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Long distance travel is a critical component of American life, generating immense impacts on a 

variety of aspects of the society. In 1995, American households took about 656 million long 

distance domestic trips (100+ miles, one way), which totaled 1 billion person trips. Compared to 

the well-studied intra-urban travel, long distance travel needs further in-depth analysis and 

modeling efforts, for which the long distance travel data serve as a substantial basis. While 

MPOs periodically collect both supply and demand data to support the development of regional 

models, supply-side data reflecting transportation service and costs at corridor, interregional, and 

national level are scarce. To merge the gap, there is a need to establish a national data 

framework, with available datasets integrated to support implementing quantitative methods on a 

national highway network to resolve network loading issues for long distance travel.  

 



 

 

This research intends to address this imperative. The research scope embraces the long distance 

passenger travel on national highways within the contiguous United States. The framework 

developed comprises not only a data warehouse where a plethora of datasets reside and interact, 

but also a complete modeling methodology to infer network loading conditions of long distance 

travel. Applying the national data framework approach, this research answers a pivotal question: 

how can we gain knowledge and insights of distributive patterns of long distance passenger 

travel at interregional level given existing data resources?  

 

This research elaborates the methodologies for the framework design and addresses the technical 

and theoretical challenges particularly in issues of travel impedance estimation and long distance 

travel network loading. Findings from this research lay a solid foundation for building the 

fundamental theoretical framework urgently needed for long distance travel studies and 

contribute significantly to the understanding of the supply side of long distance travel, from 

available infrastructure capacity and networks loading conditions to the induced environment 

challenges, infrastructure congestion, and investment costs, as well as facilitating policy making 

and evaluation pertain to long distance travel at national level. 
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Chapter 1 Introduction 

 

1.1 Problem Statement 

 

1.1.1 Data needs for long distance travel 

 

Long distance travel is an indispensable component of American life. In 1995, American 

households took about 656 million long distance domestic trips (100+ miles, one way), which 

totaled 1 billion person trips (BTS, 1997). Long distance passenger travel connects far flung 

families and friends, attracts people to natural sceneries and cultural attractions, supports the 

national and regional economy and boosts the local business through tourism. According to the 

1995 American Travel Survey (ATS), primary trip purposes of long distance travel involve visit 

friends and relatives (33%), leisure (30%), business (22%), and personal business (15%). A 

strong reliance on automobile is reflected in long distance passenger travel: personal use vehicles 

account for about 75% of household trips and resulting in over 280 billion vehicle miles of travel 

on the nation’s highways. The massive travel generates extensive impacts on broad aspects 

including infrastructure operation, travel reliability, urban congestion, and energy use.  

 

To understand and address those impacts induced by long distance travel on our society, we need 

a comprehensive picture portraying long distance movements. On the one hand, this 

comprehensive picture depicts the operational reality of the existing infrastructure, by defining 

markets for major transportation facilities and corridors of national significance, and identifying 

congestion bottlenecks within urban areas and on rural portions of intercity links. On the other 
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hand, this comprehensive picture helps allocate potential investments to the future needs for 

maximizing the network performance. Altogether it facilitates justification or evaluation of a 

variety of potential or existing policies and regulations, embracing highway design, 

environmental planning, and safety improvement.  

 

The comprehensive picture is too enormous to be drawn from any single data source. Over the 

past few decades, massive amount of data has been accumulated through various forecast 

models, national and local travel surveys, administrative records, roadside counts, etc. However, 

from a travel demand/supply perspective we find that for long distance travel, there is a plethora 

of data sources on the demand side and limited data sources on the supply side. Specifically, we 

know relatively well about the origin-destination (O-D), mode share, and estimated trip 

generation for long distance travel; yet regarding the available infrastructure capacity and 

networks loading conditions, our knowledge is constrained mainly due to the incompleteness of a 

national data framework. 

 

1.1.2 National data framework 

 

A national data framework integrates diverse datasets. Particularly in a long distance travel 

context, it includes an abstraction of the national highway network as common ground of basic 

geographic representation to which all the datasets refer. The framework can be stored in one 

geodatabase, or through access to several external sources with a collaborative mechanism. 

Within the framework there are also algorithms manipulating the datasets for trip assignment and 

network loading. As a data warehouse, the framework exports popular data themes regarding 
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long distance travel to different stakeholders including government, industry, and academia. As a 

computational infrastructure, the framework facilitates portraying the supply side of the 

comprehensive picture, to resolve network loading and distribution issues of long distance 

passenger travel on the national highway network.  

 

Currently there is a scarce of knowledge regarding national data framework for long distance 

travel in the United States, especially in the passenger travel field. In the freight world, the 

Freight Analysis Framework 3 (FAF
3
) presents a fairly complete travel data framework. It 

integrates a variety of data sources to yield estimates for commodity tonnage and value; it also 

provides methodology for assigning freight trips to the highway network (Battelle, 2011). 

However, FAF
3 

embraces the entire freight travel rather than focuses on the long distance ones. 

On the passenger travel side, Georgia Department of Transportation conducted a Southwest 

Georgia Interstate Study (Georgia Department of Transportation, 2009) by building a 

geodatabase covering a five-level network in multiple resolutions. However, there was no 

computational function developed in the study. By contrast Nielsen and Burgess (2008) led the 

efforts of establishing the European TRANS-TOOLS Transport Model covering all European 

Union member countries, with both a geodatabase implementation and travel demand and 

assignment models. Although the model is not long distance travel oriented, the effort indicates 

that a large-scale travel data framework can go beyond the basic needs for network performance 

monitoring and transportation planning; the framework itself could also leverage numerous 

potentials for energy preservation, environmental analysis, and system reliability studies as a 

computational base. 
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1.1.3 Long Distance Travel Network Loading 

 

Network loading, traffic assignment, and route choice have been referred interchangeably in 

previous literature; however, the author would like to differentiate their emphases. Route choice 

focuses on individual choices, which reflects the interaction between the individual (the traveler 

profile and traveling awareness) and the surrounding environment (the resources and 

characteristics of the route); traffic assignment is an aggregated outcome of individual behavior, 

usually summarized as link flows in an intra-urban context; network loading exhibits the 

distributive pattern in an interregional resolution, where detailed choice information is abstracted 

into macroscopic statistics. Overall all the three different terms reflect travelers’ choices in 

different geographic and behavioral dimensions, and obviously this research concentrates on the 

network loading issues on a national highway network.  

 

Resolving network loading issues in a long distance travel context presents unique challenges 

from the well-studied intra-urban traffic assignment problems. It is still unclear that whether 

intra-urban research findings can be well adapted to long distance travel scenarios. Several 

critical issues are enumerated and discussed as follows.  

 

1.1.3.1 Long distance travelers: a very diverse portfolio 

 

People who travel long distances constitute a very diverse traveler portfolio, even if they only 

account for 40% of the U.S. population. While the intra-urban travel is mostly centered around 

people’s daily life (work, school, home, shopping, etc.), long distance trips are pursued to 
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embrace a wide spectrum of activities. The 1995 American Travel Survey (ATS) roughly 

categorized long distance trips by four trip purposes: business, visiting friends or relatives, 

leisure, and personal business, of which leisure trips refer to the ones for rest or relaxation, 

sightseeing, outdoor recreation, entertainment, or shopping, and personal business trips involved 

school-related activities as well as other personal or family matters like seeking for medical care. 

 

Additionally, life styles and values of travelers significantly influence their travel behavior when 

planning for long distance travel. The idiosyncrasy in life styles and values can be captured by 

some socio-demographic characteristics, including age, race, education, working status, 

household type (family/nonfamily; with/without children; living alone/not living alone), 

household structure (house, apartment, etc.), household size, household income, etc. For 

example, Georggi and Pendyala (2001) found that both the elderly and the low income undertake 

significantly fewer long-distance trips than other socioeconomic groups. It was also found that 

these groups traveled less for leisure purposes, and buses were frequently used as the traveling 

mode. 

 

1.1.3.2 Pleasure travel account for a major proportion of long distance travel 

 

Pleasure travel summarizes trips for leisure and those for the purposes of visiting friends and 

relatives, since both categories share considerable similarities in terms of travelers’ sensitivity 

level to travel cost. Pleasure travel takes a substantial share of all trip purposes in the long 

distance passenger travel domain. According to the 1995 ATS, 62.9% of long distance trips are 

for pleasure across all the modes. Particularly, leisure travel increased by 122% between 1977 
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and 1995, as a major driver for the total growth of long-distance travel (BTS, 1998).  

 

And it is generally believed that pleasure travel will continue to grow, despite the current 

economic downturn. A survey conducted by the Priceline.com has shown that 84% of the 

travelers were still planning for vacation trips even with increasing travel cost (Hotel News 

Resource, 2007). Traveling for exploration seems to be an integral part of American life and 

people are spending substantially on it (Focalyst, 2007). The U.S. Bureau of Labor Statistics 

(BLS, 2010) reported that in 2008, a U.S. household spent an average of $1,415 on vacation and 

pleasure trips. Notably, the retiring baby-boomer generation will serve as a driving force to the 

growing demand for pleasure travel in the coming decade (Mallet and McGuckin, 2000; Davies 

2005).  

 

Pleasure travel possesses several unique characteristics. First, higher utilization of surface 

transportation modes: two-thirds of all long-distance person trips by personal use vehicle in 1995 

were for pleasure (35% to visit friends or relatives and 31% for leisure travel).  Especially for 

leisure travel, personal use vehicles are the dominating mode with an 82% mode share. Second, 

pleasure travel is usually associated with bigger travel groups. The average size of the travel 

party on leisure trips in 1995 was 3.9 persons, highest among all the four trip purposes.  Third, 

people on leisure trips take longer time and distance on the road.  On average 3.3 nights away 

from home were spent on leisure travel according to the 1995 ATS. Fourth, pleasure travel 

supports local economy through tourism due to its highly consumption-oriented nature. 

Capturing those intrinsic characteristics of pleasure travel comprises another challenge for this 

research. 
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1.1.3.3 Assignment procedures and travel impedance 

 

Loading long distance trips to the national highway network presents a large-scale trip 

assignment problem. While concepts of traffic assignment are straightforward, details pertaining 

to the assignment on a national basis were barely endeavored in previous research and need 

further exploration. A methodological framework is in need to address several issues in this 

procedure: first, will intra-urban assignment techniques be readily transferred to a long distance 

travel context? Second, will Static Traffic Assignment (STA) meet the needs for large-scale 

assignment? Or does it require a more complicated Dynamic Traffic Assignment (DTA) 

approach at increased computational cost? Third, how to generalize travel cost for long distance 

travel, given the aforementioned diversity in the travel behavior? 

 

Of all the issues generalized travel cost is considered as the major subject in this study. The very 

much diversified trip purposes result in a significant divergence in people’s perception and 

sensitivity to travel time and travel distance, two major measurements of travel cost in intra-

urban traffic assignment. Only taking those conventional measurements into account will not 

sufficiently represent long distance travel cost. For example, of four trip purposes the leisure 

travel is the least constrained by the time and financial budget, considering the very nature of its. 

Leisure travelers may prefer scenic highways over interstate freeways even though the latter is 

generally associated with higher reliability and shorter travel time. Quantifying the “pull” and 

“push” factors and integrating them into the methodological framework will be detailed in the 

following chapters. 
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1.1.3.4 Seasonality in travel demand 

 

Very strong seasonality effect is revealed from long distance passenger travel, due to the large 

share of pleasure travel. The 1995 ATS shows that long distance travel peaked during the third 

quarter, July through September, when 35% of vacations and 30% of weekend trips occurred. 

The largest share of leisure trips was also observed during the third quarter (38%), along with 

27% of trips to visit friends or relatives. The fourth quarter, when holiday travel is prevalent, was 

the peak period to visit friends or relatives (30%). Business travel was evenly distributed during 

the first three quarters of the year at 26% in each quarter, but somewhat lower, about 22%, in the 

fourth quarter. Temporal resolution of loading long distance travel should take into account of the 

varying seasonality across different trip purposes. 

 

1.2 Research Background 

 

Long distance travel fulfills some unique needs for individual and commercial movements in this 

nation. People travel longer distance to make business happen, visit friends or relatives, and 

explore the nation’s natural sceneries and cultural attractions. The long-haul trucking transports 

all kinds of commodities across the country to activate our economy. Those needs are beyond the 

scope of urban travel and generate immense impacts on the service of transportation 

infrastructure and facilities. Air pollution, travel delay, and safety exposure induced by the 

burgeoning demand are turning the joy and freedom of traveling into chores gradually. 
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Collecting information pertain to long distance travel to estimate those impacts has been a 

dedicated mission and practice of U.S. Department of Transportation (DOT). Since the 1960s a 

series of nationwide travel surveys have been conducted, of which three most recent ones are the 

1995 American Travel Survey (ATS), 2001-2002 National Household Travel Survey (NHTS), 

and 2008-2009 NHTS.  

 

The 1995 ATS is a legendary travel survey aiming at providing accurate and comprehensive long 

distance passenger flow information to assist policy making. Conducted by the Bureau of 

Transportation Statistics (BTS) in 1995, the ATS is over 15 years old and still the latest large 

scale long distance travel survey to date and serves as the estimation basis of many studies in the 

long distance travel analysis and forecast field. The 2001-2002 NHTS updates information from 

previous years’ Nationwide Personal Transportation Surveys (NPTSs) and ATSs, with a long 

distance survey component (Travel Period trips) but smaller sample size. The 2008-2009 NHTS 

abandons this component and only focuses on Travel Day trips in the main part of the survey and 

only collects very limited samples for long distance travel in some of its add-on programs.  

 

Long distance trips are defined differently in those surveys. A 1995 ATS trip refers to a trip from 

home to the farthest destination that is 100 miles or longer. The trip includes all the overnight 

stops made along the way if there is any and excludes commuting to work trips. The 2001 NHTS 

defines long distance trips as 50+ miles (one way) including the commuting trips. Long distance 

trips discussed in this proposal follow the 1995 ATS definition, which reflects the research focus 

on inter-regional and interstate travel, regardless of the daily commute in urban or suburban 

areas.  
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The burgeoning demand, the aging infrastructure with limited expansion potential, and the recent 

interest in high-speed rail investment accentuates the continuing imperative of long distance 

passenger flows data. To address the need, the Federal Highway Administration (FHWA) 

initiates a collective of research efforts under the theme of establishing a Traveler Analysis 

Framework, which is analogous with the Freight Analysis Framework (FAF) in the freight 

operations and management field. The initiative does not include a new survey but explores the 

possibility of extrapolation from existing data resources. One of the major efforts within the 

initiative is the establishment of Long Distance Multimodal Passenger Travel (LDMPT) OD data 

program for 2008 and 2040. This program will comprehensively summarize and compile long 

distance travel data from diverse sources and greatly expand the availability of such data. 

 

An expert panel from the LDMPT project also identified the need to establish a highway network 

modeling framework that utilizes the most updated traffic data for researching network loading 

and distribution for both passenger and freight movements. Part of this research’s motivations 

resonates to the panel discussion findings to develop a national data framework that takes traffic 

data, congestion data, and roadway capacity information into account for long distance travel 

assignment. 

 

1.3 Research Objectives 

 

The ultimate objective of this study is to explore the importance and feasibility of establishing a 

national data framework for long distance highway travel modeling, with a passenger travel 
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focus; this study also aims to bring new knowledge about multi-scale network representation and 

long distance network loading.  

 

Specific objectives of this study are as follows: 

 

 Identify existing datasets regarding the long distance travel through a comprehensive 

literature review; 

 Identify and resolve the challenges of describing and modeling large-scale network in 

multiple resolutions; 

 Expand the existing traffic assignment theory to a long distance travel context, taking 

account of data and network reality; 

 Demonstrate the feasibility of the proposed methodology in a case study. 

 

Such a modeling framework will be very valuable for long distance network loading issues at 

national scale and hence leverage benefits in both short and long terms. In the short term, the 

framework and related theories developed in this research will enhance academic understanding 

and field practice in the following aspects: 

 Catalog existing datasets regarding the long distance travel, particularly passenger travel;  

 Design a complete procedure elaborating the conceptual design of a modeling framework 

that embraces multi-scale views of the physical infrastructure in a geodatabase, 

incorporates the most updated traffic data and other travel impedance information, and 

also resolves computational needs for network loading and trip assignment across the 

network; 
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 Develop a “working solution” for estimating the distributive pattern of long distance 

passenger travel flows, as well as system-wide indicators and performance measures to 

facilitate policy and investment decision making.  

 

In the long term, research efforts committed by this study will hopefully radiate the benefits 

beyond the long distance travel context to other related areas including but not limited to large-

scale system reliability evaluation, environmental analysis, and energy preservation. Because this 

study will lay a solid foundation for those related future research and applications as a national 

data framework, which not only interoperates various datasets in the geodatabase depicting the 

large-scale national highway network, but also enables the computational capabilities, to support 

project appraisal and decision making for highway related investment and policies at a national 

level. 

 

1.4 Research Scope 

 

This research focuses on long distance passenger travel in the mode of automobiles. The network 

study is national highways across 48 continental states and Washington D.C. in the U.S. The 

modeling framework focuses on a national (or at least interregional) level system. While 

considerable network analyses work continues to be done at local level, this study is more 

experimental than advanced, with primary concerns of system-wide indicators and performance 

measures to foster an understanding of long distance travel patterns and trends as a national 

scale. For example, this study endeavors to reveal the distributive patterns and total Vehicle 

Hours Traveled (VHT) at regional or national level, while an MPO may be interested in the 
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travel time on a specific urban corridor. 

 

1.5 Dissertation Organization 

 

To fulfill the research objectives, a four-step work flow is proposed: literature review and data 

identification, network representation in geodatabase, methodology development for long 

distance travel network loading, and case study of long distance travel network loading. The 

remainder of this dissertation is organized in the order of this work flow. Chapter 2 identifies 

relevant datasets and summarizes relevant research on long distance travel data collection, 

methodologies for quantifying travel impedance, approaches for long distance traffic assignment, 

and frameworks for traffic data archival and analyses. Chapter 3 focuses on the multi-scale 

network representation in geodatabases and elaborates the network model design following a 

“conceptual – logical – physical” sequence, with a highlight of linking traffic data to the 

network. Chapter 4 starts with a tentative work flow clarifying each step in the process of long 

distance travel network loading, and then elaborates the theory and algorithms to be applied. 

After investigating different attributes within various long distance traveling populations, 

Chapter 4 develops impedance models for network loading in a long distance travel context. 

Chapter 5 details a case study where the whole modeling framework is practiced, and 

summarizes findings from the case study. Finally, Chapter 6 concludes the dissertation. 
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Chapter 2 Literature Review and Data Identification 

 

This chapter comprehensively summarized the state of art in establishing a national data 

framework. It is recognized that the efforts are based on review of the five following respects: 

infrastructure, information, externalities, computation, and implementation. Infrastructure 

gives an overview of the national highway system, whose abstraction will serve as the base 

network in the framework. Information is a variety of datasets reflecting the volume to be 

loaded onto the network (demand) as well as the operational status of the network (supply). 

Externalities refer to the travel impedance, embracing recurrent and non-recurrent congestion 

that influences traffic assignment among alternative routes. Computation involves a series of 

methodologies to assign the demand to the roadway network, constrained by externalities. Lastly, 

implementation incorporates the aforementioned aspects through reviewing some established 

large-scale geodatabases and regional traffic data platform. 

 

2.1 Overview of Our National Highway System 

 

Accessible, robust, and efficient highway network is essential to a nation’s economy, defense, 

and public welfare, especially for a highly motorized country like the United States, with 828 

vehicles in operation per 1,000 people (Davis et al., 2011) and 61.6% of total tonnage of freight 

moved by trucks (FHWA, 2010).  There are over four million miles of public roads in the United 

States (FHWA, 2010), which are generally categorized into local roads, collectors, and arterials 

on a functional basis. While arterials and local roads connect urban centers and small 

communities, respectively, collectors provide access from local roads to arterials. Of all the 
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public roads, more than 163,000 miles belong to the National Highway System (NHS), which 

serves as the backbone of the nation’s transportation network.  

 

The Dwight D. Eisenhower National System of Interstate and Defense Highways is the major 

component of the NHS, consisting of 30,600 miles of rural highways and 16,000 miles in urban 

areas. The rest of the 82,300 miles of rural and 34,100 miles of urban highways are in the 

following four subsystems that include the Strategic Highway Network (or STRAHNET, which 

includes other important highways serving for defense purposes), major strategic highway 

network connectors (highways that channels traffic from major military installations to 

STRAHNET highways), other principle arterials (rural and urban highways connecting arterials 

and major transportation facilities and hubs), and intermodal connectors (highways providing 

access between major intermodal facilities and the other four subsystems of the NHS).  

 

On the freight front, the establishment of the National Network for large trucks was authorized 

by the Surface Transportation Assistance Act in 1982. The network has a length of more than 

200,000 miles of Interstate and other highways (FHWA, 2010).  

 

2.2 Available Datasets for a National Long Distance Travel Framework 

 

2.2.1 Data requirements, concerns, and challenges 

 

A national long distance travel data framework integrates a diversity of data sources; meanwhile 

the advancing of survey science and detection technologies keeps generating new data 
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exponentially. Therefore, before reviewing relevant data sources, it is beneficial to make scoping 

efforts to clarify what types of data are needed for developing such a data framework. Roughly 

the target data can be categorized in: geography data, demand data, externality data, and 

validation data. Geography data include both linear data providing basic geometry of the 

nation’s highways, and zonal data indicating major origins and destinations. Demand data are 

the outputs from the first three steps in the classic four-step transportation planning model, 

represented by the OD table with the estimated numbers of trips for each OD pair. Externality 

data reflect the detected or estimated volume traveling on the highway network, which to large 

extent determines travel impedance and influence mode and route choice. Validation data are 

those data for local validation purposes, which rely on temporary data collection techniques. 

 

Some concerns and challenges emerge given the current national data reality. First, a national 

multi-scale zoning system is in absence. The current Metropolitan Planning Organization (MPO) 

Traffic Analysis Zones (TAZs) and Regional Model TAZs are too small for Multistate Highway 

Corridor Models, Long-Distance/Tourist Trips, or even for Statewide Freight Models 

(Cambridge Systematics, Inc., 2008). A balance must be achieved whereby model geography is 

appropriate for a multi-scale data framework and the number of OD matrix cells at the most 

detailed level is still manageable. Second, there is still ambiguity in the existing modes data. For 

the highway sector, major modes include motorcycles, passenger cars, light trucks, buses, single-

unit trucks, and combination-unit trucks. Currently there is no data collection effort to 

differentiate passenger travel from freight movement for the small-size trucks. Third, trip 

assignment on a national network is a multi-class problem; because both passenger and freight 

travels use the same networks (Gudzinas, 2011).  
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2.2.2 Available datasets 

 

2.2.2.1 Geography Data 

 

 National Highway Planning Network 

The National Highway Planning Network (NHPN) is a 1:100,000 scale network database that 

contains line features representing just over 450,000 miles of the current and planned 

highways in the U.S. NHPN consists of interstates, principal arterials, and rural minor 

arterials and serves as a geospatial basis for many other critical national transportation 

databases, including Highway Performance Monitoring System (HPMS) and Freight 

Analysis Framework 3 (FAF
3
).  

 

In NHPN, roadway functional classification is coded in seven categories as summarized in 

Table 2.1, following the convention set up in the Functional Classification Guidance 

Document (FHWA, 1989).  

 

Table 2.1 Roadway Functional Classification Coded in NHPN 

Code Description 

1 Rural Principal Arterial - Interstate 

2 Rural Principal Arterial - Other 

6 Rural Minor Arterial 

7 Rural Major Collector 

8 Rural Minor Collector 

9 Rural Local 

11 Urban Principal Arterial - Interstate 

12 Urban Principal Arterial - Other Freeways and Expressways 
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14 Urban Principal Arterial - Other 

16 Urban Minor Arterial 

17 Urban Collector 

19 Urban Local 

 

 

 Core Based Statistical Areas 

Metropolitan and micropolitan Statistical Areas (MSA, referred generically as “Core Based 

Statistical Areas” or CBSAs) are statistical geographic areas defined by the Federal Office of 

Management and Budget and maintained by the Bureau of the Census, 2003. Metropolitan 

statistical areas contain at least one U.S. Census Bureau-defined urbanized area of a 

population 50,000 or more; micropolitan statistical areas contain at least one Census Bureau-

defined urban cluster of at least 10,000 and less than 50,000. An MSA may span over several 

counties and is a good geographical representative for populated urban areas. 

 

2.2.2.2 Demand Data 

 

 The 1995 American Travel Survey 

The 1995 ATS collected cross-sectional and longitudinal estimates on the origin, destination, 

volume, and characteristics of long-distance travel in the United States. A total of 80,000 

households nationwide were randomly selected to participate in the survey. The survey 

consisted of four detailed interviews conducted approximately every three months from April 

1995 to March 1996. 

 

The 1995 ATS adopted the convention of census region by the U.S. Census Bureau and MSA 
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(1995 ATS Technical Documentation). The 1995 ATS collected more than half a million 

person trips from 163 MSAs (U.S. Department of Transportation, 1999). The database 

incorporate both the number of trips between each pair of MSAs and the mode split.  

 

As the most conclusive long distance travel database so far, the 1995 ATS also suffers from 

several shortcomings: first, some large travel volumes between certain OD pairs exceed with 

the physical distance from origin to destination; second, some suspiciously higher volumes 

are reported from lower population density area; third, “significant differences are observed 

in the modal splits between the two directional traffic flows for the same OD pair, inherently 

claiming that trip distance has insignificant influence on transportation mode choices for 

those OD pairs.”  (Lim, 2008) 

 

 FHWA Traveler Analysis Framework 

Due to the massive price tag of new national travel surveys and imperative needs for long 

distance passenger travel OD data, FHWA initiated the taskforce to develop a methodology to 

produce 2008 passenger OD data by mode (air, rail, and auto).  The major contractor Wilbur 

Smith Associates team applies growth factor methods to the 1995 ATS data for developing 

the 2008 auto trip. “Data from the 2001 National Household Travel Survey (NHTS) will also 

be used to determine if travel trends hold between 1995 and 2001 and to grow the table to 

2008.” (Wilbur Smith Associates, 2011) 

 

 Existing Long Distance Travel Demand Forecast Model 

There have been extensive literatures dedicated to extending the well-developed urban travel 
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demand forecast to a statewide or nationwide context (Liu, et al., 2006; Ashiabor, 2007; 

Henderson and Trani, 2008; Souleyrette, et al., 1996; Giaimo and Schiffer 2005; Horowitz, 

2006; Cohen, et al., 2008, Horowitz, 2008). Some proposed methodologies could be applied 

to fill the gap or void in the current OD table (Monzon and Rodriguez-Dapena, 2006) or to 

overcome the shortcomings of the current travel demand forecast techniques. Also, notably 

many of those methods/algorithms are based on manipulation of some major national 

databases including the 1995 ATS or 2001 NHTS (LaModia and Bhat, 2007). Additionally, 

stated preference surveys are frequently applied in search of travel demand impact factors 

and mode choice (Peeta et al., 2007 and 2008; Ashiabor et al., 2007; Srinivasan, et al., 2006; 

Liu and Li, 2005). 

 

2.2.2.3 Externality data 

 

 Highway Performance Monitoring System (HPMS) 

Administered by the FHWA, HPMS is supported by collaborative efforts from state 

transportation agencies and MPOs and serves as a national data source that provides traffic 

volumes on the national highways with broad coverage. There are three major components in 

the HPMS database: 1) the full extend data are collected (or estimated) section by section 

along the entire NHS, some of the attributes include AADT of general traffic, AADT of 

single-unit trucks, AADT of combination trucks, section length, etc.; 2) the sample panel 

data provide statewide statistics of the highway network, based on randomly selected 

samples; and 3) the summary data reveal information of rural minor collector and local roads 

(both urban and local) in aggregated form.  
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 Freight Analysis Framework 3 (FAF
3
) 

FAF
3
 integrates data “from a variety of sources to create a comprehensive picture of freight 

movement among states and major metropolitan areas by all modes of transportation” (Oak 

Ridge National Laboratory, 2012). The data set covers the 48 contiguous States plus the 

District of Columbia, Alaska, and Hawaii. FAF
3
 processes a richness of traffic volume data, 

including Year 2007 Truck Volume estimated using a combination of HPMS 2008 database, 

State truck percentage, and functional class specific defaults, FAF 3.1 long distance truck 

volume estimated based on the FAF 3.1 Origin-Destination truck tonnage and includes empty 

trucks, Link specific peak capacity estimated using the procedures outlined in HCM 2000 

and the arc geometry provided in 2008 HPMS database, and Estimated service flow using the 

procedures outlined in HCM 2000 and arc geometry, FAF truck, non-FAF truck and 

passenger volume. 

 

 Traffic Flow Sensor Data 

Counting traffic started from the 1920s in the United States. Initially people collected travel 

data for transportation system monitoring purposes. With intensive development of new 

technologies and computer networks, Intelligent Transportation Systems (ITS) were initiated 

and have been under development since 1980s. ITS significantly refreshed the concept and 

practice in travel data collection. Data collected by various types of ITS sensors has 

accumulated significantly over the past three decades. Traffic flow sensor data cover basic 

information including traffic volume, speed, and occupancy, serving as substantial piece of 

externality information. Widely deployed detection techniques are summarized in Table 2.2. 
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Table 2.2 Summary of Traffic Flow Sensor Characteristics (excerpted from Klein, 2001) 

Technology Available Data Advantages Disadvantages 

Inductive Loop 

Detector 
 Count 

 Presence 

 Occupancy 

 Average vehicle speed 

with data processing 

algorithm or two ILDs 

 Queue length with 

multiple sensors 

 Standardization of loop electronics 

units 

 Excellent counting accuracy 

 Mature, well understood technology 

 Some models provide classification 

data 

 Not suitable for bridges, over passes, viaducts, poor roadbeds  

 Reliability and useful life are dependent on installation 

procedures 

 Installation and maintenance require lane closure 

 Decreases life of pavement 

 Susceptible to damage by heavy vehicles, road repair, and 

utilities 

 Multiple sensors usually required at a site 

Magnetometer  Count 

 Presence 

 Occupancy 

 Speed with multiple 

sensors or knowledge of 

detection zone length 

and vehicle length 

 Less susceptible than loops to stresses 

of traffic 

 Detects stopped and moving vehicles 

 Some models transmit data over 

wireless RF link 

 Small detection zone 

 Installation requires pavement cut 

 Installation and maintenance require lane closure 

 Decreases pavement life  

 Multiple sensors usually required at a site 

Magnetic  Count 

 Occupancy 

 Speed with multiple 

sensors or knowledge of 

detection zone  

length and vehicle 

length 

 Can be used where loops are not 

feasible (e.g., bridge decks) 

 Some models installed under roadway 

without need for pavement cuts  

 Less susceptible than loops to stresses 

of traffic 

 Small detection zone  

 Installation requires pavement cut or tunneling under 

roadway 

 Cannot detect stopped vehicles (exception for 1 model using 

multiple sensors and application-specific software from 

vendor) 

Video Image 

Processor (Machine 

Vision Processor) 

 Count 

 Presence 

 Occupancy 

 Speed 

 Queue length 

 Instantaneous vehicle 

density 

 Incident evaluation 

 Turning movements 

 Single camera and processor can 

service multiple lanes and multiple 

zones/lane 

 Rich array of traffic data provided 

 Easy to add and modify detection 

zones 

 Large vehicles can mask smaller vehicles, leading to 

undercounting 

 Tall vehicles can project their image into adjacent lanes, 

leading to over counting 

 Shadows, reflections from wet pavement, vehicle-to-road 

contrast, headlight projection into adjacent lanes on curved 

road sections, sun glint, day/night transitions, camera 

vibration, and debris on camera lens can affect performance 

 Side mount requires high [50+ ft (15+ m)], stable  

camera mounting platform for most accurate data 



 

23 

 

 Class by vehicle length  Over-roadway camera mounting requires lane  

closure for installation and maintenance 

 Reliable nighttime signal actuation requires street lighting 

 Weather, but effects ameliorated by recall modes 

Microwave–Presence  

Detecting 
 Count 

 Presence 

 Occupancy 

 Speed 

 Range 

 Instantaneous vehicle 

density 

 Class by vehicle length 

 Good performance in inclement 

weather 

 Detects stopped vehicles 

 Can operate in side-looking mode to 

service multiple lanes 

 Vehicle occlusion may occur in distant lanes in side-looking 

mode when congestion is heavy 

 Vehicles undercounted more in heavy congestion 

 Offset mounting distance must be accommodated 

Microwave–Doppler  Count 

 Occupancy 

 Speed 

 Good performance in inclement 

weather 

 Direct measurement of speed 

 Cannot detect stopped or very slow-moving vehicles 

Active Infrared 

(Laser Radar) 
 Count 

 Presence 

 Occupancy 

 Speed 

 Range 

 Classification 

 Direct measurement of speed 

 Provides vehicle classification data 

 Performance degradation by heavy fog [visibility < 20 ft (6 

m)] and blowing snow 

 Installation and maintenance require lane closure 

Passive Infrared  Count 

 Presence 

 Occupancy 

 Speed with multi-zone 

sensor 

 Compact size, ease of installation  Performance possibly degraded by heavy rain, fog, overcast 

skies, or snow  

Acoustic  Count 

 Presence 

 Occupancy 

 Speed 

 Insensitive to precipitation 

 Services multiple lanes 

 May under count in congested flow 

 Cold temperature has been reported as affecting data 

accuracy 
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2.2.2.4 Validation Data 

 

Some newly developed technologies can meet temporary data collection needs for validation. 

Representatives of these technologies are: 

 

 Bluetooth Traffic Monitoring 

Bluetooth Traffic Monitoring is based on the Media Access Control (MAC) address 

matching. Every Bluetooth or WIFI enabled device is associated with a unique 48-bit MAC 

address for data communications. A vehicle carrying a Bluetooth device under the 

discoverable mode can be observed by Bluetooth readers in its detectable range. If the MAC 

address and time of detection is logged, a sample travel time for a roadway segment can be 

extracted by comparing the timestamps of each MAC read at both ends. Observations of 

multiple vehicles containing Bluetooth devices provide a highly accurate estimate of traffic 

conditions.  Experiments have indicated that approximately one in ten vehicles contains a 

Bluetooth device that can be detected and roughly half of the detected vehicles can be 

matched to obtain travel time information (Malinovskiy et al., 2010; Wang et al., 2010; 

Young, 2008; Sawant et al., 2004). 

 

 Probe Vehicles with GPS Devices 

Probe vehicles equipped with Global Positioning System (GPS) receivers can be used to 

collect travel trajectory and travel time information. The challenge lies in that GPS devices 

output latitude and longitude pairs. Therefore an Linear Referencing System (LRS) is needed 

as the base to organize and analyze GPS data. An ongoing trend is to combine the floating 
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vehicle information with the GIS interface (Tong, et al., 2005; Schäfer et al., 2002; Quiroga 

and Bullock, 1998). 

 

2.3 Travel Impedance in Long Distance Travel 

 

2.3.1 Definition of travel impedance 

 

Travel impedance is also known as friction factor, applied in the famous and most commonly 

used gravity model (Hutchinson, 1974; Haynes and Fotheringham, 1984) for trip distribution. It 

is an inverse function of travel cost between zones i and j, for example, travel time, distance, fuel 

cost, or any combination of the above. This friction factor needs to be calibrated through 

comparing the observed and predicted trip length distributions (Meyer and Miller, 2001; 

Levinson, 1998). 

 

In trip assignment, travel impedance quantifies the travel cost when using specific routes and 

significantly influence drivers’ decision making. Previous research has identified a series of 

impact factors, such as the O/D distance, congestion level, etc. Notably, most of those factors are 

indeed associated with travel time. Ewing et al. (2004) used the inverse of travel time from the 

trip generation zone to the attraction zone as the travel impedance in a school zone travel mode 

choice study. Similar manipulation can also be found in Black (1972) and Levinson (1993). 

Alternatively, travel impedance might take the form as a function of travel time with a negative 

exponent (Park and Smith, 1997).  
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As mentioned in Section 1.3, for recreational long distance travel, travel time is not the 

preliminary travel impedance. Other factors will be explored in this research. However the 

following literature review mainly investigates travel time as the major impedance measure, and 

reviews the travel time estimation for nodes and links separately. 

 

2.3.2 Travel impedance in urban areas 

 

Travel impedance estimation at a junction requires an integrated measure over the whole urban 

area. Several congestion indices included in the annual Urban Mobility Report published by 

Texas Transportation Institute (TTI) provide critical reference on this matter. TTI develops 

methodologies to generate several key measures, e.g. travel time index, delay per auto commuter, 

cost per auto commuter, total delay, and total cost), which are categorized as “intensity” and 

“magnitude” measures. Collectively those indices can be used to interpret and quantify the area-

wide congestion and mobility levels. They also allow for comparisons across similar urban areas. 

The ranking is population based, where urban areas are classified into very large (over 3 million), 

large (over 1 million but less than 3 million), medium (over 500,000 but less than 1 million), and 

small (less than 500, 000) categories. Some key congestion measures are listed below: 

 

 Travel Delay: the total amount of extra travel time due to congestion. Most of the key 

measures presented in the Urban Mobility Report were developed based on calculating 

travel delay. For example,  

Daily Vehicle Hours of Delay =
𝐷𝑎𝑖𝑙𝑦 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑀𝑖𝑙𝑒𝑠 𝑜𝑓 𝑇𝑟𝑎𝑣𝑒𝑙 

𝑆𝑝𝑒𝑒𝑑
−
𝐷𝑎𝑖𝑙𝑦𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑀𝑖𝑙𝑒𝑠 𝑜𝑓 𝑇𝑟𝑎𝑣𝑒𝑙

𝐹𝑟𝑒𝑒𝐹𝑙𝑜𝑤 𝑆𝑝𝑒𝑒𝑑
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 Annual Persons Delay: the yearly amount of extra travel time for freeways and arterial 

streets in each study area.  

Annual Persons Hours of Delay = Daily Vehicle Hours of Delay on freeways and Arterial Streets ×

Annual Conversion Factor(50 working weeks per year) ×

Average Vehicle Occupancy(1.25 Persons per Vehicle)  

 Travel Time Index: the average amount of extra time spent on travel relative to free-flow 

travel.  

Travel Time Index =
𝑃𝑒𝑎𝑘 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒

𝐹𝑟𝑒𝑒𝐹𝑙𝑜𝑤 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒
 

Travel Time Index =
𝐷𝑒𝑙𝑎𝑦 𝑇𝑖𝑚𝑒 + 𝐹𝑟𝑒𝑒𝐹𝑙𝑜𝑤 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒

𝐹𝑟𝑒𝑒𝐹𝑙𝑜𝑤 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒
 

 Annual Delay per Auto Commuter: a yearly sum of the extra travel time for those 

commuters who travel during the peak period. All of the delay that occurs during the peak 

period is assigned to the auto commuters. Furthermore, since commuters also contribute 

to the delay occurs outside of the peak period, the off-peak delay should consequently be 

considered and is assigned to the entire population of the urban area. This measure 

illustrates the effect of the per-mile congestion as well as the length of each trip. 

Annual Delay per Auto Commuter =
𝑃𝑒𝑎𝑘 𝑃𝑒𝑟𝑖𝑜𝑑 𝐷𝑒𝑙𝑎𝑦

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑢𝑡𝑜 𝑐𝑜𝑚𝑚𝑢𝑡𝑒𝑟𝑠
+
𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝐷𝑒𝑙𝑎𝑦

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 

 Cost of Congestion: the value of extra time and fuel consumed during the congestion 

period. 

 

2.3.3 Travel impedance along roadways 

 

Travel time estimation for roadway links is an area with extensive research because it is an 

essential piece of information for ITS applications and route travel time estimates. In freight 
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movements, resolving the issue is straightforward due to the wide use of GPS devices in freight 

vehicles (Cambridge Systematics, Inc., 2008). For passenger traffic, however, travel time 

estimation either relies on the Bureau of Public Roads (BPR) functions and its variations 

(summarized in Table 3.3) due to its simplicity or on the travel speed estimation.  

 

There is abundant literature related to speed estimation from single loops, the primary detection 

means by most of transportation agencies (Klein et al., 2005). These research efforts mainly 

include: (1) advance detectors based approach (Cheung et al., 2005; Haoui et al.,2008; Varaiya, 

2004; López-Valcarce et al., 2004);  (2) volume and occupancy data-based methods (Athol, 

1965; Pushkar et al., 1994; Dailey, 1999; Wang and Nihan, 2000 and 2003; Coifman et al., 2001 

and 2003); and  (3)  Analog signal-based methods (Sun and Ritchie, 1999; Oh et al., 2002; Fang 

et al., 2007).  

 

In addition to point speed estimation, other researchers have developed several approaches for 

link speed estimation (or space mean speed), with which link travel time can be directly 

computed. Some have proposed extrapolation methods/trajectory methods to estimate average 

speeds between two point measurements (Quiroga 2000; Dhulipala 2002; Cortes et al. 2002; Van 

Lint and van der Zijpp 2003; Lindveld et al. 2000; Wu et al., 2011). Others have built up 

statistical black box models with the link speed as the output and sensor measurements as inputs. 

Various statistical inference techniques were also developed for speed estimation and prediction 

based on Kalman filters (Wang and Papageorgiou, 2005), auto regressive moving average time 

series models (Van Arem et al., 1997), artificial neural networks (Blue et al., 1994), and fuzzy 

logic algorithms (Palacharla and Nelson 1999). Some research efforts (Bovy and Thijs, 2000; 
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Petty et al.,1998; Hoogendoorn, 2000; and Nam and Drew, 1998) were made to develop speed 

estimation methods based on traffic flow theory. However, very little research was found to 

address the methods to estimate network level speed data. Most researchers still break down the 

network into different links. For example, Lindveld et al. (2000) aggregated the link level speed 

estimations to obtain route travel data. Clark and Watling (2005) took a planning perspective and 

gave a distribution of network travel time without real-time detection involvement. Hence, it is 

desirable to develop techniques combining point or link estimations and generating network level 

speed data are needed to monitor traffic performance at the network level. 
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Table 2.3 Summary of BPR Function Variations 

Function Inputs Outputs Notes Reference Limitations 

ttj =
2 × (xi+1 − xi)

VL(xi, ti) + VL(xi+1, ti)
 

v =
∑ (qi × vi)
L
i=1

∑ qj
L
j=1

 

Time and 

milepost, number 

of cars. 

Observed by 

detectors. 

Travel Time, 

time mean 

speed. 

Assumes that the speed is constant 

 

Liu et al., 2009 

Actually the speed is not 

constant, and the time mean 

speed only contains local 

info. 

ttj =
2 × (xi+1 − xi)

VM(xi, ti) + VM(xi+1, ti)
 

VL =
σM
2

VM
+ VM 

σM
2 ≈

1

2N
∑βi(vi+1 − vi)

2

n

i=1

 

βi =
1

vi
(
1

N
∑

1

vj

N

j=1

)−1 

Time, milepost, 

Observed by 

detectors. 

Number of 

subsequent 

observations, 

weighting factor. 

Travel time, 

Calibrated 

mean speed. 

Still assumes that the speed is 

constant, but the speed is 

calibrated. 

N denotes the number of 

subsequent observations, and βi is a 

weighting factor for each 

observation. 

Actually the speed is not 

constant. 

ttj =
2 × (xi+1 − xi)

VM(xi, ti) + VM(xi+1, ti)
 

VM = 2(
1

VL(xi, ti)
+

1

VL(xi+1, ti)
)−1 

Time, milepost. 

Observed by 

detectors. 

Travel time, 

Calibrated 

mean speed. 

Just to simplify the equation above. 
Actually the speed is not 

constant. 

vj(t) = v(xi, ti) 

+
xj(t) − xi

xi+1 − xi
(v(xi+1, ti) − (v(xi + ti)) 

t(t) = ∫
dx
vj(t)

Li

0

= ∫
dx

vi +
x
L
(vi+1 − vi)

Li

0

=

{
 

 
Li
vi
,            vi+1 = vi

Li
vi+1 − vi

ln
vi+1
vi

, vi+1 ≠ vi

 

Time, milepost. 

Observed by 

detectors. 

The mean 

speed of the 

section 

between two 

detectors, 

Travel time. 

Assumes that the speed is not 

constant, but the speed of the 

section between of two detectors is 

constant. 

The speed within a section 

might not be constant. 

T̅(t) =
1

ω
∑T(i, t)

ω

i

 
Times, 

Number of cars. 
Travel time. 

The travel time can be get by probe 

or historical data 
Wu et al., 2004 

There might not be enough 

historical data. 
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𝑓𝑐(𝑥) = 2 + √𝛼2(1 − 𝑥)2 + 𝛽2 − 𝛼(1 − 𝑥)

− 𝛽 

t=t0*f
c
(x) 

x=v/c   ,    𝛽 =
2𝛼−1

2𝛼−2
Conic function 

Volume, capacity, 

α 
Travel time 

This function used v/c to estimate 

the travel time, and it might 

overcome some known 

disadvantages 

Of BPR function. 

It is more computational efficient 

than the BPR. 

Spiess, 1990  

𝑇 = 𝑇0 (1 + 𝛼 ∗ ((
𝑉

𝐶
− 𝜎)

𝛽

+ 𝜎𝛽) + 

𝜀 ∗
𝑉

𝐶
+ (𝑉 > 𝐶) ∗ (𝑉 − 𝐶) ∗ 𝛾 

 

Volume, capacity, 

parameters 
Travel time 

Allow to assign bigger trip 

matrices without over-assignment 
Jastrzebski, 2000 

Needs more iteration to reach 

equilibrium state in the 

network 

𝐿𝑆(𝑉) = 𝑇0 +
(𝑇𝑠 − 𝑇0)

1 + 𝑒𝜏(1−
𝑉
𝐶
)
 

The Logit S-curve function 

Free flow delay, 

Delay for 

saturated flow, 

volume, capacity, 

parameter 

Travel time 

It assumes that there is a constant 

delay for saturated flow, so the 

time spent on a link in the network 

is never infinite. 
Babin and 

Tremblay,1994 

The delay for saturated flow 

is not always constant. 

We have to assume a 

minimum τ to ensure 

LS(0)≈T0 

𝑃𝑆(𝑉) = 𝑇0 + [
(𝑇𝑠 − 𝑇0)

1 + (
𝑉
𝐶
)
−𝜏] 

Free flow delay, 

Delay for 

saturated flow, 

volume, capacity, 

parameter 

Travel time 
The characteristics are similar with 

the Logit S-curve, and LS(0)=T0. 

The τ parameter still should 

be greater than 4~5 in order 

to obtain a correct “S” shape. 
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2.4 Traffic Assignment Algorithms 

 

Traffic assignment procedure reflects the interactions between demand and supply, where 

demand represents trip volume, origin, destination, mode, and routes, with various underlying 

behavioral assumptions on route choice (e.g. user equilibrium/system optimization); and the 

supply side is reflected by the available capacity for serving the demand which determines how 

the transportation network operates.  

 

2.4.1 Static traffic assignment 

 

2.4.1.1 All or Nothing Assignment 

 

In this approach, minimum travel time (ideal and uncongested) paths are computed for each OD 

pair, and all the flows of these pairs are loaded onto the routes. A given route receives “all or 

nothing” of the flow for a given OD pair. While simple and inexpensive to use, and easy to 

interpret, this approach is clearly unrealistic in situations where capacity constraints and 

congestion effects do exist.  

 

2.4.1.2 Equilibrium Assignment 

 

This approach explicitly recognizes the transportation network link costs are generally 

influenced by the volume using that link. The two most widely accepted underlying behavioral 

assumptions are user equilibrium (UE) and system optimization (SO). In a UE network, no user 
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can improve his/her travel time (cost) by unilaterally changing routes (Wardrop, 1952). In a SO 

network, the system users would be assigned to routes so as to minimize the system average 

travel costs. The bright side regarding the UE assignment procedures is they are capable of 

handling large, real-world network, and they are routinely available within most commercially 

available transportation modeling software packages.  

 

2.4.1.3 Stochastic Assignment 

 

The equilibrium assignment methods briefly sketched in the preceding discussion are more 

properly referred to as deterministic user equilibrium (DUE) methods, since they assume that all 

users in the system have perfect information about the travel times on alternatives routes within 

the network and that they make perfectly correct route choices based on this information. 

Obviously this is inconsistent with the reality, where randomness and misinformation exist. 

Realizing that, a set of solutions have been proposed with travel costs being random variables 

that can vary among individuals based on their individual preferences, experiences, and 

perceptions, rather than deterministically as in the DUE framework. Suggested procedures 

include application of an incremental assignment in a stochastic simulation procedure (Burrell, 

1968), employ of a multinomial logit model to predict route choice probabilities (Dial, 1971), 

and use of discreet choice models within a stochastic user-equilibrium (SUE) framework (Sheffi, 

1985).  

 

In practice, both DUE and SUE are categorized as Static Traffic Assignment (STA) methods, 

which are widely used to determine important infrastructure investment decisions, because of its 
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well-defined user behavior principle, elegant mathematical formulation, and efficient algorithms. 

 

2.4.2 Dynamic traffic assignment 

 

For many regional transportation planning applications, the static assignment assumption is 

acceptable and, with a properly validated network, can yield very useful results. For many other 

applications (ATIS, Route guidance, ramp metering, dynamic traffic signals, managed lanes, 

dynamic pricing etc.), however, the static representation of network performance is not 

sufficiently accurate. Because STA assumes that the flows of vehicles or people enter the 

network “simultaneously”. This is obviously an unrealistic assumption because each vehicle can 

be on only one link at a time and each vehicle must travel through times as well as space as it 

moves from its origin to its destination.  

 

In such cases, a dynamic representation of route choice behavior and resulting network 

performance (congestion, speeds, etc.) is required to explicitly describe movements of vehicles 

along their chosen paths in a timely manner. Dynamic Traffic Assignment (DTA) intends to 

address this problem by considering time varying flows. Spatially, it models traffic flow 

phenomena such as queuing, spillovers, shockwaves, etc.; temporally, it includes temporal choice 

dimensions, such as departure time, schedule delay, etc. Unlike STA, DTA does not have a 

single, universally accepted formulation, or well-established solution properties, and it is difficult 

to solve mathematically, although tremendous efforts have been invested in developing efficient 

algorithms for DTA.  
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Methodology-wise, DTA research has progressed in two major directions: analytical models 

(Friesz et al., 1993; Ukkusuri and Waller, 2008) and simulation models, where a selective list 

includes DynaSMART (Mahmassani, 2001), DynaMIT (Ben-Akiva et al., 2002), VISTA 

(Ziliaskopoulos and Waller, 2000), and Dynameq (Mahut et al., 2005). While the former gives 

strong mathematical proofs, the latter reflects more of the traffic flow evolvement resulted from 

vehicle interactions. Both kinds of research are based on certain assumptions. Content-wise 

contemporary researchers keep pushing the limits to incorporate more travelling issues in the 

DTA framework, including departure time (Friesz, et al., 1993; Ran et al., 1996; Huang and 

Lam, 2002; Wie et al., 2002;  Szeto and Lo, 2004; Zhang and Zhang, 2007), activities/locations 

choices (Abdelghany, 2001 and 2003; Lam and Huang, 2003; Kim et al., 2006; Rieser et al., 

2007), and activity duration (Ramadurai and Ukkusuri, 2008).  Table 2.4 illustrates a breakdown 

of DTA models.  

 

Table 2.4 Breakdown of DTA Models 

 

Computational Methodology 

Mathematical 

Programming 

Optimal 

Control 

Variational Inequality 

/Congestion Pricing 
Algebraic/Graphical 

T
ra

ff
ic

 F
lo

w
 M

o
d

el
 

Physical 

Queue 

Ukkusuri and 

Waller, 2008; 

Ziliaskopoulos. 

2000 

 
Lo and Szeto. 2002 

 

Point Queue 
   

Vickrey, 1969; 

Muñoz and Laval, 

2005;  

Link Exit 

Function 

Merchant and 

Nemhauser, 

1978; Janson, 

1991 

Friesz, et al., 

1989; Ran and 

Shimazaki, 

1989; Ran et al., 

1993 

Ban et al., 2008; Friesz, et 

al., 1993; Wie, et al., 1995  

 

 

2.4.3 Applications of traffic assignment 
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Although hot in research as discussed above, only few applications were found in applying DTA 

to a large-scale network with support of regional travel demand models. Dynameq has been 

applied to a large subarea of Calgary and to analyses of the Rue Notre-Dame in Montréal 

(Donnelly et al., 2010). Yet results from the work are currently unpublished and inaccessible.  

 

The largest known DTA application to date is described by Hicks (2008). The network from the 

Atlanta Regional Commission’s (ARC’s) travel model served as the base for the DTA network. 

In this application trip matrices from the ARC model were divided into 15-min intervals for the 

specification of demand. The drawback of this practice is that it is very time-consuming.  

 

A number of cities are currently testing DTA models, but the progress is still far away from even 

preliminary results. At least a dozen such cases are known to be in varying stages of planning or 

execution, suggesting that the use of DTA models in planning applications is about to expand 

dramatically. However, there is still a series of issues regarding applying DTA in an urban 

context, not to mention its application in a long-distance travel context. An attempt in applying 

DTA to long distance travel  is  I-285, a 64-mile circumferential freeway, where DTA serves as 

the mesoscopic layer of the analysis, connecting the demand matrices (divided into 15-min 

intervals) and the microscopic scale models (VISSIM simulations) (Simons, 2006). As for state 

models, in many aspects the travel models used at the state level are simple extensions of 

traditional sequential models (four-step) due to the cost of increased data requirements and 

computational burden of DTA. 
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2.5 Large-Scale Geodatabase and Regional Traffic Data Platform 

 

Currently there is a void of knowledge regarding national data model for long distance travel, 

however, similar efforts have been committed from regional to continental scales. For example, 

Lin et al. (2008) mapped GPS recorded travel speed data from 27,471 trucks onto the entire U.S. 

highway network. Haider and Spurr (2006) devised the operational details of a large-scale 

(metropolitan-wide) traffic assignment model using TransCAD software, which comprises 

240,000 unidirectional links for the Greater Montreal Area, Canada. Of these studies two are 

selected and summarized in the following table, one for the southwest Georgia region (Georgia 

Department of Transportation, 2009) and the other for the whole European Union (Nielsen and 

Burgess, 2008).  

 

Table 2.5 Two Large-Scale Transportation Network Models 

 
The European TRANS-TOOLS Transport Model Southwest Georgia Interstate Study 

Geographic 

Coverage 
All European Union member countries 

32 counties in Southwest Georgia study 

area region, with the rest of Georgia 

State as buffer area and other states of 

continental US 

Modeling 

Objective 
Both passenger and freight Both passenger and freight 

Modes 

For freight transport:  

• Trucks 

• Rail 

• Inland waterways 

• Ships 

For passenger transport:  

• Cars  

• Rail 

• Air 

Automobiles 

Primary Network 

Data Source 

Zonal database: 

• NUTSII database 

• Russia and Turkey as one-country zones 

Roadway database: 

• CISCO version II Ten_STAC 

National Highway Planning Network 

(NHPN) 

Georgia DOT Road Characteristic (RC) 

file 

Model Resolution 

1270 European zones and 16 port-zones 

Roadway network: 

• 35,079 nodes 

Five-level network in varying 

resolutions 

Study area (32 counties) 
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• 47,373 links 

• 1,265 zonal connectors 

• Network details vary from country to 

country 

Rail network:  

• 18,851 nodes 

• 19,867 links 

• 1,269 zonal connectors 

Maritime network: 

• 747 nodes 

• 812 links 

Air network 

• 522 airports 

• 8,507 links 

• 7,962 zonal connectors  

• All functional classified 

roadways plus some local 

roads 

Rest of Georgia State (127 counties) 

• All NHPN links validated by 

Georgia DOT RC file 

50-mile buffer area (including portions 

of f neighbor states) 

• All of the existing NHPN links 

Rest of the five neighbor states 

• Interstates and major state 

routes 

Outlying states (43 states and District 

of Columbia) 

• Interstates only 

The final network consists of 1,569 

centroids and 82,360 miles of roadways 

Computational 

Model 

Travel demand model: 

• Spatial Computable Generalized regional 

Equilibrium model (SCGE) 

Assignment models 

• Roadway: Multi-class mixed probit 

stochastic user equilibrium procedure 

• Rail: Mixed multi-class probit 

• Inland waterway: shortest path procedure 

N/A 

Implementation 

ArcGIS for geoprocessing 

Assignment models built in C# together with 

Rapidis 

ArcGIS for network building 

CUBE software for centroid and 

centroid connector generation 

 

The Southwest Georgia Interstate Study lacks computational modules for trip assignment, and 

both this study and the European TRANS-TOOLS Transport Model are not long-distance 

oriented. The bright side is that both studies well elaborated the efforts for constructing a 

geodatabase. Notably nationwide several state and local agencies pioneered the development of 

state- and city-wide travel data systems for system monitoring and network performance 

evaluation purposes. Although they may not be directly related to long-distance travel, they do 

provide invaluable insight in how a variety of datasets can be organized, retrieved, and analyzed 

on a GIS basis. Those systems are reviewed in the following sections. 

 

 Visual Interactive System for Transportation Algorithms (VISTA) 

A mesoscopic traffic simulator (RouteSim), together with algorithms in STA, DTA, control, 
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and routing, have been implemented and embedded in the VISTA framework (Mouskos, et 

al., 2003). The framework is based on the Common Object Request Brokerage Architecture 

(CORBA) specification that allows the modules to be written in separate programming 

languages, and run on different machines over a network. Its user interface was based on a 

Java-enabled GIS platform with zooming, panning, and query capabilities and can be 

accessed through the Internet.  

 

 Freeways, Arterial Performance Measurement System (APeMS), California 

APeMS (Petty et al., 2005) is a software system that collects and archives transportation data 

ranging from conventional point sensors, special point sensors (Weigh-In-Motion stations), 

link-based values (toll tag data, Bluetooth-based), arterial data, events (lane closures, 

incidents), to transit information (schedules, load, location). APeMS computes and stores 

performance measures, and provides multiple ways to visualize transportation data online.  

 

 Portland Oregon Regional Transportation Archive Listing (PORTAL), Oregon 

PORTAL (Tufte et al., 2010) archives 20-second speed, count, and occupancy data from the 

approximately 600 inductive loop detectors in the Portland, OR and Vancouver, WA 

metropolitan region. Additionally, PORTAL stores other transportation related data including 

weather, incidents, and variable message sign displays in addition to bus AVL and truck 

Weigh-In-Motion records. The web-based interface of PORTAL provides easy access to both 

raw data and a wide range of common summary data and standard performance measures. 

 

 Regional Integrated Transportation Information System (RITIS), Maryland 
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The RITIS system (Pack et al., 2008) archives transportation operations data, like traffic 

volume and speed, incident information, weather data, device operational status (traffic 

detectors, VMS, traffic signals, highway advisory radio, and CCTV cameras), managed lane 

status (high-occupancy vehicle, high-occupancy toll, and reversible lanes), surveillance 

video, transit alerts, automated vehicle locations, signal status, signal timing plans, computer-

aided dispatch (CAD) information, statistic and descriptive information. RITIS information is 

available through a read-only web interface. RITIS has two primary capabilities: the 

exchange of real-time transportation related information and the archival of regional 

transportation-related data. 

 

 Digital Roadway Interactive Visualization and Evaluation Network (DRIVE Net), 

Washington 

The Digital Roadway Interactive Visualization and Evaluation Network (DRIVE Net), 

currently under development at the STAR Lab of the University of Washington, serves as a 

new online platform for transportation data sharing, visualization, analysis, and modeling 

(Ma, et al., 2011). DRIVE Net currently stores various transportation data in its backend 

database, including freeway loop detector data, traffic signal control data, traffic incident 

data, travel time data, and truck GPS data. These data can be used to support online 

computing for other variables of interest, for example incident induced delay, dynamic 

routing for specific OD pair, and traffic emissions.  
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Chapter 3 Network Representation in Geodatabase 

 

3.1 Brief Introduction 

 

As mentioned in Section 1.2, a critical component in the national data framework is an 

abstraction of the national highway network as the common ground of basic geographic 

representation to which all the datasets related. Portraying a network is conceptually simple 

through the notion of junctions (nodes) and edges (links), with junctions representing places 

where redistribution and consolidation activities occur, and edges representing the medium that 

connects junctions and depicts the trajectory of flow. The pattern reflected by how junctions and 

edges are organized is a network, where the geometric pattern designates the geospatial locations 

(geometric network, as shown on the right in Figure 3.1) while the topological pattern indicates 

the underlying connectivity information (logical network, as shown on the left in Figure 3.1).  

 

 

Figure 3.1 Edges and Junctions in a Geometric Network (Right) and Logical Network (Left) 

 

Data regarding the national highway network can be stored and managed in a Geographic 

Information System (GIS) with geodatabase support. In ArcGIS, a prevailing implementation 

JUNCTION

EDGE

NETWORK
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environment for geospatial analyses, junctions and edges in a transportation network are 

instantiated as feature classes and stored in a geodatabase. A feature class is a table with a special 

column called “shape field,” indicating the geometry of the feature. Features in one feature class 

share the same geometry, including point, polyline, polygon, multipoint, and multipatch. Besides 

feature classes, another distinct feature of how geodatabase organizes information is the 

relationship class. A relationship class is a table that keeps track of complex and attributed 

relationships explicitly in the geodatabase. A relationship class implements association rules 

between feature classes and tables. 

 

With these two distinct features, a geodatabase is indeed an object-relational database design, 

where an object class encapsulates some data together with functions storing, querying, and 

manipulating the data. Geodatabase extends from classical relational database design to embrace 

the needs to represent geographic objects, and therefore gains the capability for advanced 

geospatial analyses. Traditional data formats in files and tables are also incorporated in 

geodatabases. Application of geodatabases provides a working solution for network 

representation and multi-data source integration and thus will play a key role in this research.  

 

3.2 Network Model Design 

 

3.2.1 User requirements and project objectives 

 

Section 3.2 has identified the source data as well as the conceptual data model, which consist of 

entities and their relationships, and established the general structure (the skeleton) of the 
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database. Designing more details for this data model requires a clarification on the user 

requirements and project objectives. 

 

A national highway network data model should support a wide variety of existing and potential 

future applications. Concentrating on network loading and distribution issues for both passenger 

and freight travel needs, this study identifies specific user requirements for the data model: 

 A national highway network model should represent the infrastructure reality as well as 

address the implementation feasibility;  

 In the data model, “friction” factors should be developed and self-corrected through 

historical archived data and most updated network traffic data; and 

 The network should be multi-scale with geographic coverage at county, metropolitan 

planning organizations, state, regional, corridor, and national levels.  

 

Particularly, such a data model should support answering the following example questions: at 

individual level, if a person is traveling from Seattle to Chicago (junctions), which route (edge) 

should they take?  At system level, how are different routes utilized by long distance passenger 

and freight travels between Seattle and Chicago? 

 

Considering answering these questions, the data model design should be capable of: 

 Not only depicting a network, but also reflecting traffic operational status on this network 

by incorporating most updated traffic data and other travel impedance measures; 

 Not only embracing multiple scales to meet the needs for trip assignment at multiple 

network levels, but also maintaining network integrity at each level; 
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 Not only tailoring for the existing data and application reality, but also preparing for 

future utilization and expansion.  

 

Constructing such a computational infrastructure necessitates the adoption of geodatabase 

architecture, mainly for the following reasons: 

 Geodatabase offers extra functionalities over relational databases, such as geospatial 

analyses and queries, as well as advanced information visualization and presentation 

capabilities. Particularly, the ArcGIS geodatabase configuration maintains good 

compatibility with various geospatial data file types, including shapefiles, coverages, 

CAD files, and imagery. ArcGIS is also flexible to operate with other applications for 

complicated computations, like TransCAD and Rapidis for traffic assignment needs.  

 Geodatabase integrates transportation information alongside the geospatial 

distribution of roadway network. Modeling transportation network is idiosyncratic 

from the classic theme-based database design, where multiple tables are related or a 

collection of coverages are overlaid. A generic network model contains facility 

centerlines attached with event tables using linear referencing system. Geodatabase 

supports such capabilities to reduce the database redundancy and facilitate efficient 

database revision and expansion.  

 Geodatabase supports framework standards. Methodologies of managing information 

and knowledge evolve rapidly with the growing diversity of data collection techniques 

and emerging business needs in transportation. The object-relational database design 

concept, which is the core of geodatabases, not only groups the real-world objects in a 
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geospatial fashion, but also explicitly illustrates relationships between those objects, 

including association, type inheritance, instantiation, aggregation, and composition.  

 

With user requirements and project objectives clarified, the next steps include: 

 Conceptual data model design: The conceptual data model identifies the entities in a 

network and specifies relationships between entities. Specify the entities in the 

geodatabase at different levels: the network at each level of the framework corresponds to 

a distinct set of edges and junctions. Those features represent different real-world objects. 

On the one hand, the representation should be consistence with the data sources available; 

on the other hand, topological integrity (network connectivity) on each level should be 

enabled. A base network should be established to maintain sufficient accuracy when 

representing the national highway network, and also keep the network size manageable to 

ensure the computational efficiency. 

 Logical data model design: The logical data model specifies attributes for the 

geodatabase based on the conceptual design and the base network specified.  

 Physical data model design: The physical data model further specifies the geodatabase 

based on the logical data model, while considering the implementation environment. The 

choice of RDBMS (relational database management software), network structure, and 

organizational behaviors will influence how the logical design is translated into a 

physical implementation. Detailed geodatabase configurations will be specified in the 

physical data model. 

 

3.2.2 Conceptual data model design 
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The conceptual data model design developed in this study follows a triple-level system to 

represent a multi-scale national highway network desired by long distance travel analyses. The 

top level (highlighted by the top dash line box in Figure 3.2) represents the macroscopic 

representation of the national highway network, where the Interstate freeways connect states. 

Although the top level network is too coarse to reflect detailed network loading conditions, it can 

yield meaningful knowledge of major passenger and freight flows loaded onto the Interstate 

system between different states. This level of network could also be a good prototype system due 

to its network-wide simplicity for demonstration purposes. The middle and bottom levels 

(highlighted by the bottom dash line box in Figure 3.2), representing region and county level 

networks respectively, provide scaling steps for updated network information to be integrated for 

quantifying “friction” factors at the corresponding network level. Specifically, the middle level 

comprises MSAs and principal arterials, addressing the needs for depicting the travel between 

major urban clusters. The bottom level embraces counties and all arterials, in the finest resolution 

in this model design, addressing the needs for loading county level OD demand to the national 

highway network. In summary, all three levels attempt to capture inter-state travel, inter-regional 

travel, and inter-county travel respectively. As illustrated in Figure 3.2, across all three levels 

there are corresponding logical networks and geometric networks, where the former outlines the 

topical relationships between edge junction elements, while the latter specifies the edge and 

junction features that abstract the real-world places and roadways.  
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Figure 3.2 Triple-Level System for National Highway Network Model 

 

Based on the triple-level system, the conceptual data model design for national highway network 

is devised as shown in Figure 3.3. The conceptual data model identifies the entities in a network 

and specifies relationships between entities. The Interstates, principal, and minor arterials for 

both urban and rural areas in the NHPN shapefile (a polyline feature class) constitute the base 

network, as shown in Table 3.1. Orphan junctions are automatically generated from the base 

network to ensure the network’s topological integrity. Centroids of polygons from MSA and 

county shapefiles are generated to represent OD junctions on different levels and connect to the 

network through centroid connectors. Centroid connectors are virtual links that represent 

generalized local roads that have no physical correspondence in the real-world roadway network. 

This allocation attempts to maintain sufficient accuracy when representing the national highway 

network, and also keep the network size manageable to ensure the computational efficiency. 
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Table 3.1 NHPN Functional Classes included in the Base Network and the Mileage Status 

Functional Class Mileage 

Urban Principal Arterial – Interstate (11) 16,134 

Rural Principal Arterial – Interstate (1) 33,918 

Urban Principal Arterial - Other Freeways and Expressways (12) 12,070 

Urban Principal Arterial – Other (14) 58,955 

Rural Principal Arterial – Other (2)  105,273 

Urban Minor Arterial (16) 2,146 

Rural Minor Arterial (6) 125,346 

Total 353,842 

 

Centroid and Network Node (orphans) are instances of JunctionFeatureSoure (a super class); 

while CountyCentroidConnector, MSACentroidConnector, and NHPN are instances of 

EdgeFeatureSoure (another super class). Centroid is connected to Network Node (orphans) by 

CountyCentroidConnector and MSACentroidConnector. Travel Impendence refers to the 

resistance drivers may experience to complete a long distance trip, such as travel time, toll, lane 

restriction, etc. The Travel Impendence information is linked to the base network from NHPN. 

As an example dataset for computing Travel Impendence, loop data is discussed in Chapter 5 to 

demonstrate how traffic data can be attached to the network.  
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Figure 3.3 Conceptual Data Model Design for National Highway Network  

 

Table 3.2 specifies the source datasets for edge and junctions features on each geometric level. 

Since NHPN dataset serves as a geospatial basis for both passenger travel and freight 

transportation (FAF
3
) statistics, different subsets of it are referred to in Table 3.2 for different 

levels of network following the functional classification codes specified in Table 3.1.  

 

Table 3.2 Specifications of Geometric Networks 

Network Scale Junction Feature Edge Feature (both Urban and Rural) 

State-Level State centroids NHPN Principal Arterial – Interstate (1 &11) 

MSA-Level MSA centroids NHPN Principal Arterial – All (1, 2, 11, 12, & 14) 

County-Level County centroids NHPN Principal and Minor Arterial (1, 2, 6, 11, 12, 14, & 16) 

 

Number of lanes for different type of facilities is summarized in Table 3.3, as they are critical 

reference to determine the capacity of roadway segments. The final base network is illustrated in 

Figure 3.3. For illustrative purposes, minor arterials are not shown to make the network more 

legible.  

 

 

JunctionFeatureSource EdgeFeatureSource

Centroid
Network 

Node
(orphan)

MSACentroid CountyCentroid

MSACentroidConnectorCountyCentroidConnector

LoopTravel Impedance

NHPN

2

1
2 1..*

1

1..*

1

1..*

1 1..*

1 1..*
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Table 3.3 Observed Network Functional Classes and Number of Lanes 

 

 

 

Figure 3.3 Base Network for National Highways  

 

3.2.3 Develop logical data model 

 

The logical data model specifies attributes for the geodatabase based on the conceptual design 

Functional Class 
Number of Through Lanes in Both Directions 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Urban Principal Arterial – Interstate (11) √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

Rural Principal Arterial – Interstate (1) √ √ √ √ √ √ √ √ √      

Urban Principal Arterial - Other Freeways and 

Expressways (12) 
√ √ √ √ √ √ √ √ √ √ √ 

   

Urban Principal Arterial – Other (14) √ √ √ √ √ √ √ √ √  √    

Rural Principal Arterial – Other (2)  √ √ √ √ √ √ √  √      

Urban Minor Arterial (16) √ √ √ √ √ √         

Rural Minor Arterial (6) √ √ √ √ √          
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and the base network specified in Table 3.2. The base network is the bottom level (county level) 

in the triple-level system, as the two upper levels are its subsets. The truck route source data 

(FAF
3
) also overlaps significantly with the NHPN network, therefore the following can be 

derived from the base network: (1) different levels of highway networks depending on the road 

way functional classes; (2) the truck route network by relating to the FAF
3
 network. Since other 

networks share great similarities with the base network in terms of data model design, further 

discussions in this report only focus on the base network. 

 

Figure 3.4 shows the logical data model design. As in the conceptual design, the generic building 

blocks for the base network are JunctionFeatureSource and EdgeFeatureSource. The Shape 

attribute specifies a feature’s geometry. The IsEnabled attribute can remove a network element 

from consideration in traffic assignment at different levels by setting its value to False, and thus 

materialize the multi-scale network design.  

 

The superclass stereotype JunctionFeatureSource has two subclasses Centroid and 

NetworkNode. The AncillaryRole attribute in the Centroid class indicate whether the 

corresponding MSA or county is origin or destination (source or sink following the definition of 

AncillaryRole). The Centroid class further extends the type inheritance to the MSACentroid 

and CountyCentroid classes, which are simple junction feature classes generated from MSA and 

County polygons. Both the MSACentroid and CountyCentroid classes need an attribute to 

store a foreign key pointing to the corresponding polygon it represents in all cases. For the 

MSACentroid classes the foreign key is CBSA identifying code, which is a five-digit code 

assigned to each metropolitan and micropolitan statistical area. For the CountyCentroid classes 
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the foreign key is the CTFIPS code, which represents each county.  

 

The superclass stereotype EdgeFeatureSource has three subclasses: NHPN, 

MSACentroidConnector, and CountyCentroidConnector. The FromJunctionID and 

ToJunctionID attributes in the NHPN class indicate the two ends for an edge, and relate to the 

NetworkNode class through a one-to-two cardinality. The FCLASS attribute in the NHPN class 

is used to set preference in different levels of network. The LRSKEY, LRSSEQ, BEGMP, and 

ENDMP attributes in the NHPN class form a linear referencing system to attach traffic 

information (the TravelImpedance classes), which will be explained in detail in Chapter 5. The 

MSACentroidConnector and CountyCentroidConnector classes are “virtual links” 

connecting MSACentroid and CountyCentroid to the NHPN class. In real-world, they 

represent the local roads that are not physically specified and included in this data model due to 

their lower hierarchy in roadway functional classes.  

 

The authors would like to include a special note regarding the network connectivity. Table 3.2 

specifies the feature source at different levels and their corresponding codes in the NHPN 

dataset. Building a network dataset begins with specifying at least one edge feature classes (e.g. 

all NHPN principal arterials), which will form the network at a particular level (e.g. MSA level). 

This is done by assigning the classes to connectivity groups. In this study, there are three distinct 

levels of network; therefore, there are three connectivity groups. Each connectivity group 

corresponds to one edge feature source. Explicit junction feature sources (the MSACentroid and 

CountyCentroid classes in this design) are required to connect to edges in different connectivity 

groups directly or indirectly. Also, to differentiate passenger travel from freight transport, a dual-
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modal network design may involve the highway edge feature sources and truck route edge 

feature sources. To ensure that trucks traverse only on truck route segments, the two edge feature 

sources are placed in different connectivity groups. The junction feature sources are the same for 

both connectivity groups at all levels in this case, as both passenger and freight transport 

activities share the same OD configuration. 
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Figure 3.4 Logical Data Model 

 

3.2.4 Develop physical data model 
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The physical data model further specifies the geodatabase based on the logical data model, while 

considering the implementation environment. The physical data model shown in Figure 3.5 is for 

an ArcSDE geodatabase that includes a geometric network called HwyNetwork, plus two 

polygon feature classes defining the MSA and County coverages. The geometric network does 

not contain those polygons, only their centroids, which are stored in a simple junction feature 

class, called MSACentroid or CountyCentroid. Each polygon feature class is related to the 

corresponding centroids explicitly by a relationship class CentroidRepresentsMSA or 

CentroidRepresentsCounty. The NetworkNode feature class is an implementation of the 

NetworkNode class in the logical data model, which defines all the orphan nodes automatically 

generated with creating a network dataset using the NHPN base network shapefile, which is 

stored in a simple edge feature classes NHPN. Two other simple edge feature classes store 

MSACentroidConnector and CountyCentroidConnector. 

 

 

Figure 3.5 Physical Data Model in ArcGIS 

Polygon Feature Class
MSA

Polygon Feature Class
County

Simple Edge Feature Class
NHPN

Simple Edge Feature Class
MSACentroidConnector

Simple Junction Feature Class
NetworkNode

Simple Junction Feature Class
MSACentroid

Geometric Network
HwyNetwork

Relationship Class
CentroidRepresentsMSA

One to Many
Simple Edge Feature Class
CountyCentroidConnector

Simple Junction Feature Class
CountyCentroid

Relationship Class
CentroidRepresentsCounty

One to Many



 

56 

 

 

The relationship class CentroidRepresentsMSA connecting MSA and MSACentroid is 

illustrated in Figure 3.6. The other relationship class CentroidRepresentsCounty follows the 

same fashion.  
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Figure 3.6 Relationship Class for CentroidRepresentsMSA 

 

In Figure 3.6, feature classes MSA and MSACentroid are also specified, with field name, data 

Simple Feature Class Geometry Point

MSACentroid Contains M values No

Contains Z values No

Field name Data Type Allow nulls Default value Domain Precision Scale Length

ObjectID ObjectID

Shape Geometry Yes

MSACentroidID Long Integer No 0

CBSA String No 20

Xcoord Short Integer Yes 7 2

Ycoord Short Integer Yes 7 2

AncillaryRole Short Integer No 0 NetwrokRole 0

IsEnabled Short Integer Yes 1 EnabledDomain 0

Simple Feature Class Geometry Polygon

MSA Contains M values No

Contains Z values No

Field name Data Type Allow nulls Default value Domain Precision Scale Length

ObjectID ObjectID

Shape Geometry Yes

Shape_Length Double Yes 0 0

Shape_Area Double Yes 0 0

CBSA String No 9

CBSA_Name String No 56

TYPE String No 29

STATUS String No 11

ST_POSTAL1 String No 2

ST_POSTAL2 String No 2

ST_POSTAL3 String No 2

ST_POSTAL4 String No 2

STFIPS1 String No 2

STFIPS2 String No 2

STFIPS3 String No 2

STFIPS4 String No 2

VERSION String No 2

Relationship class MSAHasCentroid

Type Simple Forward label: Is represented by

Cardinality One to many Backward label:  Represents

Notification Forward

name MSA name MSACentroid

Primary key CBSA

Foreighn key CBSA

Origin table Destination table

Subtypes of Centroid

subtype field: CentroidType Default subtype: 0

Subtype Code Subtype Description Field name Default value Domain

0 Neither

1 Source

2 Sink
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type, allow nulls, default value, domain, precision, scale, and length for each attributes of the 

feature class. Attributes for other entities in Figure 3.6 are specified in Table A-1 through Table 

A-7 in Appendix A, in the format of how they are stored in an ArcSDE geodatabase.  Loop data 

as an instance of the super class TravelImpedance is stored as a table rather than feature class, 

as shown in Table A-7.  “An attribute domain is a rule that limits users’ data entries to a specific 

set of valid choices.” (Bulter, 2008) Domains specified in Table A-1 to Table A-7 are listed in 

Table A-8 to A-20 in Appendix A.  

 

3.3 Linking Traffic Data to the Network 

 

The logical and physical data model outline the “skeleton” of the national highway network data 

model, however, to enable this “skeleton” with “mobility”, “muscles” should be developed. In 

the long distance travel context, the “mobility” refers to the computational power for trip 

assignment and network loading, and the “muscles” refer to other travel impedance measures 

including traffic data. In this chapter, we focus on elaborating the procedure of linking traffic 

data to the network. Linking other travel impedance measures shares similarities with this 

procedure to be described.  

 

The Linear Referencing System (LRS) is critical in this procedure, from concepts to practices. 

LRS facilitates (1) consolidating different network datasets. The transportation network is widely 

represented as 1-D cartography with the roadway centerlines. Therefore operations such as 

merging, relating, and data transfer on different datasets (e.g. HPMS, NHPN, and FAF) can only 

be completed by LRS rather than map overlay; (2) linking traffic information to the network. A 
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majority of traffic data are universally collected and stored as “events” along the roadway 

network, associated by a diversity of Linear Referencing Methods (LRMs). In the following 

sections, concepts of LRS, LRM, and event data are first introduced. Then the authors discussed 

the discrepancy between the LRS in the NHPN and State DOT practices, as well as the 

challenges for linking traffic data induced by this discrepancy. Finally two-layer solutions are 

proposed to cope with the challenges. 

 

3.3.1 Brief introduction of linear referencing system and event data 

 

The practice of locating objects along a network based on a series of anchor points and the 

distance between objects and anchors dates back to the early days before the advent of computer 

and modern GIS technology. The primal LRS was developed in the railway industry and the idea 

was adopted by more and more transportation agencies across diverse modes. The technique “to 

identify a specific location with respect to a known point” is referred as Linear Referencing 

Method (LRM) (Vonderohe, A.P., et al., 1993); and a Location Referencing System (LRS) is “a 

set of office and field procedures that include a highway location reference method” (Baker and 

Blessing, 1974). 

 

In general LRM consists of two components: facility identifier and linear measure, which is the 

distance from the pre-defined origin to the point of interest (Butler, 2008). Data collected are 

stored in event tables, often categorized as point events with one linear measure and linear events 

with two linear measures (Fekpe, et al., 2003).  
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A diversity of LRMs are utilized by state and local DOTs, some examples enumerating route-

milepost, route-offset distance, route-milepost-offset, and methods based on link-node models 

(Baker and Blessing, 1974). Adams et al. (1999) described the various LRMs used by states and 

compared their advantages and disadvantages. It was found that not only each state was 

developing their own data models, but the terminologies were also not consistent from one state 

to another. This situation hindered the interoperability among datasets based on different LRMs. 

In the 1990s, the need for a national LRS model grew, with the most influential research 

resonating to the needs being NCHRP20-27(2), entitled “Development of System and Application 

Architectures for Geographic Information Systems in Transportation”. 

 

The logical data model of NCHRP20-27(2) is shown in Figure 3.7, which includes three primary 

components: first, the LRS and its linear datum; second, business data, and third cartographic 

representation. A detailed explanation can be found in the NCHRP20-27(2) report but the major 

purpose of such an initiative is “to integrate increasing amounts of linearly referenced data used 

by the transportation community” (Vonderohe et al., 1997) by proposing a generic and 

comprehensive data model with an agreed technical standard, and to facilitate sharing those data 

across modes and agencies.  
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Figure 3.7 NCHRP 20-27(2) Proposed National Transportation Data Model  

 

The data model proposed in NCHRP20-27(2) as a “universal” LRS prototype provides 

substantial guidance for standardizing state level LRS practices. However, while the design 

procedure and specification well conformed to the national model, actual LRS practices still 

varies from state to state (Fekpe, et al., 2003). Even in the same state, it may vary on different 

issues (pavement management, traffic monitoring, performance reporting, traffic incidents, etc.) 

or by different Distance Measuring Instruments (DMIs).  

 

To overcome the idiosyncrasies across different state level LRSs, the Federal Highway 

Administration (FHWA) created a national LRS on the basis of the NHPN network, which serves 
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as the geometric base of HPMS. The FHWA requires each state to conform to this national LRS 

when submitting annual HPMS report. The national LRS also links NHPN to HPMS and FAF
3
, 

with four major components (FHWA, 2010): 

 County FIPS: 3-digit County Federal Information Processing Standards codes created by 

Bureau of the Census; 

 Inventory Route Number: 10-digit code uniquely identifying a route for inventory 

purposes, not necessarily the same as that posted along the roadway; 

 Inventory Subroute Number: 2-digit code uniquely identifying portions of an inventory 

route; 

 Milepoint/Kilometerpoint (MPT/KMPT): actual milepost.  

 

The first three data items (Inventory Route Number + Inventory Subroute Number + County 

FIPS) form a 15-digit unique code called LRSKEY in the NHPN dataset and together with 

BEGMP and ENDMP (see Table 3.1) identifies a particular portion of a route. The critical 

function of LRSKEY is discussed in the following section.  

 

3.3.2 Handling traffic data 

 

This study divides traffic data into two categories: historical data and most updated data. The 

former one refers to the dataset routinely collected and reported, like the AADT in HPMS and 

Truck Volume in FAF
3
. The advantage of historical data is their wide coverage due to FHWA’s 

requirement on data submittal. The disadvantage of historical data is that the annual average 

cannot fully reflect the weekday/weekend and seasonal traffic variations, which are critical 
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impact factors in long distance travel decision making. The most updated traffic data are 

available in higher temporal and spatial resolutions, collected by a variety of traffic detection 

techniques. However, since those data collections are conducted by different transportation 

agencies, it is challenging to link them to the NHPN network using the national LRS introduced 

in Section 5.1. The following sections propose two-layer solutions with both breadth and depth, 

by incorporating both historical data and most updated data.  

 

3.3.2.1 Basic Data Layer 

 

The objective of constructing the basic data layer is to ensure that each edge on the base network 

is associated with AADT and capacity information. For freight network, truck volume should 

also be included as an attribute. The base network is the county level NHPN network as 

specified in Table 3.5, which includes principal and minor arterial (coded as 1, 2, 6, 11, 12, 14, & 

16 in the FCLASS attribute), as high levels of network are only subsets of this source network 

and can be retrieved with the FCLASS codes as specified in Table 3.5. The historical traffic data 

are stored as attributes in the HPMS and FAF
3
 datasets. Feeding the HPMS and FAF

3
 data to the 

base network is a five-step procedure: 

 Match routes: both HPMS and FAF
3
 can be related to NHPN using the LRSKEY 

attributes. Note that LRSKEY specifies a route in any of the three datasets, each of 

which may consist of different number of edges. For example, the LRSKEY 

“000000000500033” specifies the Interstate-5 section in the metropolitan Seattle area, 

which corresponds to 99 edges (segments) in the NHPN dataset while 28 edges 
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(segments) in the HPMS dataset. Both routes share the same beginning and ending 

milepost, only the NHPN with shorter segments;  

 Transfer historical data: since there is no one-to-one cardinality between edges across 

different datasets, historical data are transferred on a mileage basis. Taking the previous 

example, the 99 NHPN edges will be aggregated into 28 groups to match the 28 HPMS 

edges based on the beginning and ending milepost, and edges in each group will be 

assigned the same traffic data as specified in HPMS;  

 Handle missing data: after step 2 there are still some edges with missing traffic data. In 

this case average of neighboring edges will be assigned to those edges;  

 Handling non-HPMS/FAF edges: after step 1 there are a number of edges in the source 

network without corresponding HPMS/FAF coverage. Estimated AADT from the edge 

location (CFIPS), number of lanes, and functional class will be assigned to those links; 

 Quality check: in this step the source network equipped with historical data will be 

visualized in ArcGIS for visual check for data anomalies.  

 

After the five-step procedure the source network should include the following attributes shown 

in Table 3.4 with full coverage and relative accuracy. Note that attributes shown in this table are 

extra attributes that are added to the NHPN Feature Class shown in Table A-1 after the five-step 

procedure. The HasMetaData attribute indicates whether the most updated traffic data are 

available.  

 

Table 3.4 Extended Edge Feature Class to the Base Network 

Simple Feature Class Geometry   Polyline       

Edge 

 

Contains M values No 
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Contains Z values No 

  

  

Field name Data Type 

Allow 

nulls 

Default 

value Domain Precision Scale Length 

ObjectID ObjectID             

Shape Geometry Yes           

ShapeLength Double Yes     0 0   

EdgeID Double No     0 0   

FromJunction 

Long 

Integer No     0     

ToJunction 

Long 

Integer No     0     

AADT 

Long 

Integer No     0     

AADTT 

Long 

Integer No     0     

Capacity Double No     0 0   

HasMetaData 

Short 

Integer No   MetaDataCode       

 

Table 3.5 MetaDataCode Domain 

Coded value domain MetaDataCode 

Description Whether has meta Data 

Field Type Short Integer 

Split policy  Default value 

Merge policy Default value 

code  Description 

0 Current Edge has meta data 

1 Current Edge has no meta data 

 

3.3.2.2 Advanced Data Layer 

 

Although the basic data layer gives full data coverage across the source network, annual average 

traffic counts cannot reflect seasonal and weekly fluctuations in traffic, which greatly affect long-

distance travel behavior. Meanwhile, the diversity of traffic detection technologies results in a 

variety of high-resolution traffic data, reflecting the most updated traffic information.  

 

However, two major issues emerge when linking most updated traffic data: first, the massive size 
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of high-resolution data; and second, mapping data to the source network. To resolve the first 

issue, most updated traffic data are summarized in daily profiles with hourly variations, by day-

of-week and month-of-year in the advanced data layer. Therefore, for an entire year, there are 

just 84 profiles for a roadway segment (in one direction). Regarding the second issue, 

considering the discrepancy between the state LRS for traffic monitoring systems and the NHPN 

LRS, it is cumbersome to convert multiple LRS to a uniform one. It is proposed to use the 

longitude and latitude coordinates of traffic monitoring station for mapping purposes, due the 

wide availability of this information. In the ArcGIS implementation, stations can be processed as 

a point feature class that overlays with the base network, a simple geospatial analysis will “snap” 

the closest edges to the target stations. Using the 2-D referencing method also incorporates the 

GPS-based mobile sensing technologies. A table for stations and their corresponding network 

edges is then created, as shown in Table 3.6.  

 

Table 3.6 Traffic Monitoring Station Table 

Table Cabinet              

Field name Data type Allow nulls Default value Domain Precision Scale Length 

CabinetID String No         10 

Xcoordinate Double No     0 0   

Ycoordinate Double No     0 0   

EdgeID Long Integer No     0     

Direction Short Integer No   DirectionCode 0     

 

For each station, traffic data are summarized into multiple profiles from the raw data collected, 

following the procedure illustrated in Figure 3.8. Here we use the Washington State Department 

of Transportation (WSDOT) case as an example to illustrate the approach. Since many State 

DOTs follow a similar process, the approach based on the WSDOT practice can be applied to 

other state DOTS without significant modifications. WSDOT collects traffic data from thousands 
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of loops continuously and processes the raw data into 20-second archives at the control cabinets. 

Unique identifiers are assigned to each loop and a group of loops for one particular roadway 

segment is associated with a cabinet, with its configuration and location also stored in the 

database. Considering the scope of project as well as the data quality issues, it is necessary to 

conduct data aggregation and quality control before further processing 20-second loop data. The 

Daily Statistics Algorithm (DSA) used in the California PeMS database (Chen et al., 2003) can 

be implemented to identify erroneous data and aggregate 20-second loop data into daily loop 

data profiles. Details of the output profile table are shown in Table 3.7.  

 

 

Figure 3.8 Feed Loop Data to the NHPN Shapefile 
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Table 3.7 AggregatedLoopData Table 

Table AggregatedLoopData           

Field name Data type Allow nulls Default value Domain Precision Scale Length 

CabinetID String No         10 

Month Short Integer No   MonthCode 0     

Day Short Integer No   DayCode 0     

Hour Short Integer No   HourCode 0     

HourlyLoopData Double Yes     0 0   

 

The domains for Month, Day, and Hour are specified in Tables A-21 through A-23. This two-

layer traffic data linking mechanism utilizes both the historical data from the HPMS and FAF
3
 

datasets and the most updated traffic data when available. Meanwhile, for edges with both 

historical data and the most updated traffic data, these two datasets can be compared as self-

correcting measures. Although this chapter as a whole mainly focused on traffic congestion data, 

it should be recognized that for traffic assignment there are a plethora of other impedance 

measures, including tolls, lane restrictions, etc. Those measures can also been linked to the 

source network in a similar fashion.  
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Chapter 4 Long Distance Travel Network Loading: Methodologies 

 

4.1 Resolving Network Loading in Long Distance Travel: A Work Flow 

 

Long distance passenger travel embraces fairly idiosyncratic traveler behavior, depending on trip 

purposes and travelers’ socio-demographic characteristics. Perceptions to “pull” and “push” 

factors regarding alternative routes are quite contrastive across different traveler groups. 

Additionally, it should be recognized that interactions between different traveler groups are 

negligible. For example, loading leisure trips to the network will not substantially influence the 

route choice of business travelers. It is not only because long distance trips merely account for 

about one percent of total trips (as shown in Figure 4.1), but also because the seasonality 

characteristics vary for different trip purposes. Therefore it is reasonable to study each traveler 

group individually and assume that travelers within a certain group select routes in a similar way. 

Based on this assumption a tentative work flow for resolving the problem is proposed as follows: 
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Figure 4.1Vehicle Trips and VMT by Trip Length, 2009 NHTS 
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Market Segmentation: The idiosyncrasy within the whole population of long distance travelers 

results in significant divergence in their route choice behavior. Market segmentation can be well 

applied to identifying internally homogeneous and externally heterogeneous traveler groups, by 

investigating the correlation between multiple characteristics of travelers (e.g. gender, interests, 

location, religion, income, size of household, age, education, occupation, social class, ethnicity, 

etc.). Trip purposes can be considered as a rough segmentation criteria. However, it should be 

noted that even for one trip purpose (e.g. leisure travel) traveler behavior still varies due to 

different underlying value structures. A finer segmentation seems difficult to achieve given the 

existing data reality. However, some clues can be found to reflect different groups’ sensitivity to 

travel cost in the 1995 ATS. For example, number of stops was recorded, and it can be 

reasonably assumed that the more stops made by a traveling party, the less sensitive it was 

towards travel time.  

 

Identify attributes for each customer base: through market segmentation several groups 

(customer bases) will be differentiated. For each customer base, impact factors to route choice 

can be roughly divided into concrete (or tangible) attributes and abstract (or intangible) benefits, 

needs, motivations, or personal values. The former category reflects some physical properties of 

the route. For example, travel time and travel distance are two major factors that influence all the 

customer bases. Personal characteristics, however, reflect people’s perception towards a 

particular route, determined by the needs, motivations, or personal values carried within one 

customer base. Influence of personal characteristics can be captured by either deterministic 

values or random variables. In this step, different attributes for each customer base will be 
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identified.  

 

Account for different attributes in one generalized cost model: Link travel impedance measures 

the resistance or deterrence for a certain link (Chin and Hwang, 2001) and can be depicted as a 

generalized cost function. The route impedance is then obtained through summation of link 

impedances. This study will extend the exclusively time-based cost function by involving both 

concrete and abstract characteristics as aforementioned. After the second step where different 

sets of attributes are identified, those attributes can be integrated with in a discrete choice model 

framework, where the concept of utility function can be materialized as travel impedance for the 

use of traffic assignment in the next step. 

 

Incorporate the generalized cost model into traffic assignment algorithms: A diversity of traffic 

assignment algorithms have been proposed, developed, and practiced since the 1950s. From the 

simplest All-Or-Nothing (AON) algorithms, to the equilibrium family – Deterministic User 

Equilibrium (DUE), Stochastic User Equilibrium (SUE), and System Optimum (SO) algorithms, 

to the more advanced yet usually computationally cumbersome algorithms – Boundedly Rational 

User Equilibrium (BRUE), Behavioral User Equilibrium (BUE), and Dynamic Traffic 

Assignment (DTA) algorithms, each algorithm is on the basis of certain behavioral assumptions 

trying to describe travelers’ choices (Zhang, 2011). A working solution in a long distance travel 

network loading context should achieve a balance between accuracy and feasibility, given the 

network size, temporal resolution, and computational cost of the problem. This step shall cover 

detailed equations, algorithms, steps, and theories. Strength and weakness of various approaches 

shall be discussed. Proper algorithm should be selected to include the impedance function 
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developed towards the next step.  

 

Comparison of assignment scenarios: Conducting large scale travel survey for model 

calibration is beyond the scope of this research; therefore implementation of the proposed 

modeling framework is mainly for a hypothesis testing purpose. As an experimental effort to 

explore the long distance travel’s distributive pattern under different assumptions, a series of 

scenarios describing different model specifications will be implemented and compared to the 

base scenario, where an exclusively time-based impedance function is applied as how most of 

long distance or large-scale (interstate travel) assignment models were done. Through the 

implementation several critical questions can be answered:  

1) The validity of extension to the exclusively time-based impedance function;  

2) The significance and sensitivity of newly proposed parameters;  

3) The range and magnitude of those parameters;  

4) The change in the distributive patterns caused by different assignment algorithms 

(Deterministic User Equilibrium, SUE, and System Optimum);  

5) System-wise performance measurement (total VHT and VMT, total delay, trip length 

distribution, etc.) 

 

4.2 Theories and Algorithms 

 

Network loading, traffic assignment, and route choice have been referred interchangeably in 

previous literature; however, the authors would like to differentiate their emphases. Route choice 

focuses on individual choices, which reflects the interaction between the individual (the traveler 
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profile and traveling awareness) and the surrounding environment (the resources and 

characteristics of the route); traffic assignment is an aggregated outcome of individual behavior, 

usually summarized as link flows in an intra-urban context; network loading exhibits the 

distributive pattern in an interregional resolution, where detailed choice information is abstracted 

into macroscopic statistics. Overall all the three different terms reflect travelers’ choices in 

different geographic and behavioral dimensions, and obviously this research concentrates on the 

network loading issues on a national highway network.  

 

This chapter first briefly introduces the discrete choice model, the theoretical basis for route 

choice; then formulates the Stochastic User Equilibrium-based (SUE-based) traffic assignment, 

and discusses other traffic assignment approaches based on Deterministic User Equilibrium 

(DUE) and System Optimum (SO); finally it reviews practices in large-scale network loading, 

with an emphasis on configuring travel impedance functions.  

 

4.2.1 Discrete choice model 

 

Discrete choice model simulates individuals’ choices between competing alternatives. People’s 

valuation about alternative options is described as utilities. Utility is a relative measure 

representing the attractiveness associated with each alternative, which involves both attributes of 

alternatives and the decision maker’s characteristics. The behavioral foundation for discrete 

choice model is to assume each decision maker as a utility maximizer. As utility is usually 

summarized in the format of a function, with both tangible and intangible attributes and 

characteristics, it is modeled as a combination of a systematic (deterministic) component and an 
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additive random “error term” (Sheffi, 1985), which translates utility into a random variable on 

the basis of different assumptive distributions. Consequently, discrete choice models only give 

the probability with which alternatives are chosen, not the choice itself.  

 

To summarize the discrete choice model mathematically, denote the vector  1 2, , , kU U U U as 

the utilities associated with a set of alternatives  1,2, ,k  . The utility function comprises a 

systematic component, ( )kV a , where a  is the vector of alternatives’ attributes and individuals’ 

characteristics, as well a random error ( )k a , and 

( ) ( ) ( ),k k kU a V a a k                                                                                                         (4.1) 

Usually it is assumed that the probabilistic distribution for the random error satisfies that 

 ( ) 0kE a  , resulting in that  ( ) ( )k kE U a V a . In this context the error term actually reflects 

the difference between perceived utility ( )kU a  and measurable utility ( )kV a .  

 

Introducing a probabilistic distribution for the random error in the utility function enables 

calculation for the probability of a particular alternative k being selected. Based on the utility 

maximizer assumption, alternative k is superior to any other alternative j only because it is 

associated with the highest utility, which is 

     

 

 

Pr , ,

Pr ( ) ( ) ( ) ( ), ,

Pr ( ) ( ) ( ) ( ), ,

k k j

k k k j j

k k j j k

P a U a U a j k

P a V a a V a a j k

P a a a V a V a j k

 

   

   

       

          

          

                                                   (4.2) 

Given the distribution of the random error, ( )k a , the joint distribution of ( ) ( )k ja a   can be 

specified and consequently  kP a  can be calculated explicitly.  
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Logit and Probit models are widely used discrete choice models. Logit models assume that 

random errors are independently and identically distributed Gumbel variables. With this 

assumption the choice probability has a closed form given by  

1

,
k

j

V

k K
V

j

e
P k

e





  


                                                                                                                    (4.3) 

The probit models, by contrast, assume that random errors are jointly distributed following a 

multivariate normal (MVN) density function. The MVN distribution is characterized by a (K-

length) vector of means,  , and a ( K K ) covariance matrix,  , in the notation of 

( , )MVN   , where  1, , K   . The covariance matrix includes the variances of random 

errors, and the covariance between them, which is    var ,kkk
k    and 

   cov , ,k jkj
k j    .  

 

Since the MVN distribution conserves its shape under linear transformation, given a covariance 

matrix (associated with the randomness in the perception of a set of alternatives) and a vector of 

known alternatives’ attributes, the distribution of the utility vector, 

       1 2, , , kU a U a U a U a    , can be modeled as multivariate normal; in other words, 

    ,U a MVN V a  . With probit models choice probability  kP a  cannot be expressed 

analytically since the cumulative normal distribution function cannot be evaluated in closed 

form. Therefore the calculation is usually conducted using either an analytical approximation or 

a Monte Carlo simulation.  
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So far the discussion about discrete choice models is at individual level, and how can we 

aggregate choice predictions? One analytical solution involves capturing the distribution of a  

among the population using a density function  f a  and calculating the share of the population 

who selects alternative k as    k k

a

P P a f a da  . While this multiple integral cannot be easily 

estimated, a practical solution is to divide the population into groups of similar values of a , 

computing  kP a  for each group, and averaging the results. Alternatively,  kP a  can be 

computed by Monte Carlo simulation as well.  

 

Either at individual level or aggregated level, a variety of discrete choice models has been 

applied, with variations and extensions to the basic logit and probit models, to a broad spectrum 

of areas. Some examples include: logit with attributes of the person but no attributes of the 

alternatives; logit with variables that vary over alternatives (also called conditional logit); nested 

logit and generalized extreme value (GEV) models; multinomial probit; mixed logit (Train, 

2009; Sethi and Koppelman, 2001; Train, 1998; Bierlaire, et al., 2006; Dafermos, 1972; Hensher 

and Rose, 2006; Huang and Gao, 2012; Taplin and Qiu, 1997). One of the important applications 

is traffic assignment, which will be detailed in the following section.  

 

4.2.2 Formulate traffic assignment in a discrete choice framework 

 

As the aggregated outcome of individual route choice behavior, traffic assignment yields link 

flows over a network. Since traffic assignment is essentially a reflection of the interaction 

between individuals and the network, traffic assignment algorithms can be categorized as 
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equilibrium and non-equilibrium approaches, depending on whether the approach considers 

capacity-constrained flow (the volume-delay dependency). For example, the All-Or-Nothing 

(AON) algorithm simply assigns all the traffic volumes to the shortest path between an OD pair, 

which is a non-equilibrium approach. Obviously equilibrium approaches are closer to the reality 

and are more widely applied in practice.  

 

Prevailing equilibrium approaches include Deterministic User Equilibrium (DUE), Stochastic 

User Equilibrium (SUE), and System Optimum (SO), each on the basis of a certain behavioral 

assumption. The SO method portrays an ideal scenario by assuming there were a central 

controller for the network coordinating all the travelers to minimize the total travel time; the 

DUE method assumes every traveler on the network has a consistent understanding of the traffic 

situations and perfect information about the network; when equilibrium is reached, no one can 

improve his/her travel time by switching to alternative routes, and all the utilized routes for an O-

D pair have the same minimum travel time. SUE method (Daganzo and Sheffi, 1977) discards 

this unrealistic assumption by recognizing travelers’ perception error and modeling the error with 

randomness. At SUE, no travelers believe that they can save travel time by choosing a different 

route.  

 

Discrete choice models can be well applied to formulate the SUE mechanism, which better 

simulate real-world scenarios than DUE and SO methods. The choice set under consideration is a 

number of alternative routes connecting a certain O-D pair; each alternative route is associated 

with some travel time as the utility. Due to the variations in perception and exogenous factors, 

the travel time for the same route is perceived differently by each traveler. While the actual travel 
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time can be measured as a systematic component, the difference between people’s perceived 

travel time and actual travel time can be modeled as a random error distributed across the 

traveling population. The SUE problem is to determine the probability of each route being 

utilized, based on the random error distribution and the volume-delay dependency. Then the link 

flows can be obtained from the O-D demand and estimated probability.  

 

To formulate the SUE mechanism in a mathematical form, the utility function  kU a in the 

discrete choice model, is then translated into the travel impedance functions od

kC  (generalized 

travel cost) on route k between origin o and destination d, where k   . od

kC  is a random 

variable. There are two components constituting od

kC : the measurable travel impedance od

kc  and 

the random error term od

k , whose distribution reflects the difference of perceiving travel time 

across the traveler population.  

, , ,od od od

k k kC c k o d                                                                                                                 (4.4) 

If the population of travelers between o and d is large, the share of travelers choosing the kth 

route, rs

kP , is given by  

Pr( , ), , ,od od od

k k l odP C C j k o d                                                                                            (4.5) 

In other words, the probability that a given route is chosen is the probability that its travel 

impedance is perceived to be the lowest of all the alternative routes. A number of algorithms 

have been proposed for solving SUE problems, and the method of successive averages (MSA) is 

applied in this research (Sheffi, 1985).  

 

4.2.3 A review on large-scale network loading  



 

79 

 

 

So far very little literature can be found relevant to the traffic assignment at an interregional 

scale. One of well-established existing works is the Freight Analysis Framework 3 (FAF
3
) 

completed by the Oak Ridge National Laboratory (ORNL). The assignment for freight traffic 

was accomplished by SUE traffic assignment procedure in TransCAD 5.0 with user defined 

volume-delay function (VDF) (Battelle, 2011). The assignment is constrained by the highway 

network’s current capacity. The selected VDF for FAF assignment is the Bureau of Public Roads 

(BPR) function and it is an exclusively time-based impedance function. The highlight is ORNL 

conducted extensive data cleansing and imputation, which laid a quality foundation for a routable 

network. Due to the network size and inconsistency between the truck flow O-D data source and 

the baseline traffic data (HPMS truck volume), calibrating the FAF
3
 model experience 

considerable difficulty. The calibration effort only involved adjusting the link travel time or 

capacity or the parameters in the BPR functions so that the assigned link flows were as close as 

possible to the baseline flows. 

 

On the passenger travel side, Chin and Hwang (1999) assigned 1995 ATS highway trips to the 

Oak Ridge National Highway Network based on AON algorithm. ATS auto trips were routed 

between centroids of the origin and destination zip codes. Similarly to the FAF3, the impedance 

function was also exclusively time-based, where the travel time is determined by distance and 

speed limit adjusted by the physical and functional characteristics of the road. Some criticism 

regarding this work include: first, over-simplified highway network, the final assignment was 

represented by a match-stick flow map, not explicitly with the corresponding network; second, 

the impedance function did not consider the “attractions” of some roadway sections to the 
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pleasure travel; third, the assignment algorithm is “all-or-nothing” (shortest path), which further 

lost some validity of the assignment results.  

 

To summarize, the network loading issues for long distance travel can be resolved by existing 

traffic assignment algorithms, following similar procedures widely practiced in the intra-urban 

traffic assignment. SUE is selected as the algorithm for this study, mainly for the following 

reasons: first, this study focuses on annual travel patterns and does not require a finer temporal 

modeling resolution; second, SUE models are associated with well-established calculation 

procedures with converging solutions; third, SUE models are widely applied and successfully 

implemented in similar large-scale studies. In the next Chapter, travel impedance in long distance 

travel will be specially discussed, since it is the travel impedance that distinguishes the long 

distance travel network loading from the intra-urban traffic assignment, and also captures the 

behavioral difference across traveler markets.   

 

4.3 Long Distance Travelers 

 

4.3.1 Overview 

 

Route choice, as a salient feature in people’s travel behavior, reflects people’s underlying values 

and needs. Compared to intra-urban travel, long distance travel embraces a more significant 

behavioral divergence. This diversity can be well captured by the change in travelers’ sensitivity 

to travel impedance when trip purposes vary. Therefore it is logical to segment the entire long 

distance traveling population by trip purpose for separate analyses. The 1995 ATS collected long 



 

81 

 

distance trips in 12 sub-categories, as shown in Table 4.1. In this study the research team 

generalized all the sub-categories into three main purposes: business, pleasure, and other. This 

categorization not only simplifies further analyses without obfuscating the differentiations and 

similarities between sub-categories, but also keeps the analyses consistent with partner research 

teams (Viswanathan and Vary, 2012).  

 

Table 4.1Trip Purpose Definition and Distribution – Only Auto Trips (1995 ATS) 

Purpose Analysis Purpose Frequency Percent 

Business Business 125,664,045 15% 

Combined Business/Pleasure Business 18,527,520 2% 

Convention, Conference, Or Seminar Business 8,556,234 1% 

Visit Relatives Or Friends Pleasure 285,404,623 35% 

Rest Or Relaxation Pleasure 98,461,499 12% 

Outdoor Recreation (Sports, Hunting, Fishing, 

Boating, Camping, Etc.) 
Pleasure 59,320,149 7% 

Entertainment (Attend The Theater Or Sports 

Event, Etc.) 
Pleasure 45,744,170 6% 

Sightseeing, Or To Visit A Historic Or Scenic 

Attraction 
Pleasure 34,313,300 4% 

Shopping Pleasure 16,811,484 2% 

Personal, Family, Or Medical (Wedding, 

Funeral, Health Treatment, Etc.) 
Other 106,614,688 13% 

School-Related Activity Other 19,108,160 2% 

Other Reason Other 30,798 0% 

 

While the business/pleasure/other categorization portrays a rough segmentation of the long 

distance travelers, it should be recognized that within each category there still exists a very 

diverse traveler portfolio. This is especially true for the pleasure travel, where numerous 

researchers endeavored to explain tourist behavior by developing tourist typologies. For 

example, Cohen (1972) suggested four general types of tourists: the organized mass tourist, the 

individual mass tourist, the explorer, and the drifter. Perreault et al. (1977) segmented the tourist 

population by their travel inclination into the budget travelers, adventurers, homebodies, 



 

82 

 

vacationers, and moderates. Stewart (1993) focused on the holiday travel and summarized four 

phases of holiday taking: the bubble travelers, idealized-experienced seekers, wide-horizon 

travelers, and total immersers.  

 

A finer segmentation of the long distance traveler group requires extra data collection (e.g. stated 

preference survey) and analysis efforts, which is beyond the scope of this study. Therefore a 

dichotomy of business travel vs. pleasure/other travel is adopted as shown in Table 2.1, which is 

adequate to meeting needs for demonstrating the varying distributive patterns of different trip 

purposes over the national highway network.  

 

The remaining part of this Chapter will elaborate efforts of describing characteristics of two 

major customer bases: business travelers and pleasure/other travelers. Exploration for each 

customer base will be carried out in two dimensions: the concrete attributes travelers would 

consider when selecting routes, as well as abstract benefits, needs, motivations, or personal 

values within the traveling population. Understanding those characteristics builds a foundation 

for making assumptions when developing travel impedance functions.  

 

4.3.2 Business travelers 

 

A business trip is defined as “any trip where the purpose of the trip is given as business, 

combined business with pleasure, or convention, conference or seminar” (BTS, 1997). It is 

attributable to 18% of all long distance trips in the 1995 ATS. Contrary to the stereotypical 

image, very few business travelers make cross-continent trips. According to the 2001 NHTS, 
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84% of business trips were within census region boundaries, which were less than 250 miles in 

length. Males in their 30s and 40s who work in a professional, managerial, or technical position 

are the dominating population in the business travel group (BTS, 2003). The personal vehicle is 

the dominant travel mode for business trips. 

 

Travel distance and travel time are two controlling impact factors on route choice. In general 

business trips are made with constrained time windows (e.g. travelers meeting clients at a 

specific time, attending conferences, etc.), and by people with above-average income level 

Additionally although some firms continue to provide vehicles to full-time business travelers, a 

growing number of employees use their own vehicles for company business and receive 

reimbursement for travel cost. Therefore compare to other customer bases, business travelers are 

less sensitive to monetary cost of travel like tolls or driving cost but prefer to choose route with 

shorter travel distance/time and higher traffic reliability (usually with roadways with higher 

functional class). Moreover, business travelers valuate travel time more than pleasure travelers 

since the opportunity cost for travel is associated with productive working hours. Both travel 

distance and travel time can be quantified as tangible network attributes, which will be detailed 

in Chapter 4.  

 

4.3.3 Pleasure travelers 

 

Pleasure trips refer to “any trip where the purpose of the trip is given as visiting friends or 

relatives, rest or relaxation, sightseeing, outdoor recreation, entertainment, or shopping” (BTS, 

1997). As summarized in Chapter 1, pleasure travelers account for a substantial percentage of the 
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entire long distance traveling population, and the travel demand shows resilience in a nose-

diving economy, being expected to keep growing in the following years.  

 

Although compared to business travelers, pleasure travelers are less sensitive to the monetary 

travel cost but rather value pleasure components along the route in general; the diversity of travel 

behavior within this customer base should be recognized. For example, after retrieving the 

leisure travel subset from the 1995 ATS samples, Nostrand et al. (2011) found that the elderly 

(65 or older) and lower-income households made fewer leisure trips. Also leisure travel 

presented a “variety-seeking” property, meaning that people tend to visit multiple destinations 

per year rather than the same destination for multiple times. Obviously lower income households 

would be more sensitive to additional travel distances than higher income travelers; the middle 

age group inclines to travel shorter distance due to professional or family obligations than 

younger (< 25 years) and older (> 64 years) age groups. 

 

The diversity can be partially attributed to route characteristics : route proximity, route attraction, 

safety, and accessibility rate as summarized by Javaheri (2011). It is also caused by the travelers’ 

personal attributes. In a more particular case study, Kemperman et al. (2009) described and 

predicted tourist shopping route choice behavior in a downtown historic center. Some impact 

factors they identified include: shopping motivations, familiarity with the area, and planning of 

the route. Demographic heterogeneity is considered as a general impact factor. Anable (2002) 

concluded that “increases in disposable income and demographic factors such as an aging 

population with decent incomes, abundant leisure time, and increasing confidence to travel are 

some of the more direct and obvious factors influencing the form and structure of leisure travel”.  
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Newman (2001) argued that “retirees tend to view road trips as an adventure. They are more 

relaxed, willing to go at a slower pace, and spend more time exploring. … Young travelers, with 

or without children, resent being in the car over long periods of time and just want to get there”. 

While Schneider and Vogt (2005) recognized household composition’s impacts on recreational 

activities, Lanzendorf (2002) indicated that “orientations, lifestyles, and mobility styles” are the 

essential determinants and “including orientations or styles is useful for explaining travel 

behavior”.  

 

It is also believed that the form and structure of pleasure trips is essentially a collective reflection 

of varying value structures across the traveling population. Cho and Jang (2008) identified five 

value dimensions through an extensive review of the literature: utilitarian, risk avoidance, 

hedonic, sensation seeking, and social. Utilitarian people constantly try to accomplish their 

goals and avoid undesirable outcomes. Risk avoidance people justify their choices by 

maximizing the risks to avoid the anxiety induced. Hedonic people are consumption-oriented 

and seek for the entertainment value of their choice. Sensation seeking people are willing to 

“take physical, social, legal, and financial risks” to achieve sensational arousal. Social 

interaction and communicative features determine social people’s behavior. For example, 

involving families and friends has a significant impact on their decision making process.  

 

In summary, long distance route choice reflects people’s behavior under combined effects of 

route characteristics and personal characteristics of the travelers. Attributes enumerated in this 

chapter are certainly not exhaustive, and it should be realized that while route characteristics can 

usually be measured physically, quantifying personal characteristics needs to reply on behavioral 
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interviews and surveys. Means-end analytic approach can be readily applied to identifying those 

intangible characteristics; and discrete choice model can be used to estimate the equivalent 

monetary value of personal characteristics. Both efforts require large-scale data collections to 

draw meaningful conclusions, which are beyond the scope of this study; however, they will be 

discussed as further steps in Chapter 5.  

 

4.4 Impedance Models 

 

As shown in the last Chapter, the SUE mechanism can well serve the needs for loading long 

distance trips to the national highway network. The pivot in resolving the issue lies in well-

defined impedance functions that not only capture the behavioral attributes and route 

characteristics of different traveler markets, but also can be readily integrated the SUE 

mechanism as a working solution. This chapter first elaborates a generalized cost function, which 

extends the exclusively time-based impedance used by previous studies, and then introduces two 

new parameters accounting for the intangible attributes in pleasure travel; finally this chapter 

highlights the process of capturing and integrating the impedance on centroid connectors.  

 

4.4.1 Generalized cost function for travel impedance 

 

Selecting a route between an O-D pair involves a process of evaluating the travel impedance of 

each possible route. Impedance quantifies the “cost” or penalty for using any link along a route. 

A critical question to be answered by configuring the impedance functions involves what impact 

factors the function should represent, and to what extent these impact factors influence the 
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likelihood of selecting the route. Answering this question for business travel is fairly 

straightforward, based on the assumption that long distance travelers for business are seeking for 

the “shortest path,” both temporally and spatially, to minimize travel time and travel distance, as 

their travel is usually time sensitive and constrained. Also, those travelers consider the fixed cost 

associated with certain routes or modes (e.g. road tolls; airfare; Amtrak ticket prices, etc.). 

Therefore, in this study, the exclusively time-based travel impedance is extended to composite 

impedance accounting for fixed cost, travel distance, and travel time. All the impact factors are 

translated into monetary values to formulate a unified impedance measure, as shown in Equation 

4.6.  
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                                                                                                (4.6) 

where: 

ic  = Generalized cost on link i 

ik
 = Fixed cost on link i 

  = Constant such as the operating cost per unit of length 

iL
 = Length of link i 

  = Constant representing the value of time 

it  = Free-flow travel time on link i 

  = Constant 

i
x

 = Flow on link i 

iC
 = Capacity of link i 

i  = Constant 
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The impedance function in Equation 4.1 summarizes the BPR delay function, a fixed cost 

component, and a distance-based operating cost as a generalized travel cost model in the unit of 

dollars. Each component is further explained as follows: 

 

4.4.1.1 Fixed cost 

 

ik  represents the fixed cost. In a highway travel context, it mainly involves road tolls. 

Congestion pricing has been more and more practiced in the U.S. as a countermeasure against 

urban congestion, as well as a critical means of revenue collection in some jurisdictions. 

Currently most of the states in the U.S. with toll facilities are collecting roadway tolls at flat rate 

or time-of-day dependent rate along the full-span of the tolling facility, therefore some 

aggregation of links in the base network is necessary to accurately reflect the monetary cost of 

using a specific facility. The International Bridge, Tunnel and Turnpike Association (IBTTA) 

summarizes and updates toll rates for major tolling facilities periodically. It is assumed that fixed 

cost will be counted as a component of pleasure travel impedance but not in business travel, 

considering the fact that most business travelers are getting reimbursed from their employers and 

therefore insensitive to the fixed cost.  

 

4.4.1.2 Operational cost 

 

  represents the average operational cost per mile for driving. The American Automobile 

Association (AAA) has been published Your Driving Cost since 1950 (that year driving a car 
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10,000 miles cost 9 cents a mile, and gasoline sold for 27 cents per gallon). The process used to 

estimate annual driving cost is proprietary to AAA therefore the calculation formula is not 

publicly accessible. However, it is know that this process does consider the cost of fuel, 

maintenance, tires, insurance, license, registration and taxes, depreciation, and finance. National 

passenger vehicle composition data is retrieved from the Bureau of Transportation Statistics 

(BTS), and in 2008 there are 196,762,927 sedans and 39,685,228 minivans and SUVs. Based on 

this data, the estimated operational cost is 74.4 cents per mile for urban travel and 48 cents per 

mile for rural travel in 2008. 

 

4.4.1.3 Monetary cost for travel time 

 

The third component converts flow-dependent travel time generated by the BPR function to 

monetary cost using the value of time (VOT) represented by  . In transport economics, the VOT 

is the opportunity cost of the time that a traveler spends on his/her journey. In essence, it is the 

amount of money that a traveler would be willing to pay in order to save time, or the amount 

they would accept as compensation for lost time. The VOT varies by trip purpose, as well as by 

urban/rural roadway type.  

 

Although there is extensive literature about VOT estimation, fewer people investigated VOT in a 

long distance travel context. Maki et al. (2007) estimated the VOT using multinomial logit 

(MNL) and mixed logit (MXL) models based on both revealed preference and stated preference 

data in Japan. Their contribution was to show the practical validity of VOT estimated using a 

route and modal choice model for both intra-city and inter-city trips, also by different trip 



 

90 

 

purpose. Although the VOT estimated cannot be directly translated into a U.S. context, their 

major findings are inspirational: 1) for intra-city trips business travel VOT is lower than pleasure 

travel VOT; for inter-city trips, the situation is reversed with higher business travel VOT; 2) 

inter-city trips VOT is generally higher than intra-city trips VOT, with VOT increasing with 

longer travel distance. Tsukai and Okumura (2003) also made a very interesting comparison 

between business travel and non-business travel by rail. “According to t-value, most important 

LOS factor for business passenger is line-whole trip time, frequency is second, and fare is not so 

important. However, sight-seeing & private passengers consider fare the most important, then 

secondly line-whole trip time, and lastly frequency. Value of time calculated from time and fare 

parameters are 3,448 yen/hour (29.5 $/hour) for business trip, and 2,983 yen/hour (25.5 $/hour) 

for sightseeing & private trip.” 

 

In the U.S., the relativities of VOT between business travel vs. pleasure travel, and intra-city 

trips vs. inter-city trips are very similar to the research findings in Japan. Constraints on the total 

time available (e.g., school vacations or allowed leave) also increase the business travel VOT, 

therefore pleasure travel VOT is generally estimated lower than business travel VOT and 

associated with household income. Besides distinctions based on transportation mode and trip 

purpose (business or pleasure), a major source of variation in the VOT is the large differences 

between local and intercity trips. Because intercity travel is usually consumed jointly with 

expensive services such as hotel rooms, restaurant meals, and entertainment, travel time saved is 

freed for purposes that travelers value highly. Intercity travel time is, therefore, likely to be more 

valuable than time spent on local travel.  
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VOT is estimated based on traveler’s wages (for business travel) or household income (for 

pleasure travel), given its nature of opportunity cost:  when a trip is undertaken during work or 

when the traveler is free to vary his or her work hours, an important measure of the value of time 

is the wage paid for the productive work that is sacrificed to travel. The U.S.DOT recommended 

travel time factors based on Employer Cost for Employee Compensation (ECEC) are 

summarized in Table 4.2 (U.S.DOT, 1997).  

 

Table 4.2 U.S.DOT Recommended Value of Time Factors 

Time Component Reference Value 

In-Vehicle Personal (local)  Of wages 50% 

In-Vehicle Personal (intercity)  Of wages 70% 

In-Vehicle Business  Of total compensation 100% 

Excess (waiting, walking, or transfer time)  Personal Of wages 100% 

Excess (waiting, walking, or transfer time) Business  Of total compensation 100% 

 

For business travel, the ECEC figures are supplied by the Bureau of Labor Statistics. For 

pleasure travel (personal travel by surface modes), the standard adopted is the median annual 

household income, as reported by the Bureau of the Census, divided by 2,000 hours. Based on 

those references, VOTs in 2008 are determined as shown in Table 4.3.  

 

Table 4.3 Value of Time by Trip Purpose and Traveling Area in 2008 

Trip Purpose Business Leisure/Other 

VOT in $/hr 
Urban  Rural Urban  Rural 

29.18 29.18 12.58 17.61 

 

BPR function represents the penalty (increase) in travel time when congestion builds up. Free 

flow travel time is first calculated by dividing the link length by the reference speed limits 
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(Hwang and Rollow, 2000). Then i  and i  are introduced to reflect the reaction of different 

types of highway facilities to the increasing traffic volume in terms of travel delay. In general i  

and i  represent a linear and an exponential increase respectively. While i  penalizes the entire 

travel time increase curve, i  penalizes the part of curve with higher v/c ratio (meaning a more 

steep increase when v/c ratio increases). Reference values of i  and i  (Martin and McGuckin, 

1998; Fitzpatrick et al., 2003), together with speed limits by roadway functional class, are 

summarized in Table 4.. 

 

Table 4.4 BPR Coefficients 

FCLASS Note Speed Limit Alpha Beta 

1 Rural Interstate 70 0.88 9.8 

2 Rural Principal 55 0.83 2.7 

6 Rural Minor Arterial 45 0.71 2.1 

11 Urban Interstate 60 0.83 5.5 

12 Urban Other Freeways 55 0.56 3.6 

14 Urban Principal 35 0.15 4 

16 Urban Minor Arterial 25 0.15 4 

 

Variations of 
i  and 

i  by functional class reflect the fact that even though dominated by time, 

impedance also includes several other considerations and adjustments. For instance, it is 

commonly believed that travelers will tend to use freeways and interstates even when doing so 

will result in a route that is slightly longer in time than an alternative surface route. This may be 

due to considerations of safety, ease of travel, or lack of familiarity with local roads. Therefore, 

congestion on interstate freeways is punished more significantly than other types of roadways.  

 

Another critical assumption in long distance network loading is that the “impedance” or 
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“resistance” resulted from congestion (represented by 
ix  in Equation 4.1) is not from the long-

distance trips, because it is really only a small proportion (less than one percent as shown in 

Figure 1.1). The interaction between long distance trips and non-long distance trips is negligible. 

Therefore the link travel time is basically determined by the general traffic (preloaded volume). 

In this case, other factors (e.g. travel distance, tolls, roadside scenery) are playing a more 

significant role in the network loading.  

 

4.4.2 Travel impedance for pleasure trips 

 

Except for the tangible attributes captured by the impedance function developed in the last 

section, there are many other intangible attributes that play critical roles in the long distance 

network loading process, especially for the pleasure travel. Some intangible attributes include: 

traveler socioeconomic profiles, guided and unguided travelers, typologies of tourists, travel 

awareness, confidence in travel intermediaries, perceived risk and uncertainty of travel, domestic 

pressures, trip pressure, political, economic, and social value structure, etc. Travelers’ evaluation 

on the “attractiveness” of an alternative route is essentially a comprehensively external 

representation of those internally intangible attributes. Since it is not realistic to enumerate all the 

impact factors and quantify their impacts, this study proposes a framework to accounting for 

travelers’ perceptions and behavior using scenic byways and roadside attractions as two case 

studies.  

 

4.4.2.1 Scenic Highways and Roadside Attractions 
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Scenic highways and roadside attractions are categories of impact factors on pleasure travel route 

choice. Although people’s needs, attitudes, and motivations are intangible and hard to quantify, 

people’s reaction to those attractions (pull and push factors) can be captured and simulated to 

some extent. For example, a hedonic traveler may seek for more scenic routes by sacrificing 

travel time; and a utilitarian traveler tends to choose the route with less travel cost. Before 

introducing new parameters to quantify those reactions, it is necessary to study the roles of 

scenic highways and roadside attractions in influencing travelers’ behavior.  

 

Scenic highways are frequently used for pleasure travel. The 1991 Intermodal Surface 

Transportation Efficiency Act (ISTEA) established the National Scenic Byways Program within 

FHWA, who designate two types of byways: National Scenic Byways and All-American Road 

(Eby and Molnar, 2002). Currently there are 150 byways scattered across 46 states in the U.S. 

The designation entails multi-dimensional criteria: archaeological qualities (i.e., physical 

evidence of historic or prehistoric life), cultural qualities (i.e., evidence and expressions of the 

customs or traditions of a distinct group of people), historical qualities (i.e., legacies of the past 

that are distinctly associated with physical elements of the landscape), natural qualities (i.e., 

features in the visual environment that are relatively undisturbed), recreational qualities (i.e., 

outdoor activities directly associated with the natural and cultural elements of the byway 

corridor), or scenic qualities (i.e., heightened visual experience derived from the viewing of 

natural and manmade elements). Being designated reflects an overall evaluation of a roadway’s 

attraction.  

 

Travelers on scenic highways present diverse demographics distinct from users of non-scenic 
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highways. Multiple researchers have identified the popularity of scenic highways in elderly 

populations compared to younger people (Briganti and Hoel, 1994; Dahlquist and Peterson, 

1997; Sem et al., 1997). In an economic-impact study of Colorado scenic and historic byways, 

Sem et al. (1997) also found that scenic highways were more frequently used by higher income 

people than other groups. In a U.S. survey of the driving tourist’s information needs and 

preference, Eby and Molnar (2003) also identified age and household income were significantly 

influencing people’s rating of scenic highways, as well as that scenic highways are weighed with 

higher importance in vacation travel than other trip purposes. Briganti and Hoel (1994) also 

suggested that compared to non-scenic highways, scenic highways attracted a higher number of 

first-time drivers and a more diverse fleet. Considering the demographics of pleasure travelers as 

discussed in Chapter 2, all of the previous work pointed to the strong bond between scenic 

highway and pleasure travel. 

 

Research also showed that people had a positive “willingness to pay” towards scenic byways. 

Tyrrell and Devitt (1999) conducted a stated preference survey to identify traveler types and their 

byway preferences. The survey investigated diverse roadway characteristics: distance view 

(forest, farm & fields), scenic designation, roadside view, speed limit, roadside rest areas, 

shoulders, toll cost per trip, by asking respondents to choose two specifically defined roadway 

scenarios. Despite the small and biased sample used in this study, results showed respondents 

were willing to pay approximately $0.77 per trip (1997 Dollar) to use a roadway that is 

designated as “scenic”.  

 

It should be recognized that compared to the tangible route characteristics such as travel distance 
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and travel time, scenic factors are of secondary importance when travelers select routes (Eby and 

Molnar, 2003). Therefore it is reasonable to assume that the route choice in a long distance 

context is prone to compounding effects of the generalized travel cost and entertaining or 

pleasure factors and the impacts of the latter are generally more significant in pleasure travel.  

 

While the scenic highway designation represents the attractiveness of the route itself, the 

proximity of the route to nearby attractions also hugely influences route choice, including 

closeness to tourist attractions (national/state parks, ski resorts, etc.) as well as closeness to the 

tourism facilities (hotels, etc.). This route proximity can be roughly captured by the number of 

attractions within certain distance of the roadway section. For example, a route with more 

accommodation facilities are more attractive to pleasure travelers, considering the fact the many 

pleasure trips involves multiple nights of stay along the route. Note that there exist correlation 

between route proximity and route attraction, scenic highway effects and roadside attraction 

effects are investigated separately in this study, and integrated to an adjusted travel impedance 

function.  

 

4.4.2.2 Integrating Scenic Byways and Roadside Attractions into Travel Impedance 

 

Route proximity and route attraction effects are accounted for by introducing two new 

parameters to “discount” the generalized cost function, as shown in Equation 4.6. The behavioral 

assumption for this specification is that both route proximity and route attraction effects (when 

they exist) increase the attractiveness of the route and in turn decrease the perceived travel 

impedance for the route. For example, if a highway section is a scenic byway, the measured 
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travel cost (derived from travel time and travel distance) will be multiplied with a percentage to 

make the section more “attractive” to pleasure travelers. 

 

1

i

i ia n i
i i i i i i

i

x
c s e k L t

C



  
   
        
     

                                                                              (4.7) 

where: 

is = scenic factor for route link i that is part of scenic highways,  0,1is  ; 

in  = number of hotels or national/state parks within 5 miles; 

ia  = attraction factor for route link i; 

All the other parameters and variables have the same meaning as in Equation 4.6.  

 

Scenic factor 
is  and attraction factor 

ia  are modeling parameters introduced as aggregated 

measurements across the traveling population for pleasure purposes. They are designed to 

possess several beneficial properties from a behavioral modeling point of view: 

1), valuation of 
is  differentiates scenic highways and non-scenic highways: for non-scenic 

highways, 1is  ; for scenic byways (0,1)is  , which indicates that when using a scenic route, 

the generalized travel cost is discounted to make the route itself  more attractive to pleasure 

travelers.  

2), both parameters are within the interval  0,1 , which bounds possible scenarios to plausible 

ranges; 

3), both parameters maintain the positivity of the adjusted travel impedance and are able to 

discount the measured impedance effectively to reveal attractiveness; 
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4), the multiplier i ia n
e


 decreases monotonically with an increasing number of roadside 

attractions; 

5), for the attraction factor ia , when 0in  , the multiplier i ia n
e


 goes to 1 and there is no 

discount effect, which is consistent with reality.  

6), the multiplier i ia n
e


 is designed with the capability to entail different traveling behavior. As 

shown in Figure 4.2, when 0.1ia  , the discounting effect has a quasi-linear decrease with an 

increasing in , meaning people have a steadily changing attitude towards roadside attractions; 

when 0.1 1ia  , the discounting effect has an exponential decrease with an increasing in , 

reflecting the behavior that people have a strong reaction to a “with or without” roadside 

attractions scenario, yet a less sensitive reaction to when there are many attractions along the 

route (e.g. when 0.6ia  , an increase of attractions from 1 to 2 will cause an extra discount in 

the travel impedance of 24%, while an increase of attractions from 11 to 12 will only cause an 

extra discount of 1.3%).  

 

In summary, while Equation 4.6 extends the exclusively travel time-based impedance function by 

applying a generalized cost function, Equation 4.7 presents a novel way to count for the 

compounding effects of contextual factors and the generalized cost, by introducing two new 

parameters. In the next Chapter, distributive patterns under different magnitudes of scenic factors 

and attraction factors will be presented.  
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Figure 4.2 Attraction Factor Reflects Different Behavior 

 

4.4.3 Impedance on centroid connectors 

 

So far we have integrated both tangible and intangible attributes into the travel impedance 

function, associated with each and every link on the network. However, there is another type of 

link in the network that is of critical importance to the modeling process. The centroid connector 

is the virtual link that connects a centroid to the rest of the network. The travel impedance on 

this virtual link should represent the generalized travel costs when traveling on local streets that 

are not explicitly included in the network. However there is very little literature theoretically 

documenting the process of generating centroid connectors or evaluating the impacts of 

placement and number of centroid connectors on the assignment results (Qian and Zhang, 2012). 

The common practice is to assign a constant travel time to the connector, the magnitude of which 

depends on the speed limit of the roadway link the connector it connects to.  
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To be consistent with the monetary cost developed in this study, the impedance on centroid 

connectors are determined by the Annual Congestion Cost per Auto Commuter calculated by 

TTI, as part of their congestion measures. The measure is determined by the value of lost time in 

passenger vehicles in congestion and the value of wasted fuel due to congestion. It is a fairly 

comprehensive reflection of how much travelers have to pay for living in the urban areas. The 

annual cost should be divided by 365, based on the assumption that this simulates the cost for a 

long distance traveler needs to pay on an average traveling day. For example, in 2008 the annual 

congestion cost per auto commuter in Seattle is $994, which indicates on an average traveling 

day a traveler would pay approximately $2.7. If we consider an origin or destination urban area 

as a node in the network, then both the node impedance and link impedance are unified under a 

monetary cost framework.  

 

Although specifying node impedance by applying the congestion cost to centroid connectors 

facilitates in a unified monetary cost framework, some limitations from this specification should 

be recognized. First, currently the centroids are set up based on physical area of counties, rather 

than population based; second, due to the annual temporal resolution of modeling, seasonality of 

long distance travel cannot be reflected. Third, number and locations of centroid connectors are 

set up arbitrarily. Therefore it is worth exploring the impacts of allocating centroid connectors in 

future research.  

 

In summary, this chapter first considers some tangible attributes in a generalized cost function, 

which extends the exclusively time-based travel impedance in previous studies. It then develops 
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two factors reflecting people’s behavior towards scenic highways and roadside attractions as a 

discounting effect to the generalized cost function, providing a solution for accounting for the 

pull and push factors in pleasure travel. Finally it translated one of the TTI’s performance 

measurements into the monetary cost framework, which unifies the node impedance and link 

impedance. All the impedance components are placed on a monetary cost metric, which not only 

facilitates a smooth modeling process, but also brings insights from a cost analyses perspective. 

As shown in the next Chapter, the proposed framework will be implemented on a large-scale 

network, and different scenarios will be tested.    
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Chapter 5 Long Distance Travel Network Loading: Case Study 

 

This chapter demonstrates the implementation of the aforementioned models on a real-world 

large-scale network. The case study illustrates the network loading process of the long distance 

passenger travel within west-coast states of Washington, Oregon, and California at county level, 

using projected county-level long distance O-D demand data of year 2008. The temporal 

resolution of modeling in the case study is annual. Objectives of the case study are to validate the 

feasibility of proposed work flow, test the proposed hypotheses, investigate the sensitivity of 

newly introduced parameters, and reveal different distributive patterns under varying scenarios.  

 

The case study is not for model calibration or validation purposes. Unlike the intra-urban traffic 

assignment, there is no well-established modeling procedure for the long distance travel network 

loading problem yet. As it is still in an initial modeling stage, there are strong needs for 

clarifying the model specification and testing parameter effectiveness, to explain the dynamics of 

the issue, discover new questions, and guide future data collection for calibration and validation. 

Some questions to be answered by this case study include: 1) is the proposed work flow feasible? 

2) Are the newly introduced parameters significant and sensitive? 3) How do various assignment 

algorithms influence the distributive pattern? 4) How do variations of a model parameter produce 

different travel patterns? 5) Why and to what extent does the estimated distributive pattern matter 

in terms of policy and investment decision making? 

 

In following sections, data acquisition is briefly introduced, followed by a specification of testing 

scenarios, each corresponding to the introduction or the variation of a model parameter; the 
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implementation results are then presented before summarizing indications and further thoughts 

of the case study.  

 

5.1 Data Acquisition 

 

5.1.1 O-D demand data 

 

The 2008 long-distance auto trip O-D table at county level is provided by one of the major 

research partners, the Wilbur Smith Associates (WSA). This 2008 O-D matrix is populated from 

the 1995 ATS, the most thorough long distance survey as well as the mainstream dataset for long 

distance travel studies to date. To estimate the O-D matrix, WSA regressed population and 

employment against the 1995 ATS trip O-D demands. Subsequently, long distance trips were 

projected at county level based on 2008 employment and population data. State level totals were 

also estimated to help balance the county-level estimates. According to WSA’s estimation, U.S. 

residents took 938,389,638 long-distance trips in 2008. Over 18% of those trips (173,945,591) 

were business-related travel while others (764,444,047) were for pleasure/other purpose, across 

all the travel modes. Considering the implementation scope of the case study, only trips between 

counties in states of Washington, Oregon, and California are selected. Additionally, average 

occupancy is estimated based on the 1995 ATS sample dataset: 2.30 persons per vehicle for 

business travel, and 3.35 persons per vehicle for pleasure/other travel, to convert person trips to 

vehicle trips. 

 

5.1.2 Network data 
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The Freight Analysis Framework (FAF
3
) network is selected as the base network of national 

highways in this study. The FAF
3
 network is a nationwide geospatial network developed by the 

FHWA to understand the performance of the national freight transportation system. Satisfactorily 

the network dataset includes such detailed and updated roadway features as length, functional 

class, AADT, link capacity, and link speed limit, which are salient for resolving the network 

loading issues of long distance passenger travel. Detailed attributes of FAF
3
 can be found in 

Appendix B. Particularly the AADT07 is introduced as the preloaded volume to the network. In 

addition to the completeness of the dataset, another reason for choosing FAF
3
 lies in its excellent 

network connectivity and topological integrity, as recommended by the FHWA expert team. 

 

As specified in the Network Design Report, the county level FAF
3
 network contains 170,994 

links including both principal and minor arterials. A total of 22,014 links within states of 

Washington, Oregon, California, Idaho, and Nevada are selected as the base network for the case 

study. Idaho and Nevada are included to consider the possibility that some trips may traverse 

their jurisdictions. A network clean-up is conducted to remove redundant links and add some 

missing lines for solving the topological discrepancy and improving network connectivity.  

 

Counties are treated as Traffic Analysis Zones (TAZs) in this study. There are 39 counties in 

Washington, 36 counties in Oregon, and 58 counties in California. Centroid is the network 

representation of the corresponding TAZ, where all long distance trips are generated from and 

attracted to. Each centroid is associated with a unique CTFIPS code. 680 centroid connectors are 

further generated arbitrarily to connect centroids to the base network. Each centroid connector is 
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labeled with the CTFIPS code indicating the county with which it is associated. For example, 

link ID 176983 has value of 53033 stored in its Connector attribute, meaning the link is a 

centroid connector which connects to King county centroid. 

 

Since there is no preloaded volume on centroid connectors, travel impedance on them cannot be 

determined by travel impedance functions. As proposed in the Chapter 4, the impedance on 

centroid connectors are determined by the Annual Congestion Cost per Auto Commuter 

calculated by TTI, as part of their congestion measures (see Appendix C). Since TTI’s 

performance measures are at the MSA level, it is reasonable to assume that each county shares 

the same congestion cost as the MSA it belongs to. For the counties outside MSA, the annual 

cost is set arbitrarily as $180 for urban counties and $90 for rural counties. Additionally, a 

selected route will not go through the centroid connectors. Centroid connectors can only be 

traversed at the begging or in the end of a route; therefore it cannot represent the node impedance 

if the node is in the middle of a certain route, but can only reflect the impedance of origin and 

destination nodes. A list of rural counties is detailed in Appendix D. 

 

5.1.3 Other datasets 

 

In addition to the O-D matrix and network data, several secondary data sources are utilized such 

as: 

 

The 1995 ATS sample data is retrieved as a comparison dataset for the trip length distribution 

information. The 1995 ATS randomly sampled approximately 80,000 households throughout 
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U.S. to participate in telephone interviews, which collected 556,026 person trips and diverse 

information, including the origin and destination of the trip, number of stops along the way, 

travel mode, size of travel party, trip purpose, etc. Considering the implementation scope of the 

case study, only trips between counties in states of Washington, Oregon, and California are 

selected. After excluding non-highway modes, there are 6,706 business person trips and 29,706 

leisure/other person trips by auto within Washington, Oregon, and California. Additionally the 

Oak Ridge National Laboratory (ORNL) provided a rough estimate of the trip distances for all 

trips. 

 



 

107 

 

 

Figure 5.1 Scenic Highways in Five States 

 

Scenic highway dataset from National Scenic Byways Online (NSBO) is shown as green links in 

Figure 5.1. Geospatial analysis is performed in ArcGIS to identify scenic links in FAF
3
 network 

by overlapping two datasets. Meanwhile scenic factor is set as 1 if the FAF
3
 link is non-scenic. 

Additionally, this study acquires National and State Parks data from multiple state agencies and 

U.S. Hotels, Motels, and Accommodations Database obtained from online vendors to count 

number of roadside attractions within 5 miles of FAF
3
 links (line buffers are applied). Relevant 



 

108 

 

geo-processing tasks are also completed with ArcGIS. 

 

 

Figure 5.2 An Illustration Showing Roadside Attractions 

 

5.2 Scenario Configurations 

 

So far most of long distance or large-scale (e.g. statewide travel model) assignments were done 

using an exclusively time-based impedance function. This is considered as the base scenario and 

obviously ignores some important factors influencing long distance route choice. Besides testing 
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the implementation feasibility of the proposed modeling framework, the following scenarios 

describing different configurations are analyzed, where the base scenario is successively refined: 

i. The effect of taking distance-based operational cost into consideration; 

ii. Distributive patterns of the scenarios where different assignment algorithms are applied; 

iii. The difference of distributive patterns between business and pleasure/other travel; 

iv. The effects of different distributions and magnitude of the error term; 

v. The effects and sensitivity of newly introduced scenic factor and attraction factor.  

 

Base Scenario: 

Configuration 0: For both business and pleasure/other travel, only consider the impedance as the 

travel time-based cost, where 1

i

i
i i i

i

x
c t
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Considering the travel distance and the operational cost induced: 

Configuration 1: For both business and pleasure/other travel, add the distance-based operational 

cost component, where 1

i

i
i i i i

i

x
c L t

C



  
  
     
   

 

Test different error term distributions: 

Configuration 2.1 (normal distribution) and 2.2 (Gumbel distribution): based on configuration 1, 

introduce normal/Gumbel distributed error terms with varying magnitudes to the SUE algorithm;  

Impedance function extension for pleasure/other travel: 

Configuration 3.1: 1
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 where 0,0.1,0.2, ,0.9,1.0is    

Configuration 3.2: 1
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 where 1;0.3;0.1;0.05;0.01ia    
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5.3 Implementation Results 

 

TrasnCAD 5.0 is deployed as the implementation platform. This section summarizes 

implementation results. For each corresponding scenario total annual VMT, VHT, and delay are 

estimated as system-wide performance measures. The total annual VMT (VHT) is the total 

mileage (hours) traveled by all vehicles in one year. The total annual delay is calculated as the 

difference between the actual total annual VHT and the assumed total annual VHT if all the 

vehicles were traveling at free-flow speed. Centered on the SUE algorithm, the distributions and 

magnitudes of the error term are first investigated and its impact on distributive patterns is 

studied (Configuration 2.1 and 2.2). Configuration 0 and Configuration 1 are then compared 

across different assignment algorithms (SUE, DUE, and SO) to show the effect of including 

distance-based operational cost in travel impedance functions. Third, the impacts of newly 

introduced parameters (scenic factor and attraction factor) are studied, in terms of system-wide 

performance measures, link usage, and distributive patterns. Finally the trip length distributions 

from this implementation are compared to the 1995 ATS data. 

 

5.3.1 Error term of SUE 

 

TransCAD sets the standard deviation of the random error in the SUE mechanism (Equation 3.4) 

as ( /100) _e link impedance , where the e is a modeling parameter referred as error term in the 

following discussion. As introduced in section 4.2, the magnitude of the random error roughly 

reflects how differently people perceive their travel time from the actual travel time. A larger 
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error term indicates a significant difference exists between a traveler’s perception and the actual 

travel impedance; as a result, route utilization is very diverse across the traveling population, 

including some that may be associated with significantly higher impedance than the true 

“shortest path”. When the standard error   , the share of flow on all routes will be equal, 

regardless of route travel impedance, meaning people are indifferent about travel impedance and 

just uniformly and randomly choosing routes. When the standard error 0  , the travel 

impedance on all routes will be equal,  meaning people have perfect judgment on the travel 

impedance and the entire scenario becomes a DUE one. In this study, the magnitude of the error 

term is arbitrary set between 0 and 100.   
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Figure 5.3 Total VMT and VHT Change with Varying Magnitudes of Error Terms 

 

Figure 5.3 summarizes changes in total VMT and total VHT with varying magnitudes of error 

terms. First of all, regardless of the trip purpose or distribution of the error term, changes show a 

similar trend: with an increasing magnitude of the error term, total VMT and total VHT grow as 

well; because a larger error term will result in a more diverse route choice. Second of all, when 

the error term is less than 25 (meaning people’s perceived travel impedance is within the range of 
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25%  of the actual impedance), changes in total VMT and total VHT are insignificant (increase 

of total VHT is less than 5%; increase of total VMT is less than 2%). However, when the error 

term is larger than 25, the total VMT and total VHT show an almost linear and dramatic increase. 

As the error term grows from 25 to 100, increase of total VHT is around 35% and increase of 

total VMT is around 16%. This indicates that system-wide performance measures present a range 

of “tolerance” in terms of long distance travelers’ perception errors, and this range is not 

influenced by the trip purpose or the assumptive distribution of the error term. 
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Figure 5.4 Total Delays by Error Term  
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Total delays are defined as the difference between travel time on the used route and the free-flow 

travel time. Total delays by error term are illustrated in Figure 5.4 for both business and 

pleasure/other travel. As a comparison, total delays in an SO scenario are also presented in the 

figure, where the minimum total VHT is achieved. Again Gumbel distributed error terms show a 

similar trend as the normally distributed ones. It is an very interesting observation that when 

error terms range from roughly 5 to 75, the SUE-based total delays are lower than SO-based total 

delays, as much as 9 for pleasure travel and 7 for business travel. The reason lies in that under 

the behavioral assumption of SUE, many travelers will not find the theoretically best routes, in 

which case certain individuals’ non-optimal route choices ease the congestion on heavily 

traveled routes and enable others to travel much more efficiently, which creates a lower total 

delay than the SO scenario. When the error term is less than 5, the SUE scenarios become a DUE 

assignment, where most travelers hold similar perception toward travel impedance and result in 

higher congestions on more frequently traveled corridors and higher total VHT; when the error 

term is more than 75, travelers are very diversified in terms of perceptions toward travel 

impedance, therefore many longer routes are utilized, which also result in a higher total VHT 

than the SO scenario.  

 

In a long distance travel context, given the long duration and distance spent on traveling, it can 

be assumed that the “relative error” in people’s perception is lower than intra-urban travel. For 

example, a 10 minutes perceived error induces a 33% error in a 30-minute commute, yet only a 

5.5% error in a 3-hour travel. Additionally given the findings from this case study, the system-

wide performance measures are not varying significantly under the threshold of 25%. Therefore 

in the following discussion, a 5% error term is adopted. However, this investigation also 
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indicates a more in-depth study on impact factors on long distance travelers’ perception error. For 

example, people on business trips should have a smaller error than people on pleasure trips, 

considering the former group prefer to use higher functional class roadways with higher 

reliability and better roadway conditions. Business travelers are also more likely to be familiar 

with the planned route than pleasure travelers, because pleasure travel does not occur frequently 

and people tend to seek for new options when traveling for pleasure. 

 

5.3.2 Comparison between Configuration 0 and Configuration 1 

 

Different assignment algorithms (SUE, DUE, and SO) correspond to different behavioral 

assumptions. Speaking of the long distance network loading issue, a critical question to be 

answered is how those different behavioral assumptions alter system-wide performance measure 

and its indication to the interpretation of the model. Figure 5.5 summarizes total VHT, VMT, and 

delay for business and pleasure/other travel across four different assignment mechanisms, and 

also explores the effect of including a distance-based impedance component.  
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Figure 5.5 Total VHT, VMT, and Delay for Business and Pleasure Travel 

 

At the system level, the average (over both configurations and four assignment mechanisms) 

total VHTs are 26.4 million vehicle-hours for business travel and 87.9 million vehicle-hours for 

pleasure. Total VMTs are 1.71 billion vehicle-miles for business travel and 5.55 billion vehicle-

miles for pleasure. Total delays are 1.46 million vehicle-hours (5.5% of the total VHT) for 

business travel and 6.12 million vehicle-hours (7.0% of the total VHT) for business for pleasure. 

Apparently the long distance travel delay is lower than intra-urban travel delays.  

 

Inclusion of the distance-based operational cost generally results in an increased total VHT, a 

decreased total VMT, and decreases of total delays. However, the change is not that significant. 

The average (over four assignment mechanisms) change in total VHT is 0.61% for business and 

0.60% for pleasure; the average change in total VMT is -0.65% for business and -1.16% for 

pleasure; the average change in total delay is -1.77% for business and -4.69% for pleasure. 

Adding the distance-based operational cost to the travel impedance function essentially brings 
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another dimension to people’s route choice behavior, indicating in Configuration 1, travelers are 

explicitly “cautious” about the cost induced by the trip length. As a result, route choices are 

diversified compared to Configuration 0 and both total VMT and total delays decrease yet total 

VHT increases (due to a longer route selected). Although the relative change is small, 

considering the large size of the network and travel volume, the absolute changes are still 

considerable.  

 

Results from different assignment mechanisms are very close to each other. Theoretically ① SO 

should yield minimum total VHT; ② SUE mechanisms should yield higher total VHT and VMT 

than the DUE method due to diversified route choices by perception error; and ③ compared to 

normally distributed error terms, Gumbel distributed ones will likely result in overestimated flow 

on overlapping routes (Sheffi, 1985), thus lessen the total VMT yet raise the total VHT, because 

overlapping routes will become more congested (when only travel time is considered as the 

travel impedance). Those trends can be slightly traced in Configuration 0 yet not significantly. 

Because when applied to large-scale and complex networks, closed-form solutions to any of the 

assignment mechanisms do not really exist therefore solving the network loading problem relies 

on an iterative process, which brings deviations from the theoretical assumption.  

 

When taking distance-based operational cost into consideration of travel impedance, the second 

and third theoretical arguments do not hold, because the system-wide performance measures are 

now reflecting another dimension of travel cost induced by travel distance. As shown in 

Configuration 1, for business travel, the normally distributed error terms result in higher total 

VHT and lower total VMT than a Gumbel distribution. This brings insights to interpreting the 
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network loading results when using composite travel impedance. Additionally the closeness of 

SO method results to ones by other assignment mechanisms suggests that the benefits of route 

guidance and traveler information systems are relatively low in the long distance travel market.  

 

It is beyond the scope of this study to determine which assignment mechanism produces the best 

network loading results. However, without a doubt the discussion above helps improve our 

understanding on how different behavioral assumptions influence the loading result and how to 

interpret the result.  

 

5.3.3 s and a factors in pleasure travel 

 

As introduced in section 4.4, the s factor and a factor represent the attractiveness of scenic 

highways and roadside attractions respectively. In Figure 5.6, the top horizontal axis is scale of 

the a factor, and the bottom one for s factors. Total VHT, VMT, and delay for pleasure/other 

travel are illustrated with varying magnitudes of those factors. 
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Figure 5.6 Impacts of s and a Factors 

 

Both factors function as how they are designed. When s and a factors are applied, people are 

becoming less sensitive to the travel impedance. A higher s factor or a lower a factor reflects a 

lower valuation from travelers towards scenic highways and roadside attractions respectively, 

therefore people are less likely to select a “beautifully expensive” route, which is reflects by 

lower system-wide performance measures. Additionally, s factor presents a very consistent and 

stable characteristic across different assignment algorithms (DUE, SUE_Gumbel, and 

SUE_Normal). The a factor, however, presents a sensitive characteristics. As specified by 

Equation 4.2, when the a factor is less than 0.1, people’s attitude change toward the increasing 

number of attractiveness is quasi-linear. Reflected to the system-wide performance measures, the 

left part of the a factor curve shows a steady decrease (and more consistent performance across 

different assignment algorithms) with in the decrease of a factor. When the a factor is larger than 
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0.1, people’s attitude change toward the increasing number of attractiveness is exponential, 

which results in a bigger diverge on the left part of the a factor curve across different assignment 

algorithms. An important practical implication is that when applying the a factor, switching 

assignment algorithms will result significance difference in terms of system-wide performance 

measures. For example, when a = 1, compared to using the SUE_Gumbel, using DUE will 

increase the total VHT by 32%, the total VMT by 21%, and total delays by 42%! 

 

5.3.4 Link usage 

 

Theoretically the random utility assumptions in SUE should produce more evenly distributed 

flows on alternative routes than DUE would. The implementation results validate this, as shown 

in Figure 5.7. Across different magnitudes of s and a factors, the difference in link usage between 

DUE and SUE methods ranges from 6% to 18.6%.  In other words, DUE directs more long 

distance trips to higher-level roads than the SUE methods and thus overestimates the level of 

congestion on those roads. This systematic bias of flow and congestion on higher level roads 

with rational behavior assumptions could have important implications for transportation planning 

and policy analysis applications. Again as expected, a decreasing a factor or an increasing s 

factor triggers a growth in link usage, meaning the newly introduced parameters are sensitive and 

effective.  
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Figure 5.7 Link Usage 
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to Los Angeles are chosen to demonstrate the impact, as shown in Figure 5.8 and 5.9 (the 
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they “perceive” the route minimizes their travel impedance. When s = 0.4, most of travelers are 

using the U.S. Route 395 and the U.S. Route 101, both scenic routes. When s = 0.1, another 

extreme representing that travelers show a high preference in scenic highways, the U.S. Route 

101 is most traveled for the Oregon and California sections, while in the state of Washington, a 

number of travelers follow the Interstate-84, a beautiful drive along the  Columbia River.  

 

Figure 5.8 Distributive Patterns when s = 0.9 0.4 0.1 (left to right); Trips from Seattle to LA 

 

 

Figure 5.9 Distributive Patterns when a = 1, 0.05, 0.01(left to right); Trips from Seattle to LA 
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Similar patterns are observed using the a factor. When a = 1, the U.S. Route 101 is most loaded 

route; while a = 0.01, most travelers selected Interstate-5; in between when a = 0.05, some 

travelers select U.S. Route 101 along the coast, while others still travel along the Interstate 5. 

Without further data collection and travel survey, it is unknown for now how much the s factor 

(or the a factor) exactly is, however, through this case study, it is shown both factors are effective 

in terms of reflecting different distributive patterns within a plausible range. For animated 

demonstrations, please visit http://www.uwstarlab.org/long_distance_travel.html 

 

5.3.6 Trip length distribution 

 

The 1995 ATS sample data with trip length information is acquired to be compared with results 

from the case study. In general the 1995 ATS trip length estimation process involves an AON 

assignment method (allocate all the trips to the shortest path) and a travel time-based impedance 

with adjustments by highway functional class. A detailed description of the process can be found 

in Hwang and Rollow (2000). Contrastively this study applies UE assignment mechanisms with 

an enriched composite travel impedance function. And trip length distributions for business 

travel and pleasure/other travel are shown in Figure 5.10 and Figure 5.11 respectively.  

 

 

http://www.uwstarlab.org/long_distance_travel.html
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Figure 5.10 Trip Length Distribution – Business: Comparison with the 1995 ATS 

 

 

Figure 5.11 Trip Length Distribution – Pleasure: Comparison with the 1995 ATS 
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In general regardless of trip purpose, the case study yield less trips in “shorter than 300 miles” 

categories, and more trips in “longer than 300 miles” categories. The difference between the two 

distributions is more significant in the pleasure/other travel than the business travel. There are 

three potential reasons for the discrepancy: First, the 1995 ATS sample data is on a MSA O-D 

demand basis, with a bias towards long distance trips between urban areas and therefore 

“ignores” long distance trips between a rural O-D pair. The O-D matrix for this study, although 

derived the 1995 ATS data, has been averaged out at a county level. Some longer trips between 

remotely distributed counties are artificially “generated” through this averaging process, which 

add more trips to “longer than 300 miles” categories. Second, the 1995 ATS trip distance 

estimation applied a shortest path algorithm and biased over higher class roadways, which 

underestimate the trip lengths of many trips traveling the lower class roadways, and thus 

overestimated the number in “shorter than 300 miles” categories. Third, the 1995 ATS trip 

distance estimation did not involve a market segmentation process, as this study. In other words, 

it did not differentiate business travel from pleasure/other travel, nor consider the “discount 

effect” within the pleasure traveling population in the network loading process, therefore many 

lengthy pleasure trips were underestimated as shorter trips.  

 

This discrepancy reveals important policy making indications, regarding the recently rising 

national interest in high-speed rail investment. Considering prevailing long distance traveling 

modes, two competitors of high-speed rail are autos and airplanes; 300 to 700-mile is the critical 

market for the high-speed rail. Correctly estimated travel volume in this market (especially for 

pleasure travel) is a salient quantitative reference for justification of massive investment.  
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5.4 Discussion 

 

Through the case study, questions raised in the beginning of this chapter are all answered. The 

work flow proposed in Chapter 4 is a feasible solution to the long distance travel network 

loading. Variations in model parameters, including the error term, the s factor, and the a factor, 

generate significant impacts on the distributive patterns. Particularly, both newly introduced 

factors function as how they are designed, able to well generalize pleasure travelers’ behavior 

and reflect it onto the distributive patterns. Different assignment algorithms based on varying 

behavioral assumptions are also influential. The case study not only brings insight to the 

planning practice, but also to the policy making process. For example, results show that the 1995 

ATS trip length distribution underestimated the number of trips in “longer than 300 miles” 

categories, where the 300 to 700-mile is the critical market for the high-speed rail. 

 

Note that without extra efforts and resources for new travel survey, it is very hard to calibrate the 

“real” values of the s factor and the a factor. However, it should be recognized that there exist 

well-developed methods for calibrating both factors, like stated preference survey and means-end 

analytical approaches. Even though their values are unclear at the current stage, due to the fact 

that both new factors are designed to be bounded within a certain range, decision makers are able 

to “tune” across varying magnitudes of both factors to speculate possible distributive patters and 

inter useful information to support policy making. Also this case study is not materialized on a 

multi-scale basis, and it would be interesting to apply similar methodological framework to 

MSA-level and state-level and compare the difference in system-wide performance measure 
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resulted from varying geographic representations.  

 

A byproduct from the modeling framework is all the travel impedance is in the unit of dollars, 

which provides a reference for pricing new facilities. For example, the median cost for business 

travel from Seattle to Los Angeles is around $1100, while the cost from Seattle to Portland is 

about $191. Since it is a composite cost by accounting for operational cost and value of time, a 

competing mode to highway travel may find these values useful to identify their market.  

 

Smart and accountable policy making requires quantitative information detailing the operation of 

national transportation system. Traditional macroscopic statistics may not meet the diverse needs 

for answering questions regarding policy, public finance, and environmental issues. For example, 

while regional VMT and VHT will likely decrease in a nose-diving economy, congestion in areas 

of increased density will likely increase. Performance measures in multiple dimensions and at 

different scales are in great need. The modeling framework proposed in this research not only 

delineates the full procedure of depicting distributive flow patterns, but also is able to generate 

useful and comprehensive measurements at different geographic levels for accountability 

evaluation. Granted further funding and labor resources, the framework we developed can be 

readily extended to a broader spectrum of domains including intra-urban travels, to better support 

federal level decision making.  
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Chapter 6 Conclusions  

 

America’s highways need a new vision, a vision that goes beyond facilitating individual and 

commercial movements and gives voice to new challenges brought by the aging infrastructure, 

mounting congestion, declining system reliability, changing demographics, and increasing 

planning and environmental awareness and concerns. While improving intra-urban travel has 

attracted great attention and massive investment, another integral part of American life, people 

and freight on the long haul, deserves more analyses and modeling, not only because it embraces 

all the challenges mentioned above, but also because it accounts for 25% of all person miles in 

the nation.   

 

Long distance passenger travel is not a simple extension of travel distance to the well-studied 

intra-urban travel. Understanding long distance travel requires new data input, raises new 

questions, and presents new challenges. While extensive regional travel data collections are 

conducted at the MPO level periodically, transportation service and cost data at corridor, 

interregional, and national level are scarce. While intra-urban travel centers on people’s daily life 

(home-based or non-home based trips), long distance travel embraces a much more diverse 

traveling needs, especially in recreational and tourism travel. Sequential transportation planning 

procedures have been well established and new theories keep advancing in an intra-urban 

context, but modeling framework for long distance passenger travel is absent. Addressing these 

needs, questions, and challenges will help support decisions about transportation policies, 

investments, and operations, as well as motivates the research efforts elaborated in this 

dissertation.  
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This research applies a national data framework approach to modeling long distance passenger 

travel over national highways. A pivotal question answered by the research is: how can we gain 

knowledge and insights of long distance passenger travel patterns at interregional level given 

existing resources? The framework developed comprises not only a data warehouse where a 

plethora of datasets reside and interact, but also a modeling framework to infer long distance 

travel network loading conditions. Particularly, the modeling framework delineates the procedure 

of deriving distributive patterns from individual behavior, with enriched impedance models to 

approximate the behavioral realism of long distance route choice. The model development is 

reasonably rigorous since most of model parameters are based on empirical justification of 

available datasets without arbitrary conjectures. Two new parameters are introduced to the 

impedance model as linkages between contextual data and planning data. Additionally the case 

study demonstrates the feasibility and practicality of the framework using a case study. The 

implementation on the county-level network within states of Washington, Oregon, and California 

generates system-wide performance measures, distributive patterns, and trip length distributions, 

providing quantitative references for policy making and investment justification in large-scale 

transportation systems. Future research should examine the likelihood of incorporating more 

advanced behavioral assumptions and the feasibility of deploying emerging data sources in the 

proposed modeling framework.   

 

The following sections first summarize research efforts and findings, followed by highlighting 

research contributions in resolving data issues, modeling methods, and policy evaluation needs. 

A comprehensive picture of national travel is then presented as the Traveler Analysis Framework, 
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and roles of this dissertation research in the big picture are stressed. Finally, future research is 

discussed, including an in-depth study on long distance travelers’ behavior, potential data 

collections as well as utilization of emerging data sources, and further development of the 

modeling framework.  

 

6.1 Summary of Research 

 

6.1.1 Identify available data sources and review current practices 

 

Chapter 2 reviews available datasets and related literature regarding travel impedance and large-

scale network loading from theories to practices, in five dimensions: Infrastructure gives an 

overview of the national highway system, whose abstraction will serve as the base network in the 

modeling framework. Recognizing the immense scale and complexity of the network, the review 

shows roadway functional classes can naturally serve as criteria for a multi-scale configuration, 

to appropriately involve different geographical layers into computations at varying resolutions. 

Information identifies available data sources on both the demand and the supply side of the 

large-scale system. Those data sources are categorized into geography data, demand data, traffic 

data, and validation data, with their roles, availability, and limitation clarified. This inventory 

efforts reveals the inconsistency between current practices of region-based data collection and 

needs for large-scale system modeling. A bright highlight to the data reality is that both HPMS 

and FAF
3
 already make solid efforts in terms of data integrity, quality, and formatting issues, 

which may be utilized as the base network for this study. Externalities refer to the external 

factors creating resistance or attractiveness to long distance travel. Since very little literature 
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addressed the route attractiveness, travel impedance related research is especially reviewed. 

Review shows travel time is overwhelmingly treated as travel impedance along roadways, and 

inclusion of other impact factors is rarely found. Various configurations regarding the volume-

delay dependency are summarized. Additionally, research finds TTI’s performance measures 

well serve the need for generalizing and quantifying congestion levels within urban areas. 

However, to date there is no algorithms or modeling procedures integrating link impedance and 

node impedance. After a thorough review on infrastructure/network, information/data, and 

externalities/impedance, computational methodologies are reviewed in the traffic assignment 

field. It is clear that traffic assignment research has been extensive and fruitful in an intra-urban 

context since its inception in the 1960s; however, it has not found its way into the long distance 

travel domain. It is unclear ① to what extent varying assignment algorithms would influence the 

distributive pattern of flows at interregional level; ② how well the traffic assignment procedures 

can be transferred to resolving the network loading issue in long distance travel; and ③ how to 

optimize the trade-off between the theoretical avant-garde and present implementation feasibility. 

Finally Chapter 2 summarizes the implementation of regional traffic data platforms, which 

highlight the value of GIS applications and multi-data-source merging. The thorough review in 

this chapter reveals the need of constructing a modeling framework, drawing analogies to the 

human body - with the geographic roadway network as the skeleton, diverse data sources as 

muscles, and more importantly a computational modeling approach as intelligence.  

 

6.1.2 Represent the national highway network in a geodatabase 

 

Chapter 3 elaborates on research efforts for representing the national highway network to meet 
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modeling needs: ① to depict a network’s operational status as well as its linkage to contextual 

data – nearby land use, activity densities, and availability of facilities that support or attract long 

distance travel; ② to embrace multiple network scales and maintain topological integrity at each 

level; ③ to be tailored for the existing data availability and application feasibility and prepared 

for future utilization and expansion. It concludes that adoption of geodatabase architecture is 

necessary, because it offers extra functionality, integrates transportation information alongside 

the roadway network geometry, and supports framework standards. Based on the research 

findings of Chapter 2, this chapter evaluates available network datasets from a geodatabase 

construction perspective. With this detailed investigation, it is determined that FAF
3
 provides 

desirable network geometry and details for geodatabase design. State, MSA, and County polygon 

shapefiles represent travel origins and destinations at different levels. A Triple-Level System is 

proposed, allocating varying datasets to different levels. For the state-level, node features are 

state centroids (geometric centers of state boundaries), while link features are Interstates only. 

For MSA-level, node features are MSA centroids, while link features are all of principal arterials. 

For county-level, node features are county centroids, while link features are both principal and 

minor arterials. The relationships between all the entities are outlined in the conceptual data 

model design. The logical data model specifies attributes for the geodatabase, which is 

independent of planned implementation platforms, while the physical data model takes ArcGIS 

as implementation platform into consideration. This chapter presents a thorough and detailed 

geodatabase design process, with all the feature classes, tables, and domains in the logical data 

model specified. Finally it discusses how traffic data, which include both the historical archive 

and the most updated traffic conditions, can be aligned alongside the network. A review on the 

Linear Referencing Systems (LRS) practices at federal and state levels reveals the discrepancy 
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hindering a ready data transfer. The historical archive in HPMS and FAF
3
 datasets also shows 

some deficiency in terms of reflecting weekly and seasonal traffic fluctuations. Two-layer 

solutions are proposed to tackle these challenges. On the basic data layer, a five-step procedure is 

devised to ensure a smooth transfer of archived data from HPMS and FAF
3
 to the NHPN base 

network; on the advanced data layer, high-resolution traffic data are compiled into daily profiles 

and linked to the FAF
3
 base network. Due to the inconsistency between state LRS and the FAF

3
 

LRS, the linkage is completed by the longitude and latitude of traffic monitoring stations using 

the geospatial analysis tool in ArcGIS. Self-correction can be conducted by comparing 

information from the two layers. 

 

6.1.3 Long distance travel network loading: from model to implementation 

 

Distributive patterns of long distance travel are aggregations of individual route choice behavior. 

Recognizing the value of understanding long distance travelers’ behavior in network loading, the 

modeling framework follows a workflow designed as: ① segment the entire traveling 

population, ② identify attributes for each customer base, ③ account for different attributes in 

one generalized cost model, ④ incorporate the generalized cost model into traffic assignment 

algorithms, and ⑤ comparison of assignment scenarios. A rough yet effective segmentation 

captures two major groups: business travelers and pleasure/other travelers. Travel distance and 

travel time are identified as the two controlling impact factors on route choice, as business trips 

are mostly made with constrained time windows by people with above-average income level. 

Pleasure travelers are more diverse, and there exist both tangible route characteristics (route 

proximity, route attraction, safety, and accessibility rate) and intangible personal attributes 
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(values, needs, and motivations) that influence route choice. For both groups, a generalized cost 

function is configured as the representation of travel impedance by incorporating those 

characteristics and attributes within either group. The generalized cost function comprises fixed 

cost, distance-based operational cost, and time-based monetary cost. The parameter values are 

determined by empirical justification of available datasets, and also reflect the difference by 

traveling group. For example, unit operational cost is higher in urban areas than rural; business 

travel is associated with a higher value of time; BPR functions give stricter penalty on inter-city 

roadway congestion than within urban areas. Particularly, for pleasure travel, two new 

parameters are introduced to link contextual data (e.g. scenic byways, roadside attractions, etc.) 

to the route choice behavior. Both parameters reflect pleasure travelers’ evaluation on the 

“attractiveness” of an alternative route, which is essentially a comprehensively external 

representation of those internally intangible attributes. Additionally, both parameters are 

configured to incorporate and simulate different behavior, as explained in Section 4.4.2, using 

scenic byways and roadside attractions as two examples. Impedance models developed are then 

integrated in the UE assignment mechanism. Various UE methods are discussed and SUE is 

further elaborated on how it leverages a random term to reveal people’s perception errors in route 

choice. Integration of link and node impedance, an earlier question raised in Chapter 2, is 

resolved by applying TTI’s urban congestion cost index. In summary, the modeling framework 

considers two major markets in long distance travel, develops a unified, concise, and behavior-

oriented composite impedance model, and reveals the whole network loading procedure. From a 

theoretical perspective, it extends the intra-urban modeling procedure with an enriched 

impedance model; from a practical perspective, it demonstrates a working solution to yield 

service and cost measures over a large-scale network across a diversity of datasets.  
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The usefulness and feasibility of the modeling framework is demonstrated in a case study, where 

long distance passenger travel at county level is loaded to highway network within west-coast 

states of Washington, Oregon, and California, using projected long distance O-D demand data of 

year 2008. Extensive data acquisition is conducted to ensure the model portraying the reality as 

much as possible. Different scenarios are designed to ① validate the feasibility of modeling 

framework, ② test the proposed behavioral hypotheses, ③ investigate the sensitivity of newly 

introduced parameters, and ④ reveal different distributive patterns under varying scenarios. 

System-wide performance measures including total VMT, total VHT, total delays, and link usage 

are reported for each scenario. Finally the trip length distributions from this implementation are 

compared to the 1995 ATS data. Some key findings from the case study include: ① for SUE 

methods, 25% perception error is a threshold that triggers a rapid and linear increase in total 

VMT and VHT, regardless if the distribution of the error term; ② when error terms range from 

roughly 5% to 75%, the SUE-based total delays are lower than SO-based total delays, because 

certain individuals’ non-optimal route choices ease the congestion on heavily traveled routes and 

enable others to travel much more efficiently; ③ inclusion of the distance-based operational cost 

generally results in an increased total VHT, a decreased total VMT, and decreases of total delays, 

all with mild changes, but the inclusion will cause counter-intuitive VMT – VHT relationship by 

different assignment algorithms and thus should be interpreted carefully; ④ long distance travel 

delay is lower than intra-urban travel delay; ⑤ both newly introduced parameters are capable of 

representing travelers’ valuation towards scenic highways and roadside attractions; however, the 

s factor presents a very consistent and stable characteristic across assignment algorithms and the 
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a factor can result in very different performance measures when assignment algorithms vary. For 

example, when a = 1, compared to using the SUE_Gumbel, using DUE will increase the total 

VHT by 32%, the total VMT by 21%, and total delays by 42%. Both parameters are also 

effective of changing the distributive patterns of pleasure travel; ⑥ SUE diversifies route choice 

and yield higher lank usage than DUE method, and the differences range from 6% to 18.6%; ⑦ 

comparing trip length distributions from the 1995 ATS and this case study finds that the 1995 

ATS trip length distribution underestimated the number of trips in “longer than 300 miles” 

categories, whereas the 300 to 700-mile travel market is critical to the high-speed rail. 

 

6.2 Research Contribution 

 

Modeling long distance travel presents a large-scale problem with great complexity. Through the 

aforementioned efforts, this research makes contributions to understanding the distributive 

pattern of long distance passenger flows in three dimensions: data issues, modeling framework, 

and policy evaluations.  

 

Data issues: Supply-side information, namely, the service quality of the transportation 

infrastructure and costs for competing traveling options, is critical to supporting decisions about 

transportation policies, investments, and operations. While MPOs normally collect both supply 

and demand data to support the development of regional models, there is no detailed measure of 

highway performance and its costs for long distance travel. Utilizing available resources, this 

research fills this data gap. On the one hand, results from the modeling framework developed (at 

least as shown in the case study) portray various distributive patterns of passenger flows over the 
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highway network. It explicitly highlights the variations of corridors selected by long distance 

travelers under different behavioral assumptions. System-wide performance measures, total 

VMT, VHT, and delays are estimated simultaneously as well. On the other hand, costs for 

different travel markets, covering a diversity of cost components, are explicitly estimated, which 

provides a critical pricing reference for justifying a competing travel mode (e.g. high-speed rail).  

 

Modeling framework: this research presents a complete procedure for long distance network 

loading. Specifically, it develops the travel impedance models in a way that contextual data are 

incorporated into the framework, influencing and simulating pleasure travelers’ behavior, a 

market with over 60% share of total number of long distance trips. As illustrated in the case 

study, contextual data like scenic highway designation and roadside attractions fundamentally 

influence many key travel choices including the route choice. Those contextual data, however, 

are seldom gathered in large-scale surveys or rarely applied to analyzing passenger travel and 

providing the information needed to probe these influences. Additionally, very little previous 

research gave attention to understanding what behavioral foundation motivates and causes route 

choice diversity in long distance travel. Although still in an exploratory stage, this research 

analyzes different travel markets and shows how different magnitude of the “behavioral” factor 

can change the distributive patterns. This understanding is important not only for designing and 

evaluating policies that involve changing travel behavior, but also for more basic purposes, such 

as designing travel surveys and other data collection activities. 

 

Policy evaluations: Accounting for roughly 16% of the national total VMT, long distance travel 

generates immense impacts on the highway infrastructure in a broad spectrum of aspects: 
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tourism economy, travel patterns of an again population, high-speed intercity rail, energy 

efficiency, and greenhouse gas emissions. By providing quantitative system-wide indicators and 

performance measures, the modeling framework facilitates related policy evaluation. 

Particularly, by representing the network highway network in a geodatabase, the modeling 

framework adds another dimension of policy accountability: geographic specificity. This 

dissertation study demonstrates how we can better understand the relationships between travel 

and contextual factors and to construct models for policy evaluation through geocoding and 

linking separate datasets. The geodatabase setup also supports map-based analysis and display of 

data, an important way to visualize and understand travel patterns.  

 

6.3 An outlook on the Traveler Analysis Framework and roles of modeling supply-side 

data of long distance travel 

 

Policy makers are looking for more knowledge and information rather than data about 

availability and performance of competing travel options, the political and economic context of 

traveling, and the complete and accurate description of travel behavior. Conventional travel 

surveys for transportation planning and data collection for traffic operations cannot meet all these 

needs. Meanwhile, fruitful development of regional travel demand models cannot well answer 

interregional questions, creating hurdles for federal level in understanding the big picture at 

national level. In a nose-diving economy, the idea of constructing a Traveler Analysis 

Framework incepts, exploring the potentials of utilize existing data resources to avoid the 

expense of “one-off” surveys. Hopefully a well-constructed Traveler Analysis Framework will 

address the growing importance of multi-regional, corridor and multinational analyses, as well as 
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the need for policy analyses: transportation equity, pricing, financing, and planning.  

 

This research serves as an organic component within the Traveler Analysis Framework. First of 

all, it answers some key questions on the supply side of long distance travel: what is the 

difference between business travelers and pleasure travelers? Which corridor are they choosing? 

What impacts are they generating? Second of all, it takes travelers’ behavior into consideration: 

how do pleasure travelers respond to contextual factors? How to capture those factors in a 

quantitative way? Last but not the least, although the study does not yield formative answers to 

the questions above (given the reality of existing data sources); it enumerates a limited number 

of possible scenarios and extrapolates interesting observations.  

 

6.4 Future Research 

 

Long distance travel is a broad area accommodating multiple research efforts. Due to the 

complexity presented by the long distance travel network loading problem, this study is limited 

in scope, and is meant to provide a prologue for future adventure. Although a general modeling 

framework is developed, factors included in the travel impedance model and their quantifications 

are incomplete.  The research can evolve in several directions: 

 A finer segmentation of the traveling population: both means-end theory and Analytic 

Hierarchy Process (AHP) are potential approaches revealing the diversity across long 

distance travelers. New attributes influencing the individual route choice can also be 

identified through new surveys.  

 Introduce randomness to the s factor and the a factor. Currently, they are considered as 
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deterministic values; however, consider the diverse traveling population, an assumed 

distribution would better capture the variations in people’s choices.  

 Incorporate more realistic behavioral assumptions in the network loading modeling. 

Boundedly Rational User Equilibrium (BRUE) and Behavioral User Equilibrium (BUE) 

proposed in last decade, as well as agent-based travel modeling could be promising next 

steps.  

 

The author would like to conclude the dissertation by quoting President Dwight D. Eisenhower 

in one of his letters to the Congress in 1955. “Our unity as a nation is sustained by free 

communication of thought and by easy transportation of people and goods. The ceaseless flow of 

information throughout the Republic is matched by individual and commercial movement over a 

vast system of interconnected highways crisscrossing the country and joining at our national 

borders with friendly neighbors to the north and south. Together, the united forces of our 

communication and transportation systems are dynamic elements in the very name we bear—the 

United States. Without them, we would be a mere alliance of many separate parts.” 
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Appendix A: Geodatabase Design 

Table A-1 The NHPN Feature Class 

Simple Feature Class 

  Geometry   Polyline       

NHPN 

 

Contains M values No 

  

  

  

 

Contains Z values No 

  

  

Field name Data Type Allow nulls Default value Domain Precision Scale Length 

ObjectID ObjectID             

Shape Geometry Yes           

ShapeLength Double Yes     0 0   

IsEnabled 

Short 

Integer Yes 1 EnabledDomain 0     

RECID Double No     0 0   

RECTYPE String No         1 

VERSION String No         7 

ORIGID Double No     0 0   

CTFIPS 

Short 

Integer No     0     

SOURCE String No   SourceCode     1 

HPMS07 String No   IsHPMS07     1 

LGURB 

Short 

Integer No     0     

SMURB 

Long 

Integer No     0     

SIGN1 String Yes   SignRouteCode     6 

SIGNT1 String Yes         1 

SIGNN1 String Yes         5 

SIGNQ1 String Yes   QualCode     1 

SIGN2 String Yes   SignRouteCode     6 

SIGNT2 String Yes         1 

SIGNN2 String Yes         5 

SIGNQ2 String Yes   QualCode     1 

SIGN3 String Yes   SignRouteCode     6 

SIGNT3 String Yes         1 

SIGNN3 String Yes         5 

SIGNQ3 String Yes   QualCode     1 

LNAME String No         30 

MILES Double No     0 0   

KM Double No     0 0   

FCLASS 

Short 

Integer No   ClassCode 0     

RUCODE 

Short 

Integer No   URCode 0     
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STATUS 

Short 

Integer No   StatusCode 0     

NHS 

Short 

Integer No   NHSCode 0     

STRAHNET 

Short 

Integer No   STRAHNETCode 0     

FAC_ID String Yes         10 

CONN_ID String Yes         10 

CONN_DES String Yes         200 

CONN_MILES Double No     0 0   

LRSKEY String Yes         15 

LRSSEQ 

Short 

Integer No     0     

BEGMP Double No     0 0   

ENDMP Double No     0 0   

AADT 

Long 

Integer No     0     

THRULANES 

Short 

Integer No     0     

OWNERSHIP 

Short 

Integer No   OwnershipCode 0     

STFIPS String No         2 

BTSVERSION String No         2 

 

Table A-2 CountyCentroidConnector Feature Class 

Simple Feature Class 

  Geometry   Polyline       

CountyCentoridConnector Contains M values No 

  

  

    Contains Z values No       

Field name Data Type Allow nulls Default value Domain Precision Scale Length 

ObjectID ObjectID             

Shape Geometry Yes           

ShapeLength Double Yes     0 0   

IsEnabled 

Short 

Integer Yes 1 EnabledDomain 0     

EdgeID 

Long 

Integer No     0     

FromCentroidID 

Long 

Integer No           

ToJunction 

Long 

Integer No     0     

 

Table A-3 MSACentroidConnector Feature Class  

Simple Feature Class 

  Geometry   Polyline       

MSACentroidConnector Contains M values No 
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    Contains Z values No       

Field name Data Type Allow nulls Default value Domain Precision Scale Length 

ObjectID ObjectID             

Shape Geometry Yes           

ShapeLength Double Yes     0 0   

IsEnabled Short Integer Yes 1 EnabledDomain 0     

EdgeID Long Integer No     0     

  

Table A-4 NetworkNode Feature Class 

Simple Feature Class 

  Geometry   Point       

NetworkNode 

 

Contains M values No 

  

  

    Contains Z values No       

Field name Data Type Allow nulls 

Default 

value Domain Precision Scale Length 

ObjectID ObjectID             

Shape Geometry Yes           

JunctionID Long Integer No     0     

XCoord Short Integer Yes     7 2   

YCoord Short Integer Yes     7 2   

IsEnabled Short Integer Yes 1 EnabledDomain 0     

 

Table A-5 County Feature Class 

Simple Feature Class 

  Geometry   Polygon       

County 

 

Contains M 

values 

 

No 

  

  

    

Contains Z 

values   No       

Field name Data Type Allow nulls Default value Domain Precision Scale Length 

ObjectID ObjectID             

Shape Geometry Yes           

Shape_Length Double Yes     0 0   

Shape_Area Double Yes     0 0   

STFIPS String No         2 

CTFIPS String No         5 

STATE String No         66 

COUNTY String No         66 

VERSION String No         2 

  

Table A-6 CountyCentroidConnector Feature Class  
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Simple Feature Class 

  Geometry   Point       

CountyCentroid 

 

Contains M 

values 

 

No 

  

  

    

Contains Z 

values   No       

Field name Data Type Allow nulls Default value Domain Precision Scale Length 

ObjectID ObjectID             

Shape Geometry Yes           

CountyCentroidID Long Integer No     0     

CTFIPS String No         20 

Xcoord Short Integer Yes     7 2   

Ycoord Short Integer Yes     7 2   

AncillaryRole Short Integer No 0 NetwrokRole 0     

IsEnabled Short Integer Yes 1 EnabledDomain 0     

  

Table A-7 Loop Table 

Table Loop             

Field name Data type Allow nulls Default value Domain Precision Scale Length 

SensorID Short Integer No     0     

RECID Double No     0 0   

VehicleClass String Yes           

Direction Short Integer No   DirectionCode       

CabinetID String Yes         10 

HHMMSS Long Integer Yes     0     

YYYYMMDD Long Integer Yes     0     

Volume Short Integer Yes     0     

Occupancy Short Integer Yes     0     

route_id String Yes         254 

Location String Yes         20 

Milepost Double Yes     8 2   

Lanes Short Integer Yes     0     

Speed Short Integer Yes     0     

LoopType String Yes         7 

Periods Short Integer Yes     0     

Flag Short Integer Yes     0     

Latitude Double Yes     8 4   

Longitude Double Yes     8 4   

  

Table A-8 NetworkRole Domain 
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Coded value domain NetwrokRole 

Description Centroid type 

Field Type Short Integer 

Split policy Default value 

Merge policy Default value 

Code Description 

0 Neither source nor sink 

1 Source 

2 Sink 

  

Table A-9 EnabledDomain  

Coded value domain EnabledDomain 

Description Boolean logic value 

Field Type Short Integer 

Split policy  Default value 

Merge policy Default value 

code  Description 

0 Disabled 

1 Enabled 

  

Table A-10 DirectionCode 

Coded value domain DirectionCode 

Description Driving Direction 

Field Type Short Integer 

Split policy  Default value 

Merge policy Default value 

code  Description 

0 FromJunction to ToJuction 

1 ToJunction to FromJuction 

 

Table A-11SignRouteCode Domain 

Coded value domain SignRouteCode 

Description The type of the sign route 

Field Type String 

Split policy  Default value 

Merge policy Default value 

code  Description 

C County Route 

I Interstate 
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M Municipal 

O Off-Interstate Business Marker 

P Parkway or Forest Route Marker 

S State Route 

T Township 

U US route 

N none of above 

  blank means not signed or not applicable 

  

Table A-12 QualCode Domain 

Coded value domain QualCode 

Description Route Qualifier Type 

Field Type String 

Split policy  Default value 

Merge policy Default value 

code  Description 

A Alternative Route 

B Business Route 

D  Temporary (Detour) 

F Proposed (Future) 

L Loop 

P Bypass 

S Spur 

T Truck Route 

N none of above 

  blank means not signed or not applicable 

 

Table A-13 SourceCode Domain 

Coded value domain SourceCode 

Description Source of Arc 

Field Type String 

Split policy  Default value 

Merge policy Default value 

code  Description 

T Tiger File 

D Digitized 

S State 

  

Table A-14 URCCode Domain 
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Coded value domain URCode 

Description Urban type 

Field Type Short Integer 

Split policy  Default value 

Merge policy Default value 

code  Description 

1 Rural Area 

2 Small Urban (1990 pop 5,000 -49,999)  

3 Large Urban (1990 >= 50,000) 

  

Table A-15 StatusCode Domain 

Coded value domain StatusCode 

Description Describes availability of the arc 

Field Type Short Integer 

Split policy  Default value 

Merge policy Default value 

code  Description 

0 Proposed/Under construction 

1 Open to traffic 

  

Table A-16 STRAHNETCode Domain 

Coded value domain STRAHNETCode 

Description Special subnetwork 

Field Type Short Integer 

Split policy  Default value 

Merge policy Default value 

code  Description 

0 Not on STRAHNET 

1 Non-Interstate STRAHNET 

2 STRAHNET Priority 1 Connector 

3 STRAHNET Priority 2 Connector 

4 STRAHNET Priority 3 Connector 

5 Temporary STRAHNET Route 

  

Table A-17 OwnershipCode Domain 

Coded value domain OwnershipCode 

Description highway owner type 

Field Type Short Integer 

Split policy  Default value 
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Merge policy Default value 

code  Description 

1 State Highway Agency  

2 County Highway Agency 

3 Town or Township Highway Agency 

4 Municipal Highway Agency 

5 Other State Agency 

6 Other Local Agency 

7 Federal Agency 

8 Other 

  

Table A-18 NHSCode Domain 

Coded value domain NHSCode 

Description NHS type 

Field Type Short Integer 

Split policy  Default value 

Merge policy Default value 

code  Description 

0 Not on NHS 

1 Interstate 

3 Non-Interstate STRAHNET (Strategic Highway Network)  

4 STRAHNET Connector 

7 Other NHS 

8 Approved Intermodal Connector 

  

Table A-19 IsHPMS07 Domain 

Coded value domain IsHPMS07 

Description updated with 2007 HPMS Data 

Field Type String 

Split policy  Default value 

Merge policy Default value 

code  Description 

Y Record was updated with 2007 HPMS Data 

N Record was not updated with 2007 HPMS Data 

 

  

http://www.globalsecurity.org/military/facility/strahnet.htm
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Table A-20 ClassTable Domain 

Coded value domain ClassCode 

Description Functional class 

Field Type Short Integer 

Split policy  Default value 

Merge policy Default value 

code  Description 

1 Rural Principal Arterial - Interstate 

2 Rural Principal Arterial - Other 

6 Rural Minor Arterial 

7 Rural Major Collector 

8 Rural Minor Collector 

9 Rural Local 

11 Urban Principal Arterial - Interstate 

12 Urban Principal Arterial - Other Freeways and Expressways 

14 Urban Principal Arterial - Other 

16 Urban Minor Arterial 

17 Urban Collector 

19 Urban Local 

  

Table A-21 MonthCode Domain 

Coded value domain MonthCode 

Description month 

Field Type Short Integer 

Split policy  Default value 

Merge policy Default value 

code  Description 

1 January 

2 February 

3 March 

4 April 

5 May 

6 June 

7 July 

8 August 

9 September 

10 October 

11 November 

12 December 
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Table A-22 DayCode Domain 

Coded value domain DayCode 

Description Seven week days 

Field Type Short Integer 

Split policy  Default value 

Merge policy Default value 

code  Description 

1 Monday 

2 Tuesday 

3 Wednesday 

4 Thursday 

5 Friday 

6 Saturday 

7 Sunday 

 

Table A-23 HourCode Domain 

Coded value domain HourCode 

Description 24 hours  

Field Type Short Integer 

Split policy  Default value 

Merge policy Default value 

code  Description 

1 0:00 - 1:00 

2 1:00 - 2:00 

3 2:00 - 3:00 

4 3:00 - 4:00 

5 4:00 - 5:00 

6 5:00 - 6:00 

7 6:00 - 7:00 

8 7:00 - 8:00 

9 8:00 - 9:00 

10 9:00 - 10:00 

11 10:00 - 11:00 

12 11:00 - 12:00 

13 12:00 - 13:00 

14 13:00 - 14:00 

15 14:00 - 15:00 

16 15:00 - 16:00 

17 16:00 - 17:00 

18 17:00 - 18:00 
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19 18:00 - 19:00 

20 19:00 - 20:00 

21 20:00 - 21:00 

22 21:00 - 22:00 

23 22:00 - 23:00 

24 23:00 - 24:00 
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Appendix B: Data Dictionary of FAF
3
 

Attribute 
Domain 

Type 
Description 

ID Integer Unique identifier to link with FAF network arc 

Version Character 
Used for maintaining consistency across data files containing alternate releases of 

the FAF. 

AADT07 Integer 
HPMS annual average daily traffic for year 2007, derived from HPMS 2008 

database. Volume/day/route 

FAF07 Integer 
FAF 3.1 long distance truck volume estimated based on the FAF 3.1 Origin-

Destination truck tonnage and includes empty trucks. Volume/day/route 

NONFAF07 Integer Local truck traffic that is not part of FAF 3.11 O-D database. Volume/day/route 

AADT40 Integer 
Year 2040 forecast Annual Average Traffic Volume estimated using the HPMS 20 

years growth factors and projected to future using linear growth. Volume/day/route 

AADTT40 Integer 
Forecast Annual Average Truck Volume estimated using the HPMS 20 years growth 

factors and projected to future using linear growth. Volume/day/route 

FAF40 Integer 

Year 2040 FAF 3.1 long distance truck volume estimated based on the forecasted 

FAF 3.1 Origin-Destination truck tonnage and includes empty trucks. 

Volume/day/route 

NONFAF40 Integer 
Year 2040 Local truck traffic that is not part of FAF 3.11 O-D database. 

Volume/day/route 

CAP07 Integer 
Link specific peak capacity estimated using the procedures outlined in HCM 2000 

and the arc geometry provided in 2008 HPMS database. Volume/hour/route 

SF07 Integer 
Estimated service flow using the procedures outlined in HCM 2000 and arc 

geometry, FAF truck, non-FAF truck and passenger volume. Volume/hour/route 

VCR07 Real 
2007 estimated volume to capacity ratio, estimated by dividing SF07 with CAP07. 

Unit less 

SPEED07 Real 
2007 estimated peak period link speed, estimated using the procedures outlined in 

HCM 2000 and the arc geometry provided in 2008 HPMS database. miles/hour 

DELAY07 Real 
2007 estimated peak period link delay, estimated using the procedures outlined in 

HCM 2000 and the arc geometry provided in 2008 HPMS database. In hours 

CAP40 Integer 
Link specific peak capacity estimated using the procedures outlined in HCM 2000. 

Volume/hour/route 

VCR40 Real 
2040 estimated volume to capacity ratio, estimated by dividing SF40 with CAP40. 

Unit less 

SPEED40 Real 
2040 estimated peak period link speed, estimated using the procedures outlined in 

HCM 2000. Miles/hour 

DELAY40 Real 
2040 estimated peak period link delay, estimated using the procedures outlined in 

HCM 2000. In hours 
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Appendix C: Annual Congestion Cost per Auto Commuter in Dollar (2008 

Data) 

Urban Area MSA County 

Seattle WA 994 
King County, 

WA 

Pierce 

County, WA 

Snohomish 

County, WA   

Spokane WA 361 
Spokane 

County, WA     

Portland OR-

WA 
716 

Multnomah 

County, OR 

Washington 

County, OR 

Clackamas 

County, OR 

Yamhill County, 

OR 

Columbia County, 

OR 

Salem OR 447 
Marion 

County, OR 

Polk County, 

OR    

Eugene OR 212 
Lane County, 

OR     

Sacramento 

CA 
491 

Sacramento 

County, CA 

Placer 

County, CA 

Yolo County, 

CA 

El Dorado 

County, CA  

Stockton CA 185 
San Joaquin 

County, CA     

San 

Francisco-

Oakland CA 

1020 
Alameda 

County, CA 

Contra Costa 

County, CA 

San Francisco 

County, CA 

San Mateo 

County, CA 
Marin County, CA 

San Jose CA 740 
Santa Clara 

County, CA 

San Benito 

County, CA    

Fresno CA 235 
Fresno 

County, CA     

Bakersfield 

CA 
204 

Kern County, 

CA     

Lancaster-

Palmdale CA 
293 

     

Oxnard-

Ventura CA 
356 

Ventura 

County, CA     

Los Angeles-

Long Beach-

Santa Ana 

CA 

1258 
Los Angeles 

County, CA 

Orange 

County, CA    

Riverside-San 

Bernardino 

CA 

657 
Riverside 

County, CA 

San 

Bernardino 

County, CA 
   

Indio-

Cathedral 

City-Palm 

Springs CA 

277 
     

San Diego 

CA 
856 

San Diego 

County, CA     

Others/Urban 180 
     

Others/Rural 90 
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Appendix D: Rural Counties 

Stevens County, Washington 

Okanogan County, Washington 

Jefferson County, Washington 

Pacific County, Washington 

Klickitat County, Washington 

Adams County, Washington 

San Juan County, Washington 

Pend Oreille County, Washington 

Lincoln County, Washington 

Ferry County, Washington 

Columbia County, Washington 

Wahkiakum County, Washington 

Garfield County, Washington 

Lincoln County, Oregon 

Tillamook County, Oregon 

Jefferson County, Oregon 

Baker County, Oregon 

Lake County, Oregon 

Grant County, Oregon 

Harney County, Oregon 

Wallowa County, Oregon 

Gilliam County, Oregon 

Sherman County, Oregon 

Wheeler County, Oregon 

Calaveras County, California 

Siskiyou County, California 

Amador County, California 

Glenn County, California 

Colusa County, California 

Plumas County, California 

Mariposa County, California 

Mono County, California 

Trinity County, California 

Modoc County, California 

Sierra County, California 

Alpine County, California 

 

 


