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ABSTRACT 

Preservation and or restoration of riverine ecosystem requires quantification of alterations inflicted 

by water resources development projects. Long records of streamflow data are the first piece of 

information required in order to enable this analysis. Ungauged catchments located within data-

scarce regions lack long records of streamflow data. In this dissertation, a multi-objective 

framework named Streamflow Prediction under Extreme Data-scarcity (SPED) is proposed for 

streamflow prediction in ungauged catchments located within large-scale regions of minimal 

hydrometeorologic observation. Multi-objective nature of SPED allows for balancing runoff 

efficiency with selection of parameter values that resemble catchment physical characteristics. 

Uncertain and low-resolution information are incorporated in SPED as soft data along with sparse 

observations. SPED application in two catchments in southwestern China indicates high runoff 

efficiency for predictions and good estimation of soil moisture capacity in the catchments. SPED 

is then slightly modified and tested more comprehensively by application to six catchments with 

diverse hydroclimatic conditions. SPED performance proves satisfactory where traditional flow 

prediction approaches fail. SPED also proves comparable or even better than data-intensive 

approaches. Utility of SPED versus a simpler catchment similarity model for the study of flow 

regime alteration is pursued next by streamflow prediction in 32 rivers in southwestern China. The 

results indicate that diversion adversely alters the flow regime of the rivers while direction and 

pattern of change remain the same regardless of the flow prediction method of choice. However, 

the results based on SPED consistently indicate more substantial alterations to the flow regime of 

the rivers after diversion. Finally, the value added by a limited number of streamflow observations 

to improvement of predictions in an ungauged catchment located within a data-scarce region is 
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studied. The large number of test scenarios indicate that there may be very few near-universal 

schemes to improve flow predictions in such catchments.  
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

1.1 Problem Statement and Literature Review 

Similar to well-gauged catchments, ecosystem of ungauged catchments located within data-scarce 

regions of the world may undergo substantial stress levels and alterations as a result of deployment 

of water resources development projects. Analysis and quantification of these alterations is a 

necessity in order to identify appropriate schemes to preserve and or restore the riverine ecosystem. 

Since riverine ecosystem is highly dependent on natural flow regime of the river (Bunn and 

Arthington, 2002), a thorough impact analysis will not be achieved without a complete assessment 

of flow regime alterations (Matos et al., 2010; Wang et al., 2016a). Thus, a sufficiently long record 

of natural streamflow in a river is the first piece of information required for analyzing the impacts 

of development projects. Such long-term records of streamflow data are also advantageous, for 

instance, in the planning phase of development projects as well as multiple other tasks such as 

allocation of water among competing users. Today many rivers in the world still remain ungauged 

and evidence suggests that globally the number of hydrologic monitoring stations is decreasing 

rather than growing in recent decades (Fekete and Vörösmarty, 2007; Fekete et al., 2012). In the 

absence of observed data, alternative approaches are required to simulate and estimate streamflow 

in ungauged basins. While comprehensive research has taken place in the field of flow prediction 

(e.g., Seibert and McDonnell, 2002, 2013; Song et al., 2016; Heřmanovský et al., 2017), prediction 

in smaller catchments within vast areas of minimum hydrometeorologic observation has received 

little attention from researchers. This, however, does not resonate with the large amount of human 

interventions/developments in these smaller catchments (Kibler and Alipour, 2017). Besides lack 

of observed streamflow data, other hydroclimatological observations, such as precipitation and 
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temperature, might be scarce in such regions as well so low-resolution regional/global databases 

or remotely-sensed data, which are associated with high uncertainties, may be the only source of 

available data in some of these catchments. 

Once streamflow prediction has been enabled, analysis of flow regime alterations can be carried 

out within ungauged catchments. In particular, diversion hydropower is one type of development 

that has largely taken place in small catchments of the world (Kibler and Tullos, 2013; Fantin-

Cruz et al., 2015; McManamay et al., 2016). Many of these projects are implemented in steep 

catchments located in remote mountainous areas which are not equipped with flow measurement 

devices (Narula, 2012; Li et al., 2013; Tuna, 2013). While flow regime alterations due to river 

impoundment/regulation have largely been studied by researchers around the world (e.g., Timpe 

and Kaplan, 2017; Batalla et al. 2004; Ngor et al., 2018), evaluation and quantification of the 

impacts of diversion hydropower projects on natural flow regime of the smaller rivers has only 

recently received attention from the research community (Anderson et al., 2015; Fantin-Cruz, 

2015; Gibeau et al., 2016; Kibler and Alipour, 2017). 

1.1.1 Prediction in Ungauged Basins (PUB) 

PUB research has recently been an area of significant attention from hydrologists around the world 

through initiatives of the International Association of Hydrological Sciences (PUB Decade 2003-

2012 and the ongoing Panta Rhei Decade 2013-2022). Such initiatives were considered partly as 

a response to the desire that process understanding and model structural diagnostics replace 

parameter fitting as the focus of hydrologic research (Hrachowitz et al., 2013). Through 

completion of the first PUB Decade in 2012, progress was made with respect to multiple aspects 
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of flow prediction and a synthesis framework was proposed as a platform for prediction in 

ungauged basins. The framework recognizes that catchments are complex and diverse systems, 

wherein distinct hydrologic response signatures manifest as a results of varied streamflow 

generation processes (see Blöschl et al. 2013). The framework emphasizes the role of comparative 

hydrology as an effective tool for learning about catchment functionality through analysis of 

similarities, for instance with respect to physical characteristics or runoff signatures. Such 

hydrologic similarities may be employed for predicting streamflow in ungauged catchments 

(Wagener et al. 2013). While the framework forms a strong foundation upon which practical 

applications may develop, prescriptive methods to bridge research advancements and practice in 

genuinely ungauged catchments may make such advances more accessible to water managers in 

poorly-gauged regions. Without prescriptive methods, routine application of hydrologic modeling 

to prediction within severely data-scarce regions faces several barriers (Hughes 2016, Koutsouris 

et al. 2017, Tegegne et al. 2017). Water resources managers in these regions may struggle to 

overcome severe challenges, including: over-calibration of models (i.e., when the identified 

optimum parameter set over the calibration period is not the optimum set over a different period; 

Andréassian et al., 2012; Bardossy et al., 2016; Gelfan et al., 2015); equifinality of potential 

models (i.e. when many different parameter sets perform equally well at reproducing an output 

signal; Beven, 1993, 2006; Savenije, 2001); great uncertainty in available information for 

constraining parameter values (Merz et al., 2009; 2011); limited availability of gauged reference 

catchments and thus potential for hydrologic dissimilarity to ungauged catchments (Peñas et al. 

2014); and lack of observed streamflow data for validation of predictions in ungauged catchments 

(van Emmerik et al. 2015). 
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A prescriptive method should be based on simplicity and avoid excessive parameterization or 

calibration (Ajmal et al., 2015; Skaugen et al., 2015). Over-parameterization and or over-

calibration of hydrologic models may lead to misrepresentation of processes contributing to 

streamflow generation (Kirchner, 2006; Archibald et al., 2014). As an example, Gharari et al. 

(2013) suggested a practical approach to reduce over-calibration by studying calibration 

performance over different sub-periods so that time-consistent parameters could be identified 

(Gharari et al.,2013; Brigode et al., 2015). A prescriptive method should also at least partially 

address the equifinality problem. Equifinality is often a problem when the selected hydrological 

model has large parameter spaces and high parameter interdependence so that many parameter sets 

may be identified as behavioral (Arsenault and Brissette, 2014; Poissant et al, 2017). Utilizing 

simple hydrological models with a few parameters can help reduce equifinality (Arsenault and 

Brissette, 2014). Several other approaches have been proposed for reduction of equifinilaity as 

well (Lüdtke et al., 2014; Ford et al., 2017; Kelleher et al., 2017). Accounting for uncertainties in 

the available data and information for constraining parameter values is another important quality 

for a prescriptive hydrological model. Many approaches have been devised/employed to address 

modeling uncertainties (e.g., Renard et al., 2010; Spence et al., 2013; Zhang et al., 2016). Melching 

(1995) reviewed the uncertainty sources in hydrological modeling and the methods for addressing 

these uncertainties. Robustness to some level of catchment dissimilarity is another characteristic 

desired for a prescriptive hydrological model. Wagener et al. (2007) introduced the need for a 

catchment classification framework as a starting point to identify hydrologically similar reference 

catchments to ungauged target catchments. Such a framework would require the global hydrologic 

community to create a database of gauged catchments classified according to the framework and 
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its associated metrics. Meanwhile, multiple researchers have proposed measures for quantifying 

dissimilarity between catchments (e.g., McIntyre et al., 2004; 2005; Fry et al., 2013). Hydrologic 

modeling within data-scarce regions with a limited selection of gauged reference catchments (may 

consist of only one gauged catchment) is particularly prone to catchment dissimilarity. Finally, 

alternative methods for validation of predictions in ungauged catchments is another important 

feature desired for a prescriptive hydrological model. Validation in genuinely ungauged 

catchments is a challenging task that has received only little attention from the research community 

(van Emmerik et al., 2015). van Emmerik et al. (2015) argued that creativity and in-depth 

knowledge of the local hydrology should be utilized to find validation data other than observations 

from gauging stations. Inclusion of soft data in hydrological modeling can facilitate introduction 

of other criteria besides runoff efficiency in calibration and validation phases (Seibert and 

McDonnell, 2002; Parajka et al., 2007a; Rinderer and Seibert, 2012; Seibert and McDonnell, 2013; 

Arnold et al., 2015). By incorporation of multiple criteria in model validation, dependency on 

observed streamflow data for validation is lowered.  

1.1.1.1 Regionalization 

A large number of streamflow prediction studies and methods are founded upon regionalization 

concepts. Regionalization is enabled through using a regional hydrologic network for development 

of relationships between a hydrologic model parameters and catchment characteristics and or 

runoff signatures (Zhang et al. 2008, Yadav et al. 2007). Such regionalization of model parameters 

has been implemented widely and proven efficient for streamflow prediction over vast regions 

(e.g., McIntyre et al., 2005; Parajka et al., 2005; Eng et al, 2007; Parajka et al., 2007a; Post, 2009; 



6 
 

Samaniego et al., 2010; Samuel et al., 2011; Wang et al., 2012; Kult et al., 2014; Ibrahim et al., 

2015; Heřmanovský et al., 2017; Swain and Patra, 2017; He et al. (2011); Razavi and Coulibaly 

(2012) provide a review of such techniques). The results of regionalization are often acceptable, 

but performance may vary over scales and location within the region of interest (e.g., Kult et al., 

2014). Several studies have evaluated and compared the performance of various regionalization 

techniques. For instance, Vandewiele and Elias (1995) used two different regionalization 

techniques, including kriging and using parameter values from only a limited number of 

neighboring basins, to estimate monthly water balance in 75 basins in Belgium. The kriging 

method performed well in 72% of the catchments analyzed while regionalization with a limited 

number of neighboring basins presented a good performance only in 44% of the catchments. Oudin 

et al. (2008) compared three classical regionalization techniques, including regression, spatial 

proximity, and physical similarity, to estimate daily streamflow over 913 catchments in France 

using two lumped rainfall-runoff models. The results indicated that spatial proximity had the best 

performance followed by physical similarity and regression. Merz and Blöschl (2004) had a similar 

observation where analysis of 308 catchments in Austria illustrated that the best regionalization 

techniques were regionalization by kriging as well as using the average parameter values from 

immediate upstream and downstream neighbors. Parajka et al. (2005) analyzed multiple 

regionalization techniques (based on local/global averaging, spatial proximity, regression, and 

similarity) in 320 Austrian catchments, and found that kriging based on spatial correlation 

performed among the two best methods. Arsenault and Brissette (2014) also compared the three 

common regionalization techniques, including multiple linear regression, spatial proximity and 

physical similarity, for calibrating a conceptual model (HSAMI; Fortin, 2000) to estimate 



7 
 

streamflow in 268 basins in Quebec. The results were similar to the previous studies, and it was 

found that four to seven donor catchments were required to achieve optimal performance in 

regional calibration of the conceptual model used.  

The fact that spatial proximity methods were found among the best techniques in all these studies 

hints at how important the density of a network of gauged catchments might be to the success of 

regionalization techniques. The results, thus, provide insight into some of the intrinsic deficiencies 

and limitations of regionalization techniques such as high dependence on the density of gauged 

catchments (Oudin et al. 2008, Parajka et al. 2015; Lebecherel et al., 2016). Robustness of 

regionalization techniques based on spatial proximity to the density of the network of gauged 

catchments was further analyzed and compared using two different methods by Lebecherel et al. 

(2016). The robustness assessment methods included the hydrometrical random reduction 

(HRand) and the hydrometrical desert method (HDes). HRand is based on random thinning of a 

hydrometrical network while HDes is based on progressive exclusion of the closest donor 

catchments. Application of these two methods over a dataset of 609 small to medium-size 

catchments in France indicated that HDes is a more conservative approach as it results in the fastest 

decrease in model efficiency. Thus, HDes is recommended over HRand for providing a more 

realistic (though more pessimistic as well) view on robustness of spatial proximity regionalization 

to the density of gauging stations. 

Despite the promise and wide application of regionalization techniques, it was clarified that the 

density of available gauging stations in the region surrounding a particular catchment of interest 

(target catchment) highly influences the reliability of streamflow predictions (Oudin et al. 2008, 

Parajka et al. 2015; Lebecherel et al., 2016). Data sparsity can also lead to introduction of higher 
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levels of catchment dissimilarity since it makes it harder to find similar reference catchment(s) to 

target catchment(s). Thus, applicability of regionalization methods may be limited in areas where 

densities of climatic/hydrologic monitoring are (far) below the recommendations of World 

Meteorological Organization (WMO, 2008). WMO has recommended minimum densities for 

climatic/hydrologic monitoring given physiographic units (Table 1). This minimum network is 

intended to avoid serious deficiencies in water resources management on a scale corresponding to 

the overall level of economic development and environmental needs of a country. After this 

minimum network density has been established, general hydrological characteristics such as 

rainfall and runoff can be estimated through regionalization. Although these recommendations can 

be understood as minimum recommended densities for basic management functions (e.g. long-

term water resources planning), even this minimal level of coverage has not been achieved in many 

areas of the world (Kundzewicz, 1997; Mishra and Coulibaly, 2009). For instance, 65% of 

mountainous basins do not meet the WMO recommendations (Perks et al. 1996). While quality of 

a regionalization model can lower the required density, evidence suggests that globally the number 

of hydrologic monitoring stations is decreasing rather than growing in recent decades (Fekete and 

Vörösmarty, 2007; Fekete et al., 2012). Therefore, alternative methods are required for streamflow 

prediction in ungauged catchments within vast areas of minimal data. An alternative modeling 

approach in such cases must rely on the existing data, including regional/global data, and be robust 

to the extensive uncertainty inherent in sparse and low-resolution data. It should also be robust to 

some level of catchment dissimilarity. 
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Table 1. Recommended minimum densities of stations for developing regional hydrological 
relationships (area in km2 per station; WMO, 2008) 

Physiographic 

unit 

Precipitation Evaporation Streamflow Sediments Water 

quality Non-

recording 

Recording 

Coastal 900 9,000 50,000 2,750 18,300 55,000 

Mountains 250 2,500 50,000 1,000 6,700 20,000 

Interior plains 575 5,750 5,000 1,875 12,500 37,500 

Hilly/undulating 575 5,750 50,000 1,875 12,500 47,500 

Small islands 25 250 50,000 300 2,000 6,000 

Urban areas - 10-20 - - - - 

Polar/arid 10,000 100,000 100,000 20,000 200,000 200,000 

1.1.1.2 Multi-Objective Hydrological Modeling 

Multi-objective calibration of hydrologic models has been established as an approach to lowering 

modeling uncertainties and developing a more realistic portrayal of hydrologic mechanisms 

(Madsen, 2000; Ajami et al., 2004; Fenicia et al., 2007; Parajka et al., 2007b, Khu et al., 2008; 

Shafii and Smedt, 2009; Zhou et al., 2014; Wang and Brubaker, 2015; Efstratiadis and 

Koutsoyiannis (2010) provide a review of such techniques). Whether modeling is performed using 

a conceptual model (e.g., Le and Nguyen, 2018), a physically distributed model (e.g., Shrestha and 

Rode, 2008), or even a regionalization technique (e.g., Zhang et al., 2008), there is opportunity to 

incorporate multiple criteria in the objective function of the calibration problem. Some of the early 

research in this area was conducted by Yapo (1996) and Yapo et al. (1998). Yapo (1996) developed 
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a new multi-objective optimization algorithm and used it to calibrate the Soil Moisture Accounting 

model of the National Weather Service River Forecasting System in Leaf River Watershed near 

Collins, Mississippi. This was carried out twice, once by taking daily root mean square and 

heteroscedastic maximum likelihood estimator as the two objectives of the problem and once by 

matching the rising and falling limbs of the hydrograph as the two objectives of the problem. This 

study was important since it illustrated the possibility of inclusion of more than a single objective 

in efficient model calibration. 

Incorporation of fuzzy theory and ‘soft’ data (i.e., data associated with high uncertainties) in multi-

objective calibration of hydrological models has been pursued by several researchers in order to 

account for problem uncertainties and utilize qualitative knowledge in model calibration. For 

instance, Yu and Yang (2000) set the mean absolute percent error (MPE) of 11 different flow 

stages as their objectives and prioritized the objectives by their fuzzy membership functions. The 

authors applied their method to Gao-Ping Creek in Taiwan using the Hydrologiska Byråns 

Vattenbalansavdelning (HBV) hydrological model (Bergström, 1976). The fuzzy multi-criteria 

objective function proved better than a single RMSE (Root Mean Squared Error) or MPE. Yang 

et al. (2004) created a fuzzy multi-criteria objective function consisting of three hydrograph 

characteristics including time to peak flow, peak flow, and total runoff volume. They applied their 

method to estimation of streamflow in Pa-Chang Creek in Taiwan. The results indicated that their 

multi-criteria objective function, which used only partial information from the hydrograph, was 

comparable to a single-criterion objective function (weighted root-mean square error) which used 

the entire hydrograph for calibration. In another interesting study, Seibert and McDonnell (2002) 

combined soft data, in the form of qualitative information from experimentalists, with traditional 
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goodness of fit criteria to form a multi-criteria objective function for the Maimai catchment in New 

Zealand. Calibration results indicated that inclusion of soft data slightly lowered the goodness of 

fit of the estimations to observations. However, estimated parameter values provided a better 

overall performance than the traditionally estimated parameter values. The authors argued that 

reduction of parameter uncertainty through introduction of soft data and providing a more realistic 

representation of catchment phenomena should be favorable to methods based only on goodness 

of fit to observations; arguing that less accurate answers for the right reasons should be preferable 

to right answers for the wrong reasons. Among more recent works that take advantage of fuzzy 

theory for hydrologic model calibration, Kamali and Mousavi (2014) performed fuzzy multi-

objective calibration of HEC-HMS hydrologic model (USACE, 2008) to estimate flood in the 

Tamar basin in Iran. Four objectives, including RMSE, flood volume, time to peak, and peak flow, 

were considered. Two different multi-criteria objective functions, each consisting of three 

objectives, and a single-criterion objective function were evaluated. The fuzzy multi-objective 

calibrated model proved better than the single-objective model in estimating flood magnitude. 

As an example of a hydrological model that has been extensively evaluated by researchers for 

multi-objective calibration, the process-based and semi-distributed Soil and Water Assessment 

Tool (SWAT) can be named. Confesor and Whittaker (2007) used a multi-objective optimization 

algorithm for automatic calibration of SWAT, and generated daily streamflow data for the 

Calapooia River watershed in Oregon. The objectives taken into account included RMSE of peak 

flows as well as RMSE of low flows. The modeling results indicated Nash-Sutcliff efficiencies 

(NSEs) of 0.86 and 0.81 respectively for calibration and validation periods. Muleta and Nicklow 

(2005) performed a two-stage calibration of SWAT to optimize streamflow and sediment 
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concentration estimations in Big Creek watershed. Parameter screening (for example, through 

estimating the value of some parameters using field data) was performed first to reduce the number 

of calibrable parameters of SWAT. Parameter estimation was then performed using a genetic 

algorithm. While the calibration results indicated considerable improvement over default 

simulations and previous works, the verification results were poor for both streamflow and 

sediment concentration. Bekele and Nicklow (2007) also performed estimation of streamflow and 

sediment concentration in Big Creek watershed using SWAT. Two different calibration scenarios 

were considered, once by fitting different portions of the streamflow time series using relevant 

objective functions and once by calibrating the model to two gauging stations in the watershed. 

The results indicated better performance by the second scenario. However, validation results were 

poor most probably due to the short period of data used for calibration. Rajib et al. (2016) 

calibrated SWAT in two watersheds in Indiana, The Upper Wabash and Cedar Creek, by 

incorporating spatially distributed data on soil moisture. Incorporation of these remotely sensed 

data improved simulation of surface soil moisture. Streamflow estimates as well as root zone soil 

moisture simulations made substantial improvement when root zone soil moisture estimates from 

limited field sensor data were incorporated as well. 

A promising direction for improved representation of catchment function within models might be 

the incorporation of a priori parameter estimates/distributions in the multi-objective calibration of 

hydrological models (Parajka et al. 2007b). However, extensive observed data has normally been 

an important requirement for multi-objective techniques based on a priori parameter estimates. 

Thus, methods for streamflow prediction in ungauged catchments within regions of minimal 

available data are lacking. Merz et al. (2009, 2011), for instance, constrained model parameters to 
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pre-defined Beta distribution functions to form their multi-objective calibration technique. The 

proposed technique was applied to a large number of gauging stations in Australia. Formation of 

the a priori parameter distributions was carried out based on observed catchment-specific data 

including previous local modeling experiments. This makes similar application of the proposed 

method very difficult, if not impossible, in remote catchments of a data-scarce region where 

available data and previous modeling experiments are so rare that there is no basis for a priori 

estimation of parameter distributions. Thus, estimating a priori parameter distributions, which may 

significantly improve modeling, is an additional challenge to streamflow prediction in data-scarce 

regions. 

1.1.1.3 Gauging the Ungauged Catchment 

Supporting the streamflow predictions in an ungauged catchment through taking a few runoff 

measurements in the ungauged catchment itself is a topic that has been studied by researchers 

recently and proven promising in improving accuracy of predictions (Rojas-Serna et al., 2006; 

Perrin et al., 2008; Juston et al., 2009; Seibert et al., 2015; Westerberg et al., 2013; Drogue and 

Plasse, 2014). Perrin et al. (2007) studied 12 catchments in the United States for calibration using 

only a limited number of streamflow measurements. They found that 350 daily measurements 

randomly selected from a longer dataset including both wet and dry conditions were sufficient to 

provide robust estimations of parameter values. Seibert and Beven (2009) studied potential 

improvements to streamflow prediction within 11 catchments in a region of Sweden through 

constraining the HBV hydrological model using different subsets of observed streamflow in each 

catchment. For this purpose, randomly selected daily observations of 1, 2, 4, 8, 16, 32, 64, 128, 
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and 256 days were tested in each year within a 10-year period. The results indicated that ensemble 

predictions by utilizing the weighted mean of simulations from acceptable parameter sets 

outperformed predictions generated through using only the best parameter set. It was also found 

that good results could be achieved using only little observed runoff data, however this varied 

significantly between the catchments and depending on the days chosen for measurements. Seibert 

and McDonnell (2013) further incorporated limited runoff measurements as well as soft data in 

the calibration process of a simple conceptual hydrological model in Maimai watershed in New 

Zealand. The authors found that constraining the model using 10 observations during high flow 

was on par with doing so using three months of continuously measured streamflow. Finally, 

Viviroli and Seibert (2015) studied the combination of parameter regionalization with limited 

runoff measurements for streamflow prediction in 49 catchments in Switzerland. The results 

indicated different behavior for catchments dominated with either or both snow melt and ice melt 

versus catchments dominated by rainfall. Modeling in the former showed significant 

improvements with only a couple of measurements during spring or summer while modeling in 

the latter showed only moderate improvements without any season being particularly suitable for 

taking measurements. 

While these studies have introduced a new direction in order to improve streamflow predictions in 

ungauged catchments, some of the proposed methods do not account for a number of inherent 

limitations faced within data-scarce regions. These limitations include presence of only one 

partially similar reference catchment to the ungauged catchment(s) of interest as well as little 

knowledge about hydrograph behavior to choose event-based days for measurements. Moreover, 

in a real-world scenario it is likely that collection of measurements in the ungauged catchment of 
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interest is only possible during a short period prior to implementation of modeling and generating 

the required streamflow data. These concerns justify a study that evaluates the potential of limited 

measurements in ungauged catchments for improvement of predictions in the context of data-

scarce regions with their inherent limitations. 

1.1.2 Flow Regime Alteration 

Study of flow regime alteration and design of environmental flows, especially in remote small 

steep catchments of the world developed with projects such as diversion hydropower, requires 

robust flow prediction techniques. Thus, it provides a platform to further test the performance and 

applicability of the streamflow prediction approach proposed in this study. Flow regime of a river 

is important since it shapes the composition, structure, and functionality of aquatic, wetland, and 

riparian ecosystems (Poff and Ward, 1990; Richter et al., 1996; Bunn and Arthington, 2002; Scott 

et al., 2005). Unsurprisingly, many researchers have focused on the study of flow regime 

alterations in order to analyze and/or quantify the impacts of human interventions on riverine 

ecosystems (e.g. Doyle et al., 2005; Merritt and Poff., 2010; Poff and Zimmerman (2010) provide 

a review of such techniques). Among these studies, pioneering work by Poff et al. (1997) and 

Richter et al. (1996) led to frameworks for systematically quantifying flow regime alterations (e.g. 

Indicators of Hydrologic Alteration (IHA) (The Nature Conservancy website, 2017; Richter et. al, 

1997; Mathews & Richter, 2007)). The IHA model is based on analysis of alterations of vital flow 

characteristics as a result of some change in a river such as human interventions. These vital flow 

characteristics are the five main characteristics of flow regime including magnitude, frequency, 

timing, duration and rate of change of flow (Poff et al. 1997). Accordingly, 32 ecologically relevant 
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descriptors of flow are considered, each associated with one or more of the five vital flow 

characteristics. These indices are calculated for each year within pre- and post-impact periods, and 

their measures of central tendency and dispersion are determined to identify percent deviations 

from pre- to post-impact period. This provides quantitative indication of how much the flow 

regime of a river and its vital characteristics have changed as a result of a development project 

such as diversion hydropower. 

One of the best-known human interventions in river flow regime is through dam construction and 

operation. The role of dams in altering river flow regime has been studied widely by researchers 

(Batalla et al. 2004; Chen et al., 2010; Taylor et al. 2014; Mwedzi et al. 2016; Sojka et al. 2016; 

Wang et al. 2016a; Timpe and Kaplan 2017; Ngor et al., 2018). Zhang et al. (2018) used the IHA 

“eco-flow” regime metrics to identify long term variations of inflow and outflow series in the 

Chaishitan Reservoir in China. The authors identified the impact patterns due to reservoir 

regulation and hypothesized that the patterns are variable over time. Rheinheimer and Viers (2015) 

utilized only four flow metrics to test flow alterations due to dam regulation under future climatic 

conditions in the Sierra Nevada. They found that dam regulation altered the flow regimes much 

more significantly than climate warming. Pringle et al. (2000) identified imperilment of migratory 

fish, imperilment of small-bodied riverine taxa, reduction and imperilment of taxa dependent on 

flooding or freshwater inflows to estuarine habitats, and increase in exotic and lentic-adapted 

species as the prominent examples of ecological impacts of flow alterations, mainly as a result of 

dams, in temperate and tropical regions of North and South America and the Caribbean. Poff et al. 

(2007) quantitatively showed that dams had homogenized the flow regimes of intermediate-sized 

(third- to seventh-order) rivers in 16 historically distinctive hydrologic regions in the United States. 
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Petts and Gurnell (2005) analyzed the consequences of flow alteration by dams through studying 

sediment transport and channel morphology, and reviewed the advancements made in this field. 

1.1.2.1 Diversion Hydropower 

Diversion hydropower (McManamay et al., 2016; Kibler and Alipour, 2017) is a type of 

hydropower generation project that requires diversion of water from a river into a hydropower 

generation station. Small to moderate, steep river catchments located in remote mountainous areas 

have been the primary location for diversion hydropower projects (Narula, 2012; Li et al., 2013; 

Tuna, 2013). Diversion dams or weirs are often built high in such catchments and create 

impoundments to withdraw water. Water then flows through low-gradient pipes or canals to a 

forebay. From forebay, water drops through pressurized, high-gradient penstocks to a power 

generation station. Water that exits the tailrace returns either to the river of its origin or to a 

different river (Fig. 1). Therefore, flow alterations are likely to happen in the reaches between the 

dam and tailrace (Kibler and Alipour, 2017). While flow regime alterations as a result of larger 

dams has been well studied and recognized, evaluation and quantification of the impacts of 

diversion hydropower on natural flow regime of smaller rivers has received only little attention 

from the research community (Kibler and Tullos, 2013; Kibler and Alipour, 2017). This is 

probably associated with the assumption that diversion hydropower projects have little to no 

impact on riverine flow regime and ecosystem (Gibeau et al., 2016). To prove this assumption 

potentially wrong, quantitative comparisons between large storage systems without diversion 

versus cumulative impacts of diversion systems have shown that there is potential for greater 

environmental impact from diversion systems (Gleick, 1992; Kibler and Tullos, 2013). Recent 
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studies have also shed light on the fact that diversion hydropower projects can substantially alter 

the natural flow regime of the reaches that are located downstream of impoundment/diversion and 

endanger the riverine ecosystem (Kibler and Tullos, 2013; Anderson et al., 2015; Fantin-Cruz et 

al., 2015; Wang et al., 2016b). 

 

Figure 1. A schematic of diversion hydropower (Kibler and Alipour, 2017) 
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Diversion hydropower projects may often also be called run-of-river (ROR) hydropower. 

Anderson et al. (2015) reviewed the published literature on ROR to highlight the physical and 

ecological alterations caused by these projects. In terms of flow alteration, impacts mainly affected 

riverine habitat and connectivity. Reduction of lotic habitat, changes in habitat availability and 

water chemistry, and reduction in habitat complexity were among the reported impacts on riverine 

habitat while disruption of longitudinal connectivity and hindering upstream and downstream 

migration of fish species were among the reported impacts on connectivity. Another study by 

Fantin-Cruz et al. (2015) used the IHA model as well as flow duration curves to analyze flow 

regime alterations caused by a diversion hydropower facility on the Correntes River in Brazil. The 

authors found that besides changes in the seasonal regime, which was revealed by the flow duration 

curves, seven IHA metrics had significantly changed. Kibler and Alipour (2017) analyzed 32 

developed rivers by such diversion hydropower projects in southwestern China. The results 

indicated that in terms of magnitude, low to moderate flows were highly altered across all rivers 

(e.g. mean annual flows decreased by a mean of 76 ± 12%). High flow duration decreased by a 

mean of 1.27 days across the rivers while low flow duration increased by a mean 8-fold degree 

from 3 days before alteration to 27 days after that. Flow constancy highly increased after diversion 

(a mean increase of 184 ± 49%) so that a static minimal flow replaced temporally dynamic low 

and moderate flows. The results also indicated sharper rates of change for flow after alteration as 

well as lower frequency of high flows.  

Reliable flow prediction techniques in small steep ungauged catchments, suitable for diversion 

hydropower, can highly facilitate conduction of similar studies focused on the tradeoff between 

development and ecosystem function in other affected catchments. This at the same time can 
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provide a great way to present the potential utilities of a flow prediction method and any 

improvements it might offer. For instance, Kibler and Alipour (2017) applied a catchment 

similarity model (Falkenmark & Chapman, 1989) to their 32 study rivers for streamflow 

prediction. Catchment similarity is based on the assumption that hydrologic routing processes are 

fully similar between a gauged reference catchment and ungauged target catchment(s) of interest. 

Clearly, streamflows predicted under this assumption may be associated with high levels of 

uncertainty in particular when you perform the analysis in a remote region where the choice of 

gauged reference catchments is limited to only one partially similar catchment. We noted before 

that many diversion hydropower projects are implemented in small, steep catchments located in 

remote mountainous areas, which are not equipped with flow measurement devices (Narula, 2012; 

Li et al., 2013; Tuna, 2013). This makes availability of similar gauged reference catchments very 

limited within these regions and consequently flow prediction and analysis of flow regime 

alterations becomes highly difficult. In addition, other hydrometeorological data such as 

precipitation and temperature are often scarcely measured within these remote regions as well. 

Therefore, a streamflow prediction approach suited to such severely data-scarce regions is required 

to enable the study of flow regime alterations due to diversion hydropower and may highly 

improve the accuracy of such studies. 
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CHAPTER 2:  
A FRAMEWORK FOR STREAMFLOW PREDICTION IN THE WORLD’S 

MOST SEVERELY DATA-LIMITED REGIONS: TEST OF APPLICABILITY 
AND PERFORMANCE IN A POORLY-GAUGED REGION OF CHINA 

2.1 Preface 

This chapter describes development of Streamflow Prediction in Extreme Data-scarcity (SPED) 

framework and test of its applicability in two catchments located in southwestern China. The 

content of this chapter has been published in Journal of Hydrology1. 

2.2 Abstract 

A framework methodology is proposed for streamflow prediction in poorly-gauged rivers located 

within large-scale regions of sparse hydrometeorologic observation. A multi-criteria model 

evaluation is developed to select models that balance runoff efficiency with selection of accurate 

parameter values. Sparse observed data are supplemented by uncertain or low-resolution 

information, incorporated as ‘soft’ data, to estimate parameter values a priori. Model performance 

is tested in two catchments within a data-poor region of southwestern China, and results are 

compared to models selected using alternative calibration methods. While all models perform 

consistently with respect to runoff efficiency (NSE range of 0.67 - 0.78), models selected using 

the proposed multi-objective method may incorporate more representative parameter values than 

those selected by traditional calibration. Notably, parameter values estimated by the proposed 

                                                            
1 Alipour, M.H., Kibler, K.M., 2018. A framework for streamflow prediction in the world’s most 
severely data-limited regions: Test of applicability and performance in a poorly-gauged region of 
China. Journal of Hydrology, 557, pp.41-54. 
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method resonate with direct estimates of catchment subsurface storage capacity (parameter 

residuals of 20 and 61 mm for maximum soil moisture capacity (𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚), and 0.91 and 0.48 for soil 

moisture distribution shape factor (𝐵𝐵); where a parameter residual is equal to the centroid of a soft 

parameter value minus the calibrated parameter value). A model more traditionally calibrated to 

observed data only (single-objective model) estimates a much lower soil moisture capacity 

(residuals of 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 475 and 518 mm and 𝐵𝐵 = 1.24 and 0.7). A constrained single-objective model 

also underestimates maximum soil moisture capacity relative to a priori estimates (residuals of 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 246 and 289 mm). The proposed method may allow managers to more confidently transfer 

calibrated models to ungauged catchments for streamflow predictions, even in the world’s most 

data-limited regions. 

2.3 Introduction 

Prediction of streamflow in ungauged catchments is surrounded by uncertainty, and is thus a 

challenging, yet vital task for water managers. Substantial advancements to the science of flow 

prediction have been made, for instance through initiatives of the International Association of 

Hydrological Sciences Prediction in Ungauged Basins (PUB) Decade 2003-2012. The emergent 

framework synthesized from the first PUB Decade acknowledges catchment complexity and 

diversity, as well as hydrological response signatures, and highlights the importance of 

comparative hydrology for prediction in ungauged basins (see Blöschl et al., 2013). While this 

forms a strong foundation upon which practical applications may develop, prescriptive methods to 

bridge research advancements and practice may make such advances more accessible to water 

managers. Specific approaches to avoid and address pervasive flow prediction pitfalls such as 
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over-calibration of models (Andréassian et al., 2012; Kirchner, 2006) and equifinality (Beven, 

1993, 2006) are needed. Without such methods, ad hoc and less comprehensive methods may be 

adopted in practice (Efstratiadis et al., 2014; van Emmerik et al., 2015), especially in data-limited 

regions, where simple water balance methods may outperform rainfall-runoff models (Chiew, 

2010).   

Many flow prediction approaches utilize regional hydrologic networks to estimate streamflow in 

ungauged rivers. Such regionalization of model parameters has been applied widely and proven to 

be an efficient method for prediction over large spatial areas (e.g. Ibrahim et al., 2015; Parajka et 

al., 2007a; Wang et al., 2012). For instance, Arsenault and Brissette (2014) compared three 

common regionalization techniques for predicting streamflow in 268 basins in Quebec, finding 

that approaches based on physical similarity performed the best. Kult et al. (2014) then modeled 

the relationship between physical characteristics and hydrologic response in 163 watersheds in the 

Great Lakes basin through regionalization based on multiple linear regression and regression tree 

analysis. The authors achieved satisfactory model performance (median NSE of 0.53) for their 62 

validation watersheds without use of a rainfall–runoff model. Despite the promise of 

regionalization techniques, density of available gauging stations in the region surrounding a 

particular catchment of interest (target catchment) influences reliability (Oudin et al., 2008; 

Parajka et al., 2015). Thus, methods based on regionalization may be limited in areas where 

densities of climatic/hydrologic monitoring are (far) below the recommendations of World 

Meteorological Organization (WMO, 2008). Such data sparsity is in fact directly associated with 

introduction of higher levels of catchment dissimilarity because it limits available choices for 

similar reference catchment(s) to target catchment(s). An alternative modeling approach in such 
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cases must rely on the existing data, including regional/global data, and must be robust to the 

extensive uncertainty inherent in sparse and low-resolution data as well as some level of catchment 

dissimilarity. 

Multi-objective analysis is a well-established approach to address and lower prediction 

uncertainties and develop a more realistic modeling of hydrologic mechanisms (see Efstratiadis 

and Koutsoyiannis (2010) for a review of such techniques). Multi-objective evaluation has been 

incorporated into flow prediction approaches such as regionalization (e.g. Zhang et al., 2008). 

Yapo et al. (1998) developed an algorithm to solve global optimization problems for multi-

objective models based on watershed output fluxes. Later, Confesor and Whittaker (2007) used 

multi-objective modeling for automatic calibration of the Soil and Water Assessment Tool 

(SWAT) to generate daily streamflows in the Calapooia River in Oregon. SWAT was also 

calibrated in two watersheds in Indiana, by Rajib et al. (2016), using multiple objectives based on 

streamflow observations as well as remotely-sensed surface soil moisture data and root-zone soil 

moisture estimates from limited field sensor data. Merz et al. (2009, 2011) introduced a multi-

objective calibration technique, based on constraining model parameters to pre-defined Beta 

distribution functions. Despite all advances in this field, extensive observed data has normally been 

an important requirement of such techniques; methods for applying such techniques to predict 

streamflow within regions of minimal data are lacking. For example, the approach proposed by 

Merz et al. (2009, 2011) may not be applicable or reliable where observed data and previous local 

modeling experiments provide insufficient information to estimate a priori parameter distribution 

function. 
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To address the aforementioned challenges, we propose a prescriptive framework methodology 

based on multi-objective modeling to predict streamflows in data-limited regions of the world. 

Accordingly, our research objectives are to 1) develop a flexible methodology for prediction in 

ungauged catchments within data-scarce regions, 2) undertake a realistic test of performance by 

generating streamflow data in two genuine poorly-gauged catchments embedded within a large 

sparsely-gauged region of southwestern China, and 3) test performance of our proposed method 

as compared to models selected through traditional single-objective and constrained single-

objective calibration. 

The proposed method targets the most data limited regions of the world, but can in principle be 

applied to any region. However, it may not offer advantage over existing well-established methods 

in data-abundant regions. The novelty of this work thus lies in three main factors:  

1) The proposed multi-objective framework creates a platform to apply advanced conceptual 

hydrological models to ungauged catchments within severely data-limited regions, where existing 

methods requiring robust data are often inapplicable. 

2) The proposed method is designed to be highly flexible and potentially applicable to a wide range 

of catchments and regions. We do not propose a new hydrologic model; rather our proposed 

method is designed to wrap around a manager’s model of choice, allowing practitioners to select 

the best model for their location and objective. The approach is also designed to be robust to some 

level of catchment dissimilarity, providing flexibility for use in regions where choice of gauged 

catchments is limited and dissimilarity is inevitable. 
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3) Built upon the proposed framework, we develop and test models in a remote area of 

southwestern China. The experimental design is based on globally-available subsurface data, 

regional climatic data, and a rainfall-runoff model. While flow prediction methodologies are often 

developed in well-gauged regions, assuming they are ungauged, we develop and test our methods 

within a truly data-limited region of the world where gauging stations are rare and sparse. Thus, 

we demonstrate that the proposed methods may be suitable for practitioners in similar areas. 

2.4 Methodology 

2.4.1 A Framework for Flow Prediction in Severely Data-limited Regions  

The first part of our proposed framework, preliminary model testing (Fig. 2a), consists of 

traditional single-objective (i.e. maximize runoff efficiency) model calibration and validation in a 

gauged reference catchment. Model simplicity and avoidance of over-parameterization should be 

prioritized in model selection (Kirchner, 2006). Sparse observations of forcing data may be 

supplemented with global or regional databases, though bias correction of meteorological data may 

be necessary (e.g. Wi et al., 2015). After a hydrologic model has been selected according to the 

practitioner’s preference, the model is calibrated and validated in the reference catchment. Such 

preliminary testing verifies the suitability of the underlying perceptual/conceptual model for runoff 

prediction in the region. 
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Figure 2. A proposed framework for prediction in data-limited regions: a) preliminary model 

testing; b) multi-criteria calibration and prediction 

The second part of the framework (Fig. 2b) consists of a priori parameter estimation and multi-

objective model calibration in the reference catchment, followed by transfer of the final model to 

the target catchment(s) for prediction. Values of influential parameters are separately estimated in 

both reference and target catchments from available physical data. There is opportunity for 
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creativity as to how parameters may be estimated in the absence of hard data (e.g. Seibert & 

McDonnell, 2002). In lieu of detailed site-scale observations, global/regional databases may be 

used (as in this study) to constrain the range of acceptable parameter values. Uncertainty in 

estimations by soft data (i.e. qualitative knowledge that cannot be expressed by exact numbers or 

quantitative knowledge associated with high uncertainties) may be acknowledged, for instance by 

representing parameter values as fuzzy numbers. A multi-criteria objective function (Eq. 4) is then 

parsed, which aims to simultaneously maximize runoff efficiency and hone parameter values 

within the ranges estimated with soft and fuzzy data. The model is re-calibrated to this multi-

objective function, using fuzzy arithmetic, and the resulting model is transferred to the target 

catchment(s) for prediction. The final step is to validate predicted streamflows in the target 

catchment(s). 

The remainder of this article describes the application of our proposed framework to two 

catchments within a severely data-limited region of southwestern China. In addition to 

demonstrating the applicability of the proposed framework in a truly poorly-gauged region, we 

undertake a comparison of model performance, comparing our proposed method versus a single-

objective model as well as a constrained single-objective model. 

2.4.2 Model Testing in Upper Salween River and Upper Mekong River Basins 

2.4.2.1 The Region of Study 

The international Salween and Mekong Rivers (known as Nu and Lancang Rivers in China) 

originate from the eastern highlands of the Tibetan Plateau and flow from north to south through 

Yunnan Province (China) before entering Myanmar and Laos, respectively (Fig .3). Near the 
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Yunnan-Tibet border, the relief between the river valley and ridges varies by as much as 2500 m, 

while the terrain is less steep further south. There exist many tributaries to both rivers which, in 

Yunnan Province, drain small catchments in steep valleys. As opposed to the mainstem rivers, 

snow and glacial melt do not constitute a significant runoff source to tributaries (Chinese Academy 

of Sciences, 1990; Yunnan Bureau of Hydrology and Water Resources, 2005; Mekong River 

Commission, 2005). The climate is monsoonal, though climate varies considerably with local 

topography in Yunnan Province (Mekong River Commission, 2005). Rainfall is characterized by 

two seasonal pulses (first between February-May, and second between June-October) and high 

river flows correspond (Kibler and Tullos, 2013). Streamflow and precipitation measurements are 

sparse in this mountainous region, particularly in tributaries. Large-scale subsurface data for the 

region are limited to global databases. Land use/cover is similar in the Upper Salween River and 

Upper Mekong River basins: more than 90% of the Salween and 83% of the Mekong basin in this 

region is covered by forests and other types of vegetation (DeFries and Hansen, 2010). Croplands 

cover about 7% of the land in the Salween and about 15% of that in the Mekong basin. Less than 

0.1% of land is urbanized in either catchment.  
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Figure 3. Study region and target (Laowo River and YBJ River) and reference (Yongchun River) 

catchments 
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2.4.2.2 Target and Reference Catchments 

We consider two target catchments for streamflow prediction. Yang Bi Jiang (YBJ) River 

(approximately 4300 km2), is a gauged catchment located in the Upper Mekong basin, with a 20-

year observed streamflow record. We also pilot the method in a catchment with a much shorter 

record of observed streamflow data, to realistically demonstrate challenges faced by practitioners 

predicting flows in poorly gauged regions. Laowo River (approximately 575 km2) in the Upper 

Salween River Basin (Fig. 3), is a fifth-order river that drains the western slopes of the ridge 

separating the Salween and Mekong River basins. Only one year of observed unregulated 

streamflow is available in Laowo River. 

The reference catchment, Yongchun River (197 km2), is a gauged tributary to the Upper Mekong 

River. The Tangshang daily stream gauge has been operational on the Yongchun River since 1960. 

Mean basin elevations in the Laowo, YBJ, and Yongchun catchments are similar (mean values of 

2475, 2612, and 2935 m, respectively (Danielson and Gesch, 2011)) and river flows in all 

catchments are dominated by rainfall-runoff processes. Land cover is similar in all three 

catchments, with about 90% of each basin covered by forests and other types of vegetation while 

croplands cover about 10% of the land (DeFries and Hansen, 2010).  

2.4.2.3 Catchment Similarity 

Choosing a reference catchment that is hydrologically similar to target catchment(s) will generally 

yield more accurate runoff predictions (Singh et al., 2014). However, the choice of a reference 

catchment may be limited in sparsely-gauged regions. Here we test target catchments that are only 

partially similar to the reference catchment. While the target and reference catchments are similar 
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with respect to topography, climate, and land cover, the contributing area of the reference 

catchment is much smaller than either target catchment. A Q-Q plot (Wilk and Gnanadesikan, 

1968) of nine daily streamflow quantiles (Fig. 4) indicates a linear relationship between 

distribution functions of streamflow in the reference and target catchments, providing some 

superficial evidence of their hydrologic similarity. However, the rivers are potentially far from 

perfect hydrologic analogs due to their substantial size differences. 

 

Figure 4. Q-Q plot of daily streamflow in a) target (Laowo) and reference (Yongchun) rivers, 

1987; b) target (YBJ) and reference (Yongchun) rivers, 1962-1973 

2.4.2.4 Model Selection and Initial Testing 

We chose a simple conceptual model, HyMOD (Moore 1985, 1999), for flow prediction. HyMOD 

is a lumped, deterministic model that predicts river flows based on simulated probability 

distributions of soil moisture. To avoid over-parameterization, we chose the simplest form of 
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HyMOD, the 5-parameter model. In this model, a catchment consists of infinite points, each 

defined by a soil moisture capacity. Soil moisture capacities vary within the catchment as a result 

of variability in soil texture and depth (Wang et al., 2009). A cumulative distribution function 

(CDF) describes catchment soil moisture variability (Eq. 1): 

𝐹𝐹(𝑐𝑐) = 1 − �1 − 𝑐𝑐
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

�
𝐵𝐵

, 0 ≤ 𝑐𝑐 ≤ 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 ( 1 ) 

Where 𝑐𝑐 is soil moisture capacity, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum soil moisture capacity within the 

catchment, and 𝐵𝐵 is a shape factor that is dependent on the degree of spatial variability in soil 

moisture capacities. Besides 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐵𝐵, the other parameters of HyMOD include 𝑅𝑅𝑞𝑞, which is 

inverse of residence time in quick reservoirs, 𝑅𝑅𝑠𝑠, which is inverse of residence time in a slow 

reservoir, and 𝛼𝛼, which is a fraction coefficient for distribution of water between slow and quick 

reservoirs. For the sake of brevity, we refer our readers to Wang et al. (2009) and Moore (1985, 

1999) for a comprehensive description of HyMOD. We coded HyMOD into MATLAB 

(Mathworks, 2012), in a configuration that can process 10,000 different combinations of model 

parameters (for 13 years of daily data) within 15 minutes on a typical processor (Intel Core i7-

5500U @ 2.40GHz). 

2.4.2.4.1 Estimating precipitation and PET  

To estimate precipitation and potential evapotranspiration (PET), we extracted daily cumulative 

precipitation (mm) and daily mean temperature (°C), respectively from the APHRODITE 

precipitation dataset and AphroTemp dataset for Monsoon Asia (APHRODITE website, 2015). 

Daily precipitation and temperature were extracted from 0.25° resolution grids and mean values 
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were computed over the reference and target catchments. We used Thornthwaite’s approach (1948) 

to estimate PET from temperature data. We estimated daylight length using the model of Forsythe 

et al. (1995), which uses latitude and day of the year for its estimations. 

We chose APHRODITE because it covers our period of analysis (before 1987) and has been shown 

to perform comparably to or better than other precipitation data products (e.g., Chen et al., 2017; 

Khandu et al, 2016; Zhao et al, 2015). However, the APHRODITE dataset is associated with 

underestimation of precipitation in high altitudes due poor representation of orographic effect 

(Kishore et al., 2015; Wi et al., 2015). To ensure accurate precipitation input, we compared 

APHRODITE precipitation with daily precipitation estimated from observations within the 

region’s sparse ground-based precipitation network (1960-1987). As the region’s limited locations 

of long-term observed rainfall data did not justify advanced methods, we applied the Inverse 

Distance Weighting (IDW) method (Chen & Liu, 2012; Keblouti et al., 2012). Comparisons of 

APHRODITE and IDW hyetographs with observed streamflow hydrographs indicate that timing 

of precipitation was better represented by APHRODITE (Fig. 5).  However, we expect that long-

term precipitation estimations given by observed data will provide more accurate estimations of 

annual cumulative precipitation. 
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Figure 5. APHRODITE hyetograph versus observed discharge hydrograph for a) May 20 - Oct 

15, 1987, in Laowo, b) May 20 – Oct 15, 1962 in YBJ 

We followed the empirical quantile mapping approach (Bennett et al., 2014; Lafon et al., 2013) to 

bias correct magnitudes of catchment-averaged daily precipitation from APHRODITE using IDW 
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cumulative distribution functions. To avoid overfitting of APHRODITE to IDW data, we mapped 

two discrete quantiles (𝑄𝑄0 − 𝑄𝑄50 𝐶𝐶𝐶𝐶𝑎𝑎 𝑄𝑄50 − 𝑄𝑄100). In the Yongchun catchment, APHRODITE 

and IDW CDFs correspond well (Fig. 6a), thus transfer functions of unity were applied across all 

quantiles. In the Laowo catchment, CDFs illustrate that APHRODITE underestimated long-term 

precipitation as compared to IDW (Fig. 6b). Therefore, transfer functions of 1.26 and 1.4 were 

applied respectively to daily precipitation values below 3.96 mm and above 3.96 mm. Similarly in 

YBJ, transfer functions of 0.98 and 1.12 were applied respectively to precipitation values below 

4.23 mm and above 4.23 mm. 

 

Figure 6. a) Precipitation CDFs in Yongchun River catchment, and b) Laowo River catchment 

2.4.2.4.2 Single-objective calibration 

We calibrated HyMOD in Yongchun catchment using observed streamflow data from 1961-1973, 

and validated the model from 1975-1980 (Chinese Ministry of Hydrology, 1970, 1971, 1974, 1977, 

1982a, 1982b). We analyzed the impact on parameter estimates of swapping the calibration and 

validation periods. Observed discharge data were prepared for prediction periods in Laowo (1987) 
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and YBJ (1962-1973, 1975-76, 1978-1980, 1984-85, and 1987) (Henck et al., 2010). We 

investigated a wide feasible range of HyMOD parameters (Table 2).  

Table 2. Upper and lower bounds of parameters in HyMOD 

Parameter Lower bound (𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚) Upper bound (𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚) 

𝐵𝐵 0.01 4 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 (𝐶𝐶𝐶𝐶) 5 1500 

𝑅𝑅𝑞𝑞 (𝑎𝑎𝐶𝐶𝑑𝑑−1) 0.01 0.99 

𝑅𝑅𝑠𝑠 (𝑎𝑎𝐶𝐶𝑑𝑑−1) 0.0001 0.01 

𝛼𝛼 0.01 0.99 

We calibrated the model by running 9375 different parameter combinations through a branch-and-

bound method with the single objective to maximize Nash-Sutcliffe runoff efficiency (NSE). 

Through our branch-and-bound method, the model first discretized the feasible range given for 

each parameter into 4 equal sections with 5 boundary values. All combinations of boundary values 

(55 = 3125) were then tested to maximize runoff efficiency. A region of one third of the original 

parameter space was further investigated around each selected parameter, equally distributed on 

both sides of the selected value if possible (i.e. if the selected value was not too close to the lower 

or upper limits of the feasible range). The newly selected range for each parameter was discretized 

similarly to the previous step and 3125 different parameter combinations were again tested to 

optimize the objective function. This process was performed one more time, choosing only one 

third of the constrained parameter space (without crossing the borders to the previous range). The 
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final parameter values selected through single-objective calibration were used to validate model 

performance in Yongchun River. 

2.4.2.5 Multi-Objective Model Evaluation  

2.4.2.5.1 Estimation of model parameters associated with soil moisture capacity using soft data 

Rather than relying on rote calibration to discharge observations in the reference catchment, we 

seek to improve model performance in ungauged target catchments by increasing confidence in 

parameter estimates. However, only little and highly uncertain information is available to 

characterize soil moisture capacity in the region of study. We used International Soil Reference 

and Information Centre (ISRIC) databases to estimate the total available water capacity (TAWC) 

(WISE30sec dataset, Batjes, 2015) and depth to bedrock (SoilGrids1km dataset, Hengl et al., 

2014). Both datasets are global in coverage. Combining TAWC (cm) and depth to bedrock (cm), 

we estimated the soil moisture capacity (cm) in each catchment at a spatial resolution of 

approximately 1 km2. We then created empirical CDFs of soil moisture capacity at the catchment 

scale. We fitted the HyMOD soil moisture capacity CDF (Eq. 1) to the empirical CDFs to estimate 

values of 𝐵𝐵 and 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 directly from soft data (Fig. 7).  

Use of the global datasets potentially introduces substantial uncertainty, which we addressed by 

considering ranges within extreme potential end members and defining parameters as trapezoidal 

fuzzy numbers. Depth to bedrock in the global dataset is reported only to a maximum value of 2.4 

m. However, it is possible that soil depth in parts of the study areas may exceed 2.4 m. In total, 

about 75 km2 (38%) of Yongchun, 1427 km2 (33%) of YBJ and 98 km2 (21%) of Laowo are 

characterized by the maximum soil depth of 2.4 m. To characterize the additional uncertainty in 
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soil moisture capacity of these particularly data-limited areas, we estimate two extreme potential 

end members, of maximum soil depth of 2.4 m and 4.8 m. Through this approach, we provide a 

reasonable estimation of the lower and upper bounds of the soil moisture capacity CDFs and 

HyMOD parameters values (Fig. 7). A more comprehensive explanation of our analysis approach 

has been provided as supplementary material published online with this manuscript. 
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Figure 7. Soil moisture capacity (𝑐𝑐) and parameter values estimated from soft data 

Using the values of 𝐵𝐵 and 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 fitted to empirical CDFs of soft data, we defined trapezoidal fuzzy 

numbers, 𝐶𝐶� = (𝐶𝐶𝑙𝑙 , 𝐶𝐶𝑐𝑐1, 𝐶𝐶𝑐𝑐2, 𝐶𝐶𝑟𝑟), for these parameters in each catchment (Table 3), as in Fig. 8. 
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Figure 8. Construction of a trapezoidal fuzzy number 

Table 3. Trapezoidal fuzzy a priori estimates of 𝐵𝐵 and 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 in target and reference catchments. 

Catchment Parameter 𝐶𝐶𝑙𝑙 𝐶𝐶𝑐𝑐1 𝐶𝐶𝑐𝑐2 𝐶𝐶𝑟𝑟 

Yongchun 𝐵𝐵 1.2 1.5 2 3 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 (mm) 350 500 700 1000 

Laowo 𝐵𝐵 1 1.7 2 2.5 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 (mm) 400 550 650 950 

YBJ 𝐵𝐵 0.3 0.6 1.5 2.5 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 (mm) 400 500 850 1000 

2.4.2.5.2 Creation of a multi-criteria objective function 

To encompass additional information given by soft data, we developed a multi-criteria objective 

function (OF) for model calibration. The criteria include: minimize the ratio between model error 



59 
 

and variation in observed data (i.e. maximize NSE, criterion 1), and minimize the difference 

between 𝐵𝐵 and 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 values estimated through optimization and soft data (criteria 2 and 3, 

respectively). To standardize the three criteria into one coherent function, we present each as a 

value from 0 to 1. After determining the feasible range of each parameter, [𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚  𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚], (Table 

2), criteria 2 and 3 were normalized as in Eq. 2: 

𝑚𝑚�−𝑋𝑋
𝑚𝑚�−𝑋𝑋𝑚𝑚

𝐼𝐼𝐼𝐼 |𝑎𝑎𝑑𝑑𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑{𝐶𝐶� − 𝑋𝑋max }| ≥ |𝑎𝑎𝑑𝑑𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑{𝐶𝐶� − 𝑋𝑋min }|
𝑡𝑡ℎ𝑑𝑑𝐶𝐶 𝑋𝑋𝑚𝑚 = 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑 𝑋𝑋𝑚𝑚 = 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚

 ( 2 ) 

Where 𝐶𝐶� is the estimated trapezoidal fuzzy value of the parameter of interest, 𝑋𝑋 is the estimated 

value for the same parameter by model calibration, 𝑋𝑋𝑚𝑚 is either 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 or 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚, and defuzz denotes 

the defuzzification process through the centroid method (Sugeno, 1985).  

We allowed the strength of each individual criterion to vary with respect to the others by permitting 

unique weighting of the criteria. Weights were first assigned in the form of crisp (non-fuzzy) 

numbers, considering relative importance of the criteria, level of certainty in a priori parameter 

estimations, and degree of resonance between estimations in the reference and target catchments.  

Weights were then converted to fuzzy numbers, to address subjectivity associated with choice of 

weight. Therefore, the weights for criteria 2 and 3 were modified into the form of triangular fuzzy 

numbers, 𝑊𝑊� = (𝐶𝐶𝑙𝑙 , 𝐶𝐶𝑐𝑐 , 𝐶𝐶𝑟𝑟), (Table 4) as in Eq. 3.  
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𝑊𝑊� (𝐶𝐶) =

⎩
⎪
⎨

⎪
⎧

𝑚𝑚−𝑚𝑚𝑙𝑙
(𝑚𝑚𝑐𝑐−𝑚𝑚𝑙𝑙)

     𝐶𝐶𝑙𝑙 ≤ 𝐶𝐶 < 𝐶𝐶𝑐𝑐,
1                           𝐶𝐶 = 𝐶𝐶𝑐𝑐 ,
𝑚𝑚𝑟𝑟−𝑚𝑚

(𝑚𝑚𝑟𝑟−𝑚𝑚𝑐𝑐)
     𝐶𝐶𝑐𝑐 < 𝐶𝐶 ≤ 𝐶𝐶𝑟𝑟 ,

0                  𝑜𝑜𝑡𝑡ℎ𝑑𝑑𝑒𝑒𝑒𝑒𝐶𝐶𝑒𝑒𝑑𝑑.

 ( 3 ) 

Given the uncertainty associated with parameter estimation by soft data, we chose to weight 

criterion 1 (maximize NSE) considerably higher than criteria 2 and 3 (Table 4). Empirical analysis 

suggested a closer resonance between 𝐵𝐵 estimations in Yongchun and Laowo than those in 

Yongchun and YBJ. In assigning weights to criterion 2 (fit 𝐵𝐵 to value estimated by empirical 

analysis of soft data), we accordingly assigned a higher initial weight to criterion 2 in Laowo than 

in YBJ (Table 4). We tested sensitivity of parameter values to criteria weighting, detecting 

differences in some of parameter values returned by varying weights (from 0.77 to 1.99, for 𝐵𝐵 in 

YBJ for instance). 

Table 4. Weighting of multi-objective function terms 

Catchment Criteria 𝐶𝐶𝑙𝑙 𝐶𝐶𝑐𝑐 𝐶𝐶𝑟𝑟 

Laowo 1 (NSE) 0.8 0.8 0.8 

2 (𝐵𝐵) 0.05 0.1 0.12 

3 (𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚) 0.07 0.1 0.15 

YBJ 1 (NSE) 0.84 0.84 0.84 

2 (𝐵𝐵) 0.03 0.05 0.07 

3 (𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚) 0.08 0.11 0.16 

Finally, the general form of the multi-criteria objective function (OF) is as follows: 
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𝑂𝑂𝐹𝐹 = ∑ �𝑎𝑎𝑑𝑑𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑 �𝑊𝑊�𝑚𝑚 ∗
𝑚𝑚�𝑖𝑖−𝑋𝑋𝑖𝑖
𝑚𝑚�𝑖𝑖−𝑋𝑋𝑚𝑚𝑖𝑖

�� + |𝑎𝑎𝑑𝑑𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑{𝑊𝑊𝑚𝑚+1 ∗ (1 −𝑁𝑁𝑆𝑆𝑆𝑆)}|𝑚𝑚
𝑚𝑚=1

𝑁𝑁𝑆𝑆𝑆𝑆 = 1 − ∑ �𝑄𝑄𝑜𝑜𝑡𝑡−𝑄𝑄𝑚𝑚𝑡𝑡 �
2𝑇𝑇

𝑡𝑡=1

∑ �𝑄𝑄𝑜𝑜𝑡𝑡−𝑄𝑄𝑜𝑜�����
2𝑇𝑇

𝑡𝑡=1

 ( 4 ) 

Where 𝑊𝑊�𝑚𝑚 is the fuzzy weight assigned to criterion 𝐶𝐶, 𝑊𝑊𝑚𝑚+1 is the weight assigned to criterion 𝐶𝐶 +

1, 𝑄𝑄𝑜𝑜𝑡𝑡  is observed streamflow in time step t, 𝑄𝑄𝑚𝑚𝑡𝑡  is modeled streamflow in time step t, and 𝑄𝑄𝑜𝑜���� is the 

mean value of all observed streamflows. The value of the OF is almost always between 0 and 1, 

where OF = 0 indicates perfect match between parameter estimates from calibration and soft data 

analysis, as well as a perfect match between observed and predicted streamflows. 

2.4.2.5.3 Multi-objective calibration and validation 

We again tested 9375 parameter combinations at the Tangshang gauge in Yongchun River during 

the calibration period, and optimized the model through the same branch-and-bound method to 

minimize our multi-objective function (Eq. 4). As the goal at this time is flow prediction in the 

target catchments, it was not necessary to validate the multi-objective model in the reference 

catchment. Validation was instead performed in the target catchments, Laowo and YBJ. The 

calibrated models for Laowo and YBJ were respectively validated using streamflow observations 

in 1987, including an initialization period in 1986, and 1962-1987 (with some years missing), 

including an initialization period in 1961. 

2.4.2.6 Evaluation of Model Performance: Comparing Single- to Multi-objective Model 
Selection 

We compared the performance of the multi-objective calibrated model in each catchment against 

a single-objective calibrated model and a constrained single-objective calibrated model (Tables 5 
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and 6). For the single-objective model, we applied parameters estimated by single-objective 

calibration to observed streamflow in the reference catchment. For the constrained single-objective 

model, parameters 𝐵𝐵 and 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 were constrained to values between the lower and upper bounds 

estimated by empirical analysis of soft data (Table 3) and the model was calibrated to observed 

reference catchment streamflows. For the multi-objective model, we applied parameter estimates 

derived by the multi-objective calibration methods developed in Section 2.4.2.5. In addition to 

comparing models by runoff efficiency (NSE), we investigated parameter residuals (Eq. 5) and the 

combined OF (objective function) value (Eq. 4) of each model. 

Parameter residual = centroid of parameter value estimated with soft data – calibrated parameter 

value ( 5 ) 

2.5 Results and Discussion 

While all tested models performed well with respect to runoff efficiency (Table 5), models selected 

using the proposed multi-objective method may incorporate more reasonable parameter values. 

When models selected by single-, constrained single- and multi-objective calibration in the 

reference catchment (Yongchun) are transferred to Laowo for prediction, runoff efficiencies are 

similar, respectively 0.78, 0.77, and 0.74 (Fig. 9 and Table 5). However, residuals of parameters 

𝐵𝐵 and 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 are relatively large for the single-objective model (1.24 and 475 mm, respectively) 

and OF value (0.33) is greater than for the constrained single-objective or multi-objective models, 

which may indicate the selection of less reasonable parameter values. 

When the calibrated models are transferred to YBJ for prediction, the multi-objective model 

substantially outperforms both the single-objective and constrained single-objective models with 
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respect to parameter residuals (0.48 versus 0.65 and 0.7 for 𝐵𝐵, and 61 mm versus 289 and 518 mm 

for 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚), which is reflected by a lower overall OF value (0.27 versus 0.32 and 0.41). Comparison 

with 20 years of observed data in YBJ also indicates that runoff efficiency of the single-objective 

model (NSE = 0.67) is lower than the multi-objective (NSE = 0.72) and the constrained single-

objective (NSE = 0.73) models. Thus, benefits of incorporating catchment-specific a priori 

parameter estimates based on soft data can be seen, particularly in testing against longer observed 

time series.  

Table 5. Performance of models with respect to NSE, parameter residuals, and OF value 

Target 

catchment 

Metric Single-objective 

model 

Constrained single-

objective model 

Multi-objective 

model 

Laowo OF value 0.33 0.28 0.27 

NSE 0.78 0.77 0.74 

𝐵𝐵 residual 1.24 0.79 0.91 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 residual 

(mm) 

475 246 20 

YBJ OF value 0.41 0.32 0.27 

NSE 0.67 0.73 0.72 

𝐵𝐵 residual 0.7 0.65 0.48 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 residual 

(mm) 

518 289 61 
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Figure 9. Flow prediction in a) Laowo and b) YBJ with parameter values selected by multi-

objective, single-objective, and constrained single-objective calibration. The NSE and OF values 

for YBJ are calculated over a 20-year prediction period; data from 1962-1964 are shown. 
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2.5.1 Parameter Estimation in Target Catchments Laowo and YBJ 

While values of 𝑅𝑅𝑞𝑞, 𝑅𝑅𝑠𝑠 and 𝛼𝛼 are estimated to be similar across all three models (Table 6), values 

of 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐵𝐵 vary across models according to the calibration method. As per design, the multi-

objective model consistently characterized 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 as similar to the centroid of a priori estimates 

(residuals in Laowo (YBJ) of 20 (61) mm). By comparison, the single-objective and constrained 

single-objective models estimate values of 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 that are much lower than a priori estimates 

(residuals in Laowo (YBJ) of 475 (518) mm and 246 (289) mm, respectively). Estimates of 𝐵𝐵 

values also varied among models. Relative to centroids of a priori estimates, both the multi-

objective and constrained single-objective models select similar values of 𝐵𝐵 in both Laowo (𝐵𝐵 

residual of 0.79 versus 0.91) and YBJ (𝐵𝐵 residual of 0.65 versus 0.48). Both potentially estimate 

𝐵𝐵 more accurately than the single-objective model (𝐵𝐵 residual of 1.24 and 0.70 in Laowo and YBJ, 

respectively). Overall, the incorporation of a priori catchment-specific parameter estimates or 

ranges led to very different representations of soil moisture capacity across both catchments as 

compared to models selected by single-objective calibration (Fig. 10), without compromising 

runoff efficiency. These different representations of soil moisture capacity may translate into 

considerably different hydrological behaviors. For example, the greater soil storage capacities 

indicated by the a priori estimates and reflected in the multi-objective model translate to a less 

flashy hydrologic response. Predictions may be characterized by more stable base flows, fewer 

zero flow days, and higher constancy of flow in comparison to the representations modeled by the 

constrained single-objective model and especially the single-objective model. While many 

possibilities exist for matching runoff prediction to an existing data record (Beven, 1993, 2006), 

the multi-objective calibration method may be more adept at parametrizing models to provide the 
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“right answers for the right reasons”. Thus, managers may feel more confident to utilize such 

models to predict flows in fully ungauged areas. However, it should be noted that more exhaustive 

evaluation of the methods presented here are required to ensure that similar results would be 

replicated in other data-limited regions of the world. 

 

Figure 10. Soil moisture capacity modeling in a) Laowo catchment, B) YBJ catchment, by 

assuming a minimum capacity of 10 cm 
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Table 6. Parameter estimates for single-, constrained single-, and multi-objective models. 

Parameters 

and metrics 

Single-

objective 

To transfer to Laowo To transfer to YBJ 

Constrained 

single-

objective 

Multi-

objective 

Constrained 

single-

objective 

Multi-

objective 

𝐵𝐵 0.55 1 0.88 0.6 0.77 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 (𝐶𝐶𝐶𝐶) 171 400 626 400 628 

𝑅𝑅𝑞𝑞 (𝑎𝑎𝐶𝐶𝑑𝑑−1) 0.66 0.64 0.64 0.63 0.63 

𝑅𝑅𝑠𝑠 (𝑎𝑎𝐶𝐶𝑑𝑑−1) 0.01 0.01 0.01 0.01 0.01 

𝛼𝛼 0.36 0.39 0.445 0.47 0.45 

2.5.2 Calibration Using a Multi-objective Function 

Optimizing to a multi-criteria OF value during calibration proves a robust method to incorporate 

important characteristics of models, in this case including runoff efficiency and parameters 

controlling soil moisture capacity. In both catchments, the constrained single- and multi-objective 

models perform comparably with respect to runoff efficiency and representation of soil moisture 

capacity, though in both cases the multi-objective model matches a priori estimates of maximum 

soil moisture capacity more closely. By contrast, the single-objective model consistently represents 

soil moisture capacity as much lower than a priori parameter estimates. In YBJ, the single-

objective model also underperforms with respect to NSE. This suite of information is collated 

through the OF value, which indicates that the multi-objective model is in both catchments the 

superior overall model. Simultaneously optimizing to multiple criteria in a weighted OF value may 
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be a solution that helps managers differentiate between models with similar performance in runoff 

efficiency, yet which portray vastly different hydrological processes (equifinality), as discussed 

above. 

Our results underscore prior findings that multi-objective calibration methods including objectives 

to match parameter estimates with ‘ground-truthed’ values provide better hydrologic 

representation than models parameterized using rote calibration to observed runoff (Parajka et al., 

2007b; Rajib et al., 2016; Seibert and McDonnell, 2002). The performance of the constrained 

single-objective model, which takes advantage of parameter ranges constrained by a priori 

estimates, is comparable and computationally less demanding than the multi-objective model. 

However, the multi-objective model may be preferable for several reasons:  

1) As in this study, the multi-objective model may be more adept to represent 

physical/hydrological characteristics of a catchment. 

2) The possibility of defining new criteria, instead of using soft data in the form of hard constraints, 

provides the opportunity of weighting the criteria and differentiating between them based on their 

relative importance or confidence in information.  

3) The lower and upper bounds of fuzzy numbers defined for a parameter may sometimes span 

across the entire feasible range of that parameter. Accordingly, constraining a parameter within its 

feasible range would not add any information to the single-objective model. The multi-objective 

model, on the other hand, could still use such soft data in calibration by putting more emphasis on 

the centroid of the estimates.  
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4) The multi-objective approach described herein allows the optimization process to search the 

entire feasible range of parameters while also incorporating the a priori estimates. On the other 

hand, hard constraints limit the search range based on these uncertain estimates. 

2.5.3 Application of Multi-objective Calibration for Flow Prediction in Ungauged Basins 

For practitioners wishing to simulate river flows in ungauged basins, the proposed multi-objective 

modeling framework allows for the application of advanced conceptual hydrological models 

within severely data-limited regions, where existing methods requiring robust data are often 

inapplicable. As opposed to a new hydrologic model, the proposed method is designed to work 

with a practitioner’s preferred model, allowing managers to select the best hydrologic model for 

their location and objective. In many regions, the proposed method may be an improvement over 

existing methods, especially where data-intensive regionalization techniques are infeasible; 

however, this remains subject to further evaluation. In comparison to previous flow predictions in 

Laowo River generated through a catchment similarity modeling approach (Kibler and Alipour, 

2017), the multi-objective model demonstrates substantial improvement with respect to runoff 

efficiency. The considerable improvement in predictive skill attributes to multiple factors, 

including improved rainfall bias correction, but is primarily due to the more realistic representation 

of the relationship between reference and target catchments. The proposed modeling approach is 

thus a proficient tool to bridge hydrologic non-similarity between reference and target catchments 

in the region of study, allowing for flexible use in the region where gauged catchments are few 

and dissimilarity is unavoidable. 
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Robustness to some level of catchment dissimilarity is indebted to initial testing for suitability in 

the region of study before application and the influence of a priori parameter estimates from the 

target catchment in calibration. For example, suitability of HyMOD for the region of study was 

confirmed in an initial phase of traditional calibration to the single objective of maximizing runoff 

efficiency (NSE = 0.74), and validation (NSE = 0.75) in the reference catchment (Fig. 11). 

Swapping the calibration and validation periods did not change parameter estimates considerably. 

A priori estimates derived from highly uncertain data may be the best available information in 

regions of sparse data. In such cases, practitioners may distribute unequal weights across OF 

criteria to acknowledge uncertainty, as demonstrated herein. Analysis of the sensitivity of 

parameter estimates to weighting (result provided as supplementary material to this manuscript) 

indicates that choice of weight is influential to estimates of 𝐵𝐵; 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 and 𝛼𝛼 are less sensitive to 

weight, and 𝑅𝑅𝑞𝑞 and 𝑅𝑅𝑠𝑠 are not influenced by weighting. Overall, the weighting process should be 

performed based on confidence in a priori parameter estimates, degree of resonance between 

estimations in the reference and target catchments, expert opinions, and a decision maker’s level 

of risk tolerance to go from traditional performance metrics (e.g. maximize NSE) to more 

physical/hydrological-based metrics (e.g. minimize parameter estimate residuals).  
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Figure 11. a) Calibration and b) validation at the Tangshang gauge in Yongchun River 

The proposed method involves calibration to flow data from a reference catchment; however, 

optimization to the OF value simultaneously encourages parameter values to remain similar to a 

priori values estimated in a different (target) catchment. A loss in runoff efficiency during 



72 
 

calibration, relative to models calibrated to the single objective of echoing reference catchment 

flows, is therefore sometimes to be expected. For example, calibration runoff efficiencies (obtained 

during calibration in the reference catchment) of the multi-objective (Laowo (YBJ) NSE = 0.67 

(0.67), Fig. 12) and constrained single-objective models (Laowo (YBJ) NSE = 0.69 (0.71)) were 

lower than the NSE value obtained with single-objective calibration (NSE = 0.74). It is important 

to note, however, that lower runoff efficiencies at the calibration stage may not always translate to 

lower prediction efficiency when models are transferred to target catchments. For instance, the 

multi-objective and constrained single-objective models returned greater runoff efficiencies for 

prediction in YBJ as compared to the single-objective calibration, despite the lower efficiency at 

the calibration stage. 
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Figure 12. Calibration at the Tangshang gauge in Yongchun River using soft data and a multi-

criteria objective function to transfer to a) Laowo, b) YBJ 
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2.6 Conclusion 

A multi-objective framework for flow prediction in the most data-limited regions of the world was 

proposed and successfully tested in a remote, data-limited region of southwestern China. Despite 

data limitations, streamflow predictions generated by the proposed multi-objective model 

demonstrated reasonable runoff efficiencies in two target catchments (NSE = 0.72 and 0.74). 

Performance of the proposed multi-objective method was similar to that of single-objective and 

constrained single-objective models. However, the multi-objective model also selected values of 

influential parameters that more closely resonate with a priori estimates derived from soft data. 

Parameter residuals relative to a priori estimates of maximum soil moisture capacity were lowest 

for the multi-objective model (20 – 61 mm), and much greater for the constrained single-objective 

(246 - 289 mm) and single-objective (475 - 518 mm) models. 

Managers predicting flows in regions of sparse data have been in some ways left behind in the 

wake of recent scientific advances in hydrologic modeling. Enhanced predictive tools that address 

the unique challenges faced in severely data-limited regions are needed. The proposed framework 

and approach to include a priori parameter estimates based on globally-available data in model 

calibration offers a preliminary step towards greater process understanding in regions of severe 

data limitations. For instance, when models are blindly calibrated to observed data in a reference 

catchment, managers may struggle to differentiate between competing models with similar 

performance but different representations of hydrological processes. The proposed calibration to 

a multi-objective function may allow practitioners to more confidently transfer calibrated models 

to predict flows in fully ungauged catchments. Future applications in more ungauged catchments 
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and in other data-limited regions of the world can better clarify the merits of the proposed 

framework. 
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CHAPTER 3:  
STREAMFLOW PREDICTION UNDER EXTREME DATA-SCARCITY: A 
STEP TOWARD HYDROLOGIC PROCESS UNDERSTANDING WITHIN 

SEVERELY DATA-LIMITED REGIONS 

3.1 Preface 

This chapter provides a concise description of the modifications made to the SPED framework and 

focuses on comprehensive test of performance of the framework against data-intensive approaches 

in catchments located around the world. The content of this chapter has been submitted to 

Hydrological Sciences Journal2 and is currently under review. 

3.2 Abstract 

Streamflow prediction in ungauged basins is necessary to support water resources management 

decisions. Herein we refine and evaluate the Streamflow Prediction under Extreme Data-scarcity 

(SPED) model, a framework designed for streamflow prediction within regions of sparse 

hydrometeorologic observation. With the SPED framework, inclusion of soft data directs 

optimization to balance runoff efficiency with selection of hydrologically-representative 

parameters. Here SPED is tested in catchments around the world, including four well-gauged 

catchments, by mimicking data-scarcity and comparing against data-intensive approaches. By 

differentiating equifinal models, SPED succeeds where traditional approaches are likely to fail: 

partially-dissimilar reference/target catchments. For instance, in a pair of reference/target 

catchments with different base flow regimes, SPED outperforms a model calibrated only to 

                                                            
2 Alipour, M.H., Kibler, K.M., 2019 (under review). Streamflow Prediction under Extreme Data-
scarcity: A Step Toward Hydrologic Process Understanding within Severely Data-limited 
Regions. Hydrological Sciences Journal. 
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maximize efficiency (NSE of 0.54 versus 0.08). SPED performs consistently (NSE range of 0.54-

0.74) across the diverse climatological and physiographic settings tested and proves comparable 

to state-of-the-science methods that use robust data networks. 

3.3 Introduction 

As predictive abilities in catchment science become more advanced, methods are needed to 

translate new capabilities and technologies into wide application by water resources managers in 

diverse geographies. Ungauged catchments located in regions characterized by sparse hydrologic 

networks deserve particular attention from the research community, to ensure that the most 

rigorous and promising approaches to streamflow prediction may be applied broadly. For instance, 

65% of mountainous basins do not meet the World Meteorological Organization (WMO) 

minimum recommended density of discharge gauging stations necessary for basic water resources 

management (Perks et al. 1996) and there is evidence that the number of long term stream gauges 

is in decline worldwide (Lanfear et al. 1999, Vörösmarty et al. 2001, Shiklomanov et al. 2002, 

Hannah et al. 2011). Lack of climatic and hydrologic data, such as long-term daily streamflow 

data, may lead to deficiencies in water resources management capabilities (see WMO 2008), and 

also presents particular challenges to application of advanced modeling techniques for streamflow 

prediction, such as regionalization and multi-criteria model calibration. 

Prediction of streamflow in ungauged rivers has received significant attention from researchers 

around the world due to the vast applications in water resources planning and management (e.g., 

Gibbs et al. 2012, Seibert and McDonnell 2013, Arsenault and Brissette 2016, Kibler and Alipour 

2017). Long-term, daily streamflow data are advantageous, for instance, in planning development 
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projects, preservation or restoration of aquatic ecosystem function, and allocation of water. 

Substantial progress has been made in the science of streamflow prediction, for instance through 

the International Association of Hydrological Sciences Prediction in Ungauged Basins (PUB) 

Decade 2003-2012. The synthesized runoff prediction framework from this decade of research 

identifies catchments as complex and diverse systems, wherein varied streamflow generation 

processes manifest distinct hydrologic response signatures (see Blöschl et al. 2013). The role of 

comparative hydrology is emphasized as a tool to learn about catchment functionality based on 

similarities, for instance in physical characteristics or runoff signatures, such that hydrologic 

similarities may be utilized to predict streamflow in ungauged catchments (Wagener et al. 2013). 

Such initiatives are in part a response to the desire that research focus shift towards process 

understanding and model structural diagnostics (Hrachowitz et al. 2013). Based on the principles 

of comparative hydrology and catchment similarity, numerous flow prediction techniques have 

been developed and tested around the world (e.g., Post and Jakeman 1999, McIntyre et al. 2004, 

Post 2009, Parada and Liang 2010, Parajka et al. 2015). However, barriers to hydrologic modeling 

within severely data-scarce regions persist (Hughes 2016, Koutsouris et al. 2017, Tegegne et al. 

2017), and managers struggle with problems such as equifinality of potential models (Beven 1993, 

2006), uncertainty in information available to constrain parameter values (Alipour and Kibler 

2018), limited selection of gauged reference catchments and thus potential for hydrologic 

dissimilarity to ungauged catchments (Peñas et al. 2014), and lack of streamflow data for 

validating predictions (van Emmerik et al. 2015). 

Many state-of-the-science streamflow prediction techniques are founded upon concepts of 

regionalization, wherein the regional hydrologic network is utilized to develop relationships 
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between catchment characteristics and/or runoff signatures and hydrologic model parameters 

(Zhang et al. 2008, Yadav et al. 2007). For example, McIntyre et al. (2005), Parajka et al. (2007a), 

Post (2009), Heřmanovský et al. (2017), and Swain and Patra (2017) developed regionalization 

techniques to estimate streamflows over large spatial areas. In each of these studies, methodologies 

were developed within regions equipped with robust hydrologic monitoring networks, which 

produced satisfactory streamflow predictions in the majority of catchments tested. Moreover, 

studies evaluating performance of regionalization techniques conclude that spatial proximity to 

locations of long-term monitoring is a primary predictor of model accuracy (e.g., Vandewiele and 

Elias 1995, Merz and Blöschl 2004, Parajka et al. 2005, Oudin et al. 2008). Thus, reliability of 

hydrologic prediction based on regionalization is closely associated with resolution of the available 

regional observation network (Oudin et al. 2008, Parajka et al. 2015).  

Additionally, the value of multi-criteria calibration and evaluation of models has been highlighted 

as an avenue for improving process representation in hydrologic modeling (Yapo 1996, Yapo et 

al. 1998, Vrugt et al. 2003). Yu and Yang (2000), Seibert and McDonnell (2002), Yang et al. 

(2004), and Kamali and Mousavi (2014), for example have incorporated fuzzy theory or ‘soft’ data 

(i.e., data associated with high uncertainties such as regional/global data or qualitative knowledge) 

into multi-objective model calibration. Incorporating a priori (i.e., information acquired or 

estimated directly from physical/hydrological data and information in a catchment without the 

need for model calibration) predictions of parameter distributions in multi-objective calibration of 

hydrological models may be an especially promising direction for improving representation of 

catchment function within models (Parajka et al. 2007b; Merz et al. 2009, 2011). However, making 

such a priori estimations would be an additional challenge to streamflow prediction in data-scarce 
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regions. Alipour and Kibler (2018) proposed the Streamflow Prediction under Extreme Data-

scarcity (SPED) framework which incorporates a priori estimates of parameter values in the multi-

criteria calibration of a hydrological model of choice. Preliminary testing suggested that even 

highly uncertain soft data available in data-scarce regions can support such a priori parameter 

estimates. While runoff prediction efficiency of SPED was similar to that of traditional single-

objective methods, parameter values selected by SPED aligned more closely with a priori 

estimates based on soft data. This alignment suggests that the SPED process may allow managers 

to isolate parameter values that better represent hydrological processes in poorly gauged basins.  

To further address the need for incorporating scientific advancements into practical techniques for 

poorly-gauged regions, in this study we conduct a comprehensive evaluation of the SPED 

framework to more fully explore its merits and limitations. The objectives of the study are thus to: 

1) test the streamflow prediction skill of the SPED framework in diverse regions with different 

hydro-climatological conditions, 2) analyze whether multi-criteria SPED offers improvement in 

runoff efficiency over models calibrated only to maximize runoff efficiency, and 3) compare the 

quality of SPED simulations generated under severe data-scarcity to those achieved in prior studies 

utilizing robust data networks (e.g., availability of gauging stations for hydrometeorological 

variables, availability of multiple gauged catchments in the region, availability of data required for 

physically-distributed hydrologic modeling) and state of the art prediction methods. The current 

study makes important contributions to the study of streamflow prediction in ungauged basins by 

diversifying both the number and geography/hydrology of validation test cases for the SPED 

framework. By comparing SPED performance with prior models in well-gauged catchments, the 

limitations of SPED can be well understood. Moreover, the merits of SPED at addressing wicked 
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problems in hydrologic modeling, such as equifinality, catchment dissimilarity and data 

uncertainty, are comprehensively explored. 

3.4 Materials and Methods 

3.4.1 Synopsis of the SPED Framework 

The SPED framework proposed by Alipour and Kibler (2018) is not itself a model, but a systematic 

procedure within which any number of hydrologic models may be embedded. Before application 

of SPED, the choice of hydrologic model for general suitability in the region of interest should be 

preliminarily tested by traditional calibration (with the single objective to maximize runoff 

efficiency) and validation in a local, gauged reference catchment. A reference catchment is a 

gauged catchment located in relative proximity to the target catchment(s), which has some degree 

of hydrologic similarity to target catchment(s). The target catchment is an ungauged catchment in 

which streamflows are to be predicted. 

After a model is confirmed to be generally suitable for the region, available physical and 

hydrologic data are used to create a priori estimates of influential model parameters in the 

reference catchment (Fig. 13a). In the absence of sufficient observed or ground-truthed data, ‘soft’ 

data, including low-resolution or highly uncertain data, such as remotely sensed data, may be 

utilized to inform a priori estimates. Uncertainties are incorporated by representing a priori 

estimates into the model as fuzzy numbers (Fig. 13a). A multi-criteria objective function (i.e., Eq. 

9) is parsed to balance both agreement with a priori parameter estimates in the reference catchment 

(criteria 1 to n) and conformity to observed streamflows (criterion n+1) (Fig. 13b). Similar to the 

procedure performed in the reference catchment, a priori values of influential model parameters 
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are estimated in the target catchment (Fig. 13c) in order to weight the criteria. Criteria are weighted 

based on their relative importance, level of certainty in a priori parameter estimates, and degree 

of resonance between a priori estimates in the reference and target catchments (Fig. 13c). 

Subjectivity in weighting may be unavoidable and uncertainties in criteria weights are 

acknowledged through the use of fuzzy weights (Fig. 13c). The model is calibrated to optimize the 

multi-criteria objective function in the reference catchment using a priori parameter estimates in 

the reference catchment and the weights assigned to the criteria (Fig. 13d). Through this multi-

objective process, calibration aims at maximizing runoff efficiency while at the same time 

providing a true representation of physical and hydrological characteristics of the catchment. 

Finally, the selected model is transferred to the target catchment(s) for prediction and validation 

(Fig. 13e). Detailed examples of SPED implementation are provided in Section 3.4.3.
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Figure 13. Application of the SPED procedure; a) parameter values are estimated a priori in the reference catchment; b) multi-criteria 

objective function is formed in the reference catchment; c) parameter values are estimated a priori in the target catchment and criteria 

are weighted; d) from multiple potential models (red points) the model with lowest OF value (Eq. 9) is selected as optimal (green 

point); e) the optimal model selected from the reference catchment is transferred to the target catchment(s) for prediction.
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3.4.2 Study Catchments 

We applied the SPED framework to predict streamflows in six target catchments from four 

countries (United Kingdom, United States, Australia, and China) located on four different 

continents and with diverse hydro-climatic regimes. The first target catchment, River Coquet 

(gauge at Morwick) (Table 7, Fig. 14a), with a size of 578 km2 is located in the UK. Annual mean 

rainfall in the catchment is 850 mm (1961-1990). There is association between precipitation in the 

River Coquet basin and low pressure over Britain, and precipitation is characterized by a cyclonic 

weather type. In River Coquet basin, easterly air streams may cause an onshore flow off the North 

Sea and consequently generate river streamflow (Lavers 2011). Land cover in the catchment is 

dominated by grasslands while woodland, arable/horticultural, and mountain/heath/bog are the 

other major land cover types in the catchment. We chose a nearby gauged catchment, River 

Wansbeck (gauge at Mitford) (Table 7, Fig. 14a), with a size of 282 km2 as the reference 

catchment. The River Wansbeck catchment has a mean annual rainfall of 794 mm (1961-1990) 

and a similar land cover to River Coquet (UK National River Flow Archive 2017). Flows in River 

Coquet (Table 7, Fig. 14a), have previously been modeled at Morwick using regionalization 

techniques in a study by McIntyre et al. (2004). 

The North Fork Cache Creek watershed in California (Table 7, Fig. 14b) with a size of 510 km2 is 

the second target catchment. Winter cyclonic storms create most of the precipitation in the 

catchment. Surface runoff corresponds with rainfall events which normally begin in November 

and occur frequently through mid-April. Very dry conditions accompanied by very low streamflow 

prevail for the rest of the year. Mean annual precipitation of the study area for the period of analysis 

is 880 mm (Parada and Liang 2010). Woodlands followed by wooded grasslands/shrublands are 
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the major land cover types in the catchment (DeFries and Hansen 2010). We chose one gauged 

catchment, Eel River (below Scott Dam) (Table 7, Fig. 14b) with a size of 751 km2 as the reference 

catchment. Woodlands are the single major land cover in the catchment (DeFries and Hansen 

2010). North Fork Cache Creek has previously been modeled by Parada and Liang (2010). 

Two locations within Broken River were selected as interchangeable reference and target 

catchments in the dry-tropical rangeland environment of Burdekin catchment (129,660 km2) in 

Queensland in Australia. At Old Racecourse (Table 7, Fig. 14c) catchment area is 68 km2 and 

further downstream at Urannah (Table 7, Fig. 14c) catchment area is 1,033 km2. Burdekin 

catchment is characterized by a semi-arid climate where coldest month temperatures average 

above 0°C. Such climatic regime is not suitable for agriculture and is home to low population 

densities. The catchment routinely experiences large variabilities in its annual, mean monthly, as 

well as daily streamflows. Mean annual rainfall in the Burdekin catchment is 650 mm (Australian 

Bureau of Meteorology 2017). Wooded grasslands/shrublands dominate the land cover of 

catchment areas contributing to Urannah while woodlands are the major land cover at Old 

Racecourse (DeFries and Hansen 2010). Burdekin catchment was previously modeled through the 

regionalization study by Post (2009), including both Broken River at Old Racecourse and Broken 

River at Urannah, and prediction results were generated for both catchments. Because it was 

possible to compare prior modeled predictions in both catchments to results from SPED, both are 

modeled herein as interchangeable reference/target catchments. This was not possible in the other 

study locations. 

Finally, two target catchments, including Yang Bijiang (YBJ) River catchment (Table 7, Fig. 14d) 

in the Upper Mekong River basin and Laowo River catchment (Table 7, Fig. 14d) in the Upper 
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Salween River basin in China were selected to analyze SPED performance in a truly poorly-gauged 

region. Yongchun River (Table 7, Fig. 14d), a gauged tributary to the Upper Mekong River, was 

selected as the reference catchment for both Chinese rivers. The regional climate is monsoonal, 

although precipitation and temperature vary considerably with local topography, which is 

mountainous and highly varied. In the rivers, high flows correspond with rainfall which is 

characterized by two seasonal pulses (between February-May, and between June-October). Annual 

rainfall in the Upper Mekong basin can range from 600 mm in the Tibetan Plateau to 1,700 mm in 

the mountains of Yunnan (Mekong River Commission 2018). In the Upper Salween basin, the 

annual precipitation ranges from 400 mm to 2000 mm and averages at 900 mm (Zhou et al. 2017). 

Land cover in the Upper Salween River and Upper Mekong Rivers basins is similar where forests 

and other types of vegetation dominate the catchments, followed by a substantially smaller portion 

of croplands (DeFries and Hansen 2010).  
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Table 7. Summary of reference and target catchments 

Country Catchment 
(location) 

Catchment 
type 

Catch
ment 
size 

(km2) 

Streamflow 
data source 

Precipitation 
data source 

Temperature 
data source 

United 
Kingdom 

River 
Wansbeck 

(at Mitford) 

Reference 282 UK 
National 

River Flow 
Archive 
(2017) 

version 16.0 of E-OBS gridded 
dataset (Haylock et al., 2008); 
resolution 0.25° 

River 
Coquet (at 
Morwick) 

Target 578 

United 
States 

Eel River 
(below Scott 

Dam) 

Reference 751 USGS 
(2017) 

NOAA/OAR/ESRL PSD 
(2017); rainfall resolution 0.5°; 
temperature resolution 0.25° 
(Fan and Van den Dool, 2008) North Fork 

Cache 
Creek (near 

Lower 
Lake) 

Target 510 

Australia Broken 
River (at 

Old 
Racecourse) 

Reference/
Target 

68 Australian 
Bureau of 

Meteorolog
y (2017) 

Australian 
Bureau of 
Meteorology; 
resolution 0.05°  

NOAA/OAR
/ESRL PSD 
(2017); 
resolution 
0.25° (Fan 
and Van den 
Dool, 2008) 

Broken 
River (at 
Urannah) 

Target/Ref
erence 

1,033 

China Yongchun 
River (at 

Tangshang 
gauge) 

Reference 197 Chinese 
Ministry of 
Hydrology 

(1970; 
1971; 1974; 
1977; 1982) 

APHRODITE; Yatagai et al. 
(2012); Yasutomi et al. (2011); 
resolution 0.25°; precipitation 
data were bias corrected using 
inverse distance weighting to 
locations of observed 
precipitation (see Alipour and 
Kibler 2018) 

Laowo 
River 
(above 
Laowo 
Dam) 

Target 575 Henck et al. 
(2010) 

YBJ River 
(near 

Yiqianpu) 

Target 4,300 Henck et al. 
(2010) 
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Figure 14. Study regions and reference/target catchments; a) United Kingdom, b) United States, c) 

Australia, d) China.
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3.4.3 Application of SPED in Test Catchments 

We perform preliminary validation within reference catchments to confirm suitability of the 

hydrologic model of choice (HyMOD, Moore 1985, 1999; Wang et al. 2009) in each region of 

study. Following Alipour and Kibler (2018), preliminary testing consists of traditional single-

objective model calibration and validation against data observed within gauged reference 

catchments. Thus, calibration is performed to maximize runoff efficiency: 

𝑁𝑁𝑆𝑆𝑆𝑆 = 1 − ∑ �𝑄𝑄𝑜𝑜𝑡𝑡−𝑄𝑄𝑚𝑚𝑡𝑡 �
2𝑇𝑇

𝑡𝑡=1

∑ �𝑄𝑄𝑜𝑜𝑡𝑡−𝑄𝑄𝑜𝑜�����
2𝑇𝑇

𝑡𝑡=1
 ( 6 ) 

Where NSE is Nash-Sutcliffe runoff efficiency, 𝑄𝑄𝑜𝑜𝑡𝑡  is observed streamflow in time step t, 𝑄𝑄𝑚𝑚𝑡𝑡  is 

modeled streamflow in time step t, and 𝑄𝑄𝑜𝑜���� is the mean value of observed streamflows in time T.  

The hydrological model of choice, HyMOD, is a lumped conceptual model that predicts flow based 

on simulated probability distributions of soil moisture across a catchment (Wang et al., 2009). The 

distribution of soil moisture capacity across the catchment is represented using a cumulative 

distribution function (CDF): 

𝐹𝐹(𝑐𝑐) = 1 − �1 − 𝑐𝑐
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

�
𝐵𝐵

, 0 ≤ 𝑐𝑐 ≤ 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 ( 7 ) 

Where 𝑐𝑐 is soil moisture capacity, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum soil moisture capacity of the catchment, 

and 𝐵𝐵 is a shape factor that defines the degree of spatial variability in soil moisture capacity across 

the catchment. Other parameters of HyMOD (besides 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐵𝐵) include 𝑅𝑅𝑞𝑞 (inverse of residence 

time in quick reservoirs), 𝑅𝑅𝑠𝑠 (inverse of residence time in a slow reservoir), and 𝛼𝛼 (a fraction 
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coefficient for distribution of water between slow and quick reservoirs). Interested readers are 

referred to Wang et al. (2009) and Moore (1985, 1999) for a more comprehensive description of 

HyMOD. We use a modified formulation of the 5-parameter HyMOD model, including addition 

of a minimum soil moisture capacity parameter, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, which may be greater than zero, to the 

HyMOD CDF of soil moisture capacity (c) (see Jayawardena and Zhou (2000), Post (2009), and 

Wang (2018), for similar modifications to soil moisture capacity modeling). The new soil moisture 

capacity CDF is formulated as: 

𝐹𝐹(𝑐𝑐) = 1 − �1 − 𝑐𝑐−𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚−𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚

�
𝐵𝐵

,𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑐𝑐 ≤ 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 , 0 ≤ 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 ( 8 ) 

Parameters 𝐵𝐵, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, and 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 define the capacity of soil for storing water. For instance, a high 

value for 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 indicates that during dry periods, even a large rainfall event may not result in 

initiation of saturation excess overland flow and consequently increased river flows. A high value 

for 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 indicates more stable base flows, fewer days with zero flow, and higher constancy of 

flow. For 𝐵𝐵, a parameter describing the shape of the soil moisture CDF, a value between zero and 

one indicates a soil moisture capacity CDF that is convex, while values greater than one indicate 

a concave CDF. 

The new formulation of HyMOD in this study was coded into MATLAB (Mathworks 2016) in a 

configuration that can process 62,500 different combinations of model parameters within 10 

minutes on a typical processor (Intel Core i7-5500U at 2.40 GHz). In each reference catchment, 

we first calibrated HyMOD to maximize NSE by running 62,500 different parameter combinations 
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through the branch-and-bound method described by Alipour and Kibler (2018) and validated with 

data from a different time period. 

After confirming suitability of the model in each region, the SPED process was applied in each 

target-reference catchment pair. To mimic circumstances within severely data-scarce regions, we 

utilize regional-scale gridded databases to estimate precipitation and temperature in each study 

location (Table 7). Thornthwaite’s approach (1948) is used to estimate potential evapotranspiration 

(PET) from temperature data. Daylight length is estimated using the model of Forsythe et al. 

(1995), which uses latitude and day of the year for its estimations. Global data on total available 

water capacity (WISE30sec dataset, Batjes 2015) and depth to bedrock (SoilGrids250m dataset, 

Hengl et al. 2017) were combined to estimate spatial variability in soil moisture capacity (cm) in 

each reference/target catchment at a resolution of about 0.06 km2. From this spatial dataset, an 

empirical CDF of soil moisture capacity was constructed for each catchment (Fig. 15), to which 

we fitted the HyMOD soil moisture capacity CDF (Eq. 8). A priori parameter values of 𝐵𝐵, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, 

and 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 were thus estimated for each catchment using only globally-available data, as the best 

HyMOD CDF fit to the catchment’s own empirical CDF (Fig. 15). Given the substantial 

uncertainties associated with global-scale coverage of soil properties, we consider these data as 

‘soft’ data and estimate a priori parameter values in the form of trapezoidal fuzzy numbers. Soil 

moisture capacity distributions estimated by such highly uncertain data may contain errors. In 

some regions for example, the empirical CDF may exhibit a threshold behavior, such as near-

vertical increase in the value of 𝑐𝑐 as the CDF approaches the upper end of the distribution, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚. 

Such behavior is consistent with likely presence of anomalous data contained in the highly 

uncertain soil databases. Application of quality assurance procedures to identify and disregard 
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spurious data are recommended. We recommend that when the ratio of the top 5% of the 

distribution to the full distributional range exceeds a value of around 0.4, the 95th percentile value 

of the distribution should be selected as 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚. 

 

Figure 15. Soil moisture capacity (c) and parameter values estimated a priori from soft data (𝐵𝐵, 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, and 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 values are for fitted HyMOD CDFs to the empirical CDFs) 
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A priori values for parameters 𝐵𝐵, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, and 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 were incorporated into a four-part multi-criteria 

objective function (Eq. 9, similar to the three-part objective function developed by Alipour and 

Kibler (2018)), used to calibrate the model in each reference catchment. The multi-criteria 

objective function simultaneously maximizes runoff efficiency (minimizes 1-NSE) while 

minimizing the difference between a priori and calibrated estimates for each parameter. Since at 

this time we were unable to provide a priori estimates for the other HyMOD parameters (𝑅𝑅𝑞𝑞, 𝑅𝑅𝑠𝑠 

and 𝛼𝛼), they were incorporated into the objective function only by their contribution to maximizing 

runoff efficiency. The four criteria (maximized NSE, calibrated values of 𝐵𝐵, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, and 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 that 

are similar to a priori estimates) were weighted based upon their relative importance, level of 

certainty in a priori parameter estimates, and degree of similarity between a priori estimates in the 

reference and target catchments (Fig. 13c). For instance, if the a priori estimate for parameter 𝐵𝐵 

(or 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, or 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚) in a reference catchment was similar (dissimilar) to that in the corresponding 

target catchment, a higher (lower) weight was assigned to the criterion associated with that 

parameter. By comparing of empirical CDFs in paired reference-target catchments, degree of 

catchment similarity with respect to influential parameters can be discerned. If reference and target 

catchments were quite similar (dissimilar) with respect to a given parameter, we were able to 

signify (de-signify) the importance of calibrating this parameter close to its a priori value in the 

reference catchment through weighting. Since subjectivity in weighting may be unavoidable and 

the a priori estimates were associated with high uncertainties, we used triangular fuzzy weights to 

partially account for uncertainty in criteria weighting.  

The feasible ranges of 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 (typically between 5-8000 mm), 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 (typically between 0-1500 mm), 

and 𝐵𝐵 (typically between 0-6) were tailored to each study area based on ranges suggested by a 
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priori parameter estimates in each region. To normalize objectives associated with a priori 

estimates of parameter values, we divided the difference between the a priori estimate and 

calibrated value of a parameter with half the feasible range of that parameter (Eq. 9). If the resulting 

value was greater than 1, we assigned a value of 1 to that objective (without application of its 

weight): 

𝑂𝑂𝐹𝐹 = ∑ �𝑎𝑎𝑑𝑑𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑 �𝑊𝑊�𝑚𝑚 ∗
𝑚𝑚�𝑖𝑖−𝑋𝑋𝑖𝑖

𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖−𝑋𝑋𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖
2

�� + |𝑎𝑎𝑑𝑑𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑{𝑊𝑊𝑚𝑚+1 ∗ (1 −𝑁𝑁𝑆𝑆𝑆𝑆)}|𝑚𝑚
𝑚𝑚=1

𝐼𝐼𝐼𝐼 𝑎𝑎𝑑𝑑𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑 � 𝑚𝑚�𝑖𝑖−𝑋𝑋𝑖𝑖
𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖−𝑋𝑋𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖

2

� > 1     𝑡𝑡ℎ𝑑𝑑𝐶𝐶     𝑊𝑊�𝑚𝑚 ∗
𝑚𝑚�𝑖𝑖−𝑋𝑋𝑖𝑖

𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖−𝑋𝑋𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖
2

= 1
 ( 9 ) 

Where 𝐶𝐶�𝑚𝑚 is the estimated trapezoidal fuzzy value of parameter i, 𝑋𝑋𝑚𝑚 is the estimated value for 

parameter i by model calibration, 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 and 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 are the upper and lower feasible limits for 

parameter i, 𝑊𝑊�𝑚𝑚 is the fuzzy weight assigned to criterion i, 𝑊𝑊𝑚𝑚+1 is the weight assigned to criterion 

n + 1, and defuzz denotes the defuzzification process through the centroid method (Sugeno 1985). 

Through this process, calibrated values that diverge sharply from a priori estimates are excluded 

and the optimization process is directed towards values that more closely match a priori parameter 

estimates, while balancing high runoff efficiency. 

The multi-criteria objective function (Eq. 9) was optimized in each reference catchment by 

analyzing 62,500 different parameter combinations, using the same branch-and-bound method as 

applied in single-objective calibration. The value of the optimization objective function (OF value) 

is normally between 0 and 1 (OF can be greater than 1), where zero indicates streamflow 

predictions which perfectly mirror observed values as well as calibrated parameter values which 
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perfectly mirror a priori estimates. The parameter values estimated through multi-objective 

calibration in each reference catchment are transferred to target catchment(s) for streamflow 

prediction. 

3.4.4 Assessment of SPED Predictions 

We evaluate predictive skill of SPED in the six target catchments, as compared to performance of 

models selected by traditional single-objective calibration. We perform single-objective 

calibration, to maximize runoff efficiency, in reference catchments and transfer models for 

prediction in all target catchments (Fig. 16a and b). SPED performance is evaluated relative to that 

of the single-objective model through comparisons of model prediction accuracy and model 

parameter residuals (Eq. 10) for influential parameters (𝐵𝐵, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚). To evaluate accuracy 

of model predictions, we compare NSE for daily streamflow and quantitative flow metrics 

indicating flow magnitude (3-day minimum and maximum, total runoff volume), and frequency 

and duration of low flows (average number of days below Q75 of observed flow) and high flows 

(average number of days above Q25 of observed flow) (Richter et al. 1997). 
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Figure 16. Application of single-objective calibration to runoff efficiency; a) from multiple 

potential models (red points) the model with greatest NSE is selected as optimal (green point); b) 

the optimal model selected from the reference catchment is transferred to the target catchment(s) 

for prediction. 

Parameter residuals indicate how well the empirical CDF for soil moisture capacity in a catchment 

is represented by different modeling approaches. We note here that empirical CDFs are created 

using data associated with high uncertainties, and thus are perhaps themselves imperfect 

representations of true catchment condition. However, in areas of the world lacking more complete 

data, such soft data may still improve understanding of true catchment condition. Thus, inclusion 

of soft data in modeling has been recommended over rote calibration to only maximize runoff 

efficiency (e.g., Seibert and McDonnell (2002)). Parameter residuals for comparison between 

models are calculated as follows: 

𝑃𝑃𝑟𝑟𝑟𝑟𝑠𝑠 = 𝑃𝑃𝑚𝑚 𝑝𝑝𝑟𝑟𝑚𝑚𝑜𝑜𝑟𝑟𝑚𝑚 − 𝑃𝑃𝑐𝑐𝑚𝑚𝑙𝑙𝑚𝑚𝑐𝑐𝑟𝑟𝑚𝑚𝑡𝑡𝑟𝑟𝑐𝑐 ( 10 ) 
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Where 𝑃𝑃𝑟𝑟𝑟𝑟𝑠𝑠 is the parameter residual, 𝑃𝑃𝑚𝑚 𝑝𝑝𝑟𝑟𝑚𝑚𝑜𝑜𝑟𝑟𝑚𝑚 is the centroid of a priori parameter values estimated 

with soft data, and 𝑃𝑃𝑐𝑐𝑚𝑚𝑙𝑙𝑚𝑚𝑐𝑐𝑟𝑟𝑚𝑚𝑡𝑡𝑟𝑟𝑐𝑐 is the calibrated parameter value. 

Finally, we compare the runoff efficiencies of SPED simulations in the United Kingdom, United 

States, and Australia, which are generated under simulated severe data-scarcity, to those achieved 

in prior studies utilizing robust data networks and state-of-the-art prediction methods. The 

transformation of data-rich regions into synthetically data-scarce regions was accomplished by 

assuming availability of only one gauged reference catchment and by using lower-quality 

(regional/global scale) data to estimate precipitation and temperature (Table 7). By contrast, prior 

studies had utilized the full suite of information available in these well-gauged regions (e.g. 

multiple gauged reference catchments and high-quality observed climatic data). In each catchment, 

we modeled the same time periods presented in prior studies. 

3.5 Results 

3.5.1 Prediction Performance of SPED 

With respect to runoff efficiency, streamflow predictions generated by the SPED framework in six 

geographically diverse target catchments are acceptable (NSE range of 0.54-0.74, Table 8). Since 

the single-objective model is calibrated to only maximize runoff efficiency in the reference 

catchments, calibration performance of the single-objective model with respect to NSE is 

expectedly always greater than that of SPED (NSE range of 0.61-0.82 versus 0.48-0.79, Table 9). 

However, prediction performance of the two models are comparable and even sometimes 

substantially higher by SPED (Table 8). Performance of SPED and the single-objective model is 

comparable in River Coquet for the period of October 1989 – September 1994 (both NSE of 0.63, 
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Fig. 17a, Table 8). Comparison of flows simulated by the single-objective model and SPED against 

observed data (Fig. 17a, Table 10) indicates that the single-objective model better represents low 

flow magnitudes (29% error for 3-day minimum) than SPED (-52%). While both models do not 

estimate extreme high flows very well, these events are slightly better modeled by the single-

objective model (Fig. 17a). Moderate and high flows, on other hand, are more accurately predicted 

by SPED (-14% error for total runoff volume) than the single-objective model (-22%). While both 

models perform comparably in estimating high flow duration, low flow duration is overestimated 

by the single-objective model (229% error versus -14% for SPED). 

In North Fork Cache Creek (Fig. 17b), during the validation period, January 1950 – August 1955, 

SPED substantially outperforms the single-objective model (NSE of 0.54 versus 0.08, total runoff 

volume residual of 3.30e+08 m3 versus -7.68e+08 m3, Table 8 and 10). Notably, the single-

objective model predicts only 26% of the observed runoff volume. While both models struggle to 

estimate magnitudes of extreme high flows (Fig. 17b), moderate to high flows are better predicted 

by SPED (-55% error versus -87%, for 3-day maximum). Three-day minimum flows are better 

represented by the single-objective approach (Table 10), however the single-objective model 

overestimates duration of low flows (78% error) while SPED overestimates low flows such that 

duration below Q75 is predicted to be zero days. The case is however opposite for high flow 

duration, where SPED overestimates high flow duration (75% error) and the single-objective 

model estimates a duration lower than observed (-44% error).  

For the 10-year period of September 1975 – August 1985, SPED and the single-objective model 

perform comparably in Broken River both at Old Racecourse (NSE of 0.74 versus 0.79, Fig. 17c, 

Table 8) and at Urannah (NSE of 0.71 versus 0.78, Fig. 17d, Table 8). At Old Racecourse, most 
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flow metrics and the flow duration curves (FDCs) are modeled comparably by SPED and the 

single-objective approach (Table 10 and Fig. 17c). At Urannah, comparison of flows simulated by 

the single-objective model and SPED against observed data (Fig. 17d, Table 10) indicate a better 

performance by SPED in modeling high flows and total runoff volume (3% error for 3-day 

maximum, and 54% error for total runoff volume) than the single-objective model (27% and 72%). 

The single-objective model however performs considerably better in modeling extreme high flows 

(Fig. 17d) as well as low flows (695% error for 3-day minimum) than SPED (2670%).  

In Laowo river during January 1987 – December 1987 (NSE of 0.71 versus 0.76, Fig. 17e, Table 

8) and in YBJ river for the 20-year period of test (1962–1973, 1975–76, 1978–1980, 1984–85, and 

1987) (NSE of 0.72 versus 0.76, Fig. 17f, Table 8), there is little difference in performance of 

SPED and single-objective models. In Laowo River, where only one year of observed data is 

available, FDCs indicate a better performance by SPED with respect to the majority of flow sizes 

(bottom 90%) while the very largest flows are better modeled by the single-objective model (Fig. 

17e). In YBJ, the single-objective model better represents low flow magnitudes (9% error for 3-

day minimum flow) and durations (37% error for low flow duration) than SPED (96% and 77%, 

respectively). Performance of the models is similar with respect to 3-day maximum flow (-21% 

error for SPED versus -10% for the single-objective model), total runoff volume (12% error for 

SPED versus 1% for the single-objective model) and high flow duration (-46% error for SPED 

versus -50% for the single-objective model). Similar to Laowo, the very largest flows (top 10%) 

in YBJ are better modeled by the single-objective model (Fig. 17f). 
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Table 8. Prediction performance of SPED and the single-objective model with respect to runoff 
efficiency and parameter residuals 

Target 
catchment 

Metric Single-objective 
model 

SPED 

River Coquet at 
Morwick 
(United 

Kingdom) 

NSE 0.63 0.63 
OF value 0.52 0.39 
𝐵𝐵 residual -2.83 0.33 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 residual (mm) 3206 2465 
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 residual (mm) 347 -14 

North Fork 
Cache Creek 

(United States) 

NSE 0.08 0.54 
OF value 0.77 0.37 
𝐵𝐵 residual -1.47 -0.2 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 residual (mm) 1084 788 
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 residual (mm) -1267 -17 

Broken River at 
Old Racecourse 

(Australia) 

NSE 0.79 0.74 
OF value 1.18 0.22 
𝐵𝐵 residual 1.37 1.98 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 residual (mm) 557 779 
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 residual (mm) -1072 -3 

Broken River at 
Urannah 

(Australia) 

NSE 0.78 0.71 
OF value 1.17 0.22 
𝐵𝐵 residual -0.31 0.90 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 residual (mm) 583 435 
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 residual (mm) -1086 -3 

Laowo River 
(China) 

NSE 0.76 0.71 
OF value 1.32 0.27 
𝐵𝐵 residual -3.65 -0.66 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 residual (mm) 2227 302 
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 residual (mm) 420 -154 

YBJ River 
(China) 

NSE 0.76 0.72 
OF value 1.28 0.28 
𝐵𝐵 residual -3.39 -0.40 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 residual (mm) 2070 441 
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 residual (mm) -123 -696 

 

 

 



108 
 

Table 9. Calibration performance of SPED and the single-objective model with respect to runoff 
efficiency 

Country Reference catchment Single-
objective 

model 
(NSE) 

SPED 
(NSE) 

United Kingdom River Wansbeck (at Mitford) 0.61 0.60 
United States Eel River (below Scott Dam)  0.62 0.48 

Australia Broken River at Old Racecourse  0.82 0.74 
Broken River at Urannah  0.82 0.79 

China Yongchun River (to transfer to Lawo River) 0.79 0.69 
Yongchun River (to transfer to YBJ River) 0.79 0.70 

Table 10. Observed flow metric values versus modeled values by the single-objective approach 
and SPED in target catchments (For SOM* and SPED the first value under each river is the 
absolute value and the second value is percent change with respect to the observed value; *Single-
Objective Model) 

Metric Model River Coquet North Fork 
Cache Creek 

Broken River 
at Old 

Racecourse 

Broken River at 
Urannah YBJ River 

3-day 
minimum 

(m3/s) 

Observed 0.92 0.02 0.02 0.23 9.10 
SOM 1.19 29 0.04 100 0.50 2400 2.45 965 9.91 9 
SPED 0.44 -52 1.41 6950 0.50 2400 6.37 2670 17.87 96 

3-day 
maximum 

(m3/s) 

Observed 68.90 100.10 26.89 238.20 387.80 
SOM 61.49 -11 13.02 -87 31.40 17 302.70 27 347.70 -10 
SPED 62.31 -10 45.10 -55 19.86 -26 246.00 3 307.90 -21 

Total 
runoff 
volume 

(m3) 

Observed 1.14e+09 1.04e+09 4.64e+08 4.06e+09 4.44e+10 

SOM 8.89e+
08 -22 2.72e+

08 -74 4.71e+
08 2 7.00e+0

9 72 4.49e+1
0 1 

SPED 9.77e+
08 -14 1.37e+

09 32 5.67e+
08 22 6.25e+0

9 54 4.98e+1
0 12 

Low flow 
duration 
(days) 

Observed 11.53 63.30 13.08 12.29 25.13 
SOM 37.92 229 112.6 78 0 -100 17.3 41 34.49 37 
SPED 9.87 -14 0 -100 0 -100 0 -100 5.88 -77 

High flow 
duration 
(days) 

Observed 8.98 19.53 15.54 10.42 22.77 
SOM 6.94 -23 10.87 -44 6.09 -61 80.23 670 11.46 -50 
SPED 6.33 -30 34.12 75 6.46 -58 122.95 1080 12.39 -46 
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Figure 17. Flow Duration Curves (FDCs) and example validation hydrographs for portions of each prediction period in 

a) River Coquet at Morwick, b) North Fork Cache Creek, c) Broken River at Old Racecourse, d) Broken River at 

Urannah, e) Laowo River, and f) YBJ River. Runoff efficiencies displayed are relative to the entire prediction periods. 
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3.5.2 Parameter Estimation Performance 

As SPED is designed to select parameter sets which are similar to a priori estimates while the 

single-objective model only aims at maximizing runoff efficiency, soil moisture capacity CDFs 

modeled by SPED exhibit closer resonation with empirical CDFs than the CDFs modeled by the 

single-objective approach in all six target catchments (Fig. 18). However, in some of the 

catchments, in particular River Coquet (Fig. 18a), the CDF modeled by SPED still displays 

significant difference from the empirical CDF. All three parameters of 𝐵𝐵, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 are 

modeled with lower residuals by SPED than the single-objective approach in River Coquet 

(residuals of 0.33 versus -2.83 for 𝐵𝐵, 2465 versus 3206 mm for 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, and -14 versus 347 mm for 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, Table 8), North Fork Cache Creek (residuals of -0.2 versus -1.47, 788 versus 1084 mm, and 

-17 versus -1267 mm respectively, Table 8), and Laowo River (residuals of -0.66 versus -3.65, 302 

versus 2227 mm, and -154 versus 420 mm respectively, Table 8). In Broken River at Urannah, 

SPED performs better in modeling 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 (residual of 435 mm versus 583 mm) and 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 (residual 

of -3 mm versus -1086 mm) but 𝐵𝐵 (residual of 0.90 versus -0.31) is better modeled by the single 

objective approach. Similarly, in YBJ two parameters exhibit lower residuals when modeled by 

SPED (residuals of -0.4 versus -3.39 for 𝐵𝐵 and 441 versus 2070 mm for 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, while residual of -

696 versus -123 mm for 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, Table 8). In Broken River at Old Racecourse, despite that the single-

objective modeling yields lower residuals than SPED for the two parameters of 𝐵𝐵 (residuals of 

1.98 versus 1.37, Table 8) and 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 (residuals of 779 versus 557 mm, Table 8), SPED does a 

much better job in modeling 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 (residual of -3 versus -1072 mm) so that its CDF is closer to the 

empirical CDF than the single-objective model. Overall, OF values summarizing performance in 
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terms of both runoff efficiency and soil moisture capacity modeling are lower (with zero as the 

ideal value) for SPED than the single-objective modeling in all six target catchment (Table 8). 
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Figure 18. Soil moisture capacity CDFs, as modeled by the single-objective model and SPED, 

compared to those derived through analysis of soft data in target catchments 
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3.5.3 SPED Performance as Compared to Predictions Using Robust Data Networks 

The SPED framework performs reasonably close to, and sometimes even exceeds performance of 

prediction approaches based on more robust data networks in all study locations. In River Coquet, 

SPED performs similarly to the best regionalization case tested by McIntyre et al. (2004) with 

respect to runoff efficiency, with the same NSE of 0.63 (Table 11). For the case of North Fork 

Cache Creek in California, the proposed approach by Parada and Liang (2010) performs 

marginally better than SPED with respect to overall runoff efficiency (NSE of 0.66 versus 0.54, 

Table 11). However, SPED performs significantly better than the regionalization approach of Post 

(2009) in predicting streamflow for the 10-year period of September 1975 - August 1985 for both 

Broken River at Old Racecourse (NSE of 0.74 versus 0.43, Table 11) and Broken River at Urannah 

(NSE of 0.71 versus 0.22, Table 11). 

Table 11. Runoff efficiency of streamflow predictions generated by SPED using a synthetically 
sparse data network and by previous studies using the full data network  

Target catchment SPED Robust data 
network 

River Coquet at 
Morwick (United Kingdom) 

0.63 0.63 

North Fork Cache 
Creek (United States) 

0.54 0.66* 

Broken River at Old 
Racecourse (Australia) 

0.74 0.43* 

Broken River at 
Urannah (Australia) 

0.71 0.22* 

* Calculated from the data provided in the study. 
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3.6 Discussion 

Streamflow predictions generated using the SPED framework and (artificially or truly) sparse 

observed data networks are satisfactory in terms of runoff efficiency across a diverse geography 

of six target catchments (NSE range of 0.54-0.74, Table 8). SPED exhibits a high degree of 

flexibility and performs consistently and acceptably within diverse hydro-climatological regions. 

Furthermore, quality of streamflows predicted by SPED are consistent, whether applied in a truly 

poorly-gauged region of southwestern China (Laowo and YBJ catchments) or within well-gauged 

regions with a synthetically sparse data set (Table 8, Fig. 17). Regional-scale gridded precipitation 

and temperature data used in some of the synthetically data-poor regions were of higher resolution 

and quality (e.g. precipitation data in Australia has 0.05° resolution) than may be available in many 

regions worldwide. However, data of the quality and resolution applied to model the truly poorly-

gauged catchments in China may now be found at a global scale. That streamflows are predicted 

with reasonable accuracy (NSE of 0.71 - 0.72) in the truly poorly-gauged basins, using only low-

quality available data, indicates that SPED may be applicable even in the world’s most data-poor 

regions. 

3.6.1 SPED May Alleviate Problems of Equifinality as Compared to Single-objective 
Calibration 

With respect to runoff efficiency, SPED performed similarly to models calibrated to the single 

objective of maximizing NSE (Table 8). The slightly greater efficiency achieved by single-

objective models reflects that the model calibration process was unconstrained, with a single 

objective of attaining the greater runoff efficiency. By comparison, the multi-criteria SPED 

calibration process balanced runoff efficiency with selection of a representative parameter set. The 
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trade-offs in runoff efficiency were, for the most part negligible. But, in comparison with the 

single-objective approach, values of influential model parameters selected by SPED were almost 

always more similar to parameter values estimated a priori by analysis of catchment data (Table 

8). We note that there are few instances where residuals of individual parameters are lower in the 

single-objective model (e.g. YBJ, Broken River at Urannah and Old Racecourse). However, even 

in these cases, soil moisture capacity CDFs modeled by SPED more closely resemble empirical 

CDFs compared to those modeled by single-objective models (Fig. 18). This behavior is not 

surprising, given that the multi-criteria objective function engine of SPED is designed to do just 

this; select parameter sets which are similar to a priori estimates. This design allows SPED to rank 

equifinal models – models with similar NSE but different parameter sets, and to assign preference 

to models that represent a best approximation of catchment conditions from available data. For 

instance, the relatively low parameter residuals achieved for SPED parameter sets (Table 8) 

indicate that SPED has substantially improved representation of subsurface processes in study 

catchments (Fig. 18). However, the corresponding NSE values are similar to those attained by 

models selected solely based on ability to replicate observed streamflows. This indicates that little 

compromise to runoff efficiency is needed to achieve the observed improvement to process 

representation. 

That runoff efficiencies of SPED and single-objective models are similar, even as parameters 

estimated by the two models often indicate different hydrologic behaviors, reflects the classic and 

persistent problem of equifinality in calibration of hydrological models. Uncertainty related to 

equifinality is particularly troublesome for prediction in ungauged basins, given lack of validation 

capacity in truly ungauged catchments. In such catchments, the transfer of parameters calibrated 
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in donor catchments is often done “in the blind”, with limited capacity for validation. Increased 

assurance that selected parameters represent true hydrologic behavior is a benefit to a practitioner 

who must make decisions based on their confidence in the model. For instance, this problem is 

exemplified in North Fork Cache Creek in California. It is interesting to note that runoff efficiency 

achieved during calibration of the single-objective model in the donor catchment (in this case, Eel 

River below Scott Dam, NSE of 0.62, Table 9) exceeds that achieved through SPED (NSE of 0.48, 

Table 9). However, when the single-objective model is transferred for prediction in North Fork 

Cache Creek, the selected model utterly fails to estimate observed streamflows (NSE of 0.08). On 

the other hand, SPED predictions in North Fork Cache Creek are more robust, estimating 

streamflows with acceptable accuracy (NSE of 0.54). This example indicates that, by representing 

soil moisture distributions based on empirical CDFs, SPED is more robust and consistent in 

performance than the single-objective model, even when efficiency of predictions is the only factor 

that matters to a decision maker. 

3.6.2 SPED Performance Is Comparable to Prediction Using Robust Data Networks 

In the United Kingdom, McIntyre et al. (2004) tested whether Bayesian model averaging is 

preferable to regression for regionalization of hydrological models. The performance of SPED in 

River Coquet is similar to the best regionalization case presented by McIntyre et al. (2004), both 

with NSE of 0.63 (Table 11). McIntyre et al. (2004) achieved this performance level by selecting 

the optimum parameter sets given by the two most similar catchments (in terms of catchment 

descriptors such as catchment area, standardized annual average rainfall, and base flow index), 

which were chosen from a network of 30 gauged catchments across UK. Additionally, high-
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resolution observed daily rainfall data were applied to force the models. SPED, on the other hand, 

was calibrated for prediction in River Coquet using only one gauged reference catchment and 

lower-quality regional precipitation data for predictions. 

In the United States, Parada and Liang (2010) applied the physically distributed VIC-3L model to 

predict streamflows in North Fork Cache Creek in California. While runoff efficiency of SPED 

predictions in North Fork Cache Creek are acceptable (NSE of 0.54), Parada and Liang’s approach 

predicts streamflow with slightly greater efficiency (NSE of 0.66). Parada and Liang (2010) ran 

the default VIC-3L model using daily gridded meteorological data (precipitation, wind speed, and 

minimum and maximum daily temperature), as well as soil and vegetation parameters at a 

resolution of 0.125°. The authors also used observed streamflow data from two gauged reference 

catchments. The SPED predictions reported, on the other hand, were generated using a lumped 

conceptual hydrologic model (HyMOD), which is much less data-intensive than VIC-3L model, 

precipitation, temperature and subsurface information at much lower resolution, and streamflow 

data from only one reference catchment.  

In Australia, Post (2009) regionalized the IHACRES rainfall-runoff model for prediction in several 

locations within the Burdekin catchment. In Broken River, regionalization proved a more efficient 

prediction technique as compared to local calibration/simulation at the Old Racecourse gauge, 

while the opposite was true for the Urannah gauge. We report substantially higher runoff 

efficiencies based on application of SPED (Table 11, NSE of 0.74 at Old Racecourse and 0.71 at 

Urannah) in comparison with Post’s approach (Table 11, NSE of 0.43 at Old Racecourse and 0.22 

at Urannah). Post (2009) reports results of a simplified regionalization technique, requiring only 

daily rainfall, mean wet season rainfall, stream length, and percent cropping/percent forest. 
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However, such data are required for a large number of reference catchments to develop 

regionalization relationships. Quality of available precipitation and land cover data may thus 

heavily influence the performance of the approach in data-poor regions. Using regional rainfall 

and temperature data, streamflow data from one reference catchment, and globally available 

subsurface data with high uncertainties, the SPED framework was able to generate more accurate 

predictions in both catchments. 

In summary, SPED performs comparably or exceeds runoff efficiency performance in three of the 

four catchments for which previous studies predict streamflows using the full, more robust data 

networks. In the remaining catchment (North Fork Cache Creek in California), runoff efficiencies 

are reasonably close (Table 11), suggesting little degradation in model performance despite the 

lower quantity and quality of data used. While the prior studies utilized robust data networks, 

which enabled more sophisticated modeling, including regionalization, SPED performed 

comparably or better while using data from fewer reference catchments, and data associated with 

greater potential uncertainties (e.g., low-resolution coverages for subsurface characterization, 

precipitation and temperature). However, some models used in prior studies, such as the 

regionalization technique by Post (2009), are considerably simpler than the modeling approach 

used in this paper and can be applied to a large number of catchments efficiently. Thus, indeed, 

part of the noted improvement in some of the study catchments can be attributed to the modeling 

approach applied herein (choosing one nearby gauged reference catchment), as well as the 

hydrologic model used (HyMOD) rather than the SPED framework itself. For instance, runoff 

efficiencies achieved for the single-objective model in some catchments are similar to or exceed 

those reported in previous modeling studies (e.g., in the Australian catchments and River Coquet, 
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Tables 8 and 11). While maintaining this advantage, the SPED framework adds further 

performance consistency and realistic parameter estimation to the modeling process. 

Consequently, SPED performs reasonably close to the Parada and Liang (2010) modeling 

approach in North Fork Cache Creek, where the single-objective model fails to predict streamflow 

acceptably. Such comparable or improved performance of streamflow prediction using SPED is 

particularly meaningful given the volume of data-poor places in the world where water managers 

struggle to apply data-rich technologies. 

3.6.3 Scientific Contribution of SPED to Hydrologic Process Understanding in Poorly-Gauged 
Regions 

The ability to systematically differentiate equifinal parameter sets to select models that accurately 

represent estimated catchment conditions is perhaps the most important contribution of SPED to 

hydrologic process understanding within poorly-gauged regions. While understanding catchment 

condition through use of soft data is associated with uncertainty, broadly available soft datasets 

can be incorporated into modeling by water managers around the world to ground traditional 

hydrologic model calibration within realistic parameter sets. The SPED approach is a mechanism 

for using such data while acknowledging the inherent uncertainties. Alipour and Kibler (2018) 

presented preliminary analyses suggesting that the incorporation of preliminary process 

understanding through inclusion of soft global-scale data led to more accurate model 

parameterization, without sacrificing runoff efficiency in two catchments of southwestern China. 

In this study, it is demonstrated that the SPED framework is sufficiently flexible to perform 

consistently in different climatological conditions and physiographic settings (NSE range of 0.54-

0.74, Fig. 17). Comparable performance with previous flow prediction studies that require robust 
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data also indicates the merits of the SPED framework. Since the number of study catchments is 

limited, we however need to be careful about making general conclusions about the associations 

between modeling results and climatic and physiographic characteristics of the study regions. 

A closer look at the modeled hydrographs and FDCs (Fig. 17) sheds some light into why 

differentiating equifinal models can be so important in modeling. In five of the six target 

catchments, the single-objective model more accurately models extreme high flows, while 

moderate to low flows are consistently modeled either comparably or better by SPED (Fig. 17). 

This performance difference can be explained by examining differences in soil moisture capacity 

CDFs generated by the two models (Fig. 18). The difference between 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 in CDFs 

modeled by the single-objective model is small (relative to SPED CDFs) in all six target 

catchments (Fig. 18). Under this condition, when a catchment reaches 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, from there it can 

quickly attain 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚. Reaching 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 means that the entire catchment is saturated and additional 

rainfall becomes surface runoff, quickly contributing to streamflow. The single-objective model 

thus often predicts somewhat binary behavior, whereby the catchment is either “on” or “off”, 

producing flashy streamflows. By contrast, the greater difference between 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 modeled 

by SPED indicates a more balanced catchment behavior, where different parts of the catchments 

become gradually saturated, approximating expansion of variable source areas. Thus, SPED CDFs 

prove to be more efficient in modeling moderate flow magnitudes (Fig. 17). 

The influence of model parameterization to process representation can further be illustrated by 

North Fork Cache Creek (Fig. 17b and 18b) where SPED remains skillful (NSE of 0.54) while 

traditional model calibration fails (NSE of 0.08). The single-objective model here estimates a value 

for 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 close to 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, while the empirical (and thus SPED) CDFs indicate a 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚value close to 
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zero (Fig. 18b). A high value for 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 indicates that small events often cannot attain sufficient soil 

moisture in any part of the catchment to generate streamflow. Streamflows will be substantial only 

after long/intense rainfall events. This clearly does not resemble the hydrograph behavior in the 

catchment (Fig. 17b). Consequently, the hydrograph modeled by the single-objective approach 

fails to represent low and medium flows (except near zero flows) and only captures some of the 

highest flows in the catchment (Fig. 17b). Please note that a sufficiently long spin-up period was 

assigned for modeling in all catchments and about two-thirds of the single-objective predicted 

streamflow data between October 1950 and December 1951 presented in Fig. 5b are non-zero 

values. Thus, poor performance of the single-objective model cannot be associated with lack of a 

spin-up period for filling up the soil reservoir. The SPED parameterization, on the other hand, is 

able to correctly represent the impact of smaller rainfall events and the fluctuations they cause in 

the streamflow (Fig. 17b) by estimating more representative soil moisture capacity in the 

catchment (Fig. 18b). That extreme high flows are better modeled by the single-objective model 

indicates that processes controlling generation of peak flows are perhaps not sufficiently 

represented by the 6-parameter HyMOD model. While this model deficiency is obscured in the 

single-objective model by strict calibration to observed flows, this does not necessarily indicate 

that the single-objective model is able to better model these processes. 

Further analysis of results in North Fork Cache Creek clarifies why the two models deviate 

substantially in estimating soil moisture capacity CDF and exemplifies another aspect of 

contribution to hydrologic process understanding that is made possible through application of the 

SPED framework. A key challenge of flow prediction in ungauged basins is reliance on data from 

hydrologically similar gauged catchments, which is scarce in regions with poor observed flow 
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networks. Poor prediction skill results when reference and target catchments are dissimilar. Results 

from North Fork Cache Creek indicate that the SPED framework is robust to some level of 

catchment dissimilarity. Analysis of streamflow hydrographs in North Fork Cache Creek (target 

catchment) and Eel River (reference catchment) indicate divergent hydrologic behaviors (Fig. 19), 

though the two catchments are adjacent (Fig. 14b). Eel River has a stable base flow regime (base 

flow index of 0.16) and flow almost never drops below 0.1 mm/day. On the other hand, baseflow 

in North Fork Cache Creek is very low (base flow index of 0.003) and total river flow is frequently 

below 0.1 mm/day. Because traditional single-objective calibration is tuned to estimate parameters 

solely based on best fit between calibrated and observed streamflows in the reference catchment 

(Eel River), the resultant single-objective model aims at fitting a curve that has a stable base flow 

regime and simultaneously accounts for seasonal high flow events. For instance, a soil moisture 

capacity CDF with high threshold for initiation of saturation excess (high 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, Fig. 18b) is 

selected. This allows for greater soil storage, which translates into stable base flows. High flows 

occur in the case of large events that fill the high storage capacity of soil. While this CDF well 

serves the task of maximizing calibration runoff efficiency (NSE of 0.62), global soil data indicate 

that it may not correspond with reality very well. There could be several other parameterizations 

that produce comparable runoff efficiencies for the calibration (equifinality), but managers have 

no way of differentiating them. Due to the only partial similarity between Eel River and North 

Fork Cache Creek, just a few of these parameterizations should work well in North Fork Cache 

Creek as well. By incorporating soft data in calibration, the SPED procedure selects parameters 

that better resonate with global soil data, even though this comes with a lower calibration efficiency 

(NSE of 0.48). When the two models are transferred to North Fork Cache Creek for prediction, 
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the single-objective model fails to predict streamflow (NSE of 0.08), while SPED still takes 

advantage of the partial similarity between the two catchments and keeps a satisfactory prediction 

skill (NSE of 0.54). This example illustrates that through incorporation of soft data, rather than 

relying only on rote calibration, SPED also contributes to hydrologic process understanding within 

poorly-gauged regions by eliminating parameter sets that could only be identified as poorly-

performing if the reference and target catchments were significantly dissimilar with respect to 

some catchment processes. 

 

Figure 19. Observed hydrographs in North Fork Cache Creek and Eel River (United States) 

3.6.4 SPED Limitations and Directions for Future Research 

Questions may arise about the high performance level of the single-objective approach in the target 

catchments, in particular in the Australian catchments. As in North Fork Cache Creek, the soil 

moisture CDFs selected by the single-objective model do not match well the catchment conditions 
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(Fig. 18c and d). The single-objective model reproduces streamflow accurately despite the poor 

representation of soil moisture capacity because the target and reference Australian catchments are 

hydrologically similar (Fig. 17c and d). A model that estimates streamflow with high efficiency in 

the reference catchment is likely to also generate high efficiency predictions in a hydrologically 

similar target catchment, even if the model does not represent true catchment processes. This 

should be particularly true when calibration and prediction periods correspond. Similarly, though 

the SPED procedure is able to partially represent true catchment processes to distinguish equifinal 

models, the high weight applied to matching NSE in calibration still leads to mismatch in calibrated 

and estimated parameter values from soft data. Until the uncertainties of global soil data are highly 

reduced, there may be no other way than giving the highest weight to NSE and relying heavily on 

hydrograph matching for calibration. 

The SPED framework has been tested using only one hydrologic model (HyMOD). Future 

research and performance testing of SPED using other hydrological models could further clarify 

limitations/merits of the framework. Application of SPED requires specific attention to each target 

catchment, for example to assemble a priori catchment information. In comparison with 

regionalization techniques, such as those described by Post (2009) and McIntyre et al. (2004), for 

application within large geographical areas consisting of several ungauged catchments, catchment-

by-catchment application of SPED seems tedious. Another caveat to SPED performance, is 

exemplified by the described anomalies in the soil moisture capacity empirical CDF and difficulty 

in matching modeled and empirical data. Despite substantial improvements in estimation of model 

parameters, there still are cases where parts of the modeled CDF significantly deviate from the 

empirical CDF (e.g., River Coquet, Fig. 18a), reflecting the challenge of using highly uncertain 
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data. A bimodal calibration and prediction approach and or a better conceptualization of soil 

moisture capacity and hydrologic behavior (i.e., a better hydrologic model) can lead to further 

improvements in this regard. However, models selected using a procedure such as SPED will 

reflect the quality of available data. The SPED procedure is capable of overcoming equifinality 

challenges only to the extent that data uncertainties allow representation of true catchment 

condition. As ability to accurately describe catchment and atmospheric conditions improves, for 

instance through advances in remote sensing, applications for modeling with frameworks such as 

SPED also improve accordingly. 

3.7 Conclusions 

Herein the SPED framework was tested in diverse hydro-climatic regions. Accuracy of multi-

criteria SPED predictions were tested against single-objective models and also compared to results 

of previous modeling studies in four synthetically poorly-gauged catchments. SPED performance 

was also compared to single-objective models in two catchments located in a truly poorly-gauged 

region of southwestern China, demonstrating its potential for wide applicability in data poor 

regions. Preliminary process understanding by more representative modeling of catchment soil 

moisture capacity and associated processes helps SPED better decipher equifinal models. This 

enhances SPED performance where traditional flow prediction models are likely to fail: handling 

partial dissimilarity between reference and target catchments. In North Fork Cache Creek in 

California where partial dissimilarity with Eel River (reference catchment) in precipitation pattern 

and physiographic setting leads to different base flow regimes, SPED outperforms the single-

objective model (NSE of 0.54 versus 0.08). In other study regions where reference and target 
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catchments are similar in climatological conditions and physiographic settings, SPED and single-

objective models perform comparably in predicting streamflow (NSE range of 0.63-0.74 versus 

0.63-0.79). SPED performance is robust and consistent across the diverse climatological 

conditions and physiographic settings of test (NSE range of 0.54-0.74 in all six target catchments). 

Additionally, model parameters selected by SPED may offer superior representation of soil 

moisture capacity in all study catchments, as compared to empirical distributions. This is reflected 

in the multi-criteria OF value range of the models selected by SPED (0.22-0.39, Table 8) compared 

to the single-objective models (0.52-1.32, Table 8). Finally, SPED prediction skill within 

synthetically poorly-gauged regions with minimum hydrometeorologic observation is comparable 

to or exceeds that achieved by previous state-of-the-science methods applied within the same 

(well-gauged) regions when the entire data with highest available quality are used (NSE range of 

0.54-0.74 versus 0.22-0.66). Thus, SPED represents an important contribution to the science of 

flow prediction in regions of sparse hydrologic observation, by addressing flow prediction pitfalls 

such as equifinality, catchment dissimilarity, and difficulty utilizing uncertain data.  
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CHAPTER 4:  
 FLOW ALTERATION BY DIVERSION HYDROPOWER IN TRIBUTARIES 

TO THE SALWEEN RIVER: A COMPARATIVE ANALYSIS OF TWO 
STREAMFLOW PREDICTION METHODOLOGIES 

4.1 Preface 

This chapter describes application of the SPED framework on a regional scale to predict 

streamflow in 32 ungauged catchments in southwestern China developed with diversion 

hydropower projects. The generated data are used to study flow regime alterations due to diversion 

hydropower and the results are compared to those based on streamflow data simulated by a more 

simplistic catchment similarity approach. The content of this chapter has been submitted to River 

Research and Applications3 and is currently under review. 

4.2 Abstract 

A multi-model approach was applied to reconstruct long-term flow records in 32 ungauged rivers 

developed with small diversion hydropower stations. Hydrologic alteration was assessed for flow 

records simulated by a catchment similarity model and the multi-criteria Streamflow Prediction 

under Extreme Data-scarcity (SPED) framework. Both flow prediction techniques indicated that 

flow signatures were altered substantially by diversion hydropower. Mean annual flows decreased 

by a mean of 76-86% across the 32 rivers and flow became more predictable in most rivers (47-

94% mean increase in predictability). Frequency and duration of high flows decreased and duration 

of low flow events increased substantially. Slopes of rising hydrograph limbs and recession limbs 

                                                            
3 Alipour, M.H., Kibler, K.M., 2019 (under review). Flow alteration by diversion hydropower in 
tributaries to the Salween River: a comparative analysis of two streamflow prediction 
methodologies. River Research and Applications. 
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increased respectively by a mean of 123-161% and 254-720%. While direction of detected flow 

alteration was similar regardless of model choice, severity of alteration was consistently greater 

based on analysis of flows simulated by the multi-objective SPED model. Model validation based 

on limited observed data suggests that the SPED flow predictions are substantially more accurate 

than those generated by the catchment similarity model (NSE of 0.74 and 0.22, respectively). 

Overall, the agreement of the multi-model analysis indicates that the signal of flow alteration by 

diversion hydropower in the study rivers supersedes uncertainty associated with flow prediction. 

While both models may be appropriate for applications such as change detection analysis, 

prescriptive management actions, such as establishing flow targets for environmental flow 

regimes, should be based on flow records generated by models adept at simulating rainfall-runoff 

processes targeted to individual basins, such as SPED.  

4.3 Introduction 

Composition, structure and functionality of aquatic ecosystems are shaped by flow regime (Richter 

et al., 1996; Bunn and Arthington, 2002). Thus, human alteration to river flow regimes, for instance 

through water withdrawal or flow regulation, is often associated with substantial ecosystem-level 

impact (Merritt et al., 2010). While flow regime alterations due to river regulation have been 

extensively reported (e.g., Timpe and Kaplan, 2017; Zhang et al., 2018), alteration by diversion 

hydropower has received comparatively little analysis. It is often assumed that diversion projects 

(also commonly known as Run of River projects) have little to no impact on the natural flow 

regime and ecosystem of the rivers (Gibeau et al., 2016). However, comparisons between large 

storage systems without diversion and diversion systems have indicated potential for greater 
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environmental impact from diversion systems (Gleick, 1992; Kibler and Tullos, 2013; Kibler 

2017). Recent studies of flow alteration have clarified that diversion hydropower projects can 

substantially alter the flow regime of the depleted downstream reaches (Anderson et al., 2014; 

Fantin-Cruz, 2015; Wang et al., 2016; Kibler and Alipour, 2017). For instance, Kibler and Alipour 

(2017) analyzed flow regime alterations across 32 small rivers developed with diversion 

hydropower projects in southwestern China. The study concluded that diversion of water for the 

small hydropower projects altered all aspects of flow regime, and that low to moderate flow 

variability was all but eliminated, replaced by a minimum residual flow. 

Quantitative analysis of flow regime change by diversion hydropower is often limited by lack of 

data. Diversion hydropower is often developed in steep, ungauged catchments (Li et al., 2013; 

Tuna, 2013). In areas of the world with sparse hydrometeorological networks, such as remote, 

mountainous areas, quantitative flow predictions and analyses can be challenging. For example, to 

assess hydrologic alteration in the 32 largely ungauged rivers, Kibler and Alipour (2017) utilized 

a catchment similarity model (Falkenmark & Chapman, 1989) to create historical baseline and 

regulated flows. This approach is based on the presumption of hydrologic similarity between 

streamflow generation processes in a gauged reference catchment and ungauged target 

catchment(s). Accuracy of simulated streamflows may be compromised in data-poor study regions 

where few reference catchments are available. Indeed, validation of catchment similarity model 

performance as applied by Kibler and Alipour (2017) indicated that the model was largely unable 

to reproduce accurate moderate to high flows. To enable quantitative assessment of flow regime 

alterations within such data-scarce regions, streamflow prediction techniques suited to severely 

data-scarce regions are required. 
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Much progress has been made in the science of streamflow prediction (Blöschl et al., 2013; 

Hrachowitz et al., 2013; Seibert and McDonnell, 2013). However, application of many cutting-

edge techniques within severely data-scarce regions remains limited due to barriers such as 

equifinality (Beven, 1993), hydrologic dissimilarity (Peñas et al., 2014), difficulty utilizing highly 

uncertain regional/global low-resolution data (Alipour and Kibler, in revision), and difficulty 

validating predictions in the absence of streamflow observations (van Emmerik et al., 2015). In 

response to this need, Alipour and Kibler (2018) proposed a framework for Streamflow Prediction 

under Extreme Data-scarcity (SPED) which proved adept to predict streamflow with high 

efficiency in a remote area of southwestern China. Testing in diverse hydro-climatic catchments 

on four continents illustrated that SPED could improve streamflow prediction efficiency in 

comparison with traditional methods (Alipour and Kibler, in revision).  

The objective of this study is to assess hydrologic alteration in a suite of ungauged rivers developed 

for diversion hydropower production, and to heighten certainty of results by applying a multi-

model approach to streamflow prediction. This is achieved by comparing results derived through 

analysis of streamflow data generated by SPED to those deriving from application of the catchment 

similarity model (as reported by Kibler and Alipour, 2017). Herein we address two questions: 1) 

How does diversion hydropower alter flow regimes of the 32 study rivers, and 2) Do conclusions 

regarding flow regime alteration vary depending on streamflow prediction method? For the first 

time the SPED framework is utilized and evaluated for large-scale flow prediction over a truly 

poorly gauged region. Furthermore, the relative importance of flow prediction accuracy to assess 

direction and severity of hydrologic change is investigated. Finally, potential merits and time/effort 
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tradeoffs of sophisticated versus more simplistic flow prediction approaches are analyzed from the 

perspective of a water resources manager. 

4.4 Methodology 

4.4.1 The Region of Study and the Rivers 

The catchments of interest are located in southwestern China, within the Salween and Mekong 

River basins (Table 12, Fig. 20). The international Salween (locally known as Nu River) and 

Mekong Rivers (locally Lancang River) originate in the eastern highlands of the Tibetan Plateau 

and flow southward through Yunnan Province before entering Myanmar and Laos, respectively. 

Within Yunnan Province, tributaries to the mainstem rivers flow through steep valleys draining 

small, mountainous catchments. Regional climate is monsoonal, and seasonal rainfall pulses result 

in corresponding high flows in tributary rivers (Institute of Water Resources, 2006). While 

mainstem rivers contain snow and glacial melt, these are not significant sources of runoff to 

tributaries in Yunnan (Chinese Academy of Sciences, 1990; Yunnan Bureau of Hydrology and 

Water Resources, 2005; Mekong River Commission, 2005). Catchments are dominated by forested 

land cover, with limited urbanization (less than 0.1%) and some agriculture (7-15%) (DeFries and 

Hansen, 2010). 

Diversion hydropower projects have been implemented on many steep tributaries to the Salween 

River within Yunnan Province (Kibler and Tullos, 2013). Each hydropower project incorporates 

at least one dam, but several dams may divert multiple tributaries to one power generation station. 

Small impoundments behind dams retain water on the order of hours (Kibler and Tullos, 2013). 

Diverted water to power stations may be returned to the same river downstream of the 
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impoundment, or more often, is discharged to a different river (e.g., mainstem of the Salween 

River). Among the tributaries of the Salween River developed with diversion hydropower, we 

analyze flow in 32 diverted rivers (Fig. 20) which contribute to 23 hydropower projects. The 

catchments (Table 12) range from very small in size (13.9 km2) to larger catchments (457 km2). 

Observed streamflow data are only available for one year prior to dam development (1987), and 

only in the largest catchment of study (Laowo River, Table 12, Fig. 20). The Yongchun River (197 

km2 catchment area), a tributary to the Mekong River, is adopted as a reference catchment for 

estimating streamflow in the 32 ungauged catchments. Daily flows have been monitored in this 

gauged river since 1960.
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Table 12. Rivers and hydropower dams studied. Mean annual flow metrics and diversion index are based on data simulated using the 
SPED framework. 

 
Number River name 

*Project 
installed 
capacity                   
(MW) 

*Dam 
height                    

(m) 

*Basin 
area at 
dam                      

(km2) 

*Designed 
diversion 

(m3/s) 

Mean annual river flow (m3/s)  
 

Diversion 
index 

without 
diversion 

2.05 Percent 
difference 

1 Pula River 24.8 19.3 70.1 3.21 1.80 1.05 -91 2.05 
2 Qiqiluo River 20.0 18.7 257.9 4.95 5.81 2.95 -67 1.05 
3 Dimaluo River 56.0 24.6 162.4 7.53 3.28 2.37 -90 2.95 
4 Galabo River 14.0 17.8 127.5 4.90 2.67 5.53 -86 2.37 
5 Mujiajia River 18.9 6.0 262.1 3.26 0.74 5.43 -78 5.53 
6 Mujiajia tributary 2 NA 5.0 13.9 1.24 0.29 5.16 -79 5.43 
7 Mujiajia tributary 3 NA 6.0 20.3 1.81 0.44 9.32 -80 5.16 
8 Mujiajia River (US) 10.0 10.0 32.3 5.38 0.72 6.04 -94 9.32 
9 Mukeji River 31.5 10.5 57.0 6.04 1.25 4.84 -95 6.04 
10 Lishiluo River 6.4 14.5 41.8 2.36 0.62 3.39 -84 4.84 
11 Yamu River 49.0 8.7 78.3 4.28 1.66 3.22 -92 3.39 
12 Yamu tributary NA 8.7 66.3 3.63 1.44 6.41 -92 3.22 
13 Alu River 12.6 5.5 24.6 2.73 0.53 3.70 -81 6.41 
14 Zhali River 2.6 4.0 40.9 2.50 0.87 3.70 -93 3.70 
15 Ganbu River 3.8 4.0 32.1 1.85 0.68 3.81 -88 3.70 
16 Guquan River 22.0 11.0 34.9 2.34 0.79 3.64 -90 3.81 
17 Wuke River NA 10.0 28.7 1.93 0.67 3.81 -90 3.64 
18 Zema River 15.0 4.0 56.6 3.61 1.22 3.99 -93 3.81 
19 Zema tributary NA 3.0 14.2 0.94 0.31 4.87 -94 3.99 
20 Pushi River 10.0 5.0 43.0 3.70 0.98 3.28 -94 4.87 
21 Zilijia River 6.4 7.0 31.5 1.76 0.69 4.31 -93 3.28 
22 Zileng River 24.0 7.0 41.7 3.07 0.93 8.43 -89 4.31 
23 Zileng tributary 2 NA 8.0 10.9 1.49 0.24 2.27 -83 8.43 
24 Zileng tributary 3 NA 5.5 20.3 0.80 0.46 4.29 -87 2.27 
25 Labuluo River 26.0 10.3 84.2 5.79 1.73 3.77 -75 4.29 
26 Toulu River NA 10.0 29.4 2.03 0.70 11.10 -79 3.77 
27 Nalai River 24.0 9.1 21.6 4.41 0.52 4.21 -94 11.10 
28 Duduluo River 48.0 15.5 84.6 7.26 2.23 1.79 -89 4.21 
29 Jidu River 16.0 4.6 71.9 2.42 1.79 1.83 -79 1.79 
30 Jidu tributary NA 4.6 69.7 2.34 1.69 1.88 -79 1.83 
31 Gutan River 7.5 4.0 99.0 3.92 2.83 1.83 -80 1.88 
32 Laowo River 25.0 17.0 457.2 17.18 12.62 NA -81 1.83 
Ref Yongchun River NA NA 197.0 NA 2.59 NA NA NA 

*Kibler and Tullos (2013)
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Figure 20. The region and the rivers of study 
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4.4.2 Streamflow Prediction 

We simulated 27-year historical timeseries of daily mean unaltered flows in the 32 rivers using 

two different streamflow prediction methods. We then modeled effects of hydropower diversion 

by removing reported absolute withdrawal rates from the two simulated unaltered flow timeseries. 

We quantified hydrologic changes caused by diversion hydropower by comparing the regulated 

and unregulated timeseries. The two flow prediction methodologies applied make use of data from 

a gauged reference catchment to predict flows in nearby ungauged target catchments. The same 

observed flow data, from the Yongchun River (Fig. 20) were applied to both models. The first 

flow prediction method, a catchment similarity model, presumes that hydrologic routing processes 

are similar in target and reference catchments (Kibler and Alipour, 2017). Hence, under the 

catchment similarity approach, flows observed in the reference site are scaled by comparative 3-

day mean precipitation and catchment size to approximate target catchment flows. A detailed 

description of the catchment similarity streamflow prediction approach can be found in Kibler and 

Alipour (2017). 

The second flow prediction method, the SPED framework (Alipour and Kibler, 2018; Alipour and 

Kibler, in revision) balances multiple objectives in the calibration process. Through a multi-criteria 

objective function, soft data (i.e., qualitative knowledge or highly uncertain quantitative 

knowledge) are combined with hard data to simultaneously maximize runoff efficiency while 

accurately representing catchment characteristics. In calibration, SPED incorporates a priori 

parameter estimates derived directly from available data. In data-poor regions, these a priori values 

can be estimated from soft data and represented by fuzzy numbers to account for uncertainties. 
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The 5-parameter HyMOD hydrologic model (Moore 1985) was chosen as the runoff engine within 

the SPED framework. The model was calibrated with dual objectives: to minimize residuals 

between a priori estimates of influential model parameters and their calibrated value, and to 

maximize Nash-Sutcliff Efficiency (NSE). Influential model parameters included 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, maximum 

soil moisture capacity within a catchment, and 𝐵𝐵, a shape factor describing the catchment’s spatial 

variability in soil moisture capacity. Both parameters influence the catchment’s capacity to store 

water and thus control the partitioning of rainfall between overland and subsurface flowpaths. For 

instance, high 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 indicates that a catchment can store a comparatively large fraction of 

precipitation, which translates into few zero flow days, stable base flows and high flow constancy. 

Parameter 𝐵𝐵 controls the curvature of a cumulative distribution function (CDF) of soil moisture 

capacity across the catchment. Curvature of the CDF describes variable sources areas that become 

saturated during a rainfall event and how quickly saturation occurs. 

A priori values of 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐵𝐵 were estimated from global databases (soil type WISE30sec, Batjes, 

2015 and soil depth to bedrock SoilGrids250m, Hengl et al., 2017), which are the only source of 

large-scale subsurface data in the region. The two datasets were combined to create empirical 

CDFs of soil moisture capacity in each catchment. The HyMOD CDF for soil moisture capacity 

was fitted to each empirical CDF to estimate a priori values of 𝐵𝐵 and 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 in each catchment. 

Multi-objective calibration and validation was performed in the reference catchment (Yongchun 

River). Finally, calibrated models were transferred to target catchments for flow prediction. 

Interested readers may refer to Alipour and Kibler (2018) and Alipour and Kibler (in revision) for 

a more detailed description of the SPED modeling approach using HyMOD. 
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4.4.2.1 Precipitation and PET  

Precipitation was estimated from the APHRODITE spatial precipitation product (Yatagai et al., 

2012). As APHRODITE is associated with underestimation of rainfall in high altitudes due to poor 

representation of orographic effect (Wi et al., 2015), data were bias-corrected through the 

empirical quantile mapping approach (Lafon et al., 2013) using long-term regional precipitation 

observations. Details of precipitation bias correction approach are available in Alipour and Kibler 

(2018). Monthly potential evapotranspiration (PET) estimates were generated for the 32 target 

catchments and the reference catchment using Thornthwaite’s approach (1948). PET was 

estimated from a regional-scale spatial temperature data product, AphroTemp (APHRODITE 

website, 2015; Yasutomi et al., 2011) and daylight length was estimated as in Forsythe et al. 

(1995). 

4.4.3 Analysis of Hydrologic Alteration 

The two unregulated streamflow data series simulated in each catchment were used to estimate the 

regulated (modified) streamflows for the same climatic/hydrologic conditions after perturbation 

by diversion hydropower. Following Kibler and Alipour (2017), the modified flows were 

computed as: 

𝑄𝑄𝑚𝑚𝑜𝑜𝑐𝑐,𝑚𝑚,𝑗𝑗 = 𝑄𝑄𝑚𝑚,𝑗𝑗 − 𝑄𝑄𝑐𝑐𝑚𝑚𝑑𝑑,𝑗𝑗 ( 11 ) 

Where 𝑄𝑄𝑚𝑚𝑜𝑜𝑐𝑐,𝑚𝑚,𝑗𝑗 denotes the mean daily streamflow downstream of the dam on day i in river j;  𝑄𝑄𝑚𝑚,𝑗𝑗 

is the unregulated mean daily flow downstream of the dam on day i in river j; and 𝑄𝑄𝑐𝑐𝑚𝑚𝑑𝑑,𝑗𝑗 is the 

static diverted flow for hydropower generation from river j. Diverted flow consists of hydropower 
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design flow as well as additional water withdrawn to compensate for leakage losses in the system. 

We make a conservative assumption that minimum residual flows equal to 5% of the unregulated 

river’s mean annual flow are maintained below each diversion dam, though this is not reported at 

all dams (Kibler and Tullos, 2013). Accordingly, the following decision rules are used to estimate 

the modified flows from unregulated streamflow data in each river (Kibler and Alipour, 2017): 

𝐼𝐼𝐼𝐼 𝑄𝑄𝑚𝑚,𝑗𝑗 < 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚,𝑗𝑗 ,   𝑡𝑡ℎ𝑑𝑑𝐶𝐶   𝑄𝑄𝑚𝑚𝑜𝑜𝑐𝑐_𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙,𝑚𝑚,𝑗𝑗 = 𝑄𝑄𝑚𝑚,𝑗𝑗
 𝐼𝐼𝐼𝐼 𝑄𝑄𝑚𝑚𝑜𝑜𝑐𝑐,𝑚𝑚,𝑗𝑗 < 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚,𝑗𝑗 ,   𝑡𝑡ℎ𝑑𝑑𝐶𝐶   𝑄𝑄𝑚𝑚𝑜𝑜𝑐𝑐_𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙,𝑚𝑚,𝑗𝑗 = 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚,𝑗𝑗

𝐼𝐼𝐼𝐼 𝑄𝑄𝑚𝑚𝑜𝑜𝑐𝑐,𝑚𝑚,𝑗𝑗 > 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚,𝑗𝑗 ,   𝑡𝑡ℎ𝑑𝑑𝐶𝐶   𝑄𝑄𝑚𝑚𝑜𝑜𝑐𝑐_𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙,𝑚𝑚,𝑗𝑗 = 𝑄𝑄𝑚𝑚𝑜𝑜𝑐𝑐,𝑚𝑚,𝑗𝑗

 ( 12 ) 

Where 𝑄𝑄𝑚𝑚𝑜𝑜𝑐𝑐_𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙,𝑚𝑚,𝑗𝑗 denotes the final modified flow on day i in river j; and 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚,𝑗𝑗 is the minimum 

residual flow considered for river j. 

Flow regime metrics from unregulated and modified flow records were compared (Richter et. al, 

1997; Olden and Poff, 2003; Mathews & Richter, 2007) to identify flow alteration patterns as a 

result of diversion hydropower across the 32 rivers of study. The Nature Conservancy's Indicators 

of Hydrologic Alteration (The Nature Conservancy website, 2017) software package was used to 

compute flow regime descriptors associated with the five main characteristics of flow: magnitude, 

timing (predictability), frequency, duration, and rate of change of flow. Flow alterations were 

assessed two times: once comparing unregulated and regulated flows generated using the SPED 

framework, and once comparing unregulated/regulated flow data generated using the catchment 

similarity model. Flow alterations detected using both models were compared to assess the impact 

of model choice.  
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4.5 Results 

Streamflows predicted by the SPED framework are similar to observed values across almost all 

flow magnitudes (NSE = 0.74, Percent Bias = -7%, Fig. 21). By comparison, streamflows 

simulated by the catchment similarity model often underestimate observed flows [NSE = 0.22, 

Percent Bias = -56%, Fig. 21]. 

 

Figure 21. Modeled streamflow by the SPED framework and catchment similarity modeling 

approach in comparison with observed streamflow in Laowo River 

Regardless of which model is used, analysis of hydrologic alteration indicates that hydrograph 

behavior in all rivers is greatly affected by diversion (Fig. 22). This overall effect transcends the 

differences between models, and translates into substantial alterations with respect to flow 

descriptors. Detailed comparative analysis allows for differentiation of model effects as well. 

Results of hydrologic alteration analysis are reported as percent difference in regulated versus 
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unregulated flows computed across the 32 rivers. Results based on the SPED framework are 

reported first, followed by those based on the catchment similarity model in brackets. Annual 

minimum flows decreased with a mean of -68 ± 23% [-12 ± 16%] across the 32 rivers and annual 

maximum flows decreased with a mean of -69 ± 25% [-26 ± 13%]. Moderate events were also 

affected by diversion; mean annual flows decreased with a mean of -86 ± 7% [-76 ± 12%] (Fig. 

23a), 7-day minimum flows decreased with a mean of -71 ± 21% [-41 ± 23%] (Fig. 23b), and 7-

day maximum flows decreased with a mean of -78 ± 20% [-52 ± 18%] (Fig. 23c). 
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Figure 22. Normalized discharge before and after diversion across rivers with a range of 

diversion indices for SPED (left) and catchment similarity modeling (right) 

In terms of flow frequency, while regulated flows surpassed the pre-diversion 25th exceedance 

probability flow (Q25) a mean of 13.66 [19] times per year before diversion, this was surpassed 
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only 1.13 [7] times per year after diversion (-91 ± 14% decrease; [-64 ± 16% decrease], Fig. 23d). 

Duration of high flow events (number of days per event spent above Q25) also decreased from a 

mean of 4 [3] days to a mean of 2 [2] days (-52 ± 22% decrease; [-40 ± 19% decrease], Fig. 23e). 

Low flow events (below the pre-diversion 75th exceedance probability flow (Q75)) occurred with 

similar or lower frequency after regulation, with the two models predicting slightly different 

changes. Low flows occurred a mean of 3.72 [11] times per year after diversion versus 8.95 [11] 

times per year before diversion (-59 ± 39% decrease; [-2 ± 44% decrease]). However, both models 

detect that duration of low flow events increased substantially from a mean of 11 [3] days to a 

mean of 175 [27] days (Fig. 24a). 

With respect to rate of change, slopes of rising hydrograph limbs exhibit a mean increase of 161 ± 

213% [123 ± 71%] across the rivers after diversion (Fig. 24b) while slopes of recession limbs 

increase even more substantially (720 ± 316% mean increase; [254 ± 137% mean increase], Fig. 

24c). Some aspects of flow timing and predictability were substantially altered by diversion as 

well. While timing of annual maximum flow was altered in only a few rivers, timing of annual 

minimum flow was altered across all rivers (p < 0.001, -15 ± 19% decrease, [-23 ± 18% decrease]). 

Moreover, flow became highly predictable in most rivers (47 ± 16% mean increase in predictability 

of flow [94 ± 22% mean increase]) as a result of substantial increase in flow constancy (92 ± 29% 

mean increase; [184 ± 49% mean increase], Fig. 24d). On the other hand, flow 

contingency/periodicity reduced in all rivers (-80 ± 22% mean decrease) [-50 ± 19% mean 

decrease] primarily due to long periods of flow sustained at minimum residual flow. The increase 

in flow constancy can very well be described by the diversion index (DI, Eq. 13) proposed by 

Kibler and Alipour (2017): 



154 
 

𝐷𝐷𝐼𝐼𝑗𝑗 = 𝑄𝑄𝑑𝑑𝑖𝑖𝑑𝑑,𝑗𝑗

𝑄𝑄50,𝑗𝑗
 ( 13 ) 

Where 𝑄𝑄𝑐𝑐𝑚𝑚𝑑𝑑,𝑗𝑗 is the design diversion flow in river j, and 𝑄𝑄50,𝑗𝑗 is the pre-diversion median annual 

flow in river j. Diversion indices (Table 12) range from 1.05 [1.01] (Qiqiluo River) to 11.10 [11.17] 

(Nalai River) across the rivers with a mean of 4 ± 2 [4 ± 2]. As diversion index increases, the 

impact of diversion on the river’s natural flow regime increases as well. This normally translates 

into longer periods of flow sustained at minimum residual flow as well as other substantial 

hydrological changes in the rivers. Rivers with a high diversion index flow at the minimum residual 

flow for much of the time. While flows in all rivers exceeded the minimum residual flow more 

than 99 [96] percent of the time before diversion, flows in almost all rivers exceeded minimum 

residual flow less than 24 [22] percent of the time after diversion (Fig. 24e). The exceptions are 

Qiqiluo and Dimaluo Rivers, which are both characterized by relatively low diversion indices. 
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Figure 23. Histograms of percent change to flow metrics across the rivers and variation of 

response with diversion index 
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Figure 24. Histograms of percent change to flow metrics across the rivers and variation of 

response with diversion index 
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4.6 Discussion and Conclusions 

4.6.1 The Flow Alteration Signal Supersedes Model Variability  

The overall message remains the same regardless of the flow prediction method of choice: 

diversion hydropower alters flow signatures substantially (Fig. 23 and 24). Results from both the 

SPED and catchment similarity models indicate substantial changes to the magnitude and 

variability of flows, such that regulated hydrographs are often maintained at a static minimum 

residual flow for long periods of time (Fig. 22). Variability is suppressed, especially in low to 

moderate flow magnitudes (Fig. 23 and 24). The diversion index correlates well with severity of 

alteration, such that rivers with the highest diversion indices exhibit longer periods of flow at 

minimum residual value and consequently more substantial alterations to flow metrics. For 

instance the striking level of change in the duration of low flow events (from a mean of 11 [3] days 

to a mean of 175 [27] days, Fig. 24a) is mainly attributed to rivers with the highest diversion 

indices while rivers with low diversion indices showed only little difference with this regard. Thus, 

although diversion hydropower usually requires construction of only a small dam or weir, the 

impacts particularly to reaches immediately downstream of the dam may be consequential to the 

aquatic ecosystem or downstream water users.  

4.6.2 Data Simulated by SPED Indicate More Severe Hydrologic Alteration 

While direction and pattern of hydrologic alterations detected are consistent between analyses 

using the SPED framework and the catchment similarity approach (Fig. 23 and 24), the severity 

of effects vary systematically across the two prediction models. Alterations are consistently 

estimated to be more severe when flows simulated by the SPED framework are analyzed (Fig. 23 



158 
 

and 5). Particular attention to the metric of flow constancy may reveal the reason for this 

divergence. Constancy of flow describes uniformity of flow events through time.  High constancy 

implies that flow variability is low through time and consequently flow is more predictable. Lower 

constancy indicates substantial variability of flow through time and thus less predictable flow. 

Both flow prediction approaches detect substantial alteration to constancy in most rivers as a result 

of diversion (Fig. 24d), which suggests that flow has become more uniform and less variable due 

to diversion. Mean relative alteration (percent change) in flow constancy based on the SPED 

framework (92 ± 29% mean increase) is lower than that detected with the catchment similarity 

model [184 ± 49% mean increase]. However, across the 32 rivers, the SPED framework also 

predicts that unregulated flow regimes have greater constancy as compared to the catchment 

similarity model (0.46 versus [0.26] before diversion). This difference is associated with how the 

two approaches predict flow. Both approaches use the same reference catchment (Yongchun) for 

extrapolating information to the ungauged target catchments. However, the SPED framework 

incorporates a priori parameter estimates from both reference and target catchments in calibration 

of the runoff model. This results in models better tuned to the behavior of individual catchments 

(Alipour and Kibler, 2018, Alipour and Kibler, in revision). For instance, a priori parameter 

estimates from study catchments indicate high capacities for storage of water within the soils of 

all target catchments. The SPED framework uses this a priori knowledge and calibrates parameters 

to reflect the high water storage capacity of soil in the catchments. The high storage capacity 

estimated by SPED translates into less variable flow due to higher and more stable base flows, 

even during dry periods, as well as moderated high flows even during wet periods. Consequently, 

the constancy of unregulated flows modeled by SPED are high. Indeed, a constancy value of 0.51 
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for observed flow in the reference catchment, which is close to the average of that modeled by 

SPED in the target catchments (0.46), substantiates the a priori information on high water storage 

capacity of soil in the reference catchment. One might think that the catchment similarity modeling 

approach, which is based on the assumption of full similarity between hydrologic routing processes 

in the reference and target catchments, should also be able to model the high water storage capacity 

of soil in the target catchments and estimate constancy close to that of the reference catchment. 

However, similarity in water storage capacity of soil in the reference and target catchments may 

not necessarily translate into similarity in terms of hydrologic routing processes. In fact, it could 

even be a source of dissimilarity if the catchments are of significant size difference. Thus, the 

catchment similarity model partially fails to address the high water storage capacity of soil in the 

target catchments and produces a mean constancy of 0.26 across the target catchments. The small 

quantity of observed flow data available to validate models also suggest that the SPED framework 

is indeed more adept at accurately predicting magnitudes of baseflows (Fig. 21). 

4.6.3 Management Purpose of Flow Analysis Can Guide the Choice of Flow Prediction 
Approach 

Significant alterations to the natural flow regime of the rivers were detected similarly using flows 

predicted through both a catchment similarity modeling approach and the SPED framework (Fig. 

22, 23, and 24). However, the level of impact sometimes differed between the two approaches 

(Fig. 23 and 24). Thus, the choice of which approach a manager should use for flow prediction 

depends on the management purpose of the analysis. For instance, the SPED framework is likely 

to produce more accurate flow predictions, but requires more time and effort to implement as 

compared to the catchment similarity approach (Fig. 21). An approach such as SPED should be 
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chosen when analysis is performed for a sensitive task, such as the design of instream flows for 

preservation of a riverine ecosystem. If the objective of flow alteration analysis is primarily to 

detect direction and patterns of change, the catchment similarity modeling approach may be 

appropriate. 

A limitation to the present study, which is common to streamflow prediction in many poorly-

gauged places of the world, is a lack of observed data to validate models. In this study, models can 

be directly validated based on observed data in only one catchment for one year. Managers can 

partially address such challenges through indirect validation. For example, in another nearby 

gauged catchment with 20 years of observed daily streamflows in the region (Yang Bi Jiang River), 

SPED predicted streamflow with high efficiency (NSE of 0.72) (Alipour and Kibler, 2018). While 

such indirect performance evaluation can increase confidence of model predictions, alternative 

techniques to validate model performance in truly ungauged catchments should become a fruitful 

research area. Innovative validation techniques, for instance using remotely-sensed data, citizen 

science, or crowd-sourced data, must be explored to evaluate streamflow prediction techniques for 

truly ungauged areas. 
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CHAPTER 5:   
VALUE ADDED BY GAUGING THE UNGAUGED CATCHMEN WITHIN A 

DATA-SCARCE REGION 

5.1 Preface 

This chapter describes the valued added by limited streamflow observations in an ungauged 

catchment to improvement of accuracy of long term flow predictions in the catchment. 

5.2 Abstract 

Streamflow prediction in ungauged basins has become more important than ever given the 

increasing developments within small catchments located in remote areas of the world. The value 

of few observations collected through limited field campaigns to improvement of predictions has 

received attention recently through several research studies. We study some specific situations a 

manager of an ungauged catchment located within a data-scarce region may face in reality, which 

have not been explored previously by other researchers. Our experimental design is thus for a 

situation where decisions on a development project within the ungauged catchment have to be 

made quickly. We study whether it is beneficial to go ahead with a limited field campaign within 

a timeframe of maximum one year to collect observed streamflow data in the ungauged catchment. 

We take a traditional streamflow prediction approach in such regions based on calibration in a 

partially similar gauged catchment to transfer parameter values to the ungauged catchment as 

reference. We then test 528 different scenarios for combination of this traditional approach with 

the collected observed data in the ungauged catchment to see if improvements are made possible 

and to what extent. This combination is realized through defining a two-criterion objective 

function considering runoff efficiency of calibration in the reference catchment as well as runoff 
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efficiency of calibration in the ungauged catchment using the collected data. The scenarios are 

based on 11 different schemes for selection of the days for data collection, 6 different combinations 

for the weights of the two criteria, and 8 different numbers of data collection days. We apply our 

approach to ten catchments located on four different continents including six catchments in the 

United States. We find that there are two scenarios which almost universally lead to improvements 

in runoff efficiency of predictions over the traditional approach. 

5.3 Introduction 

Streamflow data are a significant element required for water resources planning and management 

projects. Degree of success in activities such as river restoration, reservoir operation, water 

allocation and many other water development projects is highly associated with the availability 

and quality/accuracy of long-term streamflow data. However, World Meteorological Organization 

has made it clear that even the minimum recommended density of streamflow gauges required for 

basic water resources management has not been met in many areas of the world (Perks et al., 1996). 

Ironically, the number of gauging stations worldwide is even in decline (Lanfear et al. 1999, 

Vörösmarty et al. 2001, Shiklomanov et al. 2002, Hannah et al. 2011). Streamflow modeling and 

prediction may thus be the only way to meet the requirements for long-term streamflow data. In 

acknowledgment of this increasing demand and in response to the desire to shift research focus 

toward process understanding and model structural diagnostics (Hrachowitz et al., 2013), the 

International Association of Hydrological Sciences initiated the Prediction in Ungauged Basins 

(PUB) decade (2003-2012). Significant advancements were made during this decade of research 

with respect to multiple aspects of the science of flow prediction. In this context, contribution and 
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the value added by a limited number of streamflow measurements in the field to improvement of 

long term streamflow predictions has recently been considered and studied by researchers (e.g., 

Drogue and Plasse, 2014; Perrin et al., 2007; Viviroli and Seibert, 2015). 

Rojas-Serna et al. (2006) calibrated the four-parameter GR4J model (Edijatno et al., 1999; Perrin 

et al., 2003) using only a priori knowledge acquired from the large number of prior calibration 

experiments as well as a combination of both a priori knowledge and a few streamflow 

measurements in the ungauged catchments of the study. Substantial improvements in runoff 

efficiency of predictions were observed by incorporating up to 50 daily streamflow measurements 

in the calibration process. In a relevant study, Perrin et al. (2008) tested calibration of two lumped 

daily rainfall-runoff models using only a library of prior parameter estimates from a large number 

of catchments. The method was found sensible and more robust in comparison to classical 

calibration schemes when the available data for calibration were less than 2 years long. This would 

make the approach applicable in poorly gauged catchments where there is limited availability of 

streamflow measurements. Combination of few streamflow measurements with groundwater well 

level observations (Juston et al., 2009), glacial mass balance observations (Konz and Seibert, 2010) 

and soft data (on maximum and minimum groundwater levels, frequencies of groundwater levels 

as well as the contribution of new event precipitation water to event runoff) (Seibert and 

McDonnell, 2013), and the consequential improvements in model calibration/prediction have also 

been subject to research recently. Seibert and Beven (2009) calibrated the HBV mode (Bergström, 

1992; Lindström et al., 1997) in 11 catchments located in central Sweden north of Uppsala. 

Uniform distributions were used to sample 10,000 random parameter sets. Limited number of daily 

runoff measurements from a varying one-year period (of 1, 2, 4, 8, 16, 32, 64, 128 and 256) were 
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then added to evaluate the performance of the random parameter sets and rank them. Top 100 

parameter sets were evaluated for runoff efficiency over a 10-year period in each catchment. The 

authors found that, on average, a few daily measurements could importantly improve model 

performance. However, there were significant variations in model performance based on the 

catchment being modeled as well as the days chosen for runoff measurement. Perrin et al. (2007) 

studied 12 catchments located in the United States with continuous high-quality streamflow data 

of 39 years. They chose different number of observed streamflow data randomly distributed over 

these streamflow records for calibration of two hydrological models. While drier catchments 

proved more difficult, in general models reached stability in parameter estimates when the number 

of observed streamflow data were greater than 350. 

In this study we aim at answering some very specific questions, which have not been explored in 

previous studies, regarding the potential advantages of making few streamflow measurements in 

an ungauged catchment located within a poorly-gauged region. We design these questions in a 

realistic scenario where a manager has to make a decision on whether or not to go ahead with a 

limited field campaign for collection of streamflow data. Our experimental design is thus 

developed for a case where we have an ungauged target catchment which is going to be developed 

with a water resources project such as diversion hydropower. Time is essential here as 

development plans need to be finalized as quickly as possible, and there is only limited time for 

evaluation studies such as a data collection field campaign. We assume there is a maximum of one 

year of time available for completion of data collection and making streamflow predictions. To 

mimic circumstances of data-scarce regions, we also limit the availability of a similar gauged 

reference catchment to only one catchment with partial similarity to the target catchment of 
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interest. So the first question to answer is whether or not it is beneficial to have the data collection 

field campaign. To elaborate, we want to answer whether conducting the field campaign and 

combining the collected data from the ungauged target catchment with the available streamflow 

data in the reference catchment is more favorable and advantageous than the traditional streamflow 

prediction in the ungauged target catchment using only data from the gauged reference catchment. 

Moreover, in a real case we would not know for sure what days of the year ahead are going to 

experience high flows, low flows or even moderate flows so that we can schedule field 

measurements on these specific days. We would only have the historical data from the gauged 

reference catchment to give us hints on this. We would not know how many measurements are 

required to ensure improvement in modeling over the traditional approaches either. Thus, another 

question we would like to explore is that whether there is a (almost) universal approach that can 

be followed to ensure with high probability that improvements are going to be made over 

traditional approaches, and if so, what are the required resources associated with that. This question 

is particularly important since in truly ungauged catchments we do not have streamflow data to 

validate the performance of a model. Thus, in order to go ahead with a field data collection 

campaign, a manager needs to know that improvements are almost guaranteed in comparison to 

what can be achieved right away without allocating resources to this task. We aim at answering 

these questions by testing a large number of scenarios for field data collection, including number 

and timing of measurements, and combination of these data with streamflow data available in a 

gauged reference catchment. 
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5.4 Methodology 

5.4.1 Multi-criteria Objective Function for Calibration 

We base our analysis on traditional single-objective calibration to maximize runoff efficiency in a 

gauged reference catchment and transferring the calibrated parameter values to an ungauged target 

catchment for prediction. We however test if predictions could be improved by adding a limited 

number of daily streamflow measurements in the ungauged target catchment to this process. Since 

we work in poorly-gauged regions or mimic circumstances of such regions in well-gauged regions, 

we use only one gauged reference catchment in each region which is at least partially similar to 

the ungauged target catchment for calibration of the hydrological model of choice. Thus, the 

objective function of the calibration process consists of two criteria: maximizing runoff efficiency 

in the gauged reference catchment and maximizing runoff efficiency based on the limited available 

observations in the ungauged target catchment. Calibrated parameter values are then used for long-

term predictions (5-10 years) in the ungauged target catchment. 

5.4.1.1 Runoff Efficiency in the Gauged Reference Catchment 

Nash-Sutcliff Efficiency (NSE) is used in the reference catchment in each region as the metric to 

measure the runoff efficiency of the parameter sets tested during the calibration process: 

𝑁𝑁𝑆𝑆𝑆𝑆𝑅𝑅 = 1 − ∑ �𝑄𝑄𝑜𝑜𝑡𝑡−𝑄𝑄𝑚𝑚𝑡𝑡 �
2𝑇𝑇

𝑡𝑡=1

∑ �𝑄𝑄𝑜𝑜𝑡𝑡−𝑄𝑄𝑜𝑜�����
2𝑇𝑇

𝑡𝑡=1
 ( 14 ) 
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Where NSER is Nash-Sutcliffe runoff efficiency in the reference catchment, 𝑄𝑄𝑜𝑜𝑡𝑡  is observed 

streamflow in time step t, 𝑄𝑄𝑚𝑚𝑡𝑡  is modeled streamflow in time step t, and 𝑄𝑄𝑜𝑜���� is the mean value of 

observed streamflows in time T. 

5.4.1.2 Runoff Efficiency in the Ungauged Target Catchment 

NSE is also used for the limited available streamflow observations in the target catchment in each 

region as the metric to measure the runoff efficiency of the parameter sets tested during the 

calibration process: 

𝑁𝑁𝑆𝑆𝑆𝑆𝑁𝑁 = 1 − ∑ (𝑄𝑄𝑜𝑜𝑚𝑚−𝑄𝑄𝑚𝑚𝑚𝑚 )2𝑁𝑁
𝑚𝑚=1
∑ (𝑄𝑄𝑜𝑜𝑚𝑚−𝑄𝑄𝑜𝑜����)2𝑁𝑁
𝑚𝑚=1

 ( 15 ) 

Where NSET is Nash-Sutcliffe runoff efficiency in the target catchment, 𝑄𝑄𝑜𝑜𝑚𝑚 is observed 

streamflow for the nth measurement day in the target catchment, 𝑄𝑄𝑚𝑚𝑚𝑚  is modeled streamflow for the 

nth measurement day in the target catchment, and 𝑄𝑄𝑜𝑜���� is the mean value of observed streamflows 

for all N available measurement days in the target catchment. 

5.4.1.3 Weighting the Criteria 

In order to explore the entire domain of potential solutions to our research questions, we discretize 

the weight range for each criterion (0-1) and test all their possible combinations (Table 13). 
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Table 13. Weight combinations for the criteria 

Combination NSER weight (%) NSET weight (%) 

1 0 100 

2 10 90 

3 30 70 

4 50 50 

5 70 30 

6 90 10 

The final form of the multi-criteria objective function used for model calibration is thus as follows: 

𝑂𝑂𝐹𝐹 = 𝑊𝑊1 ∗ 𝑁𝑁𝑆𝑆𝑆𝑆𝑅𝑅 + 𝑊𝑊2 ∗ 𝑁𝑁𝑆𝑆𝑆𝑆𝑁𝑁 ( 16 ) 

Where OF is the multi-criteria objective function to be maximized, 𝑊𝑊1 is the weight assigned to 

maximization of NSE in the reference catchment, and 𝑊𝑊2 is the weight assigned to maximization 

of NSE in the target catchment. NSER, NSET and OF all range between negative infinity and one 

with one being the ideal value where observed and modeled streamflows match through the entire 

analysis period. 
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5.4.2 Scenarios 

As described in the Introduction section, in this study we focus on a realistic case that a manager 

in a poorly-gauged region might face. In this case, the manager has to make a decision whether or 

not to go ahead with a limited field campaign for collecting streamflow data in an ungauged 

catchment which is going to be developed by a water resources project. We limit the available time 

for the field campaign before beginning of planning/development to one year. Thus, in the regions 

we study, we assume that limited daily streamflow measurements are available in the ungauged 

target catchments only within the last year of calibration period (assuming they have been collected 

through the field campaign). Other important factors to consider are the number and timing of 

these measurements. In our search for a potentially widely applicable solution, we aim at 

investigating almost the entire range of the number of collection days. Thus, we test a wide range 

of possible scenarios having 2, 4, 8, 16, 32, 64, 128 or 256 collection days.  

With respect to the timing of measurements, we again consider a realistic case where at the 

beginning of the field campaign the best source of information about the flow regime (timing of 

low flows, high flows, moderate flows, etc.) of the ungauged target catchment within the next year 

is the historical streamflow data in the gauged reference catchment. Thus, since the reference and 

target catchments must be at least partially similar, we rely on the available streamflow data in the 

reference catchment (up to the beginning of the field campaign) to estimate the flow regime in the 

target catchment within the following year. Using this information we select the data collection 

days. Here again, since we search for a widely applicable solution, we investigate a wide range of 

scenarios for selection of data collection days. To do so, first, historical daily streamflow data in 

the gauged reference catchment are averaged for each day of the year over the entire years of 
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available data. Next, days of the year are ranked based on their associated average flow value 

(ranking 1). This ranking gives us an estimation of what days of the year are more likely to 

experience highest flows (days with highest ranks), lowest flows (days with lowest ranks), median 

flows (days with median ranks), etc. Moreover, average value of daily streamflow over all days 

and all years is calculated and the absolute value of its difference with daily averages is calculated. 

Days are then ranked based on this difference (ranking 2). This ranking gives us an estimation of 

what days of the year are more likely to experience flows that are closest to the flow average over 

the entire available data (days with lowest ranks).  Finally, 11 different scenarios are defined based 

on these two rankings to select the filed data collection days in the ungauged target catchment, 

including: 

1. Half of the collection days are selected from the days with the highest rankings (ranking 1) and 

half of them are selected from the days with the lowest rankings (ranking 1); 

2. All collection days are selected from the days with the lowest rankings (ranking 1); 

3. All collection days are selected from the days with the highest rankings (ranking 1); 

4. All collection days are selected from the days with the median rankings (ranking 1; for example 

day 182 and 183 if we only have two collection days, or days 181, 182, 183, 184 if we have four 

collection days); 

5. Half of the collection days are selected from the days with the highest rankings (ranking 1) and 

half of them are selected from the days with the median rankings (ranking 1); 
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6. Half of the collection days are selected from the days with the lowest rankings (ranking 1) and 

half of them are selected from the days with the median rankings (ranking 1); 

7. Half of the collection days are selected from the days with the highest rankings (ranking 1) and 

half of them are selected from the days with the lowest rankings (ranking 2). 

8. Half of the collection days are selected from the days with the lowest rankings (ranking 1) and 

half of them are selected from the days with the lowest rankings (ranking 2). 

9. All collection days are selected from the days with the lowest rankings (ranking 2); 

10. One third of the collection days are selected from the days with the lowest rankings (ranking 

1), one third of the collection days are selected from the days with the highest rankings (ranking 

1) and one third of the collection days are selected from the days with the median rankings (ranking 

1); 

11. One third of the collection days are selected from the days with the lowest rankings (ranking 

1), one third of the collection days are selected from the days with the highest rankings (ranking 

1) and one third of the collection days are selected from the days with the lowest rankings (ranking 

2). 

Given the 8 tested scenarios for the number of collection days, 11 tested scenarios for the timing 

of collection days, and 6 tested combinations of weights for the criteria in the OF, a total of 528 

scenarios are tested for each reference/target catchment pair in search of a widely applicable 

solution.  
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5.4.3 Hydrological Model of Choice 

HyMOD hydrological model (Moore 1985, 1999) was selected for evaluating the performance of 

the scenarios in this study. This is a lumped conceptual model which uses simulated probability 

distribution of soil moisture across a catchment for streamflow modeling (Wang et al., 2009). This 

cumulative distribution function is formulated as follows: 

𝐹𝐹(𝑐𝑐) = 1 − �1 − 𝑐𝑐
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

�
𝐵𝐵

, 0 ≤ 𝑐𝑐 ≤ 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 ( 17 ) 

Where 𝐹𝐹 is the cumulative probability, 𝑐𝑐 is soil moisture capacity, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum soil 

moisture capacity across the catchment, and 𝐵𝐵 is a shape factor associated with the degree of spatial 

variability in soil moisture capacity across the catchment. 𝑅𝑅𝑞𝑞 (inverse of residence time in quick 

reservoirs), 𝑅𝑅𝑠𝑠 (inverse of residence time in a slow reservoir), and 𝛼𝛼 (a fraction coefficient for 

distribution of water between slow and quick reservoirs) are the other parameters of HyMOD. For 

interested readers, Wang et al. (2009) and Moore (1985, 1999) provide a more detailed description 

of HyMOD. In this study, a modified formulation of the 5-parameter HyMOD is used. This 

includes addition of a minimum soil moisture capacity parameter, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, which may be greater than 

zero (Alipour and Kibler, in revision). Thus, the new soil moisture capacity CDF is formulated as: 

𝐹𝐹(𝑐𝑐) = 1 − �1 − 𝑐𝑐−𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚−𝐶𝐶𝑚𝑚𝑖𝑖𝑚𝑚

�
𝐵𝐵

,𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑐𝑐 ≤ 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 , 0 ≤ 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 ( 18 ) 

HyMOD was calibrate by running 62,5000 different parameter combinations in each 

reference/target catchment pair using the branch-and-bound method described by Alipour and 

Kibler (2018). 
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5.4.4 Catchments of Study 

Five of the target catchments where we apply and test our approach come from the study by 

Alipour and Kibler (in revision). These include River Coquet in the United Kingdom, Broken 

River at Urannah and at Old Racecourse in Australia, North Fork Cache Creek in the US, and YBJ 

River in China. YBJ River is located within a truly poorly gauged region while the other regions 

were transformed into synthetically data-scarce regions by assuming availability of only one 

gauged reference catchment in each region and by using lower-quality (regional/global scale) data 

to estimate precipitation and temperature (Table 13). More detailed information on the catchments 

is available through the study by Alipour and Kibler (in revision). 

To expand the test of applicability and reliability of our approach, we added five other catchments 

located in the United States. The catchments were mainly located in areas with negligible snow 

contribution so that the 6-parameter HyMOD model used in our study would be applicable (this 

version of HyMOD does not account for snowmelt). The catchments include Pea River near Ariton 

(Alabama), Murder Creek below Eatonton (Georgia), Bayou Grand Cane near Stanley (Louisiana), 

Horse Creek near Arcadia (Florida) and Myakka River at Myakka City (Florida). These regions 

were transformed into synthetically data-scarce regions by assuming availability of only one 

gauged reference catchment in each region. 

5.5 Results 

There is considerable variability with respect to flow prediction performance from catchment to 

catchment and also depending on the scenario (weights of criteria, number of daily observations, 

and timing of daily observations) being tested (Fig. 25, 26 and 27).  
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5.5.1 Number of Runoff Observations 

Generally, an increase in the number of observation days up to 128 is associated with an increasing 

trend in the flow prediction performance in the ungauged target catchments (Fig. 25). However, 

this is associated with significant variability for individual scenarios and from catchment to 

catchment. From 128 to 256 observation days, the prediction performance varies more 

significantly from catchment to catchment, and can be ascending or descending (Fig. 25). 

5.5.2 Timing of Data Collection 

Timing of the data collection days in the ungauged target catchments can substantially influence 

the prediction performance in these catchments (Fig. 26). There is not a single scenario for timing 

of data collection that clearly outperforms the other scenarios. Variability is high from catchment 

to catchment and from scenario to scenario (Fig. 26). 

5.5.3 Weights of Criteria 

Assigning more weight to the NSE of modeling in the gauged reference catchments (NSER) over 

the NSE of modeling in the ungauged target catchments (NSET) leads to an increasing trend in the 

streamflow prediction performance in the target catchments (Fig. 27). However, this trend is less 

visible and sometimes even reverses between weight combinations of 5 (NSER weight = 70% and 

NSET weight = 30%) and 6 (NSER weight = 90% and NSET weight = 10%).
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Figure 25. Median, mean, 10th and 90th percentile of prediction NSEs for corresponding number 

of runoff observations in the target catchments, and prediction NSEs for no observations in the 

target catchments 
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Figure 26. Median, mean, 10th and 90th percentile of prediction NSEs for corresponding field 

data collection scenarios in the target catchments, and prediction NSEs for no observations in the 

target catchments 
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Figure 27. Median, mean, 10th and 90th percentile of prediction NSEs for corresponding weight 

combinations in the target catchments, and prediction NSEs for no observations in the target 

catchments 
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5.6 Discussion 

Streamflow prediction performance of different scenarios, based on weights of criteria, timing of 

data collection days, and number of days for data collection, indicate that almost in all of the target 

catchments improvements are possible through incorporation of limited observed data in these 

catchments with available observed data in the gauged reference catchments (Fig. 25, 26 and 27). 

However, in some catchments there are only very few scenarios that result in improvements, while 

in others a large number of scenarios may lead to substantial improvements in streamflow 

prediction performance (Fig. 25, 26 and 27). Among the three variables defining the scenarios in 

each catchment, weights of criteria display the clearest trend with respect to NSE of predictions so 

that almost in all catchments assigning a weight of 0.7 or higher to NSER is preferable (Fig. 27). 

However, it should be noted that the observations (Fig. 27) are for median, mean and confidence 

intervals. Thus, there might still be individual scenarios with an NSER weight of less than 0.7 that 

perform better than scenarios with a higher weight for NSER. Moreover, the fact that the increasing 

trend of NSE sometimes stops or even reverses between weight combinations of 5 (NSER weight 

= 70% and NSET weight = 30%) and 6 (NSER weight = 90% and NSET weight = 10%) proves 

that there actually are cases where limited observations in the ungauged target catchments can 

supplement the data in the gauged reference catchments and improve the streamflow prediction 

performance in the target catchments. 

There is an increasing trend of NSE with respect to increase in the number of observation points 

(data collection days) as well (Fig. 25). Similar to weights of criteria, however, sometimes this 

trend stops or reverses between 128 and 256 observation points. While we take it into consideration 

that there may be individual scenarios with fewer observation points than 128 that work better than 
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scenarios with higher observation points, it is safe to say that the best results are probably achieved 

with at least 128 observation points in the ungauged target catchments. The choice of timing for 

data collection days also indicates very important impacts on the flow prediction performance in 

the target catchments (Fig. 26). However, there is not a clear trend based on this factor alone and 

there is no single timing scenario that indicates a better performance than the other timing scenarios 

when we consider mean, median and confidence intervals of predictions (Fig. 26). This indicates 

that other factors such as the catchment of study, number of observation days and weighting of 

criteria are also influential on the streamflow prediction performance in the target catchments. 

5.6.1 Search for a Universal Solution for Improvement of Streamflow Prediction Efficiency 

We analyzed the NSE performance of all 528 scenarios in each single target catchment of the study 

in search of a single scenario that led to improvements in flow prediction performance in all ten 

target catchments. Our search indicated that there was no single scenario that was advantageous 

over the traditional streamflow prediction method in all ten target catchments. However, we did 

find two near universal scenarios that led to improvements in nine of the target catchments and 

performed close to the traditional approach in the remaining target catchment. The two scenarios 

were both for 128 data collection days and an NSER weight of 0.7 (NSET weight of 0.3). The only 

difference between the two scenarios is with respect to the data collection timing. One of the 

scenarios is associated with timing scenario 10 and the other with timing scenario 11. The 

catchment where improvements were not made over the traditional approach for these two 

scenarios is Horse Creek in Florida. The results (Fig. 25, 26 and 27) indicate that there are only 

very few scenarios that lead to partial improvements in this catchment. While the two scenarios do 
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not lead to improvements in this catchment, their prediction performance (NSEs of 0.42 and 0.45) 

is close to the prediction performance of the traditional flow prediction method (NSE of 0.47). 

Overall, the results indicate that it is safe and advantageous to choose one of these two scenarios 

for limited field data collection in an ungauged target catchment to supplement calibration process 

in a similar gauged reference catchment and improve the flow prediction performance in the target 

catchment. The two scenarios respectively lead to an average NSE improvement of 0.06 and 0.07 

in the 10 target catchments. 

5.7 Conclusions 

Value added by a limited field data collection campaign to improve the accuracy of streamflow 

prediction in an ungauged catchment located within a data-scarce region was studied. In this sense, 

a realistic case was studied where there is up to one year of time available for completion of the 

field campaign. Calibration only in a gauged reference catchment was taken as reference 

traditional approach, and two-criterion calibration to maximize runoff efficiency in the gauged 

reference catchment and maximize runoff efficiency in the target catchment based on the limited 

collected data was tested to explore potential improvements. A total of 528 scenarios were tested 

by combination of 11 scenarios for timing of the data collection days, 8 scenarios for the number 

of data collection days and 6 scenarios for the weights of criteria. Ten pairs of reference/target 

catchment were studied through this approach including six target catchments in the United States. 

The results indicated high variability from catchment to catchment and from scenario to scenario. 

However, two overall trends were discernible where better performances were normally achieved 

as the number of data collection days increased from 2 to 128, and the weight assigned to the 
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criterion of maximizing NSE in the reference catchment increase from 0% to 70%. The search for 

a universal scenario that resulted in improvements over the traditional approach in all ten target 

catchments indicated that none of the scenarios were universal in this sense. However, there existed 

two near-universal scenarios that results in improvements in nine of the target catchments and 

performed closely to the traditional approach in the remaining catchment. 
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CHAPTER 6: CONCLUSIONS 

The multi-objective SPED framework was proposed for streamflow prediction in ungauged 

catchments located within data-scarce regions of the world. SPED relied on a priori parameter 

estimates derived from highly uncertain and low resolution regional and global data to from its 

multi-criteria objective function. These data were treated as soft data, and fuzzy theory was utilized 

to partially account for their associated uncertainties. The SPED objective function aimed at 

maximizing runoff efficiency while simultaneously minimizing the difference between a priori 

parameter estimates and calibrated values for the same parameters. Tradeoffs were made by 

assigning triangular fuzzy weights to the criteria. SPED proved capable of predicting streamflow 

with high efficiency in two catchments located in a truly poorly gauged region of southwestern 

China (NSE = 0.72 and 0.74). In comparison, a single-objective and a constrained single-objective 

model performed comparably to SPED in terms of runoff efficiency. SPED, however, estimated 

the value of influential model parameters more closely to a priori estimates. The ability of SPED 

to perform comparably to models that have been designed solely to maximize runoff efficiency 

and do not significantly consider true representation of underlying phenomena contributing to 

runoff generation, was important in the sense that SPED provided the opportunity to pay 

substantial attention to process understanding without sacrificing the ability of the model to predict 

streamflow with high efficiency. This is particularly important within data-scarce regions where 

any attempt toward process understanding is highly hindered by lack of sufficiently high quality 

data. 

SPED was further tested by application to four well-gauged catchments located on three different 

continents with diverse hydro-climatic conditions. The catchments were selected from previous 
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flow prediction studies so that comparison was enabled between the SPED performance and that 

of sophisticated flow prediction approaches. Since minor modifications were made to the SPED 

procedure, the two previously studied catchments in China were subject to test again. As a 

reference, a traditional single-objective model was applied to all catchments as well. The well-

gauged regions/catchments were transformed into synthetically poorly-gauged regions by using 

only regional and global data for hydro-climatic variables and soil properties, and by using data 

from only one gauged reference catchment in each region. Previous flow prediction studies, on the 

other hand, used the available robust data networks in each region and more than one gauged 

reference catchment. SPED ability in identifying and differentiating between equifinal models 

assisted it with handling partial dissimilarity between reference and target catchments. Thus, in 

North Fork Cache Creek in California, where the catchment was dissimilar to its reference 

catchment in terms of baseflow regime, SPED performed well (NSE = 0.54) while the traditional 

single-objective model completely failed (NSE = 0.08). SPED also proved robust and consistent 

in performance across the different hydro-climatic and physiographic settings of test (NSE range 

of 0.54-0.74). In comparison with flow prediction studies based on robust data networks, SPED 

performance was comparable or even exceeded that achieved previously (NSE range of 0.54-0.74 

for SPED versus 0.22-0.66). SPED, thus, makes an important contribution to the science of flow 

prediction within data-scarce regions by addressing flow prediction pitfalls such as equifinality, 

catchment dissimilarity and difficulty of utilizing highly uncertain data. 

SPED applicability on a regional scale for an application such as analysis of flow regime 

alterations due to diversion hydropower was tested against a simpler catchment similarity 

approach. Both SPED and catchment similarity model were applied to 32 small catchments 
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developed with diversion hydropower projects in southwestern China. The results indicated that 

magnitude and variability of flow were highly altered, and regulated hydrographs were maintained 

at a static minimum residual flow for long periods of time. For instance, mean annual flows 

decreased by a mean of 76-86% across the 32 rivers and flow became more predictable in most 

rivers (47-94% mean increase in predictability). Frequency and duration of high flows decreased 

and duration of low flow events increased substantially. Slopes of rising hydrograph limbs and 

recession limbs increased respectively by a mean of 123-161% and 254-720%. The choice of a 

flow prediction method between SPED and catchment similarity did not alter this conclusion. 

However, analysis results based on SPED predicted flow data constantly indicated more severe 

effects on the natural flow regime of the rivers due to diversion hydropower. Purpose and 

application of the results of the analysis would therefore justify the choice of a flow prediction 

method: more simplistic catchment similarity model for applications such as detecting the 

direction and pattern of change, and more sophisticated SPED framework for applications such as 

more sensitive tasks such as design of instream flows. 

Finally, the value added by limited streamflow observations collected through a field campaign to 

improvement of the accuracy of long term flow predictions in an ungauged catchment was studied 

in the context of a real-world case scenario. To this end, the case scenario was defined for a manger 

of an ungauged catchment located within a data-scarce region who needs to make a decision on 

whether or not to go ahead with a limited field data collection campaign in the ungauged 

catchment. Since the catchment is subject to a development project, all analysis needs to be 

completed shortly. The manager can rely on the traditional approach of calibration solely based on 

data in a gauged reference catchment or calibration based on a combination of data from the gauged 



193 
 

reference catchment and limited data collected in the ungauged target catchment. We defined a 

two-criterion objective function for the latter and studied its value over the former. To simulate 

real-world circumstances, we assumed that there was up to one year of time available to collect 

data in the field before a decision had to be made. We defined 528 different scenarios based on a 

combination of 11 scenarios for timing of data collection days, 8 scenarios for the number of data 

collection days, and 6 scenarios for the weights of the two criteria. Ten catchments located on four 

different continents were subject to this test, including six catchments in the US. We found that 

there were two near universal scenarios that almost always (except in one catchment) resulted in 

improvements in flow prediction accuracy over the traditional approach.  

Overall, our proposed methods and findings enable important improvements to flow prediction 

accuracy and process understanding in ungauged catchments located within data-scarce regions of 

the world. 


