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Research and development (R&D) facilities may be required to estimate air chemical emissions 

to demonstrate compliance with federal and state regulations, or to manage emissions to avoid 

nuisance impacts from their operations. These emissions are difficult to estimate because R&D 

facilities typically use a large number of chemicals in small quantities and engage in numerous 

and diverse activities which can change over time. Although not required for compliance, the 

Pacific Northwest National Laboratory (PNNL) sampled air chemical emissions from facility 

stacks during 1998–2008. The purpose of the sampling was to provide data to compare estimated 

release fractions to those used for emissions estimates and to verify that methods used to 

determine compliance with air regulations and permits conservatively predict actual emissions. 

This unique data set was analyzed to compare emissions with regulatory criteria; determine 

relationships with chemical inventories, use quantities, and properties; and identify signatures of 

sources contributing to the emissions. 
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For comparison with regulatory data, stack measurements were used as a basis to calculate 24-hr 

and annual average emissions and ambient air concentrations. The study included an extreme 

worst-case analysis maximizing emissions and alternate more realistic analyses using a Monte 

Carlo method that takes into account the full distribution of sampling results. The results from 

these analyses were then compared to emissions estimated from chemical inventories. Ambient 

air concentrations calculated from the measurement data were below acceptable source impact 

levels for almost all cases even under extreme worst-case assumptions. More realistic scenarios 

reduced the estimate significantly depending on the chemical and the mode of operation. 

 

Release fractions were calculated by dividing emission estimates obtained using a Monte Carlo 

technique on the measured data by a building chemical inventory quantity. Release fraction 

values had a wide range among chemicals and among data sets for different buildings and/or 

years for a given chemical. Regressions of release fractions and of mean emissions to chemical 

inventory and properties gave weak correlations. These results highlight the difficulties in 

estimating emissions from R&D facilities using chemical inventory data. 

 

Positive matrix factorization (PMF) was applied to stack measurements and, depending on the 

building, resulted in between 9 and 11 factors contributing to emissions. Some factors were 

similar between buildings, while others had similar profiles for two or more buildings but not for 

all four. At least one factor for each building was identified that contained a broad mix of many 

species, and constraints were used in PMF to modify these factors to resemble more closely the 

off-shift concentration profiles. 
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1.0 INTRODUCTION 

 

Emissions of hazardous air pollutants (HAPs) from research and development (R&D) facilities 

are difficult to estimate because these facilities typically use a large number of chemicals in 

small quantities and engage in numerous and diverse activities that can change over time. This 

investigation introduces methods using measured stack concentrations from R&D facilities to 

compare ambient concentrations and emissions with regulatory criteria, estimate release fractions 

of chemical inventories, evaluate relationships of emissions with chemical properties, and 

identify signatures of factors contributing to emissions.  

 

1.1 Motivation and Specific Aims 

 

Established in 1990, Title V of the Clean Air Act Amendments (CAAA; 42 U.S. Code [U.S.C.] 

7661) creates an operating permit program for federal, state, and local authorities to regulate air 

pollution emissions from large sources. Title V requires the following sources of air pollution 

emissions to obtain operating permits (40 Code of Federal Regulations [CFR] 70): 

 

 Sources that emit more than 100 tons per year (/yr) of a regulated air pollutant (e.g., carbon 

monoxide, nitrogen oxides, volatile organic compounds [VOCs], sulfur dioxide, and 

particulates).  

 Sources located in nonattainment areas (areas that do not meet National Ambient Air Quality 

Standards) with emissions ranging between 10–100 tons per year depending on the pollutant 

and the seriousness of the nonattainment. 

 Sources that emit more than 10 tons/yr of any single HAP or more than 25 tons per year of 

any combination of HAPs regulated under Title III of the 1990 CAAA. 

 Any area (i.e., non-major) source for which a New Source Performance Standard (NSPS) or 

National Emission Standard for Hazardous Air Pollutant (NESHAP) is promulgated that the 

standard does not exempt from Title V. 

 

In addition, permits are required for sources that are regulated under acid rain, ozone depleting 

substances, and other sections of the CAAA. Operating permits are issued by state and local 
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permitting authorities, which may have additional or more stringent requirements than those 

mandated by federal regulations. 

  

R&D facilities have the potential to be classified as a major source if emissions exceed HAP 

major source thresholds. These facilities may also need to be incorporated into a Title V permit if 

they are collocated with a manufacturing site that is a major source and if they cannot be 

excluded based on actual emission threshold rates, or based on individual size and production 

rate criteria. Thus, facilities conducting R&D will need to develop methods for estimating R&D 

emissions to establish compliance status with the regulation. In addition to federal regulations, 

some states have additional regulations that apply to air chemical emissions. Applicability to 

R&D facilities varies depending on the state and/or interpretation of the enforcing authority.  

 

The U.S. Environmental Protection Agency (EPA) is responsible for enforcing the CAAA and 

has provided guidance on estimating airborne emissions from a number of regulated source 

categories (EPA 1995 and supplements) but not for R&D operations. Emissions of HAPs from 

R&D facilities are difficult to estimate because these facilities typically use a large number of 

chemicals in small quantities, engage in numerous and diverse activities, and chemicals and 

activities change over time. Estimation techniques typically assume upper-bound values 

especially for R&D operations conducted at multidisciplinary laboratories because of the breadth 

and evolving nature of research activities.  

 

The unique nature of R&D has been recognized in Title III, Section 112(c)(7) of the CAAA of 

1990 (42 U.S.C. § 7412(c)(7), 2011). The regulation requires establishing a “separate category 

covering research or laboratory facilities, as necessary to assure equitable treatment of such 

facilities” when establishing emission standards for HAPs. However, R&D facilities are not 

currently regulated as a unique category, and no guidance has been developed to estimate 

emissions from R&D activities. Although the EPA has not specifically listed R&D facilities as a 

source category of HAPs, they have considered doing so and submitted an Advance Notice of 

Proposed Rulemaking for the NESHAP: Source Category List to include R&D facilities on this 

list (62 Federal Register [FR] 25877–79, 1997). Public comments on the proposal noted the 

difficulties in estimating emissions from R&D activities that are highly variable in nature, with 
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many small quantities of chemicals and a large number of often-changing processes (EPA, 

1998). Comments also included a request for “guidance for clear, consistent potential to emit 

(PTE) calculation methodology for R&D operations.”  

 

Pacific Northwest National Laboratory (PNNL) operates a number of multidisciplinary 

laboratory research facilities for the U.S. Department of Energy (DOE) and sampled air chemical 

emissions from some of these facilities during 1998–2008. The primary purpose of this sampling 

was to provide data to compare estimated release fractions to those used for emissions estimates, 

verifying that methods used to determine compliance with air regulations and permits 

conservatively predict actual emissions. Sampling also identifies and quantifies air toxics emitted 

to compare with compliance limits established by regulatory agencies. Results from initial 

sampling campaigns were evaluated and reported by Woodruff, Benar, and McCarthy (2000), 

who summarized the PNNL compliance approach and described sampling and analytical 

measurements for the first sampling campaigns. Conclusions reported in this paper were that 

none of the target compound measurements exceeded an acceptable source impact level 

(Washington Administrative Code [WAC], Chapter 173-460) and that an average release fraction 

calculated from the data provided reasonable validation of the factor used in compliance 

assessments. Recognizing that laboratory emissions are intermittent in nature and may change 

from one year to the next, additional sampling was conducted to estimate release fractions over a 

longer period and compare them to those typically used for emissions estimates to determine 

compliance with air regulations and permits.  

 

The goal of this study was to use the comprehensive set of sampling data to test the following 

hypotheses: 

 

1. Measurement data from R&D facilities can be used to compare air chemical emissions with 

regulatory criteria. 

2. R&D emissions are related to chemical properties in addition to chemical use quantities.  

3. Sources of air emissions from R&D facilities include activities that emit multiple compounds 

with a characteristic signature. 
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The following specific aims were set to address this goal. 

 

Specific Aim 1: Evaluate emissions from R&D facilities against regulatory criteria using stack 

measurement data 

 

One aim of this study was to calculate ambient air concentrations and total emissions (per year 

and per 24-hr) using measured stack concentrations in order to make the comparison to 

regulatory criteria. Calculations based on worst-case assumptions (maximizing estimated 

emissions or ambient concentrations) provide an initial basis for comparison, but alternative 

scenarios with more realistic assumptions are also investigated to quantify conservatism in 

worst-case assumptions. 

 

Specific Aim 2: Estimate release fractions from measured stack concentrations and chemical 

inventory data and explore relationships with chemical properties 

 

A Monte Carlo technique is used to estimate distributions of annual emissions from each data 

set, which consists of sampling data for a target compound for a given year and building. The 

emission distributions are combined with chemical inventory information to calculate 

distributions of release fractions. The relationship of release fractions and of emissions to 

chemical properties is investigated to seek improved methods of estimating emissions. 

 

Specific Aim 3: Identify and characterize sources contributing to R&D stack emissions using 

source apportionment models 

 

PMF is used to identify and characterize contributors to measured stack emissions from each 

building and from all buildings together. Results are compared among buildings to identify 

factors in common among all buildings and unique to individual buildings. Individual factors are 

considered to determine whether they indicate releases from specific activities or background 

concentrations. 
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1.2 Background 

 

This section discusses background information pertinent to the analysis, including a description 

of regulatory criteria applicable to the compounds analyzed in the stack samples, a discussion of 

methods used to estimate emissions from R&D facilities, and applications of source 

apportionment. 

 

Regulatory Criteria 

 

This paper uses measured data to compare emissions with regulatory criteria and presents 

methods that take into consideration the variability of emissions over time. In addition to federal 

regulations, some states have regulations that apply to air chemical emissions. Applicability to 

R&D facilities varies depending on the state and/or interpretation of the enforcing authority. In 

Washington state, which is the location of R&D facilities known as PNNL, these regulations 

include General Regulations for Air Pollution Sources (WAC 173-400), Operating Permit 

Regulation (WAC 173-401), and Controls for New Sources of Toxic Air Pollutants (WAC 173-

460), all of which contain requirements for control of a specific list of toxic air pollutants (TAPs) 

as well as address the criteria pollutants of particulate matter, carbon monoxide, nitrogen oxides, 

sulfur dioxide, lead, and ozone.  

 

The list of TAPs includes carcinogens and non-carcinogens with nearly 400 compounds along 

with the following three associated levels for determining new source review requirements: 

acceptable source impact level (ASIL), small quantity emission rate (SQER), and de minimis 

emission threshold. ASILs are screening concentrations of the pollutants in the ambient air, 

SQERs are levels of emissions below which dispersion modeling is not required to demonstrate 

compliance with ASILs, and de minimis emission thresholds are trivial levels of emissions that 

do not pose a threat to human health or the environment. For carcinogenic compounds, the ASIL 

is an annual average concentration in micrograms per cubic meter (μg/m
3
) based on an increased 

cancer risk of one in 1 million while for non-carcinogenic compounds, the 24-hr ASIL is a 

concentration (μg/m
3
) based on a threshold concentration for toxic effects.  
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The Washington State Title V regulation allows emissions to be evaluated against a list of 

“thresholds for hazardous air pollutants” to determine whether an emission unit or activity within 

a permit can be considered insignificant. The list of threshold values is from WAC 173-401, 

while the list of TAPs and their associated ASIL, SQER, and de minimis values are from WAC 

173-460. Not all of the same compounds are on both lists. 

 

Methods Used to Estimate Emissions from R&D Facilities 

 

A variety of methods are currently being used to estimate air chemical emissions from R&D 

facilities associated with national laboratories, and these are generally considered conservative in 

that they overestimate actual emissions. Although regulatory agencies have not established 

release fractions directly applicable to estimating air chemical emissions from R&D laboratories, 

many of the methods are based on applying a release fraction to chemical inventory and/or 

chemical usage. In at least one case, a release fraction of one (100%) has been applied to 

chemicals purchased for R&D activities in a given year to estimate emissions of VOCs and 

HAPs (North and Adelson, 1995). In another case, 5% was assumed based on input from 

research staff and applied to the subset of chemicals purchased for R&D activities and containing 

VOC or HAPs constituents (Skipper, 2000). Other methods vary depending on the requirements 

specified in a permit, agreements with regulatory agencies, or degree of conservatism required. 

However, the basis for the emission factors employed is not strongly tied to chemical or process 

characteristics, and the uncertainty in emissions estimates is unknown.  

 

PNNL’s approach was to adopt the method of 40 CFR 61 Appendix D, “National Emission 

Standards for Hazardous Air Pollutants” (2005) and WAC 246-247, “Radiation Protection – Air 

Emissions” (2005) for estimating emissions to the atmosphere. The regulation assigns a release 

fraction of 1 to gases, 10
-3

 to liquids and powders, and 10
-6

 to solids. The amount of material 

used by the facility for the period under consideration is multiplied by the release fraction to 

calculate emissions; thus, the release fraction is a type of emission factor applied to chemical 

inventory and/or usage data, which is a measure of activity rate. Additional factors are provided 

to take credit for filters or other control devices in reducing emissions. The basis for the 40 CFR 

61 Appendix D release fraction applied to liquids and powders included a large number of 
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materials and diverse activities but were limited with respect to volatile solutions (EPA, 1989a). 

Therefore, volatile liquids were identified by PNNL as a separate category with a release fraction 

of 0.1. In the cited regulations, the release fractions are applied to the “amount used at facilities 

for the period under consideration” (40 CFR 61, 2005) or to the annual possession quantity 

which is defined as “the sum of the quantity of a radionuclide on hand at the beginning of the 

calendar year and the quantity of that radionuclide received or produced during the calendar 

year” (WAC 246-247, 2005). 

 

Source Apportionment 

 

PMF is a widely applied receptor modeling technique that has been used extensively to assess 

sources contributing to ambient air particulate pollution since its introduction (Paatero and 

Tapper, 1994). For example, Norris (1998) used PMF to identify signatures of sources 

contributing to particulate matter in Spokane, WA; Rose (2006) studied fine particle data from 

National Parks to determine the impact of sources on visibility impairment; Rizzo and Scheff 

(2007) analyzed fine particle concentrations in Chicago, IL to identify contributing sources; 

Jaeckels, Bae, and Schauer (2007) looked for contributors to aerosols in St. Louis, MO using 

organic molecular markers as identifiers; and Dogan, Karakas, and Tuncel (2007) applied PMF 

to source apportionment of aerosols on the coast of Turkey. In addition to particulate matter, 

PMF has been applied to a wide range of air quality indicators such as particulate and gaseous 

species plus meteorological parameters in northern Michigan (Paterson et al., 1999). PMF model 

applications have been broadened to other environmental media, including soil contamination 

(Vaccaro et al., 2007) and offshore sediments (Bzdusek, Lu, and Christensen, 2006; Sundqvist et 

al., 2010). Applying PMF to determine contributions to stack emissions as presented in this 

paper is a unique use of the model.  

 

1.3 Dissertation Framework 

 

The following chapters provide a full description of the analyses performed for this dissertation. 

Section 2, “Sample Collection and Analysis,” provides details of the sampling and analysis 

conducted to obtain the stack measurement data. Sections 3, 4, and 5 are stand-alone journal 
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articles that were either submitted for journal publication or, in the case of Section 4, were 

already published. Section 3, “Comparison of Stack Measurement Data from R&D Facilities to 

Regulatory Criteria: A Case Study from PNNL,” evaluates ambient air concentrations and total 

emissions derived from stack measurement data to regulatory criteria applicable to specific 

compounds. Section 4, “Estimating Air Chemical Emissions From Research Activities Using 

Stack Measurement Data,” uses a Monte Carlo technique to obtain a range of values for emission 

estimates which are used in conjunction with chemical inventory information to determine 

release fractions. Correlations between release fractions and total emissions with inventory data 

and chemical properties are investigated. Section 5, “Source Apportionment of Stack Emissions 

from Research and Development Facilities Using Positive Matrix Factorization,” uses source 

apportionment to identify and characterize factors contributing to measured stack emissions and 

explores the factors to determine whether they point to specific activities or processes. Finally, 

Section 6 contains a summary of the work, highlight of findings, and considerations for future 

sampling. 
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2.0 SAMPLE COLLECTION AND ANALYSIS 

 

Samples of air emissions were collected during 1998–2008 from four PNNL-operated buildings: 

a Radiochemical Processing Laboratory (RPL; 325), a Chemical Sciences Laboratory (CSL; 

329), a Life Sciences Laboratory (LSL; 331), and the Environmental Molecular Sciences 

Laboratory (EMSL) user facility. A single emission point was sampled from the first three 

buildings, and three emission points were sampled at EMSL. Sampling times were usually 100 

minutes (min) taken within normal work day hours (i.e., 8 a.m.–5 p.m.). However, some longer 

and shorter sampling times were also used, and some samples were taken during a given 

sampling campaign to provide data on weekend and off-shift hours. Although samples were 

mostly obtained from exhaust stacks, early sampling campaigns included locations such as 

lobbies and corridors to represent background emissions (e.g., emissions from supply air, 

building components, or furniture). A total of 344 samples were obtained from building stacks 

with a range of 23–54 samples taken each year and 54–141 samples taken from each building 

over all years. 

 

Air samples were collected from stack exhausts onto triple adsorbent tubes that were 

subsequently analyzed for VOCs using gas chromatography/mass spectrometry (GC/MS) 

analysis at a PNNL laboratory. Sampling was conducted by extracting a subsample of the 

effluent stream through a tube over a given time period so that volatiles and semi-volatiles in the 

stream were adsorbed onto graphitized sorbent beds within the tube. The sampler drew air 

simultaneously through two tubes in parallel flow paths with flow rates independently adjusted 

for each path as based on EPA Compendium Method TO-17 (EPA, 1999b). This method 

provides guidelines for collection of ambient air toxic organic compounds on a variety of 

different sorbent media. 

 

All samples were collected on Supelco 300 triple-sorbent traps (TSTs), commercial products 

purchased from Supelco, Inc. in Bellefonte, PA. Each sampling device consists of a ground glass 

tube (115 millimeters [mm] long, 6 mm outside diameter, 4 mm inside diameter) containing a 

series of sorbent trapping beds arranged in order of increasing retentivity. Each tube contains 300 

milligrams (mg) of Carbotrap™ C, 200 mg of Carbotrap™ B, and 125 mg of Carbosieve™ S-III. 
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The first two sorbents are forms of deactivated graphite with limited sorption power for less 

volatile organic compounds. The final trapping stage, Carbosieve™ S-III, is a graphetized 

molecular sieve capable of retaining the most volatile components, including the permanent 

gases such as propane, Freon-12, chloromethane, and vinyl chloride. 

 

Prior to shipment to the field, all tubes were heated to a temperature of 380°C for at least 30 min 

with a reverse helium flow of 30 milliliters (ml)/min. Each tube was then transferred to Supelco 

plastic containers to avoid contamination during shipment and storage. Prior to sampling and 

during long-term storage prior to analysis, samples in the containers were kept in refrigerated 

storage at –20°C. Previous studies conducted at PNNL (Evans et al., 1998) spanning a wide 

range of analytes demonstrated that samples can be safely stored in that manner for prolonged 

periods without compromise of integrity. 

 

The glass tubes were pre-marked with unique identification numbers. Each storage container was 

affixed with an identification label containing a separate unique sequential number associated 

with the sampling event as well as the tube number for the trap contained within. This 

information was also recorded on a field sampling log prepared at the same time to be used as a 

chain-of-custody record. Samples were transferred to the field and back to the lab at the 

conclusion of sampling under standard chain-of-custody protocol. 

 

All samples were analyzed by thermal desorption and GC/MS using procedures consistent with 

the mass spectrometry and QA/QC guidelines set forth in EPA Compendium Method TO-15 

(EPA, 1999a). A set of 49 compounds were targeted in the analysis, primarily from a standard 

containing the 39 compound mixtures specified in EPA Compendium Method TO-14 (EPA, 

1989b) plus a short list of supplementary analytes in a second standard.
1
  

 

At the completion of each daily batch run, all GC/MS data were copied to a disk for archiving 

and transferred to a remote chromatography data reduction system. Data reduction was 

performed using Environmental ChemStation G1701 CA Version C.00.00 analysis software. 

                                                 
1
 Compendium Method TO-17 describes the method used to collect the samples onto sorbent tubes and references 

Method TO-15 for the GC/MS analytical procedure and Method TO-14 for a target compound list. 
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3.0 COMPARISON OF STACK MEASUREMENT DATA FROM R&D FACILITIES 

TO REGULATORY CRITERIA: A CASE STUDY FROM PNNL
2
 

 

3.1 Abstract 

 

Chemical emissions from R&D activities are difficult to estimate because of the large number of 

chemicals used and the potential for continual changes in processes. In this case study, stack 

measurements taken from R&D facilities at PNNL were examined, including extreme worst-case 

emissions estimates and alternate analyses using a Monte Carlo method that takes into account 

the full distribution of sampling results. The results from these analyses were then compared to 

emissions estimated from chemical inventories. Results showed that downwind ambient air 

concentrations calculated from the stack measurement data were below ASILs for almost all 

compounds, even under extreme worst-case analyses. However, for compounds with averaging 

periods of a year, the unrealistic but simplifying worst-case analysis often resulted in 

exceedances of lower level regulatory criteria used to determine modeling requirements or to 

define trivial releases. Compounds with 24-hr averaging periods were nearly all several orders of 

magnitude below all criteria, including the trivial release. The alternate analysis supplied a more 

realistic basis of comparison and an ability to explore effects under different operational modes.  

 

3.2 Introduction 

 

Established in 1990, Title V of the CAAA (42 U.S.C. 7661) creates an operating permit program 

for federal, state, and local authorities to regulate air pollution emissions from large sources. 

Operating permits are issued by state and local permitting authorities that may have additional or 

more stringent requirements than those mandated by federal regulations. The EPA is responsible 

for enforcing the CAAA and has provided guidance on estimating airborne emissions from a 

number of regulated source categories (EPA 1995, plus supplements). 

 

                                                 
2
 This chapter was submitted for publication to the Journal of the Air and Waste Management 

Association, authors M. Ballinger (Battelle Seattle Research Center, Seattle, WA 98109); R. Woodruff 

and C. Duchsherer (Pacific Northwest National Laboratory, Richland, WA 99352); and T. Larson 

(Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195). 
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R&D facilities are not currently regulated as a unique category, and no guidance has been 

developed to estimate emissions from R&D activities. However, these facilities may become 

stand-alone major sources (emissions exceed HAP major source thresholds), or they may need to 

be incorporated into a Title V permit if they are collocated with a manufacturing site that is 

considered to be a major source. The facilities can also be excluded based on either actual 

emission threshold rates or individual size and production rate criteria. Emissions of HAPs from 

R&D facilities are difficult to estimate because these facilities typically use a large number of 

chemicals in small quantities, engage in numerous and diverse activities, and chemicals and 

activities change over time. 

 

In addition to federal regulations, some states have regulations that apply to air chemical 

emissions. Applicability to R&D facilities varies depending on the state and/or interpretation of 

the enforcing authority. In Washington State, these regulations include General Regulations for 

Air Pollution Sources (WAC 173-400), Operating Permit Regulation (WAC 173-401), and 

Controls for New Sources of Toxic Air Pollutants (WAC 173-460), all of which contain 

requirements for controlling the emissions of a specific list of TAPs as well as address the 

criteria pollutants of particulate matter, carbon monoxide, nitrogen dioxide, sulfur dioxide, lead, 

and ozone. 

 

The list of TAPs includes carcinogens and non-carcinogens with nearly 400 compounds along 

with the following three associated levels for determining new source review requirements: 

ASIL, SQER, and de minimis emission threshold. ASILs are screening concentrations of the 

pollutants in the ambient air; SQERs are levels of emissions below which dispersion modeling is 

not required to demonstrate compliance with ASILs; and de minimis emission thresholds are 

trivial levels of emissions that do not pose a threat to human health or the environment. For 

carcinogenic compounds, ASIL is an annual average concentration (μg/m
3
) based on an 

increased cancer risk of one in 1 million, while for non-carcinogenic compounds, the 24-hr ASIL 

is based on a threshold concentration for toxic effects. 

 

The Washington State Title V regulation allows emissions to be evaluated against a list of 

“thresholds for hazardous air pollutants” to determine whether an emission unit or activity within 
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a permit can be considered insignificant. The list of threshold values is from WAC 173-401, 

while the list of TAPs and their associated ASIL, SQER, and de minimis values are from WAC 

173-460. Many but not all of the same compounds are on both lists. 

 

PNNL sampled for air chemical emissions from R&D laboratory buildings during 1998–2008 to 

obtain data to evaluate emission estimation methods and to identify and quantify air toxics 

emitted for comparison with compliance limits established by Washington state. Just as many 

different and changing processes in an R&D facility make it difficult to estimate emissions, the 

variability of measured emissions also make it difficult to compare with compliance limits for 

specific average periods. This study uses measured data to compare emissions with regulatory 

criteria and presents methods that consider the variability of emissions over time. 

 

3.3 Methods 

 

Stack Sampling 

 

PNNL sampled air chemical emissions from the stacks of four buildings during 1998–2008: RPL 

(325), CSL (329), LSL (331), and EMSL. Sampling times were usually 100 min taken during 

normal work day hours (i.e., 8:00 a.m.–5:00 p.m.), except for the initial year of sampling, during 

which 300- and 50-min samples were obtained. A limited number of samples were acquired 

during nights and weekends to represent off-shift times when R&D activities are not likely to 

occur. Thus, sampling results are identified as on-shift and off-shift. 

 

Although samples were mostly obtained from exhaust stacks, early sampling campaigns included 

locations such as lobbies and corridors to evaluate non-research related contributions to 

emissions. Data from these alternate locations were compared with off-shift samples to evaluate 

whether off-shift concentrations were similar to non-research emissions or whether they 

contained additional emissions from research being conducted in off-normal hours. 

 

The sampling method was the collection of air samples from stack exhausts onto TSTs that were 

subsequently analyzed for VOCs using GC/MS analysis. The sampling apparatus had two 
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parallel channels into which the air stream is drawn; each channel has its own flow rate, and one 

of the channels was programmed to collect a sample at double the flow rate of the other. Thus, 

each sample has a pseudo-duplicate to identify quality issues and to estimate uncertainty. 

Additional information on sampling and analysis procedures is provided in Woodruff, Benar, and 

McCarthy (2000). 

 

Depending on the year, a total of 46–49 target compounds (Table 3.1) were analyzed by GC/MS. 

The compounds were selected primarily from a standard containing a mixture of 39 compounds 

specified in EPA Compendium Method TO-14 (EPA, 1989b), plus a short list of supplementary 

analytes in a second standard. Depending on the building, the number of stack samples taken 

varied from 54 to 141, with a total of 344 samples. Thirty-two compounds were listed as TAPs in 

WAC 173-460-150 with associated ASILs, SQERs, and de minimis criteria. Averaging periods 

were either 1 year (19 compounds) or 24-hr (13 compounds) representing carcinogenic and non-

carcinogenic effects, respectively. Most of these compounds were also listed in the table of Title 

V Thresholds for hazardous air pollutants in WAC 173-401-531. The current list of TAPs has 

been in place since June 2009, at which time WAC 173-460 was revised to reflect current 

toxicology data, with some compounds previously listed as TAPs removed (Washington State 

Department of Ecology, 2008). For purposes of this evaluation, de-listed chemicals were 

assigned their previous ASIL as surrogate values for comparison and providing evaluation 

criteria for an additional nine compounds. 

 

Table 3.1. Target Compounds and Associated Regulatory Criteria 

CAS# Compound Name 

State TAPs* Title V† 

ASIL 

(µg/m3) 

SQER 

(lb/avg 

period) 

De Minimis 

(lb/avg 

period) 

Threshold 

(ton/yr) 

Target Compounds Listed as TAPs in WAC 173-460 with year averaging period 

79-34-5 1,1,2,2-Tetrachloroethane 0.0172 3.3 0.165 0.15 

79-00-5 1,1,2-Trichloroethane 0.0625 12 0.6 0.5 

75-34-3 1,1-Dichloroethane 0.625 120 6 0.5 

106-93-4 1,2-Dibromoethane 0.0141 2.71 0.135 0.05 

107-06-2 1,2-Dichloroethane 0.0385 7.39 0.369 0.4 

106-99-0 1,3-Butadiene 0.00588 1.13 0.0564 0.035 

106-46-7 1,4-Dichlorobenzene 0.0909 17.4 0.872 0.5 

107-05-1 3-Chloropropene 0.167 32 1.6 0.5 

75-05-8 Acetonitrile 60 1.15E+04 576 0.5 

71-43-2 Benzene 0.0345 6.62 0.331 0.5 

56-23-5 Carbon tetrachloride 0.0238 4.57 0.228 0.5 

67-66-3 Chloroform 0.0435 8.35 0.417 0.45 

100-41-4 Ethylbenzene 0.4 76.8 3.84 0.5 
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CAS# Compound Name 

State TAPs* Title V† 

ASIL 

(µg/m3) 

SQER 

(lb/avg 

period) 

De Minimis 

(lb/avg 

period) 

Threshold 

(ton/yr) 

87-68-3 Hexachloro-1,3-butadiene 0.0455 8.73 0.437 0.5 

75-09-2 Methylene chloride 1 192 9.59 0.5 

78-87-5 Propane, 1,2-dichloro- 0.1 19.2 0.959 0.5 

127-18-4 Tetrachloroethylene 0.169 32.4 1.62 0.5 

79-01-6 Trichloroethene 0.5 95.9 4.8 0.01 

75-01-4 Vinyl chloride 0.0128 2.46 0.123 0.1 

Target Compounds Listed as TAPs in WAC 173-460 with 24-hr averaging period 

71-55-6 1,1,1-Trichloroethane 1000 131 6.57 0.5 

75-35-4 1,1-Dichloroethene 200 26.3 1.31 0.2 

98-82-8 1-Methylethylbenzene 400 52.6 2.63 0.5 

78-93-3 2-Butanone 5000 657 32.9 0.5 

74-83-9 Bromomethane 5 0.657 0.0629  

108-90-7 Chlorobenzene 1000 131 6.57 0.5 

75-00-3 Chloroethane 3.00E+04 3940 197 0.5 

74-87-3 Chloromethane 90 11.8 0.591 0.5 

67-56-1 Methanol 4000 526 26.3 0.5 

95-47-6 o-Xylene 221 29 1.45  

106-42-3 p/m-Xylene 221 29 1.45  

100-42-5 Styrene 900 118 5.91 0.5 

108-88-3 Toluene 5000 657 32.9 0.5 

Target Compounds Previously Listed as TAPs in WAC 173-460 with 24-hr averaging period 

76-13-1 1,1,2-trichloro-1,2,2-trifluoroethane 2.7E+04 3547.8 177.39  

120-82-1 1,2,4-Trichlorobenzene 120 15.77 0.7884 0.5 

76-14-2 1,2-dichloro-1,1,2,2-tetrafluoroethane 2.3E+04 3022.2 151.11  

95-50-1 1,2-Dichlorobenzene 1000 131.4 6.57  

67-64-1 Acetone 5900 775.26 38.763  

75-71-8 Dichlorodifluoromethane 1.6E+04 2102.4 105.12  

64-17-5 Ethanol 6300 827.82 41.391  

109-66-0 Pentane 6000 788.4 39.42  

75-69-4 Trichlorofluoromethane 1.9E+04 2496.6 124.83  

Target Compounds Not Currently or Previously Listed as TAPs in WAC 173-460 

CAS# Compound Name CAS# Compound Name 

541-73-1 1,3-Dichlorobenzene 108-67-8 1,3,5-Trimethylbenzene 

10061-01-5 cis-1,3-Dichloropropene 611-14-3 1-Ethyl-2-Methyl-Benzene 

10061-02-6 trans-1,3-Dichloropropene 622-96-8 1-Ethyl-4-methylbenzene 

95-63-6 1,2,4-Trimethylbenzene 156-59-2 cis-1,2-Dichloroethene 
* WAC 173-460-150; note that ASIL applies to ambient air concentration and the other criteria apply to stack emissions. Significant 

figures are the same as those given in the regulation. 

† WAC 174-401-531 

 

Calculation of Ambient Air Concentrations 

 

Analytical results provided concentrations for each of the target compounds in the stack gases 

sampled, but ASILs are ambient air concentrations at locations in which there is no restriction or 

control of public access. Thus, a dispersion factor is needed to calculate ambient air 

concentrations from the measured data as shown in eq 3.1.  
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Ambient Concentration = Stack Concentration × 1E-3 g/mg ×  

 Stack Flow Rate × Dispersion Factor (3.1) 

  

Where Ambient Concentration = receptor concentration in µg/m
3
 

Stack Concentration = mg/m
3
 

Stack Flow Rate = m
3
/s 

Dispersion Factor = ambient air concentration at a specific location per unit of stack 

emission rate, calculated with units of µg/m
3
 per g/s. The location is determined by the 

code as the maximum impact for the modeled emission point and meteorology. 

 

Alternately, a stack concentration corresponding to the ASIL can be calculated by rearranging eq 

3.1 as shown in eq 3.2. 

 

CASIL =  ASIL                             (3.2) 

   (1E-3 g/mg × Stack Flow Rate × Dispersion Factor)   

 

Where ASIL= µg/m
3
 

CASIL = stack concentration in mg/m
3
 resulting in the air concentration equaling the ASIL 

at the specific location where the Dispersion Factor applies. 

 

Dispersion factors were calculated for both annual and 24-hr average concentrations using the 

AERMOD atmospheric dispersion modeling system. Developed by a collaborative team of the 

American Meteorological Society and EPA, AERMOD has been adopted as the EPA’s preferred 

regulatory model for both simple and complex terrain and is promulgated as the preferred 

regulatory model (EPA, 2012a).  

 

BREEZE AERMOD version 7.3 was used in this application to calculate dispersion factors for 

each of the sampled buildings with inputs that included stack height and exit gas temperature as 

well as velocity, stack diameter, and building and emission point location/dimensions with 

respect to the surrounding area. All of these values were relatively constant over time for each 

emission point. Distances from the stacks to the nearest facility boundary ranged from 190 - 
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400m and AERMOD identified the location outside of these boundaries that resulted in the 

highest dispersion factor. Five years of meteorological data were used as input to AERMOD to 

provide the range of dispersion conditions with which to evaluate impacts. Data from local 

meteorological towers for 2004–2008 were chosen because those years corresponded with the 

most recent sampling campaigns.  

 

Two operational scenarios were modeled with AERMOD, the first being theoretical in which 

operation occurs for “three shifts” daily for 365 days/yr and emissions are continuous at a 

constant rate. The second operational scenario was for the typical 8 a.m.–5 p.m. Monday through 

Friday “one shift” per day for a nominal 250 days/yr. The off-shift emissions were 

conservatively set at 10% of on-shift because maximum measured off-shift concentrations for the 

compounds closer to the ASIL values were almost all less than 10% of the maximum on-shift 

concentrations. Although R&D activities are not likely to be constant or continuous even during 

on-shift hours, the “one shift” AERMOD case quantifies some of the conservatism in operating 

mode assumptions. 

 

Ambient air concentrations were calculated using the modeled highest 24-hr and annual average 

dispersion factors from the 5-year data set for each building coupled with the single highest 100-

min concentration measured in the stack. While unrealistic, this approach provides bases for 

comparing scenarios and a screening comparison with corresponding ASIL values given in Table 

3.1. In addition, the stack concentrations corresponding to ASIL values were calculated as shown 

in eq 3.2 and compared to the full set of sampling data, again using the single highest 24-hr and 

annual dispersion factor based on AERMOD modeling of the 5 years of meteorological data. 

 

Calculation of Annual and 24-Hour Emissions 

 

In addition to ASILs, which are screening concentrations of toxic air pollutants in the ambient 

air, other criteria (SQER, de minimis, and threshold values) in units of total emission for a given 

time period have regulatory significance. SQERs are levels of emissions below which dispersion 

modeling is not required to demonstrate compliance with ASILs; de minimis emission thresholds 

are trivial levels of emissions that are of no regulatory concern; and Title V thresholds can be 
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used to determine whether an emission unit or activity can be considered insignificant for Title V 

permitting. Measured stack concentrations can be converted to emission rates by multiplying 

stack concentration by volumetric flow rate, which was relatively constant for the stacks 

sampled.
3
 Although R&D emissions are highly variable as demonstrated by measurement data, 

an analysis is presented assuming continuous emissions at a constant rate equal to the single 

highest measured sample concentration for each compound. The stack concentrations that 

correspond to SQER and de minimis values can be back-calculated similarly to eq 3.2 for ASILs, 

except that no dispersion factor is needed and different conversion factors are required because 

SQER and de minimis are in units of pounds per averaging period. The stack concentrations 

corresponding to SQER and de minimis values for a three-shift scenario are presented for 

comparison to the sampling data. 

 

Assumptions were made to simplify calculations that result in extreme maximum (over-

estimated) estimates of emissions. The assumption of three operation shifts at the single 

maximum measured concentration carries a much higher degree of conservatism for the longer 

time frame of a year than for the shorter time frame of a day. For example, a 100-min sample 

time represents almost 7% of a day but only 0.02% of a year. A method that can be used to 

estimate annual emissions from all sampling data that takes into account the sporadic nature of 

R&D operations and variability of emissions is the Monte Carlo method described in Ballinger et 

al. (2013). Using the full set of sampling data allows incorporation of the different modes of 

operation such as on-shift and off-shift. Results are provided in the form of a distribution from 

which the user can choose the statistic with the desired degree of conservatism (e.g., maximum, 

95
th

 percentile, mean, or median values) to compare to regulatory values. 

 

In this study, a Monte Carlo analysis was performed on measured data to calculate annual 

emissions under three modes of operation: (1) three full operating shifts, where R&D is assumed 

to occur around the clock and all samples (including those taken nights and weekends) are 

random estimates of emission concentrations at any time of the day, week, or year; (2) on-shift + 

off-shift, where samples taken during the normal workday (“on-shift”) are random estimates of 

emissions from normal working hours (~2000 hrs/yr) and samples taken during nights and 

                                                 
3
 Stack flow rates were measured using test methods in 40 CFR 60 Appendix A. 
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weekend (“off-shift”) are representative of reduced operations occurring the rest of the year; and 

(3) on-shift – off-shift, where on-shift samples are attributed to normal R&D work plus non-

R&D sources (e.g., furniture, office equipment, building infrastructure) and off-shift samples are 

attributed to non-R&D sources alone. Off-shift is subtracted from on-shift in the third mode to 

represent emissions from R&D operations as a comparison to chemical inventory estimates.  

 

Sampling data for each building were grouped into on-shift and off-shift. For the three shifts 

mode, the Monte Carlo simulation, performed using Crystal Ball (Oracle, 2012), involved 

randomly selecting a value from the distribution that included both on-shift and off-shift data for 

all sample years for a given building and multiplying that value by the stack volumetric flow and 

conversion factors to result in the units of lbs/yr. This calculation was executed 1000 times to 

result in a distribution of annual emission estimates. Calculations for the on-shift + off-shift 

mode were similar to the three shifts mode, except that random selections were taken separately 

from the on-shift and off-shift groups and weighted by the hours per year in that shift. On-shift 

was modeled as a normal distribution with a mean of 2000 hr/yr and sigma of 200 hr/yr, with 

off-shift occurring the remainder of the year. The on-shift – off-shift mode investigates the 

possibility that off-shift measurements represent emissions from non-research related operations, 

a concept supported by the similarity of off-shift concentrations to samples taken in hallways and 

corridors. Emissions were calculated by subtracting a randomly selected off-shift value from a 

randomly selected on-shift value before multiplying by the volumetric stack flow rate and the 

conversion factors. Negative values were set to zero for the final distribution in the on-shift – 

off-shift mode calculations.  

 

An alternate approach to generating an annual emission estimate from an individual sampling 

result would be to treat each sample as an indicator of an individual 100-min segment of the 

year. The Monte Carlo simulation would then randomly select 5256 values (the number of 100-

min segments in a year) to compute an emissions estimate and repeat that process 1000 times. 

This is more realistic than the original approach but more computationally demanding. The 

alternative approach was used on a limited number of compounds and compared to the original 

Monte Carlo simulations.  
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Sample measurements for many compounds were close to or below detection limits, prompting 

the question of whether detection limits provided sufficient resolution for a comparison with 

regulatory criteria. The analytical detection limit for each compound is based on the quantity of 

that compound collected on the sample tube. Thus, detection limits in terms of stack 

concentration varied with compound and with the volume of gases used to collect the sample. 

Annual emissions corresponding to detection limit concentrations were calculated by grouping 

all results below detection limits for each compound and building, and performing a Monte Carlo 

analysis to calculate a distribution assuming three full operating shifts. This is the same 

calculation as the three shifts mode described, except that only the concentrations flagged as 

below detection limit were included in the source distribution. 

 

In addition to calculations performed using measured data, emissions were estimated from 

chemical inventory data for the years sampled. Data were obtained from a chemical inventory 

system that tracks chemicals currently in the buildings and also roughly estimates chemical 

usage based on inventory record changes. Usage quantities are calculated within the system by 

assuming that the contents of each container are used uniformly between the time a container is 

full when initially added to the inventory and the time it is removed from inventory. Inventory 

and usage data were obtained for the compounds with annual averaging periods and emissions 

calculated by applying a release fraction of 10% to the combination of usage plus one-half 

inventory quantities (Ballinger et al., 2013). The release fraction of 10% is consistent with that 

used by PNNL (Woodruff, Benar, and McCarthy, 2000). Chemical usage plus half of inventory 

was used because PNNL routinely uses this larger quantity to estimate emissions based on the 

following: in a population of many containers, it can be assumed that on average, the containers 

are half empty, and half the capacity has been used and was subject to emission processes. 

 

3.4 Results  

 

Ambient Air Concentrations 

 

Ambient air concentrations calculated as shown in eq 3.1 were compared to ASILs and are 

displayed in Table 3.2 in terms of percent of ASIL. Results are provided for compounds with 
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annual averaging periods (carcinogenic) arranged in order of highest to lowest percent. 

Compounds with 24-hr averaging periods (non-carcinogenic) are not shown in the table because 

they were several orders of magnitude less than ASILs with the highest result of 0.2% (p/m-

xylene, 331 Building). As seen in Table 3.2, most calculated ambient air concentrations are less 

than 1% of the ASIL even under the maximally conservative assumptions of the single highest 

concentration emitted continuously from the stack over a year. Under these assumptions, only 

one measurement (chloroform in the 331 Building) exceeded the ASIL, and seven others exceed 

1% of ASIL values for one or more emission points.  

 

Table 3.2. Comparison of Calculated Concentrations to ASILs*
 

Compound 325 Building 329 Building 331 Building EMSL 

Chloroform 0.1% 7.0% 130.8% 1.8% 

Carbon tetrachloride 0.7% 18.7% 1.8% 0.3% 

Methylene chloride 0.9% 16.1% 0.4% 6.4% 

Hexachloro-1,3-butadiene 1.7% 2.9% 10.4% 2.8% 

Benzene 7.6% 1.4% 9.5% 1.0% 

Trichloroethene 3.5% 4.8% 7.9% 5.0% 

1,1,2,2-Tetrachloroethane 0.2% 0.2% 2.0% 0.2% 

Ethylbenzene 0.0% 0.1% 2.0% 0.1% 

1,3-Butadiene 0.2% 0.5% 0.7% 0.5% 

1,4-Dichlorobenzene 0.2% 0.4% 0.5% 0.1% 

Vinyl chloride 0.1% 0.3% 0.5% 0.4% 

1,2-Dichloroethane 0.1% 0.2% 0.3% 0.5% 

1,2-Dibromoethane 0.1% 0.2% 0.3% 0.2% 

Tetrachloroethylene 0.0% 0.2% 0.0% 0.0% 

Propane, 1,2-dichloro- 0.0% 0.1% 0.1% 0.1% 

1,1-Dichloroethane 0.0% 0.1% 0.0% 0.0% 

3-Chloropropene 0.0% 0.1% 0.1% NM†
 

1,1,2-Trichloroethane 0.0% 0.0% 0.1% 0.0% 

Acetonitrile 0.0% 0.0% 0.0% 0.0% 
* Comparison of ambient air concentrations calculated from highest measured stack concentrations to acceptable 

source impact levels (target compounds with year averaging periods) 

† Not measured: 3-Chloroprene was not part of the suite of target compounds analyzed during the time period that 

EMSL was sampled. 

 

Sampling results from the 331 Building are used to demonstrate methods other than extreme 

worst-case analysis. This building was chosen because it had the greatest number of samples, 

most years sampled, and concentrations of interest in comparison to ASIL values as shown in 

Table 3.2. One of the worst-case analysis assumptions is computation of dispersion factor that 

assumes a constant, continuous emission for three full operational shifts and uses the highest 

value from 5 years of meteorological data. Alternative AERMOD scenarios were run to quantify 
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some conservatism in these assumptions. Both annual and 24-hr dispersion factors were reduced 

by almost half for 331 Building if emissions during nights and weekends are 10% of emissions 

during normal on-shift working hours and were reduced by 45% if emissions during off-shifts 

are set to zero. Results from other emission points were similar to 331, with reductions ranging 

16–65%. 

 

Calculated Stack Concentrations 

 

The stack concentration corresponding to regulatory criteria under extreme worst-case 

assumptions were calculated for each compound and are plotted as lines in Figure 3.1, along with 

distribution plots for each compound from the full set of sampling data. Common units of mg/m
3
 

are used for sampling results consistency. As shown in the figure, almost all sample distributions 

were orders of magnitude below the concentrations corresponding to the compounds’ ASIL. 

Chloroform is the exception, with a single maximum measurement exceeding the calculated 

emission that would correspond to the ASIL; this agrees with the results shown in Table 3.2. 

 

Figure 3.1 also displays calculated stack concentrations that correspond to the SQER and de 

minimis emission rates for comparison to sample distribution plots for the full set of sampling 

data. Several compounds with year averaging periods had sample results above SQER-related 

stack concentrations, but almost all were above de minimis-related criteria. 

 

For compounds with 24-hr averaging periods, all measured concentrations were also below 

SQER- and de minimis-related values, except for one p/m-xylene value that was above de 

minimis. Results for compounds that were previously listed as TAPs were similar to those shown 

in Figure 3.1b; all measured concentrations were below regulatory criteria formerly assigned to 

those compounds.
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a. Compounds with Year Averaging Period 
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b. Compounds with 24-hr Averaging Period 

Figure 3.1. Calculated Stack Concentrations Corresponding to ASILs Compared to Stack Sampling Distributions (3331 Building) 
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Probabilistic Emission Estimates 

 

The simplifying extreme worst-case assumptions are unrealistic for the comparison of 

compounds that have year averaging periods with levels of regulatory significance. 

Consequently, Monte Carlo simulations were used to reduce the level of conservatism in the 

emission estimate for comparison with the SQER and de minimis criteria by obtaining estimates 

of annual emissions based on the full set of measured data. These simulations are also used to 

evaluate the three alternate modes of operation. Figure 3.2 shows the results for the 331 Building 

when the Monte Carlo simulation is run using the three full operating shift mode (Mode 1). In 

this process, a randomly selected measurement is treated as a constant, continuous source and is 

used to calculate one estimate of annual emissions. The process is repeated 1000 times, creating 

a distribution curve. The maximum from the curve is the same as the extreme maximum case, 

but less extreme estimates such as the 95
th

 percentile and median values are also generated 

(Figure 3.2). Results are normalized by each compound’s SQER criteria to show the differences 

compared to the SQER criteria. 

 

 
Figure 3.2. Comparison of 95th Percentile Annual Emission Estimates (331 Building) 

 

Many of the compounds that exceed the SQER using the extreme maximum concentration are 

below the SQER with the three shifts mode 95
th

 percentile value, and only hexachloro-3-
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butadiene exceeds the SQER using the median of the distribution. This agrees with Figure 3.1a, 

which shows that all hexachloro-3-butadiene sample results were above the SQER-related 

concentration for that compound. The reduction is generally greater for the compounds that are a 

higher percentage of the SQER. Reductions in shifting from assumptions of extreme maximum 

to 95
th

 percentile ranged from over two orders of magnitude (trichloroethene) to 60% 

(hexachloro-3-butadiene). 

 

A more rigorous alternate approach was used in which 5256 random samples were selected to 

represent each 100-min segment of the year and then used to calculate an annual emission. The 

process was repeated 1000 times to generate a distribution of emission estimates for three 

selected compounds: chloroform, hexachloro-1,3-butadiene, and benzene. The alternate 

calculations were performed for both the three shifts and the on-shift + off-shift modes. As 

would be expected, the alternate approach produced almost the same mean but with a much 

narrower distribution than the original Monte Carlo simulation. For the compounds studied, the 

range of the distribution using the alternate more rigorous calculations was similar to the 95% 

confidence interval of the mean using the original process. In almost all cases, the maximum 

from the alternate calculations was less than the upper bound on the mean (using a 95% 

confidence interval) from the original Monte Carlo simulations. The range of the mean appears 

to be a reasonable substitute for the more rigorous alternate calculations, and the upper bound on 

the mean represents a realistic yet still conservative estimate of annual emissions for a given 

operational mode. 

 

Changing the assumptions about the modes of operations also made a significant difference in 

estimating emissions for many of the compounds. Figure 3.3 shows the changes in estimated 

emissions for the four compounds with emissions closest to their SQER based on the three full 

operating shift model. Results using the upper mean of the distributions produced from the 

Monte Carlo simulations under the different modes are displayed. Chloroform is above the 

SQER under all operational mode assumptions, and hexachloro-1,3-butadiene is above the 

SQER under the three shifts and the on-shift + off-shift modes but not the on-shift – off-shift 

mode. All other compounds are below their SQER criteria under all operational modes. 
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Figure 3.3. Comparison of Annual Emission Estimates Under Different Operational Modes (331 

Building; Using Upper Bound of Mean from Monte Carlo Distribution) 

 

For a number of compounds, the difference between three shifts and on-shift + off-shift mode is 

small, but between on-shift + off-shift and on-shift – off-shift is significant. These are 

compounds where the on-shift and off-shift concentrations are similar, with many less than the 

detection limit so that subtracting off-shift from on-shift gives a result close to zero. For 

example, a high percentage of sampling results for hexachloro-1,3-butadiene and 1,3-butadiene 

shown in figure 3.3 were below analytical detection limits and resulted in zero or near zero 

values for the on-shift – off-shift calculation.  In addition, the inventory for many compounds 

was found to be low or zero, granting credibility to the on-shift – off-shift mode, which assumes 

off-shift sample results represent underlying background contributions from sources other than 

R&D operations. 

 

A similar evaluation was made comparing calculated emissions to de minimis values, which are 

established at 5% of SQER values. All of the compounds except for 1,1-dichloroethane and 

acetonitrile exceeded de minimis values under extreme maximum assumptions. The Monte Carlo 
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simulation results allow for more realistic emission estimates to compare with de minimis 

criteria. The upper bound on the mean from distributions generated for each operating mode 

were compared to de minimis values, and Table 3.3 indicates those compounds that exceeded de 

minimis using these values. The list in Table 3.3 identifies the compounds that remain above the 

de minimis criteria, as levels of conservatism are reduced from extreme maximum to more 

realistic estimates of emissions. Only four compounds have estimated emissions above de 

minimis criteria under on-shift – off-shift mode assumptions.  However, this may be an artifact 

of detection limits that are not sensitive enough to detect concentration levels for the comparison.  

 

Table 3.3. Calculated Emissions Above De Minimis Criteria (331 Building) 

Compound 

Extreme 

Maximum 

Upper 95% Confidence Interval of the 

Mean 

Mean of 

Distribution 

Using < 

Detection 

Limits (DL) 

Sampling 

Results 

Mode 1: 

Three Shift 

Mode 2: 

On-shift + 

Off-Shift 

Mode 3: 

On-shift - 

Off-Shift 

Hexachloro-1,3-butadiene X X X X X 

Chloroform X X X X 
 

1,1,2,2-Tetrachloroethane X X X X X 

Benzene X X X X X 

1,3-Butadiene X X X 
 

X 

1,4-Dichlorobenzene X X X 
 

X 

Carbon tetrachloride X X X 
 

X 

Vinyl chloride X X X 
 

X 

1,2-Dibromoethane X X X 
 

X 

1,2-Dichloroethane X X X 
 

X 

Ethylbenzene X X 
   

3-Chloropropene X X X 
 

X 

Methylene chloride X 
    

1,2-Dichloropropane X X X 
 

X 

Trichloroethene X X 
   

1,1,2-Trichloroethane X 
    

Tetrachloroethylene X 
    

1,1-Dichloroethane      

Acetonitrile      

 

Some of the compounds listed in Table 3.3 had a high percentage of sampling results that were 

flagged as “U” or under the detection limit. These results are assigned detection limit 

concentrations. A Monte Carlo analysis was applied to the sample results that were under 

detection limit concentrations to obtain a distribution that represents the lowest quantity of 



 

29 

emissions that could be detected. Three shifts operating assumptions were used for the 

simulation. The mean of this distribution for each compound was compared to de minimis 

criteria. As shown in Table 3.3, the outcome of this detection limit analysis was that over half of 

the compounds with annual averaging periods were above de minimis using detection limit 

concentrations. For these compounds, sampling did not provide sufficient resolution to compare 

annual emissions with de minimis criteria.  Similarly, the detection level does not provide 

sufficient resolution for the on-shift – off-shift mode calculations for those compounds.   

 

Title V threshold values are given in tons/yr of emission and are generally much higher than 

SQER values, although two compounds, trichloroethene and acetonitrile, have threshold values 

that are less than SQER criteria. Comparing estimated emissions based on the highest measured 

concentrations from the 331 Building resulted in two compounds with extreme maximums above 

threshold values: chloroform and trichloroethene. Calculated emissions using upper bound on the 

mean of the distribution under three shifts operational assumptions reduces the estimates so that 

both of these compounds are below threshold criteria. 

 

Chemical inventory data were used as an alternate method to estimate annual emissions. This 

included chemical inventory at the beginning of the year corresponding to the years sampled for 

each building and usage data for those years. Some compounds did not have corresponding 

inventory data for specific buildings or years. For example, only 11 of the 19 compounds with 

year averaging periods had inventory data for the 331 Building during the 7 years sampled, and 

three of those 11 did not have inventory data for all years. Figure 3.4 shows the highest estimated 

annual emissions from the inventory calculations for the six compounds with the highest percent 

of SQER. Inventory-based emission estimates are compared to upper bound of the mean values 

from the Monte Carlo-generated distributions under the different operational modes. In all cases, 

only chloroform was shown to exceed SQER criteria. The inventory-based value for chloroform 

exceeded the SQER for 2 of the 7 years sampled, but the average was just under the SQER. In 

general, the inventory-based emission estimates are most similar to the upper bound of the mean 

from the on-shift + off-shift calculated distributions for this data set.  
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Figure 3.4. Comparison of Emission Estimates Based on Inventory vs. Measurements (331 

Building; Using Upper Bound of Mean for Modes) 

 

3.5 Discussion  

 

Comparing stack measurements to regulatory criteria for air emissions requires assumptions 

about the temporal variability of the emissions. Even though stack measurements show a wide 

range of concentrations, using an extreme worst-case approach that maximizes emissions 

estimates simplifies the analysis. This approach revealed that almost all of the target compounds 

measured in the four R&D buildings sampled over a 10-year time frame were below ASILs, even 

using the single highest 24-hr and annual dispersion factors based on 5 years of meteorological 

data and continuous release plus the single highest concentration measured for each compound. 

Only one compound, chloroform, was above its ASIL using these assumptions, and seven others 

were greater than 1% of their ASIL. 

 

Part of the conservatism is due to assumptions in calculating dispersion factors that convert stack 

emissions to ambient air concentrations. AERMOD was used to calculate dispersion under 

worst-case conditions and alternative cases representing different operational modes. Actual 

dispersion factors may be 50% or less compared to model predictions if the model assumes 
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continuous emissions over time, but the source actually only emits during the day and is greatly 

reduced or eliminated during nights and weekends. 

 

Measured chloroform concentrations ranged over nearly four orders of magnitude. An 

assumption of continuous emissions over a year at the highest concentration measured may 

simplify the calculation but is not realistic. This becomes evident by visualizing the sampling 

data compared to regulatory criteria under extreme maximum assumptions as presented in Figure 

3.1 for the 331 Building. The figure shows that compounds with 24-hr average regulatory limits 

were several orders of magnitude below the corresponding ASILs and SQER values and were 

also well below de minimis-related values except for maximum values of p/m-xylene. However, 

several compounds with yearly average regulatory limits have some measured values higher than 

SQER-related concentrations, and almost all have measurements higher than de minimis-related 

values. 

 

Monte Carlo techniques were used to calculate emissions for compounds with annual average 

limits to compare with criteria used by regulators to determine modeling requirements or define 

trivial emissions. This technique allows consideration of the full range of data and the 

investigation of different modes of operation. Results vary depending on the compound, the 

statistical value selected from the resulting distribution, and operational mode (Figures 3.2 and 

3.3). Applying the analysis to the 331 Building measurements indicated that eight compounds 

exceeded SQER criteria under extreme maximum assumptions, but only three exceeded SQER 

criteria compared to the 95
th

 percentile value from the distributions generated by Monte Carlo 

simulations and only two, hexachloro-1,3-butadiene and chloroform, exceeded SQER criteria 

compared to the upper 95% confidence interval of the mean of the distributions. 

 

Comparisons of extreme maximum and Monte Carlo generated emission estimates to the more 

restrictive de minimis criteria were made for the compounds with annual average regulatory 

limits. All but two of these compounds (1,1-dichloroethane and acetonitrile) exceeded de 

minimis criteria under extreme maximum conditions. Results from the Monte Carlo analysis 

showed some additional compounds below these criteria, but many remained above, including 

those for which the analysis showed most samples to be below DL. To address whether DL 
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provided sufficient resolution for this comparison, an analysis similar to three shifts was 

performed on sample results flagged as less than the detection limit. The median of the resulting 

distribution was then compared to de minimis and SQER values. 

 

Hexachloro-1,3-butadiene was the only compound that exceeded SQER values using detection 

limit results, but ten others exceeded de minimis, as shown in Table 3.3. Eight compounds had 

DL that allowed for comparison with de minimis criteria, as indicated by no X in the right-most 

column of Table 3.3. The de minimis comparison for these compounds shows that acetonitrile 

and 1,1-dichloroethane are below de minimis under all scenarios, chloroform is above de 

minimis under all scenarios, and five other compounds (ethylbenzene; methylene chloride; 

trichloroethene; 1,1,2-trichloroethane; and tetrachloroethylene) may or may not be above de 

minimis, depending on the operational mode assumed. 

 

Chemical inventory data was used as an alternate method to calculate annual emissions for 

compounds with averaging period of a year and with sufficient inventory. Eight of the 

compounds met these conditions in the case of the 331 Building. Inventory-based estimates were 

similar to estimates based on measurements using the Monte Carlo techniques in that they made 

similar predictions with respect to whether a chemical was above or below SQER and de 

minimis criteria. 

 

3.6 Conclusions  

 

Measurements from R&D facilities were evaluated against regulatory criteria using simplifying 

conservative assumptions, and the bases for these assumptions were explored to quantify degrees 

of conservatism. Predicted downwind concentrations were below ASILs for almost all 

compounds, even under extreme maximum analyses. Chloroform was the only compound for 

which the extreme maximum assumptions resulted in a predicted ambient annual average 

concentration above the ASIL. Concentrations of compounds in the measured data ranged over 

several orders of magnitude, so using maximum measured concentrations to calculate annual 

emissions or ambient concentrations based on annual averaging periods is unrealistic. Using 

Monte Carlo techniques allows emissions to be estimated based on the full range of measured 
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concentrations, and a comparison value can be selected from the resulting distribution that 

corresponds to the desired degree of conservatism (e.g., upper bound of the mean, 95
th

 

percentile). The methods shown also provide a means to incorporate different operational modes. 

 

Applying Monte Carlo techniques to measured data from one of the PNNL facilities was helpful 

in comparing estimated emissions to regulatory criteria used to determine modeling requirements 

or define trivial levels of emissions. Although extreme maximum analysis indicated that eight 

compounds with annual averaging periods exceeded SQER values, most of these were shown to 

be below SQER values using Monte Carlo analysis. Only one compound exceeded SQER values 

under all methods. DL were problematic for many of the compounds when comparing estimated 

emissions to the lower de minimis criteria. Of the eight compounds with sufficient detection for 

the comparison, two were below de minimis even under extreme maximum conditions, one was 

above de minimis under all operating mode assumptions, and the other five had mixed results 

depending on the mode of operation assumed. 

 

Chemical inventory methods provide an alternate method of estimating annual emissions and 

produced similar results with respect to determining which compounds exceeded SQER and de 

minimis values. Of the three operational modes investigated, inventory-based estimates were the 

most similar to the mode that assumes off-shift samples represent a reduced level of operations 

during nights and weekends. 
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4.0 ESTIMATING AIR CHEMICAL EMISSIONS FROM RESEARCH ACTIVITIES 

USING STACK MEASUREMENT DATA
4
  

 

4.1 Abstract 

 

Current methods of estimating air emissions from R&D activities use a wide range of release 

fractions or emission factors with bases ranging from empirical to semi-empirical. Although 

considered conservative, the uncertainties and confidence levels of the existing methods have not 

been reported. 

 

Chemical emissions were estimated from sampling data taken from four research facilities over 

10 years. The approach was to use a Monte Carlo technique to create distributions of annual 

emission estimates for target compounds detected in source test samples. Distributions were 

created for each year and building sampled for compounds with sufficient detection frequency to 

qualify for the analysis. The results using the Monte Carlo technique without applying a filter to 

remove negative emission values showed almost all distributions spanning zero and 40% of the 

distributions having a negative mean. This indicates that emissions are so low as to be 

indistinguishable from building background. Application of a filter to allow only positive values 

in the distribution provided a more realistic value for emissions and increased the distribution 

mean by an average of 16%. 

 

Release fractions were calculated by dividing the emission estimates by a building chemical 

inventory quantity. Two variations were used for this quantity: chemical usage, and chemical 

usage plus one-half standing inventory. Filters were applied so that only release fraction values 

from zero to one were included in the resulting distributions. Release fractions had a wide range 

among chemicals and among data sets for different buildings and/or years for a given chemical. 

Regressions of release fractions to molecular weight and vapor pressure showed weak 

correlations. Similarly, regressions of mean emissions to chemical usage, chemical inventory, 

                                                 
4 This chapter was published in the Journal of the Air and Waste Management Association, authors M. 

Ballinger (Battelle Seattle Research Center, Seattle, WA 98109); C. Duchsherer and R. Woodruff (Pacific 

Northwest National Laboratory, Richland, WA 99352); and T. Larson (Department of Civil and 

Environmental Engineering, University of Washington, Seattle, WA 98195). 
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molecular weight and vapor pressure also gave weak correlations. These results highlight the 

difficulties in estimating emissions from R&D facilities using chemical inventory data. 

 

4.2 Introduction 

 

Emissions of HAPs from R&D operations are difficult to assess due to their inherent variability 

in duration and rate; thus, emissions are typically estimated assuming upper-bound values. This 

is especially true of R&D operations conducted at multidisciplinary laboratories because of the 

breadth and evolving nature of research activities. The unique nature of R&D has been 

recognized in Title III, Section 112(c)(7) of the CAAA of 1990 (42 U.S.C. § 7412(c)(7), 2011). 

The regulation requires establishing a “separate category covering research or laboratory 

facilities, as necessary to assure equitable treatment of such facilities” when establishing 

emission standards for HAPs. However, R&D facilities are not currently regulated as a unique 

category, and no guidance has been developed to estimate emissions from R&D activities. 

Although the EPA has not specifically listed R&D facilities as a source category of HAPs, they 

have considered doing so and submitted an Advance Notice of Proposed Rulemaking for the 

NESHAP: Source Category List to include R&D facilities on this list (62 FR 25877–79, 1997). 

Public comments on the proposal noted the difficulties in estimating emissions from R&D 

activities that are highly variable in nature with many small quantities of chemicals and a large 

number of often-changing processes (EPA, 1998). Comments also included a request for 

“guidance for clear, consistent PTE calculation methodology for R&D operations.”  

 

If emissions exceed HAP major source thresholds, R&D facilities have potential to be classified 

as such. They may also need to be incorporated into a Title V permit if they are collocated with a 

manufacturing site that is a major source, and they cannot be excluded based on actual emission 

threshold rates or based on individual size and production rate criteria. Thus, facilities 

conducting R&D will need to develop methods for estimating R&D emissions to establish 

compliance status with the regulation. In addition to federal regulations, some states have 

additional regulations that apply to air chemical emissions. Applicability to R&D facilities varies 

depending on the state and/or interpretation of the enforcing authority.  
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A variety of methods are currently being used to estimate air chemical emissions from R&D 

facilities associated with national laboratories, and these are generally considered conservative in 

that they overestimate actual emissions. Although release fractions directly applicable to 

estimating air chemical emissions from R&D laboratories have not been established by 

regulatory agencies, many of the methods are based on applying a release fraction to chemical 

inventory and/or chemical usage. In at least one case, a release fraction of one (100%) has been 

applied to chemicals purchased for R&D activities during a given year to estimate emissions of 

VOCs and HAPs (North and Adelson, 1995). In another case, 5% was assumed, based on input 

from research staff, and applied to the subset of chemicals purchased for R&D activities and 

containing VOC or HAPs constituents (Skipper, 2000). Other methods vary depending on the 

requirements specified in a permit, agreements with regulatory agencies, or degree of 

conservatism required. However, the basis for the emission factors employed is not strongly tied 

to chemical or process characteristics, and the uncertainty in emissions estimates is unknown.  

 

PNNL’s approach was to adopt the method of 40 CFR 61, “National Emission Standards for 

Hazardous Air Pollutants” Appendix D (2005) and WAC 246-247 “Radiation Protection – Air 

Emissions” (2005) for estimating emissions to the atmosphere instead of measuring emissions. 

The regulation assigns a release fraction of 1 to gases, 10
-3

 to liquids and powders, and 10
-6

 to 

solids. The amount of material used by the facility for the period under consideration is 

multiplied by the release fraction to calculate emissions; thus, the release fraction is a type of 

emission factor applied to chemical inventory, which is a measure of activity rate. Additional 

factors are provided to take credit for filters or other control devices in reducing emissions. The 

basis for liquids and powders included a large number of materials and diverse activities but 

were limited with respect to volatile solutions (EPA, 1989a). Therefore, PNNL identified volatile 

liquids as a separate category with a release fraction of 0.1. In the cited regulations, the release 

fractions are applied to the “amount used at facilities for the period under consideration” (40 

CFR 61, 2005) or to the annual possession quantity which is defined as “the sum of the quantity 

of a radionuclide on hand at the beginning of the calendar year and the quantity of that 

radionuclide received or produced during the calendar year” (WAC 246-247, 2005). 
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Release fractions for R&D facilities have not been measured and emissions from these activities 

are normally too low to require sampling. Although not required for compliance, PNNL sampled 

air chemical emissions from facility stacks during 1998–2008. Results from initial sampling 

campaigns were evaluated and reported by Woodruff, Benar, and McCarthy (2000). Conclusions 

reported in this paper were that none of the measurements of the target compounds exceeded 

state ASILs even using significant overestimation factors, and that an average release fraction 

calculated from the data provided reasonable validation of the factor used in compliance 

assessments. Recognizing that laboratory emissions are intermittent in nature and may change 

from one year to the next, additional sampling was conducted to estimate release fractions over a 

longer period and compare them to those typically used for emissions estimates to determine 

compliance with air regulations and permits. 

 

An in-depth analysis is performed in this paper on the comprehensive set of sampling data. A 

Monte Carlo technique is used to estimate distributions of annual emissions from each data set, 

which consists of sampling data for a target compound for a given year and building. In addition, 

the emission distributions are used with chemical inventory information to calculate distributions 

of release fractions. The relationship of release fractions and of emissions to chemical properties 

is investigated. 

  

4.3 Methods 

 

Stack Sampling 

 

PNNL sampled air chemical emissions from the stacks of four facilities during 1998–2008: RPL 

(325), CSL (329), LSL (331), and EMSL. These buildings were chosen based on their 

considerable size, large chemical inventories, and diverse nature of research. The 325 Building 

operations involve evaluation, analysis, and testing of radioactive, radiochemical, chemical, and 

physical material properties. This building has bench-scale testing capabilities in addition to 

fume hoods, glove boxes, and hot cells for work with high-level radioactive material. Operations 

in the 329 Building at the time of sampling involved wet chemistry laboratories for organic and 

inorganic radiochemical and chemical analysis. The building has subsequently been vacated and 
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is no longer operational. The 331 Building provides research capabilities to study the interactions 

of chemicals and radionuclides with plants, animals, and microorganisms and the fate of 

chemicals and radionuclides in the environment. Biological, microbiological, geochemical, and 

aquaculture research is performed in this building. EMSL is a user facility that provides 

experimental resources to engineers and scientists from other organizations in addition to PNNL. 

These resources include mass spectrometers, nuclear magnetic-resonance spectrometers, surface 

science tools to study atomic and molecular scales, flow cells, and high-precision analytical 

instruments. Table 4.1 compares the buildings in terms of relative size and number of 

laboratories and also identifies the stack sampling locations. 

 

Table 4.1. Buildings Sampled for Chemical Air Emissions 

Building # Labs Lab Space, 1000 ft
2
 Sampling Location(s) 

325 RPL 100 45 Main Stack 

329 CSL 32 15 Main Stack 

331 LSL 84 39 Main Stack 

EMSL 168 70 Stacks 3, 4, and 5 

 

Sampling times were usually 100 min taken within normal work day hours (i.e., 8:00 a.m.–5:00 

p.m.) except for the initial year of sampling in which 300- and 50-min samples were taken. 

Samples taken during normal working hours are referred to as on-shift samples. Samples were 

also taken on weekends, holidays, or other times when research activities would not be expected 

to occur and are referred to as off-shift. Because laboratory experiments can be sporadic and very 

short in duration, efforts were made to choose on-shift sample times that were more likely to 

include research activities covering mid-morning and mid-afternoon equally and spread evenly 

over Monday through Friday. Sampling was more heavily concentrated on the summer months to 

coincide with increased periods of activity. 

 

Although samples were mostly obtained from exhaust stacks, early sampling campaigns also 

included other locations such as lobbies and corridors to evaluate non-research related 

contributions to emissions. Data from these alternate locations are believed to indicate 

background concentrations of chemicals and were used for comparison to off-shift samples to 

verify the presence of background concentrations of some compounds. The results from the non-

stack sampling locations showed similar concentrations to off-shift samples, with both non-stack 
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and off-shift concentrations less than on-shift concentrations. A visual comparison is shown in 

Figure 4.1 for toluene detected in samples taken from the 329 Building. Other buildings and 

other compounds provided similar results with respect to similarity of non-stack and off-shift 

concentrations and with almost no detection in trip blanks. Table 4.2 summarizes the number of 

sampling events representing on-shift and off-shift activities for each building and year sampled.  

 

 
Figure 4.1. Concentrations of Toluene in Samples from 329 Building (U = below detection 

limit; J = between MDL and estimated quantitation limit). Note that units are in log scale. 

 

Table 4.2. Number of Sampling Events 

Year(s) 

Sampled 

325 329 331 EMSL 

Off-shift On-shift Off-shift On-shift Off-shift On-shift Off-shift On-shift 

1998 1 3 3 9  8   

1999–2000  24  18  22   

2001       

3 (Stack 3) 

1 (Stack 4) 

2 (Stack 5) 

17 (Stack 3) 

18 (Stack 4) 

13 (Stack 5) 

2002 1 12 1 14 1 16   

2003      23   

2005    27     

2006     3 33   

2007 1 35       

2008     1 34   

Total 3 74 4 68 5 136 6 48 
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The sampling method used was the collection of air samples from stack exhausts onto TSTs that 

were subsequently analyzed for VOCs using GC/MS analysis. Each trap contained 300 mg of 

Carbotrap™ C, 200 mg of Carbotrap™ B, and 125 mg of Carbosieve™ S-III. The first two 

sorbents were deactivated graphite with limited sorption power for less volatile compounds. The 

final trapping stage was a graphitized molecular sieve used to retain the most volatile 

components including dichlorodifluoromethane, which has the highest vapor pressure of the 

target compounds. Instrument detection limits (IDLs) that represent method detection at the 99% 

confidence level were established from quality control data. Most of the results above the 

detection limit were also above the IDL for compounds reported in this study. The standard error 

for recovery of concentrations of standards at the detection limit ranged from 9–102%, with 

chloroform having the lowest standard errors and 1,1,2,2-tetrachloroethane having the highest.  

 

The sampling apparatus had two parallel channels into which the air stream is drawn; each 

channel has its own flow rate, and one of the channels was programmed to collect a sample at 

double the flow rate of the other. Thus, each sample has a pseudo-duplicate to identify quality 

issues. Additional information on sampling and analysis procedures is provided in Woodruff, 

Benar, and McCarthy (2000). 

 

Depending on the year, between 46 and 49 target compounds were analyzed by GC/MS. Many 

compounds were present in such low concentrations that results were below the DL. Table 4.3 

shows the number of results (unpaired) and the percent of the total above the detection limit for 

on-shift and off-shift samples for each of the target compounds. Data sets with 10% or fewer of 

the stack concentration sampling results above the detection limit were screened out for this 

analysis. Although detection frequencies are similar for off-shift and on-shift samples, off-shift 

concentrations are lower. As previously mentioned, off-shift concentrations were found to be 

similar to those from samples taken from corridors and hallways. In these facilities, ventilation 

systems are designed to supply air to clean areas or areas of limited hazards (e.g., corridors) and 

move air in the direction of progressively more hazardous/contaminated areas. This design places the 

laboratories at a negative air pressure with respect to the corridors and hoods, gloveboxes, and hot 

cells at a negative air pressures with respect to the laboratories. The non-stack (corridor and 

hallway) concentrations are higher than background concentrations reported for the state of 
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Washington in the Technology Transfer Network 2002 National-Scale Air Toxics Assessment 

(EPA, 2012b), indicating that non-laboratory sources are contributing to these concentrations. 

These sources could be from building or office components. The objective of this study is to 

estimate emissions from laboratory operations and evaluate the relationship with chemical 

inventories used for R&D activities. Therefore, the non-laboratory contributions are subtracted 

from the stack sampling data. Concentrations from off-shift samples were used to represent non-

laboratory contributions to emissions because they were similar to non-stack sample results. 

 

Table 4.3. Frequency of Detection for Target Compounds 

Compound Name CAS# 

Off-shift Samples On-shift Samples 

# Results % > DL # Results % > DL 

1,1,1-Trichloroethane 71-55-6 36 67% 647 65% 

1,1,2,2-Tetrachloroethane 79-34-5 36 8% 647 14% 

1,1,2-trichloro-1,2,2-trifluoroethane 76-13-1 36 83% 647 73% 

1,1,2-Trichloroethane 79-00-5 36 0% 647 0% 

1,1-Dichloroethane 75-34-3 36 8% 647 4% 

1,1-Dichloroethene 75-35-4 36 8% 647 4% 

1,2,4-Trichlorobenzene 120-82-1 36 31% 647 28% 

1,2,4-Trimethylbenzene 95-63-6 36 53% 647 57% 

1,2-Dibromoethane 106-93-4 36 0% 647 1% 

1,2-dichloro-1,1,2,2-tetrafluoroethane 76-14-2 36 0% 647 3% 

1,2-Dichlorobenzene 95-50-1 36 8% 647 13% 

1,2-Dichloroethane 107-06-2 36 0% 647 2% 

1,2-Dichloropropane 78-87-5 36 0% 647 0% 

1,3,5-Trimethylbenzene 108-67-8 36 33% 647 48% 

1,3-Butadiene 106-99-0 36 0% 647 0% 

1,3-Dichlorobenzene 541-73-1 36 22% 647 27% 

1,4-Dichlorobenzene 106-46-7 36 25% 647 34% 

1-Ethyl-2-Methyl-Benzene 611-14-3 
  

128 37% 

1-Ethyl-4-methylbenzene 622-96-8 28 46% 484 41% 

1-methylethylbenzene 98-82-8 8 13% 35 11% 

2-Butanone 78-93-3 36 50% 647 40% 

3-Chloropropene 107-05-1 16 0% 388 0% 

Acetone 67-64-1 36 92% 647 98% 

Acetonitrile 75-05-8 36 78% 647 61% 

Benzene 71-43-2 36 92% 647 89% 

Bromomethane 74-83-9 36 0% 519 0% 

Carbon Tetrachloride 56-23-5 36 83% 647 77% 

Chlorobenzene 108-90-7 36 17% 647 16% 

Chloroethane 75-00-3 36 0% 647 2% 

Chloroform 67-66-3 36 86% 647 90% 

Chloromethane 74-87-3 28 4% 612 2% 

cis-1,2-Dichloroethene 156-59-2 36 8% 647 3% 

cis-1,3-Dichloropropene 10061-01-5 36 14% 647 10% 
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Compound Name CAS# 

Off-shift Samples On-shift Samples 

# Results % > DL # Results % > DL 

Dichlorodifluoromethane 75-71-8 36 89% 647 93% 

Ethanol 64-17-5 36 53% 647 73% 

Ethylbenzene 100-41-4 36 83% 647 89% 

Hexachloro-1,3-butadiene 87-68-3 36 25% 647 18% 

Methanol 67-56-1 28 43% 596 40% 

Methylene Chloride 75-09-2 36 75% 647 83% 

o-Xylene 95-47-6 36 83% 647 80% 

p/m-Xylene 106-42-3 36 92% 647 92% 

Pentane 109-66-0 36 67% 647 69% 

Styrene 100-42-5 36 39% 647 40% 

Tetrachloroethylene 127-18-4 36 0% 647 8% 

Toluene 108-88-3 36 94% 647 97% 

trans-1,3-Dichloropropene 10061-02-6 36 8% 647 9% 

Trichloroethene 79-01-6 36 78% 647 74% 

Trichlorofluoromethane 75-69-4 36 97% 647 95% 

Vinyl Chloride 75-01-4 36 0% 647 0% 

 

In addition to screening for low detection frequency, data sets (buildings and years) with little or 

no inventory of the target compounds were also removed from analysis because a primary 

objective was to determine the relationship between chemical inventory and emissions. Data 

from 1998 (the first year sampled) were not used in the analysis due to the difference in sampling 

time (a 300-min sample time was used in 1998 compared to 100 min for all subsequent 

sampling), the small number of samples taken, and concerns about the accuracy of the sample 

flow measurements. 

 

Sampling results include chemical name, Chemical Abstract Service number (CAS#), molecular 

weight, quantity extracted from the sample, sample time, sample flow rate, calculated sample 

concentration, and any quality flags associated with the sample (e.g., below analytical detection 

limit, present in laboratory blanks, above or below range of concentrations used in calibration of 

instrument). 

 

In addition to the sampling data, PNNL maintains a Chemical Management System (CMS) that 

contains inventory information on chemicals used in each laboratory space. This web-based 

tracking system tracks chemicals currently in the buildings and also roughly estimates chemical 

usage based on changes in CMS inventory records. Usage quantities are calculated by assuming 

the contents of each container are used uniformly between the time a container is full when 
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initially added to the inventory and the time it is removed from inventory. Data that can be 

obtained from CMS include chemical name, CAS#, location (building and room), and quantity. 

These data were collected for the target compounds and for chemicals that have the target 

compounds as constituents, along with the constituent percentage. The CMS data provide an 

estimate of inventory usage quantities over relatively long periods of time; the uncertainty of the 

usage is considered greater when considering a shorter period (e.g., chemical usage over a year 

using this data is better estimated than chemical usage over a month).  

 

Estimating Emissions 

 

Annual emissions of target compounds were estimated from the stack sampling data for each 

year and building. The following equation was used for the calculations: 

 

 Eib = (Cstack – Cbackground)ib (Qstack)b (t) (CF) (4.1) 

 

Where Eib = emissions of compound i from building b, lb/yr 

Cstack = concentration of compound i measured in stack samples from building b taken 

during hours when research activities are expected to occur (on-shift), µg/m
3
 

Cbackground = concentration of compound i measured in stack samples from building b 

taken during weekends, holidays or other times when research activities are not expected 

to occur (off-shift), µg/m
3
 

Qstack = volumetric flow rate of stack from building b, m
3
/hr 

t = hours per year of on-shift operations 

CF = lbs/µg conversion factor. 

 

The average of the two duplicates was used as the measured concentration. As shown in eq 4.1, 

emission concentrations from research operations were calculated by subtracting the off-shift 

concentration distribution from the on-shift concentration distribution. This was done by using a 

Monte Carlo simulation in Crystal Ball (Oracle, 2012) in which the software randomly selects 

from the distribution of measured on-shift concentrations then subtracts a second randomly 

selected value from the distribution of measured off-shift concentrations for the same compound 
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and building. These distributions contained the full set of sampling data, including 

concentrations that were less than the detection limit which were assigned detection limit values. 

The result was multiplied by the individual stack flow rate, which did not vary significantly for 

the years sampled, and by the hours per year on-shift. Although research operations are allowed 

around the clock, most research activities are believed to occur during a normal 8:00 a.m.–5:00 

p.m. workday Mondays through Fridays and not on holidays. In this analysis, on-shift time was 

modeled as a normal distribution with a mean of 2000 hrs/yr and a standard deviation of 200 

hrs/yr. The result of eq 4.1 is a distribution of emissions Eib for each compound and each data set. 

One thousand simulations were generated for each distribution, and simulations were run in 

triplicate for a few of the chemicals (acetone, carbon tetrachloride, and ethanol) to determine 

repeatability of the results. The replications indicated that results were stable with differences of 

less than 10% in the means for almost all of the distributions tested. 

 

The Crystal Ball software has several options for characterizing the input data as a distribution, 

and two of these were evaluated to determine which should be used in the analysis:  

 

1. With this option, identified as best fit within the software, the user reads in the set of data. A 

mathematical fit determines the set of parameters for each distribution that best describe the 

characteristics of the data. Then, the closeness of each fit is judged using one of several 

standard goodness of fit tests (i.e., Anderson-Darling, Kolmogorov-Smirnov, and Chi-

Square). In this analysis, Chi-Square was used for goodness of fit criteria. The highest 

ranking fit is chosen to represent the data. The user can choose from among all distributions 

supported by the software.  

2. A user reads in the set of data, and the Custom Fit option draws on this distribution of data in 

calculations.  

 

A comparison was made evaluating the two options for three of the more common compounds. 

Distributions were created using eq 4.1 for acetone, carbon tetrachloride, and methanol for each 

year and building sampled using both options, and the results were compared.  
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Estimates of annual emissions using eq 4.1 may result in unrealistic negative values when the 

random selection from the on-shift concentration distribution is less than that for off-shift. This is 

more likely to occur with data sets containing many results close to the detection limit or close to 

background concentrations. Filters can be applied within the software so that only positive values 

are included in the resulting distribution. The unfiltered model provides the least restrictions on 

the data and aids in identifying the frequency in which on-shift concentrations are equal to or 

below off-shift concentrations, but the filtered model is helpful in limiting the data to positive 

emission values. Results from both filtered and unfiltered models are presented; the filtered case 

allows only values above zero in the resulting distribution of emissions, and the unfiltered case 

allows all values, positive and negative. A third method would be to allow subtraction only if the 

on-shift concentration is greater than the off-shift concentration. This is more difficult to do in 

Crystal Ball in that it requires manipulation of individual trial data. Results from this third 

method are provided for a few selected compounds. 

 

Existing models for estimating releases were examined to assist in interpretation of the results. 

Model equations provided insight into the chemical- and process-specific properties influencing 

emissions. One of the methods used to calculate transport of contaminants in the environment is 

Fick’s first law, which relates the emission flux to the concentration gradient (Hemond and 

Fechner-Levy, 2000):  

 

J = –D × dC/dx (4.2)  

 

Where J = flux density in g/cm
2
/s 

D = diffusion coefficient in cm
2
/s 

dC/dx = concentration gradient in g/cm
4
 

 

Fick’s first law could be applied to open containers of chemicals used in R&D activities where 

the concentration gradient is a result of a relatively high vapor concentration of the chemical at 

the liquid/gas interface and essentially zero concentration in the air stream flowing over it. The 

vapor concentration at the surface can be estimated using the ideal gas law: n/V = P/RT, with P 

as the partial pressure of the compound and equal to its vapor pressure at equilibrium. The molar 
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concentration n/V is multiplied by molecular weight to obtain mass concentration so that the 

gradient term in eq 4.2 is directly related to vapor pressure and chemical molecular weight. 

 

The diffusion coefficient in eq 4.2 depends on properties of the air stream and of the compound. 

For molecular diffusion, the coefficient is a function of temperature and pressure of the air 

stream, molecular weight, and size of the molecules that are diffusing into the air. The flux 

density J is applied to the flux area, which could be represented by the open area of a beaker or 

flask for R&D operations.  

 

Evaporation rate equations used to estimate emissions from spilled liquids present emission rate 

as a function of the vapor pressure and molecular weight of the material spilled in addition to 

spill area and wind speed transporting evaporated material. An equation developed by Clancey 

(1974) and used by Powell (1984) to estimate evaporation rates from spills/leaking equipment is: 

 

 W = 79.6 ((Pvap × MW)/T) × u
0.78

 × r
1.89

 (4.3) 

 

Where W = evaporation rate in g/s 

Pvap = liquid vapor pressure in atmospheres 

MW = molecular weight in g/g mol 

T = temperature in Kelvin  

u = wind speed in m/s 

r = radius of spilled material in m. 

 

A similar equation is provided estimating releases from spilled pools of hazardous materials 

(EPA, 1999c): 

 

 QR = 0.284 × u
0.78

 × A × (Pvap * MW
2/3

)/(82.05*T) (4.4) 

 

Where QR = evaporation rate in lbs/min 

Pvap = Liquid vapor pressure in mmHg 

MW = molecular weight in g/g mol 
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T = temperature in Kelvin  

u = wind speed in m/s 

A = area of spilled material in ft
2
. 

 

Although emissions appear to be inversely related to temperature in all these equations (via the 

ideal gas law for eq 4.2), vapor pressure increases logarithmically with temperature according to 

the Antoine equation, so the overall effect is an increase in mass emissions with temperature.  

 

Wind speed is also an important factor, but for laboratories, this velocity is controlled by 

requirements for air flow across the face of hoods where chemical work is performed and thus 

would not be a factor to explain differences in emissions between compounds. Flux area and area 

of spilled material in these equations represent the interface over which the emission occurs and 

are directly related to the quantity of chemical used if containers are similar in size (i.e., 2 liters 

[L] of a chemical would have double the flux area of 1 liter, given that both are processed in 1-L 

beakers because the larger quantity would require double the number of beakers).  

 

Estimating Release Fractions 

 

Release fractions are often used in estimating emissions from research facilities. The following 

equation explains the term release fraction as discussed in this report: 

 

 Release Fraction (RF) = mass emitted per year/mass used per year  (4.5) 

 

The mass emitted per year is calculated as discussed in the previous section. For the 

denominator, inventory data was obtained from CMS. For each building and year sampled, CMS 

provided the inventory of chemicals with the target compounds at a single point in time (January 

1 of the given sampling year) and chemical usage for the year. The chemical usage data are 

obtained by assuming a chemical is used uniformly from the time it is brought into a building 

until the empty container is removed. Two variations were used for the RF denominator: usage, 

and usage plus half the capacity of the containers shown in inventory. Chemical usage was used 

because theoretically, this quantity should be a more direct measure of experimental activity and 
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thus total emissions. Chemical usage plus half of inventory was used because PNNL routinely 

uses this larger quantity to estimate emissions based on the following: in a population of many 

containers, it can be assumed that on average the containers are half empty, and half the capacity 

has been used and was subject to emission processes.  

 

A filter was applied to the calculations, limiting RF values from 0 to 1 because a release fraction 

by definition falls within this range. Negative values result when the random selection from the 

on-shift concentration distribution is less than that for off-shift (data sets with many results close 

to the background or the detection limit); values over 1 result when the estimated annual 

emission is greater than the amount shown in chemical inventory (data sets with low chemical 

inventory or high emission estimate in comparison to inventory). In this analysis, filters were 

applied to obtain distribution results within a realistic range. In addition to the previous screening 

criteria, the number of filtered values was evaluated in determining RF results for further 

analysis. Where more than 90% of values were filtered, data sets were omitted from evaluation.  

 

4.4 Results  

 

Modeling Input Data 

 

A comparison was made evaluating the difference between modeling input data as a best fit 

curve versus no curve fitting. The difference in the Monte Carlo analysis is that a value is 

randomly chosen either from a curve or the input data value group. Distributions were created 

using eq 4.1 for acetone, carbon tetrachloride, and methanol for each year and building sampled 

for both input data options. The top graphs in Figure 4.2 show eq 4.1 results for two of the 

acetone data sets with Cstack and Cbackground modeled as curves (Option 1), while the bottom 

graphs show eq 4.1 results for these same data sets but with Cstack and Cbackground selected from 

the discrete data (Option 2). Option 1 provides smoother results but may conceal potentially 

important features like the bimodal characteristics shown in the distribution of Figure 4.2 (lower 

left graph). Note that the curves shown in the graphs are best fit curves of the results, and the 

Crystal Ball gallery does not contain a bimodal curve. 
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a. Emission Estimates with Input Concentrations Modeled as Curves (Option 1) 

 
b. Emission Estimates with Input Concentrations Supplied as Discrete Values (Option 2) 
 

Figure 4.2. Monte Carlo Simulation of Annual Emissions with Input Data Modeled as Best Fit 

Curve and Input Data Supplied as Discrete Values (Acetone/325 Building/2007 on left; 

Acetone/331 Building/2008 on right; no filters was applied to the simulations) 

 

Using the best fit curve option for input to eq 4.1 also appears to overestimate emissions, as 

indicated by a comparison of the mean of eq 4.1 results using both options. The curve-fitted 

input data (Option 1) gave mean results over 4 times greater than that of inputting discrete data. 

Other factors considered in the comparison of the options were the mixed success at fitting 

curves to the data sets (i.e., for some data sets the probability that the data followed a distribution 

curve was <90%; for others, this probability was >5%) and the recognition that entering the 

sampling data directly is likely to generate fewer errors associated with curve fitting. As a result 

of this evaluation, Option 2 was used in the remainder of the analysis.  

 

Annual Emissions 

 

Distributions of emissions were estimated for 24 of the 49 target compounds after removing 

compounds with low detection frequency and low inventory. However, not all of these 

compounds had sufficient sample detection or inventory for all data sets. Table 4.4 identifies the 

compounds and data sets for which estimates could be made. Each X in Table 4.4 represents a 
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distribution of emission estimates generated for the compound, year, and building (Figure 4.2, 

bottom row graphs show examples of acetone results from 325 Building in 2007 and 331 

Building in 2008). As noted in the previous section, sampling data were directly entered as 

discrete values using the Custom Fit option in the software, and calculations were made both 

with and without filtering negative emissions. As it is difficult to compare entire distributions, 

the mean was obtained for each distribution, and these values are shown in box plots in Figures 

4.3 and 4.4. Figure 4.3 shows the range of values for distribution means for 16 of the compounds 

when negative values are not filtered out of the distribution. Figure 4.4 shows results for an 

additional six compounds – those with the highest estimated emissions– and displays results both 

with and without filtering out negative values.  

 

Table 4.4. Data Sets with Estimates of Emissions 

Compound Name 

325 Building 329 Building 331 Building EMSL 

1999 2002 2007 1999 2002 2005 1999 2002 2003 2006 2008 2001 

1,1,1-Trichloroethane X X X X X X X X X X X X 

1,1,2,2-Tetrachloroethane 
          

X X 

1,1,2-trichloro-1,2,2-

trifluoroethane 
X X X X X X X X X X X X 

1,2,4-Trimethylbenzene X X X X X 
  

X X X X X 

1,3,5-Trimethylbenzene X X X X X 
  

X X X X X 

2-Butanone X X 
 

X X 
  

X X X X X 

Acetone X X X X X X X X X X X X 

Acetonitrile 
 

X X X X X X X X X X X 

Benzene X X X X X X X X X X X X 

Carbon Tetrachloride X X X X X X X X X X X X 

Chloroform X X X X X X X X X X X X 

Dichlorodifluoromethane X X X X X X X X X X X X 

Ethanol X X X X X X X X X X X X 

Ethylbenzene X X X X X X X X X X X X 

Methanol X 
 

X X X X X 
 

X X X X 

Methylene Chloride X X X X X X X X X X X X 

o-Xylene X X X X X X X X X X X X 

p/m-Xylene X X X X X X X X X X X X 

Pentane X X X X X X X 
 

X X X X 

Styrene 
  

X 
 

X X 
  

X X X X 

Tetrachloroethylene 
         

X 
  

Toluene X X X X X X X X X X X X 

Trichloroethene X X X X X X X X X X X X 

Trichlorofluoromethane X X X X X X X X X X X X 
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Figure 4.3. Box Plots of Means from Emission Distributions Calculated Using Monte Carlo Model (without filtering negative values 

from distributions) 

 

 

 
Figure 4.4. Comparing Emission Results Using Filter vs. No Filter for Compounds with Highest Calculated Emissions 
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If no filter is applied, almost all of the compounds have at least one negative value (i.e., the mean 

of the distribution is negative for at least one data set), and almost one-third of the compounds 

have a negative when averaging the means for all of the data sets. On an individual data set basis, 

the means are negative for about 40% of the 251 distributions generated (one distribution for 

each X in Table 4.4). The 95% confidence interval of the distribution was also evaluated, and 

this interval included zero for most cases. Table 4.5 lists the few data sets where the lower 95% 

confidence interval of the distribution was greater than zero. Even though negative emissions are 

not realistic, the unfiltered model is believed to provide a truer sense of whether measured 

emissions were signficantly above background; data sets with negative means indicated 

essentially zero emissions.  

 

Table 4.5. Data Sets with 95% CI Above Zero 

Compound Name Year(s) Sampled Building Sampled 

Acetone 2001 EMSL 

2-Butanone 2002, 2006, 2008 331 

Chloroform 2008 331 

Ethylbenzene 2003 331 

o-Xylene 2003 331 

p/m-Xylene 2003 331 

Tetrachloroethylene 2002 331 

Toluene 2008 331 

 

Comparison of the box plots in Figure 4.3 between no filter versus filter models also shows that 

using a filtered model tends to shift the results upward, which is as expected because the lowest 

(negative) values are screened out. Considering all compounds and all data sets, the filter model 

increases estimated emissions by about 16%, as shown by the slope of the regression equation in 

Figure 4.5. This figure compares the mean of each of the 251 distributions generated with and 

without a filter.  

 

A third method in which individual trials were evaluated and subtraction of background was only 

allowed if the result was positive was applied to a limited number of compounds. Evaluation of 

the distribution means for the three compounds methanol, acetone, and trichloroethene using this 

third method showed results very similar to the no filter results. For these three compounds (34 

data sets), the filter model increased mean emissions by 12% compared to no filter, but the third 

method only increased the mean by 2% compared to no filter.  
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Figure 4.5. Comparing Mean Emissions from Distributions Calculated Using a Filter vs. No 

Filter 

 

Release Fractions 

 

Distributions of release fractions were generated for a subset of the data sets in Table 4.4. 

Compounds with little or no inventory for a given year and building were not included. A 

screening of a 0.5 lb inventory was used as a cutoff for RF calculations following evaluation of 

amounts needed to obtain measured emissions, and RF values are not presented for data sets 

where the involved inventory (either usage or usage plus half capacity of containers in inventory) 

was less than 0.5 lb. This reduced the number of distributions from 251 to 201 for RF based on 

usage plus half inventory and 132 for RF based on usage alone. Results are shown in Figure 4.6 

as box plots of the distribution mean.  

 

These graphs show the quartiles, average, minimum, and maximum values for each target 

compound that had enough detectable stack concentrations and sufficient inventory data for the 

calculations. The top graph in Figure 4.6 shows the results for RF calculations based on chemical 

usage alone, and the bottom graph shows the results for RF calculations based on chemical usage 

plus half inventory. The usage data for some of the compounds was above 0.5 lbs for only one 

year so that the box plot is represented by a single line in the upper group of boxplots. 
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Figure 4.6. Box Plots of Means from RF Distributions Calculated Based on Chemical Usage and Chemical Usage + ½ Inventory (in 

order from least to highest vapor pressure) 
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Compounds are shown in order from lowest to highest vapor pressure. The mean RF based on 

chemical usage + half inventory for about two-thirds of the compounds is below 10%. Many 

additional compounds have average RFs (e.g., average of the means from several distributions) 

above 10% when RF is calculated based on chemical usage alone. The average and the range of 

the mean RFs for all distributions are provided in Table 4.6 for each compound. 

 

Table 4.6. Average of Mean Release Fractions from Distributions Calculated Using Monte Carlo 

Model 

Compound Name 

RF (Use + ½ Inv), 

Distribution Mean 

RF (Use),  

Distribution Mean 

Average Range Average Range 

Tetrachloroethylene 0.1%  

 

 

1,1,2,2-Tetrachloroethane 0.1%  0.9%  

Carbon Tetrachloride 0.9% 0.3–3.0% 2.3% 0.9–5.2% 

1,1,1-Trichloroethane 1.5% 0.2–7.3% 6.4% 0.9–23.7% 

1,2,4-Trimethylbenzene 3.0% 0.05–8.8% 11.3% 0.3–22.3% 

Styrene 3.0% 0.3–8.7% 

 

 

Acetonitrile 3.6% 0.2–11.3% 9.4% 0.5–26.5% 

1,1,2-trichloro-1,2,2-trifluoroethane 4.0% 0.7–9.3% 3.7% 1.8–5.5% 

o-Xylene 4.3% 0.9–9.6% 18.9% 3.5–34.3% 

Chloroform 4.5% 0.6–11.5% 13.7% 2.8–27.1% 

Benzene 5.0% 0.7–15.7% 14.7% 3.4–32.5% 

Methylene Chloride 5.1% 0.3–17.0% 11.4% 0.4–26.9% 

Toluene 6.5% 1.1–23.0% 19.8% 6.0–50.3% 

Methanol 7.3% 1.1–25.8% 14.2% 3.4–41.9% 

Acetone 10.4% 3.6–32.1% 24.3% 12.4–43.0% 

Pentane 10.8% 2.6–24.8% 27.3% 6.4–49.9% 

Ethylbenzene 12.6% 0.8–47.1% 31.5%  

2-Butanone 12.6% 0.2–41.5% 5.0% 0.5–9.5% 

Trichloroethene 12.6% 0.3–38.5% 19.1% 1.0–45.3% 

p/m-Xylene 14.6% 0.9–37.9% 21.7% 5.2–33.6% 

1,3,5-Trimethylbenzene 18.2% 2.1–34.2% 

 

 

Ethanol 22.0% 5.3–61.6% 28.7% 6.2–51.4% 

Trichlorofluoromethane 30.8% 25.1–38.5% 50.7%  

Dichlorodifluoromethane 38.2% 24.9–46.8% 23.2%  

 

Although it is difficult to compare distributions, the means from each of the RF distributions 

were obtained and the relationship between RF (Use + ½ Inv) and RF (Use) investigated (Figure 

4.7). Although there does not appear to be any statistically significant correlation, RF (Use) is 

several times higher than the RF (Use + ½ Inv).  
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Figure 4.7. Comparison of the Mean from RF distributions Calculated Using Two Variations 

(Usage + ½ Inventory vs. Usage alone; data from all chemicals/buildings/years for which both 

RF variations could be calculated) 

 

4.5 Discussion  

 

A distribution of annual emission estimates was created for each of the data sets in Table 4.4. 

When no filter was applied restricting the results to positive values, the distributions almost 

always encompassed the value zero and frequently had a negative mean. These results occur 

because stack concentrations randomly selected from among the samples taken during normal 

working hours are low enough to be at or below background concentrations for a large number of 

the 1000 trials run in the Monte Carlo simulations. Although negative emissions are not a 

realistic outcome, this technique highlights how often the zero or negative values occur, lending 

credence to the perception of low R&D emissions. Applying a filter to the emissions estimates 

provides a more realistic distribution of values because all estimates within these distributions 

are by definition above zero. The mean and 95 percentiles for the filtered distributions are greater 

than non-filtered and provide a conservative estimate of releases while still incorporating 

subtraction of background values.  

 

The premise of the release fraction is that emissions are directly proportional to the quantity of 

chemical used. In this analysis, chemical quantities were represented by CMS usage and 

inventory data. The results of the RF calculations show a wide range of RFs with differences 
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between compounds but also between data sets for the same compounds. Factors that could 

contribute to this variation include potentially large errors in estimating emissions with source 

concentrations so close to background levels, challenges in obtaining data that accurately 

represents chemical usage, chemical and process parameters likely to influence emissions in 

addition to chemical quantities, and emissions from sources other than chemical inventories. 

Although RF provides a relatively simple method to calculate emissions from facilities that 

employ a wide variety of chemicals and processes, evaluation of other methods of emission 

calculations can provide insight into the properties that could explain RF variations. 

 

As described by eqs 4.2, 4.3, and 4.4, the difference in release fractions between chemicals may 

be partially explained by their vapor pressure and molecular weight. To explore this relationship, 

the average was taken of the RF distribution means for each compound and regressed against the 

compound vapor pressure and molecular weight. Room temperature (or 20°C) was used as vapor 

pressure reference temperature, recognizing that this is not likely to represent all processes in the 

laboratory but provides a baseline for the analysis. Vapor pressure data from the SRC chemical 

property database (2012) was used to obtain vapor pressures at 25°C, and the Clausius-

Clapeyron equation (General Chemistry Online, 2012) was used to adjust these values to 20°C. 

The SRC database was used because data on vapor pressure and enthalpy of vaporization (used 

in the Clausius-Clapeyron equation) was available for all of the compounds of interest. 

 

Linear regressions were performed between the average RF for each compound and the 

corresponding parameters for molecular weight, vapor pressure at 20°C, and MW × Pvap. 

Regression coefficients were low (below 0.5) for all combinations, including linear regressions 

of the log values. RFs based on Usage + ½ Inventory had higher correlations to vapor pressure 

and molecular weight than RFs based on usage alone. Also, correlations to vapor pressure were 

higher than for molecular weight; adding molecular weight to the RF versus vapor pressure 

regression did not significantly improve the regression coefficient. Figure 4.8 is a plot of the data 

with the highest correlation: RF (Use + ½ Inv) versus vapor pressure. In Figure 4.6, the 

individual mean RF (Use + ½ Inv) are displayed for each compound with the compounds sorted 

by vapor pressure. Figure 4.6 illustrates the lack of RF and vapor pressure correlation and also 

shows a wide range of RFs at each vapor pressure.  
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Figure 4.8. RF (Usage + ½ Inv) vs. Compound Vapor Pressure 

 

Results from the regression indicated that a step back was needed in evaluating factors affecting 

emissions, and that emissions may not be directly related to chemical usage or inventory. 

Additional regressions were performed with the estimated emission quantity as the dependent 

variable instead of the release fraction, and with the following independent variables: chemical 

usage, chemical inventory, vapor pressure at 20°C, and molecular weight. The y variable was the 

mean of the distribution for annual emissions using the filtered model. Chemical usage and 

inventory data with less than 0.5 lb/year were removed. All parameters were converted to log 

values in the analysis to allow for power relationships like those in eqs 4.3 and 4.4. Individual 

correlations of the mean emissions to each of the independent variables indicated that chemical 

usage and chemical inventory were equal indicators for estimating emissions, although both had 

low regression coefficients. These two variables appear to be weakly collinear with a tolerance 

of 0.32; a tolerance of less than 0.1 indicates a collinearity issue. Adding inventory in addition to 

useage as a variable only slightly increases the goodnessoffit for the equation. Molecular weight 

and vapor pressure had even fewer significant correlations to emissions. The optimimum 

correlation for all four factors gave the following empirical relationship with a regression 

coefficient of less than 0.5: E = f(use
0.4

, inv
0.4

, MW
-0.7

, Pvap
0.2

). Figure 4.9 shows predictions 

using the correlation equation versus the input data on emissions; the lack of agreement 

illustrates the difficulties in modeling emissions from R&D facilities using chemical inventory 

data given the variety of processes. 
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Figure 4.9. Predicted Emissions from Regression vs. Emission Estimates Input to Regression 

 

4.6 Conclusions 

 

A Monte Carlo technique can be used on stack sampling data to give a distribution of emission 

estimates. For R&D facilities with low emissions, the sampling data may contain many results 

near or below the detection limit, which can result in negative net emissions (stack sampling – 

background) estimates in the Monte Carlo results. Calculations can be filtered so that only 

positive emission values are included in the results, but this will upwardly shift the mean 

estimated emissions. The unfiltered calculations can be used to provide a confidence level in 

determining whether emissions are above background concentrations, and the filtered 

calculations can provide realistic conservative emission estimates. Application of the unfiltered 

technique to the PNNL measurement data showed close to background emissions for almost all 

data sets. The filtered technique provided a positive estimate of these emissions, which was 

somewhat conservative but still allowed for background adjustment.  

 

The Monte Carlo technique can also be used to calculate distributions of release fractions from 

stack sampling measurements in combination with chemical usage and inventory data. In these 

calculations, a filter is required to confine the results composing the distribution from zero to 

one. Release fractions had a wide range among different chemicals and among data sets for the 
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same chemical. The variation in release fractions among chemicals did not correlate well with 

molecular weight or vapor pressure at 20°C. Also, no statistically significant correlation was 

found between the mean emission estimates and the independent variables investigated 

(chemical usage, chemical inventory, molecular weight, and vapor pressure). The lack of 

correlation could be due to inaccuracies in estimating emissions that are so close to background 

levels, difficulties in tracking precise data on chemical usage, or challenges in determining and 

incorporating other factors such as processes requiring heating , chilling, and varying levels of 

mechanical agitation (e.g., bubbling) that impact emissions in the highly variable R&D 

environment. This work substantiates the difficulties in estimating emissions from R&D facilities 

based on chemical inventory data.  
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5.0 SOURCE APPORTIONMENT OF STACK EMISSIONS FROM RESEARCH AND 

DEVELOPMENT FACILITIES USING POSITIVE MATRIX FACTORIZATION
5
 

 

5.1 Abstract 

 

Emissions from R&D facilities are difficult to characterize due to the wide variety of processes 

used, changing nature of research, and large number of chemicals. PMF was applied to VOCs 

concentrations measured in the main exhaust stacks of four different R&D buildings to identify 

the number and composition of major contributing sources.  

 

PMF identified between 9 and 11 source-related factors contributing to the stack emissions, 

depending on the building. The factors that were similar between buildings were major 

contributors to trichloroethylene (TCE), acetone, and ethanol emissions. Several other factors 

had similar profiles for two or more buildings but not for all four. One factor for each building 

was a combination of p/m-xylene, o-xylene and ethylbenzene. At least one factor for each 

building was identified that contained a broad mix of many species, and constraints were used in 

PMF to modify the factors to resemble more closely the off-shift concentration profiles. PMF 

accepted the constraints with little decrease in model fit. Although the PMF model predicted the 

profiles of the off-shift samples, the percent of total emissions was under-predicted by the model 

versus the measured data.  

 

5.2 Introduction 

 

PNNL operates a number of multidisciplinary laboratory research facilities for DOE and sampled 

air chemical emissions from some of these facilities during 1998–2008. The primary purpose of 

this sampling was to provide data to compare estimated release fractions to those used for 

emissions estimates, verifying that methods used to determine compliance with air regulations 

and permits conservatively predict actual emissions. Sampling also identifies and quantifies air 

toxics emitted to compare with compliance limits established by regulatory agencies. Results 

                                                 
5
 As of February 2013, this chapter was submitted for publication to Environmental Science and 

Technology, authors M. Ballinger (Battelle Seattle Research Center, Seattle, WA 98109) and T. Larson 

(Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195). 
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from initial sampling campaigns were evaluated and a paper was published that summarized the 

PNNL compliance approach and described sampling and analytical measurements for the first 

sampling campaigns (Woodruff, Benar, and McCarthy, 2000). Conclusions reported in the paper 

were that none of the measurements of the target compounds exceeded an acceptable source 

impact level (WAC Chapter 173-460) and that an average release fraction calculated from the 

data provided reasonable validation of that used in compliance assessments. Additional analysis 

of the data included development of a metric to compare chemical signatures (Ballinger, 

Duchsherer, and Metoyer, 2009), ranking of compounds according to risk to potential 

downstream receptors (Ballinger and Duchsherer, 2010), use of a Monte Carlo technique to 

estimate emissions (Ballinger and Duchsherer, 2012), and preliminary use of PMF on a subset of 

the data (Ballinger and Duchsherer, 2011). 

 

The wide range of chemicals and processes used in R&D laboratories increases the complexity 

of estimating air chemical emissions from R&D facilities. In addition, the laboratory-scale 

quantities of chemicals results in emissions that may be close to or below analytical DL using 

standard sampling techniques. PMF was chosen to analyze the sources of variability of this stack 

emission data because it can incorporate measurement uncertainty information, including 

consideration for missing measurements and data below DL. 

 

PMF is a widely applied receptor modeling technique that has been used extensively to assess 

sources contributing to ambient air particulate pollution since its introduction (Paatero and 

Tapper, 1994). For example, PMF was used to identify signatures of sources contributing to 

particulate matter in Spokane, WA (Norris, 1998); another study recorded fine particle data from 

National Parks to determine the impact of sources on visibility impairment (Rose, 2006); fine 

particle concentrations were analyzed in Chicago, IL to identify contributing sources (Rizzo and 

Scheff, 2007); contributors to aerosols were sought in St. Louis, MO using organic molecular 

markers as identifiers (Jaeckels, Bae, and Schauer, 2007); and PMF was applied to source 

apportionment of aerosols on the coast of Turkey (Dogan, Karakas, and Tuncel, 2007). In 

addition to particulate matter, PMF has been applied to a wide range of air quality indicators 

such as particulate and gaseous species plus meteorological parameters in northern Michigan 

(Paterson et al., 1999). PMF model applications have been broadened to other environmental 
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media including soil contamination (Vaccaro et al., 2007) and offshore sediments (Bzdusek, Lu, 

and Christensen, 2006; Sundqvist et al., 2010). Applying PMF to determine contributions to 

stack emissions as presented in this paper is a unique use of the model.  

 

In this application, PMF is used to identify multivariate features contributing to measured 

emissions from several R&D facilities with an objective of determining chemical combinations 

that point to processes or activities important to emissions and also to evaluate how these source-

related features vary over time within a building and between buildings. 

 

5.3 Experimental  

 

Stack Sampling 

 

PNNL sampled air chemical emissions from the stacks of four facilities in Richland, WA during 

1998–2008: RPL (325), CSL (329), LSL (331), and EMSL. Sampling times were usually 100 

min, except for the initial year of sampling, which included 300- and 50-min samples. Most of 

the samples were obtained during normal working hours (i.e., 8:00 a.m.–5:00 p.m.), but some 

were taken on weekends, holidays, or other off-shift times when research activities would not be 

expected to occur. Although samples were mostly obtained from exhaust stacks, early sampling 

campaigns also included other locations such as lobbies and corridors to evaluate non research-

related contributions to emissions from activities such as office and building operations. 

  

The sampling method used involved the collection of air samples onto TSTs that were 

subsequently analyzed for VOCs using GC/MS analysis. The sampling apparatus had two 

parallel channels into which the air stream is drawn; each channel has its own flow rate and one 

of the channels was programmed to collect a sample at approximately double the flow rate of the 

other. Thus, each sample has a pseudo-duplicate to identify quality issues and to estimate 

uncertainty. Depending on the year, GC/MS analyzed a total of 46–49 target compounds, many 

of which were present in such low concentrations that results were below DL. The target 

compounds were selected primarily from a standard containing the 39 compound mixtures 
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specified in the Compendium Method TO-14 (EPA, 1989b), plus a short list of supplementary 

analytes in a second standard.  

 

Positive Matrix Factorization Analysis 

 

PMF is a form of factor analysis that decomposes response data (measured concentrations of 

VOCs in stack emissions) into major contributing factors and provides a profile for each (Paatero 

and Tapper, 1994). In this application, PMF based on the ME-2 algorithm (Norris et al., 2008) is 

used to determine the number and relative abundance of significant contributors to the stack 

emissions from each laboratory. PMF has an advantage in that the solution is constrained so that 

no contributor can be negative; all sources contribute either zero or positive input to the total 

emissions. The PMF model is described by eq 5.1 in which sampling data are attributed to a 

number of independent sources, each of which is a chemical fingerprint f and contributing a mass 

g to the sample.  

 

   (5.1) 

 

Where xij = concentration of species j in sample i 

fkj = fraction of species j in factor k 

gik = mass of factor k contributing to sample i 

eij = residual of species j in sample i not explained by the model. 

 

PMF finds a best fit for a specified number of factors by minimizing an object function Q, as 

shown in eq 5.2. 

 

  (5.2) 

 

Where uij = the uncertainty associated with xij.  
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As a result of eq 5.2, each data point is individually weighted depending on its uncertainty, 

allowing the solution to emphasize the data with higher confidence while still using data that are 

at or below detection level.  

 

In addition to using EPA PMF 4.1 for this analysis, the PMF User Guide (Norris et al., 2008) and 

a technical paper (Reff, Eberly, and Bhave, 2007) were used to obtain information on how to set 

up and run PMF, including preparation of input files and recommendations on input parameters. 

The technical paper states that some works advocate dropping species that have a large number 

(>95%) of measurements smaller than DLs. Table 5.1 lists the target compounds that were 

analyzed in the samples sorted by overall detection frequency. As seen in the table, most 

compounds had similar detection frequencies for all buildings. Others such as acetonitrile and 2-

butanone, had much higher detection frequencies in some buildings. 

 

Table 5.1. Compounds Analyzed in Stack Samples 

Compound* 

All 

Results† 

Building† PMF 

Designation 325 329 331 EMSL 

Acetone 98% 98% 98% 97% 99% Strong 

Toluene 97% 95% 94% 98% 99% Weak 

Trichlorofluoromethane 95% 90% 99% 94% 100% Weak 

Dichlorodifluoromethane 92% 90% 86% 94% 100% Weak 

p/m-Xylene 92% 95% 81% 94% 95% Strong 

Chloroform 90% 68% 96% 96% 95% Strong 

Benzene 89% 88% 87% 88% 99% Bad 

Ethylbenzene 88% 88% 80% 91% 94% Strong 

Methylene Chloride 82% 73% 96% 75% 96% Strong 

o-Xylene 81% 71% 71% 85% 94% Strong 

Carbon Tetrachloride 77% 73% 74% 78% 87% Strong 

Trichloroethene 74% 94% 66% 58% 98% Strong 

1,1,2-trichloro-1,2,2-trifluoroethane 74% 65% 66% 75% 92% Weak 

Ethanol 72% 41% 56% 95% 74% Strong 

Pentane 69% 55% 67% 68% 93% Strong 

1,1,1-Trichloroethane 65% 57% 59% 62% 96% Weak 

Acetonitrile 62% 17% 64% 72% 98% Strong 

1,2,4-Trimethylbenzene 57% 47% 19% 68% 91% Weak 

1,3,5-Trimethylbenzene 47% 25% 24% 57% 83% Weak 

2-Butanone 40% 18% 22% 40% 97% Strong 

Styrene 40% 34% 29% 48% 41% Weak 

Methanol 40% 22% 19% 60% 39% Weak 

1-Ethyl-Methyl-Benzene (group)‡
 

39% 24% 21% 33% 95% Weak 

1,4-Dichlorobenzene 33% 53% 17% 39% 12% Weak 
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Compound* 

All 

Results† 

Building† PMF 

Designation 325 329 331 EMSL 

1,3-Dichlorobenzene 27% 12% 14% 36% 37% Weak 

1,2,4-Trichlorobenzene 28% 28% 7% 33% 40% Weak 

Hexachloro-1,3-butadiene 18% 19% 7% 24% 16% Weak 

Chlorobenzene 16% 3% 8% 33% 2%  

1,1,2,2-Tetrachloroethane 13% 2% 4% 18% 31%  

1,2-Dichlorobenzene 13% 6% 8% 23% 2%  

cis-1,3-Dichloropropene 10% 9% 10% 14% 0%  

trans-1,3-Dichloropropene 8% 8% 9% 11% 0%  

Tetrachloroethylene 7% 5% 6% 11% 3%  

1,1-Dichloroethane 5% 0% 6% 0% 20%  

1,1-Dichloroethene 4% 1% 3% 0% 21%  

cis-1,2-Dichloroethene 3% 0% 0% 0% 21%  

1,2-dichloro-1,1,2,2-tetrafluoroethane 3% 2% 1% 4% 2%  

Chloromethane 2% 0% 2% 1% 6%  

Chloroethane 2% 0% 1% 3% 0%  

1,2-Dichloroethane 1% 0% 1% 0% 7%  

1,2-Dibromoethane 1% 1% 1% 0% 0%  

Bromomethane 0% 1% 0% 0% 0%  

1,1,2-Trichloroethane 0% 0% 1% 0% 0%  

1,3-Butadiene 0% 0% 1% 0% 0%  

1,2-Dichloropropane 0% 0% 0% 0% 0%  

3-Chloropropene 0% 0% 0% 0% 
 

 

Vinyl Chloride 0% 0% 0% 0% 0%  

Number of Samples 344 77 72 141 54  

Number of Results§ 683 154 140 281 108  
* Target compounds in shading met the >5% criteria of measurements greater than DLs for all emission points and 

thus were included in the analysis. 

† Percent of results above detection limit 

‡ Includes 1-methylethylbenzene, 1-ethyl-4-methylbenzne, and 1-ethyl-2-methylbenzene. 

§ Samples were taken in pairs so that there were two results per sample except for a limited few taken during the 

first year of sampling. 

 

PMF requires two data input files: a file with sampling dates and chemical concentrations for 

each of the samples and a corresponding file with uncertainty values “to give the model an 

estimate of the confidence the user has in each value” (Norris et al., 2008). Uncertainties should 

include sampling and analytical errors, and guidance (Reff, Eberly, and Bhave 2007) suggests 

that using the analytical or method uncertainties that correspond with each species concentration 

value is the simplest method for creating the uncertainty matrix. However, the duplicates taken in 

this sample set can be used to quantify a wider range of uncertainties than analytical or method 

uncertainties. To determine uncertainty for PMF input, the average and standard deviation of the 

stack concentration for each pair was computed for all pairs where both measurements were 

above the detection limit. Standard deviation was then plotted as a function of concentration for 
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each compound. Where one or two of the highest concentrations for a given compound had a 

significant effect on the regression, these values were removed. Uncertainties were then 

calculated from the regression equation.  

 

Uncertainties obtained using this method were higher than the recovery precision reported by the 

analytical laboratory, as would be expected, and ranged from 5% for 2-butanone to 107% for 

benzene with many compounds in the 30–40% range. An uncertainty of 5/6 of the DL was 

assigned to results below detection limit as recommended by the PMF User Guide (Norris et al., 

2008). 

 

Input data can be evaluated in PMF 4.1 to determine suitability for further analysis. For example, 

the concentration/uncertainty tab in PMF gives the signal-to-noise ratio (S/N) that “indicates 

whether the variability in the measurements is real or within the noise of the data” (Norris et al., 

2008). In PMF 4.1, S/N is calculated as shown in eq 5.3. 

 

   

 
  (5.3) 

 

The PMF User Guide suggests changing the categorization of a species to “bad” if the S/N is 

<0.2 and “weak” if the S/N is >0.2 but <2. Categorization as weak triples the provided 

uncertainty and categorization as bad excludes the species from the rest of the analysis. For the 

stack data, categorization of species following this recommendation is shown in the results 

section. 

 

Parameters required to run the PMF base code are number of runs, number of factors, and seed. 

The number of runs is the number of times the code analyzes the data using the specified number 

of factors; the default value of 20 was used in these applications. The number of factors is the 

estimated number of sources contributing to the stack emissions, and this was varied. PMF 
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decomposes the data into optimal source profiles (concentration or percent of each species that 

make up a factor) and contributions (amount each factor contributes to the individual samples). 

For this analysis, the number of factors started at six and was increased or reduced depending on 

the resulting goodness of fit values that are output by the code. Seed is the starting point for each 

iteration and the default of random seed was used for all of the runs. 

 

PMF produces goodness of fit or Q values that reflect how well the factors fit the actual data 

with low Q values indicating a better fit. Two goodness of fit parameters are produced; Qtrue is 

based on all the data, and Qrobust is calculated excluding outliers. Qrobust values were compared to 

theoretical Q values that were calculated using the following equation (Norris et al., 2008): 

 

 Qtheory = nm – p(n+m)  (5.4) 

 

Where n is the number of species 

m is the number of samples 

p is the number of factors.  

 

The number of species, n, is adjusted for signal-to-noise ratio as follows: n=1 for each strong 

species; n= 1/3 for each weak species; n = 0 for each bad species. This corresponds to the PMF 

treatment of tripling the uncertainty for species marked as weak and excluding species marked as 

bad. 

 

The number of factors that best fit a data set can be initially chosen based on the PMF Qrobust or 

Qtrue value closest to Qtheory (Reff, Eberly, and Bhave, 2007). Alternatively, the change in Q with 

increase or decrease in number of factors can be used to determine the optimal number of factors 

(Camero, Capitani, and Gawlik, 2009). Both methods are employed in this analysis and the 

number of factors that result in a reduction in Qrobust values closest to the reduction in Qtheory was 

used to select the initial number of factors. This factor number was obtained for each of the 

individual facilities and for all the data grouped as a whole.  
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PMF identifies outliers (not well modeled results) by species and sampling date and shows their 

scaled residual value which indicates inadequacy of the model to predict that species for 

individual sampling results. Residuals above three standard deviations from a normal distribution 

for that species are listed by PMF. The reduction in number of factors generally increases the 

number of scaled residuals. Thus, the lower the Q and the lower the number of residuals, the 

better the model fit.  

 

Bootstrapping within PMF was then used to determine the stability of the initially identified 

factors (noted as base factors in PMF). Bootstrapping resamples from the original data set and 

determines whether randomly selected blocks of the original data would produce factors similar 

to the base factors. The fit is indicated by mapping the new factors to the base factors, and 

bootstrap results with many unmapped or mis-mapped factors may indicate too many factors in 

the base model. In addition to minimization of Q and residuals while evaluating factor mapping, 

a coefficient of determination (COD) was used as a diagnostic tool to quantify the ability of the 

model to reproduce the original data (Sundqvist et al., 2010). The COD is similar to a regression 

coefficient in that a value of 1 implies a perfect fit.  

 

Displacement analysis was also used to evaluate the number of factors. Displacement analysis in 

PMF checks for rotational ambiguity of the model by changing the fit of each species in a factor 

within a specified incremental change in Q. Four levels of displacement are evaluated 

corresponding to four allowed incremental changes in Q. A key output identifies the extent of 

factor swapping, with more swapping indicating factors that are not well defined and a possible 

need to decrease the number of factors.  

 

A unique feature is provided in PMF 4.1 that allows users to specify constraints to modify one or 

more factors by incorporating known or suspected relationships for species within the factor. 

This feature was used to investigate the contributions from suspected underlying sources from 

non-research processes such as building operations and office activities. Samples taken during 

off-shift times were analyzed for each building to evaluate similarity among the off-shift group 

and similarity to factor profiles generated by PMF. Ratios of compounds were obtained from the 

off-shift data to represent a building signature for these sources, and these ratios were applied to 



 

70 

modify the PMF factor with the most similar profile. The results from this adjustment were 

evaluated to determine the difference in model fit compared to the unconstrained model. 

 

5.4 Results and Discussion  

 

The PMF code was run on stack sampling data from each of four R&D facilities sampled over 10 

years. In addition, PMF was run on the data from all buildings grouped together. The S/N ratio 

for the compounds was similar for each data set, except for 2-butanone which has a significantly 

higher S/N for EMSL than for other individual buildings. This is consistent with the higher 

detection frequency for 2-butanone at EMSL versus the other buildings. Twelve compounds had 

S/N ratios above 2 and were labeled as strong in PMF (Table 5.1). Fourteen compounds with 

ratios between 0.2 and 2 were labeled as weak, which effectively triples the uncertainties 

assigned. Benzene was the only compound with a ratio below 0.2 and was labeled as bad, 

causing benzene results to be removed from the PMF analysis. 

 

Factor Identification 

 

Factors chosen for the runs ranged from 6-12 and goodness of fit (Q) values were evaluated for 

each of the runs (Figure 5.1). The number of factors initially chosen where the drop in Qrobust was 

approximately equal to the drop in Qtheory varied between 9 and11 for individual buildings and 

was 12 for all buildings together. Table 5.2 shows the summary results from these runs including 

the number of measured results that are not well represented by the model, as identified by 

scaled residuals above 3. 
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Figure 5.1. Change in Q Values with Number of Factors 

 

Table 5.2. Summary of PMF Results 

Building 325 329 331 EMSL All Bldgs 

# Factors 

∆Qrobust = ∆Qtheory 
10 11 9 10 12 

# Residuals > 3 4 1 2 0 3 

% Bootstrap mapping issues 15% 16% 12% 1% 6% 

# Displacement Swaps 
4 at top 

level 

None at top 

level 

None at top  

3 levels 

None at 

all 4 levels 

None at top 

2 levels 

COD 0.800 0.996 0.986 0.971 0.990 

 

Bootstrapping and displacement analysis was performed on the initially identified number of 

factors and these results also varied with the data set as shown in Table 5.2. EMSL factors 

appeared to be well formed with no scaled residuals above 3, few unmapped or mis-mapped 

factors from bootstrapping, and no swapping of factors from displacement analysis at all four 

levels of allowable increase in Q. The 329 and 331 Building factors were the next most stable 

with few outlying scaled residuals and relatively few mapping and swapping issues. The 325 

Building 10-factor model had factor swapping at the first level of allowable incremental change 

in Q which indicates that the solution should not be used (Norris et al., 2008). A 9-factor model 

corrected this issue, with no swapping at the highest level and a slight decrease in bootstrapping 

mapping issues. The number of outlying residuals was increased from 4 to 5, and the COD 

decreased to 0.697 with the 9-factor model, both of which were indicators of a reduced fit to the 

original data. 
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The better fit of the PMF model to the EMSL data compared to the other buildings may be 

partially attributed to the single year of sampling at EMSL versus multiple years at the other 

buildings. However, EMSL is unique compared to the other buildings in a number of different 

aspects: the laboratory is relatively new with start-up of research in 1998 compared to 1950s and 

1960s for other buildings; EMSL is built in five pods with a central emission stack from each 

pod, where the other buildings have one central stack; and the EMSL sampling campaign was 

conducted in one year from three of the five stacks compared to multi-year sampling from the 

single stack at the other buildings. All EMSL stacks were grouped together in this analysis to 

provide sufficient data points for the PMF analysis, just as all the years of sampling were 

combined for the other buildings. Given the differences between EMSL and the other facilities, it 

is surprising that the differences in the PMF factors are not more noticeable. 

 

The 325 Building had the least well-defined fit to the PMF model. The 10-factor model was 

decreased to 9 to reduce factor swapping and was successful at eliminating swapping at the first 

incremental change in Q. However, the 9-factor model had a higher number of residuals above 3, 

and low COD compared to other buildings. The 325 Building has a much higher stack flow rate 

than other buildings because this emission point serves a larger laboratory area that contains hot 

cells and glove boxes for work with high activity radioactive material, which  requires higher 

ventilation flows to reduce potential for personnel contamination. This may contribute to overall 

lower concentrations of compounds with increased uncertainties close to the detection limit. 

 

Comparison of Factors 

 

PMF factors were labeled with the building and compound for which the factor contributed a 

high percent to total emissions. For many factors, this was a single compound, but for others it 

was a group of species (i.e., xylenes) or named “mix” if the group was a mix of many species. 

The comparison of factor profiles from the different buildings is shown in the dendogram in 

Figure 5.2. Factors that modeled a high percentage of emissions of acetone, TCE, and ethanol 

had similar profiles in all buildings. These profiles were characterized by predominating 

concentrations of the single chemical and minor contributions from a few other chemicals. The 
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acetone content was high enough in the 329 2-butanone factor, 331 mix factor, and EMSL 

chloroform factor that they appeared similar to the acetone factors.  

 

 
Figure 5.2. Similarity Dendogram for PMF Factors 

 

All buildings also had single factors that contributed a high species percent of acetonitrile, 2-

butanone, and xylenes, the latter a combination of o-xylene, p/m-xylene and ethyl benzene. 

However, the profiles of these factors were not similar among buildings (Table 5.3). The three 

compounds o-xylene, p/m-xylene, and ethyl benzene are used in stains and fixatives in 

microbiology laboratories that are prevalent in the 331 and EMSL buildings. A review of 
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chemical inventory data for the years sampled verifies the presence of these compounds 

primarily in 331 and EMSL, to a lesser extent in the later sampling years for 325, and in very 

minor quantities in 329. The dendogram shows that profiles for the xylene factors differ between 

buildings with the most similarity between the EMSL and 325 xylene factors. For these two 

buildings, the concentration of p/m-xylene is approximately double that of o-xylene and ethyl 

benzene. The 331 xylene factor also has this ratio but additionally has a high concentration of 

ethanol increasing its similarity to the ethanol factors. 

 

Table 5.3. Similarity of PMF Factors 

Factor 

Identifier 

% Species 

Accounted for 

in Emissions
 

325 329 331 EMSL 

TCE 80–90 Similar to other TCE factors 

Ethanol 60–99 Similar to other ethanol factors 

Acetone 60–85 Similar to other acetone factors 

Acetonitrile 62–86 

Similar to 

acetone 

factors 

Similar to 

EMSL factor 

(Pearson 0.865) 

Similar to 

EMSL & 329 

ethanol factors 

(Pearson > 0.8) 

Similar to 329 

factor 

(Pearson 

0.865) 

Xylenes: 

o-xylene 

p/m-xylene 

ethylbenzene 

 

47–81 

49–85 

16–82 

No close 

similarities 

No close 

similarities 

Similar to 

ethanol factors 

No close 

similarities 

2-butanone 51–90 
No close 

similarities 

Similar to 

acetone factors 

Similar to 

EMSL (Pearson 

0.851) 

Similar to 331 

(Pearson 

0.851) 

Chloroform 63–86 
 

Similar to 

methylene 

chloride factors 

(Pearson 0.88) 

No close 

similarities 

Similar to 

acetone 

factors 

Methylene 

Chloride 
87–89 

 

Similar to 

EMSL factor  

Similar to 329 

factor 

Pentane 80 
 

No close 

similarities  

No close 

similarities 

Mix 1  

Similar to 

EMSL and 

329 

Similar to 

EMSL and 325 

No close 

similarities 

Similar to 325 

and 329 

Mix 2  
Similar to 

Mix 1 

Similar to 325 

Mix 1 (Pearson 

0.801) 

Similar to 

acetone factors 
 

Mix 3  
No close 

similarities   
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The three compounds chloroform, methylene chloride, and pentane had factors that contributed a 

high percent of species emissions for multiple but not all buildings. Chloroform is used in a 

variety of organic extraction processes, activities that are common in all buildings except 325. 

This explains the presence of chloroform factors for 329, 331, and EMSL but not 325. Methylene 

chloride factors for 329 and EMSL correspond to the compound’s use for regulatory organic 

analysis, an activity primarily in these two buildings. Pentane is used as an organic solvent and is 

equally present in chemical inventories. Pentane emissions are predominately explained by a 

single factor in the 329 and EMSL facilities but are incorporated into multiple mix factors for 

325 and 331. 

 

Each building had one or more factors that accounted for a broad mix of compounds. As shown 

in the dendogram, mixes from three of the four buildings (325, 329, and EMSL) had similar 

profiles. The factors for each building are summarized in Table 5.3, along with the percentage of 

the compound emissions attributed to the factor and a description of profile similarities to other 

factors. For the 325 Building, three of the nine factors were a mix of compounds as opposed to 

centered on one or two species. Models for the other buildings only required one (EMSL) or two 

(329 and 331) mix factors to fit the data. As mentioned previously, the 325 Building has a much 

higher stack flow rate than the other buildings, which may contribute to overall lower 

concentrations of compounds and less differentiation between factors.  

 

Constraints to Model Off-shift Measurements 

 

Profiles for the mix factors were compared to profiles from the samples collected during off-shift 

hours to determine whether one or more of the factors could be attributed to off-shift 

concentrations of chemicals in the building. Off-shift samples are believed to be representative of 

emissions when little or no research activities are being conducted in the building and may be 

present as an underlying contribution to all samples. This contribution could constitute 15–50% 

of the mass of emissions as calculated using the median off-shift sample concentrations (Table 

5.4). 
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Table 5.4. Constrained Model Summary Results 

Factor 

Building 

325 329 331 EMSL 

All Compounds Pearson’s r* – no constraints 0.908 0.393 0.860 0.665 

All Compounds Pearson’s r* – with constraints 0.987 0.913 0.990 0.927 

Compounds with no Ratio Applied: Pearson’s r*– no constraints 0.431 0.239 0.416 0.687 

Compounds with no Ratio Applied: Pearson’s r*– with 

constraints 0.448 0.259 0.309 0.027 

Increase in Q (dQ) 1.4% 1.2% 1.6% 8.6% 

% Emissions represented by off-shift sampling data†
 

54% 22% 15% 38% 

% Emissions from Mix Factor 8% 3% 15% 14% 

% Emissions from Mix Factor with Constraints 17% 1% 8% 7% 

% Emissions all Mix Factors with Constraints 40% 5% 10% 7% 
*Mix factor compared to off-shift median 

† Off-shift median concentrations assumed to be a subcomponent of every sample 

 

Although only a limited number of off-shift samples were taken (3–6, depending on the 

building), the relative concentration of the 27 compounds were similar for most of the off-shift 

samples for a given building. In addition, the off-shift profiles for the 325 and 331 Buildings 

were similar to each other. Ratios were computed for each building to characterize off-shift 

sample profiles using hexachloro-1,3-butadiene as the denominator because it had the least 

variation in concentration. Ratios from the compounds contributing the most to the off-shift 

concentrations were applied as constraints in PMF to adjust the mix factor with the profile most 

similar to off-shift samples (Table 5.5).  

 

Table 5.5. Ratios* Applied to Mix Factor in Constrained Model 

Compound 

Building 

325 329 331 EMSL 

1,2,4-Trichlorobenzene 1.05 0.71 0.72 0.73 

Acetone 0.40 2.51 0.29 1.43 

Dichlorodifluoromethane 0.41 0.54 0.19 0.27 

Ethanol 0.15 1.04 0.73 0.19 

Methanol 0.77 0.96 1.00 3.12 

Methylene Chloride 0.19 0.46 0.20 0.54 

Trichloroethene 0.36 0.33 0.02 0.16 

Trichlorofluoromethane 0.24 1.22 0.20 1.54 
* Ratio of the identified compound to hexachloro-1,3-butadiene 

 

The constrained PMF model improved the similarity of the mix factor profiles to the profiles of 

off-shift samples (as intended) with little reduction in model fit as quantified by increase in Q if 

all compounds are considered (Table 5.4). However, if the compounds used in the ratio 
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application are removed, the similarity to the off-shift median profiles may be increased or 

reduced depending on the building.   

 

A second evaluation was performed to determine whether the PMF model verified contributions 

of this factor in terms of percent emissions. If off-shift sampling data represents underlying 

emissions that occur continually from a building, then off-shift concentrations are a 

subcomponent of every sample, and the fraction of total emissions from these contributions can 

be calculated and compared to the fraction contributed by the PMF mix factor. The percent of 

emissions of each building due to underlying emissions was calculated using median off-shift 

concentrations. As shown in Table 5.4, these emissions are significant for all buildings and could 

be as much as half of the emission concentrations for the 325 Building. The percent of emissions 

from the mix factor that was most similar in profile to the off-shift sample profiles was 

calculated from the PMF output and is also presented in Table 5.4.  

 

For all buildings except 331, the PMF mix factor represented a much smaller percent of emission 

concentrations than estimated using off-shift sampling data. The PMF model attributes at least 

some of the off-shift concentrations to other factors.  Applying constraints increased mix factor 

percent contribution for the 325 Building but decreased for other buildings. All buildings except 

EMSL have multiple mix factors, and the percent contribution from all mix factors using the 

constrained model is also shown in Table 5.4. This percent is still below that estimated from the 

sampling data, indicating that mix factors are not the only contributions to off-shift samples. 

 

This analysis is the first to apply source apportionment to stack emissions to gain insight into the 

processes contributing to those emissions, particularly when the processes are highly variable 

over time. PMF was useful in identifying the single compounds that tended to dominate factor 

modeling and a combination of three chemicals commonly emitted together. PMF was also 

valuable in identifying factors from each building with a broad mix of compounds, constraining 

the factor to resemble more closely off-shift measurements for the compounds used in the ratio 

and evaluating whether this factor represents an underlying contribution to emissions. 

 



 

78 

5.5 Acknowledgements  

 

The authors thank Cheryl Duchsherer and Rodger Woodruff at PNNL and Professor Christopher 

Simpson at the University of Washington for their review of the manuscript and suggestions for 

improvements. This work was supported by PNNL. 



 

79 

6.0 SUMMARY AND FINDINGS 

 

6.1 Summary 

 

This dissertation used measured stack concentrations from R&D facilities to compare emissions 

to regulatory criteria, calculate release fractions, evaluate relationships with chemical properties, 

and identify contributors to emissions through source apportionment. The comparison with 

regulatory criteria showed that downwind ambient air concentrations calculated from the stack 

measurement data were below ASILs for almost all cases, even under extreme worst-case 

analyses. However, for compounds with averaging periods of a year, the worst-case analysis was 

too extreme to evaluate emissions with lower levels of regulatory criteria used to determine 

modeling requirements or to define trivial releases. Compounds with 24-hr averaging periods 

were almost all several orders of magnitude below all criteria including the trivial release 

criteria. An alternate analysis using the full range of sampling data supplied more realistic 

emissions estimates and an ability to explore effects under different operational modes. This 

alternative analysis involved use of a Monte Carlo technique to generate a distribution of 

emissions from random selections of the measurement data. 

 

A similar Monte Carlo technique was used to calculate release fractions from the stack 

measurement data and building chemical inventory data. The calculations allowed application of 

filters so that only release fraction values from zero to one were included in the resulting 

distributions. Release fractions had a wide range among chemicals and among data sets for 

different buildings and/or years for a given chemical. Regressions of release fractions to 

molecular weight and vapor pressure showed weak correlations. Similarly, regressions of mean 

emissions to chemical usage, chemical inventory, molecular weight and vapor pressure also gave 

weak correlations. These results highlight the difficulties in estimating emissions from R&D 

facilities using chemical inventory data. 

 

The use of factor analysis on measured stack emissions from R&D facilities identified between 9 

and 11 factors depending on the building. The majority of these factors were focused on 

explaining emissions from a single dominating chemical. Although 49 target compounds were 

analyzed, only 27 of these were above the detection limit frequently enough to be included in the 
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analysis. Factors for TCE, acetone, and ethanol were identified and were similar between 

buildings. Other factors dominated by explaining a high percentage of a single species were 

acetonitrile, 2-butanone, chloroform, methylene chloride, and pentane. Some of these factors 

were identified for multiple (but not all) buildings, and factor profiles between buildings were 

dissimilar. A factor was identified for all the buildings that combined high percentages of o-

xylene, p/m-xylene, and ethyl benzene in a consistent ratio, and one or more factors were 

identified for a broad mix of compounds. 

 

This analysis is the first to apply source apportionment to stack emissions to gain insight into the 

processes contributing to those emissions, particularly when the processes are highly variable 

over time. PMF was useful in identifying the single compounds that tended to dominate factor 

modeling and a combination of three chemicals commonly emitted together. PMF was also 

valuable in identifying factors from each building with a broad mix of compounds, constraining 

the factor to more closely resemble off-shift measurements and evaluating whether this factor 

represents an underlying contribution to emissions. 

 

6.2 Conclusions 

 

Chemical air emissions from R&D facilities are difficult to estimate because of the wide variety 

and changing nature of processes. Chemical inventory-based methods are often applied but 

seldom verified with actual emission measurement data. The data set from PNNL offered a 

unique opportunity to evaluate actual emissions from several buildings over a 10-year time 

period. Although the data set included a small fraction of the thousands of chemicals used, it 

included target compounds with a wide range of chemical properties, use within the laboratories, 

and regulatory significance. The measurement data allowed for an overall evaluation of R&D 

emissions compared to regulatory data, an assessment of the adequacy of inventory-based 

estimation methods considering potential improvements to these methods, and an identification 

of multi-component sources. 

 

Emissions from R&D facilities were determined to be low with many results below detection 

limit concentrations which were sufficient to compare emission concentrations to ASIL values 
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but are not always sufficient to compare with the lower level criteria of SQER and de minimis 

values. An extreme worst-case analysis can be used to evaluate compliance, but this method is 

not realistic particularly in applications of annual emissions for sources that have a large 

temporal variability. An analysis using Monte Carlo methods is helpful in obtaining a 

conservative yet realistic emissions estimate and investigating the impacts of operational 

variability. Application of both of these methods showed that non-carcinogenic compounds were 

orders of magnitude below their regulatory criteria including the de minimis quantity defining 

quantities below regulatory concern. It was more difficult to evaluate compliance with lower 

level criteria for the carcinogenic compounds because many of these were above de minimis, 

even with results that were below DL. 

 

The Monte Carlo method was also useful in assessing release fractions which are applied to 

chemical inventories to estimate emissions. A mean release fraction value of 10% was obtained 

for two-thirds of the compounds when applied to chemical usage plus one-half inventory, but the 

value was higher for the other third. The range of release fraction values ranged considerable for 

most compounds both between buildings and between years for a given building. The suspected 

relationship between release fractions and chemical properties such as molecular weight or vapor 

pressure could not be established, which may be due to inaccuracies in estimating emissions that 

are so close to background levels, difficulties in tracking precise data on chemical usage, or 

challenges in determining and incorporating other process parameters that can impact emissions.  

 

Source apportionment was applied to the stack measurement data in an additional effort to gain 

insight into the identification of processes contributing to emissions from R&D facilities. The 

source apportionment attributes useful for this application are the ability to extract multivariate 

features from data with multi-component analysis of many samples while weighing individual 

uncertainty of the data. In this application, the source apportionment model identified some 

factors that were similar among the four buildings studied and a few that were unique. All 

buildings had a low level multi-compound “mix” factor that could be adjusted to resemble more 

closely the chemical profile of off-shift samples with little loss of model fit. 
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6.3 Suggested Future Research 

 

The PNNL data set taken from four facilities over a 10-year time frame demonstrates the 

difficulty in estimating air emissions and a wide range/high uncertainty in current estimation 

methods based on chemical inventories. If additional sampling at this facility is conducted to 

verify actual emissions further, the following paragraphs describe considerations for these 

sampling campaigns. 

 

Characterization of Non-R&D Sources  

 

The current sampling data indicate that concentrations of many compounds in off-shift samples 

were similar in concentration to samples taken in locations with no R&D emissions such as 

hallways and corridors. This similarity has implications on assumptions about operational modes 

and can make a significant difference in calculating emissions. Only a limited number of off-

shift samples were collected, yet they are assumed to represent a large portion of the year. Future 

work should combine collection of additional off-shift samples, along with observational data on 

operational practices from researchers or building managers. 

 

Focus on Carcinogenic Compounds  

 

Small laboratory-scale quantities of chemicals are used in R&D facilities and result in low 

emissions that are more of a concern for carcinogenic compounds than non-carcinogenic 

compounds. An evaluation of R&D chemical inventory and usage data weighted by regulatory or 

hazard criteria should assist in identifying compounds of interest. Combined with feasibility and 

cost of analysis for the compounds, this evaluation would provide a more directed suite of target 

compounds. 

 

Evaluate Analytical Detection Limits 

 

As discussed in Section 3, detection limit concentrations for some compounds may be 

insufficient to compare stack emissions to regulatory values of interest. An evaluation should be 
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performed for the compounds to be analyzed in future sampling campaigns to verify that 

sampling parameters (such as sampling time discussed below) are sufficient in combination with 

the DL to meet the objective. 

  

Evaluate Sampling Times 

 

The sampling objective is to maximize the mass collected without exceeding the time at which 

contaminants could migrate through the column of the sample tube and exit the downstream side, 

thereby underestimating the amount in the air volume sampled. Sample times of 100 min were 

sufficient for the compounds analyzed in the current data but may not be appropriate for the 

compounds to be analyzed in future sampling. 

 

Actual measurements of stack emissions from R&D facilities are rare and the data set from 

PNNL provides a unique opportunity to characterize these releases. This dissertation presented 

methods that took into account the wide range of compounds and the temporal variability of 

emissions to compare emissions to regulatory criteria, assess current methods used to estimate 

releases, and identify the number and composition of major contributing sources.
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