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Abstract

Constrained Positive Matrix Factorization: Elemental Ratios, Spatial Distinction,
and Chemical Transport Model Source Contributions

Timothy M. Sturtz

Chair of the Supervisory Committee:

Atmospheric source apportionment models attempt to untangle the relationship be-

tween pollution sources and the impacts at downwind receptors. Two frameworks

of source apportionment models exist: source-oriented and receptor-oriented. Source

based apportionment models use presumed emissions and atmospheric processes to

estimate the downwind source contributions. Conversely, receptor based models lever-

age speciated concentration data from downwind receptors and apply statistical meth-

ods to predict source contributions. Integration of both source-oriented and receptor-

oriented models could lead to a better understanding of the implications pollution

sources have on the environment and society. The research presented here investi-

gated three different types of constraints applied to the Positive Matrix Factorization

(PMF) receptor model within the framework of the Multilinear Engine (ME-2): ele-

ment ratio constraints, spatial separation constraints, and chemical transport model

(CTM) source attribution constraints.

PM10−2.5 mass and trace element concentrations were measured in Winston-Salem,

Chicago, and St. Paul at up to 60 sites per city during two different seasons in

2010. PMF was used to explore the underlying sources of variability. Information on

previously reported PM10−2.5 tire and brake wear profiles were used to constrain these

features in PMF by prior specification of selected species ratios. We also modified

PMF to allow for combining the measurements from all three cities into a single model





while preserving city-specific soil features. Relatively minor differences were observed

between model predictions with and without the prior ratio constraints, increasing

confidence in our ability to identify separate brake wear and tire wear features.

Source contributions to total fine particle carbon predicted by a CTM were incor-

porated into the PMF receptor model to form a receptor-oriented hybrid model. The

level of influence of the CTM versus traditional PMF was varied using a weighting

parameter applied to an object function as implemented in ME-2. The resulting hy-

brid model was used to quantify the contributions of total carbon from both wildfires

and biogenic sources at two Interagency Monitoring of Protected Visual Environment

monitoring sites, Monture and Sula Peak, Montana, from 2006 through 2008. At the

weighting parameter associated with a minimum cross-validated RMSE for each site,

the profiles and contributions were reasonably correlated with the CTM while main-

taining a strong fit to the measurements. The cross-validated RMSE of total carbon

for both sites was improved over the pure CTM or PMF predictions, indicating an

improvement in the ability to fit total carbon.
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Chapter 1

BACKGROUND

1.1 Introduction

Source apportionment models attempt to untangle the relationship between pollution

sources and the impacts at downwind receptors. Two frameworks of source appor-

tionment models exist: source-oriented and receptor-oriented. Source based appor-

tionment models use presumed emissions and atmospheric processes to estimate the

downwind source contributions. Conversely, receptor based models leverage speciated

concentration data from downwind receptors and apply statistical methods to predict

source contributions. Frequently, one modeling approach acts in a supporting role

to the other, helping to understand model error. Integration of both source-oriented

and receptor-oriented models to leverage the positive aspects of each model type could

lead to a better understanding of the implications each source has on the environment

and society.

Understanding the contributions and chemical makeup of different source types in

a region may benefit numerous entities. For example, knowledge of impacting sources

allows regulatory agencies to develop mitigation strategies, industries to bolster a

litigation defense, or researchers to improve health analyses. Further, the public can

remain more informed about the sources impacting their region, feasibly influencing

votes and public forums. However, realization of the benefits from source apportion-

ment depends upon the accuracy of the modeling predictions.

Source-oriented apportionment methods apply chemical transport models (CTMs)

to predict source contributions at monitor locations. CTMs, such as the Community
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Multiscale Air Quality (CMAQ) model or the Comprehensive Air Quality Model with

Extensions (CAMx), incorporate dispersion and chemical mechanisms that allow for

the estimation of primary and transformed, or secondary, pollutant concentrations

downwind. The current state of science provides a robust understanding of many

atmospheric processes, however it is impossible to perfectly incorporate every trans-

port and chemical reaction within a model. Source contributions derived from CTMs

do not have associated error bounds which adds difficulty in establishing where the

models err.

Receptor-based source apportionment analyzes speciated concentration data by

applying statistical techniques to reveal underlying multivariate features. Recep-

tor models, such as the Environmental Protection Agency (EPA) Positive Matrix

Factorization (PMF) and EPA Chemical Mass Balance (CMB) model, decompose

monitor data by solving a chemical mass balance equation for a predetermined num-

ber of sources. The use of measurement concentrations and associated uncertainties

as model input allows receptor models to quantify modeling errors and better under-

stand inaccuracies. However, receptor-oriented models cannot readily discern between

primary and secondary sources due to the lack of a chemistry mechanism, accompany-

ing meteorological information, and likely collinearity between primary and secondary

features within the data.

Often, receptor modeling output are verified against source-oriented results or

emission inventories linked with meteorological data. A one-to-one comparison can

be made if CTM results are available. Lacking CTM results, verification can be

determined by linking emission inventories and receptor modeling results through the

use of back trajectories. These trajectories can be determined for individual dates and

times or can be analyzed over a time period using geostatistical methods such as the

potential source contribution function (PSCF) [50]. Results of the PSCF identifies the

regions with the highest likelihood of contributing to the modeled receptor, thereby

indicating the region of the emission inventory for comparison.
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Schichtel et al. [98] proposed a hybrid PMF modeling technique that directly

implements CTM results into a receptor modeling framework, integrating the advan-

tages of both modeling approaches. Applied to a synthetic data set, the modeling

technique estimated combined primary and secondary contribution of biomass burn-

ing to fine particulate matter with greater accuracy than a CTM or receptor model

alone. Using this method in conjunction with real-world data could provide improved

regional mitigation strategies and ability to decipher CTM modeling errors.

The proposed research will investigate a modified hybrid-receptor approach aimed

at apportioning primary and secondary pollutants using two approaches: one aimed

at providing verification through the use of a synthetic data set and the other aimed at

testing the hybrid approach against real measurements. Additionally, the research will

assess PMF modeling of spatially distributed sites and the separation of ubiquitous

and unique source impacts. The results of this research could provide a platform for

integration of source-oriented and receptor-oriented models and ultimately contribute

to the scientific community’s understanding of source-receptor relationships.

1.2 Source Apportionment

This section reviews various methods of both source-oriented and receptor-oriented

source apportionment. The associated techniques, skills, and challenges of each ap-

proach are presented and discussed. Since the proposed research specifically focuses

on the apportionment of primary and secondary pollutants, the section concludes

with a discussion of previously pursued hybrid methods.

1.2.1 Receptor-Oriented Apportionment

Receptor based source apportionment is commonly conducted using principal compo-

nent analysis (PCA), EPA Chemical Mass Balance Model (CMB), or EPA Positive

Matrix Factorization (PMF) [30]. Each model is based primarily on speciated recep-

tor data, x, and, in the case of CMB and PMF, the associated uncertainty, σ. The
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methodologies, advantages, and disadvantages of each is described in the following

sections.

Principal Component Analysis

The approach of PCA reduces speciated receptor data, x, into subset linear combi-

nations of species, or features, which describe the natural variance and correlations

that exist within the data [47]. The initial feature determined from PCA explains the

greatest amount of variation within the data, while each subsequent feature explains

less variation and remains mutually uncorrelated with the prior features[122]. The

requirement of mutually uncorrelated features would not allow PCA to accurately

apportion primary and secondary features since correlations often exist between the

two. Secondly, uncertainty is not incorporated in PCA but varies between species

and samples due to measurement methods. For these reasons PCA is not an ideal

candidate for apportioning environmental data where collinearity and uncertainties

are ever present.

Chemical Mass Balance Models

The generic chemical mass balance model [68] provides the basis for both EPA CMB

and PMF. Conceptually, the model represents the idea that monitored concentration

data, xij, is a function of source profiles, fkj, and source contributions, gik, where the

indices i,j,and k represent the number of samples, species, and contributing sources

respectively. The generic chemical mass balance equation is presented in equation 1.1

below.

xij =

p∑
k=1

gikfkj + eij (1.1)

Where eij is defined as the residual variable, accounting for modeling error. While

both CMB and PMF solve this model, the method deployed is significantly different.
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EPA CMB

The approach of CMB requires speciated data, known source profiles, and the asso-

ciated source profile uncertainties. The requirement of source profiles assumes the

user has a thorough understanding of the sources impacting the monitor of study,

often obtained through emission inventories or source profile databases. However, the

development of emission inventories require numerous assumptions and likely does

not capture the full extent of sources or emissions. Existing source profile databases

(e.g., EPA SPECIATE) attempt to generalize the source profiles by source type which

may not accurately represent the sources of interest. Further, transformed secondary

pollutants impacting the monitor are not represented in emission inventories or profile

databases. The potential errors in the a priori source profiles and lack of accurate

secondary profiles eliminate CMB as a candidate for the hybrid approach.

EPA PMF

The EPA Positive Matrix Factorization (PMF) model attempts to solve equation 1.1

without prior knowledge of source profiles or contributions, decomposing the concen-

tration data using a bilinear factor analytic approach (through a table-driven least

squares methodology) [72], and outputting matrices of source profiles and contribu-

tions. This multivariate approach uses an iterative process to minimize an object

function, providing results which best fit the data. The object function is defined in

equation 1.2.

Q =
n∑

i=1

m∑
j=1

xij −
p∑

k=1

gikfkj

σij


2

(1.2)

An associated uncertainty, σij, for the species, i, and samples, j, exists to allow for

variation in confidence across the sampled species and is incorporated in the object
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function. The uncertainties are often developed from the analytic uncertainty and

method detection limit associated with the individual species. The mass balance

model is fit using a conjugate gradient (CG) algorithm which minimizes the object

function described in equation 1.2.

The model is initialized with random data and executed multiple times to ensure

a consistent minimum in the CG results. Further, blocked bootstrapping is often

applied to quantify the level of confidence for each profile and contribution pair.

The multivariate structure and flexibility of the Multilinear Engine 2 (ME-2), the

backend to PMF, allows for a variety of new constraints to be implemented. The

latest version of PMF allows for user input of some constraints but does not give the

user access to the full potential of the ME-2 model capabilities.

1.2.2 Source-Oriented Apportionment

While not the focus of this proposal, source-oriented apportionment functions as a tool

to aid in understanding the source-receptor relationship. As previously mentioned,

source-oriented apportionment is frequently conducted using CTMs. In general, these

models implement tracers to track species as they move downwind and document

the species composition to provide apportionment by source type. In the case of

primary pollutants, a single tracer is used, however, with secondary pollutants a

suite of reactive tracers must be used to track the changing composition over time.

In contrast to typical CTMs, the CAPITA Monte Carlo model tracks each discrete

event [95], allowing for analysis of the chemistry and transport of each trajectory.

With any source-oriented apportionment the result is the same, a set of pollutant

contributions by source type. However, the contributions may not agree well with

monitored concentrations because of incomplete transport and chemistry. Validation

of source-oriented model results is often conducted using traditional receptor-oriented

models such as those described in section 1.2.1.
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1.2.3 Other Supporting Methods

Receptor modeling is often verified using emission inventories, CTMs, and/or spatial

analysis. Using back trajectories or back dispersions from a modeled receptor, cor-

relations can be made between large peaks in pollutant concentrations and known

influential sources. Certain analyses may also find use in the Potential Source Con-

tribution Function (PSCF) [12]. Using a large collection of back trajectories within a

gridded domain, the frequency of the trajectories passing through grid cells is calcu-

lated, thereby indicating probable locations of sources. The formal definition of PSCF

is provided in equation 1.3, where mab is the total number of trajectory endpoints,

nab is the number of endpoints in a single grid cell, and the indices, a and b, represent

the grid location.

PSCFab =
mab

nab

(1.3)

Other spatial analyses, such as pollution roses, have also been used to support

receptor modeling results.

1.2.4 Hybrid Approaches

Numerous approaches to CTM and spatial hybrid source apportionment modeling

have been studied in recent years. Schichtel et al. [98] incorporated combined primary

and secondary contributions from the CAPTIA Monte Carlo model in ME-2 using a

synthetic data set. The results from this work indicated that constraining ME-2 with

CTMs can improve the apportionment of total carbon. By using synthetic data the

true source-specific contributions were known and were available for confirmation of

the models skill.

The hybrid approach outlined here seeks to separate primary and secondary fea-

tures by constraining ME-2 using CTM primary and secondary results. Initially, a

synthetic data set was be leveraged to test and verify the ME-2 scripts. With a
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successful separation of primary and secondary features in the synthetic data, the

hybrid method was then applied to real-world ambient measurements to investigate

the overall value of the model.

1.3 Dissertation Intent

Aim 1: Evaluate spatially dispersed measurements using PMF with elemental ratio

constraints and spatial separation

One intent of this work was to use PMF to assess spatially dispersed data using con-

straints to separate specific source types and to delineate spatially unique features.

Coarse mode particulate data sampled for two weeks across three cities during two

different seasons was used as the basis of the analysis. Elemental ratios common to

brake wear and tire wear were used as source constraints and the data were spatially

subset by city to obtain unique wind-blown dust features. Investigation of the influ-

ence on the profiles from the ratio constraints and the influence on the wind-blown

dust features from the spatial separation technique are explored.

Aim 2: Implement and evaluate the hybrid approach using IMPROVE monitor data

at two sites

A methodology of combining source attributions from CTM and PMF was imple-

mented to distinguish biomass combustion from secondary biogenic contributions.

The method was tested on measurements from two different IMPROVE monitor sites

located in Montana. Validation of the model was conducted using a novel 10-fold

cross-validation approach. The relationship between a pure PMF solution, a pure

CTM solution, and the hybrid methodology is investigated.
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Chapter 2

CONSTRAINED SOURCE APPORTIONMENT OF
COARSE PARTICULATE MATTER AND SELECTED

TRACE ELEMENTS IN THREE CITIES1

2.1 Abstract

PM10−2.5 mass and trace element concentrations were measured in Winston-Salem,

Chicago, and St. Paul at up to 60 sites per city during two different seasons in 2010.

Positive Matrix Factorization (PMF) was used to explore the underlying sources of

variability. Information on previously reported PM10−2.5 tire and brake wear profiles

was used to constrain these features in PMF by prior specification of selected species

ratios. We also modified PMF to allow for combining the measurements from all three

cities into a single model while preserving city-specific soil features. Relatively minor

differences were observed between model predictions with and without the prior ratio

constraints, increasing confidence in our ability to identify separate brake wear and

tire wear features. Brake wear, tire wear, fertilized soil, and re-suspended soil were

found to be important sources of copper, zinc, phosphorus, and silicon respectively

across all three urban areas.

1As of November 2013, this chapter has been accepted for publication in Atmospheric Envi-
ronment, authors T.M. Sturtz (Department of Civil and Environmental Engineering, University
of Washington, Box 352700, Seattle, WA 98195-2700), S.D. Adar (Department of Epidemiology,
School of Public Health University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-
2029), T. Gould (Department of Civil and Environmental Engineering, University of Washington,
Box 352700, Seattle, WA 98195-2700), and T.V. Larson (Department of Civil and Environmental
Engineering, University of Washington, Box 352700, Seattle, WA 98195-2700 and Department of
Environmental and Occupational Health Sciences, University of Washington, Box 357234, Seattle,
WA 98195-7234).
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2.2 Introduction

There is ample evidence that long-term exposure to fine airborne particles (PM2.5) is

detrimental to human health [86, 109]. In contrast, our understanding of the long-term

effects of the coarse particle fraction (PM10−2.5) is more limited [32, 85, 17, 121, 87, 60].

One major challenge for chronic epidemiological studies is in accurately describing the

long-term spatial gradients in coarse mode mass and species concentrations within ur-

ban areas. Recent work has focused on characterizing PM10−2.5 spatial concentration

gradients [51, 43, 107, 69, 25, 34, 27, 103] and developing models to allow spatial inter-

polation [123, 83, 33]. Another challenge is to characterize the sources that influence

these gradients as well as the species that are associated with these sources.

Prior source apportionment studies of PM10−2.5 have relied on either fully con-

strained models such as chemical mass balance (CMB), principal component analysis

(PCA) and mass closure [81, 62, 5, 102, 31, 74, 114, 78, 25], partially constrained

models such as the constrained physical receptor model (COPREM) [115, 93], or rel-

atively unconstrained models such as factor analysis or positive matrix factorization

(PMF) [117, 41, 14, 13, 58, 45, 73, 106, 64, 22, 51, 43]. Several of these studies have

employed multiple sites within a city to capture spatial as well as temporal variability

in the source contributions [102, 64, 25, 22, 51, 43, 78].

While there has been a number of near-roadway studies examining the sources and

components of non-exhaust PM10−2.5 [108, 48, 10, 36, 93, 46, 57, 39, 52, 42, 44, 19,

113, 101, 2, 55, 7, 116, 18], only a few of the urban-scale source apportionment studies

cited earlier have attempted to separate “road dust” into its separate components,

including brake wear and tire wear [116, 7, 93, 18, 48]. The studies which did not

separate road dust into its components commonly identified the dominant source of

PM10−2.5 as resuspended road dust for sites near roadways and as crustal material for

non-roadway sites.

Here we use a partially constrained version of PMF [6, 88, 16] in order to examine
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the sources of PM10−2.5 collected simultaneously at multiple sites in three urban areas

during two-week periods in two different seasons. We use PMF with constraints

imposed by prior knowledge of several important, ubiquitous source profiles, namely

brake and tire wear. We furthermore impose additional constraints on the source

contributions in order to combine all measurements into a single model. To our

knowledge, this is the first application of a combined-cities PMF modeling approach

with profile-constraints to identify contributions of brake and tire wear in PM10−2.5

across multiple urban areas. This work is part of a larger effort to examine the

chronic health effects of PM10−2.5 and selected species in these same cities under the

auspices of the Multi-Ethnic Study of Atherosclerosis and Coarse Particulate Matter

(MESA Coarse), an ancillary study of the Multi-Ethnic Study of Atherosclerosis and

Air Pollution (MESA Air).

2.3 Materials & Methods

2.3.1 Filter sampling and analysis

The MESA Air study leveraged the National Heart, Lung, and Blood Institute’s

Multi-Ethinic Study of Atherosclerosis (MESA) cohort to provide data for assessing

the relationship between long-term exposures to fine ambient particulates and related

health effects. The MESA cohort [56] was comprised of 6,814 white, black, Hispanic,

and Chinese participants located in six U.S. cities. As an ancillary study to MESA Air,

MESA Coarse assesses the health implications associated with coarse mode particulate

exposure in three of the MESA cohort cities, namely Chicago, Illinois, St. Paul,

Minnesota, and Winston-Salem, North Carolina.

Paired, two-week average PM10 and PM2.5 Teflon filter samples were simultane-

ously collected over two different two-week periods, in the winter and summer of 2009,

in Chicago, IL, St. Paul, MN, and Winston-Salem, NC. The monitoring sites in each

city (see Figure 2.1) were residential locations of the existing MESA cohort selected
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to maximize variability in geographic features expected to influence coarse particles

including land use, roadways, and vegetation as well as representative community

monitoring sites. PM10−2.5 mass concentrations were computed by the difference in

collocated PM10 and PM2.5 measurements. This “difference method” has been shown

to be a reliable approach in estimating PM10−2.5 in urban areas by the U.S. Environ-

mental Protection Agency [24]. At affiliated field centers in each sampled city, the

Teflon filters were loaded into Harvard personal environmental monitors (HPEMs,

Harvard School of Public Health, Boston, MA). These monitors were connected to

a Medo VP0125 (MEDO USA, Inc., Roselle, IL) vacuum pump drawing 1.8 L/min

air sample and equipped with a timer valve system that obtained a 50% duty cycle

sample, where the flow alternated between the PM10 and PM2.5 filter every 5 minutes

to avoid filter overload.

PM10 and PM2.5 mass concentrations were gravimetrically determined from weigh-

ing of Teflon filters at the University of Washington in a temperature and humidity

controlled environment (Allen et al, 2001), and from the total volumetric flow of

air sampled through the HPEMs. A Mettler-Toledo UMT-2 balance was used to

determine sample mass following standard filter weighing procedures. Overall, the

precision of duplicate PM10, PM2.5 and PM10−2.5 samples as measured by the average

Relative Percent Difference was 2%, 10% and 18%, respectively. The filter samples

were analyzed for a suite of 48 elements by X-Ray Fluorescence (XRF) at Cooper

Environmental Services (Portland, OR). Method sensitivity was defined by a set of

acceptable detection levels for a subset of 21 key elements from the Method IO-3.3

analyte list. The quality assurance and quality control data are provided in Tables

2.10 and 2.11.

2.3.2 PMF Model Inputs

Measurement uncertainty for coarse mode species j, σj, was calculated by combining

the uncertainties of the PM10 and PM2.5 measurements using standard error propa-
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gation as follows.

(
σ2
j

)
PM10−2.5

=
(
σ2
j

)
PM10

+
(
σ2
j

)
PM2.5

(2.1)

The measured coarse mode species concentrations were pre-processed to remove

frequently below detection species and species with a signal to noise [71], S/N, ¡10.

In addition, pre-processing included removal of sulfur samples identified as outliers

(exceeding 2 standard deviations from the mean). Four samples were removed based

on this criterion. The S/N cutoff choice was motivated by the consistently high signal

to noise ratios of a subset of species and relatively low and variable ratios for some

species depending upon city. Enrichment of the coarse mode for certain elements is

not unexpected and has been documented in other literature [7, 106, 21]. The S/N

criteria eliminated the following species: Ag, As, Au, Cd, Ce, Co, Cs, Eu, Ga, Hf,

Hg, In, Ir, La, Mo, Nb, Rb, S, Sc, Se, Sm, Sn, Ta, Tb, V, W, and Y (see Table 2.4

in Appendix A). Although Sb had S/N < 10, we chose to include it in the models

because of its value as a brake wear constraint variable described in the next section.

We retained PM10−2.5 mass but increased its uncertainty by a factor of 30 to avoid

redundancy with all other measured species. The retention of coarse mass allows for

the production of feature profiles in a gram per gram PM10−2.5 basis. There were no

missing species measurements. We also ran the models including all species with S/N

¿ 2 without any significant difference in our final results.

2.4 Theory/calculation

We implemented the Positive Matrix Factorization (PMF) receptor model using the

Multilinear Engine version 2 (ME-2) (Paatero, 1999). The PMFmodel solves the basic

mass balance equation (Equation 2.2) for source contributions, gik , source profiles, fkj

, and model error, eij , for i=1,n samples, j=1,m species, and k=1,p sources. Species

concentrations, xij , corresponding uncertainties, σij, and the user-defined number of
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Figure 2.1: Map of Sampling Locations in Chicago (a, b), St. Paul (c, d) andWinston-
Salem (e, f). Samples were taken in the Winter or Early Spring (left panels) and in
the Summer (right panels)

sources, p, serve as the model input.

xij =

p∑
k=1

gikfkj + εij where gik, fkj > 0 (2.2)

and the gik are normalized by their average value across all samples such that

ḡij =
n∑

i=1

gik
n

= 1± δ (2.3)
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where δ = 0.01 in this case.

Equations 2.2 and 2.3 comprise the basic PMF model. To add prior source profile

constraints, we have added an additional set of equations that are solved simultane-

ously with equations 2.2 and 2.3. In this case we have added equations representing

each of t=1,v species constraints using prior knowledge of two sources: brake wear

(k=1) and tire wear (k=2). The tth constraint is shown in equation 2.4.

fkq − λtfkr = 0 (2.4)

where the kth source profile (k =1 or 2) is constrained using the rth and qth

species, and λt represents the value of the species ratio for that source profile, fkq /

fkr. The constraints were developed from a literature review of brake wear and tire

wear source profiles (Table 2.1). The median values for each reported ratio were used.

We present, in equation 2.4, ratio constraints in the form of a difference with

a target of zero. However, within the code of ME-2 we define sub-expressions to

invert the denominator element for each ratio constraint and then define an auxiliary

equation to represent the ratio. Thus, the ratio is constrained to the target value,

λt, not zero. Due to the construct within ME-2 we applied error mode -12. The

alternative, error mode -5, is limited to special cases where the target is zero (Paatero

2009). Through the use of error mode -12 and our ratio constraints we are able to

control the order of the constrained model results. This approach differs from other

similar studies which model the data unconstrained, identify source-like features, and

then pull up or down (error mode -22) to a desired target.

In ME-2, equations 2.2 through 2.4 are solved by minimizing an object function,

Q, through the use of a preconditioned conjugate gradient algorithm. The object

function (equation 2.5) includes a penalty, qt, associated with the applied constraints.
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Table 2.1: Coarse PM source profile constraints.

Constraint type Species Source Literature

Brake Wear Tire Wear Road Salt Soil(s) Citationse

Species Cu/Sb 3.9 (0.1)b 1-12

Ratio (λt)
a Cu/Ba 1.2 (0.1) b 1-9,12

Cu/Fe 0.05 (0.1) b 1-8, 12

Zn/Pb 1000 (0.1)b 13,14

Zn/K 24 (0.1)b 13,14

Zn/Ca 26 (0.1)b 13,14

Upper or lower Ba >0.001 1-9, 12

limit Cu >0.001 1-9,12

constraints Pb <0.001 16

on average Zn >0.001 13-15

species Cl >0.01

concentration Na >0.01

(ng/m3) βc 0 (1e-5)c

Maximum Si 400d

constraint

on Q

a See Eq. (4) in text.

b Maximum allowable constraint error.

c Dimensionless value for c not equal to k - 2 see Eq. (6) in text.

d maximum allowable increase of Q for upward pulling of average species concentration using error

mode -20 in ME2 see also Eq. (5) in text.

e 1. Kennedy and Gadd, 2003; 2.Garg et al., 2000; 3. Iijima et al., 2007; 4. Geitel et al., 2010; 5.

Schauer et al., 2006a; 6. Grieshop et al., 2005; 7. Bukoweicki et al., 2010; 8. Von Uexkll et al., 2005;

9. Sternbeck et al., 2004; 10. Weckwerth, 2001; 11. Adachi and Tainosho, 2004, 12. Johansson et al.,

2009; 13. Apeagyei et al., 2011; 14. EPA, 2003; 15. Han et al., 2011. 16. Wahlin et al., 2006.
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Q =
n∑

i=1

m∑
j=1

[εij]
2 +

v∑
t=1

qt (2.5)

We implement this in ME-2 by specifying auxiliary equations for qt using error

mode -12 and penalty values of 0.1. For constraint t in equation 2.4, these penalty

values define the maximum allowable error from the defined constraint. The penalty

values associated with a given constraint are shown in Table 2.1.

In order to increase the number of measurements used in the model, we combined

all samples into one larger combined-city model. We hypothesize that the brake and

tire wear profiles are universally applicable across all three cities. However, we assume

that the soil profiles differ by geographic region of the country and therefore differ by

city. To address this issue, we modified the model to allow three separate soil profiles,

one for each city, while keeping all other features in common across cities. For the

three soil sources (k=3 to 5), we allowed only one unique source in each of the three

cities (c=1 to 3) as follows:

where βc =

 1 for c = k − 2

0± 1× 10−5 for c ̸= k − 2

 (2.6)

We did this by enforcing hard constraints in the form of additional auxiliary equa-

tions with a target of zero and a tolerance for error of 1e-5 ug/m3 on the contributions

from the soil sources of two of the three cities. We also included additional upward

pulling of Si on the sources to ensure the features were soil related (see Table 2.1); the

pulling was limited by a maximum change in Q of 400. In addition, to insure that it

is the soil profile that we are restricting with equation 2.6, we add additional profile

constraints for k = 3 to 5 (see Table 2.1) based on prior knowledge of the soil-derived

PM10−2.5 from the literature as well as from the individual city model predictions.

fkq − λtfkr > 0 (2.7)
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For an initial user-specified value of p, multiple model runs were conducted at

20 different starting points chosen randomly, and the chosen p-source baseline model

was the one with the minimum value of Q (= Qmin). Separate model runs were then

made assuming a range of values of p. The final value of p was chosen based on

the following criteria: the ratio as a function of p between Qmin and Qtheoretical =

n*ms +n*mw/3 - n*p, where ms is number of strong species and mw is the number

of weak species; changes in Q as a function of p (Comero, Capitani, and Gawlik,

2009), the relationship between each fkj and prior knowledge of source profiles; the

known source types within the modeled region; and user judgment. The values of

Q/Qtheoretical, degrees of freedom, and the selected number factors for each model

are presented in Table 2.12 and plots of Q/Qtheoretical for various p are provided in

Figure 2.6.

Blocked bootstrapping (Norris & Vedantham, 2008) was then applied to the base-

line model results, providing an estimate of the confidence limits of the fkj and the

average values of gik by city. Given that the 2-week samples were collected simulta-

neously over space in each city only twice and only a fraction were re-sampled in both

seasons, a sample block size of 5 was defined to contain samples within a season for

a given city. Profile matching was done on the predicted contributions of Ba, Br, Cl,

Cu, Fe, Mg, Na, Ni, P, Pb, Si, Zn and Zr, with an acceptable match defined as an R2

¿ 0.6 across all contributions for a given model run.

To assess the effect of the prior profile constraints, the model was run with and

without these constraints. In the latter case, qt = 0. We also ran the constrained and

unconstrained models for each city separately (in this case equations 2.6 and 2.7 were

not used).

2.5 Results

In addition to the brake wear, tire wear, and city-specific soil features, the combined

cities model was able to identify three additional source-related features: fertilized
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soil, road salt, and a feature enriched in Pb. For individual city models, the features in

addition to brake and tire wear and soil were: fertilized soil in all cities, a metals-rich

feature in Chicago, and a road salt feature in St. Paul. The source-related profiles

are shown in Figures 2.2 to 2.5. The gik are normalized in such a way (equation 2.3)

that the fkj (vertical bars in each figure) represent the average species concentrations

contributed by a given feature across all samples. Table 2.5 in Appendix A summa-

rizes model performance statistics. Table 2.9 shows the estimated average PM10−2.5

contributions percentages by feature, model and city. Table 2.6 provides the esti-

mated average PM10−2.5 contributions and associated bootstrapped errors. Table 2.7

shows the estimated contribution of selected species and Table 2.8 provides the corre-

lations between the contributions of each feature. Table 2.2 summarizes the average

ratio of tire wear to brake wear contributions to PM10−2.5 by model and city. Finally,

Table 2.3 shows the pairwise correlation coefficients between the gik and measured

concentrations of selected species.

2.5.1 Brake Wear

The brake wear profiles for all models are shown in Figure 2.2. As expected, the

Cu/Fe, Cu/Sb and Cu/Ba ratios are consistent with the prior constraints in all four

constrained model-derived profiles (a-d). An additional “Metals-rich” factor (e) was

identified in the Chicago individual model that contributes significantly to both Cu

and Ba, but not to Sb. The contribution to Zn is low in all profiles except the Chicago

individual profile (b). The predicted average contributions of brake wear to PM10−2.5

are generally higher for the individual city models than for the combined city model

(see Table 2.9).

The effect of the prior brake wear profile constraints on the final brake wear profiles

is relatively minor for the combined cities model (a) with the exception of Sb which

is pulled to a larger value in the constrained case. The effect of the prior constraints

on this profile is also small for the individual city models, with the exception of
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increasing the P concentration in Winston Salem (d). Comparing the constrained

combined cities brake wear profile with its individual city counterparts, the differences

are again small except for the absence on Al in the combined profile (a).

The brake wear contributions of Al, Ca, Fe, and Si are similar to the soil profiles

across the individual city models. Within the combined model, the source contribu-

tions of these elements decreases and the bootstrapped variability of the contributions

become significantly wider. The “Metals-rich” factor found in the Chicago individual

model also contains these elements along with others found in the brake wear pro-

file, but differentiates itself from brake wear due, not only to the differences in Sb

mentioned above, but also due to a lack of Zn and the addition of P.

2.5.2 Tire Wear

The tire wear profiles are shown in Figure 2.3. The percent contribution to Zn is high

in all tire wear profiles (a-d). The Pb to Zn ratio is consistent with prior constraints

except for the Chicago individual model (b), where Pb/Zn is larger than specified

by the soft constraint. In contrast, an additional “Pb-rich” factor is present in the

combined model (e) that is distinctly separate from the accompanying tire wear profile

(a). The effect of the prior profile constraints on other species is small for all models

with the exception of Ca which is smaller in the constrained case for all profiles

(a to d) and K which is smaller in St. Paul and Winston Salem (c and d). The

predicted average contributions of tire wear to PM10−2.5 are shown in Table 2.6.

The confidence intervals for PM10−2.5 from tire wear are generally smaller for the

constrained, combined city model compared with the other models.

2.5.3 Soil

The soil profiles are shown in Figure 2.4. The effect of prior tire and brake wear

constraints on the soil profile is small in all models. In addition, the combined versus

individual city model profiles are similar with the exception of P in Chicago (a vs. b),
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Figure 2.2: PMF-derived features identified as brake wear (aed). The black bars
represent the average species contributions for the unconstrained models and the
white bars represent the models with prior source profile constraints (see Table 2.1
and text). The bootstrapped 95% confidence limits are also shown. The circles refer
to the percent of the total predicted concentration for a given species associated
with that feature for the unconstrained (closed circles) and constrained (open circles)
models. Also shown is an additional metals-rich source identified by the individual
Chicago model (e) that is enriched in both Ba and Cu.
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Figure 2.3: PMF-derived features identified as tire wear (aed). The black bars repre-
sent the average species contributions for the unconstrained models and the white bars
represent the models with prior source profile constraints (see Table 2.1 and text).
The bootstrapped 95% confidence limits are also shown. The circles refer to the
percent of the total predicted concentration for a given species associated with that
feature for the unconstrained (closed circles) and constrained (open circles) models.
Also shown is an additional Pb-rich source identified by the combined-cities model
(e).
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Figure 2.4: PMF-derived features identified as soil. The black bars represent the av-
erage species contributions for the unconstrained models and the white bars represent
the models with prior source profile constraints (see Table 2.1 and text). The boot-
strapped 95% confidence limits are also shown. The circles refer to the percent of the
total predicted concentration for a given species associated with that feature for the
unconstrained (closed circles) and constrained (open circles) models. The predictions
from the combined-cities model (a, c, e) are shown by city along with the relevant
predictions from the individual-city models (b, d, f).
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Figure 2.5: PMF-derived features identified as fertilized soil (aed) and road salt (e)..
The black bars represent the average species contributions for the unconstrained mod-
els and the white bars represent the models with prior source profile constraints (see
Table 2.1 and text). The bootstrapped 95% confidence limits are also shown. The
circles refer to the percent of the total predicted concentration for a given species
associated with that feature for the unconstrained (closed circles) and constrained
(open circles) models.
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Table 2.2: Ratio of tire wear to brake wear PM10−2.5 contributions

Model Tire wear to brake wear median ratio

With profile Unconstrained

constraints

Combined-cities model Combined Model 0.24 (0.00,1.38)a 0.31 (0.00,1.85)

Chicago 0.30 (0.00,1.70) 0.37 (0.00,2.27)

St. Paul 0.35 (0.00,1.88) 0.48 (0.00,2.96)

Winston-Salem 0.09 (0.00,0.65) 0.11 (0.00,0.86)

Individual-city models Chicago 0.13 (0.00,0.64) 0.48 (0.13,1.17)

St. Paul 0.17 (0.00,1.26) 0.65 (0.17,12.66)

Winston-Salem 0.03 (0.00,0.98) 1.18 (0.29,2.05)

a () = 95% Confidence limits from bootstrapping.

and Mg and P and Pb in St Paul (c vs. d). Predicted average PM10−2.5 contributions

and their associated confidence intervals by city are generally lower for the individual

city models than for the combined cities model (Tables 2.7 and 2.9).

2.5.4 Fertilized Soil

The fertilized soil profiles are shown in Figure 2.5. All four profiles (a-d) indicate that

fertilized soil is a major contributor to P, Mg and K concentrations. The effect of prior

tire and brake wear constraints on the fertilized soil feature is small in all models.

Compared with the combined model (a), Ba is slightly enriched in the Chicago and

St. Paul features (b and c) and Mg is enriched in St. Paul. The contribution of this

feature to PM10−2.5 is generally larger in the individual city models than the combined

city model.
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2.5.5 Other features

The road salt profiles are shown in Figure 2.5. The road salt feature is similar to

that reported by Schauer and coworkers (2006) and contributed substantially to both

Na and Cl levels. Its contributions were only observed in St. Paul during the winter

sampling period but not in the summer nor in the other two cities. This city makes

extensive use of NaCl as a road deicing agent during snowfall events [9]. Such events

occurred during our winter sampling campaign in St. Paul, but not during winter

sampling campaigns in either Chicago or Winston-Salem. The effect of the tire and

brake wear constraints is small. For the road salt model, the difference between

the combined and individual cities model is also small. This is consistent with the

fact that the predicted road salt contributions are negligible in Chicago and Winston

Salem.

The Pb-rich profile is shown in Figure 2.3. The effect of tire and brake wear

constraints on this profile is small. The Pb-rich profile was not identified in any of

the individual cities models.

2.6 Discussion

2.6.1 Effect of constraints

A comparison of the constrained versus unconstrained brake wear and tire wear pro-

files and their bootstrapped confidence intervals from either the individual or com-

bined city models shows that the application of species ratio constraints had a rela-

tively minor impact. The constraints impact was minimal not only on the specified

species values, but also on those species in the profile that were not explicitly speci-

fied in the constraints. The ratio constraints are “soft” constraints in that they are

limited by a maximum increase in Q rather than “hard” constraints that are forced

specifically to their target values without consideration of the effect on Q. Yet both

the brake wear and tire wear constrained profiles achieved their target ratios speci-
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fied by the constraints. In other words, these profiles were robust to the application

of prior information about their presumed sources, providing strong evidence that

these two derived features were strongly influenced by tire and brake wear and thus

appropriately named.

In contrast to the soft ratio constraints, we applied hard constraints on the soil

contributions in the combined cities model in order to increase the number of obser-

vations while also deriving independent soil features for each city (equations 2.6 and

2.7). A comparison of the combined-city versus the individual-city models reveal that

these hard constraints appear to have had a more significant effect on the derived tire

and brake wear profiles than the soft constraints mentioned earlier, although these

same hard constraints did not significantly alter the city- specific soil profiles com-

pared to those derived from the individual city models. One major difference was the

ability to separate Zn from Pb using the combined-city model, resulting in separate

tire wear and Pb-rich profiles. This latter source’s contributions to PM10−2.5 are small

but similar in magnitude to those from tire wear (see Table 2.6) and may be due in

part to the abrasion of wheel weights [91]. Even though there is no evidence that

tires themselves contain Pb, the individual-city tire wear profile in Chicago contained

significant amounts of Pb. This may be driven by re-suspension of Pb from histori-

cally contaminated soil especially in southeast Chicago [105] and the resuspension of

soils contaminated with leaded house paint [11]. The larger number and diversity of

samples in the combined-cities model allowed these Pb-rich sources to be separated

from the Zn rich tire profile.

2.6.2 Tire to Brake Wear Ratios

The ratio of the PM10−2.5 contributions from tire wear relative to brake wear as pre-

dicted by the models can be compared with other independent estimates of this ratio.

Based on a combination of particle size distribution and chemical species measure-

ments in London at a heavily-trafficked curbside site and an urban background site,
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Harrison and coworkers [48] found that brake wear and tire wear contributed 55.3(+-

7) percent and 10.7(+-2.3) percent respectively to particle mass between 0.9 and 11.5

m, corresponding to an average tire-to-break wear ratio of 0.19. The traffic mix at

their curbside site was dominated by light duty vehicles [23]. This estimate is con-

sistent with our model predictions in Table 2.2 with the exception of those from the

unconstrained, individual-city models. The relatively low absolute contributions of

tire wear to PM10−2.5 (see Table 2.7) is also consistent with those reported elsewhere

by Kumata et al. (2011) using molecular markers.

The results in Table 2.2 can also be compared with emissions derived from the

EPA MOVES model for 2009 across all vehicle and roadway categories in the relevant

counties in the three cities. The MOVES tire wear to brake wear emission ratio

estimate is 0.29, reasonably consistent with our model predictions with the exception

of those from the unconstrained, individual-city models. The corresponding ratios

used in the California EMFAC model are 0.61-0.63 depending upon vehicle category,

somewhat higher than MOVES but still consistent with our combined-city model

predictions. However, it should be noted that these MOVES and EMFAC emission

estimates for tire wear and brake wear PM10−2.5 are themselves uncertain [29].

2.6.3 Soil Profiles

The relative proportions of Si, Fe, K, Al, Ti and Mn in the St. Paul and Chicago

soil profiles are similar to the Minneapolis resuspended coarse particle soil profile

(MPNSoil) reported by Watson and co-workers [120], the Chicago urban dust profile

(UDUST) reported by Vermette and co-workers [111], surface soil geochemistry of

Chicago soils reported by Cannon and co-workers [20], and the surrounding surface

layer geochemistry of upper Midwestern U.S. soils (mollisols and alfisols) [100, 110].

Winston-Salem soil particles have slightly higher mass fractions of Ti compared with

the other two cities consistent with the composition of the soils surrounding Winston

Salem (ultisols), predominant throughout Virginia, the Carolinas, Tennessee, Georgia
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and Alabama [100].

The phosphorus-rich fertilized soil feature contributions are consistently higher

during the summer versus winter sampling period in all three cities (not shown).

Phosphorus is added as a fertilizer to the soils within the urban areas as well as to

those in the agricultural areas surrounding all three cities [53]. Such windblown soil is

a major source of airborne phosphorus in agricultural areas in the spring and summer

[8].

2.6.4 Sources of Selected Species

An interesting question is how well a given measured species concentration represents

the contribution from a given source. We addressed this by examining for each feature

the relative contributions of and pairwise correlations with selected indicator species

of Cu, Zn, P and Si.

Our model results clearly indicate that tire wear is highly correlated with and also

an important source of Zn. In Chicago, Zn was strongly associated with tire wear but

also contributed to the soil and the Pb-rich features. Since Pb was present in the tire

wear feature for the Chicago individual model but not the individual models for St.

Paul and Winston-Salem, it is logical that it would be separated from the combined

model to ensure a ubiquitous tire wear source across cities. As a result, the Pb-rich

contributions are highly correlated with the tire wear contributions in Chicago (Table

2.8).

We also found that the brake wear feature is a major contributor to Cu in all three

cities and that crustal soil material is highly correlated with and also an important

source of Si in all three cities (see Table 2.7). The Metals-rich feature identified in the

Chicago individual models are very similar to the brake wear profile and differs in only

a few elements, potentially the result of artificially splitting the brake wear feature

based on the subtle differences of brake wear composition. However, the combined

model does not identify a Metals-rich feature. By using a multi-city approach we
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increase the number of samples and thereby improve the model’s ability to separate

these ubiquitous features.

A positive correlation between brake wear, tire wear, and soil contributions implies

that re-suspension from roadways, or road dust, is involved. This idea is reinforced

by the presence of Cu, Ba, and Sb in both the individual and combined model profiles

(Figure 2.4). Interestingly, the road salt feature in St. Paul in the winter is also a

major contributor to and also more highly correlated with the observed Cu than the

brake wear feature in this season (Table 2.3). To the extent that road salt is acting

as a tracer of re-suspended road particles, this would indicate that a measurable

portion of Cu from brake wear is from re-suspended material, at least in St. Paul.

This is consistent with the idea that some fraction of brake (and tire) wear dusts

are deposited on or near the roadway and subsequently re-suspended, partially as

coarse mode particles [80]. This is suggested by the accompanying enrichment of

Ba in the same road salt feature in both the combined and individual model results

(Figures 2.5e and 2.5f respectively). The soil and road salt contributions associated

with Cu could also be due to the model’s inability to separate these sources from

a truly independent brake wear feature, but the fact that the soil and road salt

features contain both Ba and Cu suggest that re-suspension of road dust is also

playing an important role. This idea is reinforced by positive correlations of brake

wear contributions with contributions from soil and road salt during the summer

and winter seasons respectively (Table 2.8). Additionally tire wear and Pb-rich were

slightly correlated with the Chicago soil feature indicating that re-suspension of road

dust is playing a role in these features.

The fertilized soil feature is well correlated with P in St. Paul and Winston-Salem,

however, Chicago exhibited elevated P contributions within the fertilized soil as well

as the Pb-rich feature. A positive correlation of contributions between the soil and

Pb-rich feature (Table 2.8) dilutes the ability of P to act as a strong indicator for

fertilized soil in Chicago.



32

2.7 Conclusions

We were able to successfully use a modified version of PMF to identify contributions

from brake wear, tire wear, crustal material, fertilized soil and a small Pb-rich fea-

ture. Our modified PMF model allowed not only for inclusion of prior source profile

information for selected species, but also for locally specific results for soil (crustal)

contributions in addition to generally applicable results for the other features. The

effect of prior source profile constraints on model predictions was relatively small,

increasing our confidence in correctly identifying the tire and brake wear features.

The modified model also allowed us to include measurements from different cities

with different soil compositions. The locally specific soil profiles in this model were

consistent with those derived from city-specific models. Elements Cu, Zn, P, and Si

were identified as general indicators of brake wear, tire wear, fertilized soil, and soil

for the combined city analysis.
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Table 2.4: Summary of Observed Coarse Particle Concentrations by City

Mean Concentration (ng/m3)a Average

Species Chicago St. Paul Winston-Salem Signal-

Summer Winter Summer Winter Summer Winter to-noiseb

(n = 31) (n = 33) (n = 33) (n = 25) (n = 30) (n = 35)

Al 61 92 154 78 116 138 135

Ba 11 10.1 6.2 6.2 4.1 5.3 16

Br 1.1 0.6 0.5 0.3 0.2 0.5 11

Ca 616 680 483 269 197 193 173

Cl b.d.c 1.5 b.d. 1320 b.d. 2.6 25

Cr 1.85 1.54 0.87 0.65 0.47 0.62 22

Cu 7.45 7.92 2.85 4.1 2.69 2.66 76

Fe 306 314 280 191 154 183 152

K 63 62 114 68 70 68 85

Mg 87 90 74 3 28 22 58

Mn 6.31 6.58 10.4 4.74 2.95 2.9 77

Na b.d. b.d. b.d. 460 b.d. b.d. 19

Ni 0.32 0.41 0.29 0.51 0.15 0.22 11

P 17.9 13.6 18.7 8.2 25.9 12.8 60

Pb 2.7 2.06 1.34 0.76 0.87 0.59 14

Sb 1.8 2.8 2 1.1 1.8 2.3 1.6

Si 307 428 719 266 346 410 162

Sr 0.88 1.26 0.67 0.55 0.45 0.77 15

Ti 12.6 15.7 19.5 8.5 15.3 18.3 122

Zn 26 23.8 6.4 5.4 2.9 3.6 58

Zr 2.53 2.72 0.96 0.98 0.84 1.08 24

PM10−2.5 5.9 5.5 6.8 3.5 3.8 3.5 0.7d

a PM10−2.5 in µg/m3;

b across all 3 cities;

c “b.d.” = below detection limits;

d includes additional model down-weighting (see text)
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Table 2.10: Range, Average, Average Percent Recovery from Measure-
ment Quality Assurance Data

Analyte SRM n Certified Value Measured Value Avg.

(µg/cm2) (µg/cm2) % Rec.

High Low Average

Al 1228 8 12.6 ± 1.3 14.22 12.55 13.41 106.09

Si 1228 8 34 ± 1.1 37.17 33.9 35.17 103.49

Ca 1228 9 19 ± 1.3 22 18.66 19.57 103.14

V 1228 9 3.95 ± 0.5 4.24 3.83 3.96 100.19

Mn 1228 9 4.11 ± 0.47 4.53 4.09 4.35 105.76

Cu 1228 9 2.53 ± 0.16 2.32 2.13 2.22 87.79

Si 987 8 35.8 ± 2.3 40.56 36.73 38.95 108.9

K 987 9 19.12 ± 1.8 22.43 17.59 19.79 103.5

Ti 987 9 11.86 ± 1.6 12.39 11.19 11.8 99.49

Fe 987 9 14.5 ± 0.53 15.11 13.99 14.46 99.58

Zn 987 9 5.49 ± 0.53 5.84 5.3 5.48 99.88

Pb 987 9 22.83 ± 1.24 23.2 21.84 22.71 99.49
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Figure 2.6: The value of p, degrees of freedom, and values of Q are: 8, 2864, 26966 for
the unconstrained combined site model; 8, 1969, 27205 for the constrained combined
site model; 5, 986, 7532 for the unconstrained Chicago model; 5, 696, 7618 for the
constrained Chicago model; 5, 918, 8468 for the unconstrained St. Paul model; 5,
648, 8412 for the constrained St. Paul model; 4, 1062, 9219 for the unconstrained
Winston-Salem model; and 4, 767, 9287 for the constrained Winston-Salem model.
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Table 2.11: Average Measurement and Per-
cent Error from Measurement Quality Con-
trol Data

Analyte n Conc. (µg/cm2) Avg.

Calib. Avg. Meas. %E

Si 167 9.86 9.22 0.08

V 176 10.07 10.11 -0.31

Ni 176 9.98 10.13 -0.93

Pb 176 21.02 21.84 2.03

Cd 176 6.04 6.19 0.77

Se 176 3.88 4.11 2.01
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Table 2.12: Analysis of modeled Q versus Qtheoretical across differing quantities of features for
combined, individual, constrained and unconstrained scenarios.

Model Constraints Number of features Degrees of Freedom Qrobust /Qtheoretical

Combined Unconstrained 6 3258 40.42
7 3060 28.56
8 2864 20.91
9 2670 15.25
10 2478 11.47

Combined Constrained 6 2353 39.8
7 2160 27.93
8 1969 20.42
9 1780 15.2
10 1593 11.48

Chicago Unconstrained 3 1140 64.56
4 1062 39.17
5 986 26.33
6 912 18.73
7 840 13.75

Chicago Constrained 3 840 58.7
4 767 35.23
5 696 23.79
6 627 16.93
7 560 12.3

St. Paul Unconstrained 3 1064 73.2
4 990 48.2
5 918 32.94
6 848 22.86
7 780 16.91

St. Paul Constrained 3 784 64.98
4 715 42.02
5 648 29.11
6 583 20.2
7 520 15.06

Winston-Salem Unconstrained 2 1220 112.9
3 1140 64.82
4 1062 41.27
5 986 27.76
6 912 19.95

Winston-Salem Constrained 2 915 104.15
3 840 58.12
4 767 37.11
5 696 24.97
6 627 18
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Chapter 3

COUPLING CHEMICAL TRANSPORT MODEL SOURCE
ATTRIBUTIONS WITH POSITIVE MATRIX

FACTORIZATION2

3.1 Abstract

Source contributions to total fine particle carbon predicted by a chemical transport

model (CTM) were incorporated into the positive matrix factorization (PMF) receptor

model to form a receptor-oriented hybrid model. The level of influence of the CTM

versus traditional PMF was varied using a weighting parameter applied to an object

function as implemented in the Multilinear Engine (ME-2). The resulting hybrid

model was used to quantify the contributions of total carbon from both wildfires

and biogenic sources at two Interagency Monitoring of Protected Visual Environment

monitoring sites, Monture and Sula Peak, Montana, from 2006 through 2008. CTM

source impacts were used to aid in the separation of biogenic sources from biomass

combustion due to wildfires. Two additional features were identified at each site, a

soil derived feature with elevated contributions in the summer and feature enriched

in both sulfate and nitrate with significant, but sporadic contributions across the

sampling period.

2This chapter has been drafted for submission to Environmental Science & Technology, authors
T.M. Sturtz (Department of Civil and Environmental Engineering, University of Washington,
Box 352700, Seattle, WA 98195-2700), B.A. Schichtel (Cooperative Institute for Research in the
Atmosphere/NPS, Colorado State University, Fort Collins, Colorado), and T.V. Larson (Depart-
ment of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle,
WA 98195-2700 and Department of Environmental and Occupational Health Sciences, University
of Washington, Box 357234, Seattle, WA 98195-7234).
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3.2 Introduction

Models that accurately describe the source contributions to ambient fine particle mass

and composition are an important air quality management tool. These models span a

spectrum from purely deterministic models based on a priori knowledge of emissions,

meteorology and chemistry, to multivariate receptor models based on ambient pollu-

tant measurements at a given receptor site.[15, 35, 79, 89, 92, 99, 112, 118, 125, 126]

Frequently, one of these two modeling approaches acts in an independent, supporting

role to the other. [63, 119]

Some investigators have focused on combining deterministic models with receptor-

based particle measurement approaches to form a single “hybrid” model. Different

approaches to combining these models include the use of genetic algorithms, [3, 4, 49,

59] ensemble methods, [26, 40, 61, 66, 67] multiplicative bias correction [97, 104] and

non-linear optimization. [124] A subset of these hybrid modeling approaches include

a deterministic chemical transport model (CTM) that includes secondary formation

of particle mass. Of these, even fewer also include receptor information on particle

composition in addition to particle mass. [61, 97, 98, 104]

Here we present a hybrid model that explicitly combines predictions from a CTM

with those from the Positive Matrix Factorization receptor model within the frame-

work of the Multilinear Engine.[75] Our model is an extension of one initially proposed

by Schichtel et.al. [98] that was developed using a synthetic data set. In this case,

we apply an extension of this latter hybrid model to actual data at two rural IM-

PROVE monitoring sites in Montana with the goal of distinguishing contributions to

total fine particle carbon from biogenic sources versus those from biomass combustion

due to wildfires. Based on correlations between soluble potassium and particulate or-

ganic carbon, the impact of wildfires at Western U.S. IMPROVE sites is known to

be significant. [54, 70, 82] Recent CTM modeling supports this conclusion, although

correlations between predicted and observed particulate carbon values at these same
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Western U.S. sites are lower than in other regions, [94] providing additional motivation

for the development of our hybrid model.

3.3 Methods

3.3.1 Monitoring Data

We used three years (2006 - 2008) of speciated PM2.5 data from two IMPROVE sites

located in western Montana - Monture and Sula Peak (vista.cira.colostate.edu/improve/)

whose locations are shown in the inset of Figure 3.1. The methodology described in

Polissar et. al. [84] was implemented to determine measurement uncertainties. We

assessed the average concentration to measurement uncertainty ratio (signal-to-noise,

S/N) using the methodology of Norris and Vedantham [37] and removed any species

with average S/N ¡ 0.2, and down weighted by a factor of 3 species with 0.2 < S/N <

2.0. [77] In addition, species with reported concentrations below their detection limit

or missing in over half the samples were removed from the analysis. The remaining

species we considered are summarized in Table 3.1. Finally, an additional 8% and

25% of the respective samples from Monture and Sula Peak were removed if the mass

reconstruction was outside IMPROVE limits. [38, 119]

3.3.2 Chemical Transport Model

At the two monitoring sites, we used predictions of fine particle carbon based on the

CAPITA Monte Carlo Lagrangian chemical transport model (CTM). [96] The model

considered 5 day upwind trajectories with accompanying emissions and atmospheric

reactions along each trajectory. It was recently implemented at each IMPROVE

site in the United States and shown to have similar performance metrics to CMAQ

in predicting fine particle carbon across the U.S.. [94] The model provided source

contribution estimates of both primary and secondary carbonaceous fine particles

from the following source categories: biomass combustion, biogenic, mobile, area, oil,
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point and other. Uncertainty estimates for each source were taken from the work

previously conducted by Schichtel et. al.. [98]

3.3.3 Combined CTM/PMF Model

Main Equations

We implemented a modified version of the Positive Matrix Factorization (PMF) re-

ceptor model using the Multilinear Engine version 2. [75] The standard PMF model

solves the basic mass balance equation (Equation 3.1) for source contributions, gik

, source profiles, fkj , and model error, eij , for i=1,n samples, j=1,m species, and

k=1,p sources. Species concentrations, xij , corresponding uncertainties, σij, and the

user-defined number of sources, p, serve as model inputs.

xij =

p∑
k=1

gikfkj + εij where gik, fkj > 0 (3.1)

To add prior source contribution constraints from the CTM, an additional set of

equations were solved simultaneously with equation 3.1. Specifically, we have added

equations representing each of the t=1,v contributions, g′it, to total fine particulate

carbon predicted by the CTM model, in this case, for v=2 sources: total biomass

combustion (k=1) and biogenic emissions (k=2). In general, the tth CTM constraint

is given by equation 3.2.

g′it = gitIt + ε′it where t ⊆ k (3.2)

where It represents a diagonal matrix which is solved by the model to account for

potential multiplicative bias in the CTM predictions.

Profile Constraints

The thermal fractions of carbon for each source are normalized as follows,
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w∑
s=1

fks = 1± us where s ⊆ j (3.3)

where s=1,w carbon fractions. In this case, we set us = 0.001. Equation 3.3

rescales f such that gik in equations 3.1 and 3.2 represent total fine particle carbon

and fkj represents mass fraction of species j in source k relative to total carbon.

Based on prior knowledge of fire emissions in this region, we constrained the

biomass combustion profile such that the value of f for potassium is > 0.01 [70] and

that the corresponding values for NO3 and SO4 are < 0.05.[90]

Additionally, we constrain each of the l=1,b secondary feature profiles, in this case

the biogenic source, so that each of the r=1,c non-carbonaceous species are near zero.

flr = 0± ulr where l ⊆ k and r ⊆ j (3.4)

In this case, we set ulr = 1× 10−5.

For the biomass combustion source we have limited the species to contain the

carbon thermal fractions, potassium, nitrate, sulfate, and hydrogen. The decision to

limit these species was based on the biomass combustion-like source profile resolved

for these sites by the pure PMF model and the EPA SPECIATE database. To impose

this constraint we applied Equation 3.4 with the above set of r=11 species. Going

forward, PMF will refer to the γ = 0 scenario.

Penalized Object Function

In ME-2, equations 3.1 through 3.4 are solved by minimizing an object function,

Q, through the use of a preconditioned conjugate gradient algorithm. The object

function (equation 3.5) includes a weighting parameter associated with each of the

applied constraints.
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Q = (1− γ)
n∑

i=1

m∑
j=1

[
εij
σij

]2
+ (γ)

n∑
i=1

v∑
t=1

[
ε′ij
ωij

]2
+

w∑
s=1

us +
b∑

l=1

c∑
r=1

ulr (3.5)

The first two terms in equation 3.5 represent the residuals from equations 3.1-3.3

where σij is the species measurement uncertainty, ωit is the CTM uncertainty, and γ

is a user-defined weighting parameter that allows one to weigh the CTM predictions

(equation 3.2) relative to those from the bivariate mass balance model (equations

3.1, 3.3, and 3.4). We implement this in ME-2 by specifying auxiliary formulas using

error mode -14 for the first two terms. The second two terms in equation 3.5 represent

the prior source profile constraints (equations 3.3 and 3.4) and are implemented with

auxiliary formulas using error mode -12. Definition of the ME-2 error modes [76] are

provided within the supplemental material (Table 3.3).

The uncertainties associated with the CTM results (equation 3.6) were defined as

a function of estimated fractional error, αt, and a fixed minimum CTM error, βt, for

the CTM model.

ωit =

√
(λt × g′it)

2 + β2 (3.6)

Model Implementation

For an initial user-specified number of sources, p, and a given value of the weighting

parameter, γ, multiple model runs were conducted at 40 different starting points

chosen randomly, and the chosen p-source baseline model was selected based on the

minimum value of Q (= Qmin). The model was executed using a standard and a

10-fold cross-validation approach (as described in the next paragraph). These profile

constrained model runs were conducted assuming a range of values for p with γ set

equal to zero, representing the basic PMF solution (equations 3.1, 3.3 and 3.4) without

additional information from the CTM (equation 3.2). The final value of p was chosen
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based on the following criteria: the smallest value of p where a change in the ratio of

n cross-validated Qmin to Qtheoretical approaches zero, where Qtheoretical = n*ms

+n*mw/3 - n*p, ms is number of strong species and mw is the number of weak

species; [28] and user judgment based upon qualitative agreement between each fkj

and prior knowledge of source profiles from known source types within the modeled

region. Plots of the ratio between cross-validated Qmin and Qtheortical as a function

of p are provided in the supplemental materials (Figure 3.6).

A final value of γ was chosen based on a minimum in the estimated RMSE of

predicted versus measured total carbon. For a given value of γ, the RMSE was

computed via a 10-fold cross validation procedure to insure a robust result. The

measurements and CTM results were initially assigned to one of 10 separate groups.

The model was then run 10 times, leaving one group out each time. The contributions

of total carbon were predicted for the 10% missing values using ME-2 with the derived

profiles from a given run. The resulting 10 groups of predictions were then combined

into a single data set and the RMSE of total carbon was determined for each value

of γ.

After selecting the γ associated with the minimum RMSE, blocked bootstrapping

[37] was then used to estimate the uncertainties of the fkj and the average values of

gik. A sample block size of 4 was defined and profile matching was conducted on the

predicted contributions of each species with an acceptable match defined as an R2 >

0.6 across all contributions for a given model run.

Here, the hybrid approach was applied using 17 different values of γ and solved

for 4 features. The Monture and Sula Peak IMPROVE monitor data were modeled

using CTM predicted contributions from biomass combustion and biogenic sources as

constraints (see equation 3.2). Total biomass combustion was used instead of speci-

fying a priori separate secondary and primary biomass combustion features because

of the high Pearson correlations between the CTM predictons of these two source

contributions to total carbon, 0.97 and 0.98 at Monture and Sula Peak respectively.
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This high correlation would likely cause difficulty in effectively separating the two

sources, thus the sum of the CTM predicted contributions from these two sources was

used to constrain the single biomass combustion PMF feature as described earlier.

To determine the CTM uncertainty, the fractional error was set to λ = 1.18 and

0.66 for the biomass combustion and biogenic features, respectively, and a minimum

CTM error of β = 0.1 was used. A sensitivity analysis of these assumed values was

also conducted.

3.4 Results

At both sites, we chose a four feature model based on the criteria described earlier

(see Figure 3.4 in the supplemental material for plots of Q/Qtheoretical versus p). At

each site, the hybrid model was defined by a minimum value of the cross-validated

total carbon RMSE as a function of γ (Figure 3.1). The Q/Qtheoretical for Monture and

Sula Peak at the minimum γ was 2.19 and 1.94 respectively. A sensitivity analysis

of the cross-validated total carbon RMSE curve to modifications of the uncertainty

error fraction and minimum model error at Monture was conducted and the resulting

plots are provided in the supplementary material (figures 3.10 and 3.11). In both the

PMF and hybrid models, two features were identified in addition to the constrained

biomass combustion and biogenic source features: a sulfate/ nitrate-rich feature and

a soil feature. The profiles for all four of these features at each site for the final hybrid

model are shown in Figure 3.2. Overall, the derived profiles at the two sites are similar

and, where differences occur, the associated bootstrapped uncertainties span these

differences with the exception of Al in the sulfate and nitrate rich feature. Profiles

of the four features derived from the PMF model are provided in the supplemental

material (Figure 3.5).

Performance statistics of both the hybrid and PMF model across all modeled

species are provided in Table 3.1. In general, the hybrid model performs slightly

better than the PMF model across all species. In addition, the predicted average
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contributions to total carbon from biomass combustion, biogenic sources, and “other”

sources (sulfate/nitrate-rich and soil) are shown in Figure 3.1 as pie charts for γ

values associated with PMF (γ = 0), CTM (γ = 1) and the hybrid model. Figure 3.3

shows predicted versus observed total carbon for each sample at each site for all three

models. The hybrid model displays the best agreement, given that it by definition

has the lowest RMSE. For the PMF and hybrid models, a time series of the predicted

contributions at each site can found in the supplemental material (Figures 3.5 and

3.6). Seasonal performance statistics of modeled total carbon are provided in Table

3.2 for the hybrid and CTM model; associated scatter plots are provided in Figure

3.9.

3.5 Discussion

Our models did not attempt to distinguish between primary and secondary biomass

because the CTM model predictions of these two features were highly correlated.

These CTM results were combined due to their high correlation and the potential of

the constrained ME-2 features to swap between the two. However, the separation of

these two features using the hybrid model would in principle be possible using other

CTM models, data from other sites further from the fire origins, or additional marker

species specific to primary and/or secondary particles.

Recall that the biomass combustion feature represents both primary and secondary

particles and the contributions are dominated by summer fire events in all three

seasons. The hybrid model biomass combustion profiles, shown in Figure 3.2, are

largely comprised of organic carbon thermal fractions. The wildfire CTM constraint

on this feature is consistent with the high percentage of pyrolytic carbon relative to the

other thermal fractions. Additionally, the biomass combustion contributions predicted

by the hybrid model are reasonably well correlated with the CTM predictions of total

wildfire (Pearson correlation coefficients of 0.72 and 0.91 for Monture and Sula Peak,

respectively) even though the CTM predicts consistently larger contributions than
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Figure 3.2: Hybrid model derived source profiles for Monture and Sula Peak. The
dark bars represent the average species contributions to total carbon for Monture and
the light bars represent Sula Peak. The bootstrapped 95% confidence intervals are
also shown. The circles represent the percent of overall predicted concentrations for
a given species associated with a feature at Monture (black circles) and Sula Peak
(white circles).
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the hybrid mode (see Figure 3.3). The hybrid model fit the measured total carbon

better than the CTM (see Figure 3.3) and, based on a seasonal comparison, fit the

data better during times of high total carbon contributions (see Figure 3.9 and Table

3.2).

Figure 3.3: Predicted Versus Observed Total Carbon for the CTM, PMF, and hybrid
models at Monture and Sula Peak. The black dots represent the CTM, the grey dots
represent the hybrid model, and the white dots represent PMF. The white dots are
somewhat obscured due to similarities in the fit of PMF and the hybrid solution.

The average ratio of K to OC from the biomass combustion profiles at Monture

and Sula were 0.036 (s.d. = 0.017) and 0.026 (s.d. = 0.016), respectively. Assuming

that the K in this feature is water soluble, these values are consistent with contribu-

tions from primary fire emissions, specifically with: 1) the range of values of primary

emissions of woody debris sampled near these sites (Northern Rockies region) as re-

ported by Munchack et.al. [70]; 2) our model predictions of major contributions from

the primary fire feature to total carbon and organic carbon that were observed in the

summer and originated from fires in this region ; 3) the relatively small amount of

secondary biomass particles predicted by the CTM model that could have otherwise
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decreased the primary K/OC ratio; and, 4) the fact that the largest impacts from

this feature to total carbon did not occur at the same time (see Figure 3.8) at both

sites, implying the lack of a broad regional haze from long range transport.

The biogenic feature was constrained to have a purely carbon and hydrogen based

profile, shown in Figure 3.2, and contributions with strong seasonality (see Figures

3.4 and 3.5) which is expected of biogenic emissions. The ability to distinguish the

biogenic feature from the biomass combustion is a result of the CTM constraints

and the profile constraints. The CTM provides the guidance required to interpret

this feature as biogenic, without it the feature could potentially be interpreted as an

arbitrary secondary source.

The soil profiles are provided in Figure 3.2. The feature identified as soil is the

majority contributor to Al, Ca, Fe, Mn, Si, and Ti. In addition to elements commonly

found in soils, we identified the presence of K and Sr, a result in agreement with the

surface geochemistry identified by Shacklette and Boerngen [100]. A comparison of

the relative composition of K, Fe, and Ca reported by Shacklette is consistent with

our profile. The contributions from the soil feature have a high level of seasonality

with the peaks in the summer due to dry conditions (see Figures 3.4 and 3.5). It is

plausible that some of these particles were generated via updrafts during fire events

given that the modest correlations between the biomass combustion feature and the

soil feature (r = 0.52 and 0.56 at Monture and Sula Peak, respectively).

The nitrate and sulfate dominated profiles, shown in Figure 3.2, are enriched with

Cu, Pb, and Zn and present as misaligned, sharp peaks, potentially implicating nearby

industrial sources. Generally, the composition of the two sites are in agreement, how-

ever the confidence levels of Sr, Zn, and Al indicate a differing level of contributions

for these element. This feature was found to have a low correlation with biomass

combustion source.

To examine the possible source(s) associated with the sulfate/nitrate-rich feature,

we used the NOAA hysplit model to assess 48 hour back trajectories leading to the
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Table 3.1: RMSE and R2 at Monture and Sula Peak for the γmin hybrid model
and constrained PMF against observed concentrations for each element and total
carbon.

Monture Sula Peak

Element S/N RMSE/R2 S/N RMSE/R2

Hybrid Const. PMF Hybrid Const. PMF

AL 2.85 0.037/0.93 0.039/0.92 2.42 0.012/0.95 0.012/0.94
(0.062/0.77)a (0.068/0.73) (0.015/0.93) (0.014/0.94)

BR 9.8 0.000/0.73 0.000/0.73 11.45 0.000/0.77 0.000/0.77
(0.000/0.56) (0.001/0.54) (0.001/0.52) (0.001/0.53)

CA 18.42 0.028/0.60 0.028/0.60 18.25 0.020/0.61 0.020/0.61
(0.031/0.57) (0.032/0.51) (0.023/0.51) (0.023/0.51)

EC1 5.48 0.198/0.96 0.281/0.96 5.19 0.353/0.99 0.250/0.99
(0.368/0.88) (0.434/0.84) (0.657/0.86) (0.751/0.85)

EC2 1.55 0.042/0.47 0.041/0.55 1.43 0.027/0.80 0.027/0.80
(0.030/0.74) (0.045/0.57) (0.037/0.69) (0.040/0.69)

OC1 1.12 0.297/0.81 0.312/0.78 1.25 0.464/0.89 0.470/0.87
(0.333/0.67) (0.341/0.65) (0.702/0.69) (0.739/0.63)

OC2 2.57 0.410/0.93 0.454/0.91 2.56 0.610/0.96 0.694/0.96
(0.546/0.79) (0.564/0.77) (1.174/0.81) (1.279/0.70)

OC3 2.39 0.141/0.96 0.104/0.98 2.21 0.254/0.98 0.222/0.99
(0.173/0.94) (0.218/0.91) (0.408/0.88) (0.471/0.85)

OC4 2.37 0.110/0.77 0.102/0.81 1.95 0.106/0.82 0.101/0.84
(0.097/0.82) (0.108/0.78) (0.138/0.75) (0.146/0.72)

OP 2.48 0.211/0.91 0.218/0.93 2.43 0.537/0.82 0.457/0.83
(0.281/0.87) (0.309/0.85) (0.229/0.96) (0.261/0.95)

CU 1.9 0.000/0.14 0.000/0.14 1.86 0.000/0.06 0.000/0.06
(0.000/0.19) (0.000/0.18) (0.000/0.10) (0.000/0.10)

H 13.62 0.039/0.98 0.046/0.98 15.52 0.066/0.99 0.078/0.99
(0.097/0.91) (0.121/0.86) (0.257/0.86) (0.299/0.80)

FE 18.75 0.005/0.99 0.005/0.99 18.71 0.005/0.98 0.005/0.98
(0.016/0.90) (0.020/0.86) (0.012/0.91) (0.011/0.91)

PB 3.47 0.000/0.55 0.000/0.55 3.11 0.000/0.36 0.000/0.34
(0.000/0.45) (0.000/0.46) (0.000/0.35) (0.000/0.35)

MN 11.32 0.002/0.42 0.002/0.43 7.44 0.001/0.69 0.001/0.68
(0.003/0.37) (0.003/0.32) (0.001/0.39) (0.001/0.31)

NO3 4.21 0.082/0.35 0.079/0.40 6.4 0.106/0.79 0.100/0.80
(0.098/0.15) (0.097/0.16) (0.166/0.39) (0.159/0.50)

K 15.92 0.018/0.93 0.010/0.98 18.65 0.016/0.96 0.018/0.97
(0.031/0.82) (0.047/0.50) (0.038/0.80) (0.042/0.82)

SI 11 0.070/0.95 0.075/0.95 8.52 0.021/0.97 0.021/0.97
(0.136/0.80) (0.151/0.75) (0.040/0.91) (0.040/0.91)

SR 1.81 0.000/0.62 0.000/0.62 1.85 0.000/0.65 0.000/0.65
(0.000/0.63) (0.000/0.57) (0.000/0.49) (0.000/0.48)

SO4 10.67 0.177/0.70 0.177/0.70 8.66 0.118/0.77 0.120/0.76
(0.264/0.51) (0.234/0.57) (0.233/0.45) (0.226/0.48)

TI 5.25 0.001/0.98 0.001/0.98 6.15 0.000/0.98 0.000/0.98
(0.001/0.90) (0.002/0.86) (0.001/0.91) (0.001/0.92)

ZN 16.06 0.002/0.34 0.002/0.31 9.28 0.002/0.54 0.002/0.52
(0.002/0.20) (0.002/0.20) (0.002/0.30) (0.002/0.25)

TC – 0.574/0.98 0.636/0.97 – 0.888/0.99 0.908/0.99
(0.765/0.91) (0.827/0.88) (1.577/0.86) (1.729/0.82)

a () = Cross-validated RMSE / R2
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three large total carbon spikes observed in Monture and 2 large spikes at Sula Peak

(see Figures 3.4 and 3.5). At Monture two of the spikes were associated with winds

coming from the West and most recently passing over the Missoula region. During

the sampling period a large pulp and paper mill was active in Missoula that may

have contributed to these spikes. The third spike at Monture was associated with

winds from the Northwest near Libby where current mining operations [65] may have

also contributed. At Sula Peak, the winds arrived from the West during these spikes,

passing over active gold, cobalt, and molybdenum mines and processing facilities.[1]

A comparison of this feature (Figure 3.2) to the EPA SPECIATE database found

that the “Regional smelter background” SPECIATE profile is in agreement with the

enriched values of Cu, Pb, Sr, Zn, NO3 and SO4 in this feature.

The sensitivity of the hybrid model to variations in the CTM uncertainty equation

were explored by modifying the relative error fraction between biomass combustion

and biogenic and by modifying the minimum model error values (figures 3.10 and

3.11). Changes in the relative error fractions caused only small variations in the RMSE

curve and identified similar minimum values. The feature profiles and compositions

at the minimum in each case was identical or near identical, indicating that the model

is robust to the error fraction estimates for dominant features. Minimum model error

values of β = 0.01, 0.1, and 1.0 demonstrated consistent minimum identification.

With β values of 10 or 100 the RMSE minimum was no longer identifiable. The

lack of a minimum in the cross-validated RMSE indicates no improvement over PMF,

likely due to the large error associated with the CTM and thus the lack of control by

the constraining CTM features.

Here we provided a framework for direct coupling of source apportionment from

a CTM model with PMF via ME-2. The CTM modeling results used here provided

estimates of total carbon, however our modeling framework provides the flexibility

to assess particle mass or other species of interest as predicted by a CTM. The hy-

brid model’s use of CTM constraints provides guidance and increased confidence in
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identifying derived features.

Previous work by Schichtel et. al. [98] introduced this hybrid modeling approach

using a synthetic data set. The synthetic data sets performance was compared against

a synthetic truth using direct RMSE calculations. The model described here differs

from that of Schichtel et. al. by including hard profile constraints and by incorpo-

rating a cross-validation procedure to locate a minimum RMSE as a function of the

weighting parameter. Since the true source contributions are unknown, we are limited

to a comparison of total carbon from all hypothesized sources. However, like the work

of Schichtel et. al., our resulting cross-validated RMSE curve has a modest minimum

indicating a better fit of the data than either CTM or PMF alone.

Other investigators have coupled CTM results with receptor-based models. The

approach most similar to ours is that of Maier and colleagues [61]. Their ensemble

model uses CTMs and PMF to derive average contributions from sources, uses these

contributions to derive source profiles using an inverse chemical mass balance (CMB)

approach, and finally uses the new source profiles in a common CMB approach to

estimate contributions. Our model differs by directly applying the CTM predictions

with uncertainty to the PMF model. This allows us to resolve sources that are not

necessarily identified by PMF alone.
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Figure 3.4: Hybrid model derived feature contributions for the Monture site. From top
to bottom, the features represent the biomass combustion, biogenic, nitrate/sulfate
dominant, and soil features. Broken sections within the time series are due to missing
samples.



61

Figure 3.5: Hybrid model derived feature contributions for the Sula Peak site. From
top to bottom, the features represent the biomass combustion, biogenic, nitrate/sul-
fate dominant, and soil features. Broken sections within the time series are due to
missing samples.



62

Figure 3.6: Cross-Validated Q/Qtheoretical versus number of factors. The analysis of
different values of Q provides an indication of how the model performs under different
numbers of sources. An inflection in these plots, if followed by a consistent trend,
provides evidence of deteriorating gains beyond the number of source associated with
the inflection point.
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Table 3.2: Modeled total carbon seasonal perfor-
mance statistics from the CTM and the hybrid
model (γmin) at Monture and Sula Peak.

Hybrid CTM

Site Season R2 RMSE R2 RMSE

Monture Winter 0.64 0.13 0.03 0.81

Spring 0.87 0.18 0.21 1.73

Summer 0.98 1.00 0.65 2.84

Autumn 0.97 0.50 0.31 21.66

Sula Peak Winter 0.77 0.07 0.02 1.09

Spring 0.92 0.09 0.14 1.35

Summer 0.99 1.54 0.92 5.10

Autumn 0.99 0.65 0.78 25.64
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Chapter 4

SUMMARY AND FINDINGS

4.1 Summary

This dissertation sought to improve upon standard approaches to receptor-oriented

source apportionment by incorporating novel sets of constraints within the ME-2

framework. Specifically, elemental ratio constraints, spatial separation constraints,

and CTM source attribution constraints were used to influence the standard PMF

model. Tracer-like elemental ratios were developed to aid in the separation of a brake

wear feature and a tire wear feature while modeling two-week samples of coarse PM

collected for two seasons across three cities. Inclusion of the element ratio constraints

improved the models ability to identify the constrained features and provided in-

creased confidence in the solution. However, initial modeling of these data indicated

that all of the sources were ubiquitous with the exception of windblown dust. To ad-

dress this, ME-2 was configured to model a different soil-like feature for each city while

allowing the other features to span all three cities. This separation of city-specific soil

features allowed distinct soil profiles to be realized while providing a larger set of sam-

ples than modeling the individual cities, thus improving model robustness. Overall,

these profile constraints and contribution constraints improved the ability to interpret

the model output.

Using similar ME-2 scripting methods, independent predictions of total fine parti-

cle carbon from a CTM model were used to help separate biomass combustion aerosol

from secondary biogenic aerosol. The CTM results were incorporated into ME-2 using

an additional equation which set the ME-2 contributions proportional to the CTM

contributions with a specified level of uncertainty. Additional profile constraints were
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used to isolate the species associated with either biomass combustion or biogenic

formation. Using a weighting parameter, the CTM model uncertainty was varied, re-

sulting in a set of solutions spanning a pure PMF solution and a pure CTM solution.

This approach was applied to two rural sites in Montana which are known to have a

heavy impact from biomass combustion during the summer months. In order to test

the validity of this hybrid approach, and to identify the ideal weighting parameter,

a 10-fold cross-validation was used. At the weighting parameter associated with a

minimum cross-validated RMSE for each site, the profiles and contributions were rea-

sonably correlated with the CTM while maintaining a strong fit to the measurements.

The cross-validated RMSE of total carbon for both sites was improved over the pure

CTM or PMF predictions. While other researches have coupled CTM results with

receptor-oriented models applied to real data, this model provides a direct coupling

of the CTM results within the ME-2 framework.

4.2 Strengths & Weaknesses

Evaluation of this hybrid ME-2 model provided promising results and included impor-

tant features. The profile constraints present in both the coarse PM analysis and the

hybrid modeling offered an approach for constraining PMF with prior profile infor-

mation which, in turn, provides an inherent ordering to the constrained factors and

removes any ambiguity in their interpretation. The ability to impart these profile

constraints is not new and is becoming common place in the latest versions of EPA

PMF. The spatial separation methodology used for the coarse PM soil features and

the CTM constraints used in the hybrid modeling also provide some improvement

in the ability to interpret these constrained features. The application of these two

constraints is new and requires the use of the ME-2 scripting language. Additionally,

by constraining with the CTM contributions, sources can be modeled which would

otherwise not be present using traditional receptor modeling techniques (e.g., bio-

genic SOA). The ability to separate these features with real data is a key finding of
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this work. In addition to these strengths, the hybrid model also supplies a method of

varying CTM uncertainty to achieve a best fit result, accounts for multiplicative bias

in CTM results, and is flexible enough to model any species resulting from any CTM.

Importantly, the use of this hybrid approach also has limitations. Applied elemen-

tal ratio constraints or source profile constraints implies that the constrained species

are well understood, which is not always true. Care must be taken when developing

profile constraints. With regard to the hybrid model, the uncertainties associated

with the CTM constraints require an initial estimate . The γ values tested by the

hybrid approach multiply these uncertainties by a scalar, thus the relative uncertain-

ties between different sources always remains the same. This becomes problematic if

the initial uncertainty of a single source is poorly estimated. Similarly, if the CTM

constraint is significantly different from reality the hybrid model may not fit the CTM

constraint well. However, if the CTM constraint differs only in magnitude (i.e., not

in temporal shape), then the hybrid model will adjust for the multiplicative bias.

Finally, the hybrid model, much like PMF, has difficulty separating highly correlated

features. The model becomes prone to factor swapping in the presence of highly

correlated CTM constraints and the reliability of proper separation, lacking strong

profile constraints, becomes difficult.

4.3 Suggested Future Research

4.3.1 Combined Site Hybrid Model

Combining multiple sites using the hybrid approach would be a natural next step

from this work. To conduct the modeling, sites which are in reasonable proximity

would be identified, each separately modeled with the hybrid model, and differences

in the profiles would be identified. Presumably nearby sites share some ubiquitous

features but may also be influenced by local sources. Combining the measurement

data and running the hybrid method with spatial separation on local sources could
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enhance the signal of the ubiquitous features due to increase sample size, provide

an increased number of constraint samples, and potentially identify features which

would have otherwise been overlooked. The use of multiple sites may provide enough

information to more readily separate primary and secondary biomass combustion.

However care must be taken when modeling multiple sites as the profiles associated

with the combustion of different materials may vary. Proper identification of these

different materials would provide a basis for using the spatial separation method to

model each type of combustion separately.

4.3.2 Source Specific γ

As indicated previously, under the current hybrid model as γ changes the source-

specific CTM uncertainties remain constant relative to one another. By modeling a

separate γ for each source, γt, the model would provide separate estimates of the ideal

uncertainty for each constrained feature. The results of this work my provide more

insight into the uncertainties of the CTM model used on a source-by-source basis and

offer guidance in diagnosing potential issues with the CTM. However, this approach

does not provide the same information of an overall CTM prediction as the hybrid

model does here, rather it inspects the individual sources.

4.3.3 Other CTMs

Numerous CTMs exists, each having their own strengths and weaknesses. Here we’ve

tested the hybrid model using the results from the CAPITA Monte Carlo model.

Exploration of other modes such as CAMx, CMAQ, and WRF/Chem could provide

additional refinements for the hybrid modeling approach. Additionally, an ensemble of

results from multiple CTMs could be used to (where available) to refine the constraints

further.
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4.4 Conclusions

The interpretation of traditional PMF receptor modeling results is often fraught with

ambiguity due to convergence issues, lack of data, poorly defined uncertainties, or

unexpected results. By incorporating information which helps tie the model to reality,

in this case a separate, deterministic CTM or set of emission profiles, an improvement

in these interpretations can be realized. The ratio, spatial, and CTM constraint

methods described here provided results which helped the model interpretation and

overall understanding of sources at two IMPROVE sites.
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Appendix A

HYBRID CODE: BUILDING MODEL INPUTS

# -*- coding: utf-8 -*-

"""

Created on Thu Jun 20 10:40:49 2013

@author: tmsturtz

"""

#####################################################

### Global Values used for preprocessing raw data ###

#####################################################

me2Lib = "./ME2-Files/ME2libr.txt"

me2Key = "./ME2-Files/me2key.key"

me2exe = "../1-DataPreprocess/me2wG17.exe"

views = "../1-DataPreprocess/MONT-RawData_2006-08.txt" # Comma separated VIEWS download file.

# Must have Values, MDL, and Uncertainties.

model = "../1-DataPreprocess/SrcCont_Primary_Sec_IMP_2006-08_Truth.csv" # CTM Modeled Results

modelunc = "../1-DataPreprocess/SrcCont_Uncert.csv" # CTM Uncertainties

Constraint = [’FireTot’,’Bio_SOC’] # Sources to constrain

Ccode = [’FIT*’,’BIO*’] # Associated Source Codes

SecondSrcs = [’FireTot’,’Bio_SOC’] # Secondary/Profile constrained Sources

secondary = {’FireTot’:["OC1","OC2","OC3","OC4","EC1","EC2","EC3","OP","H","K","SO4","NO3"], #

Allowed species in constrained profiles

’Bio_SOC’ :["OC1","OC2","OC3","OC4","EC1","EC2","EC3","OP","H"]}

#####################################################

### Global value used for developing hybrid model ###

####################################################

np = 4 # Number of sources to Solve

nt = 40 # Number of Tasks

XV10 = 1 # 10-Fold Cross Validation? 0 or 1

knob = [’PMF’,’CPMF’, 0.00001, 0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.9, 1, 2, 5] # Dials to test

norm = ["EC1","EC2","OC1","OC2","OC3","OC4"] # Species to normalize over

Clow = 0 # Low value for multiplicative scaling
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Chigh = 200 # High value for multiplicative scaling

Concentrations = ’./Data/ME2-Concentrations.csv’

Uncertainties = ’./Data/ME2-Uncertainties.csv’

PriorContribs = ’./Data/ME2-CTM-Contributions.csv’

PriorUncerts = ’./Data/ME2-CTM-Uncertainties.csv’

SecondSpecies = ’./Data/ME2-CTM-Species.csv’

############ END USER INPUT ########################

def LoadMeas(n):

########################################

### Read-in Data Exported from VIEWS ###

########################################

print ’ ---’

print ’ PROCESSING VIEWS DATA’

# Determine where the data starts and the number of columns

lookup = ’Dataset,SiteCode’

with open(n,’r’) as myFile:

for num, line in enumerate(myFile, 1):

if lookup in line:

FileStart = num

ncols = len(line.rstrip().split(’,’))

with open(n,’r’) as myFile:

for num, line in enumerate(myFile, 1):

if num == FileStart+1:

print" ---"

print " VIEWS Site Name:",line.rstrip().split(’,’)[1]

site = line.rstrip().split(’,’)[1].replace("1","")

# Load data into memory

views = genfromtxt(n,delimiter=’,’,

skiprows=FileStart-1,usecols=range(2,ncols),

converters = {2: datestr2num},names=True)

# Break out Values, Uncertainties, MDLs, Species, and Dates

Val_key = [line for line in views.dtype.names if "Value" in line]
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Val_dat = views[Val_key].view(float).reshape(views[Val_key].shape + (-1,))

Unc_key = [line for line in views.dtype.names if "Unc" in line]

Unc_dat = views[Unc_key].view(float).reshape(views[Unc_key].shape + (-1,))

MDL_key = [line for line in views.dtype.names if "MDL" in line]

MDL_dat = views[MDL_key].view(float).reshape(views[MDL_key].shape + (-1,))

Species_dat = array([z.replace(’Value’,’’) for z in [w.replace(’fValue’,’’) for w in Val_key]])

Dates = array([i[0] for i in views])

print " --- "

print " All Species Available in Raw Data:"

print Species_dat

############################################

### Process VIEWS Data for use with ME-2 ###

############################################

# Get indices where all data is missing or species which contain >50% BDL

MissList = where((Val_dat == -999).sum(axis=0) > 0.5*Val_dat.shape[0])[0]

MDLList = where((Val_dat <= MDL_dat).sum(axis=0) >= 0.5*Val_dat.shape[0])[0]

NoUncMDL = where(average(MDL_dat,axis=0) == -999)[0]

NotRCFM = where(Val_dat[:,where(Species_dat == ’RCFM’)[0]] == -999)[0]

AdditionalDrop = where((Species_dat == ’CM_calculated’,

Species_dat == ’RCFM’,

Species_dat == ’SOIL’,

Species_dat == ’fabs’,

Species_dat == ’MT’,

Species_dat == ’MF’,

Species_dat == ’SeaSalt’,

Species_dat == ’S’,

Species_dat == ’RB’,

Species_dat == ’V’))[1]

Exceptions = where((Species_dat == ’OC2’, Species_dat == ’OC1’))[1]

print " ---"

print " Exceptions to Processing Criteria as defined by user:", Species_dat[Exceptions[0]]

Removals = unique(concatenate((MissList,MDLList,NoUncMDL,AdditionalDrop)))

for i in range(len(Exceptions)):
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Removals = delete(Removals,where(Removals == Exceptions[i]))

Keep = delete(array(range(len(Species_dat))),Removals)

Samples = delete(range(len(Val_dat)),NotRCFM)

# Exclude problematic species from Values, Uncertainties, and MDLs

Val = Val_dat[:,Keep]

Unc = Unc_dat[:,Keep]

MDL = MDL_dat[:,Keep]

Val = Val[Samples,:]

Unc = Unc[Samples,:]

MDL = MDL[Samples,:]

Species = Species_dat[Keep]

Dates = Dates[Samples]

print " --- "

print " Species Kept:"

print Species

print " --- "

print " Samples:",Val.shape[0]

print " Species:",Val.shape[1]

### Calculate the geometric and arithmetic means of columns where Val > MDL != -999

from scipy.stats.mstats import gmean

arimeans = array([average(Val[(Val[:,i] > MDL[:,i]) & (Val[:,i] != -999),i]) for i in

range(len(Val[0,:]))])

geomeans = array([gmean(Val[(Val[:,i] > MDL[:,i]) & (Val[:,i] != -999),i]) for i in

range(len(Val[0,:]))])

MDL_med = array([median(MDL[(MDL[:,i] != -999),i]) for i in range(len(MDL[0,:]))])

Unc_med = array([median(Unc[(Unc[:,i] != -999),i]) for i in range(len(Unc[0,:]))])

### Val Processing ###

# For values greater than detection limit we keep as is

# For BDL values we use MDL/2

# For missing values we use the geometric mean of the measured concentrations that are above MDL

initially

Val[((Val < MDL) & (Val != -999))] = (MDL/2)[where(((Val < MDL) & (Val != -999)))]

Val[(Val == -999)] = geomeans[where((Val == -999))[1]]

### Unc Processing ###

# Check MDL and Unc for -999 values and fill with median of acceptable values for each

respectively



94

# For determined concentrations use the uncertainty plus 1/3 MDL

# For BDL concentrations use 1/2 arithmetic mean of MDL plus 1/3 MDL of sample

# For Missing concentrations use 4 times the geometric mean of concentration

Unc[Unc == -999] = Unc_med[where(Unc == -999)[1]]

MDL[MDL == -999] = MDL_med[where(MDL == -999)[1]]

Unc[((Val > MDL) & (Val != -999))] = (Unc+MDL/3)[((Val > MDL) & (Val != -999))]

Unc[((Val < MDL) & (Val != -999))] = arimeans[where(((Val < MDL) & (Val !=

-999)))[1]]+(MDL/3)[((Val < MDL) & (Val != -999))]

Unc[(Val == -999)] = geomeans[where((Val == -999))[1]]*4

### Signal-to-Noise Assessment (Reference?)

# S/N >= 2 : Keep as is

# 0.2 <= S/N < 2 : Downweight

# S/N < 0.2 : Remove

SN = ((Val-Unc)**2).sum(axis=0)/(Unc**2).sum(axis=0)

SNw = Species[where((SN < 2) & (SN > 0.2))]

SNb = Species[where(SN < 0.2)]

print " ---"

print " Signal-to-Noise"

print " Weak Species:", SNw

print " Bad Species:", SNb

### Scale the weak species uncertainties by 3 and remove the bad species

Unc[where((SN < 2) & (SN >0.2))] = Unc[where((SN < 2) & (SN >0.2))]*3

delete(Unc,where(SN < 0.2),1)

delete(Val,where(SN < 0.2),1)

### Write out files and return values for processing later

import csv

if not os.path.exists(’./Data’):

os.makedirs(’./Data’)

with open("./Data/VIEWS-Concentration-Data.csv",’w’) as fout:

writer = csv.writer(fout,delimiter=’,’)

writer.writerow(Species)

savetxt(fout,Val,delimiter=’,’)

with open("./Data/VIEWS-Uncertainty-Data.csv",’w’) as fout:

writer = csv.writer(fout,delimiter=’,’)

writer.writerow(Species)
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savetxt(fout,Unc,delimiter=’,’)

ViewOut = dstack((Val,Unc))

return ViewOut, Dates, Species, site

def LoadCTMModel(n,m):

#########################################################################

### Read in Model Results, match dates, determine initial uncertainty ###

#########################################################################

with open(n,’r’) as myFile:

mod_dat_raw = [line.rstrip().split(’,’) for line in myFile if Site in line]

with open(n,’r’) as myFile:

mod_head_raw = array([line.rstrip().split(’,’) for line in myFile if "Date" in line][0])

dataLoc = where(mod_head_raw == ’Date’)[0]

mod_head = array(mod_head_raw[dataLoc+1:len(mod_head_raw)-4])

mDates = datestr2num(array([i[dataLoc] for i in mod_dat_raw]))

mod_dat = array([i[dataLoc+1:len(i)-4] for i in mod_dat_raw])

### Match Dates with VIEWS

date_match = intersect1d(vDates,mDates)

mod_dates = array([i for i in mDates if i in date_match])

views_dates = array([i for i in vDates if i in date_match])

model_out = mod_dat[in1d(mDates,mod_dates),:].astype(float)

views_out = VIEWS[in1d(vDates,views_dates),:,:]

savetxt("./Data/CTM-AllSources-Contributions-4RMSE_Calcs.csv",model_out,delimiter=’,’)

print ’ ’

print ’ ---’

print ’ PROCESSING CTM RESULTS’

print ’ ---’

print ’ The CTM Model contains the following sources:’

print mod_head

### Get model uncertainty (PMF equation method)

# PMF Users Guide 3.0: Unc = sqrt((ErrFrac * Conc)^2 + MDL^2)

# For JFSP Work: Uncertainty taken from synthetic work by Bret Schichtel (PMF_Unc_Eq-1.xls)
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with open(m,’r’) as myFile:

mod_unc_eq = array([line.rstrip().split(’,’)[1:len(line)] for num, line in

enumerate(myFile,1) if num > 1]).astype(float)

with open(m,’r’) as myFile:

mod_unc_head = array([line.rstrip().split(’,’)[1:len(line)] for line in myFile if "Data" in

line][0])

constloc = array([where(i == mod_head)[0] for i in Constraint]).T[0]

uconstloc = array([where(i == mod_unc_head)[0] for i in Constraint]).T[0]

mod_cut = model_out[:,constloc]

mod_cut_unceq = array([map(float,i) for i in mod_unc_eq[:,uconstloc]])

mod_cut_unc = ones(mod_cut.shape,dtype=float)

for a in range(mod_cut.shape[0]):

for b in range(mod_cut.shape[1]):

if mod_cut[a,b] <= mod_cut_unceq[0,b]:

mod_cut_unc[a,b] = 0.83333333*mod_cut_unceq[0,b]

else:

mod_cut_unc[a,b] = sqrt(((mod_cut_unceq[1,b]/100)*(mod_cut[a,b]))**2 +

mod_cut_unceq[0,b]**2)

mod_head = mod_unc_head[uconstloc]

### Format Dates and account for species/sources to be considered secondary

Dates = array([i.strftime("%Y-%m-%d") for i in num2date(date_match)]).reshape(len(date_match),1)

global Species_mod

Species_mod = [i+"*" if i in secondary else i for i in Species]

Species_mod.insert(0,’Date’)

print " ---"

print " Final Sources:", mod_head

print " Final Species (* indicates Secondary)", Species_mod

### Write tables out for hybrid modeling

if not os.path.exists(’./Data’):

os.makedirs(’./Data’)

import csv

with open("./Data/ME2-Concentrations.csv",’w’) as fout:

writer = csv.writer(fout,delimiter=’,’)

writer.writerow(Species_mod)
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savetxt(fout,column_stack((Dates,views_out[:,:,0])),delimiter=’,’,fmt="%s")

with open("./Data/ME2-Uncertainties.csv",’w’) as fout:

writer = csv.writer(fout,delimiter=’,’)

writer.writerow(Species_mod)

savetxt(fout,column_stack((Dates,views_out[:,:,1])),delimiter=’,’,fmt="%s")

with open("./Data/ME2-CTM-Contributions.csv",’w’) as fout:

writer = csv.writer(fout,delimiter=’,’)

writer.writerow(insert(mod_head,0,"Date"))

[writer.writerow(i) for i in [append(’-999’,Ccode)]]

savetxt(fout,column_stack((Dates,mod_cut.astype(float))),delimiter=’,’,fmt="%s")

with open("./Data/ME2-CTM-Uncertainties.csv",’w’) as fout:

writer = csv.writer(fout,delimiter=’,’)

writer.writerow(insert(mod_head,0,"Date"))

[writer.writerow(i) for i in [append(’-999’,Ccode)]]

savetxt(fout,column_stack((Dates,mod_cut_unc.astype(float))),delimiter=’,’,fmt="%s")

with open("./Data/ME2-CTM-Species.csv",’w’) as fout:

writer = csv.writer(fout,delimiter=’,’)

[writer.writerow(append(i,secondary[i])) for i in SecondSrcs]

if XV10 == 1:

if not os.path.exists(’./XV-Data’):

os.makedirs(’./XV-Data’)

# Develop Data for 10-Fold Cross Validation

from sklearn.cross_validation import KFold

xvid = KFold(len(Dates), n_folds=10, indices=True)

trainer = []

tester = []

for train, test in xvid:

trainer.append(train)

tester.append(test)

train = array(trainer)

test = array(tester)

for z in range(10):

with open("./XV-Data/XV-Train-Conc-"+str(z)+".csv",’w’) as fout:

writer = csv.writer(fout,delimiter=’,’)
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writer.writerow(Species_mod)

savetxt(fout,column_stack((Dates[train[z]],views_out[train[z],:,0])),delimiter=’,’,fmt="%s")

with open("./XV-Data/XV-Test-Conc-"+str(z)+".csv",’w’) as fout:

writer = csv.writer(fout,delimiter=’,’)

writer.writerow(Species_mod)

savetxt(fout,column_stack((Dates[test[z]],views_out[test[z],:,0])),delimiter=’,’,fmt="%s")

with open("./XV-Data/XV-Train-Unc-"+str(z)+".csv",’w’) as fout:

writer = csv.writer(fout,delimiter=’,’)

writer.writerow(Species_mod)

savetxt(fout,column_stack((Dates[train[z]],views_out[train[z],:,1])),delimiter=’,’,fmt="%s")

with open("./XV-Data/XV-Test-Unc-"+str(z)+".csv",’w’) as fout:

writer = csv.writer(fout,delimiter=’,’)

writer.writerow(Species_mod)

savetxt(fout,column_stack((Dates[test[z]],views_out[test[z],:,1])),delimiter=’,’,fmt="%s")

with open("./XV-Data/XV-Train-CTMCont-"+str(z)+".csv",’w’) as fout:

writer = csv.writer(fout,delimiter=’,’)

writer.writerow(insert(mod_head,0,"Date"))

[writer.writerow(i) for i in [append(’-999’,Ccode)]]

savetxt(fout,column_stack((Dates[train[z]],mod_cut[train[z],:].astype(float))),delimiter=’,’,fmt="%s")

with open("./XV-Data/XV-Train-CTMUnc-"+str(z)+".csv",’w’) as fout:

writer = csv.writer(fout,delimiter=’,’)

writer.writerow(insert(mod_head,0,"Date"))

[writer.writerow(i) for i in [append(’-999’,Ccode)]]

savetxt(fout,column_stack((Dates[train[z]],mod_cut_unc[train[z],:].astype(float))),delimiter=’,’,fmt="%s")

def CreateFolders(XV=0):

""" Create folder structure for Hybrid modeling.

Optional: XV Number for subfolder creation """

folders = ["./Data", "./ME2-Inputs", "ME2-Outputs", "./ME2-Files"]

fcheck = [os.path.exists(i) for i in folders]

if sum(fcheck) != 4 and os.path.exists("./Data"):

[os.makedirs(i) for i in folders[1:]]

elif sum(fcheck) != 4:

[os.makedirs(i) for i in folders]

sys.exit("New folders added. Please add preprocessing data to the ’Data’ folder.")

else:

print "Folders in place."
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if XV10 == 1:

if not os.path.exists(’./ME2-Outputs/XV’+str(XV)):

os.makedirs(’./ME2-Outputs/XV’+str(XV))

if not os.path.exists(’./ME2-Inputs/XV’+str(XV)):

os.makedirs(’./ME2-Inputs/XV’+str(XV))

def LoadHybridData(icon=Concentrations, iunc=Uncertainties, ictm=PriorContribs, ictmu=PriorUncerts,

isec=SecondSpecies,XV=0):

""" Read in required data for hybrid modeling.

Default inputs defined as Concentrations, Uncertainties, Prior Contribs, PriorUncerts,

SecondSpecies.

Other variables or direct filename input can be used"""

global n1, n2, n3, ctmcodes, ctmsec, species, nonsec_sp, secsrc, normid

Conc = icon

Conc_unc = iunc

CTM = ictm

CTM_unc = ictmu

# Get species and dates

species = genfromtxt(icon,delimiter=’,’,dtype=’S’)[0,1:]

dates = loadtxt(icon,delimiter=’,’,skiprows=1, converters={0:strpdate2num(’%Y-%m-%d’)})[:,0]

dates = [i.strftime(’%Y-%m-%d’) for i in num2date(dates)]

# Load concentrations and uncertainties

conc = loadtxt(icon,delimiter=’,’,skiprows=1,usecols=(range(1,len(species)+1)))

concu = loadtxt(iunc,delimiter=’,’,skiprows=1,usecols=(range(1,len(species)+1)))

# Load CTM names, codes, and secondary species

ctmnames = genfromtxt(ictm,delimiter=’,’,dtype=’S’)[0,1:]

ctmcodes = genfromtxt(ictm,delimiter=’,’,skiprows=1,dtype=’S’)[0,1:]

with open(isec,’r’) as fin:

ctmsec = array([i.rstrip().split(’,’) for i in fin])

# Load CTM contributions and contribution uncertainties

ctm = loadtxt(ictm,delimiter=’,’,skiprows=2,usecols=(range(1,len(ctmcodes)+1)))

ctmu = loadtxt(ictmu,delimiter=’,’,skiprows=2,usecols=(range(1,len(ctmcodes)+1)))
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# Define model characteristics

characteristics = (conc.shape[0],conc.shape[1],len(ctmcodes),np)

# Get non-secondary species

secsrc = array([where(ctmcodes == i)[0] for i in ctmcodes if "*" in i]).T[0]+1

noaster = array([i.replace(’*’,’’) for i in species])

nonsec_sp = [[where(noaster == i)[0] for i in noaster if i not in ctmsec[j][1:]] for j in

range(len(ctmsec))]

nonsec_sp = [[i.tolist()+1 for i in nonsec_sp[j] for i in i] for j in range(len(ctmsec))]

# Get normalization species

normid = array([where(array([i.replace(’*’,’’) for i in species]) == j)[0] for j in

norm]).T[0]+1

# Save data to files in ./ME2-Files/

if XV10 == 0:

savetxt(’./ME2-Files/Conc.me2’,conc,delimiter=’,’)

savetxt(’./ME2-Files/Unc.me2’,concu,delimiter=’,’)

savetxt(’./ME2-Files/Priors.me2’,ctm,delimiter=’,’)

savetxt(’./ME2-Files/PriorsUnc.me2’,ctmu,delimiter=’,’)

savetxt(’./ME2-Files/Species.me2’,species,delimiter=’,’,fmt=’%s’)

savetxt(’./ME2-Files/Sources.me2’,ctmnames,delimiter=’,’,fmt=’%s’)

savetxt(’./ME2-Files/Dates.me2’, dates, delimiter=’,’,fmt=’%s’)

savetxt(’./ME2-Files/Codes.me2’, ctmcodes, delimiter=’,’,fmt=’%s’)

savetxt(’./ME2-Files/Characteristics.me2’,characteristics,delimiter=’,’)

else:

savetxt(’./ME2-Files/Conc-’+str(XV)+’.me2’,conc,delimiter=’,’)

savetxt(’./ME2-Files/Unc-’+str(XV)+’.me2’,concu,delimiter=’,’)

savetxt(’./ME2-Files/Priors-’+str(XV)+’.me2’,ctm,delimiter=’,’)

savetxt(’./ME2-Files/PriorsUnc-’+str(XV)+’.me2’,ctmu,delimiter=’,’)

savetxt(’./ME2-Files/Species-’+str(XV)+’.me2’,species,delimiter=’,’,fmt=’%s’)

savetxt(’./ME2-Files/Sources-’+str(XV)+’.me2’,ctmnames,delimiter=’,’,fmt=’%s’)

savetxt(’./ME2-Files/Dates-’+str(XV)+’.me2’, dates, delimiter=’,’,fmt=’%s’)

savetxt(’./ME2-Files/Codes-’+str(XV)+’.me2’, ctmcodes, delimiter=’,’,fmt=’%s’)

savetxt(’./ME2-Files/Characteristics-’+str(XV)+’.me2’,characteristics,delimiter=’,’)

n1 = conc.shape[0]

n2 = conc.shape[1]

n3 = len(ctmnames)

### Print Model Setup to Screen

print " =================================="
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print " Data files populated successfully."

print " =================================="

print " Number of Samples:", n1

print " Number of Species:", n2

print " Number of Constraints:", n3

print " Number of Sources:", np

print " ------------------------------"

print " Constraining with:", ctmnames

################################

# CREATE THE INPUT ME-2 SCRIPT #

################################

def CreateInp(it,XV=0):

script = []

script.append("##ME-2 script for 2-way PMF. Licence: "+me2Key+" \n")

script.append(’’’

section> defines;

version=1.100;

monitor=5;

robust=1;

posoutdist=4; negoutdist=4;

missdatlim=-990;

bdlneg=0;

convtests

0.100, 40, 5000, 0, 0, 0.0001,

0.010, 50, 8000, 0, 0, 0.0001,

0.005, 80, 20000, 0, 0, 0.00002;

cgresets 10, 80, 1, 1, 1, 1; \n’’’)

# Number of Tasks

script.append("precmode=15; numtasks="+str(nt)+"; \n")

script.append(’’’

variables

’numoldsol’=1,

’alowlim’=0.0,

’blowlim’=0.0,

’seed1’=412,

’normc1’=0.01,
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’contrun’=0;

if> (contrun>0); numtasks=1; if!; \n’’’)

# Basic properties

script.append("n1="+str(n1)+"; n2="+str(n2)+"; n3="+str(n3)+"; np="+str(np)+"; \n")

script.append(’’’

c1=0.0; c2=0.0; c3=0.05; em=-14;

defarr maindata, XX[n1, n2];

defarr auxdata, YY[n1, n3];

defarr auxdata, NORM[1,np];

defarr auxdata, ZERO[1,1];

defarr freefact, AA[n1, np];

defarr freefact, BB[n2, np];

defarr freefact, CC[n3];

defarr scripttext, AAHEAD[n1];

defarr scripttext, BBHEAD[n2];

defarr scriptdata, COLUMNAVG[n2];

defarr scripttext, FACTHEAD[np];

defarr scripttext, FORMATS[6]; \n ’’’)

script.append("$include $Xwritex ’"+ me2Lib+"’ \n")

script.append(’’’

$include $Fwrite2

subroutine> Fhead{fi}{};

local jp;

write fi, ’(16X)’;

for> jp=1:1:np;

write fi, ’(1X,A8)’, FACTHEAD[jp];

for!;

subroutine!;

dummyarr freefact, FACTNORM[];

dummyarr auxdata, AUXNORM[];

section!;

section> equations; \n’’’)

# Files to open for reading/writing

if XV10 == 0:

script.append("openfile 30, ’./ME2-Files/Conc.me2’, R, ’old’, 6000; \n")

script.append("openfile 31, ’./ME2-Files/Unc.me2’, R, ’old’, 6000; \n")

script.append("openfile 32, ’./ME2-Files/Priors.me2’, R, ’old’, 6000; \n")

script.append("openfile 33, ’./ME2-Files/PriorsUnc.me2’, R, ’old’, 6000; \n")
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script.append("openfile 40, ’./ME2-Outputs/hyME2-u"+it+"/contributions.raw.dat’, W,

’replace’, 2000; \n")

script.append("openfile 41, ’./ME2-Outputs/hyME2-u"+it+"/profiles.raw.dat’, W, ’replace’,

2000; \n")

script.append("openfile 42, ’./ME2-Outputs/hyME2-u"+it+"/performance.raw.dat’, W, ’replace’,

2000; \n")

script.append("openfile 43, ’./ME2-Outputs/hyME2-u"+it+"/scaling.raw.dat’, W, ’replace’,

2000; \n")

if not os.path.exists(’./ME2-Outputs/hyME2-u’+it):

os.makedirs(’./ME2-Outputs/hyME2-u’+it)

else:

script.append("openfile 30, ’./ME2-Files/Conc-"+str(XV)+".me2’, R, ’old’, 6000; \n")

script.append("openfile 31, ’./ME2-Files/Unc-"+str(XV)+".me2’, R, ’old’, 6000; \n")

script.append("openfile 32, ’./ME2-Files/Priors-"+str(XV)+".me2’, R, ’old’, 6000; \n")

script.append("openfile 33, ’./ME2-Files/PriorsUnc-"+str(XV)+".me2’, R, ’old’, 6000; \n")

script.append("openfile 40, ’./ME2-Outputs/XV"+XV+"/hyME2-u"+it+"/contributions.raw.dat’, W,

’replace’, 2000; \n")

script.append("openfile 41, ’./ME2-Outputs/XV"+XV+"/hyME2-u"+it+"/profiles.raw.dat’, W,

’replace’, 2000; \n")

script.append("openfile 42, ’./ME2-Outputs/XV"+XV+"/hyME2-u"+it+"/performance.raw.dat’, W,

’replace’, 2000; \n")

script.append("openfile 43, ’./ME2-Outputs/XV"+XV+"/hyME2-u"+it+"/scaling.raw.dat’, W,

’replace’, 2000; \n")

if not os.path.exists(’./ME2-Outputs/XV’+XV+’/hyME2-u’+it):

os.makedirs(’./ME2-Outputs/XV’+XV+’/hyME2-u’+it)

script.append(’’’

if> (contrun>0);

openfile 39, ##p, R, ’old’, 2000;

if!;

FORMATS[1]=’(/(’, np,’(I2)’, ’E14.5))’;

XX[0,0]=0;

XX.C1[0,0]=0;

for> j1=1:1:n1;

for> j2=1:1:n2;

read 30, ’ ’, XX[j1,j2];

read 31, ’ ’, XX.C1[j1,j2];

for!;

for!;

YY[0,0]=0;

YY.C1[0,0]=0;
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for> j1=1:1:n1;

for> j2=1:1:n3;

read 32, ’ ’, YY[j1,j2];

read 33, ’ ’, YY.C1[j1,j2];

for!;

for!;

for> j2=1:1:n2;

for> j1=1:1:n1;

equ> XX[j1,j2], C1=XX.C1[j1,j2], C3=c3, errmod=em;

for> jp=1:1:np;

term> pos; @AA[j1,jp]; @BB[j2,jp]; term!;

for!;

equ!;

for!;

for!; \n’’’)

# Write Hybrid Equations

for i in range(n3):

if it != "PMF" and it != "CPMF":

script.append("for> j1=1:1:n1; equ> "+

"YY[j1,"+str(i+1)+"], C1=YY.C1[j1,"+str(i+1)+"]*"+it+

", C3=c3, errmod=-14; term>"+

" pos; @AA[j1,"+str(i+1)+"]; @CC["+str(i+1)+"]; term!; equ!; for!; \n \n")

# Write Zeroing Equations

if it != "PMF":

script.append("equ> ZERO[1,1], Data=0, C1=1e-05, errmod=-12; \n")

for i in range(len(ctmsec)):

script.append("for> jj={"+str(secsrc[i])+

"}; \n for> ii={"+’, ’.join(str(s) for s in nonsec_sp[i])+

"}; \n term> pos; @BB[ii,jj]; term!; for!; for!; \n")

script.append("equ!; \n")

# Write Normalization Equation

script.append("for> jj=1:1:np; \n equ> NORM[1,jj], Data=1, C1=0.001, C3=0, errmod=-12; \n "

"for> ii={"+’, ’.join(str(s) for s in normid)+"}; \n "

"term> pos; @BB[ii,jj]; term!; for!; equ!; for!; \n")

script.append(’’’

AA.fkey[0,0]=lolimit; AA.flow[0,0]=alowlim; AA.fhigh[0,0]=5.0;
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BB.fkey[0,0]=lolimit; BB.flow[0,0]=blowlim;

BB.fkey[17,1]=lolimit; BB.flow[17,1]=0.01;

BB.fkey[16,1]=lohilimits; BB.flow[16,1]=0.0; BB.fhigh[16,1]=0.05;

BB.fkey[21,1]=lohilimits; BB.flow[21,1]=0.0; BB.fhigh[21,1]=0.05; \n’’’)

script.append(’CC.fkey[0]=lohilimits; CC.flow[0]=’+str(Clow)+’; CC.fhigh[0]=’+str(Chigh)+’;’)

script.append(’’’

AA.fprecc[0,1]=np;

BB.fprecc[0,1]=np;

section!;

section> preproc;

if> (taskcount==1);

for> j2=1:1:n2;

cn=0; sm=0;

for> j1=1:1:n1;

if> (XX[j1,j2]>=0);

sm=sm+XX[j1,j2]; cn=cn+1;

if!;

for!;

COLUMNAVG[j2]=Maxval{sm,0.0001}/Maxval{cn,1};

BB.fhigh[j2,0]=COLUMNAVG[j2];

for!;

if!;

if> (contrun==0);

NORM.aux1[1,np]=0.0;

setrand 1, uniform, seed1;

AA[0,0] = Urandom{0.01,2.0,1};

for> j2=1:1:n2;

BB[j2,0] = Urandom{0.01*COLUMNAVG[j2],0.5*COLUMNAVG[j2],1};

for!;

seed1=seed1+100;

elseif (contrun==1 | contrun==2);

if> (taskcount==1);

for> ii=1:1:numoldsol;

read 39, ’ ’, AA[0,0], BB[0,0];

for!;

if!;

else;

stop ’contrun should be =0 or =1 or =2’;

if!;

if> (contrun==2);
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openfile 38, ##c, R, ’old’, 2000;

for> jp=1:1:np;

for> j2=1:1:n2;

read 38, ’ ’, tt;

BB.fkey[j2,jp]=tt;

if> (tt==locked);

NORM.C1[1,np]=10*n1;

if!;

for!;

for!;

$skiplines

28*0 /fact # 1: all elements are lolimit

28*-5 /fact # 2: all elements are locked (not variable)

28*0 /fact # 3: all elements are lolimit

28*0 /fact # 4: all elements are lolimit

7*0, -6, -6, 19*0

/fact # 5: all elements are lolimit, except #8 and #9

/are fixed to zero

28*0 /fact # 6: all elements are lolimit

28*0 /fact # 7: all elements are lolimit

$endskip

if!;

section!;

section> postproc;

write 40, FORMATS[1], AA[0,0];

write 40, ’(/A)’, ’ ’ ;

write 41, FORMATS[1], BB[0,0];

write 41, ’(/A)’, ’ ’ ;

write 43, FORMATS[1], CC[0];

write 43, ’(/A)’, ’ ’ ;

write 42, ’(//A/)’,

’ task#, seed, Qrobust, Q, Qmain, Qaux, Iterations, Self-Cancel’;

write 42, ’(I5)’, taskcount, seed1;

write 42, ’(F12.3)’, qvalue,trueqvalue, mainqvalue, auxqvalue, itercount, selfcancel;

section!;

section> callback;

section!;

/ Slash comments can be used among data values, such as this line.’’’)

return script
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####################################

### Use Functions and Run Script ###

####################################

# COPY ME2 Library, Key, and Executable into model folders

import shutil

shutil.copy2(me2exe, me2exe.split(’/’)[len(me2exe.split(’/’))-1])

# LOAD MEASUREMENTS

ViewsOut = LoadMeas(views)

VIEWS = ViewsOut[0] # Conc and Unc as 3D Array

vDates = ViewsOut[1] # VIEWS Dates

Species = ViewsOut[2] # Species

Site = ViewsOut[3]

# LOAD CTM MODEL RESULTS

# & PROCESS WITH SITE MEASUREMENTS

LoadCTMModel(model,modelunc)

if XV10 == 0:

# CREATE MODELING FOLDERS

CreateFolders()

# LOAD HYBRID MODEL DATA

LoadHybridData()

iniList = []

for i in knob:

me2In = CreateInp(str(i))

File = ’./ME2-Inputs/hyME2-u’+str(i)+’.ini’

iniList.append(File)

with open(File,’w’) as fin:

for j in me2In:

fin.write(j)

# Write executables for running model

for lines in iniList:

with open(lines+".csh",’w’) as qsub:

print>>qsub, "#!/bin/tcsh -f"

print>>qsub, "wine me2wG17.exe "+lines

with open("RunHybridModel.csh", ’w’) as Farout:
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print>>Farout, "#!/bin/tcsh -f"

for lines in iniList:

print>>Farout, ’qsub -cwd -l h="compute-2-*" -e ./ME2-Inputs/ -o ./ME2-Inputs/ -S

/bin/tcsh ’+lines+’.csh’

os.chmod("./RunHybridModel.csh",0744)

else:

for z in range(10):

# CREATE MODELING FOLDERS

CreateFolders(z)

# LOAD HYBRID MODEL DATA

ConcentrationsXV = ’./XV-Data/XV-Train-Conc-’+str(z)+’.csv’

UncertaintiesXV = ’./XV-Data/XV-Train-Unc-’+str(z)+’.csv’

PriorContribsXV = ’./XV-Data/XV-Train-CTMCont-’+str(z)+’.csv’

PriorUncertsXV = ’./XV-Data/XV-Train-CTMUnc-’+str(z)+’.csv’

SecondSpeciesXV = ’./Data/ME2-CTM-Species.csv’

LoadHybridData(ConcentrationsXV,UncertaintiesXV,PriorContribsXV,PriorUncertsXV,SecondSpeciesXV,XV=z)

iniList = []

for i in knob:

me2In = CreateInp(str(i),str(z))

File = ’./ME2-Inputs/XV’+str(z)+’/hyME2-u’+str(i)+’.ini’

iniList.append(File)

with open(File,’w’) as fin:

for j in me2In:

fin.write(j)

# Write executables for running model

for lines in iniList:

with open(lines+".csh",’w’) as qsub:

print>>qsub, "#!/bin/tcsh -f"

print>>qsub, "wine me2wG17.exe "+lines

with open("./XV"+str(z)+"-RunHybridModel.csh", ’w’) as Farout:

print>>Farout, "#!/bin/tcsh -f"

for lines in iniList:

print>>Farout, ’qsub -cwd -l "h=compute-2-*" -e ./ME2-Inputs/XV’+str(z)+’ -o

./ME2-Inputs/XV’+str(z)+’ -S /bin/tcsh ’+lines+’.csh’

os.chmod("./XV"+str(z)+"-RunHybridModel.csh",0744)
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Appendix B

HYBRID CODE: POST-PROCESSING

# -*- coding: utf-8 -*-

"""

Created on Fri Jul 5 13:08:24 2013

@author: tmsturtz

"""

import os, sys

import h5py

from sklearn import linear_model

import csv

from pylab import *

import matplotlib.pyplot as plt

from subprocess import call

import shutil

import pandas as pd

###########################################################################

### Define RMSE & NRMSE (as %) for comparison with concentration values ###

###########################################################################

def nrmse(sim,obs):

sim2 = sim[:,array([where(species == i)[0] for i in TC]).T[0]] #.sum(axis=1)

obs2 = obs[:,array([where(species == i)[0] for i in TC]).T[0]] #.sum(axis=1)

return ((sqrt(sum((sim2-obs2)**2)/len(obs.sum(axis=1))))) #/(obs2.max()-obs2.min()))

def nrmseALL(sim,obs):

#sim2 = sim[:,array([where(species == i)[0] for i in TC]).T[0]] #.sum(axis=1)

#obs2 = obs[:,array([where(species == i)[0] for i in TC]).T[0]] #.sum(axis=1)

return ((sqrt(sum((sim-obs)**2)/len(obs.sum(axis=1))))) #/(obs.max()-obs.min()))
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def CTMnrmse(sim,obs):

sim2 = sim.sum(axis=1)

obs2 = obs[:,array([where(species == i)[0] for i in TC]).T[0]].sum(axis=1)

return 100*((sqrt(sum((sim2-obs2)**2)/len(obs.sum(axis=1))))) #/(obs2.max()-obs2.min()))

def COE(sim,obs):

’Coefficient of Efficiency (McCabe & Legates 2012): E1 method ’

sim2 = sim[:,array([where(species == i)[0] for i in TC]).T[0]].sum(axis=1)

obs2 = obs[:,array([where(species == i)[0] for i in TC]).T[0]].sum(axis=1)

return 1-(sum(abs(obs2-sim2))/sum(abs(obs2-mean(obs2))))

def GetObsTC():

info = loadtxt(’./ME2-Files/Characteristics.me2’)

n2 = int(info[1])

TC = ["EC1", "EC2", "OC1", "OC2", "OC3", "OC4"]

conc = loadtxt(’./Data/ME2-Concentrations.csv’,delimiter=’,’,skiprows=1,usecols=range(1,n2+1))

OTC = conc[:,array([where(species == i)[0] for i in TC]).T[0]].sum(axis=1)

return OTC

def GetObs():

info = loadtxt(’./ME2-Files/Characteristics.me2’)

n2 = int(info[1])

conc = loadtxt(’./Data/ME2-Concentrations.csv’,delimiter=’,’,skiprows=1,usecols=range(1,n2+1))

return conc

def GetObsUnc():

info = loadtxt(’./ME2-Files/Characteristics.me2’)

n2 = int(info[1])

unc = loadtxt(’./Data/ME2-Uncertainties.csv’,delimiter=’,’,skiprows=1,usecols=range(1,n2+1))

return unc

def GetQ(x):

q = sum(((GetObs()-Simulations[x,:,:])/GetObsUnc())**2)

return q

#!!! BEGIN PROCESSING DATA !!!#

#######################################################################

### Loop Over Directories, determine minQ, and save associated data ###

#######################################################################

def ProcessResults():
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global TC, species, contributions, profiles, qdat, scaling, knobs, ModelRMSE

dirList = [i for i in os.listdir(’./ME2-Outputs/’) if "hyME2" in i]

TC = ["EC1", "EC2", "OC1", "OC2", "OC3", "OC4"]

Qdat = []

knobs = []

contributions = []

oddcontribs = []

profiles = []

scaling = []

ModelRMSE = []

dirList = [i[1] for i in sorted(enumerate(dirList), key=lambda x:x[1])]

dirList = [’ME2-Outputs/’+i for i in dirList]

for z in dirList:

z1 = z.split(’-u’)[1]

knob = z1

knobs.append(knob)

# Get Modeling Setup

# Samples = n1, Species = n2, constraints = n3, sources = np

info = loadtxt(’./ME2-Files/Characteristics.me2’)

n1 = int(info[0])

n2 = int(info[1])

n3 = int(info[2])

np = int(info[3])

# Get Dates, Species List, Concentrations, Constraint Names, Constraint Values, CTMs

dates = loadtxt(’./ME2-Files/Dates.me2’,converters={0:strpdate2num(’%Y-%m-%d’)})

species = loadtxt(’./ME2-Files/Species.me2’,dtype=’string’)

conc =

loadtxt(’./Data/ME2-Concentrations.csv’,delimiter=’,’,skiprows=1,usecols=range(1,n2+1))

priors_id = loadtxt(’./ME2-Files/Sources.me2’,dtype=’string’)

priors =

loadtxt(’./Data/ME2-CTM-Contributions.csv’,delimiter=’,’,skiprows=2,usecols=range(1,n3+1))

CTM_All = loadtxt("./Data/CTM-AllSources-Contributions-4RMSE_Calcs.csv",delimiter=’,’)

# Performance: task#, seed, Qrobust, Q, Qmain, Qaux, Iterations, Se

perform = loadtxt(’./’+z+’/performance.raw.dat’,comments=’task#’)

if len(perform[where(perform[:,4] == perform[:,4].min()),0][0]) == 1:

minTask = int(perform[where(perform[:,4] == perform[:,4].min()),0][0])-1;
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else:

minTask = int(perform[where(perform[:,4] == perform[:,4].min()),0][0][0])-1

Qdat.append(perform[minTask-1,:].astype(list)) ####!!!!! MOVE TO END FOR COLLECTION?

contribs = loadtxt(’./’+z+’/contributions.raw.dat’)

contribs = reshape(contribs,(contribs.shape[0]/n1,n1,np))

contributions.append(contribs[minTask-1,:,:])

profs = loadtxt(’./’+z+’/profiles.raw.dat’)

profs = reshape(profs,(profs.shape[0]/n2,n2,np))

profiles.append(profs[minTask-1,:,:])

scale = loadtxt(’./’+z+’/scaling.raw.dat’)

scale = scale[minTask-1,:]

scaling.append(scale)

RMSE = CTMnrmse(contribs[minTask-1,:,:],conc)

ModelRMSE.append(RMSE)

contributions = array(contributions)

profiles = array(profiles)

Qdat = array(Qdat).astype(’float’)

scaling = array(scaling)

knobs = array(knobs)

ModelRMSE = array(ModelRMSE)

# Write Data to HDF5 File

f = h5py.File(’./ME2-Outputs/ModelData.hdf5’,’w’)

h5contrib = f.create_dataset("Contributions",contributions.shape,’f’)

h5contrib[:,:,:] = contributions

h5prof = f.create_dataset("Profiles",profiles.shape,’f’)

h5prof[:,:,:] = profiles

h5qdat = f.create_dataset("QData",Qdat.shape,’f’)

h5qdat[:,:] = Qdat

h5scale = f.create_dataset("Scaling",scaling.shape,’f’)

h5scale[:,:] = scaling

str_type = h5py.new_vlen(str)
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h5knobs = f.create_dataset("Knobs",knobs.shape,dtype=str_type)

h5knobs[:] = knobs

h5rmse = f.create_dataset("NRMSE",ModelRMSE.shape,’f’)

h5rmse[:] = ModelRMSE

f.close()

def ProcessResultsXV():

global TC, species, contributions, oddcontrib, profiles, qdat, scaling, knobs, XVid, Simulations,

ModelRMSE, XVQ, TrueSim

import glob

fullDir = glob.glob("./ME2-Outputs/XV*/*")

fullDir = array(fullDir)

fullDir = fullDir[fullDir.argsort()]

XV = [i.split(’/’)[2] for i in fullDir]

knobls = [i.split(’/’)[3] for i in fullDir]

knobs = unique(knobls)

knobs = array([i.split(’-u’)[1] for i in knobs])

TC = ["EC1", "EC2", "OC1", "OC2", "OC3", "OC4"]

for y in range(10):

dat =

loadtxt(’./XV-Data/XV-Test-Conc-’+str(y)+’.csv’,delimiter=’,’,skiprows=1,converters={0:strpdate2num(’%Y-%m-%d’)})

dat2 =

loadtxt(’./XV-Data/XV-Test-Unc-’+str(y)+’.csv’,delimiter=’,’,skiprows=1,converters={0:strpdate2num(’%Y-%m-%d’)})

savetxt(’./XV-Data/XV-Test-Conc-’+str(y)+’.me2’,dat[:,1:],delimiter=’,’)

savetxt(’./XV-Data/XV-Test-Unc-’+str(y)+’.me2’,dat[:,1:],delimiter=’,’)

Qdat = []

contributions = []

oddcontrib = []

profiles = []

scaling = []

XVid = []

XVQ = []

Simulations = []

RMSEXV = []
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for z in fullDir:

z1 = z.split(’/’)[3].split(’hyME2-’)[1]

knob = z1

print z1

XV = str(z.split(’/’)[2].split(’XV’)[1])

print XV

XVid.append(XV)

# Get Modeling Setup

# Samples = n1, Species = n2, constraints = n3, sources = np

info = loadtxt(’./ME2-Files/Characteristics-’+XV+’.me2’)

n1 = int(info[0])

n2 = int(info[1])

n3 = int(info[2])

np = int(info[3])

# Get Dates, Species List, Concentrations, Constraint Names, Constraint Values, CTMs

dates = loadtxt(’./ME2-Files/Dates-’+XV+’.me2’,converters={0:strpdate2num(’%Y-%m-%d’)})

species = loadtxt(’./ME2-Files/Species-’+XV+’.me2’,dtype=’string’)

conc =

loadtxt(’./Data/ME2-Concentrations.csv’,delimiter=’,’,skiprows=1,usecols=range(1,n2+1))

priors_id = loadtxt(’./ME2-Files/Sources-’+XV+’.me2’,dtype=’string’)

priors =

loadtxt(’./Data/ME2-CTM-Contributions.csv’,delimiter=’,’,skiprows=2,usecols=range(1,n3+1))

CTM_All = loadtxt("./Data/CTM-AllSources-Contributions-4RMSE_Calcs.csv",delimiter=’,’)

XVConc = loadtxt(’./XV-Data/XV-Test-Conc-’+str(XV)+’.me2’,delimiter=’,’)

# Performance: task#, seed, Qrobust, Q, Qmain, Qaux, Iterations, Se

perform = loadtxt(’./’+z+’/performance.raw.dat’,comments=’task#’)

if len(perform[where(perform[:,4] == perform[:,4].min()),0][0]) == 1:

minTask = int(perform[where(perform[:,4] == perform[:,4].min()),0][0])-1;

else:

minTask = int(perform[where(perform[:,4] == perform[:,4].min()),0][0][0])-1

Qdat.append(perform[minTask-1,:].astype(list)) ####!!!!! MOVE TO END FOR COLLECTION?

contribs = loadtxt(’./’+z+’/contributions.raw.dat’)

contribs = reshape(contribs,(contribs.shape[0]/n1,n1,np))

if XV != ’9’:

contributions.append(contribs[minTask-1,:,:])

else:
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oddcontrib.append(contribs[minTask-1,:,:])

profs = loadtxt(’./’+z+’/profiles.raw.dat’)

profs = reshape(profs,(profs.shape[0]/n2,n2,np))

profiles.append(profs[minTask-1,:,:])

scale = loadtxt(’./’+z+’/scaling.raw.dat’)

scale = scale[minTask-1,:]

scaling.append(scale)

savetxt(’./’+z+’/performance.minQ.dat’,perform[minTask-1,:],delimiter=’,’)

savetxt(’./’+z+’/contributions.minQ.dat’,contribs[minTask-1,:,:],delimiter=’,’)

savetxt(’./’+z+’/profiles.minQ.dat’,profs[minTask-1,:,:],delimiter=’,’)

savetxt(’./’+z+’/scaling.minQ.dat’,scale,delimiter=’,’)

## Write ME-2 Inputs for cross-validation

with open(’../1-DataPreprocess/Regress2.ini’,’r’) as iniF:

iniFile = [i.rstrip() for i in iniF]

iniNew = []

for i in iniFile:

if "n1=328;" in i:

tmp = i.replace("=328","="+str(XVConc.shape[0]))

elif ’n2=22;’ in i:

tmp = i.replace("=22","="+str(n2))

elif ’np=5;’ in i:

tmp = i.replace("=5","="+str(np))

elif ’openfile 30,’ in i:

tmp = i.replace("’./ME2-Files/Conc.me2’","’./XV-Data/XV-Test-Conc-"+str(XV)+".me2’")

elif ’openfile 31,’ in i:

tmp = i.replace("’./ME2-Files/Unc.me2’","’./XV-Data/XV-Test-Unc-"+str(XV)+".me2’")

elif ’openfile 32,’ in i:

tmp = i.replace("’./ME2-Files/Conc.me2’","’"+z+"/profiles.minQ.dat’")

elif ’openfile 40,’ in i:

tmp = i.replace("/REGRESS.FOLDER/",z+"/")

elif ’openfile 41,’ in i:

tmp = i.replace("/REGRESS.FOLDER/",z+"/")

elif ’openfile 42,’ in i:

tmp = i.replace("/REGRESS.FOLDER/",z+"/")

else:

tmp = i

iniNew.append(tmp)
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with open(’./ME2-Inputs/XV’+str(XV)+’/XVSim-’+str(knob)+’.ini’,’w’) as iniN:

[iniN.write(i+’ \n’) for i in iniNew]

## Run cross-validation

with open(z+’/ME2-StdOut.txt’,’w’) as stanout:

call(["./me2wG17.exe",’./ME2-Inputs/XV’+str(XV)+’/XVSim-’+str(knob)+’.ini’],stdout=stanout)

XVQdat = loadtxt(z+"/performance.XVSim.dat",skiprows=3)[2]

XVmodcontribs = loadtxt(z+"/contributions.XVSim.dat",skiprows=1)

Simul = XVmodcontribs.dot(profs[minTask-1,:,:].T)

XVQ.append(XVQdat)

Simulations.append(Simul)

Simulations = array(Simulations)

TrueSim = []

for c in range(len(knobs)):

newdata = Simulations[arange(c,len(knobs)*10,len(knobs)),:,:]

fulldat = array([item for sublist in newdata.tolist() for item in sublist])

TrueSim.append(fulldat)

TrueSim = array(TrueSim)

RMSEXV = array([nrmse(TrueSim[i,:,:],GetObs()) for i in range(len(unique(knobs)))])

CVQ = array([sum(((GetObs()-TrueSim[x,:,:])/GetObsUnc())**2) for x in range(len(knobs))])

contributions = array(contributions)

oddcontrib = array(oddcontrib)

profiles = array(profiles)

Qdat = array(Qdat).astype(’float’)

scaling = array(scaling)

XVid = array(map(int,XVid))

XVQ = array(XVQ)

RMSEXV = array(RMSEXV)

# Write Data to HDF5 File

f = h5py.File(’./ME2-Outputs/ModelDataXV.hdf5’,’w’)
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h5contrib = f.create_dataset("Contributions",contributions.shape,’f’)

h5contrib[:,:,:] = contributions

h5contrib2 = f.create_dataset("OddContributions",oddcontrib.shape,’f’)

h5contrib2[:,:,:] = oddcontrib

h5prof = f.create_dataset("Profiles",profiles.shape,’f’)

h5prof[:,:,:] = profiles

h5qdat = f.create_dataset("QData",Qdat.shape,’f’)

h5qdat[:,:] = Qdat

h5scale = f.create_dataset("Scaling",scaling.shape,’f’)

h5scale[:,:] = scaling

str_type = h5py.new_vlen(str)

h5knobs = f.create_dataset("Knobs",knobs.shape,dtype=str_type)

h5knobs[:] = knobs

h5XV = f.create_dataset("XV",XVid.shape,’i’)

h5XV[:] = XVid

h5simul = f.create_dataset("SimulationData",TrueSim.shape,’f’)

h5simul[:,:,:] = TrueSim

h5cvq = f.create_dataset("CVQ",CVQ.shape,’f’)

h5cvq[:] = CVQ

h5rmse = f.create_dataset("NRMSE",RMSEXV.shape,’f’)

h5rmse[:] = RMSEXV

f.close()

def Bootstrap(dial=’PMF’):

from scipy.stats import pearsonr

# Create Boot directory

global AllProfMod, AllProf, BaseProf

if not os.path.exists(’./Boots’):

os.makedirs(’./Boots’)
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dial = dial

# Properties #

n1 = contributions.shape[1] # Number of Samples

n2 = profiles.shape[1] # Number of Species

np = profiles.shape[2] # Number of Factors

boots = 100 # Number of Bootstraps

blocksize = 4

# Get block indicies

grpbse= range(0,n1,blocksize)

grpind= range(blocksize,n1,blocksize)

grpind.append(n1)# Index ending for each city/season

# Input Files #

Conc = ’./ME2-Files/Conc.me2’

Unc = ’./ME2-Files/Unc.me2’

CTM = ’./ME2-Files/Priors.me2’

CTMu = ’./ME2-Files/PriorsUnc.me2’

Fb = profiles[where(knobs == dial)[0],:,:][0] # Base Profiles

Gb = contributions[where(knobs == dial)[0],:,:][0] # Base Contributions

with open(’./Boots/ContRunData.csv’,’w’) as fout:

RMWrite = csv.writer(fout,delimiter=’,’)

[RMWrite.writerow(lines) for lines in Gb]

fout.write("\n")

[RMWrite.writerow(map(str,lines)) for lines in Fb]

# Output Files #

Fn = ’./Boots/Fnew.txt’ # New Profiles

Gn = ’./Boots/Gnew.txt’ # New Contributions

# Copy original INI file to Boot directory and modify for bootstrapping

shutil.copy2(’./ME2-Inputs/hyME2-u’+dial+’.ini’,’./Boots/hyME2-Boot-u’+dial+’.ini’)

with open(’./Boots/hyME2-Boot-u’+dial+’.ini’,’r’) as iniF:

iniFile = [i.rstrip() for i in iniF]

iniNew = []

for i in iniFile:

if "’contrun’=0;" in i:

tmp = i.replace("=0","=1")

elif ’openfile 30’ in i:

tmp = i.replace("./ME2-Files/Conc.me2","./Boots/Conc.BS.me2")
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elif ’openfile 31’ in i:

tmp = i.replace("./ME2-Files/Unc.me2","./Boots/Unc.BS.me2")

elif ’openfile 32’ in i:

tmp = i.replace("./ME2-Files/Priors.me2","./Boots/Priors.BS.me2")

elif ’openfile 33’ in i:

tmp = i.replace("./ME2-Files/PriorsUnc.me2","./Boots/PriorsUnc.BS.me2")

elif ’openfile 40’ in i:

tmp = i.replace("./ME2-Outputs/hyME2-u"+dial+"/contributions.raw.dat","./Boots/Gnew.txt")

elif ’openfile 41’ in i:

tmp = i.replace("./ME2-Outputs/hyME2-u"+dial+"/profiles.raw.dat","./Boots/Fnew.txt")

elif ’openfile 42’ in i:

tmp =

i.replace("./ME2-Outputs/hyME2-u"+dial+"/performance.raw.dat","./Boots/performance.txt")

elif ’openfile 43’ in i:

tmp = i.replace("./ME2-Outputs/hyME2-u"+dial+"/scaling.raw.dat","./Boots/scaling.txt")

elif ’openfile 39’ in i:

tmp = i.replace("##p","’./Boots/ContRunData.csv’")

else:

tmp = i

iniNew.append(tmp)

with open(’./Boots/hyME2-Boot-u’+dial+’.ini.tmp’,’w’) as iniN:

[iniN.write(i+’ \n’) for i in iniNew]

### Read in Concentrations and Uncertainty used for base run

with open(Conc,’r’) as fin:

conc = [i.rstrip().split(’,’) for i in fin]

conc = [map(float,i) for i in conc]

with open(Unc,’r’) as fin:

unc = [i.rstrip().split(’,’) for i in fin]

unc = [map(float,i) for i in unc]

with open(CTM,’r’) as fin:

ctm = [i.rstrip().split(’,’) for i in fin]

ctm = [map(float,i) for i in ctm]

with open(CTMu,’r’) as fin:

ctmu = [i.rstrip().split(’,’) for i in fin]

ctmu = [map(float,i) for i in ctmu]
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### Get bootstrap indicies and counts

Bootind = []

indcnt = []

for k in range(boots):

run = []

bootcase = []

for i in range(len(grpbse)):

blkcut = randint(grpbse[i],grpind[i],grpind[i]-grpbse[i])

blkcut = blkcut.tolist()

bootcase = bootcase+blkcut

run = run+bootcase

bsc = [len([i for i in run if i==j]) for j in range(n1)]

Bootind.append(run)

indcnt.append(bsc)

with open(’./Boots/ConstrainedIndicies.csv’,’w’) as bsi:

savetxt(bsi,Bootind)

Bootind = array(Bootind)

# END

#####

### Loop over all bootstrap scenarios, run ME-2, and read in results

bsprofiles = []

bscontributions = []

for k in range(len(Bootind)):

bsconc = [conc[i] for i in Bootind[k]]

bsunc = [unc[i] for i in Bootind[k]]

bsctm = [ctm[i] for i in Bootind[k]]

bsctmu = [ctmu[i] for i in Bootind[k]]

bscnt = [indcnt[k][i] for i in Bootind[k]]

bsuncm = [[j/sqrt(bscnt[i]) for j in bsunc[i]] for i in range(len(Bootind[k]))] #Uncertainty

modified by counts

bsctmum= [[j/sqrt(bscnt[i]) for j in bsctmu[i]] for i in range(len(Bootind[k]))]

with open(’./Boots/Conc.BS.me2’,’w’) as fout:

RMWrite = csv.writer(fout,delimiter=’,’)

[RMWrite.writerow(map(str,lines)) for lines in bsconc]
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with open(’./Boots/Unc.BS.me2’,’w’) as fout:

RMWrite = csv.writer(fout,delimiter=’,’)

[RMWrite.writerow(map(str,lines)) for lines in bsuncm]

with open(’./Boots/Priors.BS.me2’,’w’) as fout:

RMWrite = csv.writer(fout,delimiter=’,’)

[RMWrite.writerow(map(str,lines)) for lines in bsctm]

with open(’./Boots/PriorsUnc.BS.me2’,’w’) as fout:

RMWrite = csv.writer(fout,delimiter=’,’)

[RMWrite.writerow(map(str,lines)) for lines in bsctmum]

with open(’./Boots/StdOut.txt’,’w’) as stanout:

call(["./me2wG17.exe",’./Boots/hyME2-Boot-u’+dial+’.ini.tmp’],stdout=stanout)

with open(Fn,’r’) as fin:

fnew = loadtxt(fin)

with open(Gn,’r’) as fin:

gnew = loadtxt(fin)

bsprofiles.append(fnew)

bscontributions.append(gnew)

bsprofiles = dstack(bsprofiles)

bscontributions = dstack(bscontributions)

AllProf = dstack((Fb,bsprofiles))

AllCont = dstack((Gb,bscontributions))

Bootind = append(array(range(Bootind.shape[1])).reshape(-1,1),Bootind.T,1)

### PROCESS BOOTSTRAP RESULTS ###

species = loadtxt(’./ME2-Files/Species.me2’,dtype=’string’)

np = AllProf.shape[1]

n1 = AllCont.shape[0]

n2 = AllProf.shape[0]

# Determine base profiles and contributions

BaseProf = AllProf[:,:,0]

BaseCont = AllCont[:,:,0]
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# Calculate the species contributions for the base case and all replicates over each source

BaseSpCont = array([BaseCont[:,i].reshape(-1,1).dot(BaseProf[:,i].reshape(-1,1).T) for i in

range(np)])

ReplicateSpCont = array([[AllCont[:,j,i].reshape(-1,1).dot(AllProf[:,j,i].reshape(-1,1).T) for j

in range(np)] for i in range(1,boots+1)])

# Loop over bootstraps and sources to determine the correlation between sources for each bootstrap

MatchedIndicies = []

for i in range(boots):

TestSamples = sort(unique(Bootind[:,i+1]))

RepSampleInd = array([where(Bootind[:,i+1] == j)[0][0] for j in TestSamples])

# Align base and boot samples

MatchSamplesBase = BaseSpCont[:,TestSamples,:]

MatchSamplesRepl = ReplicateSpCont[i,:,RepSampleInd,:].transpose((1,0,2))

# Calculate correlations between base and repl

Corrs = array([[pearsonr(MatchSamplesBase[j,:,:].reshape(MatchSamplesBase[j,:,:].size,1),

MatchSamplesRepl[k,:,:].reshape(MatchSamplesRepl[k,:,:].size,1))[0][0]

for k in range(np)] for j in range(np)])

# Cycle over correlation matrix select max index from first row, then delete index and

continue

MaxCorr = []

cnt = range(np)

for j in range(np):

chk = where(Corrs[j,cnt] == Corrs[j,cnt].max())[0][0]

MaxCorr.append(cnt[chk])

cnt = delete(cnt,chk)

MatchedIndicies.append(MaxCorr)

MatchedIndicies = array(MatchedIndicies)

AllProfMod = array([AllProf[:,MatchedIndicies[i],i+1] for i in range(boots)])

# Calculate percentiles of profiles for plotting

from scipy.stats import scoreatpercentile

AllProf5 = array([scoreatpercentile(AllProfMod[:,:,i],5) for i in range(np)])

AllProf50 = array([scoreatpercentile(AllProfMod[:,:,i],50) for i in range(np)])

AllProf95 = array([scoreatpercentile(AllProfMod[:,:,i],95) for i in range(np)])

ProfLow = AllProf50-AllProf5

ProfHigh = AllProf95-AllProf50



123

#### How to save 3D Array in numpy

if dial == ’PMF’ or dial == ’CPMF’:

if os.path.exists(’./ME2-Outputs/ModelDataBS-PMF.hdf5’):

os.remove(’./ME2-Outputs/ModelDataBS-PMF.hdf5’)

f = h5py.File(’./ME2-Outputs/ModelDataBS-PMF.hdf5’,’w’)

else:

if os.path.exists(’./ME2-Outputs/ModelDataBS.hdf5’):

os.remove(’./ME2-Outputs/ModelDataBS.hdf5’)

f = h5py.File(’./ME2-Outputs/ModelDataBS.hdf5’,’w’)

h5bsprof = f.create_dataset("BootProfs",AllProf.shape,’f’)

h5bsprof[:,:,:] = AllProf

h5bscont = f.create_dataset("BootConts",AllCont.shape,’f’)

h5bscont[:,:,:] = AllCont

h5bsind = f.create_dataset("BootIndicies",array(Bootind).shape,’i’)

h5bsind[:,:] = array(Bootind)

h5boots = f.create_dataset("BootCount",array([boots]).shape,’i’)

h5boots[:] = array([boots])

h5low = f.create_dataset("BootLow",array(ProfLow).shape,’f’)

h5low[:,:] = array(ProfLow)

h5med = f.create_dataset("BootMedian",array(AllProf50).shape,’f’)

h5med[:,:] = array(AllProf50)

h5high = f.create_dataset("BootHigh",array(ProfHigh).shape,’f’)

h5high[:,:] = array(ProfHigh)

h5base = f.create_dataset("BaseProfiles",array(BaseProf).shape,’f’)

h5base[:,:] = array(BaseProf)

f.close()

# END

#####
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