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ABSTRACT 

Transportation sector is one of the largest emission sources and is a cause for human 

health concern due to the high dependency on personal vehicle in the U.S. 

Transportation mode choice studies are currently limited to micro- and regional-level 

boundaries, lacking of presenting a complete picture of the issues, and the root causes 

associated with urban passenger transportation choices in the U.S. Hence, system 

dynamics modeling approach is utilized to capture complex causal relationships among 

the critical system parameters affecting alternative transportation mode choices in the 

U.S. as well as to identify possible policy areas to improve alternative transportation 

mode choice rates for future years up to 2050. Considering the high degree of 

uncertainties inherent to the problem, multivariate sensitivity analysis is utilized to 

explore the effectiveness of existing and possible policy implications in dynamic model 

in the terms of their potential to increase transit ridership and locating critical 

parameters that influences the most on mode choice and emission rates. Finally, the 

dissertation advances the current body of knowledge by integrating discrete event 

simulation (multinomial fractional split model) and system dynamics for hybrid urban 

commuter transportation simulation to test new scenarios such as autonomous vehicle 

(AV) adoption along with traditional policy scenarios such as limiting lane-mile increase 

on roadways and introducing carbon tax policy on vehicle owners. Overall, the 



iii 

 

developed simulation models clearly indicate the importance of urban structures to 

secure the future of alternative transportation modes in the U.S. as the prevailing policy 

practices fail to change system behavior. Thus, transportation system needs a paradigm 

shift to radically change current impacts and the market penetration of AVs can be one 

of the reforms to provoke this transition since it is expected to revolutionize mode 

choice, emission trends, and the built environment. 
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CHAPTER ONE: INTRODUCTION 

1.1 Overview 

Urbanization in the U.S. has been rapidly increasing since World War II, but sustainable 

urban development was not considered as an applicable concept with respect to smart 

growth initiatives until Clean Air Act Amendments declaration (Bento et al. 2005). 

Therefore, urban passenger transportation in the U.S. has since become greatly 

dependent on private vehicle use, as demonstrated consistently by the results of the 

National Household Travel Surveys (NHTS) (1990, 1995, 2001, and 2009) for U.S. 

households (Santos et al. 2011). For instance, the average number of vehicle ownership 

per household increased from 1.77 in 1990 to 1.86 in 2009, and 23% of the surveyed 

households owned 3 or more vehicles in 2009 (Santos et al. 2011), which tripled the 

total number of vehicles on the U.S. highway from 1969 to 2009 (U.S. Department of 

Transportation 2015). As a result of this car mode dependency, the level of motorization 

is significantly higher on average in the U.S. compared to the average motorization of 

Europe (EU27), where there are 477 light-duty vehicles (2 axles - 4 tires) for every one 

thousand people in Europe, whereas the corresponding number for the U.S. is 763 light-

duty vehicles for every one thousand people (European Commission 2011). Another 

statistic of car ownership comparison indicates that persons per privately owned vehicle 

rate is around 2 for France and United Kingdom, where U.S. rate is 1.3 (US DOT 2016). 
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As shown in Figure 1, which illustrates survey data from the 2009 National Household 

Travel Survey for approximately 150,000 U.S. households (Santos et al. 2011), the total 

number of personal trips is increasing, but transportation mode shares remain almost 

constant over time. Private vehicle usage decreased from 1995 to 2009, but only by 

about 5.9% of all trips. In order to mitigate traffic congestion impacts due to increasing 

number of vehicles on roadways, the federal and local governments spent 209 billion 

dollars in 2007, 218 billion dollars in 2008, and 160 billion dollars in 2009 to maintain 

and improve roadway systems every year (U.S. Bureau of Transportation Statistics 

2015). In addition, land use is another critical issue; like fossil fuels, land availability for 

roadways is limited. To better sustain available natural resources; there is a need to 

reconsider the use of transportation modes. In addition to walk or cycling mode choices, 

public transportation, for example, could contribute to reduce fossil fuel usage, 

environmental impacts, and land use. Even though most public transportation modes 

use fossil fuels as their primary energy source, they tend to increase the passenger-

miles traveled (PMT) exponentially compared to the corresponding amount of vehicle-

miles traveled (VMT). Figure 1 also indicates that the ridership share of public 

transportation compared to those of other transportation modes is only about 1.7%, 

increasing by only 0.3% from 2001 to 2009. Therefore, it is clear that only a small 

number of people use public transportation in the U.S. as opposed to other 

transportation modes. 
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Figure 1: Transportation mode choice percentages and annual number of person trips 
from 1990 to 2009 

As a result of this car-depended life style, transportation sector accounts for the 27% of 

annual GHG emissions in the US, which makes it second largest emission cause after 

energy generation sector (EPA 2017). In addition to the GHG emissions, combustion of 

fuels also causes conventional air pollutant emissions such as CO, NOx, SOx, PM10, PM2.5, 

and VOC. In addition to the climate change impacts of these emissions, their impacts on 

society can be measured in terms of externalities, which accounts for human health 

impacts, timber loss, and other relevant factors (Muller and Mendelsohn 2006, 2007b), 

which are specifically quantified for light-, medium-, and heavy-duty vehicle operations 

(Ercan et al. 2015; Michalek et al. 2011; Sen et al. 2017; Zhao et al. 2016a; b). Road 

transportation is the largest contributor of premature deaths in the US due to air 
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pollutant emissions by causing 58,000 premature deaths annually (Caiazzo et al. 2013). 

Road transportation is not the largest contributor for total emissions in the air, however 

it is the number one responsible for mortalities due to emission occurrence in highly 

populated urban areas, which affect human health directly compare to mostly rural-

based energy generation plants. In addition to emissions, significant energy 

consumption of inefficient transportation modes is another crucial concern in terms of 

energy insecurity (foreign oil, limited source of fossil fuels, etc.). Alternative fuel use for 

various road transportation vehicles has been studied in literature to propose solutions 

for energy efficiency and emission reductions. (Ercan et al. 2016a; Ercan and Tatari 

2015; Onat et al. 2014b, 2015; Sen et al. 2017; Zhao et al. 2016a; b). Although these 

studies indicated significant emission and energy consumption related reduction results 

by shifting from fossil fuels to alternative fuels, it is an incomplete effort for decreasing 

the trends of vehicle miles traveled (VMT) and air pollutant emissions from 

transportation sector (Ercan et al. 2016c; b). The number of vehicles are increasing on 

the roads with growing population, so the society and infrastructure cannot supply the 

demand to the infinity. Thus, alternative fuel deployment should be merged with 

alternative transportation mode adoption efforts to decrease drive modes.  

As Litman (1999) argues, sustainable transportation measures are not limited to 

mobility measures where most transportation studies account for. Sustainable 

transportation needs to be considered in more holistic perspective so social, health, 
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environmental, and economic impacts of high car dependency as transportation mode 

choice can be presented (Onat et al., 2016a, 2016c). The U.S. society has very limited 

experience with transit-oriented and healthy communities, which cause more resistance 

on changes from behavior or habits of living (Litman 1999). Litman and Burwell's (2006) 

later study also underlines that in order to achieve sustainable transportation goals, 

holistic approach suggests institutional reforms, land use (built environment) changes, 

and economic incentives as opposed to individual technological (vehicle oriented) 

solutions of myopic perspective. The shared-idea in the minds of the society about how 

urban transportation should be (prevailing paradigm) played very important role on the 

development of today’s urban structures using vast amount of land and requiring 

excessive trip lengths to meet basic needs, employee commuting, etc. In addition to 

these macro level literatures, some of the survey based studies also presented 

overlaying results as they pointed out the abnormalities in the existing paradigm. 

Rajamani et al. (2003) stated that even non-commute type travels tend to be 

significantly sensitive to urban form. Their study concludes that high residential density 

favors walking and transit modes for non-work travels. Similarly, Zhang (2004) 

emphasized that travel time and monetary cost related influences on mode choice is 

independent from land use related influences. Besides urban infrastructure and 

demographic information, transportation mode choice is a matter of decision making by 

individuals and this decision is affected by psychological behavioral and emotional 
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models. Bamberg and Schmidt (2010) and Carrus et al. (2008) found similar results that 

previous behavior tends to influence later behavior for transportation mode choice 

since it is no longer a decision making but a habit of the person. The question is how are 

these actions become habits over the past decades of urban development in the U.S. 

There is a shared idea in the society’s mind about how urban structures and 

transportation should be, which can be realized by looking at historical trends in urban 

structures and minimal increase in public transportation ridership. Despite the increased 

federal funds and investments in public transportation, the shared-idea, unstated 

assumptions, perceptions push right up against the accepted idea of “urban structure”, 

which constitutes the society’s paradigm. At what degree these external factors 

(exogenous factors) are effective on the transportation mode choice is one of the critical 

questions to be answered in this dissertation. Overarching goal of the systematic 

approach taken in this research is to reveal the underlying mechanisms feeding the 

current paradigm of the society and provide a complete picture of the problem. 

The heavy dependence on privately-owned vehicles in today’s society has become a 

particularly important topic to federal and local government agencies, scholars, and 

research institutes over the last few decades, and research efforts on this topic are still 

active today (Curtis and Headicar 1997; McIntosh et al. 2014; Newman and Kenworthy 

2015; Oakil et al. 2014; Wickham and Lohan 1999). Real-world examples of alternative 

transportation mode incentives, congestion pricing policies, and other policy initiatives 
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have demonstrated remarkable decreases in drive mode trends in many different parts 

of the world (Singapore, London, Paris, etc.) (Kim et al. 2013; Poudenx 2008; Sabounchi 

et al. 2014). Although efforts to definitively shift transportation mode choice trends in 

the U.S. using these policies has proven to be more difficult than expected, the 

availability of more drive mode choices has been increasing in recent years (Santos et al. 

2011; US DOT 2016). As indicated in earlier literature studies, most of these research 

studies and policies indicate the same obstruction as the lack of “sustainable urban 

development” (Ewing and Cervero 2001; Poudenx 2008; Saunders et al. 2008), meaning 

that urban sustainability is the only possible marginal solution for a paradigm shift for 

the U.S. transportation sector (Banister 2008; Ercan et al. 2016c). Some of the authors 

of this study also proved this statement with respect to regions where public 

transportation mode shares are not increasing to the desired levels despite extensive 

government support for infrastructure investment and reductions in roadway network 

investments, but where a paradigm shift in urban development is still necessary for 

expanding public transportation networks and utilization rates (Ercan et al. 2016c; b).  

Neither sustainable urban development nor definitive paradigm shifts for urban 

development are easy goals to accomplish, primarily because it may take decades to 

reform the predominant “American” lifestyle in any given time period. Nevertheless, the 

U.S. transportation sector is experiencing a revolution thanks to the combined advances 

in three transportation-related innovations in this generation: electric vehicles (EV), 
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autonomous vehicles (AV), and ride-sharing options. The literature investigated of these 

new technologies and initiatives individually in detail, particularly with respect to their 

related effects on transportation-related environmental (i.e. air pollution emissions), 

economic, and social impacts; for instance, AV taxis have a great deal of potential to 

dramatically reduce the amount of overall light-duty vehicle (LDV) emissions in the U.S. 

(Greenblatt and Saxena 2015).  However, as Fulton et al.'s (2017) recent report suggests, 

these three options should also be analyzed together to gather their potential impacts, 

and Fulton et al.’s study also indicates that deep carbonization is possible for the world’s 

transportation-related emissions. Therefore, this study will include fuel economy 

improvement projections and autonomous vehicle additions to the transportation 

network as an additional policy scenario to be tested. 

1.2 Research Objectives 

In order to outreach the transportation related sustainability problems in the U.S. that 

are stated above; this research aims to integrate some of the powerful methods of 

transportation literature. Although numerous studies have looked at different aspects of 

sustainable transportation, no study has been found with a broader system perspective 

in which feedback relationships among climate change, the economy, travel time, and 

transportation mode choice shares are all simultaneously taken into consideration. 
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Discrete event choice methods estimate the impacts of key parameters that affect 

commuters’/society’s transportation mode choice with logit models where SD is capable 

of quantitatively defining the feedback mechanisms, potential delays, and multi-

dimensional causal relationships. Therefore, it is crucial to study these two powerful 

research “engines” for current problem.  

In this regard, this dissertation aims to present future projections to reduce CO2 

emissions by considering increasing the ridership rate of public transportation, as well as 

the complex feedback relationships among key elements of the system as a whole, such 

as climate change and the economy. A combination of SD studies for urban 

development and studies that present factors affecting public transportation ridership 

can be beneficial to extend the literature with realistic and applicable policies (business 

as usual (BAU), marginal scenarios) to reduce transportation-related CO2 emissions. 

Furthermore, the inclusion of various feedback relationships among the public 

transportation system, climate change, the economy, and the population can help to 

reveal the bigger picture and pave the way for future studies in this specific domain.  

As the system boundary expands and new interconnections are introduced, the 

resulting degree of uncertainty in any analysis of the system will dramatically increase, 

compromising a policy maker’s ability to develop more effective future transportation 

policies to increase adoption of public transportation. Therefore, deep uncertainty 
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ranges for key model parameters can be introduced, followed by multivariate sensitivity 

analysis. The sensitivity analysis is crucial for urban passenger transportation to present 

the most sensitive model parameters that is not responding to prevailing policy efforts. 

The DES method is a broad approach consisting of various methods used to study 

different behaviors with different types of discrete data sets, and has been the most 

widely used method for studying transportation mode choice problems. However, the 

DES method is limited with the given discrete data to estimate mode choice behavior. 

On the other hand, the SD method can model the system being studied in a macro-scale 

environment where endogenous (dynamic) and exogenous (deterministic) parameters 

work together to send and receive feedbacks among all relevant parts of the system. 

However, the SD method is limited to the use of macro-level data sets and may fail to 

capture case-by-case variations in certain parameters due to human-based behavioral 

changes (discrete), which are easy to model in DES. Therefore, a combination of the DES 

and SD methods as part of a hybrid simulation method would be ideal for simulating 

problems such as those associated with transportation mode choice, which consists of 

both individual human behaviors and macro-level system dynamics. The literature 

studied for this research includes studies on such hybrid modeling approaches, including 

applications in health care, operational research, and construction management 

problems (Alvanchi et al. 2011; Brailsford et al. 2010; Helal et al. 2007; Morecroft and 

Robinson 2005; Peña-Mora et al. 2008). However, to the author’s knowledge, few 
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literature studies thus far have applied any such hybrid simulation methodology to 

transportation problems (Mueller and Sgouris 2011; Struben and Sterman 2008). To do 

so, following tasks are defined and explained below for this dissertation.  

 Task 1: Developing a model with SD approach to simulate scenarios of CO2 

mitigation in the U.S. urban areas by adopting public transportation policies for future 

years. Based on the historical data and model validation processes, transportation 

behavior of the U.S. and transit transportation’s potential for CO2 emission mitigation 

forecasted for 2050 with several policy scenarios. (Chapter 3) 

 Task 2: Extending the developed SD model with social impacts consideration (i.e. 

air pollution externalities) and assigning uncertainty ranges for key model parameters to 

forecast mid-term and long-term sustainability impacts of urban passenger 

transportation (Chapter 4). 

 Task 3: Perform multivariate sensitivity analysis on developed SD model to 

present the effectiveness of prevailing public transportation policies and the root causes 

of inefficiencies. Besides, investigating the policy leverage points that influence drive 

mode, public transportation ridership, and urban passenger transportation related 

sustainability impacts (Chapter 4). 
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 Task 4: Estimate the transportation mode choices of metro/micropolitan area 

commuters from the American Community Survey dataset by utilizing multinomial 

fractional split model (Chapter 5). 

 Task 5: Developing a novel hybrid simulation model that integrates DES and SD 

methods for transportation mode choice estimation of the U.S. metro/micropolitan area 

commuters to test and compare prevailing policy practices with AV adoption scenarios 

(Chapter 6). 

1.3 Dissertation Organization 

This proposal is organized as follows: Chapter two, following this chapter summarizes 

literature on system dynamics model and discrete event simulation model 

methodologies. Chapter three provides SD model development steps and finally 

scenarios analyses for (e.g. increasing capital investment funds of public transportation 

system and hypothetical transit ridership increase) CO2 emissions mitigation results by 

switching private vehicle modes to public transportation in the U.S. Continuation of the 

model developed in chapter three, new policy practices of public transportation 

investment and fuel tax increase are developed as well as uncertainty and multivariate 

sensitivity analysis of overall system in Chapter four. Transportation mode choice of the 

metro/micropolitan area commuters and their demographic data is processed and 
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multinomial fractional split model is developed in Chapter five. Finally, Chapter six 

integrate the DES model in Chapter five with SD modeling approach for hybrid modeling 

and forecasting AV’s market penetration scenario impacts on mode choice and emission 

impacts. The overall findings and implications of policy practices, future of the U.S. 

urban transport, future study ideas, and study limitations are discussed in Chapter 

seven. Figure 2 summarizes the organization of the dissertation with a graphical 

illustration.  

 

Figure 2: Organization scheme of dissertation 
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CHAPTER TWO: BACKGROUND INFORMATION ON URBAN 
SUSTAINABILITY SIMULATION MODELS 

The possibility of increasing public transportation ridership for more environmental 

friendly cities has been investigated with various methods. Taylor and Fink (2003) stated 

the most of the factors that affect ridership are beyond the control of transit agencies, 

while factors under the control of such agencies (on-time performance, ride fare, etc.) 

have an insignificant effect on ridership rates. Vincent and Jerram (2006) studied the 

potential of Bus Rapid Transit (BRT) to reduce CO2 emissions with the energy intensity of 

transportation modes as a functional unit. Paulley et al. (2006) investigated four factors 

(fare, quality of service, income, and car ownership) that could affect public 

transportation ridership demand, and found income and quality of service to be crucial 

contributing factors to public transportation ridership rates. A report submitted to the 

American Bus Association (M.J. Bradley & Associates LLC 2008) provided information on 

the energy intensity and CO2 emissions of different transportation modes, which could 

be used to show the potential of public transportation as a sustainable transportation 

alternative. Taylor et al. (2009) outlined the external factors that affect ridership rates 

(regional geography, metropolitan economy, population characteristics, and 

auto/highway characteristics) as well internal factors (fare, service frequency, etc.), the 

latter of which were found to significantly increase public transportation ridership. A 

multi-criteria decision making method is applied to a similar focus to that of this study, 
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investigating mode choice behaviors in switching from private vehicle usage to transit 

transportation (Jain et al. 2014). Lastly, Song et al. (2015) studied the environmental 

efficiency performance of high-speed rail transportation in China and indicated 

significant environmental efficiency results for rail transportation with regional 

differences. 

2.1 System Dynamics Method for Transportation Mode Choice 

System Dynamics (SD) was introduced to the research community by Jay Forrester in 

1969 and since then it has been utilized in various research areas such as policymaking, 

sustainable development, healthcare management, etc. (Egilmez and Tatari 2012; Fong 

et al. 2009; Forrester 1969; Haghani et al. 2002; Han and Hayashi 2008; Laurenti et al. 

2014; Onat et al. 2014a; Shen et al. 2009). Moreover, predicting or simulating the 

behavior of society as a whole in terms of transportation mode choice requires robust 

analysis, which may connect many different factors influencing such decision via 

complex relationships and feedback mechanisms (Struben and Sterman 2008). SD 

method is capable of doing such robust analysis and it has been utilized for some 

transportation mode choice models and these models provide a crucial perspective for 

selecting regional study boundaries (Fong et al. 2009; Han and Hayashi 2008; Shen et al. 

2009; Wang et al. 2008). SD modeling approach fit to the concept of investigating such 
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complex issues since it provides describing ability of feedback mechanisms, delays in 

system algorithm, and quantitative causal relations between attributes (Onat et al. 

2014a). Quantitatively defining causal loops and feedback mechanism between 

variables also allow performing scenarios analysis on such complex models. Laurenti et 

al. (2014) also highlighted the importance of this modeling approach for scenario 

analysis. Due to SD approach’s capability of controlling such complex issues, policy 

studies involving urban development and transportation related land use have utilized 

the SD approach for various scenario analyses in literature. As Abbas and Bell (1994) 

stated, the relation between environment impacts assessment and transportation 

system can be studied with SD modeling approach. SD modeling approach is utilized for 

transportation systems research in such areas of alternative fuel vehicles, supply chain 

management, infrastructure construction and maintenance, urban, regional or national 

scale policy making, air transportation, safety since 1994 (Shepherd 2014).  

Increasing the share of transportation modes other than drive alone option is one of the 

major areas of focus in most urban development studies. Available literature on the 

subject includes a study by Haghani et al. (2002), who developed a holistic system 

dynamics model to analyze the relationship between transportation and land use.  In a 

similar manner, Wang et al. (2008) concluded that sustainable urban development is 

possible if private vehicle ownership is restricted and the use of public transportation is 

encouraged. Han and Hayashi (2008) used a system dynamics approach to study the CO2 
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mitigation potential of public transportation for inter-city travel in China while 

considering all possible scenarios. Fong et al.'s (2009) study implemented a 50% public 

transportation share for all transportation modes as a possible scenario, and their 

simulation results indicated that such a scenario could provide significant CO2 mitigation 

compared to other aggressive policies tested in the study. Shen et al. (2009) 

recommended expanding rail transport for even compact city developments. Lastly, 

recent studies extended the literature by considering the whole U.S. transportation 

mode choice behavior, transportation emissions impacts, and sensitivity analysis of the 

system (Ercan et al. 2016c; b). 

2.2 Discrete Event Choice Model Applications for Transportation Mode Choice 

There are numerous transportation mode choice studies that utilized discrete event 

models which can include detailed behavior of certain modes (i.e. cycling in a small 

community) or consider all mode choices in regional scales. This section only discusses 

some of the recent literature that includes multiple mode choices as follows. Whalen et 

al. (2013) investigated the decision-making mechanism of Canadian university 

commuters and the results indicated interesting findings that affects decision such as 

psychological decision (i.e. joy of cycling, etc.), travel time, built environment (street, 

sidewalks, etc.). Schneider (2013) conducted a research to understand how to switch 
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the routine of commuters’ from driving to alternative modes by identifying the five key 

steps of leading a routine such as; awareness & availability, basic safety & security, 

convenience & cost, enjoyment, and habits. Chakrabarti's (2017) recent study also 

investigates how to improve transit ridership by shifting drive mode user in Los Angeles 

area. Sun et al. (2015) advanced the literature by using Copula-based method and their 

study indicated that built environment (residential and work-place density) has 

significant correlation with mode choice behavior. Similarly, Ding et al. (2017) also found 

that built environment should be designed for reducing drive modes, since the results 

indicate higher population and employment density areas are more likely to use 

alternative modes.   

2.3 Hybrid Simulation Modeling of Discrete Event and System Dynamics 

The method of this dissertation combines two widely utilized simulation and forecasting 

tools for transportation system problems. The use of the DES method allows the 

researchers to present “sample paths” of the desired discrete behavioral data for its 

behavior (Fishman 2013); Brailsford and Hilton (2001) describes the DES method as a 

stochastic approach that allocates distinct entities, scheduled activities, queues, and 

decision rules within a relatively narrow context. On the other hand, the SD method can 

cover a broader context and allocate external “outside world” interactions with the 



19 

 

system being analyzed over longer periods of time (Brailsford and Hilton 2001). 

Consequently, Brailsford et al. (2010) has referred to the combined use of these two 

powerful methods as part of a hybrid modeling approach as a “holy grail” of simulation 

modeling. 

SD and DES models are compared in Mak's (1992) dissertation and initialized an effort to 

develop a prototype computer based simulation. Sweetser (1999) also compared these 

two models and states that SD method fit well with continues events and feedbacks 

influence the behavior with dynamic changes. In contrast, Sweetser’s (1999) study 

defines DES approach a better method for providing more detail analysis of linear 

algorithms, which includes discrete changes in system. Therefore, the study concludes 

that both methods has large area of overlapping concept and could have much more 

potential together. Similarly, Morecroft and Robinson (2005) compared both methods 

with a case study of fishery design. Their result comparison of both methods indicates 

that these methods are not opponents but could be complementary. Tako and Robinson 

(2010) also compared two models by simulating the same problem with 10 modeling 

experts (5 of each). Their study implied the difference between modelers use for the 

way of approaching the problem, however, the results of simulations did not present 

significant differences. Finally, as it mentioned above sections, Brailsford et al. (2010) 

compared both models for health care management system and named their 

integration as “holy grail” for their great potential.  
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In addition to the comparison studies, hybrid simulation method framework is 

successfully integrated for manufacturing enterprise system (Helal et al. 2007). Another 

industry that deals with great amount of discrete and continuous events, construction 

management also benefited from this hybrid approach (Peña-Mora et al. 2008). Another 

example of hybrid model for construction management provided a framework to 

simulate real-world situation of mega construction projects for time and money 

constraints (Alvanchi et al. 2011). Borshchev and Filippov (2004) took a step forward in 

literature for hybrid simulation and introduced the combination of DES, SD, and Agent-

based (AB) models. Similarly, Shafiei et al. (2013) combined SD and AB approaches for 

urban transportation problem simulation.  

In the light of the findings and methods available from these literature, this dissertation 

chooses to use of the DES and SD modeling approaches to surpass the limitations of the 

modeling efforts in Section 3 and 4, which only use SD modeling for transportation 

mode choice problems, thereby limiting previous studies to only two mode choices 

being taken into account while also being unable to sufficiently account for the effects 

of behavioral changes on commuters’ mode choice decision. Section 4 concludes that 

sustainable mobility is extremely sensitive to trip generation parameters, which also 

explains why current policy efforts have so far been unsuccessful in reaching sustainable 

mobility goals. It must therefore be noted that transportation-related impacts cannot be 

addressed with only subsidized or myopic policies, but should instead be addressed 
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using policies that would actively involve all stakeholders in the transportation sectors. 

Similarly, Banister (2008) highlights the importance of stakeholder involvement at all 

possible levels in order to achieve the desired sustainability mobility goals. Banister’s 

research is an important overlaying literature for this study, since it reinforces the 

dissertation’s point as to the necessity of SD modeling, which can integrate the impacts 

and feedbacks of these stakeholders and other possible contributors into a macro-level 

simulation of the transportation sector as it applies to this problem. In other words, the 

stakeholders of this network complete the system loop by providing feedback with 

respect to discrete events corresponding to mode choice behavior.  

Although transportation system modeling requires an interconnected macro-level 

design, the key component of the modeled system for purposes of this dissertation is 

travel mode choice, which is a personal behavior that can vary widely due to a variety of 

factors. A qualitative survey approach has provided valuable insight with respect to 

commuters’ driving/transit choices, which can be affected by level of service, comfort, 

availability, and other related factors, but is still mainly a person’s choice (Beirão and 

Sarsfield Cabral 2007). This finding is also in agreement with Innocenti et al.'s (2013) 

study, which likewise found that mode choice is not always a rational behavior but can 

still be affected by psychological (mental) models that may cause heuristic and biased 

decisions. Therefore, it is also crucial to include discrete event modeling estimations in 

this research with respect to mode choice behaviors. 
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CHAPTER THREE: A SYSTEM DYNAMICS MODEL TO INVESTIGATE 
CARBON FOOTPRINT REDUCTION POTENTIAL OF PUBLIC 

TRANSPORTATION 

A partial work of this chapter has been published in the Journal of Cleaner Production 

with the title of “Investigating carbon footprint reduction potential of public 

transportation in United States: A system dynamics approach” (Ercan et al. 2016b). 

3.1 Model Development 

3.1.1 Problem Identification 

Based on Taylor et al.'s (2009) defined factors that affect public transportation ridership 

(please see Section 2 for these factors), increasing ridership is expected to decrease 

private vehicle use, but using private vehicles generates tax revenues for the 

government from fuel purchases, vehicle registration fees, and driver’s license fees. 

Moreover, the government needs funds in addition to public transportation fare 

revenues to sustain public transportation infrastructure, meaning that private vehicle 

ridership cannot rapidly decrease, or such a decrease will result in a collapse of the 

transportation mode system as a whole unless the government found another way to 

afford operation expenses of the transportation sector.  
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The relationship between the transportation modes and the total CO2 emissions could 

be linked with the energy intensity of each mode, which is represented by the energy 

consumption required for each vehicle to move passengers a distance of one mile. The 

majority of current public transportation vehicles have large engines and body sizes, and 

so more energy is required to move these vehicles than that required to move private 

(i.e. light-duty) vehicles the same distance. However, the vehicle occupancy rate 

regulates energy intensity by dividing the total energy consumption by the number of 

passengers. Figure 3 illustrates transit bus occupancy and the energy intensity of light-

duty vehicles and transit buses in the U.S. from 1990 to 2012 (U.S. Bureau of 

Transportation Statistics 2015). Until 2009, the energy intensity of transit buses was 

higher than that of passenger vehicles, which could be due to two main factors. First, 

the vehicle occupancy and PMT of transit buses was too low before then, making transit 

buses a non-efficient transportation mode option in term of energy consumption. 

Second, fuel economy technologies have been developed since 1990, after which even 

heavy-duty vehicles could be operated with less energy (fuel) required for the same 

travel demand. In addition, transit bus authorities have been adopting alternative fuel 

options for their fleet, whereas the per-gallon energy equivalents of alternative fuel 

options are less than those of gasoline or diesel. It is also especially crucial to highlight 

the relationship between transit bus occupancy and energy intensity, as the gap 

between energy intensities of different transportation modes becomes greater as 
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transit bus occupancy decreases. As the Figure 3 indicated, the increase on transit bus 

ridership after 2008 resulted in more efficient points for energy intensity of transit 

buses.  

 

Figure 3: Energy intensity (EI) of light duty vehicles (passenger vehicles) and transit motor 
buses per passenger-mile, and average transit motor bus occupancy, from 1990 to 2012 

The American Public Transportation Association (APTA) announced that public 

transportation ridership has reached its highest value in the last 57 years (American 

Public Transportation Association 2014). However, while public transportation ridership 

increased in 2008 following rapid increases in fuel prices, this ridership increase was not 

as much as that of last year. The reason behind that the U.S. employment rate is still 

recovering from its decline 2008, whereas the total number of workers has increased 

with respect to population growth, and the resulting growth in the workforce would 

lead to a possible increase in public transportation ridership. Figure 4 depicts the 
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relationship between the number of employees, the total public transit ridership, and 

gasoline prices from 1990 to 2013. In this figure, the workforce exhibited a nearly 

constant linear increase over the course of 23 years. A slight decrease in the workforce 

can be seen from 2008 to 2009, corresponding to the 2008 U.S. economic crisis. 

However, the total public transportation ridership has an increasing trend, albeit closely 

related to gasoline prices. Figure 4, which will be used as the reference mode of this 

chapter, clearly indicates that any extraordinary changes in gasoline prices can likewise 

cause public transportation ridership to fluctuate. As explained in the previous sections, 

public transportation ridership has the potential to decrease private vehicle usage and 

CO2 emissions, and so any important factor that could increase public transit ridership 

will be taken into consideration so as to yield a realistic simulation model (American 

Public Transportation Association Public Transportation Statistics 2015; U.S. Department 

of Labor Bureau of Labor Statistics 2015). 
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Figure 4: Reference Mode - Labor force statistics (in thousands), total ridership (in tens of 
thousands), and gasoline price ($) in the U.S. 

 

3.1.2 Identification of Parameters 

Parameters that could affect public transportation ridership are summarized in Table 1, 

along with their descriptions, types, and units.  These parameters can be classified as 

either ‘endogenous’ or ‘exogenous’; parameters expected to be affected by internal 

factors and/or other parameters within the defined system are classified as 

‘endogenous’, while parameters affected only by external factors beyond the scope of 

the system as defined in this study are classified as ‘exogenous’. 
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Table 1: Descriptions and units of first SD model parameters 
Parameter Description Type Unit 

Private Vehicle Ridership Percentage of person trip with private vehicle in 

transportation modes 

Endogenous Percentage 

Public Transportation Ridership Percentage of person trip with public 

transportation in transportation modes 

Endogenous Percentage 

Traffic Congestion Extra time that could be spent on traffic by 

commuters due to traffic congestion 

Endogenous - (Index) 

CO2 emissions Vehicle use related annual CO2 emissions Endogenous Ton 

Tax Revenue Tax related government revenue Endogenous Million $ 

Public transportation investments Infrastructure or fleet investments Endogenous Million $ 

Public transportation travel time 

reliability and accessibility 

Reliability of travel time and accessibility rate of 

public transportation  

Endogenous - (Index) 

Public transportation revenue Public transportation agency’s revenue Endogenous Million $ 

Annual number of person trips  Population increases annual number of person 

trips 

Endogenous Person trips 

Health effects of climate change Human health impacts of GHG emissions in a given 

disability-adjusted life year (DALY) 

Endogenous - 

Economic damage of climate 

change 

Climate change impacts on the growth rate of the 

U.S. GDP 

Endogenous - 

Labor force population The employed U.S. population Exogenous Person 

Alternative fuel adoption for 

public transportation vehicles 

Percentage of public transportation vehicles that 

operates with alternative fuel source 

Exogenous Percentage  

 

3.1.3 System Conceptualization 

Based on the information and parameter definitions previously discussed, a causal loop 

diagram (CLD) is developed. Figure 5 presents the developed CLD with the 

corresponding relationships of each parameter. There are five loops that could be 

detected in the CLD, which are presented in Table 2 as follows. 
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Table 2: Feedback loop relations of causal-loop diagram 

Feedback Loops Relations 

  Public Transportation Revenues  

    Reinforcing Loop 1 (R1) –  

    Revenue 

Public Transportation Ridership → + Public 

Transportation Revenue → + Public Transportation 

Investments → (Delay)+ Public Transportation 

Travel Time Reliability/Accessibility → + Public 
Transportation Ridership 

    Balancing Loop 2 (B2) –  

    Fuel Tax 

Private Vehicle Trips → + Tax Revenue → + Public 

Transportation Investments → (Delay)+ Public 
Transportation Travel Time Reliability/Accessibility 

→ + Public Transportation Ridership → - Private 
Vehicle Trips 

  Traffic Congestion Effects  

    Balancing Loop 1 (B1) –  

    Congestion 

Private Vehicle Trips → + Traffic Congestion → + 

Public Transportation Ridership → - Private Vehicle 
Trips 

  Environmental and Economic 
Impacts 

 

    Reinforcing Loop 2 (R2) –  

    Transit Emissions 

Annual Number of Person Trips → + Private Vehicle 

Trips → + Tax Revenue → + Public Transportation 

Investment → + Public Transportation Travel Time 

Reliability/Accessibility → + Public Transportation 

Ridership → - CO2 Emissions → + Economic 

Damage of Climate Change → - Labor Force 

Population → + Annual Number of Person Trips 

    Reinforcing Loop 3 (R3) –  

    Transportation Emissions 

[Reinforcing Loop-3] Annual Number of Person 

Trips → + Public Transportation Ridership → - 

Private Vehicle Trips → + CO2 Emissions → + Health 

Effects of Climate Change → - Labor Force 

Population → + Annual Number of Person Trips 
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Figure 5: Causal-loop diagram for first SD model (impacts of transportation modes on CO2 
mitigation 

3.2. Model Formulation 

Based on the CLD presented and explained above, the model designed for this section 

must be formulated and developed iteratively. The stock and flow diagram of the model 

is presented in the following five subsections, as the model’s stock and flow diagram is 

too large to show in one figure and had to be broken down into multiple sub-models. 

The following stock and flow figures illustrate the visual expression of model 
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relationships as developed using the software VENSIM (please see Appendix Table for 

the meanings of each symbols on stock-flow diagrams). The highlighted variables 

(‘public transportation ridership’, ‘fuel consumption of private vehicles and transit 

transportation’, etc.) are the crucial variables used in this study to validate the model. 

3.2.1 Population Sub-Model 

The total population is the origin point for this model to start from, since people could 

use various transportation modes to make trips as needed. Figure 6 depicts the 

developed population sub-model with which to recreate the historical behaviors and 

values of the population in past years and also to project expected population values in 

future years. This system’s central focus is on the population of the labor force, which 

could be represented by the number of people between the ages of 15 and 65. It is 

assumed that the people within this age group generate the majority of trips, since 

people could start driving after the age of 16 and employed people typically make at 

least a two-way trip from home to work and back again. However, the labor force 

population could in turn be affected by various factors, including the Gross Domestic 

Product (GDP) of the U.S. economy, life expectancy, birth and mortality rates, and 

(indirectly) net migration rates. In addition, life expectancy determines the mortality 

rates at different age groups, which is also affected by the Disability-Adjusted Life Year 
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(DALY) due to CO2 emissions. This model is adopted from the WORLD3 model (Bossel 

2007; Meadows et al. 2004), and has been modified for the U.S. 

 

Figure 6: Population sub-model stock and flow diagram 

3.2.2. Trip Generation and Public Transportation Ridership Sub-Model 

The labor force population and the average trip rate of urban commuters could be used 

to generate the average daily number of trips made in the U.S. According to Santos et 

al.’s (2011) study, each person generates almost 4 trips per day. Therefore, it could be 

stated that the product of the labor force population, the per-person trip rate, and the 

number of workdays per year could be closely equal to the actual number of trips made 
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in the U.S. per year. Beyond that, how a person chooses to make his or her trip 

considering all available transportation modes is a matter of preference. Some 

transportation modes (walking, bicycling, etc.) have been excluded from the model of 

this section for simplification purposes. Unfortunately, private vehicle usage per person 

per trip has dominated total ridership in the past with a ridership share of 90%; for the 

22-year period covered in this study, this share has been decreased by almost 1%. The 

relative dominance of private vehicle usage and the ridership share of 3.5% for public 

transportation are then used to calculate the average number of trips completed with 

each transportation mode, which in turn provides the necessary information to 

determine the PMT and VMT by each transportation mode. Multiplying the average trip 

length of each transportation mode in this model by the number of trips yields the 

corresponding VMT for each mode. It is important to note that public transportation 

ridership is equal to the number of trips by the public transit mode specifically. As 

described in the above sections, transit ridership is the key variable for implementing 

policies in this model. 

As can be seen in Figure 7, “Public transportation ridership” could increase linearly with 

any increase in the number of trips or in the labor force population. However, the mode 

choice share (percentage) for public transportation and private vehicle usage would 

remain constant. The annual revenue of the public transportation system could 

reinforce itself to extend its service, but it would not be enough to switch a given 
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commuter’s transportation mode from private vehicle to transit on a marginal basis. 

Therefore, ridership could be increased significantly by introducing new marginal policy 

scenarios into the system; these policies are explained in further detail in following 

sections for policy development.  

 

Figure 7: Trip generation and public transportation ridership sub-model stock and flow 
diagram 

3.2.3 Private Vehicle Use and Traffic Congestion Sub-Model 

The trip generation sub-model leads the system to generate private vehicle trips. The 

public transportation mode choice percentage regulates the percent share of private 

vehicle usage as a mode of transportation. In other words, the percent usage of private 

vehicles subtracts from the corresponding percent usage of public transportation from 

1, with adjustments from the total set made as necessary for walking, cycling, etc. 
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Private vehicle usage is also regulated by traffic congestion, since people tend to switch 

from driving to using public transportation at some level of traffic congestion. Figure 8 

depicts the relationships between these parameters. Traffic congestion impacts on 

people’s mode choice provide a balancing factor to the system, since private vehicle 

VMT cannot increase linearly with respect to population growth because lane-mile 

growth is limited. Light-duty vehicle (LDV) fuel economy values are assumed to 

represent the fuel economy values of private vehicles in the U.S., which could determine 

the annual fuel consumption of private vehicles in the following sub-model.  

 

Figure 8: Private vehicle use and traffic congestion sub-model stock and flow diagram 

3.2.4 Energy Consumption of Public Transportation Modes Sub-Model 

The main energy consumers of the public transportation system are defined in this 

model as buses, heavy-and-light railways, commuter railways, and demand response. It 

is more complicated to determine the fuel consumption of transit modes, since available 
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fuel types for public transit vehicles can include electricity, diesel, natural gas, and other 

fuel sources, compared to private vehicles, most of which are powered by gasoline 

powered. It is also important to note that each of these energy sources is used in 

different portions, and that the emission impacts of each source are likewise 

significantly varied. In order to overcome this variety issue, the energy equivalence of 

each fuel sources’ consumption rates are gathered from historical data for public 

transportation operation (U.S. Bureau of Transportation Statistics 2015). This 

consumption per gallon of fuel or per kWh of electricity is then multiplied by the 

appropriate energy equivalence factor for each fuel source and by EPA’s corresponding 

conversion factor in order to determine CO2 emissions; applicable rates and reference 

information are given in Table 3 below. Therefore, Figure 9 is used to present and 

generate the overall fuel consumption and CO2 emissions of different energy sources. 
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Figure 9: Public transportation related energy consumption sub-model stock and flow 
diagram 

3.2.5 Transportation-related CO2 Emissions and Climate Change Impacts on Economy 

Sub-Model 

Private vehicle VMT values and average fuel economy values of Light Duty Vehicles 

(LDV) are used to determine the annual fuel consumption of private vehicles as 

previously explained in Section 3.2.3 the annual fuel consumption of private vehicles can 

be converted into CO2 emissions values based on EPA’s average gasoline consumption 

CO2 emission conversion rate; this rate and other relevant information is provided in 

Table 3. Public transportation related CO2 emissions are the other component of the 
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total transportation-related CO2 emissions, and is calculated based on each fuel type’s 

CO2 emission rates, which are explained in further detail in Section 3.2.4. Therefore, the 

sum of the respective CO2 emissions from private vehicles and from public 

transportation modes can be used to find the total value of “the U.S. transportation 

related CO2 emissions”. The relationship between these values is shown in Figure 10.  

Transportation-related CO2 emissions are one of the main contributors to global CO2 

emissions, but to fully capture the impacts of climate change on economic and health 

indicators, the total global CO2 emission rate should also be considered. For this 

purpose, The World Bank’s World Development Indicators database is used in this 

model to gather data for total global CO2 emissions (The World Bank 2014).   

After the annual rate of total CO2 emissions is calculated, their economic impact on the 

U.S. GDP is calculated using a modified version of the DICE model (Nordhaus 2006). The 

economic damages from climate change include dislocations resulting from higher sea 

levels, losses in agricultural productivity, and the dollar-equivalent costs of increases in 

mortality, morbidity, and social disruption (Pindyck 2011). In current literature, most 

studies quantify the economic damage of climate change as a direct impact on GDP and 

consumption. However, these approaches fail to capture the permanent or long-term 

impacts of climate change. Similarly, the DICE model also assumes that increases in 

global temperature will affect GDP. On the other hand, Pindyck (2011) claims that global 

warming can have a permanent effect on future GDP values, and that the effects of 
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climate change should therefore be modeled in such a way that climate change impacts 

in future years can also be taken into consideration. In the climate change model 

presented in this paper, the DICE model has been modified so that the impacts of 

increasing temperatures affect the GDP growth rate in accordance with Pindyck’s 

equations. This modified climate change model was first applied in (Onat et al. 2016c).  

 

Figure 10: Overall transportation related CO2 emissions and emissions-related climate 
change impacts sub-model stock and flow diagram 
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Some of the parameters seen and explained in the above-mentioned sub-models can be 

found in Table 3, with their values, units, types, and relevant reference information 

included as applicable. The model consists of parameters found in currently available 

literature and from the reports of government agencies. Most of the parameters is to 

model transportation behavior are gathered from the website of the U.S. Department of 

Transportation Research and Innovative Technology Administration Bureau of 

Transportation Statistics (2015). In addition, corresponding factors are used to convert 

fuel consumption values to energy equivalent values and CO2 emissions. Since some 

parameters have been changed over the study period, these parameters are defined as 

‘auxiliary’ variables in the model. 
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Table 3: Model parameters with unit and references 

Parameter Value Type Unit Reference 

Private Vehicle Occupancy 1.62 – 1.39 Auxiliary person 

U.S. Department of 

Transportation 

Research and 

Innovative Technology 

Administration Bureau 

of Transportation 

Statistics (2015) 

Fuel Economy of Private Vehicles 20.3 – 23.3 Auxiliary mpg 

Public Transportation Preference  3.5 Constant percentage 

Private Vehicle Preference 90 Constant percentage 

Average transit unlinked fare 0.67 – 1.33 Auxiliary $/trip 

Diesel Share of Energy Consumption (EC) 82 – 62 Auxiliary percentage 

Electricity Share of EC 16.2 – 14 Constant percentage 

Natural Gas (NG) Share of EC 13.5 – 0 Auxiliary percentage 

Gasoline and Others Share of EC 9 – 2 Auxiliary percentage 

Average trip length 8.2 - 8.67 Auxiliary mile Santos, et al. (2011) 

Average trip rate 3.76 – 4.30 Auxiliary trip/day 

Average transit trip length 5.4 Constant mile 

Per gallon tax rate 0.54 Constant $/gallon 

(U.S. Energy 

Information 

Administration 2015a) 

Per PMT expense to transit authority 0.6 Constant $/PMT 

American Public 

Transportation 

Association (2014) 

(Energy eq. and CO2 emission conversion factors) 

Electricity - Energy eq. factor 3,412 Constant BTU/kWh 
U.S. Energy 

Information 

Administration (2015) 

Gasoline - Energy eq. factor 125,000 Constant BTU/gallon 

Diesel - Energy eq. factor 138,700 Constant BTU/gallon 

Natural Gas (NG) - Energy eq. factor 22,500 Constant BTU/gallon 

CO2 eq. - Electricity/kWh factor 6.89E-04 Constant t CO2 eq./kWh 
(U.S. Environmental 

Protection Agency 

2014a) 

CO2 eq. - Gasoline/gallon factor 6.66E-03 Constant t CO2 eq./gallon 

CO2 eq. - Diesel/gallon factor 1.02E-02 Constant t CO2 eq./gallon 

CO2 eq. - NG/gallon factor 8.89E-03 Constant t CO2 eq./gallon 
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3.3 Model Validation 

The overall development of this model is not complete without first presenting the 

model’s validation results, which must prove that the model is adequate for policy 

implementation and testing. In other words, the model should be valid and correct with 

respect to applicable literature and historical data before it can be used for forecasting.  

With the development of system dynamics in literature, model validation has since 

become the topic of several important articles. Barlas (1996) highlighted and defined 

the model validation process, and his work has been cited in most system dynamics 

articles today. Qudrat-Ullah and Seong (2010) summarized the validation methods in 

light of the work of Barlas (1996). Moreover, this paper will follow the validation steps 

described by Qudrat-Ullah and Seong (2010). 

3.3.1 Structural Validation 

The first step consists of five specific structural validation (or verification) tests; 

boundary adequacy, structure verification, dimensional consistency, parameter 

verification, and extreme conditions. Structural validation tests whether or not the 

model is an adequate representation of the real-life situation(s) being modeled, and 

therefore refers to the point where the model is first developed with the causal-loop 

diagram. Since this dissertation has provided some references with different 
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perspectives regarding transportation mode problems, it can be safely stated that this 

model includes all of the necessary variables that affect the modeled system in reality. 

Furthermore, as a part of structural validation, providing references for the model 

boundary and variables affirms that this model meets the requirements of the 

“boundary adequacy” test.  

The causal-loop diagram of the model shows that this model consists of feedback loops 

that affect the reference mode. Moreover, the developed stock and flow diagram as a 

whole was developed with variable relations and formulations that run on VENSIM 

without any errors.  Thus, this model passes the “structural verification” test as well.   

After adding all formulas and relations between variables of the model, it is also crucial 

to include their dimensions. Defining the exogenous variables’ dimensions allows 

system thinkers to generate the endogenous variables’ dimensions in order to check the 

real-life dimensions of these same endogenous variables. Table 3, as previously 

explained, defines the dimensions of the model and confirms that the model passes 

“dimensional consistency” validation test. The parameters of the model defined in Table 

3 are gathered from reliable references, meaning that the “parameter verification” test 

is satisfied. Finally, some of the historically defined parameters used in the model 

include extreme conditions such as rapid increases or decreases for some years, such as 

2008’s economic crisis in the U.S. and its subsequent impacts on transportation modes. 
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However, neither parameters nor endogenous variables reflected any “extreme 

conditions” with such negative or zero data points.  

3.3.2 Behavioral Validation 

The structural validation process ensures that the model is developed correctly and is 

working properly, but does not determine whether or not the model exhibits the same 

behavior as the real-world historical data of the reference mode. Although behavioral 

validation could be simply presented with graphs, it should also be scientifically 

supported with statistical analyses. Figure 11 presents the “behavioral reproduction” 

test results with respect to public transportation ridership, and it is clear from the figure 

that the simulation behavior of the model is fairly similar to the historical behavior of 

the real-life data. The actual data for transit transportation ridership was gathered from 

the U.S. Department of Transportation Research and Innovative Technology 

Administration Bureau of Transportation Statistics (2015). The statistical relationship 

between the public transportation ridership data for the model simulation and for the 

reference mode is explained below.  



44 

 

 

Figure 11: Behavioral Reproduction of Public Transportation Ridership 

Fuel consumption is one the key components of the model, since it generates the 

energy consumption and CO2 emissions previously discussed with respect to the 

modeled system. Therefore, Figure 12 depicts the behavioral reproduction test results 

for the annual fuel consumption of LDVs. The historical fuel consumption data from 

1990 to 2012 was also gathered from the U.S. Department of Transportation Research 

and Innovative Technology Administration Bureau of Transportation Statistics (2015). 

Figure 12 indicates a significantly close relationship between the historical data and the 

simulation results.  
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Figure 12: Behavioral Reproduction of Light Duty Vehicle Annual Fuel Consumption 

As a major environmental emission contributor, VMT values related to private vehicle 

usage are critical to calculating valid overall CO2 emissions. Therefore, Figure 13 

presents the VMT values pertaining to private vehicles and compares the actual 

historical data and simulation results associated therewith. The figure depicts that the 

system dynamics model accurately captures the behavior of the real life VMT data over 

the study period. As with the other reference modes, the actual data for private vehicle 

VMT is gathered from the U.S. Department of Transportation Research and Innovative 

Technology Administration Bureau of Transportation Statistics (2015).  
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Figure 13: Private Vehicle’s Vehicle-Miles-Traveled (VMT) Behavioral Reproduction 
Results 

Finally, Figure 14 indicates a close behavioral relationship between the actual data and 

simulation results for annual transportation-related CO2 emissions. The actual data 

values of annual CO2 emissions from transportation activities are higher than the 

corresponding simulation results, but this is acceptable because the fluctuations of the 

historical data are sufficiently captured. As with all reference modes, the U.S. 

Department of Transportation Research and Innovative Technology Administration 

Bureau of Transportation Statistics (2015) database was used to access historical 

transportation related CO2 emissions data. 
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Figure 14: Behavioral Reproduction of transportation Related CO2 Emissions  

For a proper behavioral validation, the reference modes’ behavioral reproduction tests 

should be supported with a thorough statistical analysis in order to prove that the 

model’s behavior is statistically correct. There are many ways to statistically validate the 

significance of any differences between two datasets. Qudrat-Ullah and Seong (2010), 

for example, used the Mean Square Error (MSE) and Root Mean Square Error 

Percentage (RMSEP) methodologies to validate their simulation results. In another 

example, Egilmez and Tatari (2012) used normality tests and the one-way ANOVA test 

for behavioral validation. This study also used the one-way ANOVA test to validate the 

simulated behavior of transit transportation ridership values, and the results are 

presented in Table 4. In accordance with the model’s hypothesis, the significance level is 

almost zero for all of the selected key variables of the model, so the simulated data can 

therefore be deemed behaviorally accurate with respect to the corresponding reference 
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mode data. Likewise, the corresponding F values for each variable are substantially less 

than their respective mean square values.  

Table 4: One-way ANOVA test results for validation of key parameters 
  Significance 

Level 
F df Mean Square 

Between Groups Within Groups 

VMT 0.007 33.03 19 3 4.92E+22 

Fuel Consumption 0.001 0 22 0 3.98E+19 

Ridership 0.001 0 22 0 5.03E+17 

CO2 0.001 0 22 0 3.09E+15 

Labor Force Population 0.001 0 22 0 3.04E+14 

 

3.4 Policy Analysis 

For the main objective of this section, the validated model is now used to forecast the 

potential of public transportation to mitigate transportation-related CO2 emissions. 

There are several ways to implement policies into the model, but some of said policies 

could become irrelevant to the model or might make it impossible to define the 

applicable relationships between model variables. Therefore, this research considers 

some of the possible policies that could change the previously observed trends in the 

reference mode and especially in annual CO2 emissions.  

A report by the U.S. Federal Highway Administration and U.S. Federal Transit 

Administration (2014) proposed several investment scenarios that could increase public 
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transit ridership annually, with the FHWA’s report adopted for policy development with 

respect to public transportation. In order to increase public transportation usage, 

factors related to funding should be integrated to the model. Reinforcing Loops 1, 2, and 

Balancing Loop 2 from Figure 5 (causal loop diagram) highlight the funding-related 

variables and possible policy implementations for public transportation. These 

additional policy-related variables generate funds to the system in two ways such as; 

the public transportation system itself generates fare collection revenue and federal 

and/or state funds are implemented for system extensions. 

However, the operational expenses associated with public transit will inevitably require 

some amount of deductions from one or both of these revenues. Nevertheless, the net 

revenue can then be used for public transportation system extensions. The FHWA’s 

report states that public transportation agencies already invest in system developments 

in order to meet future ridership demand, but this investment cannot help to increase 

the accessibility or reliability of public transportation to more effectively persuade 

society to switch from private vehicles to public transit (U.S. Federal Highway 

Administration and U.S. Federal Transit Administration 2014). Table 5 presents the 

required annual investment values and their relative annual ridership growth rates. 

Expanding the transit transportation-related policy approach could provide feedback 

from the model, since it reduces private vehicle trips and increases fare-related 



50 

 

revenues, which could provide more funding for investments as needed. The impacts of 

these investment policies on public transportation ridership are discussed in Section 3.5.  

Table 5: Public Transportation Investment Scenarios 

Scenario Annual Investment Annual Ridership Growth Rate Total Added New Ridership 

B.A.U. $6.2 Billion 1.8% 4.6 Billion 

Low Growth $7.1 Billion 2.1% 5.4 Billion 

Med. Growth $10.2 Billion 3% 8.5 Billion 

High Growth $14.4 Billion 4.3% 13.8 Billion 

Marginal Growth $30 Billion 9% 23 Billion 

 

In addition to the FHWA’s proposed policy scenarios on increasing transit ridership, 

some other ambitious scenarios could also be implemented in order to present the 

potential impact of reducing private vehicle usage on CO2 emissions. Therefore, four 

hypothetical scenarios are implemented to simulate increases in public transportation 

ridership up to 25%, 50%, 75% and 100% compared to private vehicle usage. It is crucial 

to note that European Union (EU) countries have used 16% transit transportation in 

2008 and currently have an increasing ridership trend (International Energy Agency (IEA) 

2009). Therefore, it is not too practically infeasible to aim to increase public transit 

ridership in the U.S. to a share of 25% in future years.   
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Another possible policy scenario could be implemented with respect to the fuel 

consumption of public transportation vehicles. Alternative fuel options are increasing 

their market shares in the transportation industry. Although diesel is still the dominant 

fuel source for public transportation operations, the number of diesel-powered vehicles 

has already decreased from 82% in 1990 to 63% in 2012 (American Public 

Transportation Association 2014), while natural gas and electricity are both quickly 

emerging as popular fuel sources for public transportation. For instance, the market 

share of natural gas vehicles was almost 0% in 1990, but has since risen to 16.2% in 

2012. This policy initiative could be especially important because diesel is considered to 

be one of today’s most environmentally harmful fuel sources due to its environmental 

emissions (The Clean Air Act Amendments 1990). In addition to efforts to shift ridership 

shares away from private vehicles in favor of public transportation, ensuring that public 

transportation vehicles emit less pollution is also very important for CO2 mitigation. 

Fortunately, in light of recent alternative fuel adoption rates, public transit market 

shares of electric and natural gas-powered vehicles are expected to increase by 4% and 

2%, respectively. The potential outcomes of implementing this policy initiative can also 

be found in the recent literature (Ercan et al. 2015, 2016a; Ercan and Tatari 2015; Zhao 

et al. 2016a).  

Finally, the fuel economy of private vehicles can also be improved as part of yet another 

policy initiative. Assuming that private vehicles comprise the light-duty vehicle (LDV) 
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shares in the U.S., the fuel economy of the overall fleet has been improving. Based on 

the last 10 years of development, the fuel economy of LDVs is expected to improve by 

25% from 2013 to 2030 (National Highway Traffic Safety Administration 2015). 

3.5 Results 

The results of all growth scenarios directly pertaining to public transportation ridership 

are presented in Figure 15. The FHWA’s growth scenarios by improving transit system 

performance and service are examined along with more ambitious potential growth 

scenarios to generate these results. Although increasing transit system funding can 

increase public transit ridership, this cannot be seen clearly in Figure 15 because the 

ambitious scenarios increased ridership exponentially. Even the “MarginalGrowth” 

scenarios could not generate any significant results compare to these more ambitious 

scenarios. It is important to note that the “MarginalGrowth” scenario is expected to 

increase annual ridership by 9%, whereas the most conservative of the ambitious 

scenarios yields a corresponding increase of 25%.  
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Figure 15: Unlinked public transportation ridership policy results 

Private vehicle VMT projections for 2050 are presented in Figure 16. This figure 

indicates that currently predicted VMT trends will continue to increase until late into the 

year 2035. However, this increase is linearly dependent on the labor force population; it 

should be noted that the increase is not as deep as it was before 2008. Hence, it could 

be stated that the negative impacts of 2008’s economic depression not only caused 

negative impacts on economic indicators, but also had positive impacts on public 

transportation ridership as opposed to private vehicle usage. Since the VMT values in 

this research are in billions, the transit development impacts are somewhat difficult to 

visualize from Figure 16 alone. Parallel to the increase of transit ridership, private 

vehicle VMT is decreasing, but this decrease is not enough for the FHWA’s proposed 

growth scenarios to change increasing trends in VMT. On the other hand, the 25% 
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ambitious growth scenario as previously described is expected to significantly change 

the current trend in private vehicle VMT and thereby yield crucial environmental 

benefits. 

 

Figure 16: Private vehicle usage related annual VMT simulation 

As stated in Section 3.4, the fuel economy of private vehicles regularly improves every 

year, and is expected to continue to do so in future years with the help of EPA’s Tier 

regulations and the U.S. Department of Transportation’s CAFE regulations (National 

Highway Traffic Safety Administration 2015; U.S. Environmental Protection Agency 

2014b). Figure 17 presents the benefits of a mode shift in favor of public transit in terms 

of fuel consumption, as well as the possible benefits of fuel economy improvements. 

The graph also indicates that the 25% ambitious growth scenario could save as many as 

18.4 billion gallons of gasoline per year in 2050 compared to the BAU scenario. On the 
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other hand, the corresponding savings for the “MarginalGrowth” scenario compared to 

the BAU scenario are reduced to 227.4 million gallons of gasoline per year.  

 

Figure 17: Private vehicle usage related annual fuel consumption simulation 

Figure 18 presents the annual transportation-related CO2 emissions for future years in 

tonnes of CO2 equivalents. These results exhibit similar behavior to that of previous 

results with respect to transportation modes, and so the FHWA’s proposed growth 

scenarios could not provide significant CO2 mitigation compare to the BAU scenario. 

Conversely, it should be noted that the annual CO2 emissions reduction under the 

“MarginalGrowth” scenario relative to the BAU scenario is 766,000 tonnes of CO2 

equivalents annually in 2050. Likewise, the 25% ambitious scenario is expected to 

contribute to CO2 emission mitigation by 61.3 million tonnes of CO2 equivalents annually 

in 2050.  
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Figure 18: Annual CO2 emissions of transportation modes simulation 

It must be noted that CO2 emissions have been accumulating in the atmosphere for 

decades. Figure 19 depicts the stock of transportation-related CO2 emissions from 1990 

to 2050 in terms of atmospheric accumulation. This figure also indicates that CO2 

emissions have a linear increasing trend under the BAU scenario and the FHWA’s transit 

growth scenarios, whereas only the ambitious scenarios show any potential to change 

this. The “MarginalGrowth” scenario for transit ridership reduced CO2 emission 

accumulation from 2013 to 2050 by 34.9 million tonnes of CO2 equivalents, while the 

25% ambitious growth scenario yielded a corresponding reduction of 1.4 billion tonnes. 

It should be noted that these scenarios are able to reduce the net increase in the 
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accumulation stock of CO2 emissions even with the anticipated increases in population 

and trips in the U.S. in future years. 

 

Figure 19: Stock of transportation-related CO2 emissions of the U.S. 
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CHAPTER FOUR:  MULTIVARIATE SENSITIVITY ANALYSIS ON 
URBAN TRANSPORTATION’S SUSTAINABILITY PERFORMANCE 

A partial work of this chapter has been published in the Journal of Cleaner Production 

with the title of “Public transportation adoption requires a paradigm shift in urban 

development structure” (Ercan et al. 2016c). 

4.1 Model Conceptualization 

This chapter advances the model that is developed in Chapter 3 with dynamic 

generation of public transportation network funds with policy practices and multivariate 

sensitivity analysis on entire system. A dynamic modeling approach will allow this study 

to identify the feedback mechanisms of the U.S. transportation mode choice as an 

independent system, particularly those that divide the total number of trips made into 

those using private vehicles and those using public transit, depending on society’s 

preference. Instead of quantifying and simulating the associated mode choice 

preference factors using separate discrete events, dynamic modeling uses relevant 

equations to connect and simulate the macro-level relationships of these factors. 

However, before formulating the model relations with the necessary equations, the 

system should first be analyzed from a conceptual standpoint, as illustrated with a 
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Causal-Loop Diagram (CLD) that simplifies and summarizes the observed complex 

relations in the system (Onat et al. 2014a).  

As Sterman (2000) stated “learning is a feedback process” and real world provide 

feedbacks to decision makers in the forms of qualitative or quantitative data by the 

time. So, system thinking requires defining appropriate feedbacks in the form of causal 

links that are shown in arrows between “cause” and “effect” variables. These arrows are 

followed by polarity information where positive (+) or negative (-) indicate the influence 

between two variables. Positive (reinforcing) relation indicates that the “effect” and 

“cause” variables are both influenced in same polarity direction where negative 

(balancing) relation indicates opposite linkage (i.e. effect increases while cause 

decreases or effect decreases while cause increases) (Sterman, 2000). By identifying this 

polarity information, feedback loops can be defined for being reinforcing or balancing 

on CLD.    

 The proposed CLD for this system (Figure 20) identifies seven feedback loops within the 

system, five of which are reinforcing loops (where an increase in any single factor causes 

an additional increase) and two of which are balancing loops (where an increase in any 

single factor causes a subsequent decrease). Each of these loops are labeled with their 

names and rotation information on the figure.  
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Figure 20: Causal-loop diagram (CLD) 
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parameters related to funding and revenues will reinforce transit ridership (“Revenue” 

loop). However, there is also a balancing loop between private vehicle and transit use 

that must be noted, as decreasing private vehicle use can decrease fuel purchases and 

thereby reduce one of the sources of transit system funding (“Fuel Tax” loop). Each of 

these crucial feedback relations are defined in Table 6 (Please see feedback loops R1 

and B2).  

A similar balancing relationship with respect to transportation modes can also result 

from traffic congestion impacts, as people are more likely to switch to public 

transportation if traffic congestion increases to certain levels, thereby decreasing 

private vehicle use and decreasing traffic congestion. This effect is summarized in 

Balancing Loop 1 (B1) as shown in Table 6.  

As more trips are generated, environmental emissions increase and incur greater life 

expectancy damages and economic damages for society as a whole. The remaining 

feedback relationships defined in this model focus primarily on these environmental and 

economic impacts from transportation modes. The use of either private vehicles or 

transit options will ultimately reinforce these environmental and economic damage 

impacts, albeit to different degrees; even transit modes are efficient primarily in that 

they can transport a greater number of people per trip, but are still significantly 

dependent on fossil fuels and will therefore emit some amount of air pollution. The 
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feedback relationships corresponding to the environmental and economic impacts of 

the overall system are summarized in four reinforcing loops (R2 – R5) as shown in Table 

6.  

Table 6: Feedback loop relations of the causal-loop diagram 

Feedback Loops Relations 

  Public Transportation Revenues 

    Reinforcing Loop 1 (R1) –  

    Revenue 

Public Transportation Ridership →+ Transit 
Operation Net Funds (Fare-Expense) →+ Public 
Transportation Ridership 

    Balancing Loop 2 (B2) –  

    Fuel Tax 

Private Vehicle Trips →+ Fuel Tax →+ Public 
Transportation Ridership →- Private Vehicle Trips 

  Traffic Congestion Effects  

    Balancing Loop 1 (B1) –  

    Congestion 

Private Vehicle Trips →+ Traffic Congestion →+ 
Public Transportation Ridership →- Private Vehicle 
Trips 

  Environmental and Economic Impacts 

    Reinforcing Loop 2 (R2) –  

    Transit Emissions 

Trip Generation →+ Public Transportation Ridership 
→- Environmental Emissions →+ Climate Change 
Impacts due to GHG Emissions →+ Health Effects of 
Climate Change →- Labor Force Population →+ Trip 
Generation 

    Reinforcing Loop 3 (R3) –  

    Transportation Emissions 

Trip Generation →+ Public Transportation Ridership 
→- Private Vehicle Trips →+ Environmental 
Emissions →+ Climate Change Impacts due to GHG 
Emissions →+ Health Effects of Climate Change →- 
Labor Force Population →+ Trip Generation 

    Reinforcing Loop 4 (R4) –  

    Private Vehicle Emissions 

Trip Generation →+ Private Vehicle Trips →+ 
Environmental Emissions →+ Climate Change 
Impacts due to GHG Emissions →+ Health Effects of 
Climate Change →- Labor Force Population →+ Trip 
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Feedback Loops Relations 

Generation 

    Reinforcing Loop 5 (R5) –  

    Economic Damage 

Trip Generation →+ Private Vehicle Trips →+ 
Environmental Emissions →+ Climate Change 
Impacts due to GHG Emissions →+ Economic 
Damage of Climate Change →- Labor Force 
Population →+ Trip Generation 

4.2 Model Development 

The problem statement of this study emphasizes a high dependency on private vehicles 

for urban passenger transportation in the U.S. Based on the literature, the external 

factors affecting this problem include geographical features, socio-economic indicators 

(i.e. metropolitan economy, population characteristics, etc.), spatial factors (i.e. 

auto/highway characteristics, urban development, etc.), and travel behavior, while the 

internal factors include fare rate, quality of service, quantity factors, etc. (Taylor et al. 

2009) Earlier research on identifying the most significant influencing factors on transit 

ridership indicates that external factors tend to have greater impacts on transit ridership 

than internal factors, although transit authorities have no control over said external 

factors in their efforts to increase transit ridership shares (Taylor and Fink 2003). 

However, the identification of relevant external and internal factors and the 

conceptualization of the system as a whole (as illustrated in proposed CLD) can guide 
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the model development process in terms of parameter selection and model 

formulation. To this end, Table 7 summarizes the key parameters selected for model 

development, including their value(s), units, and any relevant reference information. 
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Table 7: Some of the critical model parameters and values 

Parameter Value Type Unit Reference 

Private Vehicle Occupancy 1.62 – 1.39 Auxiliary  person 

(U.S. Bureau of Transportation 

Statistics 2015) 

Fuel Economy of Private Vehicles* 23.11 – 40.18 Auxiliary  mpg 

Initial Public Transportation Preference  3.50 Constant percentage 

Average transit unlinked fare 1.30 – 1.34 Auxiliary  2015 $/trip 

Diesel Share of Energy Consumption (EC)** 45.00 – 81.00 Auxiliary percentage 

Electricity Share of EC** 14.86 – 27.50 Auxiliary percentage 

Natural Gas (NG) Share of EC** 0.00 – 16.00 Auxiliary percentage 

Gasoline and Others Share of EC** 3.83 – 11.50 Auxiliary percentage 

Average transit trip length 4.70 – 6.37 Auxiliary mile (Santos et al. 2011) 

Per gallon fuel sale tax rate*** (including 

federal and state/local tax shares) 
0.28 – 0.90 Auxiliary 2015 $/gallon 

(U.S. Energy Information 

Administration 2015a) 

Federal Capital Funds 2.54E+09 – 7.30E+09 Auxiliary 2015 $/year 

 
State Capital Funds 6.30E+08 – 2.39E+09 Auxiliary 2015 $/year 

Local (County/City) Capital Funds 1.90E+09 – 6.34E+09 Auxiliary 2015 $/year 

Other Capital Funds 0.00 – 1.47E+09 Auxiliary 2015 $/year 

Per PMT expense to transit authority 0.866 – 0.711 Auxiliary 2015 $/PMT 
(American Public Transportation 

Association 2014) 

Table Notes: *“Fuel Economy of Private Vehicles” is assumed to be equal to the U.S. Light-Duty Vehicle (LDV) fleet’s average fuel economy values, 
which are available from historical data and have been projected for future years in the VISION model. Therefore, the lowest fuel economy value 
(23.11 mpg) is from 1990, whereas the highest fuel economy value (40.18 mpg) is based on 2050 projections. The 2015 fuel economy value falls in 
between these two values at 29.98 mpg. 

**Energy Consumption (EC) shares for each fuel type vary based on the historical data with the availability of alternative fuels. Following the similar 
trend in alternative fuel adoption, it is assumed that the use of diesel fuel will eventually lose its dominant place compared to other fuel sources, while 
use shares for all other fuel types will increase with respect to transit modes. The maximum EC shares for electricity, NG, and gasoline are based on 
2050 projections, whereas their lowest EC shares are based on 1990 historical data. Diesel, electricity, NG, and gasoline have 2015 EC shares of 60%, 
17%, 13%, 10%, respectively.  

***The fuel sales tax rate is calculated in constant dollars. Using historical inflation rates, the 1990 tax rate is$0.90 in 2015 dollars. Based on inflation 
rate projections, the estimated total tax rate in 2050 will be $0.28 in 2015 dollars. 
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The SD model development is divided into eight sub-models: population, trip generation 

and public transportation mode choice, public transportation revenue calculations, 

public transportation emissions, private vehicle mode choice and traffic congestion 

impacts, air pollution externalities, CO2 emission impacts on climate change, and total 

emission and externality calculations. Conceptual interconnection of these eight sub-

models are summarized in Figure 21 in addition to detailed information and figures for 

each of these sub-models in previous chapter’s sections and following sub-sections.  

For validation purposes, the output data from a model simulation running from 1990 to 

2015 will be validated with historical data. For policy analyses, the model aims to project 

the impacts of the U.S. transportation system (private vehicle miles traveled, public 

transportation ridership, CO2 emissions, and externalities associated with U.S. 

transportation) until 2050. Therefore, the proposed transportation mode choice model 

will be initiated through the U.S. population sub-model. Labor force population 

variables, as a product of the population sub-model, can produce trip generation 

numbers based on society’s trip characteristics (please see Fig. 21). The population sub-

model will be the same as the sub-model described in Section 3.2.1 and Figure 6.  
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Figure 21: Conceptual interconnections of sub-models 

4.2.1 Trip generation and public transportation mode choice 

This sub-model is also similar with the sub-model in Section 3.2.2, however with this 

chapter’s model extensions public transportation mode choice is affected by revenue 

generated and travel time index (TTI) related impacts. Therefore, the updated sub-

model’s stock and flow diagram can be seen in Figure 22 (please see Appendix Table for 

the meanings of each symbols on stock-flow diagrams). 

Although other modes of transportation (walking, cycling, etc.) are available to 

commuters, this chapter’s model only focuses on the use of private vehicles or transit 

use as the primary modes of transportation in the U.S. Even though many sustainability 
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initiatives worldwide analyze and encourage transportation modes such as walking and 

cycling as potential alternatives to private vehicles or transit, walking and cycling as 

modes of transportation distinguish themselves from transit and private vehicles in that 

their practical applicability may be significantly limited by other attributes such as travel 

distance, weather conditions, safety concerns, and the availability of appropriate 

infrastructure (bike routes, sidewalks, etc.). These crucial attributes are beyond the 

scope this chapter’s model, so walking and cycling modes of transportation are excluded 

from study’s system boundaries (Ercan et al. 2016b; Gatersleben and Uzzell 2007) but 

considered in following extended model in Chapter 6. 

The modeled labor force population (ages 15 to 64) is expected to make trips every day 

based on NHTS statistics, which estimate an average of almost 4 trips/day per person 

(Santos et al. 2011). The total generated annual trips in the U.S. (measured as a product 

of labor force population, average daily trip rate per person, and annual number of 

workdays) are then divided into two different mode choices (private vehicle driving and 

transit) based on societal preferences. Due to uncertainty considerations, the increasing 

rate variables for average trip rate and transit trip length will include this information 

after 2010. Two variables control the public transportation mode choice rate (Equation 

1), which then generates all of the relevant statistics with respect to public 

transportation related, including transit ridership, transit VMT, transit PMT, and transit-

related emissions. Therefore, the parameters “Transit revenue and ridership control 
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factor” and “Travel Time Index (TTI) control index” are crucial for the entire model, as 

explained in later sub-sections.  

Public transportation trip preference = Transit revenue and ridership control factor + TTI 

control index                       [1] 

 

Figure 22: Trip generation and public transportation mode choice sub-model 

4.2.2 Public transportation revenue calculations 

As highlighted by the CLD in Figure 20, available funding and revenues for transit system 

will enforce transit ridership as an alternative to private vehicles, and this reinforcing 

relation will be controlled based on the projections of a report by the FHWA (U.S. 

Department of Transportation Federal Highway Administration and Federal Transit 

Administration 2014). This sub-model consists of two main objects, the first of which 
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government organizations (please see Fig. 23 below). As has also been discussed above 

and in Table 7, the operational cost is calculated based on APTA’s per-PMT operational 

expense rate (Equation 2), while fare revenue is calculated using the NTS value for 

average fare rate in the U.S. (Equation 3).  

Fuel sales tax increase scenario: The fuel sales tax portion of transit system revenue 

is calculated as shown in Equation 4. The multiplication shown in Equation 4 indicates 

the portion of fuel sales tax that is contributed to transit system funding. One of the 

most crucial balancing loops in the transit system (Loop B2 in Figure 20) is supported by 

revenues from fuel taxes and federal fuel sale taxes, which first increased in the early 

1930s from 1 cent per gallon of gasoline to 1.5 cents per gallon of gasoline. With the 

continuous increases in federal fuel taxes since then, the latest increase has brought the 

tax rate to 18.4 cents/gallon-gasoline in 1997, which is still the current fuel tax rate 

today (Weingroff 2015). Moreover, for every gallon of gasoline purchased, 2.86 cents 

are transferred from this tax revenue to the Mass Transit Fund account (U.S. 

Department of Transportation Federal Highway Administration and Federal Transit 

Administration 2014; Weingroff 2015). In addition to federal support, state and local 

(i.e. county, etc.) governments also collect taxes from fuel sales, bringing the average 

fuel tax rate per gallon of gasoline in the U.S. to 48 cents (U.S. Department of 

Transportation Federal Highway Administration and Federal Transit Administration 

2014), while the Mass Transit Fund also receives support from state and local tax 
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revenues depending on state-specific regulations. Although state and local governments 

have been increasing their fuel tax rates, as with the examples indexed to the Consumer 

Price Index (i.e. Florida), the federal fuel tax rate increases to be applied are still being 

debated today. It can therefore be argued that the Highway Trust and Mass Transit 

Funds are generally supported with tax revenues and, with a simple inflation rate of 

18.4 cents per gallon of gasoline in 1997 dollars, equals almost 12 cents per gallon of 

gasoline in today’s dollars (Bureau of Labor Statistics 2013). Therefore, this model 

assumes that the most ambitious federal fuel tax increase will be signed into law in 

2020, increasing the federal fuel tax rate per gallon of gasoline from 18.4 cents to 33.4 

cents, while also further increasing state and local fuel tax rates. This ambitious increase 

can also be included in the model’s projections until 2050, with the consideration of 

constant dollar calculations.  

Transit authorities are also supported with new investments (“capital investments”) 

from federal, state, county, city, and other governmental organizations, which help to 

fund service/system expansions. Based on data from the National Transit Database 

website, the contributed capital funds in each study year are applied as inputs into the 

model, as summarized in Table 8. In this model, capital funds are expected to increase 

after 2016 by 593 million dollars (2015 $) per year. Finally, two revenue variables are 

used to generate the simulated revenues, which can in turn control the annual ridership 
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rate of the U.S. transit system based on the FHWA’s projections. These control values 

for the revenue and the transit ridership rate can be found in Table 9.  

Public transportation expenses = Transit operation cost per PMT * PMT of transit modes 

                   [2] 

Transit modes fare revenue = Average transit mode fare * Transit transportation 

ridership                  [3] 

Federal and State Funds (Fuel) = Fuel Consumption of Private Vehicles * ((Per gallon 

gasoline tax rate + Gasoline Tax Increase) * 0.16)                   [4] 
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Table 8: Annual capital funds for transit system in the U.S. (in 2015 dollars) 
Year Federal State Local (County, etc.) Other 

1990 $2,540,000,000 $630,000,000 $1,900,000,000 $0 

1991 $2,545,018,146 $638,116,164 $1,913,790,602 $0 

1992 $2,599,687,278 $777,764,877 $1,906,476,526 $0 

1993 $2,383,542,110 $1,316,737,793 $2,033,377,683 $0 

1994 $2,518,082,125 $1,005,494,542 $2,074,813,017 $0 

1995 $3,313,674,673 $989,168,123 $2,705,536,128 $0 

1996 $3,506,283,691 $895,214,794 $2,553,413,923 $0 

1997 $4,137,525,951 $1,006,749,807 $2,491,968,594 $0 

1998 $3,679,503,579 $875,259,778 $2,855,740,912 $0 

1999 $3,725,908,863 $857,509,862 $3,859,890,403 $0 

2000 $4,274,908,313 $973,345,340 $3,807,655,288 $0 

2001 $5,468,380,294 $1,011,145,805 $4,345,116,576 $0 

2002 $4,993,714,432 $1,432,854,989 $5,639,423,262 $239,029,495 

2003 $5,091,974,305 $1,622,719,347 $6,029,619,107 $30,759,386 

2004 $4,930,228,302 $1,756,129,149 $5,772,417,019 $170,312,424 

2005 $4,611,752,149 $1,494,168,982 $5,653,629,504 $77,122,788 

2006 $5,552,125,521 $1,698,223,160 $5,393,610,839 $108,125,610 

2007 $5,561,325,828 $1,517,464,945 $6,374,437,942 $117,558,767 

2008 $6,418,647,652 $1,983,614,597 $7,588,742,794 $110,425,243 

2009 $7,096,218,825 $2,414,311,718 $7,122,940,650 $198,079,375 

2010 $6,813,141,491 $2,356,033,097 $7,280,920,050 $103,815,165 

2011 $6,926,281,804 $2,047,571,278 $5,125,848,051 $1,619,323,531 

2012 $7,515,782,462 $2,017,743,911 $5,585,749,997 $1,799,897,687 

2013 $7,017,775,115 $2,850,442,204 $5,746,885,310 $1,624,464,311 

2014 $7,306,446,959 $2,384,778,795 $6,343,077,250 $1,472,717,007 
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Table 9: Available transit system revenues (in 2015 dollars) and equivalent annual transit 
ridership rates 

Revenue Available Annual Ridership Rate 

$6.63 Billion 0.90% 

$7.59 Billion 1.05% 

$10.9 Billion 1.50% 

$15.4 Billion 2.20% 

$21.4 Billion 3.08% 

$64.1 Billion 9.75% 

 

 

Figure 23: Public transportation net revenue calculations sub-model 
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4.2.3 Public transportation activity related energy consumption and CO2 emission 

calculations 

This sub-model is adopted from the previously defined relation in Section 3.2.4 and 

shown in Figure 9. The energy source for different type of engine/motors for transit 

vehicles are considered to adopt alternative energy source as it mentioned in Section 

3.2.4. Instead of considering the alternative fuel adoption as a policy practice, this 

chapter considers the energy source shares as presented in following Table 10. Data on 

the total energy consumption of the transit system as a whole can be gathered from the 

NTS database, and these data values can be reproduced in this model via regression 

analysis for transit VMT values. Historical data on each fuel type’s share in the total 

energy consumption can also be gathered from the NTS database, but values for future 

years should be predicted based on reasonable assumptions. As can be seen in Table 10, 

historical trends in fuel type use indicate a gradual shift away from diesel (which is 

currently the dominant fuel type) in favor of alternative fuels such as electricity and 

natural gas. Therefore, the utilization levels of different fuel types can be predicted for 

future years based on the available historical information. After calculating each fuel 

type’s energy consumption, transit system emissions can be calculated using the 

emission conversation factors from Tables 7 and 11. 
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Table 10: Energy consumption shares of different transit vehicle fuel types 

Year Electricity Diesel 
Gasoline 
and others 

Natural Gas 
(as CNG) 

1990 14.86% 81.31% 3.83% 0.00% 

1991 14.64% 81.60% 3.76% 0.00% 

1992 13.89% 81.98% 4.01% 0.12% 

1993 14.23% 80.69% 4.89% 0.19% 

1994 14.50% 78.67% 6.27% 0.56% 

1995 14.36% 78.11% 6.30% 1.24% 

1996 17.54% 77.50% 3.30% 1.66% 

1997 17.19% 76.76% 3.30% 2.75% 

1998 16.69% 76.65% 2.72% 3.94% 

1999 16.68% 76.19% 2.52% 4.61% 

2000 16.80% 74.95% 2.70% 5.54% 

2001 16.72% 73.86% 2.91% 6.51% 

2002 15.00% 74.31% 3.44% 7.25% 

2003 17.08% 69.98% 2.92% 10.01% 

2004 17.49% 68.41% 3.22% 10.88% 

2005 17.86% 67.03% 3.29% 11.82% 

2006 17.21% 66.04% 3.33% 13.42% 

2007 18.56% 65.14% 3.23% 13.07% 

2008 18.72% 64.33% 3.41% 13.54% 

2009 15.24% 62.78% 8.42% 13.56% 

2010 15.70% 62.98% 8.75% 12.57% 

2011 15.99% 62.15% 9.08% 12.78% 

2012 16.19% 62.00% 9.26% 12.55% 

2013 16.36% 60.84% 9.61% 13.19% 

2015 17.00% 60.00% 10.00% 13.00% 
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Year Electricity Diesel 
Gasoline 
and others 

Natural Gas 
(as CNG) 

2020 18.00% 57.00% 10.50% 14.50% 

2025 20.00% 54.00% 11.00% 15.00% 

2030 22.50% 50.00% 11.50% 16.00% 

2040 25.00% 47.50% 11.50% 16.00% 

2050 27.50% 45.00% 11.50% 16.00% 

 

4.2.4 Private vehicle mode choice and traffic congestion impacts 

The transit ridership rate simultaneously determines the private vehicle preference for 

trip generated, since the only transportation mode options for this model are private 

vehicles and transit. In other words, the private vehicle trip preference (measured as a 

fraction of total trips in a given year) is equal to one minus the public transportation trip 

preference. This sub-model is also adopted from Section 3.2.3 (Fig. 8) with slight 

changes, so please also see following Figure 24 for extended and updated version. 

Private vehicle VMT, of the most crucial outputs of the model as a whole, is calculated in 

this sub-model; private VMT is responsible for a majority of the emissions calculated in 

the model, and also controls feedback interactions related to traffic congestion. The fuel 

economy of Light-Duty Vehicles (LDVs) is applied to the model as a deterministic input 

based on historical averages and the Argonne National Laboratory’s 

projections(Argonne National Laboratory 2016). Sufficiently large increases in traffic 



78 

 

congestion are expected to discourage the use of cars, so this model uses the Texas 

Transportation Institute’s method for calculating the travel time index (TTI) (Schrank. et 

al. 2015) and then dynamically chooses the degree of the resulting shift away from 

private vehicles based on the calculated TTI, which is factored into the “Trip generation 

and public transportation mode choice” sub-model (Figure 22) as previously discussed. 

 

Figure 24: Private vehicle mode choice and traffic congestion impacts sub-model 
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the environment. As explained in Muller and Mendelsohn’s research, pollutants such as 

CO, NOx, SOx, PM10, PM2.5, VOC must be taken into account in environmental impact 

studies (Muller and Mendelsohn 2007a; b). This research follows the methodology used 

in Michalek et al.’s study to quantify the externalities of these air pollutants, and the 

monetary value of the damages of these air pollutants to human health and the 

environment are presented in Table 12 (Michalek et al. 2011). Like in the calculation 

steps of life-cycle assessment studies with respect to alternative fuel powered vehicles 

(Ercan et al. 2015, 2016a), this study uses the unit emission rates of each fuel type and 

multiplied each emission rate by its corresponding monetary value multiplier (Table 12). 

Unit emission rates are derived from the Argonne National Laboratory’s GREET Fuel 

Cycle Model (Argonne National Laboratory 2015). 

Diesel, natural gas, and gasoline all have their own upstream (fuel production) and 

downstream (tailpipe) emission rates, as well as their own total consumption levels (in 

gallons for diesel and gasoline, and in mega joules [MJ] for natural gas), and the total 

VMT for each fuel type determines its respective total fuel-specific emissions. Since the 

emission calculations required for these three fuel types are all similar, Figure 25 only 

illustrates the modeling structure for diesel fuel emission calculations, but the same 

notations, equations, and modeling structure also apply to emission calculations for all 

other fuel types. Electricity consumption does not have downstream impacts and is 

therefore limited to upstream (electricity generation) impacts, so electricity-specific 
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emission calculations are modeled as shown in Figure 25 and the accompanying 

notations and equations. Finally, externalities related CO2 emissions are calculated 

separately from conventional air pollutant externalities, because CO2 emissions will 

have already been calculated in previous sub-models, as seen in the bottom of Figure 

25. It should be also noted that gasoline emissions and externalities are divided into 

those for transit and those for private vehicles, as the usage patterns for each of the two 

modes are significantly different, and the resulting emissions and externalities are 

therefore used separately.  

Set i consists of the set of emission types, which is indexed on i as shown in Table 11. 

Likewise, set k consists of the set of fuel types, which is indexed on k as shown in Table 

11. 

Table 11: Notation of set indexes 

Emission types Index  Fuel Types Index 

CO i = 1  Diesel k = 1 

NOx i = 2  Gasoline k = 2 

SOx i = 3  Natural gas k = 3 

PM10 i = 4    

PM2.5 i = 5    

VOC i = 6    
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Table 12: Air pollution emission rates and externality values for different fuel sources 

 

Diesel Natural Gas (NG) Gasoline Electricity 

(Emissions) 

WTP 
[t/gallon] 

Tailpipe 
[t/mile] 

WTP 
[t/gallon] 

Tailpipe 
[t/mile] 

WTP 
[t/gallon] 

Tailpipe 
[t/mile] 

WTP 
[t/kWh] 

CO 1.89E-06 1.28E-06 3.34E-08 2.30E-05 1.89E-08 7.63E-06 

(Not 
necessary 
for 
externality 
calculations) 

NOx 4.21E-06 2.34E-06 4.28E-08 1.17E-06 3.99E-08 5.14E-07 

PM10 2.77E-07 1.09E-07 9.78E-10 1.09E-07 3.23E-09 3.23E-08 

PM2.5 2.24E-07 4.87E-08 6.30E-10 4.87E-08 2.14E-09 1.77E-08 

SOx 2.75E-06 1.08E-08 1.78E-08 6.09E-09 3.40E-08 7.50E-09 

VOC 1.05E-06 2.62E-07 1.06E-08 2.62E-07 2.83E-08 2.85E-07 

CO2 1.02E-02 N/A 9.32E-03 N/A 1.36E-02 N/A 6.90E-04 

  (Externality of Emissions) 

WTP 
[2015 $/t] 

Tailpipe 
[2015 
$/t] 

WTP [2015 
$/GJ] 

Tailpipe 
[2015 $/t] 

WTP 
[2015 $/t] 

Tailpipe 
[2015 $/t] 

WTP [2015 
$/kWh] 

CO $708 $968 $0.17 $968 $708 $968 $0.00 

NOx $2,192 $3,765 $0.87 $3,765 $2,192 $3,765 $1.58 

PM10 $7,336 $12,726 $0.00 $12,726 $7,336 $12,726 $0.81 

PM2.5 $47,918 $82,897 $0.00 $82,897 $47,918 $82,897 $2.02 

SOx $19,690 $27,882 $110 $27,882 $19,690 $27,882 $17.05 

VOC $4,520 $7,824 $0.00 $7,824 $4,520 $7,824 $0.01 

CO2 $45.65 $45.65 $45.65 $45.65 $45.65 $45.65 $45.65 
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Figure 25: Partial presentation of the air pollution externality calculations sub-model 
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Notations:  

TUik = the upstream emissions of the transit system of emission type i from fuel type k  

TTik = the downstream (tailpipe) emissions of the transit system of emission type i from 

fuel type k 

PUi2 = the upstream emissions of private vehicles of emission type i from fuel type k = 2 

(gasoline)  

PTi2 = the downstream (tailpipe) emissions of private vehicles of emission type i from 

fuel type k = 2 (gasoline) 

Ei = the total emissions of emission type i from electricity consumption  

EXT.Ui = the externality unit value for fuel production emissions of emission type i 

EXT.Ti = the externality unit value for tailpipe emissions of emission type i 

TMik = the total air pollution externality cost of the transit system (in 2015 dollars) for 

emission type i from fuel type k 

PMi2 = the total air pollution externality cost of private vehicle use (in 2015 dollars) for 

emission type i from fuel type k = 2 (gasoline) 
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The calculations used in this sub-model are summarized in Equations 5 through 11 

below: 

∑ 𝑇𝑈𝑖𝑘
6
𝑖=1 = 𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑘 ∗ 𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝑓𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑘           [5] 

∑ 𝑇𝑇𝑖𝑘
6
𝑖=1 = 𝑇𝑎𝑖𝑙𝑝𝑖𝑝𝑒 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑘 ∗ 𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝑉𝑀𝑇𝑘                      [6] 

∑ 𝑃𝑈𝑖2
6
𝑖=1 = 𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑖2 ∗ 𝐿𝐷𝑉 𝑓𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛2                        [7] 

∑ 𝑃𝑇𝑖2
6
𝑖=1 = 𝑇𝑎𝑖𝑙𝑝𝑖𝑝𝑒 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑖2 ∗ 𝑃𝑟𝑖𝑣𝑎𝑡𝑒 𝑉𝑀𝑇2                             [8] 

∑ 𝐸𝑖
6
𝑖=1 = 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑖 ∗ 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛    [9] 

∑ 𝑇𝑀𝑖𝑘
6
𝑖=1 = (∑ 𝑇𝑈6

𝑖=1 ∗ 𝐸𝑋𝑇. 𝑈𝑖) + (∑ 𝑇𝑇6
𝑖=1 ∗ 𝐸𝑋𝑇. 𝑇𝑖)                          [10] 

∑ 𝑃𝑀𝑖2
6
𝑖=1 = (∑ 𝑃𝑈6

𝑖=1 ∗ 𝐸𝑋𝑇. 𝑈𝑖) + (∑ 𝑃𝑇6
𝑖=1 ∗ 𝐸𝑋𝑇. 𝑇𝑖)                          [11] 

4.2.6 Total emission and externality calculations and Climate change impacts sub-

models 

After calculating all emissions and externality values, the results can all be summed 

together to obtain the final model outputs. For sensitivity analysis purposes, the annual 

emission and externality results are also calculated cumulatively as shown in Figure 26. 

The total externalities from public transit and from private vehicles can be found using 

Equations 10 and 11, respectively. In addition, the total CO2 emissions from the U.S. 

roadway transportation system are also calculated so that the findings may be applied 
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with respect to the specific feedback relationships corresponding climate change 

impacts. 

The climate change impacts sub-model that is explained in detail in Section 3.2.5 is also 

used for this model (please see Fig. 10).   
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Figure 26: Sub-model of total air pollution externalities and CO2 emissions due to U.S. 
roadway transportation activities 
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4.3 Model verification and validation 

Proper verification and validation is imperative for any modeling approach, so as to 

ensure that the developed model and its behavior adequately match what is known 

from available literature and historical data, thereby ensuring reliable projection results. 

Barlas’s (1996) study summarizes a SD model verification and validation process that is 

still commonly cited and utilized in SD research today (Barlas 1996). Moreover, Qudrat-

Ullah and Seong (2010) explained the validation process for SD models in light of the 

information provided in Barlas’s study (Qudrat-Ullah and Seong 2010). Like in recent 

studies by Egilmez and Tatari (2012) and by Ercan et al. (2016), this model also follows 

Qudrat-Ullah and Seong’s verification/validation process (Egilmez and Tatari 2012). 

 The verification process of this model consists of five structural validation tests: the 

boundary adequacy test, the structure verification test, the dimensional consistency 

test, the parameter verification test, and the extreme conditions test. To this end, this 

chapter identifies the problem statement and how to approach the problem from a 

modeler’s perspective. Based on the available system information, a Casual Loop 

Diagram (CLD) is used to draw the system boundaries necessary for modeling. With 

proper reference information on model boundaries and variables, the model therefore 

meets the requirements of the boundary adequacy test. The developed model (stock 

and flow diagrams), which is designed using the CLD as a guide, can be successfully 
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simulated in Vensim without any logical errors, confirming that the model is structurally 

valid and thereby passing the structure verification test. Tables 7 and 12 present some 

of the model parameters and their respective units, which are then applied to the model 

while Vensim’s built-in unit check feature checks the model for dimensional consistency, 

confirming that the model passes the dimensional consistency test. Next, the parameter 

verification is used to confirm the validity of parameter selection during model 

development and the reliability of the selected parameters; based on available 

reference information, the model passes this test as well. Lastly, extreme conditions are 

tested on the model to see if any model variables incorrectly reflect negative or zero 

values, but no such issues were evident. Thus, the model passes all five structural 

validation tests and is therefore confirmed to be structurally valid.  

After ensuring that the model works correctly and has been developed using proper 

data, the model should be tested for behavioral validity, meaning that the model’s 

output data should statistically match the corresponding real-world historical data. First, 

behavioral reproductions of some of the key model variables are presented in Figures 27 

through 29 from 1990 to 2013, and are then statistically compared to historical data 

(gathered from the website of the U.S. Bureau of Transportation Statistics, 2015) for the 

same variables over the same time period. As seen in Figures 27 through 29, the 

simulation data matches fairly well with the historical data, but a visual comparison 

alone is not enough to complete the validation process due to the potential for human 
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error. To objectively confirm the behavioral validity of the model output, a one-way 

ANOVA test is also used to compare the model output and historical data for private 

VMT, transit ridership, and transportation-related CO2 emissions. The results of this final 

test are presented in Table 13, clearly showing that the model’s behavior is statistically 

valid at a significance level of zero.  

Table 13: One-way ANOVA test results for critical model parameters 

  

p-value F 

df 

Mean Square Between Groups Within 

Groups 

Private VMT 0.000 0 23 0 5.429E+22 

Transit Ridership 0.000 0 23 0 1.961E+18 

CO2 Emissions 0.000 0 23 0 2.506E+15 

 

 

Figure 27: Behavioral reproduction (historical and simulation) of private VMT  
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Figure 28: Behavioral reproduction (historical and simulation) of transit ridership 

 

Figure 29: Behavioral reproduction (historical and simulation) of U.S. Transportation CO2 
emissions 
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4.4 Uncertainties and Policy Analysis 

As Sterman stated in his article “All models are wrong” (Sterman 2002), the proposed 

models in a SD analysis are always limited by the provided information, and the 

reliability of any SD model is highly dependent on the deterministic parameters used as 

inputs into the model, whereas these deterministic parameter values often carry a great 

deal of uncertainty (Pruyt 2007). Furthermore, a comprehensive SD model will typically 

include numerous interconnections, further increasing the overall degree of uncertainty 

associated with the SD analysis. A recent study of Onat et al. (2016) also accounted for 

these uncertainties alternative fuel use on light duty vehicles and proved the 

significance of sensitivity analysis. Therefore, instead of assigning results to single points 

for future years, this chapter’s model will account for this uncertainty by providing 

statistical distribution areas for the results. To do this, distribution information for key 

parameters in the model will be considered in simultaneous Monte Carlo simulations for 

all variables, providing results with their own unique distributions and confidence 

intervals.  

This analysis is also known as a multivariate sensitivity analysis. Sensitivity analyses are 

often used to highlight the most influential parameters in a particular model. For this 

purpose, this study used a “global analysis” technique based on any and all possible 

variations in the input parameters, based on Sobol indices (Sobol 1990) which have 
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already been used in environmental science (Wei et al. 2015). This global sensitivity 

analysis, again based on Sobol indices, was performed with respect to the parameters 

(Xi) that modeled the corresponding processes according to outcome (Yj). The first-order 

Sobol indices of each parameter are as follows: 

𝑆𝐼𝑖
𝑗

=
𝕍ar(𝔼(𝑌𝑗|𝑋𝑖)

𝕍ar(𝑌𝑗)
                           [12] 

A meta-model 𝑌�̂�(X) of Yj is then used to evaluate the Sobol indices: 

𝑌�̂�(𝑋) = 𝛼0
𝑗

+ ∑ 𝛼𝑘
𝑗
𝑋𝑘

12
𝑘=1                           [13] 

This linear model fits the numerical data very well (R > 0.99), and allows the Sobol 

indices to be directly deduced as follows: 

𝑆𝐼𝑖
𝑗

=
(𝛼𝑖

𝑗
)2

∑ (𝛼
𝑘
𝑗

)212
𝑘=1

                           [14] 

It should be also noted that Sobol indices are positive values, however we added the 

sign (plus or minus) of the correlation coefficients in order to specify positive or negative 

effects on the outputs. More specifically, this model will be run for 10,000 iterations 

simultaneously for the given distributions of parameters from 2015 to 2050, and the 

behavioral limitations of critical variables (model results) will be revealed accordingly.  
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Table 14: Distribution information for critical parameters 

Parameter Distribution 
Parameters 

Unit Distribution 
Type 

Reference 

Average Trip Rate k = 2.222; θ = 0.615 Trip Gamma (Santos et al. 2011; 
U.S. FTA 2016) 

Average Trip Length Min = 8.99; Max = 9.69; 
μ = 9.40; σ = 0.24 

Miles Normal (Santos et al. 2011; 
U.S. FTA 2016) 

Average Transit Trip 
Length Increase Rate 

Min = 0.0099; Max = 
0.0102; μ = 0.01; σ = 
0.000049 

Percentage (for 
trip*miles) 

Normal (American Public 
Transportation 
Association 2014; 
Santos et al. 2011; 
U.S. FTA 2016) 

Transit Mode Fare 
Increase Rate 

Min = 0.009; Max = 
0.011; μ = 0.01; σ = 
0.0003 

Percentage (for 
$/unlinked trip) 

Normal (U.S. Bureau of 
Transportation 
Statistics, 2015) 

Transit Expense 
Increase Rate 

Min = 0.0092; Max = 
0.0107; μ = 0.0099; σ = 
0.0003 

Percentage 
($/Transit PMT) 

Normal (American Public 
Transportation 
Association, 2014) 

Annual Lane Mile 
Increase Rate 

Min = 0.0099; Max = 
0.0105; μ = 0.0102; σ = 
0.00014 

Percentage 
(lane-mile/year) 

Normal (U.S. Bureau of 
Transportation 
Statistics, 2015) 

CO2 Emission Factors:         

  Diesel Emission 
Factor 

μ = 8.92; σ = 0.1784 kg CO2 
emissions/gallon 

Normal (Venkatesh et al. 
2011) 

  Gasoline Emission 
Factor 

μ = 13.609; σ = 0.214 kg CO2 
emissions/gallon 

Normal (Onat et al. 2016b; 
Venkatesh et al. 
2011) 

  Natural Gas 
Emission Factor 

Min = 8.528; Max = 
10.119; μ = 9.3235; σ = 
0.0093 

kg CO2 
emissions/gallon 

Uniform (Argonne National 
Laboratory 2015) 

  Electricity 
Emission Factor 

a = 0; b= 0.696; p = 
1.067 

kg CO2 
emissions/kWh 

Triangle (Michalek et al. 
2011; Onat et al. 
2016b) 

 

As it mentioned above and some of Pruyt’s researches, SD approach is limited for 

conducting models that consists of deep complexity and uncertainty. However, this 
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disadvantage of modeling can be turned to into an advantage by combining multivariate 

sensitivity analysis and SD model and provide all plausible outcomes/policies in given 

ranges of model parameters (Pruyt 2007; Pruyt and Kwakkel 2012). An example of 

deterministic policy analysis on SD model can argue the possible projections with the 

changes of given parameters, however multivariate analysis simultaneously accounts for 

tens of thousands possible scenarios in terms of changing all model parameters in the 

given ranges (as discussed in Section 4.5.1). Although, this research emphasizes on the 

uncertainty parameters for model, this analysis transforms the art of SD model into 

computational SD model, which provide comprehensive policy analysis (Pruyt and 

Kwakkel 2012).  

For instance, for this study, the trip generation values will influence the ridership and 

the VMT (each consisting of their own separate degrees of uncertainty) based on the 

data source from the 2009 NHTS database (U.S. Department of Transportation Federal 

Highway Administration 2010). The deterministic parameters defined in a previous 

model in Chapter 3 are considered as the mean values, and proper (literature-based) 

distributions are assigned accordingly. Based on the proposed model in this chapter, the 

following parameters have statistical distribution: average trip rate (trip/day/person), 

average trip length (miles/trip), CO2 emission rates for different energy sources such as 

electricity, natural gas (in the form of CNG), diesel, and gasoline (and/or other fuel 
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types, all quantified in gasoline equivalents), average transit trip length (miles/transit 

trip), transit mode fare rate ($/trip), and transit operation cost per PMT ($/transit PMT).  

In addition to the multivariate sensitivity analysis previously discussed, the sensitivity of 

critical parameters will be investigated to identify key policy leverage points for reducing 

the transportation-related impacts previously cited. The behavioral limit results from 

this analysis will guide a subsequent multivariate sensitivity analysis, which will use 

some of the key model parameters and other policy making parameters as inputs to 

provides future projections for four critical variables as outputs. As shown in the 

sensitivity input-output table (Table 15), each deterministic value is assigned a range of 

±10%, thereby determining the parameters to which the resulting outputs are most 

sensitive. 

Two separate sensitivity analyses are conducted to further investigate the importance of 

critical parameters, as explained further in Section 4.5 of this chapter. The second 

sensitivity analysis will follow a similar approach, in which the two most dominating 

(99%) parameters from the previous sensitivity analysis will be excluded. Therefore, 

average trip rate and average trip length parameters are neglected as shown in Table 

16.   
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Table 15: First sensitivity analysis input-output table 

Input variables Deterministic 

(mean) values 

Min [-10%] Max [+10%] Output variables 

Avg Trip Rate After 2010 3.9675 3.5708 4.3643   

Avg Trip Length after 2010 9.4033 8.4630 10.3436   

Transit Trip Length 

Increase Rate after 2010 

0.0101 0.0091 0.0111   

Transit Mode Fare after 

2016 

0.0100 0.0090 0.0110 Cumulative Private 

Vehicle VMT 

Transit Operation Cost 

Increase Rate after 2016 

-0.0099 -0.0109 -0.0089 Cumulative US 

Transportation CO2 

Emissions 

Annual Lane Mile Increase 

after 2012 

0.0051 0.0046 0.0056 Cumulative US 

Transportation 

Externalities 

Electricity CO2 emission 

factor 

0.0007 0.0006 0.0008 Cumulative Transit 

Ridership Preference 

Diesel CO2 emission factor 0.0102 0.0091 0.0112   

NG CO2 emission factor 0.0093 0.0084 0.0103   

Gasoline CO2 emission 

factor 

0.0136 0.0122 0.0150   

Gasoline Tax Increase Rate 

after 2020 

0.4000 0.3600 0.4400   

Scenario Fund Increase rate 

after 2016 

593,000,000 533,700,000 652,300,000   
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Table 16: Second sensitivity analysis input-output table 

Input variables Deterministic 

(mean) values 

Min [-10%] Max [+10%] Output variables 

Transit Trip Length 

Increase Rate after 2010 

0.0101 0.0091 0.0111   

Transit Mode Fare after 

2016 

0.0100 0.0090 0.0110 

 
 

Transit Operation Cost 

Increase Rate after 2016 

-0.0099 -0.0109 -0.0089 Cumulative Private 

Vehicle VMT 

Annual Lane Mile Increase 

after 2012 

0.0051 0.0046 0.0056 Cumulative US 

Transportation CO2 

Emissions 

Electricity CO2 emission 

factor 

0.0007 0.0006 0.0008 Cumulative US 

Transportation 

Externalities 

Diesel CO2 emission factor 0.0102 0.0091 0.0112 Cumulative Transit 

Ridership Preference 

NG CO2 emission factor 0.0093 0.0084 0.0103   

Gasoline CO2 emission 

factor 

0.0136 0.0122 0.0150   

Gasoline Tax Increase Rate 

after 2020 

0.4000 0.3600 0.4400   

Scenario Fund Increase 

Rate after 2016 

593,000,000 533,700,000 652,300,000   

 

4.5 Results and Discussions 

4.5.1 Multivariate sensitivity analysis: Exploring Behavioral Limits of Policy Implications 

The outcomes of this model consist of the behavioral limits of key parameters for future 

years, and are then used to identify the most effective policy leverage points. Therefore, 

accounting for the relevant statistical distribution data, Figure 34 presents the historical 
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data and corresponding model simulation behavior for key parameters related to the 

U.S. transportation sector (Figures 34a, 34c, 34e, and 34g) and the model simulation 

behavior with the relevant uncertainty ranges included (Figures 34b, 34d, 34f, and 34h). 

Additional results of the uncertainty analysis are provided below to numerically 

illustrate the behavioral limits of the results in 2050 (Table 17), with their corresponding 

histogram graphs presented in Figures 30 - 33.  

Table 17: Statistics of distribution results in 2050 

 

 

Variable Unit Min Max Mean Median StDev. Norm. 

StDev. 

Private VMT 
Billion 

miles 
3361.17 4100.87 3736.36 3736.79 152.80 4.1% 

Public Transportation 

Ridership Fraction 

% of total 

trips 
6.23% 7.23% 6.71% 6.71% 0.17% 2.5% 

US Transportation CO2 

Emissions 

Billion ton 

CO2 
1.1529 1.4677 1.3087 1.3082 0.0579 4.4% 

Cost of U.S. Transportation 

Externalities  

Billion 

dollars 
93.87 116.56 105.21 105.19 4.44 4.2% 
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Figure 30: Histogram of private VMT in 2050 

 

Figure 31: Histogram of public transportation ridership in 2050 
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Figure 32: Histogram of transportation-related CO2 emissions in 2050 

 

Figure 33: Histogram of total transportation-related air pollution externality in 2050 
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Figures 34a and 34b illustrate the increasing trend in private VMT from 1990 to 2050 

and its behavioral limits from 2016 to 2050, respectively. The model results for the 

deterministic (mean) values show an increase in VMT from approximately 3.1 billion 

miles in 2016 to 3.7 billion miles in 2050. However, these projections can vary between 

3.3-4.1 billion miles in 2050 based on projections with a 95% confidence interval, as 

shown in Table 17 and Figure 30 above. The variations in minimum and maximum values 

for the 2050 projections also emphasize the importance of uncertainty data, as the 

results from deterministic values alone were not able to capture this difference, which 

amounts to approximately 800 million miles. The analysis also indicates us that it is 

plausible to change private VMT by 800 million miles with various scenarios of changing 

given deterministic factors. Therefore, decision and policy efforts should consider all 

critical parameters of this model at the same time. Impacts related to private vehicles 

dominate the overall impacts of the U.S. transportation system due to its high 

dependency on private vehicle usage. Although the private vehicle preference (as a 

percentage of total trips) is almost constant or only slightly declining, the number of 

private vehicles is still increasing due to the increasing trend in the total U.S. population. 

As a result, private vehicle VMT in 2050 is almost twice as high as it was in 1990. As 

explained during the model development process, the relationship between lane-mile 

capacity and traffic congestion controls private vehicle usage shares based on the level 

of traffic congestion.  



102 

 

Transit and private vehicle use preference rates are complementary variables in the 

current U.S. urban passenger transportation profile (Figures 34a - 34d). Transit ridership 

has been increasing in the U.S. over time as the urban population has increased. 

However, this increase has never reached the levels needed to effectively decrease the 

dominant impacts of private vehicle usage on the overall U.S. transportation sector. 

Figure 34c also depicts this slight fractional increase in transit ridership preference. After 

2016, the transit ridership preference rate is projected to remain almost constant at 

around 6.7% with only a few slight changes over time. As presented in Figure 34d and in 

Table 17, transit ridership rates can reach up to 7.25% in 2050, or can drop as low as 

6.2%. One of the limitations preventing transit ridership from increasing to any 

significant degree can be traced back to Loop B2 in the CLD (Figure 20), meaning that a 

rapid decrease in private vehicle usage can also negatively impact the public 

transportation system, which is partially funded with fuel tax revenues.   

U.S. transportation-related CO2 emissions are presented in Figure 34e. The projections 

in this graph indicate that emissions can be reduced by 2050 to even lower levels than 

those in 1990. Due to the heavy dependency on fossil fuels in the U.S. transportation 

sector, transportation-related CO2 emissions are the second largest contributor to the 

total U.S. CO2 emission rate, and so many initiatives besides shifting toward public 

transit are being put into effect to decrease the current increasing trend in 

transportation-related CO2 emissions in the U.S., such as government regulations to 



103 

 

improve fuel economy. Although private VMT currently has an increasing trend while 

public transportation preference rates have yet to demonstrate a realistically significant 

increase trend, CO2 emissions from the U.S. transportation sector have a decreasing 

trend due to projected fuel economy improvements from the Argonne National 

Laboratory’s VISION model (Argonne National Laboratory 2016). The results in Figure 

34f estimate a CO2 emission rate of 1.3 billion tons in 2050, which can vary between 

1.15 and 1.47 billion tons of CO2.  

Finally, Figure 34g presents air pollution emission externalities related to urban 

transportation activities each year in the U.S., while Figure 34h illustrates their large 

uncertainty range. It is worth noting that the graphs pertaining to transportation-related 

CO2 emissions and externalities show very similar behavioral patterns, as CO2 emissions 

account for a significant portion of the total externality costs as opposed to those of 

other air pollutants such as CO, SOx, NOx, PM10, PM2.5, and VOC. It should also be noted 

that transportation-related emissions cost approximately 105 billion dollars in 2016, 

whereas this value remains almost constant until 2050. However, this constant trend 

still has a wide variation range of ±11 billion dollars, which is also shown in Table 17 and 

Figure 33. This indirect cost to the public in the U.S. associated with passenger 

transportation activities is just crucial enough to highlight the importance of the 

problems related to mode choice and fossil fuel dependency. 
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Figure 34: Critical parameter results based on average values and multivariate sensitivity 
analyses [per year]: a) Private vehicle miles traveled (VMT) average simulation values; b) 
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Private vehicle miles traveled multivariate sensitivity; c) Public transportation ridership 
average simulation values; d) Public transportation ridership multivariate sensitivity; e) 
U.S. urban passenger transportation CO2 emissions average simulation values; f) U.S. 
urban passenger transportation CO2 emissions multivariate sensitivity; g) U.S. urban 
passenger transportation emission externalities (in 2015 constant dollars) average 
simulation values; h) U.S. urban passenger transportation emission externalities (in 2015 
constant dollars) multivariate sensitivity 

4.5.2 Policy analysis: Exploring leverage points for policy implications 

The applicable trends in critical parameters with respect to urban passenger 

transportation in the U.S. have been presented and discussed in the previous section. 

Although the uncertainty ranges and behavioral limits of these parameters can provide 

important insights, these values do not provide sufficient information for policy analyses 

unless the degrees of sensitivity to critical inputs (control variables) are also 

investigated. In other words, the parameters that directly and significantly affect urban 

transportation mode choice in the U.S should also be identified and analyzed in order to 

determine more effective policy strategies. Hence, Figures 35 and 36 will each depict 

the sensitivity of different model parameters (inputs) to the most critical model results 

(outputs).  

Figures 35a through 35d present the most sensitive parameters with respect to private 

vehicle VMT, transit ridership rate, passenger transportation related CO2 emissions, and 

passenger transportation-related externalities, respectively. These analysis results 

revealed that the average trip length and the average trip generation rate are the two 

most sensitive parameters with respect to transportation-related impacts, indicating 
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that, although the SD model in this study accounts for feedback relationships that 

typically favor public transportation as opposes to private vehicle use (system generated 

funds for public transportation, traffic congestion, capital funds for public 

transportation, etc.), private VMT will still increase/decrease depending on the overall 

trip generation rate. Similarly, the average trip rate and average trip length are the two 

dominant influencing factors with respect to the public transportation ridership rate. 

Unlike Figure 35a, the average trip length governs the transit ridership rate with a 

sensitivity level of 61%, as shown in Figure 35b. This result is also in agreement with the 

results of many discrete event studies from the available literature (Bhat 1997; Eluru et 

al. 2012; Ewing 1995), where trip length was likewise found to be one of the most 

significant variables for commuters/travelers when choosing a transportation mode. 

Figure 35c also indicates that the average trip length and trip rate will also have a 

significant influence on urban passenger transportation-related CO2 emission results, 

although these emissions are more heavily influenced by the per-gallon-of-gasoline CO2 

emission conversation factor. Therefore, as highlighted for other results, trip generation 

behaviors can be changed to more effectively reduce transportation-related emissions, 

although the main driving factor is the emission factor, which can nevertheless be 

reduced by using alternative fuels and/or more efficient vehicle technologies. Likewise, 

Figure 35d shows that air pollution externalities are almost equally sensitive to the 

average trip rate, average trip length, and per-gallon-of-gasoline CO2 emission factor. 
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Since there are other types of air pollution that contribute to these externalities, the 

conversation factor for CO2 emissions per gallon of gasoline shares its dominant role 

with average trip rate and length.  

All of the sensitivity results (Figure 35) clearly indicate that trip generation and trip 

characteristics (e.g. average trip rate and length) will feature the most critical 

parameters for changing transportation mode choice patterns in the U.S., as the model 

outputs corresponding to transportation mode choice (i.e. transit ridership rate and 

private VMT) are heavily influenced by these parameters with a sensitivity coefficient of 

99%. This study therefore predicts that the availability of transit funding will not affect 

mode choice in the U.S. unless the average trip length and/or the trip generation rate 

can be changed to accommodate such a shift in mode choice. This finding also supports 

the hypothesis previously stated in the first chapter of this dissertation, in that 

sustainable urban development (upon which trip generation rates and other trip-related 

characteristics will ultimately depend) is crucial for a more sustainable shift in 

transportation mode choice. Radical infrastructure accommodations and urban spatial 

changes are therefore urgently required to change trip generation metrics and thereby 

yield a more effective transportation mode shift.  
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Figure 35: Sensitivity coefficients of critical parameters: a) Private vehicle miles traveled 
(VMT); b) Transit ridership c) U.S. urban passenger transportation related CO2 emissions 
d) U.S. urban passenger transportation emission externalities [Figure legend 
abbreviations: “Ave.”: Average; “Tr.”: Transit; “inc.”: increase]. 
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two available mode choices in the developed model), any factor that increases transit 

ridership rate therefore decreases private vehicle usage, and vice versa.  

Other parameters that influence the selection of a particular transportation mode target 

many different aspects of the mode selection process in the U.S. transportation sector. 

For instance, from the analysis results in Figure 36, transit operation cost is the second 

most sensitive parameter with respect to transportation mode choice, underlining the 

importance of a cost-effective transit system, especially in cities and other urban areas. 

In addition to the cost effectiveness of the transit system, the amount of capital funds 

dedicated to transit system development also contributes to the net available funds for 

the transit system, and therefore, two of the main contributing factors to net transit 

system revenues (transit operation costs and capital funds) have a combined sensitivity 

impact of ±42% (±26% and ±16%, respectively) with respect to private VMT and transit 

ridership rate. Transit mode fare prices also directly influence the transportation mode 

choice of many commuters/travelers, so increasing transit fare prices is typically 

expected to reduce ridership, but as shown in Figure 36, an increase in transit fares 

would actually result in a slight increase in transit ridership. This is again due to the 

resulting increase in net available revenues for transit systems, which encourages more 

transit ridership through system expansions, system improvements, advertising, and 

other possible improvements and incentives.  
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On a similar note, it is not surprising that increasing roadway capacity in the U.S. has a 

negative impact on public transportation ridership as shown in Figure 36, since such 

increases in road capacity are typically expected to reduce traffic congestion, thereby 

making private vehicle usage a more attractive option. However, increasing the roadway 

capacity to accommodate current trends in private vehicle ownership and usage is 

almost impossible due to limited funding and land for new roads and/or road 

expansions. Lastly, gasoline fuel sale taxes are also expected to influence mode choice 

behavior significantly due to their balancing feedback connection to mode choice, but 

the impacts of fuel taxes on transportation mode choice are limited to a sensitivity 

coefficient of 4%.  
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Figure 36: Sensitivity coefficients with respect to (a) cumulative private VMT and (b) 
cumulative transit ridership preference rate 
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CHAPTER FIVE: THE U.S. METROPOLITAN AND MICROPOLITAN 
AREAS COMMUTER TRANSPORTATION MODE CHOICE: A DISCRETE 

EVENT MODELING APPROACH 

A partial work of this chapter has been submitted to the Transportation journal for 

publication and under review process with the title of “Autonomous Vehicles or 

Prevailing Transportation Policies? An Integrated Modeling Approach Reveal Potential 

Environmental Benefits ”. 

5.1 Discrete Event Simulation: Multinomial fractional split model 

The analysis of mode choice at an urban region level cannot be accommodated with 

conventional discrete choice models because the dependent variable is a fractional 

mode share (as opposed to a single chosen alternative).  Hence, we resort to the 

adoption of a fractional split multinomial model. The approach proposed by Papke and 

Wooldridge (1993) employs a quasi-likelihood based estimation approach for modeling 

fractional variables as a function of exogenous variables. The approach has received 

application in recent years in the transportation field (Eluru et al. 2013; Lee et al. 2016; 

Milton et al. 2008; Sivakumar and Bhat 2002). In this paper five modes of transportation 

(drive alone, car pool, public transit, walking and other mode) have been considered for 

each city. Let, ymi be the fraction of transportation mode (m = 1, 2, …, M) used in city i (i 
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= 1, 2, …, I). The proportion of each mode ranges between 0 and 1 and the sum of the 

fractions across all the mode should add up to one.  

 0 ≤ ymi ≤ 1  

 ∑ 𝑦𝑚𝑖
𝑀
𝑚=1  = 1  

Let, the fraction ymi be a function of a vector xi of relevant explanatory variables 

associated with attributes of the city i. 

 E [ym | x] = Gm (x; β)  

 0 < Gm (.) < 1  

 ∑ 𝐺 (. )𝑀
m=1  = 1  

Where Gm (.) (m = 1, 2, … M) is a predetermined function. The properties specified for 

Gm (.) assure that the predicted fractional mode choice will range between 0 and 1 and 

will add up to 1 for each city. The multinomial logit functional form for Gm in the 

fractional split model is as: 

 E (ym | x) = Gm (x; β) = 
exp (𝑥𝛽𝑚)

∑ exp (𝑥𝛽𝑚)𝑀
𝑚=1

 , m = 1, 2, …, M 

Given the probability expression above, the quasi likelihood function is as follows: 

 Li (β) = ∏ 𝐺𝑚(𝑥𝑖;𝑀
𝑚=1 𝛽)𝑦𝑚𝑖   

The quasi log-likelihood function for the sample is defined as: 

 ℒ (β) = ∑ ln[𝐿𝑖 (𝛽)]𝐼
𝑖=1   
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5.2 American Community Survey (ACS) Data 

The U.S. Census Bureau publishes American Community Survey (ACS) data that is also 

available thought American Fact Finder website that allow users to modify and set 

custom datasets (US Census Bureau 2016). Through many available geographic 

boundary selection, this study uses metropolitan and micropolitan statistical area to 

only consider urban areas in the US. The US Census Bureau defines urban areas that has 

population more than 20K and less than 50K as micropolitan statistical areas and 50K 

and above population as metropolitan areas. This geographic boundary selection 

consists of 929 urban areas of the US including Puerto Rico. The data included the 

population of each urban area and their following attributes: 

• *Transportation mode choices (Drive alone, carpool, public transportation, walk, 

and other), 

• *age groups (16 to 24, 25 to 44, 45 to 54, 55 to 64, and 65 years and older),  

• *gender groups,  

• native or foreign born information,  

• *employment type (i.e. government, private sector, self-employed),  

• *income levels ($1 to $24,999; $25K to $34,999; and $50K and above),  

• employment industry (ACMT, sales, finance, education and others),  

• occupation type (management, service, sales, and natural),  
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• poverty level (below 100, 100 to 149, and 150 and above),  

• *time of leaving for work (12:00am to 6:59am, 7am to 7:59am, 8am to 8:59am, 

9am to 11:59pm), 

• *travel time (less than 10 mins, 10 to 14 mins, 15 to 19 mins, 20 to 24 mins, and 

25 and above), 

• *number of vehicles available in the household (no vehicle availability, 1 vehicle, 

2 vehicles, 3 and more vehicles).  

As it mentioned above, metropolitan area classification of the data consists of vast 

variation on population since the upper limit reaches up to almost 10 million for greater 

New York area. As one of the motivation of this study, city size has impacts on 

transportation mode choice, so the data is disaggregated into four major city size groups 

as follows (please see Table 18 for descriptive analysis results of each city size group and 

also Figure 37 for geographical presentation of each city size group): 

• Very Large City: Population 1 million and above 

• Large City: Population between 500K to 1 million 

• Medium City: Population between 200K to 500K 

• Small City: Population below 200K 



116 

 

 

Figure 37: The U.S. metropolitan and micropolitan areas based on their population data 
(Urban area classification; darker colors represent larger population areas) 

 

Table 18: American Community Survey data description and total population portion 
  ACS Dataset for Urban-Labor Force Population Portion in total 

population of 

302.5M in 2015 
n (# of 

cities) 

Total population of 

sample 
Mean Population Median Population 

Very Large City 27 63,506,084 2,352,077 1,795,123 21% 

Large City 24 17,933,199 747,217 701,162 6% 

Medium City 63 19,314,523 306,580 292,529 6% 

Small City 815 34,784,904 42,681 25,337 11% 

Total 929 135,538,710 145,897 30,220 45% 

 

The dataset of ACS that is utilized in this study for metro/micropolitan areas of the U.S. 

only includes labor force population and commuters, which reduces the population 
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representation to 45% of total population (please see Table 18). The reason behind this 

gap is due to rural area population and elderly and younger population groups that are 

not included in this study’s data consideration. Although the population representation 

rate indicates less than total population, this portion can be considered as the major 

and routine contributors of transportation activities.  

Due to the nature of using fractional split model the data should be converted to 

proportional form where each attribute group has their own percentages compare to 

each other (i.e. raw data provides male population in Orlando, FL area and this 

information is converted to a percentage of male and female population based on total 

population). Besides, some of the attributes have several parameters that can be 

grouped together for such as income level (reduced to 2 groups as “below 25K income” 

and “25K and above income”), time of leaving for work, travel time, number of vehicle 

in the household (please see following result Table 19 for their compromised groups). 

After the data preparation phase for DES, the model is designed and indicated that 

some of the attributes have no significant relation with transportation mode choice such 

as: native or foreign born information, employment industry, occupation type and 

poverty level. The statistically significant attributes are marked with asterisks (*) on 

above list. 
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5.3 Multinomial fractional split model results 

Based on the exogenous variables available in ACS, fractional split multinomial model is 

estimated as explained in previous sections. The model provides significant associations 

of demographic attributes for different cities for transportation mode choice.  Table 19 

summarizes all of the significant attributes from the model of ACS dataset, which also 

guide the dynamic modeling parameter relations. Before moving to the dynamic 

modeling of the US urban areas in Chapter 6, Table 19 should be investigated closely 

and interpolated to understand interconnections of all attributes.  

All city sizes only affect public transportation mode with positive relation. In other 

words, medium, large, and very large city group commuters more likely to choose 

transit than small city commuter, but this effort is stronger if the city is larger in terms of 

population. Moreover, this result is not surprising since larger metropolitans of the US 

has the highest transit ridership ratio compared to smaller cities. The only other city size 

related impact on mode choice is affecting carpool from large city commuters and it is a 

negative relation. Therefore, the model indicates that large city commuters slightly less 

likely to choose carpool mode.  

In addition to large city related impact, carpool is positively affected by male population, 

commuters who are 55 years and older, and commuters who rent their house. It can be 
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interpreted that male population does not prioritize their safety as much as female 

population, so male commuters are more likely to carpool. The relation between 

commuters who live on rental property and carpool mode choice can be connected with 

economic reasons, since carpool can be a mode that save money. Finally, commuters 

who travel more than 20 minutes are less likely to choose carpool. Travel time increase 

may lead to difficulty of finding other commuters that travel to identical area. 

City size related significant positive relation for public transportation ridership is 

followed by other attributes such as male proportion, time of leaving home for work 

(8am – 8:59 am proportion), and rental house occupants. Similar to carpool mode, 

female proportion of study groups is less likely to use transit mode compare to male 

population, which again can be relate with discomfort and insecurity issues of transit 

system for female commuters. Compare to other early time groups (12:00-6:59am and 

7:00-7:59am) for leaving to work, 8 – 8:59am group commuters may find it more 

convenient to ride transit modes, which can explain the positive relation for public 

transportation mode choice. Lastly, rental home occupant commuters tend to use more 

public transportation than home-owners and this could be again associated with 

economic reasons or higher density of residential communities available as rental house 

and their easy access to transit system (i.e. high-rise apartment communities that). On 

the other hand, number of vehicles in the household and travel time of 20 and more 

minutes decreases the willingness of commuting with public transportation. It is not 
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surprising that as the number of commuters who has 1 or more vehicles in the 

household increases there is likely a reduced use of public transportation. Similarly, 

longer commute distance discourage public transportation use for commuters. 

As an alternative and active mode choice for commuters, walking is affected negatively 

by many attributes but only employment type and late morning commute hours (8-

8:59am group) tends to increase walking mode. Personal vehicle availability in the 

household has negative relation with walking mode, and it overlays with transit mode 

choice results. All available age groups for this analysis (25-44 years old, 45-54 years old, 

and 55 years and older) are less likely to choose walking compare to age group 

proportion of 16-24 years old. There is no statistical evidence for connecting this impact 

with vehicle availability but the youngest population group might not have personal 

vehicle and/or choose this active mode of transportation for personal reasons. 

Commute time of more than 10 minutes tends to discourage commuters from walking 

and it could be reasonable for commuters with the consideration of weather impacts 

(heat, cold, rain, snow, etc.) throughout the year. The two groups of time of leaving for 

work attribute affects the walking mode choice in a controversial way. The early 

commute hours of 7-7:59 am decreases the walking mode choice where 8-8:59 am 

commuters tend to choose walking more than base group of 12:00-6:59 am commuters. 
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Table 19: Fractional split multinomial model results 

Variable 
Drive Alone Car Pool Public Transit Walking Other Mode 

Parameter t-value Parameter t-value Parameter t-value Parameter t-value Parameter t-value 

Constant 0 - -3.88 -19.36 3.4 0.82 10.18 5.4 -3.21 -4.35 

City Size (Base: Small City) 

Medium city - - - - 0.62 4.8 - - - - 

Large City - - -0.07 -2.36 0.95 7.28 - - - - 

Very Large City - - - - 1.81 7.31 - - - - 

Proportion of Gender (Base: Proportion of Female) 

Proportion of Male - - 2.37 8.28 5.53 2.61 - - 2.63 3.86 

Proportion of No. of Vehicle in Household (Base: Proportion of 0 vehicle) 

Proportion of 1 vehicle - - - - -13.61 -2.74 -4.9 -2.29 - - 

Proportion of 2 or 3 vehicles - -     -12.88 -3.1 -6.79 -3.67 -2.5 -3.72 

Proportion of Age Group (Base: Proportion of 16 to 24 years old) 

Proportion of 25 to 44 years - - - - - - -8.32 -9.78 -2.45 -3.87 

Proportion of 45 to 54 years - - - - - - -4.56 -3.8 -3.77 -3.06 

Proportion of 55 years and over - - 1.21 4.3 - - -6.09 -7.02  - - 

Proportion of Income (Base: Proportion < $25K) 

Proportion > $25K - - - - - - - - 0.78 2.5 

Proportion of Travel Time (Base: proportion of commuters with travel time less than 10 minutes) 

Proportion of 10 to 14 minutes - - - - - - -3.45 -3.41 - - 

Proportion of 15 to 19 minutes - - - - - - -1.71 -2.49 - - 

Proportion of 20 minutes and more - - -0.28 -3.71 -1.22 -2.4 -2.14 -4.91 - - 
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Variable 
Drive Alone Car Pool Public Transit Walking Other Mode 

Parameter t-value Parameter t-value Parameter t-value Parameter t-value Parameter t-value 

Proportion of Employment Type (Base: Proportion of Private Sector) 

Proportion of Government - - - - - - 1.29 4.68 - - 

Proportion of Self Employed - - - - - - 4.5 5.82 4.64 6.51 

Proportion of Time of Leaving for Work (Base: Proportion of 12.00 am to 6.59 am) 

Proportion of 7.00 am to 7.59 am - - - - - - -2.67 -5.73 - - 

Proportion of 8.00 am to 8.59 am - - - - 5.97 3.56 2.21 3.81 - - 

Proportion of House Occupied (Base: Proportion of Owner) 

Proportion of Rented - - 1.48 11.43 3.99 4.34 - - 2.73 6.03 

Number of cities 929 

Log Likelihood of constant only Model -544.86 

Log Likelihood at Convergence -538.36 

*All the coefficients are statistically significant at 95% confidence level 
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The early time commutes might cause discomfort for walking on dark in some times of 

the year in certain regions, which may also increase security concerns of commuters. 

Lastly, government employed and self-employed commuters tend to use more walking 

than private sector employed commuters.  

The other modes of transportation include taxicab, motorcycles, bicycle, and others for 

this dataset. Therefore, it is more difficult to interpret this mode related results since it 

has many different modes that can have their own reasoning. Like other modes, male 

commuters tend to use more other modes of transportation such as cycling, taxicab, 

etc. The mode is also positively affected by income level of commuter $25K and more, 

self-employed commuters compare to government and private employed commuters, 

and rental house occupants compare to house-owner commuters. Number of vehicle 

availability of 2 and more vehicles in the household proportion again decrease the use 

of other modes of transportation. Lastly, two age groups of commuters (25-44 and 45-

54 years old) are less likely to use other modes compare to 16-24 years old commuters.    
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CHAPTER SIX: A NOVEL INTEGRATION OF DISCRETE EVENT AND 
DYNAMIC MODELING APPROACHES: A COMPLETE PICTURE FOR 

SUSTAINABLE URBAN MOBILITY 

A partial work of this chapter has been submitted to the Transportation Research Part A: 

Policy and Practice journal for publication and under review process with the title of 

“Prevailing Transportation Policies or Autonomous Vehicles? Transportation Mode 

Choice Projections of the United States Urban Areas”. 

6.1 Model Development 

As it explained in research objectives of this dissertation, hybrid simulation modeling 

necessary to estimate all transportation mode choices in the U.S. for future 

sustainability performance under various policy practices. Previous chapter defined the 

discrete event method, data preparation, and model results interpretations. Following 

these inputs of Chapter 5, this chapter extends the developed SD models in Chapter 3 

and 4 and generate hybrid model. Figure 38 illustrates the general concept of hybrid 

modeling in this study. 2015 American Community Survey’s (ACS) demographic and 

commuter mode choice characteristics for the US metropolitan and micropolitan areas 

are gathered and converted to a proportional dataset. Thus, SD model can be formed 

with the inclusion of significant attributes and other parameters that complements the 

transportation system in the US. By the formation of “holy grail” (as it defined by 



125 

 

Brailsford et al. (2010)) in VENSIM (SD modeling software), transportation mode 

choices, vehicle miles traveled (VMT), CO2 emissions, air pollution externalities of city 

types and the nation can be projected until 2050. 

 

Figure 38: Concept illustration for hybrid modeling of simulation methods 

6.1.1 System conceptualization (SD model) 

Considering five modes of transportation for commuters, dynamic modeling approach 

allows this study to identify the feedback mechanism of transportation sector and its 

related components as a whole in the U.S. This macro-level relation identification 

provides an opportunity to simulate key outcomes of the system (i.e. air pollution 

emissions, economic and social impacts) and test policy initiatives for long-term spans. 

However, in order to start formulating and identifying dynamic model’s parameters, the 

problem should be explored in conceptual level. Thus, CLD presents the 

interconnections and feedback loops of the system in Figure 39. As it explained in 
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Section 4.1 with Sterman’s (2000) quote, real-world problems progress with feedbacks 

that decision makers gather in the forms of qualitative or quantitative by the time. 

Therefore, it can be stated that parameters are connected with cause and effect 

relations. As can be seen in Figure 39 parameters are linked with each other and the 

influence that is transferred through those links are presented with polarity symbols 

(Sterman 2000). 

 

Figure 39: Causal-loop diagram (CLD) for hybrid model 

This diagram provides guidance to see and formulate the impacts of the transportation 

sector for urban area commuters of the U.S. that also provides feedback to the system 

(i.e. climate change’s drawback impact on life expectancy and so population and GDP). 

The CLD shows six feedback loops within the system where four of them are balancing 

and two of them are reinforcing loops. Balancing loop (B) represents a loop that an 
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increase in any single factor cause subsequent decrease. Moreover, reinforcing loop (R) 

indicate a loop that an increase causes an additional increase (Ercan et al. 2016c; 

Sterman 2000). Each loop is presented with their rotation and labels in the figure.  

Each of the feedback loop relation of the CLD is summarized in following Table 20. Due 

to nature of the identified system, most the loops share many of their parameters with 

each other and it may be difficult to locate some of the loops, so following table can 

guide the readers. As can be seen from the figure that mode choice variable is in the 

center of diagram and all nine significant parameters that influence mode choice 

behavior according to discrete event model is labeled with red color. The conceptual 

model has two general feedbacks that are caused by climate change impacts which 

create “population (B1)” and “economy (B2)” loops. These two loops are identified as 

balancing, since transportation emission increase has negative impacts on life 

expectancy and economy (GDP and labor force). Drive modes (drive alone and carpool) 

and on-road transit modes increase traffic congestion and travel time parameters which 

cause negative on drive mode choices, hereby this loop is identified as another 

balancing loop (B3). Similarly, increase on drive modes’ VMT generate balancing relation 

with travel time and mode choice (B4) (drive mode commuters tend to switch their 

mode choice with the increase of travel time). However, economic impacts of traffic 

congestion indicate reinforcing relation since vehicle ownership cost increase also 

increases transportation related GDP, which enforces number of vehicles on the 
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roadways (R1). Finally, economy model of the US GDP generation enforces itself with 

more vehicle sales and transportation related GDP generation (R2). 
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Table 20: Feedback loop relations for CLD 

Feedback Loops Relations 

  Emissions Related Damage Loops  

    Balancing Loop 1 (B1) –  

   

    Population 

Total Population →+ Labor Force Population →+ Discrete 
Model Related Parameters (Gender, Time of Leaving for Work, 
Employment Type) and Trip Generation →+ Mode Choice 

(Drive Alone, Carpool, Transit, Walk, and Other) → 
Transportation Emissions →+ Climate Change Impacts →- Life 
Expectancy →+ Age Groups of Total Population →+ Total and 
Labor Force Population 

    Balancing Loop 2 (B2) –  

    Economy 

Labor Force Population →+ Discrete Model Related 
Parameters (Gender, Time of Leaving for Work, Employment 
Type) and Trip Generation →+ Mode Choice (Drive Alone, 

Carpool, Transit, Walk, and Other) → Transportation 
Emissions →+ Climate Change Impacts →+ Economic Damage 
of Climate Change →- US GDP →+ Labor Force Population  

  Traffic Congestion Effects  

    Balancing Loop 3 (B3) –  

    Congestion 

Mode Choice →+ Drive Alone, Carpool, and Transit Modes 

→+ Traffic Congestion →+ Travel Time → Mode Choice 

    Balancing Loop 4 (B4) 

    Drive Mode VMT 

Mode Choice → Drive Alone and Carpool Modes →+ Drive 

Modes VMT →+ Travel Time → Mode Choice 

    Reinforcing Loop 1 (R1) –  

    Congestion (Economy) 

Traffic Congestion →+ Vehicle Ownership Cost →+ Total 
Transportation Sector Value Added to GDP →+ US GDP →+ 
Total Number of Vehicles in the US →+ Number of Vehicles in 

HH → Mode Choice → Drive Alone, Carpool, and Transit 
Modes →+ Traffic Congestion 

 Economic Impacts  

     Reinforcing Loop 2 (R2) –  

     GDP Model 

US GDP →+ Total Number of Vehicles in the US →+ Total 
Transportation Sector Value Added to GDP →+ US GDP 
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6.1.2 Hybrid simulation model development 

With the guidance of aforementioned modeling concept information in Chapters 2-5 

and necessity of hybrid modeling approach, model development and formulation can be 

formed conceptually as it shown in Figure 40. The development model consists of 

several sub-models that interconnects with each other as it summarized in CLD, so this 

Figure 40 explains the details of each sub-model and their input-output parameter 

relations. Some parts of the sub-models are adopted from the previous chapters such as 

population, trip generation, public transportation mode choice related emissions, air 

pollution externality calculation, total emission and externality, and climate change sub-

models (Chapters 3 and 4). 
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Figure 40: Conceptual interconnections of sub-models and scenarios 

(Legend: Red; outputs of the sub-model that input for associated sub-model, Blue; Exogenous inputs to the sub-models, 
Green; Output parameters but also significant parameters that are gathered from discrete model.) 
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The journey of the model starts with population sub-model where age groups, mortality 

and birth rates, and immigration rates comprise total population and also labor force 

population from the age groups of 16 to 65 years old. The labor force population is a key 

component in the model since it determines the total trip generation figures with the 

trip demand statistics (a.k.a. in model: average trip rate) from NHTS (Santos et al. 2011). 

The population sub-model also generates age and gender groups that are significant 

demographic attributes for discrete event model’s estimation. As can be seen from 

Figure 41 below, the population sub-model is adopted from Chapter 3. The discrete 

event model also indicates significant statistical relation with employment type and time 

of leaving for work on some of the mode choices. Although these two parameters can 

be modeled dynamically within the system, it may require extensive sub-model efforts 

and do not provide significant improvement to the accuracy of the model. Besides, 

these two parameters cannot be controlled or manipulated by the policy makers (i.e. 

employment type of a city cannot be changed to make differences on mode choice 

behavior). Therefore, employment type and time of leaving for work parameters are 

inputted to the model as a deterministic function of population based on historical 

trends of ACS (US Census Bureau 2016). Population sub-model generated city group 

classification and other ACS related data information are explained in detail in previous 

Section 5.2.  
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Figure 41: Population sub-model with attribute outcomes 

 

Trip generation and public transportation mode choice sub-model follows a similar path 

with Chapter 3 and 4 by only adding city size related changes into the sub-model as can 

be seen in Figure 42. 

 

Figure 42: Trip generation sub-model and public transportation ridership generation 
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The significant attributes that are highlighted in Table 19 leads the city size specific 

transportation mode choice simulation as shown in following Figures 43 – 46. All of the 

statistically significant attributes are converted to city size specific proportions, which 

then inputted to the utility function.  
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Figure 43: Very large city (VLC) group's utility function and mode choice probability 
calculations 

 

Figure 44: Large city (LC) group's utility function and mode choice probability calculations 
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Figure 45: Medium city (MC) group's utility function and mode choice probability 
calculations 

 

Figure 46: Small city (SC) group's utility function and mode choice probability calculations 
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Another attribute that DES model highlight is number of vehicles in the household (HH) 

and mode choice can be affected the groups of having zero, one, and two or more 

vehicles in the household. In order to model this attribute, total number of personal 

vehicles and GDP (economy) sub-models are formed. As can be seen from the Figure 40, 

GDP and total number of vehicle sub-models exchange feedbacks in the forms of “the 

US GDP per capita” and “per private vehicle cost of ownership” variables. And beyond 

that point, GDP sub-model receives feedbacks from climate change related economic 

damage factors, which is affected by the overall emission impacts of transportation 

passenger network (please see Fig. 47 for graphical illustration of these connections). 

Thus, total number of personal vehicle’s dynamic sub-model determines the proportions 

of the number of vehicles in the household by a linear regression model (please see 

following Equation 15). The determination of total number of vehicle variable provide 

accurate and statistically significant relation for determining 2 and more vehicles in the 

household and zero vehicle in the household proportions with the U.S. GDP per capita 

variable. The linear regression model parameters for predicting number of vehicle 

availability in the household is also can be found below in Equations 16-18 [Eq. 16-18]. 

This sub-model is also affected by one of the policy scenarios and AV addition changes 

the patterns of number of vehicles in the household variables, as it explained in 

following Section 6.2. 
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Personal vehicle ownership cost sub-model is designed with the reference of American 

Automotive Association’s (AAA) annual vehicle ownership cost reports (American 

Automative Association (AAA) 2016). The AAA’s calculation for cost includes, 

maintenance, fuel consumption, tire replacement, and fixed cost (loan or lease 

payment, insurance, depreciation, etc.) items as it shown in Figure 47. As it mentioned 

above section, red color variables indicate policy scenario addition, so Carbon Tax (CT) 

scenario related additional cost of personal vehicle ownership is added after 2025.  

Finally, all of these transportation related activities generate economic value and this 

value can be added to the overall annual GDP of the U.S. as it shown in Figure 47. 

Climate change related impacts on economy parameters is utilized on GDP increase rate 

to complete one of the feedback loops. 

 

Total number of vehicles = (2.51175E+08 + (9.76E-06 * US GDP) + (-0.961 * Total 
Population of 15 and over years old))                        [15] 

2 vehicles and more in the HH = (0.548 + (9.547E-07 * US GDP per capita) + (-1.368E-05 
* (Total number of passenger vehicles/100,000)                       [16] 

Zero vehicle in the HH = 0.117 + (-9.588E-07 * US GDP per capita) + (1.182E-05*(Total 
number of passenger vehicles/100,000))                        [17] 

1 vehicle in the HH = 1 - ("0 (zero) vehicle in the HH" + "2 Vehicles and more in the HH") 
                             [18] 
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Figure 47: Total number of private vehicles, number of vehicles in the household, and 
GDP sub-models 
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Based on the mode choice estimations for different city types, drive modes proportion 

can be calculated (drive alone and carpool modes are both considered as drive modes). 

Private (personal) vehicle use trips generate models’ private vehicle VMT variable, which 

can influence traffic congestion and travel time parameters. Urban Mobility Reports of 

the Texas Transportation Institute defines congestion index of cities based on VMT and 

available roadway infrastructure (Lomax et al. 2011). Hereby, the model formulates the 

dynamics of urban lane-mile infrastructure and its increase rate for projection years for 

traffic congestion score estimates. Generation of private vehicle (drive mode) VMT, the 

total emissions of personal vehicles can be determined with average fuel economy 

estimation of light-duty vehicle fleet of the U.S. As it explained in following Section 6.2, 

alternative fuel adoption (fuel economy improvement) is considered as the BAU 

scenario. So, the average fuel economy of LDV fleet variable uses U.S. Bureau of 

Transportation Statistics (2015) for historical data series and Argonne National 

Laboratory's (2016) VISION model estimations for future years. Lane-mile is an 

important parameter of traffic congestion measures and it increases with the help of 

government agencies’ funds in order to supply the demand of increasing VMT (Schrank. 

et al. 2015). Therefore, lane-mile, private vehicle VMT, and total number of personal 

vehicles parameters are utilized to form a linear regression that estimates travel time 

intervals. Following Equations 19 - 22 presents the variables of linear regression model 

estimation. Please also note that the variables shown in red color in Figure 48 imply the 
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policy scenario related changes. For instance, AV policy related external VMT increase 

prediction is inputted to the ‘private vehicle VMT’ variable, as well as the average fuel 

economy (FE) improvement on LDV fleet prediction. Similarly, Lane-Mile (LM) policy 

scenario related limiting lane-mile increase rate at certain levels is affecting ‘annual 

lane-mile increase’ rate. Private vehicle VMT variable is also an important variable for 

overall air pollution emissions determination, since it leads to calculate overall fuel 

consumption based on fuel economy values and projections for the total passenger 

vehicle fleet in the U.S.  

Travel Time (TT) less than 10 min = 0.235 + (-1.15E-08 * Lane Mile) + (-1.92E-14*"Private 
Veh. VMT") + (-4.82E-11 * Total number of passenger vehicles)                     [19] 

TT_10 to 14 min = 0.222 + (1.74E-08 * Lane Mile) + (-3.18E-14*"Private Veh. VMT") + (-
1.32E-10 * Total number of passenger vehicles)                       [20] 

TT_15 to 19 min = 0.224 + (1.64E-08 * Lane Mile) + (-2.96E-14*"Private Veh. VMT") + (-
1.03E-10 * Total number of passenger vehicles)                       [21] 

TT_More than 20 min = 0.39 + (1.73E-08 * Lane Mile) + (-8.75e-16 * "Private Veh. VMT") 
+ (7.59e-10 * Total number of passenger vehicles)                       [22] 
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Figure 48: Drive modes trip generation, traffic congestion, and travel time sub-models 
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6.2 Policy Scenarios 

As a great advantage of utilizing SD modeling approach, this chapter aims to test various 

policy scenarios on the U.S. urban transportation system for future references on 

transportation modes, emissions, and social impacts. Policy scenarios that are 

considered in this study are listed as follows: 

• Alternative fuel adoption and fuel economy increase [Default Scenario] (BAU) 

• Lane Mile (LM) (decrease of usual lane mile decrease) 

• Carbon Tax (CT) (federal policy to collect tax revenue from vehicle owners based 

on their annual emission estimates) 

• Automated Vehicle (AV) penetration (AV deployment related VMT, number of 

vehicle, and overall fuel economy changes). 

The model considers that the vehicle efficiency will be improving in the U.S. with 

alternative fuel deployment and federal policy/incentives due (Noori et al. 2016; Noori 

and Tatari 2016; Onat et al. 2015, 2016c). Therefore, the average fuel economy of 

passenger vehicle fleet projections from the U.S. DOE is considered as a default 

scenario. In addition, energy source shares’ for transit vehicles is considered to be 

shifted to alternative fuel as the current trends indicate (Ercan and Tatari 2015; Neff and 

Dickens 2015).  
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Lane mile (roadway expansion projects) increases in order to supply the demand of 

increasing number of vehicles and VMT, so that the level of service and traffic 

congestion measures can be lowered. However, alternative transportation modes 

cannot be competitive with the convenient of driving if the average travel time is not 

increasing significantly. Besides, lane mile increase will reach its limits due to land use 

limitations. Therefore, historical lane mile increase rate is considered as reduced around 

50% after 2020 (U.S. Bureau of Transportation Statistics 2015).  

Metcalf (2009) reviews the potentials and critics of carbon tax policy for the US, which is 

a policy effort that applies mandatory tax based on vehicle’s annual carbon emission 

estimates. It is highlighted as a necessary step to reduce emissions and also support the 

economy that is going through challenges due to climate change impacts (Stern 2007). 

However, as Metcalf (2009) also indicates, $15/tone CO2 can only increase the price of 

per gallon gasoline by 13 cents, which is equal to under 7% price increase. Therefore, 

this slight price increase is not expected to significantly change drive mode or travel 

demand behaviors. This study adopts $13/tone CO2 emissions policy scenario that starts 

on 2025 and applies with a constant rate until 2050 (WorldBank 2014).  

Finally, in order to captivate with current technology developments in transportation 

sector and foresee the future of transportation revolution, AV penetration scenarios are 

tested. The literature is still in developing stage for AV related policy since there is still 
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fully AV is not available in market but in testing stage so the research only relies on 

estimation data. Fagnant and Kockelman (2015) provides remarkable AV penetration 

level related behavioral change estimations such as VMT increase, total number of 

vehicle decrease, and overall fleet’s fuel savings. Litman (2017) completes this effort for 

estimating the benchmark years that the market penetration levels. Following Table 21 

summarizes the AV scenario related changes on the key parameters. Litman (2017) 

projects that AV’s market penetration level will reach up to 50% in 2045 and defines 

further development as uncertain since it can increase exponentially after certain 

market levels. Therefore, in order to complete the estimations for our study’s 2050 

target year, all parameters are interpolated from both studies results (Fagnant and 

Kockelman 2015; Litman 2017). The model also combines lane-mile and carbon tax 

policy scenarios to present their overall impacts compare to only AV scenario and finally, 

combination of all three scenarios. 

Table 21: AV scenario addition parameters 

  Estimated Year for Market Penetration Reference 

2020 2030 2045 ???? 2050 (Litman 2017) 

Market Penetration 1% - 2% 10% 50% 90% 60% 

(Fagnant and 
Kockelman 
2015) 

VMT Increase 1% 2% 8% 9% 8% 

Total number of vehicles -1% -5% -24% -43% -28% 

Fuel Savings 11% 13% 18% 25% 20% 

Fuel Savings in overall fleet 0.17% 1.30% 9.00% 22.50% 11.85%   
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6.3 Model validation 

6.3.1 Multinomial fractional split model validation 

Table 22: MAE and RMSE values at city level by mode  
Small City Medium City Large City Very Large City 

Mode MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

Drive Alone 0.038 0.049 0.034 0.044 0.033 0.039 0.046 0.071 

Car Pool 0.016 0.021 0.012 0.015 0.010 0.012 0.011 0.015 

Public Transit 0.006 0.011 0.009 0.013 0.009 0.011 0.039 0.058 

Walk 0.010 0.014 0.008 0.009 0.005 0.006 0.008 0.011 

Other 0.006 0.009 0.005 0.007 0.004 0.006 0.003 0.005 

 

MAE = 
1

𝑛
 ∑ |𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|𝑛

𝑖=1                [23] 

RMSE = √
∑ (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝑎𝑐𝑡𝑢𝑎𝑙)2𝑛

𝑖=1

𝑛
                 [24] 

6.3.2 System dynamics model verification and validation 

This chapter’s model also follows the similar path of verification and validation 

approaches by Qudrat-Ullah and Seong (2010). Thus, one-way ANOVA test is performed 

on some of the selected key parameters of the model to provide statistical validation 

results. As the Table 23 presents, all of the selected parameter and/or results of the 

study are statistically valid. Similarly, figures of these four parameters are also 
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illustrated below (Figures 49 - 52) to show how the model simulation results and 

historical behavior of that parameter matches. Although some of the figures indicate 

large value differences with simulation and actual data, it is due to the study boundaries 

and available historical data. For instance, Figure 49 implies that actual CO2 emissions of 

the transportation system is higher than model’s estimates. This model only considers 

urban commuters where the U.S. has tremendous amount of rural roadway activity that 

cause CO2 emissions. It is crucial to highlight here that the value gap on the figures does 

not necessarily indicate non-valid model, as long as the lines matches for the behavior, 

which can be supported by statistical analysis. 

Table 23: One-way ANOVA test results for some key results of the model 

  

p-value F 

df 

Mean Square Between 
Groups 

Within 
Groups 

Private veh. of VMT 0.000 242.99 24 1 2.041E+22 

Total number of vehicles 0.000 313.58 23 1 5.171E+14 

Transportation CO2 Emissions 0.000 104.208 24 1 1.103E+15 

Population 0.000 3720.28 24 1 3.397E+14 
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Figure 49: Behavioral reproduction of the U.S. transportation sector’s CO2 emissions 

 

Figure 50: Behavioral reproduction of personal vehicle (or LDV) VMT 
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Figure 51: Behavioral reproduction of the U.S. population 

 

Figure 52: Behavioral reproduction of total number of the personal (or LDV) vehicles in 
the U.S. 
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6.4 Policy implementations for different city sizes 

The outcomes of DES guide the hybrid modeling parameter selection and generate 

utility functions for each mode choices. Finally, the model run for overall urban 

transportation system in the U.S. reveals city size specific mode choice and impacts 

results with various policy scenarios. The combination of four city size groups and five 

mode choices with various impacts to present generates many crucial result graphs, 

however the manuscript is limited to show only some of these results such as city size 

specific mode choice changes and overall transportation system impacts (CO2 emissions, 

air pollution externalities, marginal CO2 emission changes) as follows.  

6.4.1 Very Large City 

Compare to average U.S. urban area transportation mode choice trends, very large cities 

are expected to present less drive alone mode but more public transportation mode 

choice (US Census Bureau 2016). Moreover, Figure 53a and 53b present this expected 

behavior for very large cities, where drive alone (DA) mode choice is between 73% and 

78% and public transportation (P) mode varies from 5% to 11%. As can be seen from the 

graph, BAU and Lane Mile (LM) and Carbon Tax (CT) policy scenario results are quite 

similar, yet LM+CT scenario decreases DA mode choice by 0.1% in 2050. This slight 

impact of LM+CT policy scenario is also observed for all other modes in very large cities 
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and does not present any behavioral change. However, AV scenario indicate interesting 

trends where it shifts the behavior of DA, P, walk (W), and other mode choices. 

As opposed to LM+CT policy, AV scenario decreases the increasing trend of DA mode by 

almost 3% in 2050. Although there are 27 very large cities, they represent a great 

portion of the commuter population (21% of the total population as shown in Table 18) 

and this rate change of each year can provide tremendous energy consumption savings 

and emission reductions from personal vehicles. The only mode choice that is not 

significantly affected by AV scenario is CP mode choice. This insignificant relation of AV 

scenario and CP mode can be explained with the statistical relation that is indicated in 

Section 5.3., which shows that CP mode is only affected by gender, the oldest age group, 

longer commute time, and rental house attributes. AV scenario does not directly affect 

any of these attributes so the decrease is limited with 0.13% in 2050 compare to BAU 

scenario.  

Public transportation trends are already decreasing for very large cities and this 

decrease is associated with increasing number of personal vehicle ownership and travel 

times. With the AV scenario addition, this decreasing trend becomes even more severe 

and reach around 3.5% in 2050. AV penetration scenario dictates that at least one 

vehicle ownership in the household will be increasing and this attribute becomes the 

dominant effect on the system to cause this decrease. It can be interpolated that VMT 
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increase projection and transit ridership decrease for AV scenario overlay with each 

other since commuters can choose DA or other modes.  

For BAU or LM+CT scenarios, W mode indicates decreasing trend where other modes 

continue with steady trend over the study period. However, AV penetration imply 

surprising impacts on these modes by changing their behavior and increase both mode 

choices. Along with other attributes that significantly affect W mode choice, proportion 

of two or more vehicles in the household cause the dominant impact and dramatic 

decrease of this attribute with AV penetration cause the W mode choice increase. It can 

be highlighted here that this increase indicates a behavioral change on the graph, 

however it is 1.2% of difference in 2050 compare to BAU scenario results. It is more 

difficult to interpret the results of other mode choices, since it consists of several 

different modes (i.e. cycling, taxi, etc.) and each of these modes have its own dynamics. 

Dramatic change of number of vehicles again cause the dominant impact on other mode 

choice, where remaining significant attributes neutralize each other. With the absence 

of many vehicles in the household, it can be observed that commuters tend to switch 

their mode to alternative modes. 
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Figure 53: Transportation mode choice of Very Large cities: [a] Drive Alone (DA) mode 
choice; [b] Public Transportation (P) mode choice; [c] Carpool (CP) mode choice; [d] Walk 
(W) mode choice; [e] Other mode choice 
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6.4.2 Large City 

Large cities consist of 24 metropolitan areas of the U.S. in this research and represent 

6% of the total population. As oppose to very large cities, large cities already have more 

than 80% of DA mode choice and this rate tends to increase linearly for future years. 

LM+CT policy scenario indicate a slight effort to decrease this trend by 0.08% in 2050. 

However, AV penetration can change this trend drastically and lower the DA rate by 

3.25% in 2050 as shown in Figure 54a. As the base mode choice for the DES model, all of 

the significant attributes of the model have impact on the estimates of DA mode choice 

over study period. In addition, due to the feedback relation of dynamic model, it can be 

stated that DA mode is under the influence of all model parameters. However, the 

drastic change of number of vehicles in the HH can be responsible for the dramatic 

decrease with AV penetration, since LM+CT policy scenario does not provide significant 

changes although it increases the travel time and vehicle ownership costs. As another 

drive modes, CP mode choice indicate a slight increase for BAU scenario in future years 

and AV scenario also causes a decrease on this behavior (please see Fig. 54c). However, 

the changes in CP mode choice is only limited with 0.16% in 2050 between BAU and AV 

scenarios. Moreover, the overall CP mode choice change from 1990 to 2050 is only 

0.67%.  
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Transit ridership for large cities already less than the half of very large cities’ P mode 

choice and it is expected to decrease over the study period as shown in Figure 54b. AV 

penetration impacts cause a stepper decrease on the mode choice, however this impact 

is not even greater than 1%. Therefore, the impacts on the P mode choice is limited due 

to its small scale. Similar to other cities behavior on W and other mode choices, these 

modes are increasing with AV scenario addition. However, only other mode related 

changes can be considered significant with 3.3% difference in 2050 between BAU and 

AV scenarios, since W related difference is limited to 0.8%. 

 



156 

 

 

Figure 54: Transportation mode choice of Large cities: [a] Drive Alone (DA) mode choice; 
[b] Public Transportation (P) mode choice; [c] Carpool (CP) mode choice; [d] Walk (W) 
mode choice; [e] Other mode choice 
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6.4.3 Medium City 

Medium cities consist of 63 metropolitan areas of the U.S. in this research and represent 

6% of the total population. Medium and large cities present similar mode choice results 

in terms of scale and representation area. For instance, DA mode choice for both of 

these cities are around 80%-82% range for BAU scenario and this similar scale can be 

observed in remaining mode choice graphs of Figure 55a-e. AV addition related 

decrease on DA mode is more significant for medium cities, since it reaches up to 4.2% 

in 2050 compare to BAU scenario. Likewise, AV influence on W mode choice is around 

1.5% and reaches up to 3.35% for other mode choices. 
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Figure 55: Transportation mode choice of Medium cities: [a] Drive Alone (DA) mode 
choice; [b] Public Transportation (P) mode choice; [c] Carpool (CP) mode choice; [d] Walk 
(W) mode choice; [e] Other mode choice 
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6.4.4 Small City 

Finally, small cities consist of 815 metropolitan and micropolitan areas of the U.S. in this 

research and represent 11% of the total population. Although it consists of majority of 

urban areas, the population total does not exceed the total population of very large 

cities. LM+CT and AV policy scenarios both decrease the BAU scenario’s DA mode choice 

projections, however LM+CT related impacts are limited almost 0.1% where AV cause 

4.4% decrease. The DA mode choice reaches the highest level compare to other city 

groups, however it also does not significantly differ from large and medium cities’ DA 

range.  

In Figure 56b, P mode choice extents the lowest rate compare to other city groups, due 

to lack of transit system existence in some of the urban areas in the dataset. Moreover, 

the existence of transit system for small cities can be questioned here, since it only 

ranges from 0.8% to 1.6 % throughout the study period. The DES results also support 

these findings since small city has the highest negative relation on P mode choice. AV 

addition reduce the already decreasing P mode by 0.1% in 2050. Therefore, it is not 

durable to discuss any policy impact on this mode choice.  

CP mode choice has identical behavior with other city groups and varies in less than a 

1% range. LM+CT policy has a noticeable impact on W mode in Figure 56d by 0.09% in 

2050, but this is still negligible compare to AV related 1.76% increase compare to BAU 
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scenario. Small cities also react to other mode choice increase with AV addition in to the 

market and extents up to 6.8% in 2050. 
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Figure 56: Transportation mode choice of Small cities: [a] Drive Alone (DA) mode choice; 
[b] Public Transportation (P) mode choice; [c] Carpool (CP) mode choice; [d] Walk (W) 
mode choice; [e] Other mode choice 
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6.5 Overall Transportation System Impacts 

As a result of the mode choice trends for urban area commuters, the two drive modes 

(DA and CP) and the public transportation (P) mode all contribute to the overall impacts 

of the U.S. transportation system as previously described in Section 6.1.2. It should be 

noted here that other mode choices (“Other”) include taxi cabs and motorcycles, both 

of which also have air pollution impacts, but these impacts are beyond the scope of this 

study. Recalling the policy scenarios previously described in Section 6.2, four policy 

scenarios (BAU, LM, LM+CT, and AV) are tested from 2017 to 2050. As indicated in 

previous mode choice estimates for different cities, the LM and CT scenarios are 

simulated together rather than separately due to their limited influence on their policy 

results compared to the results under the BAU scenario. The detailed results of the AV 

scenario for emissions and externalities are presented in the following figures for each 

city group.  

Before presenting the impacts of policy practices on emissions and externalities, the AV 

policy influence on total number of vehicles and personal vehicle ownership rates 

should be presented. As expected from AV scenario parameters, vehicle ownership is 

decreasing significantly, which can be seen in following Figure 57. Vehicle availability 

rates in the household are presented in Figures 58 – 60.  
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Figure 57: Total number of vehicles with and without AV market penetration scenario 

 

 

Figure 58: Percentage of households (HHs) two or more vehicles available with and 
without AV market penetration 
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Figure 59: Percentage of households (HHs) one vehicle available with and without AV 
market penetration 

 

 

Figure 60: Percentage of households (HHs) zero vehicle available with and without AV 
market penetration 

 

Figure 61 presents a cumulative graph of the total transportation-related annual CO2 

emissions under the AV scenario for all four of the city groups considered in this 

0%

10%

20%

30%

40%

50%

60%

70%

1
9

9
0

1
9

9
2

1
9

9
4

1
9

9
6

1
9

9
8

2
0

0
0

2
0

0
2

2
0

0
4

2
0

0
6

2
0

0
8

2
0

1
0

2
0

1
2

2
0

1
4

2
0

1
6

2
0

1
8

2
0

2
0

2
0

2
2

2
0

2
4

2
0

2
6

2
0

2
8

2
0

3
0

2
0

3
2

2
0

3
4

2
0

3
6

2
0

3
8

2
0

4
0

2
0

4
2

2
0

4
4

2
0

4
6

2
0

4
8

2
0

5
0

1 vehicle in the HH AV_1 vehicle in the HH

0%

2%

4%

6%

8%

10%

12%

1
9

9
0

1
9

9
2

1
9

9
4

1
9

9
6

1
9

9
8

2
0

0
0

2
0

0
2

2
0

0
4

2
0

0
6

2
0

0
8

2
0

1
0

2
0

1
2

2
0

1
4

2
0

1
6

2
0

1
8

2
0

2
0

2
0

2
2

2
0

2
4

2
0

2
6

2
0

2
8

2
0

3
0

2
0

3
2

2
0

3
4

2
0

3
6

2
0

3
8

2
0

4
0

2
0

4
2

2
0

4
4

2
0

4
6

2
0

4
8

2
0

5
0

0 (zero) vehicle in the HH AV_0 (zero) vehicle in the HH



165 

 

dissertation. The total annual CO2 emissions under the BAU and LM+CT scenarios are 

shown as a single line that indicates the total emission rate from all city groups. These 

CO2 emissions are already experiencing a decreasing trend due to fuel economy 

improvements and alternative fuel adoption, which has already been included in the 

BAU scenario. The LM+CT scenario follows the same path in the graph as the BAU 

scenario, but only yields 0.64 million tons annual CO2 emission reductions by the year 

2050. Conversely, the total CO2 emissions under the AV scenario demonstrate a much 

greater reduction of up 51.3 million tons (a 7% decrease) between the BAU and AV 

scenarios by the year 2050. Although the emission reduction potential of the LM+CT 

scenario is not negligible despite being much smaller than that of the AV scenario, the 

CO2 emission results clearly illustrate the potential of AV market penetration to reduce 

the number of vehicles on the roadway and improve energy efficiency despite its 

increases in the overall VMT of the U.S. transportation sector. 
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Figure 61: Total annual CO2 emissions from urban passenger transportation in the U.S. 
under the AV adoption scenario: Cumulative emissions of city sizes, Business as Usual 
(BAU) scenario, and Lane mile + Carbon Tax (LM+CT) Policy Scenario 
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VMT (as can be seen in Figure 62) and the slight benefits of the AV scenario in the initial 

years of AV market penetration, CO2 emissions are increased, and this increase 

accumulates to almost 13.5 million tons of CO2 for very large cities only. However, with 

the AV market penetration benefits previously observed, this behavior changes 

exponentially until the cumulative marginal difference for very large cities alone reaches 

up to almost 200 million tons of CO2; the total summation of the corresponding 

marginal emission difference for all city groups under the AV scenario is 474 million tons 

of CO2 by the year 2050, although it must be noted that this value is a net difference 

that accounts for the initial drawback impacts. On the other hand, the LM+CT scenario 

also yields crucial emission savings, but these savings cannot be seen in the graph due to 

their smaller scale; the total emissions from all city groups not shown in this regard for 

this scenario is limited to 13.7 million tons of CO2. 
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Figure 62: Annual VMT of drive modes (DA and CP) for urban area commuters 

 

Figure 63: Marginal cumulative differences in CO2 emissions compared to the BAU 
scenario for all city groups 
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All of the hybrid-modeling results corresponding to the aforementioned insignificant 

impacts are shown in the remainder of this section with respect to three possible policy 

scenarios. Figure 64 present these results in terms of the per-capita change in CO2 

emissions from 2017 to 2050 under all policy scenarios. As previously observed in Figure 

61, CO2 emissions are already experiencing a decreasing trend, and this trend alone 

yields a 28% emission reduction per capita under BAU scenario. This emission reduction 

is not noticeably different from those of the LM or LM+CT policy scenarios, each of 

which only yields a change of 0.07% compared to the BAU scenario. Conversely, the AV 

scenario yields a much more significant change of almost 34% from 2017 to 2050, which 

amounts to a difference of 5% relative to the BAU scenario. The model also tested the 

impacts of all three scenarios combined in order to test the possibility of a greater 

collaborative impact from all policies operating simultaneously, but this combination 

(the AV+LM+CT scenario) does not demonstrate any noticeable difference from the 

results of the AV scenario. 
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Figure 64: Marginal per-capita CO2 emission changes by all policy scenarios from 2017 
and 2050 

The model also calculates the air pollutant emissions from personal vehicles (considered 

in this study to be light-duty vehicles) and transit vehicles in terms of CO, NOX, SOX, 

PM10, PM2.5, and VOC emissions in addition to CO2 emissions. The marginal damages of 

these air pollutants (i.e. social cost or externalities) are converted into monetary values 

as explained in Section 6.1.2. These externalities are crucial for sustainability assessment 

of urban transportation design, since the ultimate goal of all of the accumulated 

literature and research in this regard is to improve air quality and (by extension) overall 

quality of life. Figure 65 summarizes the results of the externality calculations under the 

AV scenario, which are shown as cumulative areas for each city group while the total 

BAU and LM+CT scenario results are shown as single lines. The improved energy 

efficiency projections under the BAU scenario already contribute to a relatively steady 

behavioral pattern in externality values, while the impacts of AV market penetration 

begin to show a visible influence in overall externality levels after the year 2040, 
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although the AV scenario still shows an optimistic reduction trend in future years. 

Although the overall decrease under the AV scenario may seem limited, the difference 

between the externality results under the BAU and AV scenarios is approximately $1.5 

billion in the year 2050. It should also be noted that this number only corresponds to a 

one-year difference, while the decreasing trend under the AV scenario predicts 

promising externality savings for future years at higher AV market penetration levels. 

 

Figure 65: Total annual air pollution externalities of urban passenger transportation in 
the U.S. under the AV adoption scenario: Cumulative emissions of all city sizes, Business 
as Usual (BAU) scenario, and Lane mile + Carbon Tax (LM+CT) Policy Scenario 
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CHAPTER SEVEN: CONCLUSIONS AND LIMITATIONS 

As the population of the U.S. grows and people make more trips per day, the number of 

vehicles on roadways is increasing every day. Moreover, today’s transportation sector is 

still highly dependent on limited resources such as fossil fuels, land use, etc. As has 

already been highlighted in literature and government reports, it is expected that society 

will need to move away from private vehicles in favor of public transportation, walking, 

cycling, and other more sustainable alternatives in order to mitigate GHG emissions and 

climate change impacts. Overall modeling efforts and related policy practice results are 

summarized in following Figure 66. As it indicated in previous chapters each model and 

policy tests agreed on a single conclusion that paradigm shift is mandatory from current 

transportation system, urban development, and prevailing policy practices. Key findings, 

policy implementation, and detail discussions of the overall dissertation can be found 

below. 
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Figure 66: Overall dissertation findings summary 

The first SD model in this dissertation (Chap. 3) simulated the labor force population, 

number of person-trips, transportation mode preferences, fuel/energy consumption, and 

CO2 emission impacts. The SD approach allowed the author to forecast future CO2 

emission impacts given predicted population growth trends and private vehicle usage 

trends in the U.S., and possible policy implementations were examined in order to 

evaluate their potential to reduce or eliminate increasing trends in CO2 emissions and 

energy consumption. The results of this first model (Chap. 3) indicated that public 

transportation has the potential to reduce or even partially eliminate the currently 

increasing trends in CO2 emissions and energy consumption. Although the pre-defined 

scenarios prescribed for increasing funding for public transportation did indeed have an 

influence on CO2 emissions that reduced the increasing annual trends to an extent, these 

scenarios on their own were not enough to change the currently increasing annual 
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emissions trend to a decreasing trend. It was also noted that the adoption rate of 

alternative fuel options for public transportation vehicles has been increasing, and an 

additional policy can be implemented to this effect in order to reduce fossil fuel usage. In 

conclusion, these two policies should be supported by more aggressive policies, which 

might cause political challenges for decision makers. However, the ambitious scenarios 

prescribed in this study are not too unrealistic to consider, since even the most 

conservative of these ambitious scenarios (25% transit growth) has potential to 

significantly change current trends in fuel consumption and CO2 emissions to decreasing 

trends. Expected private vehicle fuel economy improvements have also been included in 

the developed model, and these improvements contributed significantly to reductions in 

the currently increasing trend in CO2 emissions. Moreover, due to the current 

predominance of private vehicle usage, it is safe to say that public transportation policies 

alone are not enough to change this high degree of dependency. That said, it must be 

noted that, because this first model only focuses on public transportation as a means to 

mitigate CO2 emissions, future projections of alternative fuel market shares for private 

vehicles as a separate policy initiative are not included in this chapter.  

Most public policy decisions are made in inherently uncertain situations. Although the 

first model analyzed the public transportation from a systems thinking perspective, which 

can provide insights with which to better understand the dynamic complexity of the U.S. 

public transportation system and its interactions with the economy and the environment, 
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the model created in that chapter needs to be improved with an integration of 

uncertainty analysis. To this end, Chapter 4 advanced the SD model to test the robustness 

of applied policies and to deal with deep uncertainties not accounted for in Chapter 4.  

In the light of second SD model’s multivariate sensitivity analysis (Chap. 4), the most 

critical parameters influencing the model outputs (private VMT, transit ridership rate, 

transportation related CO2 emissions, and externalities) are the average trip generation 

rate and the average trip length, which influenced mode choice outputs greatly with a 

combined sensitivity coefficient of 99%. Even though the initial sensitivity analysis was 

later redone (excluding these two most sensitive parameters) in order to analyze the 

impacts of other parameters, transit trip length was found to be the dominant parameter 

as shown and explained in Figure 36. Although the developed SD model consists of 

reinforcing/balancing feedback relationships that quantify transportation mode choice 

behavior, none of these relationships cause impacts on mode choice as significant as 

those due to changes in trip generation rates and/or characteristics. For example, the 

available funding (i.e. gasoline fuel taxes and/or capital funding) for transit systems, the 

discouraging effects of traffic congestion on private vehicle use, and the negative impacts 

of emissions on life expectancy and GDP all have minor impacts on mode choice. Overall, 

the findings in Chapter 4’s model support the initial hypothesis as stated in the first 

chapter of this dissertation, and highlight the importance of urban infrastructure as the 

current root cause of excessive trip generation and increasing average trip lengths. 
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According to the analysis, a sustainable urban mobility in the U.S. will require radical 

infrastructure changes in urban transportation structure, which demands a paradigm-

shift in society’s perceptions and beliefs about how urban structures should be. The 

required changes in urban structure might be implemented through policy initiatives to 

modify the current standard for the typical ‘American lifestyle’ so as to reduce private 

vehicle dependency and preference levels (e.g. increasing the cost of car ownership) or 

making urban areas more transit-oriented by creating more compact communities, 

among other possibilities. Such radical changes cannot realistically be implemented in the 

near future, but should at least shape the society’s perception of the problem. As an 

alternative near-future solution option, autonomous vehicles are the most promising 

initiatives to increase the existing infrastructure capacity and encourage ride share mode 

for urban areas, which is tested in Chapter 6. Pointing out the anomalies and failures in 

the old paradigm, working with the vast middle ground of people who are open-minded, 

education future generations aware of the anomalies in the old-paradigm are some of the 

ways for a paradigm shift in urban structures as well as U.S. transportation system (Kuhn 

2012).  

The overall SD model results indicate that, under current policy practices, urban 

transportation mode choice behaviors in the U.S. are not expected to shift from private 

vehicles to public transportation in the foreseeable future, but the encouragement and 

regulatory implementation of greater fuel economy may result in a decreasing trend in 
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transportation-related CO2 emissions. This decrease in CO2 emissions does not ensure a 

similar decrease for air pollution externalities, but will nevertheless provide a steady 

trend. The emission-related findings emphasize the importance of using alternative fuels 

and improving fuel economy whenever possible. Although these findings are not directly 

related to the problems currently pertaining to transportation mode choice, they 

nevertheless illustrate an important part of the problem of transportation-related 

pollutant emissions worldwide. Therefore, the currently high fossil fuel dependency of 

the U.S. transportation sector means that future vehicles and transportation systems 

should switch to alternative fuel sources as quickly and as effectively as possible, and 

more efficient fuel technologies should also be utilized in marginal levels.  

A comprehensive cash flow analysis (Chap. 4) of transit transportation systems indicates 

large operation costs, which are often higher than total fare revenues. Therefore, transit 

systems should also be supported with additional funding, including fuel tax revenues, 

federal/local government funds, and additional capital funds. Transit systems should also 

be operated with more cost-effective policies, at least to a sufficient degree that the fare 

revenues can balance out the operation costs. Like with alternative fuel use initiatives, 

operation cost reductions can be implemented with more efficient fuel systems, including 

alternative fuel systems such as hybrid and battery-electric vehicles.  

Although roadway transportation infrastructure capacity and traffic congestion relief 

policies are beyond scope of this dissertation, the corresponding feedback relationship 
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defined in this model indicates that traffic congestion should be relieved primarily by 

implementing new technologies (Intelligent Transportation Systems (ITS), autonomous 

vehicles, etc.) and not solely by attempting to expand current roadway infrastructure. In 

addition, efforts to reduce traffic congestion should also be used to guide future policies 

for shifting transportation mode choice away from private vehicles in favor of alternative 

modes. 

The DES modeling (Chap. 5) results indicated that city size only influences public 

transportation mode choice, whereas the number of vehicles owned per household was 

found to significantly impact almost all of the considered mode choices, which can 

provide a great deal of insight regarding the aforementioned vehicle dependency 

statistics in the U.S. As more vehicles are available per household, the more likely 

commuters are to become heavily dependent on dive modes, among other urban 

development impacts. Travel time is another key factor (particularly with respect to the 

carpool, public transportation, and walk modes), which overlays with current trends in 

U.S. transportation mode choice. These travel times are typically long due to low-density 

residential developments, disproportions between the residential and employment 

densities of a particular area, and increasing traffic congestion due to growing numbers of 

vehicles on roadways. The above-cited factors all strengthen the already-predominant 

share of the drive alone mode choice and reinforce the urban development factors that 

worsen the current problems with today’s transportation industry. These problems, 
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therefore, cannot be properly addressed using only short-term policy resolutions, but will 

instead require a more long-term paradigm shift.  

Other significant attributes in the DES model that cannot be realistically controlled or 

tested for polices included gender, age groups, employment, house occupancy (rental VS 

ownership), and the time when a commuter leaves home for work. Some might argue 

that the time when one leaves for work can be changed using workplace policies to 

encourage starting work at more optimal times of the day, and there are indeed some 

examples of such policies being implemented in several cities around the world. However, 

such policy applications aim mainly to reduce traffic congestion by distributing the peak-

hour traffic load across a larger time span. Such policy application impacts can still be 

tested, but this dissertation has limited its scope by considering the time of leaving for 

work as an exogenous variable. The primary reason for this boundary limitation is that 

this model considers 929 urban areas nationwide whereas to model and test this policy 

would require very specific data from each urban area, thus requiring an overly extensive 

modeling process for only one attribute.  

The developed hybrid model simulated in this dissertation (Chap. 6) was first used to 

illustrate the business-as-usual (BAU) results for transportation mode choice and 

emission impacts from 1990 to 2050. The BAU scenario itself showed interesting findings 

in terms of the mode choice behaviors of each city type, as the drive alone mode choice 

share increased while the public transportation and walk shares decreased and the shares 



180 

 

of the carpool and other modes remained almost steady throughout the study period. 

This behavior in the BAU scenario, which matched the aforementioned current trends, 

was then subjected to a policy scenario analysis in order to identify the most efficient 

policies for decision makers to resolve these issues. As previously explained in detail, the 

nearly negligible effects of the LM+CT policy scenario indicated that traditional policy 

efforts that subsidize and/or punish different mode choices do not adequately support 

any meaningful long-term behavioral change. These policies are both considered 

“traditional” policies in this study because the transportation sector is currently 

undergoing a revolution by exponentially adopting electric vehicles, autonomous vehicles, 

and ride-share mode. Furthermore, past research efforts over the last few decades have 

already examined similar traditional policy scenarios, but have all failed to produce any 

significant shift from drive modes to alternative transportation modes. Today’s reformist 

era of transportation, in contrast, has the potential to radically change many of the 

factors and indicators related to transportation mode choice behaviors, including the 

built environment, vehicle ownership, air quality measures, and several other key factors. 

To simulate an example of this technological revolution, AV market penetration was 

tested as an external policy factor for its possible impacts on the transportation system. 

The results of the AV market penetration scenario in this regard indicate significant 

promise for considerable reductions in emissions and externalities, decreasing drive alone 

mode shares while also increasing the walk and other mode choice shares. However, AV 
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market penetration also caused a rebound effect by increasing the VMT, most notably 

because a growing number of households own at least one vehicle and society as a whole 

(especially vehicle owners) are expected to benefit from the relative convenience of AVs. 

This finding also aligns with a recent literature study that expects to add non-drivers, the 

elderly, and people with travel-restrictive medical conditions to the roadway commuter 

population in future roadway systems (Harper et al. 2016). This impact was observed in 

the model as a decrease in public transportation mode choice shares with increasing AV 

market penetration. The AV scenario also resulted in an increase in mode choice shares 

for the walk and other modes by decreasing the number of households that has more 

than one vehicle available. It is therefore important to note that more active 

transportation modes (walking, cycling, etc.) are not only alternative transportation 

modes but also potentially crucial contributors to improvements in health and overall 

quality of life. Two well-cited articles highlight the critical impacts of mobility (or lack 

thereof) on human health due to increases in obesity, blood pressure, and other serious 

health problems, and both of these studies recommend improving the built environment 

by increasing the “walkability index” of U.S. neighborhoods to encourage more people to 

use active modes of transportation (Frank et al. 2004, 2006). The extent to which AV 

market penetration may or may not encourage commuters to use less active travel 

modes is still unclear in today’s literature, but future research efforts can investigate the 

impacts of increased and more convenient mobility that may reduce harmful pollutants 
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but may also decrease or increase activity levels. Next, although AV market penetration 

can trigger a more dramatic decreasing trend in CO2 emissions, its effectiveness is still 

limited in terms of reaching the desired deep carbon reduction goals, which Fulton et al.'s 

(2017) report has stated is possible with the full and combined adoption of the three 

aforementioned transportation reforms (EVs, AVs, and ride-sharing). This study and other 

recent literature studies have clearly revealed that transportation-related impacts can 

only be changed with a paradigm shift in the current practices of today’s transportation 

industry. Fortunately, this paradigm shift can become a reality in the near future with the 

introduction of the three aforementioned reforms, which will also bring about marginal 

improvements in the built environment and in urban mobility.    

In the future, the SD model from this dissertation can benefit from specific attributes 

connected to the urban area that respond to and provide feedback from the use of policy 

scenarios to address the problems being analyzed. Such research data can be processed 

using geospatial analysis tools and included as SD model inputs; this may be possible in 

future research with the use of an Agent Based Modeling (ABM) approach, which would 

integrate well with SD modeling. Lastly, the research in this dissertation can also be 

extended in the future with a worldwide case study of successes and/or failures of 

transportation policies intended to encourage the use of alternative transportation mode 

choices and reduce the current dependence of the U.S. on conventional drive modes. 
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APPENDIX: SYSTEM DYNAMICS MODELING SYMBOLS 
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The figures that present stock and flow diagrams of the developed models have symbols 

that is specific with Vensim software’s system dynamics modeling. Therefore, following 

table is provided in order to explain the meanings of each modeling symbol of Vensim 

software.  

Table 24: Appendix table for system dynamics modeling symbols in Vensim software 

Symbol Name Description 

 

Variable – 
Auxiliary/Constant 

It is a variable that can be defined as auxiliary, 
constant, data. This variable information can consist 
of equation of connected other variables, constant 
value, or time series of data points with look up 
function. 

 

Box Variable - Level 
It is level variable where it is a product of connected 
rates and its initial value (if applicable). 

 
Arrow Defines the relation between variables. 

 

Rate 

Defines a flow to the level variables. The software is 
sensitive with the direction of flows so if the direction 
of flow goes into the box variable it indicates an in-
flow (positive) where the opposite direction indicates 
out-flow (negative) relation. 

 
Shadow Variable 

Creates an existing model variable without adding its 
causes. This feature is useful for such large models to 
present in organized way so the arrows are not 
overlapping each other. And it is also useful to follow 
the cause within sub-models. 

 

Comment Box 
Creates explanatory comments in the model for 
organization. It can be created in many forms of 
without border boxes, plus/minus signs, etc. 
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