness is computed based on the 

linear-elastic properties only. Step 7 is removed from this iteration scheme because the target 

value for      is always zero and therefore      is also the error. 

 The end result of this analysis phase is to obtain the stress and strain state for all of the 

material properties prior to release. These results are saved for use in the next time-step. In the 

post-release phase, which is discussed next, the girder element is analyzed at multiple cross-

sections to determine the curvature. In order to include the pre-release phases, each of these 

cross-sections needs to be analyzed during this post-bond phase. In the formulation above only 

the end sections need to be analyzed to complete the analysis. 

Because the results of this phase of the analysis are used in the next section, it is 

necessary to complete the material analysis for all locations needed in the future. This means that 

each of the cross-sections used in the post-release analysis (see Section 3.5) must be computed 

for each of the time-steps in the post-bond analysis. This is done so that the material state at the 

time of release is known for each of the material elements at each location. Note that these 

analysis locations are not used for the solution procedure described above. 

3.5 Post-Release Analysis 

The post-release phase is the one most commonly analyzed. In most analysis procedures 

(PCI, 2010; Tadros and Al-Omaishi, 2003; Stallings, 2001; AASHTO, 2012; ACI Committee 

435, 1995) the stresses in the concrete and steel at the start of the phase are obtained from one-

time calculations, such as the elastic shortening of the strand.  Here, the starting conditions are 
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obtained from the output from the post-bonding phase, during which relaxation, temperature 

effects, etc., were tracked over time.  

The goal is to compute the girder camber based on the constitutive models, applied loads, 

and environmental effects. The girder’s camber history will be affected by the various events that 

occur during the fabrication process and service life. 

At release, the girder formwork is removed; the strands are released at both ends of the 

girder, which becomes simply supported, as shown in Figure 3.13.  Immediately after release, the 

girder is typically supported by a crane. The lifting loops are likely to be set in a short distance 

from the girder ends, rather than being at the ends, as shown in Figure 3.13, and this placement is 

taken into account when determining the moments at each cross-section location. 

 

Figure 3.13 Released girder configuration 

Camber is calculated at each time step by determining the curvature at several user-specified 

places along the girder and then integrating twice to determine the deflected shape and camber.  

The method consists of several different analysis levels which will be discussed in the following 

sections. The following assumptions are made when completing this analysis: 

 Plane sections remain plane. 

 Materials exhibit visco-elastic properties but remain in the elastic strain region. The 

girder remains uncracked. 
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 The supports have no friction and cannot induce longitudinal forces or moments in the 

beam. 

3.5.1 Camber Calculation 

Figure 3.14 shows the procedure for computing camber at any time step. 

 

Figure 3.14 Post-release analysis flow chart 

 External load increments are generated for each cross section. They consist of axial 

forces and moments. In most cases the axial load at any location will be zero, but the moment 

will vary with the applied loads and support conditions. 
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For each cross-section, at the time step in question, the curvature and axial strain at the 

top of the girder are evaluated as described in Section 3.5.2.  Those curvatures are integrated 

twice numerically (using the Simpson’s rule) to give the deflected shape along the girder, and the 

camber is taken to be the deflection at mid-span relative to the ends. Loads and deflections are 

taken to be positive downwards, so an upwards camber is computed as a negative number. In 

reporting the camber for the camber history, this result is modified to match the common practice 

of stating camber as positive in the upward direction. The axial shortening of the girder is 

obtained by numerically integrating the strains at the centroid. 

3.5.2 Curvature Calculation 

Computing the curvature is done by completing a cross-sectional analysis. In order to 

illustrate the theory behind this analysis, the governing equations for a linear-elastic, time-

dependent material will be developed. This will be useful in demonstrating the use of the 

Newton-Raphson approach that is used when the time-dependence is linked to the elastic 

changes as is the case for the constitutive models used in this algorithm.  

For the cross-section analysis, the curvature and axial strain at the origin are determined 

by iteration until the moment and axial force on the cross-section are equal to the applied 

external loads.  

The axial load will be derived first. In order for equilibrium to be satisfied, 

        ∫                (3.22) 

where:               is the constitutive relation that gives the stress increment due to 

an increment in time and mechanical strain. 

So: 

     
  

  
   

  

  
       (3.23) 
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So for a cross-section analysis where stress varies over the height of the girder 

        ∫         ∫
  

  
             ∫

  

  
     (3.24) 

But                      (3.25) 

where:                              and may vary over the height 

        = the strain increment associated with a stress change. 

So 

        ∫
  

  
(                  )    ∫

  

  
     (3.26) 

For this case where materials are assumed to remain linear 

 
  

  
      (3.27) 

And for a given cross-section subjected to both moment and axial loads, the total strain can be 

expressed as 

                        (3.28) 

Combining these equations and rearranging, the common stiffness formulation can be derived as 

 ∫               ∫                      ∫                 ∫
  

  
      

  (3.29) 

A similar approach can be used to develop the following equation for the moment. 

 ∫                ∫                       ∫                 ∫
  

  
      

  (3.30) 

Equations 3.29 and 3.30 describe equilibrium on the cross-section in the classical 

stiffness form, 

 { }   [ ]{ } (3.31) 

Equations 3.29 and 3.30 can be combined to create a 2x2 system of linear equations 
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 {
     

     
}   [    ] {

     

       
} (3.32) 

where: [    ]      [
∫     ∫   

∫    ∫  
] (3.33) 

 {
     

     
}  {

       ∫                  ∫
  

  
     

       ∫                 ∫
  

  
    

} (3.34) 

       = the increment in curvature 

         = the increment in total axial strain at the user defined origin of the cross-

section. 

Equation 3.29 shows that the total change in load,  Ptot, consists of three components.  

The first is the external load component, the second is the environmental load component, and 

the third is the load change caused by the fact that the constitutive laws are time-dependent.  The 

latter therefore constitutes the difference between the real load change (including creep effects) 

during the time step and that obtained assuming elastic behavior.  

The variable E(t) represents the instantaneous elastic modulus, so the terms in the 

stiffness matrix, K, represent the instantaneous elastic stiffnesses, that is, the tangent stiffness at 

time t.  

Because the stress is, in general, a function of both time and strain, the last term in the 

loading cannot be evaluated until the strain increment during the time step is known.  This causes 

the need for iterative calculations.  Thus the procedure is to: 

 Formulate the incremental load vector (Equation 3.29 and 3.30) 

 Estimate the increments in total curvature       and strain          at the origin of the 

cross-section using Equation 3.31. 

 Evaluate the total incremental strains throughout the section from       and        . 
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 Evaluate the stresses at the end of the time step throughout the cross-section using the 

time-dependent constitutive laws. 

 Integrate the incremental stresses to obtain the calculated axial force and moment, 

         and        . 

This formulation is easily written into the Newton-Raphson using the relationships 

described above. This scheme is outlined in Figure 3.15. 
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Figure 3.15 Curvature calculation routine flow chart 
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Notice that at two locations, a separate function is called to compute the moment and axial force 

at the end of the time-step (note that this is not the increment in load and therefore an increment 

is computed by subtracting the previously converged load). This calculation will be discussed in 

more detail in the Section 3.5.4. This is calculated based on an increment in time, environmental 

strains, and total strain and curvature expressed as       .  

 In Step 1, the computed change in moment and axial force due to the time and 

environmental effects are added to the change in applied load. This load is computed assuming 

that there is a zero increment in total strain or curvature and is done for numerical efficiency. If 

the time and environmental loads are neglected in the first step, they will be accounted for in the 

residual force in the first iteration when time and environmental strains are incorporated in the 

moment and axial force calculation. 

 In Step 3, the stiffness is computed. In the original Newton-Raphson formulation, this 

stiffness is computed in each iteration with the updated state variables, while in the modified 

Newton-Raphson procedure the stiffness is computed only in the first iteration. The algorithm is 

formulated such that either method can be used depending on the user input. The method of 

computation is discussed in Section 3.5.3. 

3.5.3 Stiffness Matrix Calculation 

The stiffness matrix is determined using Equation 3.33 where the location y depends on 

the definition of the origin. If the origin is selected at the centroid of the section, the resulting 

stiffness matrix is given by. 

 [ ]  [
   
   

] (3.35) 

where: A and I are the transformed gross-section properties 
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E is the instantaneous elastic modulus during the time step. 

 Because the curvature calculation formulation must hold throughout the entire analysis, 

the origin of the section was selected as the top of the girder for this analysis. This is done 

because when a slab is added, the centroid changes and then the stiffness computation would 

need to change. The stiffness is then computed numerically following the procedure outlined in 

Figure 3.16. 
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Figure 3.16 Flow chart for generating cross sectional stiffness matrix. 

This formulation also has the added advantage of being universal and could be used in the case 

where nonlinear strains are reached. 
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By setting the time and environmental increments to zero when calling the moment and 

axial force calculation function, only the elastic stiffness is returned. In that case the elements of 

the stiffness matrix can be obtained with less computational effort as: 

         ∫      (3.36) 

             ∫       ̅ (3.37) 

         ∫          ̅  (3.38) 

where y is measured from the origin, in this case the top of the precast section, and  ̅ is the 

distance between the origin and the centroid. 

3.5.4 Moment and Axial Force Calculation 

The very lowest level of this iteration scheme is the routine supplied for computing the 

moment and axial force on a cross section due to an increment in curvature, axial strain, time and 

environmental effects. The routine is a relatively simple integration process, but it is worth 

describing to complete the discussion of the analysis algorithm. Several important points should 

be made about how this integration system is formulated: 

 The origin for the y-axis is at the top of the girder and is oriented as positive downwards. 

 The axial strain value        is specified at the origin. 

 The concrete cross section is split into horizontal layers, following the concepts of a fiber 

element. The stress and strain are evaluated at each of these layer interfaces and then 

Simpson’s integration scheme is used to compute the axial force and moment cause by 

the concrete on the section. 

 Both the thermal and shrinkage strains may vary in the y-direction and must be evaluated 

at each calculation point. 
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 The strands and rebar in the section are treated as points and the strain and stress are 

assumed to be constant over the bar or strand area. 

The routine used to compute the moment and axial force is shown in Figure 3.17. 
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Figure 3.17 Moment and axial force calculation routine 
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The time-dependent constitutive models compute the stress at the end of the time-step 

based on an increment in mechanical strain and time. Note that the constitutive model does not 

compute the increment in stress but the final stress. 

Each of the three material types was considered separately when calculating the axial 

force and moment. The strands and rebar elements are easily considered by using the point 

assumption made above but the integration over the concrete section is a little more complicated. 

The user defines the geometry of the cross-section by inputting a series of trapezoids (see 

Appendix A). These major trapezoids can be subdivided further for better accuracy, and this is 

done by defining the target sub-layer thickness. These sub-layers are used to integrate using 

Simpson’s rule. 

Simpson’s rule is an approximate method for integrating a function. It uses coefficients 

applied at sets of three locations where the function is known to integrate the parabolic equation 

described by these three points. These coefficients are come from Simpson’s derivation where 

the integration is exact for functions of order two or less. 

In this algorithm, Simpson’s rule is applied in a numerical fashion where, rather than a 

function, the concrete stress is known at pre-determined locations along the height of the cross-

section. This done using Equations 3.25, 3.28 and the constitutive model described in Chapter 4. 

These locations are the interfaces of the sub-layers described above. Each major trapezoid is 

divided into an even number layers and the strain and stress is analyzed at the interface of these 

layers (an odd number). The force at each interface is computed from the stress acting over the 

area tributary to it. These forces are integrated multiplying by the specified Simpson’s 

coefficients and summing.  
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For a simple I-beam section, the Simpson’s coefficient distribution would look like the 

following.  

Figure 3.18 Simpson's Rule demonstration 

In this diagram, the solid lines represent the trapezoids input by the user and used to define the 

section geometry. The dashed lines are the sub-layers used to increase the accuracy during the 

integration. Each pair of the sub-layers is integrated separately using Simpson’s Method.  

Using Simpson’s integration rule for the girder, the closed form integration for P noted in 

Figure 3.17 is computed as follows. 

         ∑     
    
    (3.39) 

          ∑     
     
    (3.40) 

            ∑       
    
    (3.41) 

where:                                
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 Sn is the Simpson’s coefficient for the concrete interface. 

 nInt = the number of sublayer interfaces in the section (used for the concrete 

integration only). 

Similarly the moment M is computed as follows.  

         ∑       
    
    (3.42) 

          ∑       
     
    (3.43) 

            ∑         
    
    (3.44) 

where:                                

 Sn is the Simpson’s coefficient for the concrete layer. 

 nInt = the number of sublayer interfaces in the section (used for the concrete 

integration only). 
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CHAPTER 4 CONCRETE CONSTITUTIVE MODEL 

The creep of the concrete is the most important fact in analyzing the long-term deflection 

behavior of precast, prestressed, concrete girders. The effects of creep are magnified in 

prestressed members because long-term deflections are increased not only by creep, but also by 

prestress losses resulting from creep deformations. In order to link the effect of creep to the 

prestress loss, it is preferable to use a model formulated in a time-incremental manner. This 

chapter describes the formulation of a new rheological model for simulating creep that has 

significant advantages over current methods. Most existing models exhibit the following 

drawbacks, while the new model avoids them: 

 They are formulated to predict the outcome of creep tests, in which the stress is known 

and the strain is sought.  This is the opposite of the need in most displacement-based 

numerical simulations of structures.  

 They are formulated for constant stress loading, such as is found in creep tests, and are 

not amenable to use with time-varying stress, which is the usual condition in a pre-

tensioned girder.  

 Their inability to address time-varying stress leads to an inability to predict the special 

but important case of creep recovery when the stress changes. 

 The models are mostly phenomenological and consist of empirical equations that fit test 

data. Guaranteeing thermodynamic validity is essential but may be difficult.  

 They do not include the observed time variations in elastic modulus and other properties. 

This proposed model is based on visco-elasticity and is intended to provide a framework 

sufficiently versatile to replicate a variety measured results, including creep recovery. 
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Following its formulation, the model will be calibrated against the currently available 

creep prediction models. Because this thesis is focused on the development of a camber 

prediction algorithm and not the intricacies of creep modeling, the versatility of this model will 

be demonstrated but a more thorough calibration to actual creep data will not be conducted. This 

calibration will be demonstrated using a typical girder concrete mix and the resulting material 

parameters will be applied for the rest of the comparisons. 

4.1 Model Formulation 

The model is shown schematically in Figure 4.1. It consists of a chain of Kelvin 

elements, to the end of which is attached a pure elastic spring element. A Kelvin element consists 

of a linear spring in parallel with a linear dashpot, in which the resistance is proportional to the 

strain rate,      . The figure shows a model with three Kelvin elements, but as many as desired 

can be used.  All of the material parameters, such as springs and dashpots in the Kelvin units, 

have properties that can vary with time. It is questionable whether the experimental data 

presently available are sufficiently reliable to calibrate all of the time-varying features, but the 

time-variation feature is included in preparation for such time that the data are available. Some 

time-variation is needed to model creep recovery, and that characteristic is shown here. 

However, suitable calibration data are available for the variations of elastic modulus over time, 

so at least that element of the model can vary with time using realistic values. The model can, of 

course, be used with constant values for the parameters in the absence of data for calibrating the 

time-varying.   
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Figure 4.1 Rheological diagram of the model 

4.1.1 Governing Equations 

The governing equations for a single Kelvin element are derived first, and they are then 

incorporated into the chain.  In each case the parameters are assigned time-varying properties.   

To maintain thermodynamic consistency, the parameters may not vary arbitrarily.  The 

primary requirement is that the unit should not be able to generate energy under any loading 

scenario. That goal is achieved here by basing the equations on a particular physical form; at 

each time step, each element is thought of as being supplemented with an additional, unstressed, 

element in parallel with the original one. Because the model describes the behavior of a real 

physical system, it must be thermodynamically consistent. The predicted response will depend 

slightly on the length of the time step, but it is expected to converge to a unique value as the time 

step is reduced towards zero. The use of finite time steps is a consequence of having to solve the 

equations numerically. 

The way in which the properties change with time can be chosen to fit any particular set 

of measured data. Here, the variation with time of the elastic modulus is taken to be of the form 

 
    TteEEEtE /

0inf0 1 
 (4.1) 

where: T = a user-specified intrinsic time constant that controls how rapidly the 

properties change. 
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This form fits the available elastic modulus data well and is quite simple. It is illustrated 

in Figure 4.2. The same general form of time dependence is used for the Kelvin element spring 

stiffnesses and dampers, EK and 𝜂. 

 

Figure 4.2 Assumed variation of E with time. 

The general constitutive equation for a Kelvin unit with fixed properties is: 

   KE  (4.2) 

where a dot indicates differentiation with respect to time. To address the time variations this 

must be differentiated to give the incremental form 

 
dt

d
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However, Equation 4.4 contains the term, 
dt

dEK , which should not be present if the 

incremental stiffness element is unstressed when it is added. The term must therefore be dropped, 

to give: 
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 (4.5) 

or:    fE  (4.6) 

where: Ef = the effective stiffness, given by KE , 

Equation 4.6 can also be obtained from first principles, by considering the force in each 

element. Note that this formulation causes creep to be treated in the same fashion for both 

tension and compression. 

To find the relationship between the stress and strain rates in the Kelvin element at the 

end of a time step, either the stress rate or the strain rate is needed; in the absence of both, the 

problem specification is incomplete. Here it is assumed that the stress varies linearly with time, 

so   is constant. The solution to Equation 4.6 is then 
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 (4.7) 

where:      𝜂     = the intrinsic decay time of the unit 

   = the rate of change of stress with time 

 
0K  = strain rate in the Kelvin element at the start of the time interval 

4.1.2 Numerical solution procedure 

Equation 4.7 provides the strain rate throughout the time step, and it must be integrated 

with respect to time to obtain the strain at the end of the time step.  However, the property Ef is 
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time-dependent, and so the form of its dependency must be known in order to complete the 

integration.  Two approaches were considered.  In the first, Ef was treated as constant during the 

time step with a value equal to the average of the starting and ending values.  This approach is 

referred to as the “Constant Average” approach.  In the second approach, the compliance, 1/Ef, 

was assumed to vary linearly during the interval.  That approach is referred to as the “Linear” 

approach, (the compliance, rather than the stiffness, was taken as linear because doing so 

simplifies the integration). For the Constant Average approach, the strain at any time t during the 

time step is given by: 

        

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

  (4.8) 

and for the Linear approach: 
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 (4.9) 

where:  J0 and J1 are the (known) compliances, or 1/Ef values, at the start and end of the 

time step. 

In order to select from these two integration schemes, trials were conducted using both 

approaches to investigate convergence.  A single Kelvin unit was loaded with a user-selected, 

time-varying stress, consisting of an initial value plus a constant stress rate thereafter.   

For arbitrary time variation in Ef, no closed form solution exists against which to evaluate 

the numerical results, so the strain was calculated at a specific time (100 days in this case), using 

time steps of decreasing size. At the shortest step size used (0.5 days), the strain at 100 days had 

converged to within 0.05% of the same value using both techniques. That converged value was 

then taken as the true solution for the strain at 100 days, and the errors between it and the 

computed values using larger time steps were plotted against time step size on a log-log plot.  
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The result is shown in Figure 4.3. The time step size was normalized with respect to  , the 

inherent time constant of the system. Because the material properties varied over the 100 day 

calculation period,   also varied, so its starting value was used in all the normalizations. The 

parameters used for the plot are: EK = 4000, 𝜂  = 300,000 at t = 0.0, EK = 8000, 𝜂  = 600,000 at t 

= ∞,   = 0.7, .001.0 Units are inch, kip, days. The strain was evaluated at 100 days. 

 

Figure 4.3   Error in predicted strain at 100 days vs. time step. 

Both curves contain an approximately linear region, in which the error is dominated by 

truncation. The slopes (of 1.0 and 2.0) imply that the Linear and Constant Average techniques 

converge with        to the first and second power respectively, suggesting that the Constant 

Average method is the better choice. The Constant Average curve also departs from linearity at 

low       values. This occurs because round-off starts to control the error, and further reduction 

in      provides no corresponding reduction in error, and might, if taken too far, even cause the 

error to increase. The Constant Average approach was selected, because of its superior 

convergence properties at all but very small time steps, and because the formulation is slightly 

simpler. 
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The Kelvin units can now be assembled to form the chain. For each unit, equilibrium 

requires that the stress variation with time within the interval be the same. Thus, the strain 

change in each unit at the end of the time step can be established as a linear function of the 

unknown stress rate,  . The strain change in the elastic unit is:  

 t
Ee

e 





 (4.10) 

where: for consistency with choice made in the Kelvin units, Ee is taken to be the average 

value over the time step.   

The total strain change is then: 
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where: 
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Equation 4.12 can now be solved for  if the total strain change,      , is known.  The 

result is: 
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This value for  can now be used to find the stress change, given by: 

 t    (4.16) 
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and can also be substituted into Equations 4.7 and 4.8, with    in place of t, to find the strain and 

strain rate in each individual Kelvin unit at the end of the time step. The calculations can then 

proceed to the next step. 

Equations 4.13 and 4.14 may lead to significant loss of accuracy through cancelation at 

low      values. If desired, they may be replaced by their Taylor Series expansions for use in 

such circumstances, 
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where:          

4.1.3 Comparison of Model Parameter to Conventional Material Constants 

In the derivation above, a series of material parameters were developed in the form of 

rheological model constants. It is convenient to correlate these parameters to the conventional 

constants used to describe concrete creep. Although many models exist using a variety of 

approaches and constants, the most commonly used constants to describe concrete deformations 

are the elastic modulus at 28 days and the ultimate creep coefficient.  The ACI 209R-92 creep 

model (ACI Committee 209, 2008) also gives an equation that defines the rate of progress with 

time of the creep effects. These general parameters are compared to the rheological constants 

below. 

Elastic modulus, Ec.  This maps directly to Ee, the stiffness of the elastic spring element.  

This can be assigned the (measured) Ec value at 28 days if no better information is available, and 
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Ee may be taken as constant. It is very likely that Ec will vary with time, and the variations 

should be included if possible. 

Ultimate creep coefficient, Ccu.  This is normally taken to be the ratio of the creep strain 

to the initial elastic strain (for a constant load).   However, in practice, the initial elastic strain is 

often computed using Ec,28, rather than the instantaneous value at the time of loading, because 

data on the early modulus is often unavailable, and because many models do not account for the 

time variation in Ec.  If both Ec and the model parameters are treated as constant with time, Ccu is 

related to the model parameters by: 

 k

e
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E
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Note that, in this case 0 , so 
Kf EE  .  If more than one Kelvin element is used, Ek in 

Equation 4.14 should be replaced by Ek,eq, defined by:  
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Dashpot stiffness,  .  This is related to the intrinsic time constant,  , for the system by 

     𝜂     

and, for a system with parameters that do not vary with time, in which case Ef is simply Ek,   

represents the time needed to complete 63.2%,  i.e. (1-1/e), of the creep deformation. 

If the model parameters are chosen to be functions of time, the relationships between the 

conventional constants and the model parameters depend on the functional form of the time 

variation of those parameters.  It is then necessary to conduct trials, guided by the foregoing 

results for fixed parameters, to achieve a model that replicates the desired combination of 
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conventional parameters. This process was used in the following section to calibrate the model to 

several data sets. 

4.2 Model Calibration 

Ideally the Kelvin model would be calibrated thoroughly enough that each of the 

rheological parameters and accompanying time dependent factors could be related to the key 

factors that affect creep such as mix properties, relative humidity, temperature, and member 

geometry. Due to limits on time, resources, and adequate experimental data, this was not 

feasible. In order to demonstrate the versatility of the model and its ability to at least model the 

correct behavior, it be calibrated to each of the following five accepted creep models using 

constant stress loading; AASHTO, ACI 209R-92, B3, CEB MC90-99, and GL2000 (ACI 

Committee 209, 2008). In each of these models, some or all of the important factors, such as 

relative humidity and member geometry, are accounted for in determining the strain history due 

to a constant applied stress. By generating a good fit of the Kelvin model to each of these 

models, it is demonstrated that with proper calibration the model has the ability to account for 

these effects. 

In order to conduct this calibration effectively, each of these models was analyzed under 

the same test scenario. The important properties of the concrete specimen to be used in the 

calibration of the model are shown in Table 4.1. The constants used in each of the five models 

can be determined from the data in Table 4.1. 
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Table 4.1 Concrete creep specimen properties 

Mix Properties 

Coarse Aggregate 2010 pcy 

Fine Aggregate 1235 pcy 

Cement Content 705 pcy 

Water Content 219 pcy 

Air Content 1.5 % 

Slump 3 in 

Specific Weight 150 pcf 

Specimen Properties 

Volume-to-Surface Area Ratio 2.95 in 

Relative Humidity 0.7   

fcm28 9.35 ksi 

Loading Conditions 

Time of Loading (Moist Curing) 7 days 

Load magnitude 1 ksi 

 

This mix design was taken from the NCHRP Report 496 (Tadros and Al-Omaishi, 2003) and 

corresponds to a typical mix used by Concrete Technology Corporation in the manufacture of a 

W74G bridge girder. This girder is the one for which measured camber data is available for 

comparison with the complete camber prediction algorithm. That comparison is done in 

Chapter 6. 

Important things to notice are; the temperature is assumed to be constant at room 

temperature for the duration of the analysis and the volume-to-surface ratio is assumed to be 

constant for all the concrete in the sample. The CEB model has the capability of considering 

temperature in creep prediction but when trying to apply that feature to the present loading 

regime, highly unrealistic answers resulted. For this reason, the effect of temperature was 

ignored for this calibration. The volume-to-surface ratio was taken to be constant over the cross-

section, and given by the area of the cross-section divided by its perimeter. This approximation is 
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highly questionable; the thin web and large volumes  of concrete at its junction with the bottom 

and top flanges suggest that these different regions have very different “effective” volume-to-

surface ratios based on the distance from the center of mass of the region to the nearest free 

surface. Using these parameters, the Kelvin model was calibrated to fit each of the five creep 

models. 

4.2.1 Elastic Element Calibration 

For the elastic spring in the model, the time dependent function used was that specified 

by the model under consideration. As previously mentioned, the time dependent properties can 

be selected to follow any function as long as it increases monotonically with time. Each of the 

five existing models defines a method for determining the elastic modulus as a function of time 

based on specific constants and the 28 day parameters (Ecm28 or fcm28). Rather than calibrating a 

new function (i.e. the exponential function in Equation 4.1), the currently accepted functions 

were used directly. 

Figure 4.4 shows a comparison of the development of the elastic modulus as predicted by 

the models above. Note that there is no model for the AASHTO code because the AASHTO 

code references the ACI 209R model (AASHTO, 2012).  
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Figure 4.4 Elastic Modulus development models 

Figure 4.4 shows that all of the models are reasonably close to each other. In the calibration of 

the Kelvin model to each of the different models, the corresponding elastic modulus parameter 

will be used to represent the spring only element. It should be noted to that in the NCHRP Report 

496 (2003), the elastic modulus at release and at time of casting (190 days) were specified for the 

mix defined in Table 4.1. These values match the closest with the ACI 209 model for the elastic 

modulus.  

 In the elastic modulus predictions above, all the models use t0 to be at the time of 

concrete casting and assume that the concrete is moist cured. In most girders, the concrete is 

heated and is then release after as little as 16 hours. Then, this time scale does not work as 

cleanly. The AASHTO LRFD Specifications (2012) state that the accelerated curing process can 

be approximated by assuming that at release, the girder has a maturity equivalent to seven days 
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of moist curing. Using this assumption the elastic modulus function above can be applied by 

using an offset in the time used for the girders concrete age. 

In this thesis, pre-release conditions are included in the calculations. During that time, the 

concrete is hardening and the material parameters are changing, in ways that are unknown at this 

point. As an approximation of the concrete properties, a linear variation will be used, where all 

properties are zero at the time of bonding and increase linearly up to the time of release where 

properties have values equivalent to concrete with 7 days of moist curing. This approximation 

will be used for all the Kelvin unit properties derived. 

4.2.2 Kelvin Element Calibration 

 Now that the elastic element has been calibrated/determined, the Kelvin unit properties 

must be calibrated. After some initial experimentation, it was determined that the use of two 

Kelvin elements in the rheological model provided sufficient flexibility to allow good fits to 

presently available data without creating excessive variables. It is possible that as more detailed 

data becomes available, additional Kelvin elements will be needed to ensure good accuracy.  

 The Kelvin element parameters were calibrated to the predicted creep histories provided 

by each of the five existing models. The history was generated by applying a 1-ksi stress at time 

of 7 days and holding this constant stress until 10
4 
days (27.5 years). For each model the mix 

properties and test scenario were the same. The Kelvin unit spring and dashpot each need three 

variables to fully describe the time dependence. This means that for each Kelvin unit there are a 

total of six variables that can be modified, and for the two Kelvin elements used in this 

calibration, a total of 12 variables can be modified to achieve the best possible fit.  

 Figure 4.5 demonstrates the need to calibrate the Kelvin element over the entire time 

range considered. In this plot, the Kelvin model is calibrated against the AASHTO creep 
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prediction model using data for 500, 1000, and 10000 days. When projected out to 10000 days, 

each of these calibrations gives significantly different results. 

 

Figure 4.5 Demonstration of calibration range effects 

From Figure 4.5 it can be seen that when using the Kelvin model, it is necessary to calibrate the 

Kelvin element parameters to the complete time period for which the model will be used. 

 The remaining four models were also calibrated separately and the results are shown in 

Figure 4.6. Again, for these calibrations the elastic modulus was calculated using the prescribed 

model associated with the creep prediction method. 
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Figure 4.6 Kelvin model calibration to ACI209R, B3, CEB-MC90-99, and GL2000 

This figure demonstrates the ability of the Kelvin model to replicate a variety of creep behaviors 

and indicates that with a complete calibration, the model parameters could be related to the 

important factors affecting creep discussed above.  

The Kelvin parameters used in each of the model fits in Figure 4.5 and Figure 4.6 are 

shown below in Table 4.2. Note that for the AASHTO model the parameters are based on the 

calibration out to 10000 days. 
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Table 4.2 Calibrated Kelvin model parameters for various creep models 

Fit Model 
Element 

Type 
Initial 

Value 

Ratio of 

Infinite to 

Initial 

Value 

Intrinsic 

Time 

Constant 

AASHTO 

Model 

Spring 

Stiffness 

326.59 35.35 106.14 

9491.54 611.18 235.73 

Dash-Pot 

Viscosity 

77709.83 220.63 1386.00 

2162413.37 49.70 211.20 

ACI 

Model 

Spring 

Stiffness 

874.49 5.65 0.01 

3218.99 15.46 44.59 

Dash-Pot 

Viscosity 

52019.56 16.81 3.47 

252391.62 1.21 10.32 

B3 Model 

Spring 

Stiffness 

770.26 5.38 7.18 

691.87 7.21 157.88 

Dash-Pot 

Viscosity 

32613.93 9.23 23.16 

3441172.19 2.52 0.00 

CEB 

Model 

Spring 

Stiffness 

708.14 9.45 1.06 

3828.21 2.93 0.00 

Dash-Pot 

Viscosity 

26085.05 19.04 37.44 

474764.36 16.58 0.75 

GL2000 

Model 

Spring 

Stiffness 

1070.92 5.03 7.81 

462.91 9.52 52.87 

Dash-Pot 

Viscosity 

14220.62 3.04 24.72 

467885.06 12.39 305.40 

 

From this table it is seen that the values describing the Kelvin element vary greatly. This is 

because there are an excess number of variables available to generate a fit. This results in a non-

unique solution. A more thorough calibration program is needed to relate the Kelvin element 

parameters to the important factors and create a unique solution for determining the creep model 

parameters. 

 One of the key reasons for creating this rheological model is to create an incremental 

model in which the problem is not constrained to a constant stress test, but has the ability to 

predict creep recovery. For this reason the model needs to be calibrated against variable stress 
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data. Little such data is available, but one source is provided by creep recovery data. The end 

goal for the calibration of the model is to obtain a set of material parameters that can be used in 

the girder analysis where the concrete is the mix described in Table 4.1. Because this is a very 

specific girder mix, there is no available creep data and especially no creep recovery data. For 

this reason a different method is needed for calibrating creep recovery.  

Yue and Taerwe conducted significant research in the area of creep recovery (1993). The 

method they developed for predicting the behavior of creep recovery provides a very useful 

model for verifying the ability of the Kelvin model to predict creep recovery. The formulation if 

this model uses a two-function approach, where one function is used to predict the increasing 

creep strain under constant strain loading and a second function is used to predict the creep 

recovery after some or all of the load was removed. Strain at a time t is computed as follows: 

For            ,                    (4.19) 

The   term in this function is the basic creep compliance function. In their research, Yue and 

Taerwe used the CEB MC90 model equations to generate this compliance function. 

For       , 

                         [                 ]                  (4.20) 

 

where:    = initial applied stress 

    = time of initial loading 

     = the reduction in stress that occurs 

    = the time at which the stress is released. 

         = the standard creep compliance function for a constant stress creep test 

             = the creep recovery compliance function developed and shown 

below. 
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The generic loading scenario for which this model was developed is shown in the Figure 4.7. 

 

Figure 4.7 Creep recovery loading history. (Yue and Taerwe 1993) 

The creep recovery compliance function,   , was determined by Yue and Taerwe to be: 

              
 

     
  

 

   
(
    

   ) (
     

          
)
   

 (4.21) 

 

where:          [              ] 

Yue and Taerwe have shown that their creep two function creep recovery model does a 

remarkable job of matching several specific creep recovery tests (Yue and Taerwe 1993). 

 This general formulation shown in Equations 4.19 and 4.21, provides a very convenient 

method for predicting creep recovery behavior. The standard compliance function         can be 

selected as any of the five models from above which all formulate creep in terms of a compliance 

function. By using the AASHTO model for standard creep ( ), and the creep recovery 

compliance function, (  ) from above, in Equation 4.20, a recovery model can be generated with 

which to calibrate the Kelvin model using two Kelvin units.  



85 

 

For calibration of the model, four separate tests were calibrated simultaneously. In each 

test an initial stress of 1ksi was applied after seven days of moist curing. The following four 

variations on this loading scenario were included: 

 The first test was completed as a constant creep test with no load release. This is the same 

case as analyzed above. 

 In the second test, 75% of the load was removed 1 day after loading had occurred (8 days 

after casting).  

 In the third test 50% of the load was removed 7 days after loading (14 days after casting). 

 In the fourth test 25% of the load was removed 93 days after loading (100 days after 

casting). 

Each of these tests was carried out to 10000 days. The parameters were optimized to create the 

best fit to all four test cases simultaneously. When computing the error in the creep recovery 

curves, only the portion of the test after partial stress release was considered. This is because the 

curve up to the release is the same as the first load case.  

 Figure 4.8 below shows each of the four load cases with the Kelvin model calibrated to 

the predicted result using Equation 4.20 with a combination of the AASHTO model of basic 

creep and the Yue/Taerwe model for creep recovery. 
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Figure 4.8 Calibration of creep recovery 

The Kelvin model provides responses that follow the general trends of the Yu and Taerwe 

predicted behavior, with the best correlation occurring when the sudden stress drop and 

consequent creep recovery are the smallest. The resulting error is an average of 5% with respect 

to the final predicted strain in the constant stress test. This error is the average error from all of 

the data points in the calibration. It is worth noting that the data being used for comparison in 

Figure 4.8 is response predicted by Yu and Taerwe’s model rather than actual test data.  

However, their model showed a good fit with measured data in most of their tests. 

 The resulting Kelvin unit parameters are shown in Table 4.3 below. 
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Table 4.3 Calibrated creep recovery Kelvin unit parameters 

Element 

Type 

Initial 

Value 

Ratio of 

Infinite to 

Initial 

Value 

Intrinsic 

Time 

Constant 

Spring 

Stiffness 

1007.54 26.64 136.02 

6492.24 3.23 1.66 

Dash-Pot 

Viscosity 

272345.14 9.33 1058.12 

1029774.47 6.73 
4.43E-

09 

This table shows the Kelvin element parameters that will be used in the following girder camber 

analysis. These parameters were selected because they not only match the constant stress creep 

results predicted by the AASHTO, but also provide a reasonable approximation for the effects of 

creep recovery. 
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CHAPTER 5 PRESTRESSING STRAND CONSTITUTIVE 

MODEL 

Behavior of the prestressing strand is the second important component of the long-term 

behavior of prestressed concrete girders. Under high stress, prestressing strand relaxes and the 

stress decreases over time without a reduction in strain. The lower strand stress leads to lower 

concrete stress and a corresponding change in camber. The relaxation of the strands and the 

creep and shrinkage of the concrete are the causes of time-dependent changes in camber. In 

modern girders, the effect of prestress relaxation is mitigated partially by the improved low-

relaxation strand currently available. 

For the purpose of this analysis a comprehensive constitutive model is necessary to 

accommodate several important properties of the relaxation behavior. The following criteria 

were used in selecting a steel relaxation model: 

 The model must be incremental. In an incremental model the stress can be computed 

uniquely from the state variables at the current time. No time-dependent history needs to 

be stored.  

 The model must be able to accommodate arbitrary changes in stress or strain during the 

load history, (i.e. load histories more complex than just a constant strain relaxation test or 

a constant stress creep test). This feature is critical for incorporating the interaction 

between the creep of the concrete and the relaxation of the strand. 

 The model must reflect the experimentally-determined behaviors of strand relaxation 

such as the effect of temperature on relaxation rates and the short-term and long-term 

relaxation behaviors seen in typical strand relaxation tests. The temperature effects on the 
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strand are especially important to the current analysis algorithm in which pre-release 

behavior is analyzed. During the fabrication process the strands are exposed to significant 

temperature ranges which could have a significant impact on their relaxation. 

The CEB (1990) and Magura (1964) models are the ones most commonly used for 

predicting relaxation in prestressing strands. Although these models give plausible results for 

constant strain tests performed on various strand types, they do not satisfy the criteria specified 

above. The CEB model is formulated as follows: 

 
       

  
    (

 

  
)
 

 (5.1) 

where: t = time since the strand was stressed 

      = axial stress in the strand at any time t 

  0 = initial stress in the strand 

  1 = time constant of 1000 hours 

  1 = constant specified in CEB related to the amount of initial stress in the strand 

 k = constant specified in CEB related to material type considered (ie. strands, 

wires, improved strands, or bars). 

The model proposed by Magura et al. is: 

         [  
       

 
(
  

  
    )] (5.2) 

where: K = 45 for low relaxation strands, 

 t = time in hours since strand was stressed, 

    = the initial stress in the strand, and 

    = the yield stress of the strand. 

Equation 5.2 is valid only for t > 1 hour. 
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Figure 5.1 shows the stress responses predicted by these two models to constant imposed 

strain. In the simulation, low-relaxation strand is stressed to an initial stress of 202.5 ksi at t=0.

 

Figure 5.1 Comparison of CEB and Magura relaxation models 

In this test a  1 value of 3.5% was used for the “improved” strand type (Class 2, taken here to be 

equivalent to US “low-relaxation: strand)) and a jacking stress of 75% of ultimate strength. The 

value of k was 0.19 for class 2 strands specified by CEB. The material parameter K in the 

Magura model was set to 45 for low-relaxation strand.  

The stress histories predicted by the models differ significantly. For low-relaxation strands it 

can be seen that the overall effect of relaxation is not great, with typical losses of 2-3% at 1000 

hours, but the stress histories predicted by the models nonetheless differ significantly. The stress 

loss due to relaxation is much less significant than that due concrete creep, which helps to 
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mitigate effect of the differences between the models. Each model has advantages and 

drawbacks. 

 The Magura model is not valid for times less than t=1 hour. This results in poor 

estimation of the relaxation behavior during short times. 

 The Magura model exhibits good long-term behavior and asymptotically approaches a 

stress limit of 0.55fpy rather than relaxing to infinite stress loss.  

o The CEB model continues to relax without bound so that at very long times (i.e.   

         ) the stress in the strand becomes compressive. Although the time 

frame in which this occurs is outside the reasonable lifetime of the strand, it is an 

unrealistic result.  

 The strength of the CEB model lies in its ability to predict the relaxation in the very 

short-term. This benefit comes with the slight drawback that the slope of the relaxation 

curve is infinite at time t=0. This has negative implications in the incremental 

formulation as will be discussed later in this chapter. 

The early stages of the relaxation curve are quite important for this algorithm because of the 

inclusion of pre-release effects. Before the concrete hardens, the strands are allowed to relax and 

this loss is an important contributor to the proper prediction of the camber history.  

 The model that was selected was proposed by Bazant and Yu (2012), and incorporates 

the best features of both models in an incremental formulation. The sections below will outline 

the formulation of this visco-plastic formulation which leads to a versatile model that exhibits 

good relaxation behavior in both the short and long-term time regions. 
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5.1 Model Formulation 

The model used here is an incremental version developed by Bazant and Yu (2013) of the 

CEB fixed-stress model described above.  The modifications introduced by Bazant and Yu 

include: 

 The model was formulated in incremental terms. 

 This formulation allows it to accept variable strain loading. 

 A threshold was added that eliminates relaxation when the stress falls below a 

user-defined value (similar to the 0.55fpy in the Magura model). 

 The model was made temperature sensitive, to reflect that fact that relaxation 

typically occurs faster at high temperatures. 

Each of these features is described in the following sections. 

5.1.1 Incremental formulation and variable stress capability 

An incremental relaxation function describes the stress at the end of each time step based 

on the length of the time step and the time derivative during the step. Equation 5.1 is 

reformulated as: 

         (     (
 

  
)
 

) (5.3) 

Taking the derivative of this function with respect to time gives 

  ̇    
     

  
(

 

  
)
   

 (5.4) 

This function is in incremental form but is not a valid constitutive law because it explicitly 

contains time, t. This is remedied by solving Equation 5.3 in for the term 
 

  
, 

 
 

  
  (

       

    
)
   

 (5.5) 
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Replacing 
 

 
 in Equation 5.4 and doing some rearranging gives, 

  ̇    
   

  
  (

  

  
    

  
⁄

)

 

 
  

 (5.6) 

Equation 5.6 is a nonlinear ordinary differential equation that describes the change in 

stress with time, assuming all other state variables, including strain, remain constant. In it, the 

initial stress,   , is defined by  

          

where    is the applied (constant) strain, and F( ) is the instantaneous constitutive law. 

Equation 5.6 is still only valid for a constant applied strain. For variable strain loading, 

the change in stress can be broken into independent components due to change in time and strain. 

    
  

  
   

  

  
   (5.7) 

The principle is illustrated in Figure 5.2. 
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Figure 5.2 Variable strain time step relaxation method 

The first term represents the instantaneous elastic change in stress due to a change in 

strain, and is shown in the figure as a jump (in zero time) from the    strain curve to the    strain 

curve. If the instantaneous stress-strain curve for the strand is given by  

            (5.8) 

then the derivative is 

  
  

      
 

         

      
 (5.9) 

In the special but common case of elastic behavior, F(     ) =        , and 

 
  

      
    (5.10) 

This is invariably the case in pre-tensioned girders. 
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The second term in Equation 5.7 represents the visco-elastic change in stress that would 

occur during the time step if the strain were to remain constant. The question of what path it will 

follow is open.  For a constant strain loading, the stress by definition decays along the path 

defied by Equation 5.3 for the constant strain that corresponds to the initial stress,   , given by 

the        that satisfies 

     (       ) (5.11) 

and is characterized in the figure as movement along the constant    curve. It is assumed here 

that, during any time step, the visco-elastic stress change will follow the constant strain curve for 

the mechanical strain that exists at the start of the time step. As pointed out by Bazant and Yu 

(2012), this behavior is consistent with visco-plastic theory.  The same principle was also used 

by Hernandez and Gamble (1975) to allow the use of the Magura (1964) model with strains that 

changed over time.  The result is illustrated in Figure 5.2, in which the strain at the end of the 

previous time step ends at the point A, with the strain value   , and the visco-elastic stress decay 

then follows the constant strain curve for      , for which the stress at time zero was    

      

The total rate of change of stress with time is then 

 
  

  
  

         

      

      

  
 

   

 
        

(

 
   

  
    

        ⁄

)

 
 

 

 
  

 (5.12) 

Note that, in developing Equation 5.12 from Equation 5.6    has been replaced with          

Equation 5.10 gives stress rate as a function of strain.  If strain rate is needed as a 

function of strain and stress, Equation 5.12 can be inverted to give  
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 (5.13) 

where: E = elastic modulus 

       = current strain in the strand 

   = current stress in the strand 

This formulation provides a constitutive model that links the stress, strain, stress rate and 

strain rate at any given time and does not require knowledge of the previous history. If any three 

of the quantities are known, the fourth can be computed. This model can be easily formulated 

numerically to give finite differences in strain. The simplest approach is to use the Forward Euler 

integration scheme, in which the tangent values at the beginning of the time step are used to 

predict the ending value. 
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⁄
)

 

 
  

]    (5.14) 

If this method is used, a numerical problem results at the time t=0. When the strand has just been 

jacked, the term (   
  ⁄ ), is equal to zero and the solution to Equation 5.13 becomes 

undefined. The solution adopted for the purposes of this algorithm was to use a very short time 

step at t=0, ignore the change in strain during the interval, and use Equation 5.3 to determine the 

stress at the end of the time step. 

5.1.2 Incorporation of a lower threshold stress  

The formulation above allows for variable strain, but still contains the problem of infinite 

stress loss due to relaxation that was present in the initial CEB-fib formulation. It has been 

experimentally determined that relaxation stops if the stress drops below     , where   is 
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typically taken to be 0.55 but varies slightly with steel type. In order to combat this Bazant and 

Yu propose the following constant strain formulation: 

         (       )   〈        〉 [   
 

 
(
 

 
)
 

]
  

 (5.15) 

where: γ = the relaxation threshold usually taken as 0.55 

 k = material constant to be calibrated 

 c = material constant to be calibrated 

 ρ = material constant to be calibrated 

 〈  〉 = are Macauley brackets defined as 〈 〉            

This model is a constant strain formulation that approaches the relaxation threshold of     for 

     , and asymptotically approaches the CEB-fib formula for short times. This model is not a 

complete constitutive formulation for the same reasons that Equation 5.3 was not sufficient. 

Following the same procedure used to develop Equation 5.14, Bazant and Yu propose the 

following constitutive formulation: 

  ̇   
 ̇

 
  

〈            〉

 

          
 ⁄  

  
   

 
 
 

(      )
    

 ⁄  
 (5.16) 

where:    
            

       
 (5.17) 

       
   (5.18) 

 k,c,h, 0 = material constants to be calibrated. 

         = current stress and mechanical strain respectively 

For current low-relaxation strands, Bazant and Yu recommend using h=0, which reduces 

Equation 5.17 to     , where   will be used for the rest of this thesis. This reduces the 

variables that need to be calibrated to k, c, and  . 

Equation 5.16 can be written in the Forward Euler integration scheme as follows:  
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(   
 ⁄ )

]    (5.19) 

This formulation is an incremental constitutive model that converges to Equation 5.15 for 

               and sufficiently short time steps  t. Note that the term  , represents the 

difference between the calculated stress due to the instantaneous stress-strain relationship and the 

actual stress existing in the strand including all previous relaxation. This term leads to the same 

numerical problems discussed previously at zero time when E  is equal to  , and   = 1. In this 

case the time rate of relaxation becomes infinite and the forward finite difference is undefined. 

Again this was solved by choosing a very short time-step, ignoring the change in strain during 

the interval, and applying Equation 5.15 to determine the stress at the end of the interval. 

5.1.3 Modification for Relaxation at Elevated Temperature 

 Steel relaxes faster at high temperature.  That behavior is reflected in the model by 

modifying the time scale based on the temperature of the strand.  Equation 5.16 represents the 

slope of the strain versus time relationship at a certain time in the history where stress and 

mechanical strain are known. To compute the strain at the end of the next time step, it is 

necessary to multiply by a step size. It is here that the temperature effect is applied: 

 

          (5.20) 

 

where:      
[
 

  
(

 

  
 

 

    
)]

 (5.21) 

Here  ξ represents the real increment in time and the term  t is a fictitious time step 

length used to compute the change in stress and strain. In Equation 5.21 
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 Q = the activation energy,  

 kB  = Boltzmann constant, and 

   
 

  
         .  

 T0 = the reference temperature, 293°K, and  

 T(t) = the current temperature of the strand expressed in °K. 

With the constitutive model developed, it is now possible to discuss the intricacies of 

implementing this into the algorithm. In the analysis formulation described previously it is 

necessary to be able to compute the change in stress, based on an increment in strain, or vice 

versa. Equation 5.16 can be derived in the incremental form to determine the stress at the end of 

the time step due to an increment in strain. 
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Similarly the change in strain due to an increment in stress can be determined as: 
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]    (5.23) 

These two versions of the constitutive model can be written into a numerical analysis routine. In 

each of these formulations the value at the end of the time-step can be computed by adding the 

increment to the value at the beginning of the time-step. 

5.2 Numerical Implementation 

 The incremental version of the model was implemented in a numerical procedure to 

predict increments in stress caused by increments in strain and time.  Several special features 

were added to improve the running of the model. They are: 
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 A special procedure was introduced for the first time step to overcome the fact that 

      is infinite there.  

 Intermediate steps are added to prevent excessive time step size from stopping the entire 

analysis. 

 An iterative central difference method is used to improve the time step accuracy. 

In order to illustrate these details a sample constant strain relaxation test is shown in Figure 5.3. 

 

Figure 5.3 Constant strain relaxation test 

Figure 5.3 shows the predicted stress history during a relaxation test at constant strain.  The 

dashed line represents the stress due to the applied strain,     , and the dotted line indicates 

the relaxation threshold The solid line is the time dependent stress for a constant strain relaxation 

test computed using the Equation 5.15. 
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5.2.1 Starting procedure 

The first special feature arises from the numerical formulation in Equation 5.16 where the 

  term is equal to 1 and results in an infinite slope for the relaxation rate. This infinite slope can 

be seen in Figure 5.3. When   = 1, the visco-plastic portion of Equation 5.16 is infinite and 

therefore cannot be used. To combat this problem, the strain in the first time step is assumed to 

be constant and Equation 5.15 is used to evaluate the stress at the end of the time step. The first 

time step should be small to minimize the error introduced by this approximation.  

 For the algorithm described in Section 1.2, this first time interval occurs during the 

jacking process during which the strain is changing as the strand is stressed to its specified initial 

stress. In the first time step, the strand is stressed up to the relaxation threshold,     . This is an 

entirely linear step that requires no iteration as there is no relaxation occurring. In the second 

time step, relaxation begins and the stress at the end of the interval is specified by a jacking 

sequence. As described in the algorithm formulation, the strain required to reach the specified 

ending stress is determined through iteration. When using Equation 5.16 for the second time 

step, the initial stress value should be computed as: 

       
 

 
    (5.24) 

where:    = is the stress at the start of the time step from the previous step 

    = the change in strain calculated from the previous iteration 

This approach considers the relaxation that occurs due to the average stress during the time step. 

This is consistent with the forward finite difference approach used above in which the relaxation 

occurs at the beginning stress and strain and the change in mechanical strain is not considered. 

Keeping the time and target stress increments small minimizes the error from this approximation 

and gives a method for jump-starting the incremental approach in Equation 5.16.  
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5.2.2 Stress Overshoot 

The second feature is also related to the infinite slope at the beginning of the relaxation 

curve. If the time step is too large, the resulting stress from Equation 5.22 may fall below     . 

Note that this could happen at any time when the selected interval is too large but is more likely 

to occur in early time steps when the time rate of change is highest. This result is not acceptable 

for two reasons. First, tests show that strand does not relax below the threshold. Second, and 

more importantly, in a case where this occurs the next time step cannot be solved because   < 1, 

and the solution is undefined. To prevent this, the algorithm for applying Equation 5.22 includes 

the ability to break a time step into intermediate steps should the initial time step size result in a 

stress below     . This is done by increasing the number intermediate steps used. Figure 5.4 

illustrates how an excessively long time step is analyzed is broken into intermediate steps for a 

more stable performance.  
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Figure 5.4 Forward difference approximation demonstration 

As shown in Figure 5.4, a single long time step from ti to           leads to a predicted stress 

below the relaxation threshold.  Breaking the time step into two or more smaller ones improves 

the accuracy of the predicted stress and prevents it from incorrectly falling below the threshold.  

It is important to realize that this approach does not mean the accuracy for the time step is good, 

but it does ensure that the analysis will continue for the future time steps without becoming 

undefined. Three important notes should be made: 

 First, the intermediate time steps are added to the numerical analysis of the strand 

constitutive model only. The overall time step for the algorithm remains the constant. 

 This numerical fix is formulated such that it only takes effect if the strand relaxation 

causes a stress below the threshold at the end of the time step. Should an elastic stress 

reduction (or combination of elastic and relaxation losses) cause a stress below the 
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threshold, the time step is not divided up to try reduce this stress loss unless the 

relaxation alone causes an overshoot. 

 The error between the final prediction and the true stress (shown in by a solid line in the 

figure) is still significant. The user should still select step size carefully to ensure good 

accuracy. It is recommended that time steps be kept below 0.1 hours for the first 24 hours 

of analysis and grow slowly beyond this time. Note that the user must consider the 

increase in fictitious time that may occur due to elevated temperatures (see Equation 

5.21) when selecting these steps. 

5.2.3 Accuracy Improvement 

The final modification made is to improve the accuracy of the prediction. Equations 5.22 

and 5.23 use a forward finite difference approach for predicting values at the end of the time 

step. In a classical forward finite difference approach, the values known at the beginning of the 

step are used to predict values at the end of the step. To improve the accuracy of this 

approximation, rather than using initial values, the average value is used for all of the specified 

increments except time (i.e. temperature and stress or strain). This takes on the following forms: 

 For Equation 5.22, the value of  , which represents the current stress in the strand, can be 

improved to be       
 

 
          

 For Equation 5.23, the value of  mech, which represents the current strain in the strand, can 

be improved to                 
 

 

  

 
.   

 And the average temperature is used to modify the time step size for temperature effects. 



105 

 

where   ,    and    are all specified increments occurring over the time-step. Each of these 

modifications is used in the numerical procedure to improve the accuracy of the forward finite 

difference by including information about the changes that occur during the time step. 

The essential feature of this formulation is its incremental nature. Equations 5.22 and 

5.23 are used to compute the changes during the time increment, and the only variables needed to 

do so are the stress and strain from the previously converged time step and the increment in 

either stress or strain, depending on the formulation being used. No previous response history 

needs be stored. This form of the constitutive model is essential for the architecture of the overall 

analysis formulation described in Chapter 3. 

5.3 Model Calibration 

Values are needed for the material constants in the relaxation model. Two approaches are 

possible. In the first, the relaxation model could be calibrated against relaxation test data, while 

in the second; the constants could be determined by calibrating the entire girder model against 

measured girder cambers.  The former is preferable, because it eliminates the possibility that an 

error in the relaxation model is (incorrectly) compensated for by changes in the concrete model. 

In this section, the material parameters will be optimized through the comparison to measured 

stress losses under constant strain relaxation tests.  

Bazant and Yu (2013) used data collected from relaxation tests performed on older 

“stress-relieved” strands. This data is not consistent with the behavior of modern, low-relaxation 

(Low-Lax) strands. The production process for today’s strands includes a stabilization process in 

which strands are held at high stress under elevated temperatures to reduce the amount of 

relaxation that occurs in the field. For this reason, the results of Bazant and Yu’s (2013) 

calibration are not valid for use in the current model. 
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The model was therefore calibrated against the data available that is relevant to low-

relaxation strands.  

In calibrating the models, the material constants k, c, h, and   are available to be 

modified. For low-relaxation strand, Bazant and Yu (2013) recommend that h be set to zero. This 

leaves three parameters available for calibration. The following sets of data are used to determine 

the material constants: 

 A set of three relaxation tests shown in Naaman (2004), taken from tests conducted on 

stabilized wire by Somerset Wire and Strands in England. Each test was carried out at a 

different level of initial stress. The data therefore provides an opportunity to determine 

the model’s ability to model different levels of initial stress.  The wire is believed to 

represent the material subsequently spun into 7-wire strand. 

 A single test on low-relaxation 7-wire strand provided by Sumiden Wire Products 

Corporation. This data is valuable because it was conducted recently on the low-lax 

strands used by many west coast precasters.  However the test duration was quite short. 

 Tests carried out on stabilized wire by Somerset Wire and Strands in England at different 

temperatures. 

 Finally, the model predictions were compared with those of the Magura et al. (1964) 

model. The comparison is not directly against measured data, but that model was derived 

from a range of tests and is widely used today.  The strands tested were Stress-Relieved 

rather than Low-Relaxation, but the original constants in the model were subsequently 

adjusted to match the response of Low relaxation strands.  

In each calibration, the predicted stress was computed using the present model, and the 

sum of the squared errors was taken as the cost function to be minimized. The optimization was 
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done allowing all three parameters to vary at once, using routines from the Matlab suite. The 

three separate calibrations described above lead to the material parameters shown in Table 5.1: 

Table 5.1. Optimum material parameters for calibration scenarios 

Calibrated To… ρ c k 

Naaman’s fpu 

Dependence Data 
0.0344 0.1988 0.277 

Sumiden 

Relaxation Test 
0.0471 0.2341 0.0771 

Magura Model 0.0563 2.5376 0.1743 

 

As is shown in Table 5.1, the variation in these material parameters can be significant. For this 

reason, no attempt will be made in this thesis to fully calibrate the model to many data sets.  

The first calibration was completed against the data shown in Figure 5.5, which shows 

the relaxation data for three separate tests carried out at 60%, 70%, and 80% of the ultimate 

strength of the strand. Each test was made at 20°C. (The data were digitized from the published 

figure using AutoCAD.) 
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Figure 5.5 Calibration to Relaxation Tests under varying initial stress at room temperature. 

Measured data from Figure 2.7 in Naaman (2004) 

Figure 5.5 shows the measured and predicted stresses for the three sets of data with different 

initial stresses. The constants for this plot were determined by fitting the data of all three tests 

simultaneously. 

A number of points are worthy of note. 

1. The stress loss is a small percentage of the initial stress in all cases.  The largest 

loss is about 1.5% (wire stressed to 0.80fpu, loss at 4500 hours). 

2. The predictions overestimate some measured stress curves and underestimate 

others.  The relatively poor fit occurs because of the way the material parameters 
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affect the curve shape. For the fit of multiple curves, the parameter c is the most 

critical. In Figure 5.5, modifying c changes not only the rate of relaxation for each 

curve, but it also adjusts the spacing between the three curves. For this reason, the 

fit shown above cannot be improved by modifying c. The other constants do not 

help the fit of multiple curves.  

 The second data set was for 7-wire Low-Relaxation strand that was tested at 20°C. It was 

obtained from Sumiden Wire Products Corporation in 2014 and is shown in Figure 5.6. 

 

Figure 5.6 Calibration to constant strain relaxation test. Data provided by Sumiden Wire Products 

Corporation 
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This fit is reasonably good but, because the data extends only out to 200 hours, it is of limited 

value. However, its value lies in the fact that the material tested was the modern Low-Relaxation 

strand.  

 The final comparison was made against the Magura et al. (1964) model. It and the one 

used here are compared in Figure 5.7, where the initial stress at t=0 was 202.5 ksi. The cost 

function was chosen to be the sum of the squared errors for 5000 points geometrically spaced 

between zero and 10000 hours (the smaller spacing was for shorter times). The constants c, k and 

  were adjusted to minimize the difference between the two sets of stresses.  

 

Figure 5.7 Calibration to the Magura et al. (1964) model 
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As is shown in Equation 5.2, the Magura model is not valid for times less than 1 hour and gives a 

zero stress loss at t=1. For this comparison, the Magura model was modified to use a log(t+1) 

term rather than log(t). Notice that in the short-time range the Magura model diverges from the 

model used here. This is due to logarithmic versus exponential formulations. 

This calibration was included merely to show the significant difference in the two 

methods of prediction. Because the response curves for these two models have very different 

shapes, the time range used in calibration must be selected carefully. For Figure 5.7, Bazant’s 

model was fit to the Magura model between 1 and 10000 hours (1.14 years). This is the time 

during which the most of the relaxation occurs and has the most significant impact on the 

deflection of the girder. From the previous calibrations it is evident that the Bazant model 

exhibits a very good match to the relaxation shape for these strands especially in the short term. 

Using the material parameters from the foregoing fpu-dependence calibration at room 

temperature, Bazant’s model can be compared to the data provided by Naaman (2004) regarding 

the effect of temperature on the rate of relaxation. Figure 5.8 shows the data from Naaman’s 

book as well as the fits from Bazant’s model using the parameters, k = 0.277, c = 0.1988, and     

  = 0.0344. 
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Figure 5.8  Data fits for different temperatures using previously calibrated material 

constants. 

Figure 5.8 shows the temperature correction achieved using Bazant’s model. This is an excellent 

demonstration of the not only the significant effect that temperature has on relaxation, but also 

the capabilities of Bazant’s model to predict this effect with accuracy. This effect is potentially 

important because, during the casting and bonding period, it is common for pre-casters to heat 

the girder for faster curing. This heat could have a significant effect on relaxation, and thus on 

the stress in the strands and the camber of the girder after release. 
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 After examining these calibrations, it is necessary to determine which material 

parameters are best for use in the remainder of this thesis. The parameters developed from the 

calibration to Naaman’s data for different initial stress tests (i.e. k=0.1743,   = 0.563, etc) have 

been selected for the following reasons: 

 The data set is the most complete available for calibration.  

 When using the strand constitutive model within the analysis, it will be subjected to 

variable strain conditions due to the creep of concrete and elastic changed at release and 

slab casting. By calibrating to multiple initial stress relaxation curves simultaneously, the 

resulting parameters are more likely to be stable for a wide range of strains experienced.  

 Figure 5.8 demonstrates that these parameters, when combined with Bazant’s 

recommendations for adjusting the time scale to reflect the effects of temperature, also 

give good fits to high-temperature data. 

The parameters, k = 0.277, c = 0.1988, and   = 0.0344 will be used for the remainder of this 

thesis. 

 In order to demonstrate the predicted relaxation response to a realistic temperature 

history, a strand history was generated using the following steps. 

1) Jack the strands over 0.5 hours up to a jacking stress of 202.5 ksi. This portion is not 

shown in order to keep the scale of the y-axis small. 

2) Allow the strands to rest for six hours to simulate the time taken to prepare forms and 

reinforcing in the casting bed. 

3) Cast the concrete at six hours and begin a thermal history that is linearly interpolated 

between the following points: 
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Table 5.2 Sample Strand Thermal history. 

Time (hrs) 6.5 12 16 22 

Temperature 

(°F) 
68 160 160 68 

 

4) Release the girder after 22 hours and allow to it to cool at room temperature. Note that for 

an actual strand the strain would change in this time region depending on the creep 

properties. This has been ignored for this demonstration. 

The resulting stress history for a strand is shown in Figure 5.9. 

 

 

Figure 5.9 Sample strand stress history. 
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In Figure 5.9, the dotted line shows the stress history resulting from the mechanical strain in the 

strand without considering relaxation but including the effects of thermal expansion. That 

thermal expansion causes much larger stress changes than any due to relaxation, but most of it is 

recoverable when the stand cools. (The interactions with the concrete, discussed in Chapter 7 

show that some strand stress is lost due to “locked in”  stress effect, but they are ignored in this 

stress history.) The dashed line considers both the effects of thermal expansion and relaxation at 

room temperature and the solid line considers thermal expansion and the accelerated relaxation 

due to high temperatures as described in Equations 5.20 and 5.21. Notice that when accelerated 

relaxation is considered there is a 0.7% increase in relaxation after 100 hours. It is also 

interesting that when accelerated relaxation is considered, there is very little relaxation that 

occurs after cooling back down to room temperature (22 hours in Figure 5.9). This is because the 

strand is behaving like an older strand in which most of the relaxation has already occurred. 

5.4 Concluding remarks 

The following conclusions can be drawn from the development of the relaxation model: 

 Current low-relaxation strands have little relaxation. The Sumiden data show a 1% loss at 

200 hours and 1.2% when projected out to 1000 hours. This means that the effect of the 

relaxation on long-term deflections is much smaller than the effect of concrete creep. 

 Although the model proposed by Bazant is versatile and is capable of modeling all of the 

key features of strand relaxation, further calibration against a wider array of measured 

data from low-relaxation strand tests is desirable.  
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CHAPTER 6 MODEL VERIFICATION 

This chapter provides an example of the ability of the algorithm to predict the camber 

history of a girder for which measured camber data is available.  Ideally, a complete calibration 

and statistical analysis of the model’s capabilities would be conducted, but such an undertaking 

lay beyond the scope of the thesis.  Furthermore, large variation in materials, as well as casting 

and curing procedures exist across the country, so the data required for a complete calibration 

would be extensive.   This data was collected by Hang Nguyet Nguyen in her thesis research 

(Nguyen, 2013). Hang monitored the fabrication temperature profile and the post-release camber 

history for a WF74 girder from Concrete Technology Corporation (CTC) in Tacoma 

Washington. Using this data, a proof-of-concept calibration is conducted to demonstrate that the 

model provides reasonable predictions for camber.   

The sources of uncertainty in the predictions lie in: 

 The kinematic assumptions (plane sections remain plane) 

 The numerical integration procedures 

 The rebar steel constitutive model 

 The prestressing strand constitutive model 

 The concrete constitutive model  

 The loading (including thermal and shrinkage loads) 

Of these, the largest potential errors lie in the concrete constitutive modeling and in the 

loading.  For example, the error in the kinematic assumption can be judged by the ratio of shear 

deflections (which are ignored) to bending deflections; in a typical prestressed girder with a 

span/depth ratio of 25, this ratio is about 0.005, or 0.5%.  The numerical integration can be 
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conducted to any desired accuracy by using more layers in the cross-section and more integration 

points along the girder.  The values used here led to an error no greater than 1%. The total 

relaxation loss in the strand was in all cases less than 3%, so the error caused by modeling it in 

accurately is much less than that.  The rebar steel remains elastic and does not relax, and the 

combined uncertainty in its Young’s modulus and bar area is on the order of 5%, but its effect on 

camber and deflection is no more than on tenth of that (i.e. 0.5%), partly because the rebar 

contributes so little to the moment of inertia anywhere, and partly because, at the critical mid-

span location, almost no rebar exists. 

The concrete constitutive model has already been shown to replicate a wide range of 

behaviors, although an accurate correlation between its numerical coefficients (e.g. EK values) 

and the relevant physical parameters (e.g. volume/surface ratio) still needs to be conducted.   The 

more difficult problem lies in the loading.  In particular, detailed measured data on the thermal 

gradients in practice is sparse.  

The girder used for this comparison was a 147.5 foot-long, WF74 girder cast in early 

December 2012 at CTC. The key gross cross-sectional properties for a WF74 girder are listed in 

Table 6.3 

Table 7. Cross-Sectional Properties 

Height (in) 74 

Ixx (in
4
) 733363 

Area (in
2
) 923 

CGC Location 

From Top (in) 
38.3 

 

 In the CTC casting plant, girders are fabricated in the following steps: 
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1) The prestressing strands are routed through the harping points (if necessary) and then 

stressed up to the specified jacking stress. This takes approximately a half an hour. 

2) The formwork and reinforcing bars are assembled. 

3) The forms are closed around the strands and rebar and concrete is cast. The total time 

between the start of jacking and the casting of concrete is approximately 6 hours.  

4) After the concrete is cast, the forms are heated and the concrete cures for 16 hours 

before the strands are cut and the girder is released at 22 hours after jacking. 

5) In her research, Hang investigated the effect of the assumed bonding/hardening time 

for the concrete. She found that, for this girder, the best agreement between predicted 

and measured release camber occurred when the concrete was assumed to bond and 

begin hardening 4 hours after casting (10 hours after jacking).  In this analysis, her 

resulting hardening time is used (4 hours) for the beginning of concrete hardening. 

This sequence of events is encompassed by the four phases used in the formulation of this 

algorithm.  

Another important part of the analysis is the girder support conditions, which change 

throughout the life of the girder. For this girder, there are three separate support conditions: 

lifting, storage/transportation, and final site conditions. Just after release, the girder is picked by 

lifting loops located 3 feet from each end. Approximately 2 hours after release, the girder is then 

placed on storage bunks located 6 feet from each end. Once the construction site is ready, the 

girder is transported to it and placed in its final configuration. This girder was placed 74 days 

after release on supports located 1 foot from each end. These changing support conditions are 

accounted for in this analysis.  
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Throughout this cycle, there is a thermal history within the girder. Hang took detailed 

readings of the temperature profile within the girder during fabrication of the girder and up to 

nine hours after release. In Figure 6.1, the temperature history collected for the top, centroid, and 

bottom of the girder is shown for the fabrication period. 

 

Figure 6.1 Fabrication thermal history for precast girder (Nguyen, 2013) 

In Figure 6.1 it is important to note three key times; the time scale begins at the start of stressing, 

casting begins at 6 hours, and release occurs at 22 hours. Because the data shown above stops 

before the girder has completely cooled, the ending slope is used to project that the girder will 

reach a constant temperature over the height of 45°F (air temp) at a time of 43 hours. This 

temperature is maintained for the rest of the analysis for the lack of a better estimation. The 

external air temperature was 45°F during the casting and was assumed to remain at this 

temperature throughout the analysis. In collecting this data, Hang used 11 thermocouples 

distributed over the height of the girder.  Data from all 11 sensors was used in the analysis; 
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Figure 6.1 shows data from only three sensors in the interests of clarity. The eleven sensors were 

distributed both vertically in the web and laterally in the flanges.  They showed that the 

temperature varied in both directions.  Because the analysis is based on the assumption that all 

conditions (including temperature, stress and strain) are constant across the width of layer, the 

measured temperatures were averaged across the width at any given level.  This procedure 

inevitably introduced some error, because the number of sensors was insufficient to define 

accurately the complete 2-D thermal profile.  Thus, some error exists in the “measured” data. 

 The strand layout in this girder is as follows: 

 17 harped strands. The strands are harped at points 14’-9” to the left and right of the 

girder centerline, i.e. at 0.40L and 0.60L. The vertical location of the centroid of these 

strands is 11.53” at the ends and 69.4” at mid-span, both measured from the top of the 

girder (62.47” and 4.6” respectively when measured from the bottom of the girder). 

 40 straight strands located at 70.4” down from the top of the girder (3.6 from bottom of 

the girder). 

 2 straight, temporary strands located 2” down from the top of the girder. These strands 

are cut after the girder reaches the site. 

Each of these strands was 0.6 inches in diameter and was jacked to a stress of 203ksi.  

 Other key inputs are: 

 The girder was analyzed at a total of 25 cross-sections 

 The total bed stiffness was assumed to be 0.001 k/in. This is essentially zero for the sake 

of this analysis. The stiffness cannot be cannot be set to zero as it results in undefined 

variables within the algorithm 
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The material properties used for the analysis were those calibrated in the previous chapters. 

Appendix A documents the entire set of input parameters and includes the input file used for this 

analysis. 

6.1 Prediction Comparisons 

In order to get a good picture of the predicted behavior of this girder, it is necessary to 

break the comparison into two sections; the short-term comparison just after release, and the 

long-term comparison, which shows the ultimate predicted deflection. This separation is done for 

two reasons. The first is that the measured camber data exists only up to nine hours after release 

and so, for long-term comparisons, the AASHTO predictions of camber will be used. The second 

reason is that if the long-term predictions are included in the comparison, the scaling of the plot 

is much too large to see the detailed results just after release. All of the plots shown in the 

following comparison discussion are for the exact same test scenario described above but scaled 

differently to capture differing levels of detail. 

6.1.1 Camber Predictions 

Figure 6.2 shows the predicted and actual deflections of the girder out to two days after 

release.  
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Figure 6.2 Short-Term camber comparison to measured data. (Nguyen, 2013) 

The sharp change in camber at a time of approximately 24 hours is caused by the change in 

support conditions when the girder is moved to its storage location. The predicted and measured 

release cambers (at 22 hours) are very close but the two solutions then diverge. Table 6.8 below 

shows the four measured cambers with corresponding times and predicted measurements. 

Table 6.8 Comparison of predicted and measured cambers 

Time (Hours) 22.00 23.50 27.50 31.00 

Measured 

Camber (in) 
2.63 3.00 2.94 3.00 

Predicted 

Camber (in) 
2.60 2.01 2.11 2.22 

Difference (in) -0.03 -0.99 -0.88 -0.78 
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The long-term comparison to the AASHTO prediction is shown in Figure 6.3. The 

AASHTO prediction was used as a comparison tool in this case for the lack of any measured 

data. 

 

Figure 6.3 Long-term camber comparison to predicted AASHTO cambers 

The abrupt change in the camber shown around 75 days is due to the change in support location 

that occurs when the girder is moved to its site location. In this comparison, the correlation 

between the new model and the AASHTO model are quite close in the long-term. At 500 days 

the predictions are 4.61” and 4.38” for the proposed model and the AASHTO prediction 

respectively. This is a 5% error relative to the AASHTO model. 

 The reasons for the divergence between measured and predicted short-term cambers just 

after release are unknown, but the two primary effects that occur at that time, namely creep and 

thermal effects, that should be reviewed. Figure 6.1 shows that, at release (22 hrs) the girder is 
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hotter at the top than at the bottom.  As it cools to a uniform temperature it will deflect 

downwards, or lose camber. This drop in camber can be seen in the predicted curve of Figure 

6.3. Notice that this reduction in camber reverses at around 28 hours and the camber begins to 

increase again. This is when much of the cooling has occurred, the thermal component of camber 

has stabilized, and the concrete creep begins to govern the camber response.  

Although this explains why the analysis predicts a camber reduction, it does not explain 

the disparity between predicted and measured results in the short-term. One possible cause of 

this error in the prediction is that the creep model does not account correctly for rapid creep that 

occurs when young concrete is loaded. From Figure 6.3 the long-term creep coefficient is quite 

accurate, but, because the predicted creep appears to occur more slowly than the measured creep, 

the model underestimates the camber in the short-term.  

Typical creep tests are constant stress tests that start after approximately 14 days of moist 

curing. Thus they do not reflect well any short-term creep in a girder that is heat-cured for only 

16 hours.  Because the Kelvin model used here is indirectly calibrated to conventional creep 

tests, it does not accurately capture the short-term girder creep. This deficiency was also 

documented by (Barr, Eberhard, Stanton, Khaleghi, & Hsieh, 2000) who studied prestress loss 

and camber.  

In the Kelvin model for creep used here, the dashpot viscosity in the first Kelvin element 

is the parameter that controls the early age creep rate. In order to investigate this hypothesis, the 

initial value for this dashpot was modified to see if a better prediction could be obtained.  Recall 

that the value of the dashpot viscosity changes over time, and only the initial value was modified 

here. In Figure 6.4 and Figure 6.5 this initial viscosity was reduced by factors of 2, 10, and 100 

as shown.  
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Figure 6.4 Short-term camber predictions with modified Kelvin unit viscosities 
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Figure 6.5 Long-term camber predictions with modified Kelvin unit viscosities 

From the short-term analysis in Figure 6.4 it can be seen that the predicted camber becomes 

closer to the measured camber. The creep rate is greatly accelerated and the early age predicted 

cambers are increased significantly from the previous values. The problem is that when these 

same reduced viscosity values are used in the long-term comparison, they result in a significant 

over-prediction of camber. This is due to sensitivity in the interaction of time-dependent model 

parameters. By reducing the initial value of the viscosity it causes all of the creep to happen very 

quickly and therefore an over-prediction occurs. 

 Figure 6.6 shows the creep coefficient curves for each of the 4 scenarios due to a constant 

unit loading. 
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Figure 6.6 Creep coefficient curves for adjusted viscosities 

These curves show that the Kelvin model is highly sensitive to adjustment of the viscosities of 

the Kelvin elements. It also indicates that by changing both the viscosities and stiffnesses of the 

Kelvin elements, a reasonable prediction for both early age creep and long-term creep 

coefficients could be obtained. 

 The outcome of this discussion is that although, the model is versatile and capable of 

modeling this phenomena, the creep model needs to be calibrated more thoroughly. There are 

two key problems resulting from the calibration of the creep model that should be remedied. 

 The model needs to be calibrated to creep data that includes early loading on heat-cured 

concrete. 

 The results of the modification of the viscosity values indicate that the Kelvin model 

parameters should be calibrated more carefully such that the creep coefficient at infinite 
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time is not exaggerated like the one shown above. This finding is largely a consequence 

of using time-varying model parameters  If the springs and dashpots in the Kelvin units 

had constant properties, the relationship between the ultimate creep coefficient and the 

spring properties is quite simple, and is given by Equation 4.1. This is not true for units 

with time-varying parameters, which require more careful calibration. 

The current model configuration may be able to satisfy these additional constraints but it may be 

better to add an additional Kelvin unit to take care of the early creep behavior. 

6.1.2 Material Stress Predictions 

 One of the key features of this algorithm is its ability to explicitly consider the link 

between the stress response of the prestressing strands and concrete. As the strand relaxes, the 

concrete stress is also reduced; this changes the creep behavior which in turn affects the strand 

stress. Figure 6.7 shows the predicted mid-span stress in the strands during fabrication and the 

first hours after release while Figure 6.8 shows the long-term stress in the strands. 
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Figure 6.7 Short-term strand stress predictions 

0 5 10 15 20 25 30 35 40 45
150

160

170

180

190

200

210
Short-Term Strand Stress History

Time (Hours)

S
tr

e
s
s
 (

k
s
i)

 

 

Harped Strands

Straight Strands



130 

 

 

Figure 6.8 Long-term strand stress predictions 

The y-axis in these figures has been cut off at 150 ksi so that the window scaling is better for 

viewing the behavior details during fabrication. At time, t = 0, the stress in the strand is 0 and 

then the jacking occurs over ½ hours.  

The predicted strand stress in Figure 6.7 and Figure 6.8 has the following key features: 

 After the strand is jacked, the relaxation occurs very slowly and the stress loss is 

relatively low up to the time of casting.  

 Once casting occurs (6 hours) the temperature in the girder rises. This reduces the stress 

in the strands in two ways. First is the reduction in stress due to thermal expansion of the 

strand between the fixed abutments. This expansion leads to a reduction in mechanical 

strain and therefor a reduction in stress. The second effect of elevated temperature is the 

0 50 100 150 200 250 300 350 400 450 500
150

160

170

180

190

200

210
Long-Term Strand Stress History

Time (Days)

S
tr

e
s
s
 (

k
s
i)

 

 

Harped Strands

Straight Strands



131 

 

accelerated rate of relaxation. These two effects increase the prestress loss beyond that 

computed using conventional relaxation methods that ignore temperature. 

 Once the concrete bonds at 10 hours (4 hours after casting), the prestressing strand is 

locked to the same strain change as the girder concrete. This leads to an increase in strand 

stress due to the heating of the girder. As the girder (and strand) increase temperature, the 

stress relaxes rapidly due to the temperature acceleration effects (the coefficient of 

thermal expansion is the same for both materials). In order to maintain equilibrium at the 

nodes, an elastic increase in stress is required and thus the increase in the strand stresses. 

This increase peaks at 15 hours when the concrete temperature rise plateaus. At this point 

the relaxation takes over and the stress begins to drop again. 

 At release (22 hours) there is a large elastic change in stress. In Table 6.3 the predicted 

elastic loss is an average of 20 ksi between the two strand types. Using purely elastic 

analysis with gross section properties, this loss is calculated as 19.5 ksi. The algorithm is 

at least capable of accurate elastic calculations. 

 After release the strand continues to relax at a decreasing rate. 

Table 6.3 shows the stress loss in the strands at key points in the history. 

Table 6.3 Selected prestress loss values 

Event Bonding 
Immediately 

Before 

Release 

Just After 

Release 
500 days 

Harped 

Strand Loss 

(ksi) 
2.70 7.70 27.2 41.50 

Straight 

Strand Loss 

(ksi) 
2.60 6.50 26.99 41.80 
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 Figure 6.9 and Figure 6.10 show the short-term and long-term stress histories for the 

girder concrete at the top, bottom, and centroid.  Note that compressive stress is negative. 

 

Figure 6.9 Short-term concrete stress predictions 
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Figure 6.10 Long-term concrete stress predictions 

There is no stress in the concrete until it bonds and starts to harden at 10 hours. Immediately 

after bonding, the stresses in both the top and bottom of the concrete change between tension and 

compression. This is due to the changing thermal gradient on the girder cross-section. During the 

bonded, pre-release phase, the total strain is forced to be constant over the height of the girder to 

prevent deflection. Because the temperature distribution is nonlinear, the thermal strains are also 

nonlinear, resulting in mechanical strain, and thus stress, nonlinearity to get a constant total 

strain over the height. This is the reason for the increase in bottom compression stress between 

22 and 45 hours. After release, there is a large elastic stress change followed by nonlinear 

changes in stress caused by the concrete creep and strand relaxation. In the long-term, the 

compressive stress in all of the concrete decreases. This is due to the loss of prestress and is in 

agreement with predictions using conventional methods. The reduction in bottom compression 
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stress at 74 days is due to a change in support conditions to an end supported system. This 

simulates final condition of the girder before the slab being added. 
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CHAPTER 7 SUMMARY AND CONCLUSIONS 

7.1 Summary 

A consistent analysis algorithm has been developed to predict the camber in precast, 

prestensioned concrete girders. In this algorithm, the girder is analyzed throughout its entire life, 

from the start of fabrication to the end of its service life, using constitutive models for the 

materials that include time-dependent behavior. The life-span of the girder is divided into four 

phases; strand jacking, pre-bonding, post-bonding, and post-release (Chapter 3). In each of these 

phases the solution is obtained incrementally using a step-by-step algorithm.  The necessary 

calculations include: 

 Application of the boundary conditions appropriate to the phase, 

 Determination of the increments in axial load and moment along the girder due to the 

increments in external loads, 

 Computation of the changes in axial elongation and curvature at selected locations along 

the girder, 

 Integration of the total axial elongations and curvatures to provide the deflections at the 

new time. 

The curvatures are obtained from the moments by assuming that plane sections remain plane and 

finding the strain distribution that provides both moment and axial force equilibrium.  To do this, 

the cross-section is divided into horizontal layers.  For any trial strain distribution, the axial force 

and moment are obtained by finding the stress from the trial strain diagram and applying the 

material constitutive laws, then integrating the stresses over the cross-section.  The strain 
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diagram that satisfies axial force and moment equilibrium is found iteratively using the Newton-

Raphson procedure.  

The time-dependent constitutive models for both the concrete and prestressing strands are 

the foundation of the analysis. For the concrete model, a new rheological model was developed 

using a chain of Kelvin-Voigt units with time-varying parameters. The parameters in the model 

were then calibrated. In place of measured data, predictions of currently accepted creep models 

under constant stress were used, because they have already been calibrated against measured data 

(Chapter 4).  

For the prestressing strand, the model proposed by Bazant and Yu (2013) was used. This 

model accommodates load by time-varying strain and accounts for all of the factors affecting the 

behavior of prestressed strands.  It was optimized to fit measured relaxation data (Chapter 5).   

Using these two calibrated models and the geometry of the cross-section, the camber 

history was predicted and compared to measured girder cambers for the times for which good 

quality data were available (up to approximately two weeks).  For camber comparisons at longer 

times, the predictions of AASHTO’s camber prediction method discussed in Chapter 2 were used 

in place of measured data (Chapter 6).  

7.2 Conclusions 

The algorithm developed and explored in this report has the capability to explicitly 

analyze many of the inter-related factors that affect the camber in precast, prestressed girders that 

were previously ignored or estimated. Although camber varies significantly with conditions, with 

this algorithm a more complete understanding of the behavior can be gained. The following 

conclusions that can be drawn from the development of the global algorithm: 
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1) The algorithm that was developed in this research provides an effective vehicle through 

which many of the factors affecting girder camber can be analyzed explicitly. These 

factors include: temperature history and gradient along the height of the girder, shrinkage 

gradients, and fabrication effects. 

2) The formulation of this algorithm includes the explicit consideration of the interactions 

between the time-dependent properties of concrete and strand. For example, stress loss in 

the strands due to relaxation reduces the stress on the concrete and the associated creep 

strain, and creep of the concrete reduces the strain, and corresponding stress, in the 

strand.  In addition, the algorithm explicitly includes environmental strains due to 

shrinkage and temperature. The algorithm accounts rationally for these interactions by 

satisfying equilibrium and strain compatibility on a step-by-step basis. 

3) The algorithm was used to predict the camber history for a girder for which short-term 

measured data were available.  The predicted and measured camber histories showed 

similar trends and values that were similar but not identical.  The constitutive model 

parameters used for this comparison were obtained by calibrating the individual models 

against time-dependent stress-strain data from material tests. 

4) The long-term camber history for the girder was predicted using the AASHTO time-

dependent procedure.  This was treated as being the measured data.  The predictions of 

the new algorithm were then compared with this long-term “measured” camber history, 

and gave good agreement. 

5) The parts of the model that are subject to the greatest uncertainty, and that lead to the 

majority of the error, are the environmental loading, especially that due to temperature 

during fabrication, and the time-dependent constitutive law for the concrete. 
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6) Some aspects of the behavior during fabrication have a significant influence on the 

subsequent camber, but are not considered in conventional calculations. Important ones 

are: the time at which the concrete first bonds to the strand, and the thermal profile in the 

concrete when the concrete first bonds to the strand and early creep (directly after 

release.) 

In addition to these conclusions from the global algorithm, some conclusions specific to 

the new creep model for creep are noteworthy. 

7) The model can replicate successfully the predictions of the most widely-used creep 

models in predicting time-varying response to constant stress.  For a given stress history 

and material properties, the various existing models predict a range of strain histories that 

differ quite significantly.  Nonetheless, the new model was able to replicate all of them 

quite closely once the model parameters had been optimized to achieve that goal.  This 

finding demonstrates the versatility of the model.  

8) The model can predict the recovery of creep strains when the stress is reduced, without 

the need for additional model features. 

9) The new model contains many parameters.  A comprehensive calibration effort is needed 

to link them to the commonly used measures of concrete behavior, such as instantaneous 

Young’s Modulus, and ultimate creep coefficient. 

7.3 Recommendations for Future Research 

Significant work remains to be done before the algorithm can be used in practice. 

Necessary studies include the following: 

1) In order to improve the modeling of these aspects of camber, measured data for 

calibration is needed.  Detailed data on the thermal profile in a girder is uncommon.  
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2) A much more thorough calibration of the creep model is needed. It is recommended that 

the Kelvin units be related to specific effects such as basic and drying creep. This would 

help users to make rational choices for the model parameters. 

3) The possibility of creep due to early-age loading should be investigated. Tests could be 

conducted under circumstances similar to those experienced by girders.  In particular, the 

concrete should be cured at the high temperatures typically used in girder production (up 

to 180 deg. F) and it should be loaded at a time consistent with the release of prestress in 

a girder.  Such a test program is logistically challenging but the results are needed to 

improve the profession’s understanding and modeling of early-age creep. 

The effects of the numerous fabrication effects should be analyzed for their effect on the 

girder’s camber response after release. These factors are analyzed explicitly in this algorithm and 

can therefore be analyzed for their importance. 

4) The model predictions should be compared with measured results for girders for which 

the long-term cambers are known. Ideally girders would be analyzed from the start of 

fabrication to well into its service life. 
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NOTATION 

A  = area 

β  = 
    

 
, the stiffness per unit length of casting bed 

C, D  = constants defining aggregate behavior of Kelvin units during a time-step 

c  = material constant for prestressing strand model 

Ec  = elastic modulus of concrete 

Ee  = average stiffness for Kelvin unit over a time-step 

Ef   = the effective stiffness, given by KE , 

EK   = Kelvin unit spring stiffness 

Ep  = elastic modulus in prestressing strands 

      = environmental strains including thermal and shrinkage strains were applicable 

       = mechanical strain 

      = total strain 

        = total strain at the origin of the cross-section 

𝜂  = Kelvin unit dashpot viscosity 

    = change in applied force that occurs during the time-step 

fpj  = jacking stress in the strands 

fpu  = ultimate stress in strands 

fpy  = yield stress in the strands 

   = the ratio of stress relaxation limit to the yield stress in strands 

h  = material constant for prestressing strand model 

I  = moment of inertia 
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K  = stiffness 

KBed  = total stiffness of the girder casting bed 

k  = material constant for prestressing strand relaxation 

kB    = Boltzmann constant, 

L  = length 

   = √
 

     
, a stiffness ratio for the girder and bed. 

 1  = time constant for prestressing strand relaxation 

M  = moment on the cross-section 

Mext  = External applied moment on the cross-section 

   = curvature of the cross-section 

P  = axial force on the cross-section 

Pext  = External applied axial force on the cross-section 

P
e
  = Axial force in an element 

   = material constant for prestressing strand relaxation 

Q   = the activation energy, 

t  = time, either true or fictitious (see Chapter 5, Section 5.1.3) 

T  = intrinsic time coefficient for Kelvin unit 

     = 𝜂    , the intrinsic decay time of the Kelvin unit 

T0   = the reference temperature, 293°K 

       = total change in displacement occurring during the time increment 

       = the increment in displacement change for a given Newton-Raphson iteration 

u  = nodal displacements 

   = stress 
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Sn  = Simpson’s coefficient for a cross-section interface 

   = true time for prestressing strand 

y  = vertical location (positive down) from the top of the girder in the cross-section 
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APPENDIX A  - ALGORITHM INPUT 

Control Inputs 

 

 - This signifies a cell containing user input

 - This signifies a cell automatically generated from previously input values

Variable Value Meaning

RelTol 0.00001

Nrmethod 0

MxIter 500

d_delta_Phi 0.0000001

Delta_eps 0.0001

in 12

ConcDens 0.16

Release Maturity (days) 7

Pile Analysis 0

Verbose 1

Time History Inputs

Event

timstrt 

(Days)

timend 

(Days) Nstps timstprat

Jacking 0 0.021 50 1

Pre-Bonding Strand 0.021 0.625 200 1

Bonded, Pre-Release 0.625 0.9167 200 1

Post-Release 0.9167 500 500 150

SlbWght

SlbHardened

TimInst (Days) 0.001  - This is the time-step size used to represent an instantaneous

    event 

Switches

1 (girder)* 2 (slab)*

ConcOnTim (days) 0.625 0  - Time at which concrete types are hardened and bonded to

 * From Time History Inputs     reinforcing

From Time History Inputs

Jack Time (days) 0.021

Release Time (days) 0.9166667

GrdWght Time (days) 0.9166667

SlbWght Time (days) 0

Key

Analysis Control Parameters

Time Control Parameters

Concrete Type

Note: These values are automatically generated and do not need to be input. They are specified 

 - Parameters defining the time scale for the jacking process

 - This is the effective concrete maturity at the release of the girder. AASHTO 

specifies that accelerated curing in the forms is equivalent to 7 days of moist 

curing.

 - Indicates if a pile analysis only is being run. This turns off all moment 

 - The level of indicators describing the code processing. 

       - These are pop-ups  that indicate where the code is running at.

       -  A "0" yeilds no indicators and a "5" yeilds maximum number of 

 - Tolerance on Moment and Axial load error after computing

 - 0 = Full Newton-Raphson, 1 - Modified Newton-Raphson

 - Maximum number of Newton-Raphson Iterations

 - Change in curvature used to compute stiffness

 - Change in strain used to compute stiffness

 - Conversion factor from feet to inches

 - Density of concrete in kcf

      separately in case the operator wants to modify how the analysis is completed from the true method.

 - Parameters defining the time scale for the pre-bonding analysis of strands 

only

 - Parameters defining the time scale for the post-bonding, pre-release 

analysis

 - Parameters for defining the time scale for the post-release analysis up to 

the next key event

 - Parameters for defining the time scale for the slab weight before 

hardening analysis

 - Parameters for defining the time scale for the analysis from the time of 

slab hardening until termination of the analysis
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Left End Midspan Right End

SctnLoc* 0 0.01 0.02 0.04 0.2 0.4 0.5 0.6 0.8 0.96 0.98 0.99 1

* The location at which section analysis will be completed. Specified as the ratio x Location:Length

    This assumes the girder is simply supported. 

Nseg 2  - This is the number of intermediate segments between each of the specified locations above.

 - This must be and even number

Notes:

 - the section locations must be provided anywhere the curvature/moment

    experiences a sharp change. This includes the following:

          - Support Locations

          - Harping points

          - De-Bonding points

          - Point Loads

Girder Anaylsis Locations
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Material Property Inputs 

 

  

Material Properties

Variable Value Meaning

Concrete (Variable Viscoelastic Model)

Nlink 2  - Number of Kelvin links to be used in concrete model

HdExp 1

 - This is the exponent that defines the hardening shape 

during the pre-release phase. After release the input below 

controls the time-dependent changes in material constants. 

(0 = Step, 1 = linear, 2 = parabol, ect.)

Link Number* 1 (girder) 2 (slab) 3 4

fc28 (ksi) - 11.06  - Concrete Compressive Strength at 28 days

a - 3.3  - ACI parameter for determining strength gain with time

b - 0.8821  - ACI parameter for determining strength gain with time

Ek (ksi) 1 1007.5  - Stiffness of Kelvin Spring for concrete

2 6492.2

3

4

5

Ekrat 1 26.639  - Ratio of beginning to ending Kelvin stiffness value

2 3.227

3

4

5

Ektau (1/tau) 1 136.02  - Time constant for the rate of Kelvin stiffness change

2 1.665

3

4

5

eta (ksi-days) 1 272345  - Damper Value of Kelvin unit

2 1029774

3

4

5

etarat 1 9.332  - Ratio of beginning to ending Damper values

2 6.734

3

4

5

etatau 1 1058.12  - Time constant for the rate of Damper value change

2 4.43E-09

3

4

5

*Note that for multiple kelvin links each conrete type needs properties for each link.

ThmCffConc
0.000012

 - Coefficient of thermal expansion for concrete (same for all 

concretes)

Concrete Type
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Girder Geometry Input 

 

Prestressing Strand (Bazant Model)

fpy (ksi) 243  - Yield stress of strands

Ep (ksi) 28500  - Elastic Modulus of steel

gamma 0.55  - Threshold ratio of yield stress for which relaxtion begins

lambda 1000  - Time constant for rate of prestress loss

rho 0.0344  - Empirical constant

c 0.1988  - Empirical constant

k 0.277  - Empirical constant

T0 (°K) 293  - Reference Temperature

QokB 14600  - Temperature constant from Bazant's Paper

TmpConst 1  - Constant added for improved fit to thermal variations

TimAcc
1

 - Switch for turing of the affects of temperature on 

relaxation rate

ThmCffStnd 0.000012  - Thermal coefficient for prestressing strand

Reinforcing Steel (Raynor Steel Model)

Es 29000  - Elastic Modulus

fsy 60  - Yield Stress

fsu 100  - Peak Stress

esh 0.01  - strain at the start of Strain hardening

esu 0.15  - strain at peak stress

n 6  - exponent on strain hardening curve

ThmCffBar 0.000012  - Thermal coefficient for reinforcing bar

Casting Bed Arrangment

Exposed Heated Girder* Heated Exposed

Length (ft) 47.5 50 147.5 100 50

 * From spcefied length

Total Bed 

Stiffness
0.001 k/in

Combined Strand Segment Geometry
From Castin Bed Arrangement

Segment Length (ft) Definition

Exposed 97.5  - The length of strand that is exposed to the outside air temperature.

Heated
150

Encased
147.5

Casting Bed Geometry Input

 - The length of strand that is heated by the heating blanket. This may 

    be zero if heated forms are used rather than a blanket

 - The length of strand that is encased in concrete. This comes from the

    girder geometry input.
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Girder Geometry

L (ft) 147.5  - Length

Cross-Section Geometry

Girder Geometry (inches)

Trapezoid b. top b.bott h.trap h.target conc.type

1 49 49 3 1.0 1

2 49 12 3 1.0 1

3 12 6.125 3 1.0 1

4 6.125 6.125 52.375 1.0 1

5 6.125 12 3 1.0 1

6 12 38.375 4.5 1.0 1

7 38.375 38.375 4.125 1.0 1

8 38.375 36.375 1 1.0 1

9

10

11

13

14

15

16

17

18

19

20

Total Height 74

Slab Geometry (inches)

Trapezoid b. top b.bott h.trap h.target conc.type

1

2

3

4

5

6

Total Height 0

Variable

b.top

b.bott

h.trap

h.target

conc.type

Cross-Sectional Geometry Input

Definition

 - width of the top of trapezoid

 - width of the bottom of trapezoid

 - total height of the trapezoid

 - target sublayer height for Simpson's integration purposes

 - type of concret that the trapezoid is made of. Corresponds to materials 

section
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Reinforcing Layout (inches)

layer nbar ybar areabar barconc barstrt barend

1 0 1 0 1 0 1

2

3

4

5

6

7

8

9

10

Variable

nbar

ybar

barconc

barstrt

barend

Prestressing Strand Layout

devlen (in) 30  - Development length of strands

layer nstnd ystndmid areastnd stndconc fpj hrplft hrprt ystndend dbndlft dbndrt

1 17 69.4 0.217 1 202.5 0.4 0.6 11.53 0 1

2 40 70.4 0.217 1 202.5 0 1 70.4 0 1

3 2 2 0.217 1 202.5 0 1 2 0 1

4

5

Variable

nstnd

ystndmid

areastnd

stndconc

fpj

hrplft

hrprt

ystndend

dbndlft

dbndrt

Definition

 - distance to the bar from the top of the girder positive is measured 

downwards from the top of the girder

 - quantity of bars at that layer

Definition

 - quantity of strands at that layer

 - distance to the strand from the top of the girder at midspan. Positive is 

measured downwards from the top of the girder

* If a value in the table above is not needed to describe the geometry input a "0" rather than 

leaving  it blank

 - type of concrete that the bar is embedded in corresponding to the column 

from the material properties section

 - the beginning location of the bars along the girder expressed as a ratio of 

 - the ending location of the bars along the girder expressed as a ratio of the 

 - area of the individual strands

 - type of concrete that the bar is embedded in corresponding to the column 

from the material properties section

 - jacking stress of the strand

 - debonding location at the right end of the girder expressed as a ratio fo the 

length

 - the harping point of the strand layer at the left end of the girder expressed 

as a ratio of the length

 - the harping point of the strand layer at the right end of the girder expressed 

as a ratio of the length

 - distance to the strand from the top of the girder at the ends. Positive is 

measured downwards from the top of the girder

 - Debonding location at the left end of the girder expressed as a ratio of the 

length
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Applied Loads and Support Condition Input 

 

Support #
Left Support 

Location

Right Support 

Location
Start Time End Time

1 0.02 0.98 0 1

2 0.04 0.96 1 74.25

3 0.01 0.99 74.25 1000

4

5

Load # Load (kips)* Load Location Start Time End Time

1

2

3

4

5

 *  - Load is positive if applied to the right and negative to left

Applied Distributed Loads

Load #
Load (kips 

per inch)*
Start Time End Time

1

2

3

4

5

 *  - Loads are positive acting downwards. Loads act along entire girder

Applied Transverse Point Loads

Load # Load (kips)* Location Start Time End Time

1

2

3

4

5

 *  - Loads are positive acting downwards

Support Locations and Times of Relevance

Applied Axial Loads and Times of Relevance

Applied Moment Loads and Times of Relevance
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Environmental Input 
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Pre-ReleaseThermal Histories

Notes:  - All cells not containing important information must be empty

 - The temperature history for these strand locations only needs to be defined until the release time

 - The temperature history for the exposed strand should have very little fluctuation because it is only exposed to air.

 - If there is not a portion of strand that 

Time Stamps 0 1

Strand Locations

Exposed Strand 43 43

Heated Strand 

Outside Girder
43 43

Cross Section Thermal Profile

Notes:  - All cells not containing important information must be empty

 - Note that shrinkage strains must be provided for each of the key locations on the girder noted. 

 - y locations in the slab should be input as negative values.

 - The time stamps correlate with the shrinkage profile input below. These time steps should be selected with care. 

    Below are several suggested times at which shrinkage profiles are advised:

        - Initial Jacking REQUIRED! (should be zero)

        - At time of concrete bonding/hardening (should be zero)

        - At time of release

        - At time of slab casting

        - At time of slab hardening

        - Ending shrinkage REQUIRED!

Time Stamps 0 1000

Key Locations y Location (in)

Top of Slab*

Top of Girder 0 0 0

Bottom of Girder 74 0 0

 * If there is no slab in the analysis there can be no temperature infromation given!!!

Shrinkage in microstrain

Shrinkage Strain Input 

Temperature °F



155 

 

APPENDIX B  - AXIAL ELEMENT ON ELASTIC BED 

DERIVATION 

This analysis addresses the forces and displacements in an axial element that is supported 

on a shear-flexible foundation.  In the implementation used here, the axial element is the girder 

form and the shear-flexible foundation is the supporting system.   All displacements and forces 

are horizontal. 

In order to outline the derivation used to define the axial girder element that rests on the 

elastic foundation, it is first necessary to define the geometry of the problem. 

 

where:      = the total shear stiffness of the foundation over the length of the girder 

The next step is to define the distributed stiffness as    
    

 
, where β is the stiffness per unit 

length. 

The flexibility will be solved and then inverted to find the stiffness. First solve the 

problem for an applied force at node 2 and zero force at node 2.  

 

 

L 

u
1
 u

2
 

K
Bed
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The force equilibrium on an infinitesimally small section can be illustrated as: 

 

Writing the following relations: 

Kinematics:    
  

  
 (B.1) 

Constitutive:              (B.2) 

Equilibrium:        [    ] (B.3) 

Taking the derivative of Equation B.3 with respect to x and substituting with Equation B.2 

results in the following differential equation.  

 
   

           (B.4) 

where:     
 

  
 

 EA = the total cross-sectional stiffness, including contributions from both the 

concrete and the prestressing strand. 

The solution to this differential equation has the general form: 

                      (B.5) 

Applying the boundary conditions, F(0) = 0 and F(L) = F results in: 

     (B.6) 

 

 

F 

F + dF 

U(x) 

(βdx)*U(x) 

F 
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 (B.7) 

This results in the force equation along the length of the girder: 

       
 

      
       (B.8) 

 Now the flexibility matrix can be generated by solving for the displacement due to the 

applied load. From Equation B.3: 

       
 

 

  

  
 (B.9) 

Using Equation B.8, Equation B.9 can be solved in terms of the applied force, F: 

       
 

   

      

      
 (B.10) 

The displacements at the nodes can then be solved as: 

       
 

    

  

      
 (B.11) 

       
 

    

  

      
 (B.12) 

A similar formulation could be completed for a force applied at node 1. The results would be the 

reverse of Equations (B.11) and (B.12). This can be used to write the flexibility system as: 

 {
  

  
}   

  

    
[

 

      

 

      
 

      

 

      

] {
  

  
} (B.13) 

This system can be inverted to provide the stiffness formulation needed for this algorithm: 

 {
  

  
}   

    

  
[

 

      

  

      
  

      

 

      

] {
  

  
} (B.14) 

where:           
    

  
[

 

      

  

      
  

      

 

      

] is the element stiffness matrix. 
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This provides the elastic element stiffness which can be added to other elements to form 

the global stiffness matrix as shown in Section 3.4.1. This stiffness is used in the Newton-

Raphson iteration scheme but the total strain as a function of location in the girder is needed. 

This is needed so that an exact force on the cross-section can be developed within the Newton-

Raphson iteration. This is done using the formulations of displacement as a function of the 

applied forces from Equation B.10. For an applied force at node 1 this equation becomes: 

       
  

   

          

      
 (B.15) 

 Combining Equations B.10 and B.15, the displacement due to general applied forces can be 

written as: 

       
 

         
〈                〉 {

  

  
} (B.16) 

But in the Newton-Raphson scheme described in Section 3.4.1, the strain is needed in terms of 

the nodal displacements. This is accomplished by substituting Equation B.14 into B.16: 

       
 

         
〈                〉

    

  
[

 

      

  

      
  

      

 

      

] {
  

  
} (B.17) 

Now the displacement is written as a function of location, x, and in terms of the nodal 

displacements. Total strain can then be determined by deriving with respect to x. Taking this 

derivative and simplifying leads to: 

          
 

      
[     [      ]       ]  [

 

      

  

      
  

      

 

      

]   {
  

  
} (B.18) 


