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ABSTRACT

This study examined to what extent and in what ways mathematically gfifteents
were challenged in two elementary classrooms taught by exemplehngtsaising the principles
of Cognitively Guided Instruction (CGI). The two case studies included a tlaide glass and a
fourth/fifth split grade class, with five mathematically advancedqgyaaints from each grade. A
top tier and a second tier of mathematically advanced students were identifiethe top tier
of five students identified as mathematically gifted. Classroom obsmrgaif CGIl math
lessons, interviews with students and teachers, and analysis of studentshggobiag
strategies were conducted over a five week period. A synthesis of lieeitator mathematics
education and gifted education was used to craft an operational definition of mieainis for a
mathematically gifted student to be challenged, focusing on exploratiortiodmeatical
relationships, exposure to new mathematical ideas, and experience of Asceteliectual
Demand on a continuum toward expertise. An alignment of CGI problem-solving ylsatels
with levels of Ascending Intellectual Demand served as a conceptuaviainfor locating and
describing the level of challenge experienced in their classrooms. dmeviiork also was used
to identify which elements were lacking and suggest what could providerfanéienge. The
findings revealed a classroom environment that was supportive of mathematieagehaith a
variety of ways for extending students’ thinking. However, although the student®depigh
levels of enjoying the lessons and worked with advanced topics, they reported lowdorenedi
levels of challenge, with the top tier group reporting less challenge thaecthedstier group.
The self-reported challenge levels decreased as the studentsfeyeldecreased, with the fifth
grade top tier student indicating the least perceived challenge. Anaflylsesmixed results

suggests that the challenge level of the assigned mathematicdidabkIse elevated.
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CHAPTER 1: INTRODUCTION

Challenging mathematically gifted students in mainstream elenyesiéesrooms can
pose a challenge to teachers responsible for reaching a range of atathleabilities. One type
of learning environment that has demonstrated success in making matheotasssode to a
range of learners is a problem-solving oriented classroom that focuses ornsstodhematical
thinking, allowing students to solve problems using methods that make the most skese to t
(Carey, Fennema, Carpenter, & Franke, 1995). The students use and discuss a variety of
problem-solving strategies, engaging in mathematical reasonirfgpioductive discourse” that
is recommended for mathematically gifted students (Diezmann & \Wa2@02, p. 5). This
study focused on mathematically gifted students in two classrooms that pravitiesl learning

environment.

Cognitively Guided Instruction

Such a learning environment is one that is typically implemented by teadhetsave
participated in the research-based professional development program caléd/€lggsuided
Instruction (CGI). Although the program does not prescribe teaching methedsachers who
have undergone this professional development (referred to as CGI teachem)tideepe
knowledge of how children intuitively solve problems and are more likely to use a problem-
solving approach to teaching mathematics to elicit mathematical thinkihgirrctassrooms
(Fennema, Carpenter, Franke, Levi, Jacobs, & Empson, 1996). Research has shovadimp
problem solving ability in classrooms taught by CGI teachers (Carpentereira, Peterson,
Chiang, & Loef, 1989) and has additionally confirmed this benefit for the sub-pomslai
English language learners (Marshall, 2009), learning disabled students (Behrend,®94), a

lower ability math students (Empson, 2003). This study examined the experieritekenfsson



the other end of the ability spectrum, namely mathematicallydgstiedents, to find to what
extent and in what ways they were challenged in a classroom using the psi¢iglognitively

Guided Instruction.

Mathematical Giftedness

There is a variety of nomenclature for referring to mathematiadyanced students:
mathematically advanced (Assouline & Lupkowski-Shoplik, 2005), mathenatittéd
(Assouline & Lupkowski-Shoplik, 2005; Diezmann & Watters, 2000; Krutetskii, 1976; Ryser &
Johnsen, 1998), mathematically talented (Stanley, Lupkowski, & Assouline, 1990),
mathematically promising (Sheffield, 1999), and mathematically alle€iski, 1976). This
study will identify two tiers of mathematically advanced students dedteethe top tier as
“mathematically gifted”. Although no one definition of mathematictiegness has been
embraced by the community of mathematics educators nor the gifted edwcatiotunity,
Krutetskii’s description (1976) has been referenced by authors from both fieldsas Sheffield
(1999), Leiken, Berman, and Koichu (2009), and Koshy, Ernest, and Casey (2009).

Based on his twelve year study of mathematical ability in schoolchildren irothet S
Union, Krutetskii (1976) delineated a set of characteristics found in how matheligzdlae
children obtain, process and retain mathematical information as they engageempsobling:

1. Obtaining mathematical information

A. The ability for formalized perception of mathematical material, forpingsthe
formal structure of the problem.

2. Processing mathematical information

A. The ability for logical thought in the sphere of quantitative and spatial
relationships, number and letter symbols; the ability to think in mathematical
symbols.

B. The ability for rapid and broad generalization of mathematical objetatpres,
and operations.



C. The ability to curtail the process of mathematical reasoning and tleensgét
corresponding operations; the ability to think in curtailed structures.

. Flexibility of mental processes in mathematical activity.

Striving for clarity, simplicity, economy, and rationality of solutions.

The ability for rapid and free reconstruction of the direction of a mentaégspc

switching from a direct to a reverse train of thought (reversibility of the inenta

process in mathematical reasoning).

nmo

3. Retaining mathematical information
A. Mathematical memory (generalized memory for mathematicdlaethips, type
characteristics, schemes of arguments and proofs, methods of problem-solving,
and principles of approach) (p. 350).
These characteristics interrelate and form what he termed e¢tlist syndrome of
mathematical giftedness, the mathematical cast of mind” (p. 351) that'dthiarective tendency
to perceive many phenomena through the prism of mathematical relationshi@&1)p.

Although the number of mathematically gifted children depends on one’s definitilber, M

(1990) estimated that 2-3% of the population possess the characteristics ddscHKipetetskKii.

Challenging the Mathematically Gifted Student

Mathematically gifted students thrive with a challenging, non-répetinathematics
curriculum that allows them to exercise and further develop their aboegavabilities by
exploring the depth, complexity, and beauty of mathematics (Sheffield, 1999).ehstifessed
the importance of a challenging curriculum in light of the potential contoibsithese students
can make in our technological world. She pointed out that standardized test stiuee3da
percentile in mathematics do not necessarily indicate, however, thattildsets have been
challenged nor inspired. In a study of mathematically gifted children, &afddhey never felt
challenged, 47.1% felt rarely challenged, and 44.9% felt sometimes gjeallhssouline &

Lupkowski-Shoplik, 2005, as cited in Cox, 2008).



Secondary students have access to advanced mathematics courses; howeilittlieer
evidence that elementary gifted students are offered such challengesiirsand Lupkowski-
Shoplik (2005) maintain that “the current educational landscape discourages matdematic
talented students, as well as their educators and parents” (p. xvi). Servigesiar s
accommodations for mathematically gifted students tend to be sporadic, ppethddat on
degree of interest and advocacy on the part of the teacher, principal, ddtmigistration, and
parents.

There are numerous approaches to meeting the needs of the mathematiedllyTdie
National Mathematics Advisory Panel (2008) made the following recommendation:
“Mathematically gifted students with sufficient motivation appear to be tablearn
mathematics much faster than students proceeding through the curriculum at goacemalith
no harm to their learning, and should be allowed to do so (p. 53).” Advancing more quickly
through the curriculum can occur by grade acceleration, or within the classfoameta-
analysis of research studies in gifted education reported thatratiogjestudents capable of
working above grade level is the most effective intervention, with long benefits both
academically and socially, but tends to be negatively viewed by educadorsmaains
infrequently applied (Colangelo, Assouline, & Gross, 2004). Elementary grade atiorlér
math class only, rather than skipping entire grades, is another option. ddatigsschools will
track students at grade level by forming a high ability math class. An approasidered more
socially-equitable is that of clustering a small group of highesh @taility students within one
mainstream class to be taught by the grade level teacher who has theprdgeesin teaching
mathematics (Winebrenner, 2001). “Compacting” and “telescoping” refer totpl@nsan be

implemented within the mainstream classroom, involving either increasing & &pehich



the student goes through the curriculum, or reducing the curriculum to only the toplwsvina
not yet been mastered by the student and adding enrichment or advanced topicsamesyla

(Renzulli, Smith, & Reis, 1982, p. 186).

Considering Cognitively Guided Instruction as an Option for Challeng

With the reality that most mathematically gifted students areainstream classes with
their age peers who are not necessarily their intellectual peeu(fves& Lupkowski-Shoplik,
2005)educators should consider how best to challenge them within that setting. Theoéffects
Cognitively Guided Instruction on student achievement has been demonstrated irearainst
classrooms (Fennema et al., 199@)ith its encouragement of mathematical thinking of
students of all levels, a classroom taught by a CGI teacher (refeas@tGGI classroom) is an
ideal choice for studying the potential for challenging mathematigétsd students.

Sheffield (1999) suggests that a classroom environment offering an “open-ended
heuristic” (p. 46) for problem solving allows students with mathematical peamiearn at a
faster pace and to explore mathematics with more breadth and depth. Shensiéess (1980)
model for gifted education as an example of such a heuristic approach. Thigsmlbgstated
with a five-point star featuring the points “relate”, “investigate”, “te&d'evaluate”, and
“communicate”. In this model, the problem solving process begins with a problethtpose
either the teacher or the student. The student may enter the processfdahesg points,
relating the problem to other known mathematical ideas, investigating stsadsgpossible
solutions, creating new questions along the way, evaluating and verifying hsgmthad
communicating solutions to the class. In a study of teachers involved iyefansrof CGI
professional development, Fennema et al. (1996) described the highest levedroboa

instruction to be by the teachers whose instruction was guided by their kigevdetheir



students’ thinking, or “cognitively guided” (p. 421). Their classrooms were devotediempr
solving, mathematical discourse, and providing opportunities for students to exptheznatics
in the ways that made most sense to them, rather than by teacher-direbdsméhe
classrooms of these highest level teachers closely resemble Jensdalf a student-centered
classroom focused around problem-solving strategies and mathematical coatimoanfurther
positioning a CGI classroom with exemplary teachers as a promisimgrement for studying

mathematical gifted children.

CGlI Professional Development Program

Cognitively Guided Instruction was established by Carpenter et al.)(29&9
professional development program for K-3 teachers, and has since expanded taumgérde
elementary grades. The research base behind CGI focused on how individual stinshts s
additions and subtraction problems (Carpenter & Moser, 1984). In studying howrckibdired
these problems without teacher direction, the researchers discovered thédttea bad an
intuitive knowledge of mathematics that they were able to draw on to make semse of t
problems, and that the sophistication of their strategies increased asitieglyrgare experience
in problem solving. Their research led them to create a taxonomy of problem typeltasa
progression of problem-solving strategy levels that could aid teachers in undiexgtieir
students’ thinking. CGI professional development was created to increciserse&nowledge
of how their students’ think mathematically, with the idea that this knowledfproxide a
framework for guiding the instruction in their classrooms. In this teadwe@poment program,
the teachers examine students’ problem solving strategies to deepen thetamolitey of
student thinking and learn to become facilitators of children’s matheméiiickiinty. Fennema

et al.’s study (1996) of CGI professional development found that the highest le\atlodite



participants had created a student-centered classroom environment in lwldicdndad ample
opportunities to investigate problems, communicate their questions and mathkeiess to
others, and justify and share their solutions.

The term, “Cognitively Guided Instruction,” has evolved into a somewhat colldquia
in which teachers refer to a “CGl teacher” as one who has participated pr&@&ssional
development and a “CGlI classroom” as one that employs the principles of CGlstldhy
focuses on two CGlI classrooms each taught by a CGl teacher. The eyabtplaeachers
chosen for this study have created classroom environments and use an instructioaahappr
similar to those of the highest level CGI teachers described by Fenhamél896). The
learning of mathematics curriculum was accomplished through problem-sdkatgring
problems that would help develop mathematical concepts. Teachers encourages student
invent their own strategies for solving problems and expected them to explaithitiieéirg and
justify their reasoning. There was an expectation that students would listenrtstotieats’
strategies and develop mathematical communication skills. From frequeatiiaemith
students, the teachers knew their students’ thinking well and actively soughbovedig#t deeper
understanding and more sophisticated strategies from individual students, basettbeywha
already knew. In this study, | refer to three distinct phases of the msdimdethat | observed:
the problem-posing Phasel, the problem-solving Phase 2, and the strategy-shargsipdis

Phase 3.

Purpose and Significance of Study
This study examined the experiences of fifteen mathematically advandedts, five of
whom were identified as mathematically gifted, in two CGI classsodmthe interest of

learning ways to address the problem of lack of challenge of mathemyagifiid students in



mainstream classrooms, the purpose of the study was to find out how Cognitively Guided
Instruction can engage and challenge these students, and to what extent. Bggbservi
mathematically gifted students in CGI classrooms taught by exgnmpkehers, analyzing their
problem solving strategies, and interviewing both the students and their tehbbpesto add to
the literature on which strategies work best to challenge these students amdheleemay be
room for improvement.
Research Question
To what extent and in what ways are mathematically gifted studentsngesllen CGI
classrooms?
Theoretical Lens, Bias, and Scope of Study

This study was conducted within the theoretical lens of constructivism (P18&&, as
cited in National Research Council, 2000), an understanding that persons construat) meani
based on their experiences with the world around them. Mathematical meaningrisctech$ty
individual students as they synthesize the classroom experience with itbreknprviedge.
With Cognitively Guided Instruction, teachers learn to tap into studemds’kmowledge, come
to understand it, then facilitate connections that lead to synthesis and learning.

The CGl literature offers a conceptual framework of problem solving syrigeels that
was used to analyze student thinking (Carpenter, Fennema, Franke, Levi, & Empspn, 1999
Carpenter, Franke, & Levi, 2003; Empson & Levi, 2011). The gifted educationdreEters a
conceptual framework for how a student moves from levels of novice to expert with Aggendi
Intellectual Demand (Tomlinson et al, 2002; Tomlinson et al, 2009). The levels of wegniti

thought from Bloom’s Revised Taxonomy (Anderson & Krathwohl, 2001) provided an overall



framework for recognizing higher order thinking skills, as evidence ofectyd was analyzed in
this study.

The scope of this qualitative study has been limited to two classrooms in onepgeongra
area with the main purpose of providing a description of experiences with €elgrnizuided
Instruction as it relates to being challenged mathematically. Stydyathematically advanced
students and their teachers in classrooms that use the principles of Cog@Gitiicd
Instruction may shed light on how mathematically gifted students camgaged, challenged,
and working to their potential in a mainstream elementary math classroonm a@lsacate for
mathematically gifted children who wishes to see them reach their full @bténécognize the
possible bias involved in discussing an educational practice that may or may netbeeeff
Regardless, the description of the experiences of these students can |laystha ba
recommendations of how to maximize the intellectual growth of mathemupiiifddid students

in a CGl classroom.
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CHAPTER 2: LITERATURE REVIEW

The background for this study of challenging mathematically gifted elnilolr CGI
classrooms emerged from a synthesis of the literature in Cognitively Quatadttion (CGI) as
well as gifted and mathematics education. The literature in Cognitively &ungiguction
includes its theoretical background and the influence that its professional deveibiasmbéad
on teachers and students. The literature on giftedness includes chaicctdriee domain
specific area of mathematics, the issue of cognitive challenge, and wkatutes a challenging
environment for mathematically gifted students. The synthesis of elemehits ldkerature
review was essential in developing an operational definition of matherhathallenge and a
conceptual framework for viewing the challenge of elementary students.

In researching the literature, a Google or Google Scholar searalsualy successful in
locating, at a minimum, the correct citation and abstract, and often the dotirment. Access
to electronic journals and dissertations through the University of Arkabsasyldatabases of
Ebsco, Proquest, and ERIC, and National Council of Teachers of Mathematics mgmbershi
provided much of this information. Books and journal articles were obtained that were not

available electronically.

Cognitively Guided Instruction
Professional Development irdnderstanding Students’ Thinking
The seminal work in Cognitively Guided Instruction described and studied effexts of
teacher professional development program by the same name, which focused on deepening
elementary teachers’ knowledge of their students’ mathematical thirkithgwaengage in
mathematical problem solving (Carpenter et al., 1989). Having previouslgdstthdidren’s

mathematical thinking and teachers’ knowledge about their students’ thirtkenggstearchers
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hypothesized that training teachers in CGI would increase student achigyand designed an
experimental study to test their hypothesis. They found that CGI classramsnare oriented
toward a problem solving context for teaching mathematics and the students sdoeedhhig
problem solving on standardized tests than the control group, but not significantlgrditiar
computation. Number facts were less likely to be explicitly taught in GSsdoms, yet
student recall of number facts was greater than that of the control group. CGistegerted
significantly more confidence and mathematical understanding. The @&bets encouraged

multiple strategies and listened to and better understood students’ solutiongsocess

Taxonomy of Problem Types and Problem-solving Strategy Levels

Carpenter and Moser (1984) developed a framework for understanding how children
think about and solve addition and subtraction problems. This framework marked a key step
toward a professional development program designed to help teachers understand thtst stude
mathematical thinking. Their longitudinal study followed how individual childrentistive
problem-solving strategies (without the direct instruction of teachers)agedefrom first
through third grade. This analysis allowed them to categorize types obadhtil subtraction
problems as well as levels of strategies for solving them. The frameworktgasteire to the
study of children’s thinking as teachers in the CGI professional developmemtezhatydent
strategies and considered how to guide their students to more sophisticéegiestrarhe
higher level, more sophisticated strategies were those that were baseacreased conceptual
knowledge of mathematics. Subsequent literature characterized problem typeatagyg s
levels for multiplication and division, and fractions. Description of these probjess gnd
strategy levels follows. Fraction problem types and strategy levetsrgoleasized because

both classrooms in this study were involved in fraction problem solving.
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Addition and subtraction. For addition and subtraction, the basic categories of “join”,
“separate”, “part-part-whole”, and “compare” lead to eleven problem tygmsdang on the
action within the word problem and which part of the information is unknown (Carpenter et al,,
1999, p. 7). For instance, the part-part-whole problem 2 + 3 = ?, has the whole unknown: Jen
has 2 marbles and Jose has 3 marbles. How many do they have altogether? W thatiney
had 5 marbles altogether, and Jen had 2 of them, asking how many Jose has would change the
direction of thinking to a “part unknown” problem, and would increase the challenge of the
problem.

There is a progression of strategy levels in children’s solving of theusaypes of
addition and subtraction problems, beginning with direct modeling in which students model the
action and relationships of the problem by arranging physical objects or drapittgra.
When students no longer need to see the actual quantity represented, théynttareimnore
abstract, symbolic representation using counting strategies, such as coardgmgpunting
down. Students’ experiences with different problem types encourage the use efyaofari
counting strategies. Consequently, children’s strategy use becomes ibte, fedlowing for
invention of strategies based on number relationships. One example of using knowledge of
relationships in solving a problem involves decomposing the numbers based on the concept of
place value: 27 + 35=20+7 + 30 +5 =50 + 12 = 62. In a later publication within CGI
literature, the strategy of relating one numerical expression to anotheenveed “relational
thinking” (Carpenter et al., 2003). Recognizing mathematical relationstyzkents may derive
number facts from known facts throughout the strategy levels. Eventually, tifzegiss are

replaced with applying knowledge of recalled number facts.
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Multiplication and division. Multiplication, measurement division, and partitive
division are problem types that are inter-related, and vary based on which pigoemétion is
unknown (Carpenter et al., 1999). Consider this situation: There are 3 bags of candy with 10
pieces of candy in each bag which makes a total of 30 candies.
Multiplication Problem Type:Sue has 3 bags of candy with 10 pieces of candy in each bag.
How many candies are there?
Measurement Division Problem Typ&8ue has 30 pieces of candy. She puts 10 pieces of candy
in each bag. How many bags will she need?
Partitive Division Problem TypeSue has 30 pieces of candy. She puts the candy into 3 bags so
that each bag contains the same amount. How pieces of candy will go in each bag?
Similar to the progression of strategy types for solving addition and subtraciildems, there
are levels of strategies for solving multiplication and division problems. 18gidegin with
direct modeling (using grouping, measurement, or partitive strategiepwing this concrete
representation of quantities and relationships, they transition to the moreneffmimting
strategies for multiplication (such as repeated addition and skip counting) and dextisng
based on known facts, followed by recalling number facts. As students’ conceptuadg@wl
of mathematics increases, they begin to see relationships within and betweéres et use
relational thinking to solve problems.

Fractions. Empson and Levi (2011) categorized three problem types for fractions that
help children understand fraction relationships for learning about fractioniopsrahd
equivalence: Equal -Sharing (Multiple Groups, Patrtitive Division), Multipleu@s —

Multiplication, and Multiple Groups — Measurement Division. They describe levetsabégies
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for solving these types of fraction problems that show an increase in understandidgisé af
relationships, leading to more efficient solutions.

Equal sharing. Children’s knowledge of fractions stems from their intuitive sense of
equal sharing or fair share, for instance sharing 7 sandwiches equally 4mpeogle (with an
answer greater than one whole) or sharing 4 sandwiches equally among 7 peb@a émiswer
less than one whole). Empson and Levi (2011) described strategies that children wse to sol
equal share problems, characterizing them based on how children coordinate tlveomain t
components of the problem: the people sharing and the things to be shared. If the shedent eit
does not distribute all that is to be shared or does not distribute equal shares,uteir Sobws
“no coordination between sharers and shares” (p. 11). An example of “non-anticipatory
coordination between sharers and shares” (p. 13) is where the student distributgseghsle
first, then cuts remaining pieces in half to distribute, then finally when a amallint remains,
divides it into the number of pieces equal to the number of people. Students also magluse “tr
and error to coordinate” (p.14) trying a repertoire of different partitionstheif find one that
works for the amounts in the problem.

Children’s strategies become more sophisticated when they become mmip&toriy”
for coordinating the fractions with the number of sharers (Empson & Levi, 2011, p. 15). The
first level of anticipatory coordination is “additive coordination — one itemiatel't For
example, in solving the problem of sharing 7 sandwiches among 8 people, the student divides up

each item to be shared into the same number of pieces as there are people.ci pessea
gets% from each of 7 sandwiches. When students realize that they do not need to divide up each

item giving one little piece of each item to each person, they transition toivedzbbrdination

— groups of items” (p.18). Students may group what is to be divided so that they can élistribut
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bigger pieces first, for example: each personlgatsandwich, thei:l of a sandwich, theiel? of a

sandwich. In “multiplicative coordination: fraction as quotient” (p. 19), studentgmexthat
the two processes of partitioning into unit equal shares, then combining these fractits)are
represented by a fraction interpreted as numerator divided by denominatoe Seaonless
mental strategy, a student can say that sharing 7 sandwiches 8 ways meaesseadlefs 7/8
of sandwich.
Empson & Levi (2011) mention less common strategies for equal sharing setdtiag r
the quantities in a problem to ratios. Eight people sharing 6 pizzas results in ¢hegseh
shares as half the amount of people sharing half the amount of pizzas (4 people3shiarag
and with repeated halving, 2 people sharing 1 %2 pizzas, etc.) Knowing factors and snultiple
helps extend this thinking into scaling down beyond halving, such as seeing 24 peopte&harin
pizzas the same as 6 people sharing 2 pizzas, having recognized the common factor of 4.
Sometimes students use concrete modeling, placing cubes to stand for the number ahpeople
cubes to stand for the number of things to be shared, then dividing up into equal groups,
representing the idea of equal ratios. In the example 6 people sharing 4 pizzas,t6 dube
cubes could be separated into 3 cubes to 2 cubes. The student may then see that each of the 3
people would get 1/3 of each cube and since there are 2 cubes, each person would get 2/3.
Multiple groups: multiplication or measurement division. Seeing fractions as relational
guantities between a unit and a subdivision of that unit into equal pieces, thus a unit fradtion, a
understanding the multiplicative relationship between the unit fraction and @bgorfis is an
important step in understanding equivalence and operations on fractions. In “mudtygé gr
problem types (Empson & Levi, 2011, p. 49), problems can involve multiplication or

measurement division. In multiplication, the size of the groups (as a fraction, i.e a2¢8anip)
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and the number of groups are known, and the total amount in unknown. In measurement
division, the size of the group (as a fraction) and the total amount are known. “Directgodel
and repeated addition” (p. 54) are the most basic strategies for solving thiesenpiypes in
which the student represents each fractional quantity individually. In “groupthgamnbining
strategies,” (p. 57) students find more efficient ways to group the fracteatizjmg that not all
fractions need to be written or modeled. If they can add enough fractions to get t@ a whol
number, they can combine groups of fractions (whose sums are whole numbers, such as 2/3 + 2/3
+ 2/3 make 2 wholes) to get an answer more quickly. In a more sophisticateglysaaident
would see multiplicative relationships instead of additive (3 sets of 2/3 or 3 x 2/3 = 2).
Benchmarks for understanding equality as relational thinking.Carpenter et al. (2003)
went beyond discussion of problem types and strategy levels to bring forth théamepanf
understanding equality. The development of how a student conceptualizes the use @fthe equ
sign is important to the development of algebraic reasoning throughout the elgment
curriculum. The authors proposed four benchmarks (not necessarily progresses} as
students work toward the desired understanding of the equal sign as indicatinigasiefa
between numerical expressions, rather than indicating simply a calculatiomuthloes termed
this desired understanding as “relational thinking” (p. 27). For example, a stutenses
relational thinking would look at both sides of the equal sign in the number sentence 7+ 5 =N
4, and see that 5 is one more than 4 so N must be one more than 7, which is 8. Compare this to a
student who would add 7 + 5 first to get 12, then think of what number is 4 less than 12.
Relational thinking supports the thinking of problem solutions in terms of relationships,
including the underlying properties of operations and equality, as well asitimg\wf number

sentences to express the mathematical relationships. Students use higpeoiésm-solving
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strategies when they move beyond the more basic strategies of direcingagelicounting
methods to routinely using a flexible choice of strategies and engagirigtional thinking
(Carpenter, Fennema, Franke, Levi, & Empson, 1999; Carpenter, Franke, & Levi, 2008nEmps
& Levi, 2011).

Relational thinking in strategy use.Students who think relationally tend to simplify
calculations by using number relations, view the equal sign as signifyelgt@nship between
two expressions, and generalize relations explicitly based on the undeulydanfental
properties of arithmetic (Jacobs, Franke, Carpenter, Levi, & Battey, 2007, p. 26Q¢giSF
that use “relational thinking” to relate one numerical expression to anotherpaaty
fundamental properties of operations or equality (Empson & Levi, 2011, p. 78) as shown in a
variation of the previous example: 7 +5 =N + 4 can be rewritten as 7 + (1 + 4) = N +i4, whic
is equivalentto (7 + 1) + 4 = N + 4. This shows an implicit use of the associative progbgy i
student’s relational thinking. An example of relational thinking in grouping and combining
strategies shows a student finding a total of 15 groups of 2/3 yards of fabrist lwpifnbining 3
groups to get 2 yards, 6 groups to get 4 yards, then combining these as 9 groups éodset 6 y
thus using (6 x 2/3) + (3 x 2/3) = (6 + 3) x 2/3, utilizing the distributive property. A more
efficient, multiplicative strategy could be used by a student who has themalainderstanding
that 2/3 is a multiple of the unit fraction 1/3, to get 15 x 2/3 = 30/3. Underlying this thinking is
the associative property: 15 x 2/3 =15x (2 x 1/3) = (15 x 2) x 1/3 = 30 x 1/3 = 30/3.

Empson and Levi (2011) described relational thinking as integral in the highelst bf
strategy use, whether for addition and subtraction, multiplication and divisioactofr

problem solving:
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As students’ strategies evolve, they incorporate Relational Thinking. Dawglopi
Relational Thinking enhances students’ understanding of arithmetic and at thinsame
prepares students to understand algebra. Students who use Relational Thinking are:
e using a relatively small set of fundamental properties of operations and equalit
and related principles to establish connections between quantities, operations on

guantities, and equalities between quantities
e developing the ability to look at a problem as a whole and to decide which
relationships could be used to simplify the solution. (p. 230-231)
With mathematically gifted students’ high ability to see relationshipsnahe opportunity to
use relational thinking and express these relationships using propertiesationgesind equality
is a promising approach to keeping them engaged.
Levels of justification in strategy useWith justification of one’s solution an important
part of the problem-solving process, Carpenter et al. (2003) classifieddhetedf

justification: appeal to authority, justification by example, and generatizalments. In the

first level, the student simply accepts something as true because he freandhe teacher.

When students do not go through the steps to convince themselves, there is no justifitation. |

justification by example, giving multiple examples that indicate somethitige can be
convincing to a student and inductively lead to a conjecture, but students must reaitziotst
not constitute a proof. The final level of justification involves finding a provable Jexagian,

or a counterexample that would disprove the conjecture.

CGI Professional Development’s Influence on Teachers and Student

Detailing the categorization of problem types and solution strategieselational
thinking as a goal, the benchmarks for understanding equality, and the levelsffoajiost of
solutions within the CGl literature demonstrates a framework availabtedchers to better
understand their students’ thinking as they participate in CGI professional devetopme
longitudinal study of teacher participants found improved student achievemenydie&titd to

the teachers’ beliefs changing from a teacher-directed approach tanstatiction to one that
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was student-centered with students engaged in problem-solving and mathematical
communication. The increased achievement was attributed to the professiotwdent as
teachers gained understanding about the development of children’s mathetimakiocay and
learned to encourage that thinking in their classrooms (Fennema et al., 1996). &henaeht
gains were in the areas of conceptual understanding and problem solviryyahiino change
in computational ability. Carpenter, Franke, Jacobs, and Fennema (1998) found stud&its i
classrooms who invented their own strategies for solving problems (as opposathér-taught
strategies or algorithms) were more flexible thinkers and able to trahsfeproblem solving
techniques to new types of problems as well as to learning algorithms withtandarg.

Empson (2003), in a thorough analysis of teacher-student interactions in a casd stud
two low-performing first grade students, maintained that student succesOG tiugassroom
“depends fundamentally on the teacher’s role in making space and meaning fosstudent
contributions to classroom discourse” (p.307). Empson described “participant frdieeasa
theoretical lens for understanding how teachers and students take on roles thatlseigpgrt t
component to the participant framework. Its cognitive accessibility and pbfentiegher level
mathematical thinking can vary depending on the participant framework’sectdtur
individually and collectively discussing problem solutions.

Carpenter, Fennema, and Franke (1996) focused on what it means for a teacher to
understand a student’s mathematical thinking at the K-3 level. For a teadbktrdad a
student’s thinking, the teacher must know what to listen for by having a deep undegstdndin
mathematics content and problem types and an astute awareness thahthermuahiple paths
for solving a math problem. The authors point out the importance of recognizing thatchildre

have an intuitive knowledge beyond what they have been taught about mathematics in school,
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which can allow them to make sense of a problem by direct modeling. The tehohszes
where the child’s level of understanding lies can better assist in comgntginntuitive
understanding to formal mathematical knowledge. Considering the importaneetedicher-
student interaction, Franke et al., (2009) examined teacher questioning in threlass@loms,
finding that although all teachers questioned students to explain their thinkiegeuitiés
appeared in the extent and quality of follow up questioning after the initial questiachere
who used follow up questioning elicited more knowledge about their students’ thinking. The
study described the nature of these follow up questions reporting that students’eesjaoiesl
according to how closely the teachers’ questions connected to the studentsaigxpéa
Teachers who pressed for more elaborate and explicit details werebtete guide students to
completely-explained and correct solutions.

The presence of a chapter in a book on equity (Carey et al., 1995) cementedaCGl as
viable approach to teaching mathematics to all children, regardless of @biiigity, gender,
or economic disadvantage. The authors explained how a CGI classroom immetsdsiat $n
the problem solving process and allows them to solve the problems in ways that make sense
them. They cited the example of the success of implementing CGl in the low-SES
predominantly African-American schools of Prince George’s County, Maryland, cethizathe
former approach of giving low level math work accompanied by low expectations of the
children. The CGI approach relates to equity in that all students’ solutiondwaed aatheir
respective levels by their teachers. Additionally, the CGI classroomateliof sharing strategies
helps develop a sense of respect among students for one another’'s work. This climate
encourages students to take on an identity as a learner of math, rather than one who cannot do

math. As students continue with this type of experience in problem solvingatedilby the
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teacher who helps move students to more sophisticated and efficient strétegies
mathematical power grows. “Empowering children to make decisions aboutsvépgiropriate
for them in terms of context and content of mathematics is a critical feategglitdible
classrooms” (Carey et al., 1995, p. 122). Although this work of Carey et al. promoted CGl for
all learners, its sentiment was geared toward the disadvantaged studeradittomally has
been disenfranchised from the learning of mathematics. Disenfranchidemsenot been
perceived as an issue for the mathematically able students which mai ¢lpllack of CGI
research on the high ability subpopulation.

The potential of CGI to foster an equitable environment has continued to be confirmed.
In Empson’s (2003) study of two low-performing first graders in a CGsidasn, the students
progressed from being disengaged as math learners to developing an idetitici@spts in
classroom mathematical discourse. Empson attributed this positive identigyrature of CGI
that allows students to take control of their learning by choosing problem sohatepsts
appropriate for them. In an environment that respected all student stratezggesstudents
increased their participation. With a respectful environment as well asatfielding by
teachers, students’ understanding of fractions and their facility with problemgsgrew.
Behrend (1994) found similar results in a study of math problem-solving processes of fi
second and third graders, identified as learning-disabled, as they expe@ayetively Guided
Instruction in a small group. When the focus was redirected from these studgaishdies to
what they could make sense of on their own, Behrend found that the learning disabled students
increased their confidence as mathematical thinkers and could solve multiedikgorsin a
variety of ways, fairly consistently justifying their solutions. Mark{#009) followed four

English Language Learning elementary students in the U.S. from kindergaoteght®’ grade



22

as they engaged in Cognitively Guided Instruction in bilingual classrooms)dititkir ability to
solve problems and explain their thinking developed, using both Spanish and English.
Carpenter, Ansell, Franke, Fennema, and Weisbeck (1993) found the majority of
kindergarteners in their study could make sense of and solve a variety of mtikiplarad
division problems without explicit instruction. The students were given timeptorexhe
problems and invent their own strategies using direct modeling and were able torsbleens
that would ordinarily have been introduced in later grades. Classroom problem-solving
environments that offer opportunities to explore advanced topics are of intereststadljisf

challenging mathematically gifted students in mainstream classroom

Mathematical Giftedness
Characteristics of the Mathematically Gifted Child
Despite the lack of one definition of what it means to be mathematictéy,ggeveral
key authors in this field, including Sheffield (1999), Assouline & Lupkowski-Shoplik (2005),
and Leiken, Berman, & Koichu (2009), have cited Krutetskii’'s (1976) research. t$kiute
characterized mathematically gifted children as possessing:
e numerical, symbolic, and spatial ability,
e a well-functioning mathematical memory,
¢ flexibility and economy of thought,
e ability to re-direct a mental process,
¢ ability to see quantitative and spatial relationships,
e ability to reason deductively, formalize and generalize matheahadieas.
In looking at characteristics of mathematical giftedness, the intemsevith creative thinking

has been discussed (Leiken et al., 2009). Guilford (1950) described the creative mind as
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possessing the characteristics of fluency, flexibility, originalityg elaboration. Sheffield (2009)
interpreted how these characteristics are manifested in mathepratiésm-solving. She
described fluency in problem solving as referring to the number of answeeygistsaor
guestions formulated, flexibility referring to the variety of answerategies, or questions,
originality referring to the uniqueness of the solutions, strategies, or questiohslaboration
referring to the quality of expression of the mathematical thought. Sheffidldi@acthese four
characteristics as criteria that could be used for assessing astthgsseative mathematical
thought to its fullest potential, and adds three more to the list: depth of understanditigeas t
extent that math concepts are explored and developed, generalizations thabrasuitihg and
verifying patterns, and extensions that reveal themselves as relatedripidsdi are asked and

explored.

Providing a Challenging Environment for Mathematically Gifted Students

Diezmann and Watters (2002) described types of academic tasks that benefit
mathematically gifted students. The beneficial tasks tend to be chafjemdgmoduce students to
mathematical topics beyond what their age peers would typically learn, peoxictelearning
experience with open-ended investigations, and connect with their interedtsmayde
interdisciplinary. Henningsen and Stein (1997) stated, “Not only must the tesatherand
appropriately set up worthwhile mathematical tasks, but the teacher nwgtadstively and
consistently support students’ cognitive activity without reducing the caitypband cognitive
demands of the task” (p. 546). Their study found that pressing the students foatapi
justifications, and meaning by teacher questioning, comments and feedback,assalletting
an appropriate amount of time for solving problems, resulted in maintaining higher-level

engagement.
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The mathematics curriculum for the practitioner level of Ascending éctetl Demand
suggests open-ended, interest-based, and student-centered learning expegeiniobss
Flannagan, 2009). Students were found to experience increased engagemenhg\deami
they felt more control of their learning environment and when their perceivedraalibf the
task and their own skills was high (Shernoff, Csikszentmihalyi, Schneider, & She0@s).
Diezmann and Watters (2002) described three main features of an effeatnredeenvironment
in which mathematically gifted students can develop their skills for becpautonomous
learners. First, students should be able to investigate and learn through discoursectivEerodu
discourse incorporates evidence, logic, and argumentation and involves studeniagndbas,
building on each other’s ideas, and critiquing ideas” (p. 5). Second, teachers shoutd respec
students’ preferences for individual or group work for varying tasks, which ter#sworking
alone on easier tasks and in groups for more challenging tasks. Third, there should be
opportunities provided for mathematically gifted students to work with one anothextsbey
can have their ideas challenged by “like-minded peers” (p. 5) and have to nexe@xamefend
their thinking. Winebrenner and Brulles (2008) promote clustering the highett adaith
students in one mainstream grade level class to ensure that they havdemuatgleer group
with opportunities for working together and to increase the chances that the tediche

differentiate instruction for their needs.

Intersection between the Literature of CGl and Mathematical Giftedhess
There are numerous comments in Sheffield’s book (1999) that call for mathelyatical
promising students to have a classroom experience similar to those that suppdivélpgni
Guided Instruction. Maker (as cited in Wheatley, 1999, p. 77) described productsreaias

that are learner-centered, emphasize independence over dependence, open to,feausleas
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complexity, accepting of ideas rather than judgmental, and have flexible ttstheigid
structure. He also noted that “the study of mathematics for promising ststhentdd be fast
paced and problem centered, focusing on concepts rather than procedures” (p. 7L999jst
p. 175) adds,
Of crucial importance is the very act of answering the same question bydifsangnt
techniques or working on problems that have more than one answer...Talented students
seek to be taken seriously and want someone to listen carefully to their sa@rietigye
involved arguments. Bright youngsters seek opportunities for knowledge-basepliial
Hashimoto and Becker (1999, p. 102) propose that when leaving some aspect of a problem
“open”, either the formulation of the problem, the process for solving, or the end product,
opportunities arise for “bright students to exercise their creativéiebiind devise insightful
ways to deal with mathematical topics and problems”. They further stresspbeance of
discussing multiple solutions and connecting new ideas to prior knowledge. Theseidascript
from the literature on mathematical giftedness suggest practicesafteangiing the

mathematically gifted. Their similarity to the principles and prastimf CGI support the idea of

investigating a CGI classroom for its potential for challenging maditieally gifted students.

Toward a Definition of Cognitive Challenge in Learning Elementary Mathenatics

Higher Order Thinking Skills
The use of higher order thinking skills is an element in all the topics of thatuiter

review, Cognitively Guided Instruction, mathematical giftedness, anceagall Bloom’s
Revised Taxonomy (Anderson & Krathwohl, 2001) provides a framework that was used in this
study for referring to higher order thinking as it relates to evidence otafgall The original
taxonomy introduced a classification of six levels of cognition: Knowledge, Comprahens
Application, Analysis, Synthesis, and Evaluation (Bloom, Engelhart, Furst, Hilaghwohl,

1956), referring to the higher order thinking skills as those at the higher levelsatohemy.
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The revision of this taxonomy emphasized the cognitive processes dimensioneasatiat
with the knowledge dimension. The emphasis on process was evident in the re-namingcof the si

levels to: Remembering, Understanding, Applying, Analyzing, Evaluating, asatiQy.

Mathematical Challenge
Determining and defining what it means for a child to experience matlcahcitallenge

is an essential step in answering the research question “to what extenthemataally gifted

student challenged in a CGI classroom?” Mathematical challenge was theftte

International Commission for Mathematics Instruction annual study in 2006 e&rand

Taylor (2005), co-chairs of the study, offered this description:
The word ‘challenge’ denotes a relationship between a question or situation and an
individual or a group...A challenge has to be calibrated so that the audience iginitiall
puzzled by it but has the resources to see it through. The analysis of a challenging
situation may not necessarily be difficult, but it must be interesting andiegggy
126)

Explaining why challenge is important, they continued:
We have some evidence that the process of bringing structure to a chalieatyenscan
lead one to develop new, more powerful solution methods. One may or may not succeed
in meeting a challenge, but the very process of grappling with its difisudan result in
fuller understanding. The presentation of mathematical challenges mégepttoe
opportunity to experience independent discovery, through which one can acquire new
insights and a sense of personal power. Thus, teaching through challenges cse increa
the level of the student's understanding of and engagement with mathematics. (p. 126)
However, Taylor (2009) commented that one of the realizations stemming friom the

investigation was that challenge is a difficult construct to measure. Heirfstated that

mathematical challenge and its effect on the learning process has not Hedocwelented and

has few experts. The need for research to better understand this component oatitathem

education is suggested.
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Taylor's comments on the lack of research on mathematical challengstsingge
addressing the question of what constitutes “challenge” is a challerigelin Barbeau and
Taylor’'s (2005) description, however, of challenge as a relationship betweeniamgaadtan
individual such that the individual “is initially puzzled...but has the resources to keeugh”

(p. 126) relates well to Vygotsky’'s zone of proximal development. This provides a gdod)sta

point for a deeper description of mathematical challenge.

Zone of Proximal Development
Vygotsky’s concept of a zone of proximal developn®&hyigotsky, 1978, as cited in
National Research Council, 2000) describes the difference between whal @achiéarn
independently and what a child can learn with help. Understanding this idea is asteytial
toward determining when a student is challenged and how to continuously maintain the
challenge:
Vygotsky helped us understand an individual learns when a teacher presents tasks to t
student at a level of difficulty somewhat beyond the learner’s capacity foletenthe
task independently. When a teacher presents tasks in the student’s ‘zone of proximal
development’ and then scaffolds, coaches, or supports the student in successfully
completing the tasks, the student’s independence zone ultimately expands. Tlsis cause
the need for new tasks at a greater level of demand. For advanced learnalgenta s
area, the implication is that tasks will need to be more complex than would be aperopriat

for students who are less advanced in their capacities at that time. (Tondird.,
2009, p. 11)

Ascending Intellectual Demand

The key to keeping a student in his or her zone of proximal development, and thus
offering appropriate challenge, is to provide instruction that offers Ascehdeitpctual
Demand (AID), an “escalating match between learner and curriculumiliison et al., 2009,
p. 11). This involves elevating the challenge level of both the curriculum ma@nithe tasks

assigned as students become more advanced in their knowledge, understandingsaid skill
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requires a curriculum, such as the Parallel Curriculum Model (Tomlinson et al.,28@Bnson
et al., 2009) that is concept-based with tasks that demand complex thinking and provide
opportunities for open inquiry. The continuum of Ascending Intellectual Demandluissari
progression of knowledge, skills, attitudes, and habits of mind as a learner moves fraramovic
expert. There are four levels on this continuum toward expertise: novice, apggrenti
practitioner, and expert, with specific characteristics of the mattiesriearner associated with
each level. The role of the teacher is to be attentive to students’ needs andearpiag
experiences that help guide students along this path toward expertise. The purpose of
scaffolding along the way is “to provide support for the learner so that he asigrm
challenging content and skills” and move upward on the continuum toward expertisenéboml
et al., 2009, p. 237).

As a mathematics learner moves past the novice stage, we begin to seerttaract
similar to those in Krutetskii’'s description of mathematically giftedishts (1976), such as
making connections and seeing relationships. These characteristicayvdl géntral role in
further defining what it means to be challenged mathematically in thatens is moving along
the continuum of Ascending Intellectual Demand and, thus experiencing matiaciagillenge,
when these characteristics are observed. The progression beyond noviceliedlasdollows.
In reading through this continuum toward expertise, keep in mind that expertisgive e the
topic and to the individual. Thus a second grade student may be approaching expertise in
inventing strategies for solving addition and subtraction problems, but may only be beginning
discover relationships involving fractions.

Learning Characteristics of the Apprentice in Mathematics:

e Connects the relationships among mathematical facts and skills through concepts
e Computes fluently and makes reasonable estimates
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Applies skills with confidence and develops greater understanding beyond number and
operations
Makes connections across mathematical ideas

Understands the principles that frame a field (i.e. measurement,algebmetry,
statistics)

Develops skills and understanding through complex problem solving
Sets goals that extend beyond computational accuracy

Learning Characteristics of the Practitioner in Mathematics:

Uses the principles of mathematics to make connections among concepts adipks mul
fields within mathematics

Makes appropriate selections about which tools and methods to use

Understands patterns, relations, and functions

Applies skills with automaticity

Understands change in a variety of contexts

Uses a variety of tools and methods with efficiency in the analysis of matical
situations

Appreciates the role of mathematics in other disciplines

Formulates questions for research that can be addressed through one or mark fields
mathematics

Characteristics of the Expert in Mathematics:

Uses computation as merely a means to an end

Questions existing mathematical principles

Moves easily among the fields of mathematics through the use of macroconcepts
Links mathematical principles to other fields through real-world problems

Seeks the challenge of unresolved problems and the testing of existing theories
Seeks flow through the manipulation of tools and methods in complex problem solving
Views unanswered questions in other disciplines through the concepts of mathematics
Uses reflection and practice as tools for self-improvement

(Hedrick & Flannagan, 2009, p. 262)

An Operational Definition of Mathematical Challenge

The characteristics of Ascending Intellectual Demand confirm and adbitdeta

Krutetskii’s (1976) description of mathematical giftedness. However, Bado@hTaylor

(2005) and Krutetskii remind us that these characteristics do not exist iroisdlat are in

relation to a problem that the student takes on. In Krutetskii’'s (1976) study oihmaditted
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ability, he delineated levels of mathematical problems by associaéngwiith the cognitive
characteristics of the problem-solver which were revealed as thastsdéved increasingly
more difficult problems:

Experimental problems ought to fulfill their direct purpose: solving them shoulddelp t

clarify the structure of abilities. In other words, as the problemsoareds those features

of mental activity that are specific to mathematical activity shouldd@fested. (p. 91)
Drawing on Krutetskii's work, a challenging probleould be described as one that allows the
characteristics of mathematical giftedness to be exhibited.

To define what it means for a student to be challenged mathematicallyn Idyegi
considering the elements common to the bodies of literature mentioned in this révie
existence of levels of cognitive thought, problem solver characteristics, antissxpaggest
that we can look to the higher levels for where challenge lies. Bloom’s Revageddmy
provided our framework for higher order thinking skills. Krutetskii's work (197&)aated
certain characteristics with the highest level of mathematical pnobddving ability. The
literature on expertise provided the characteristics of progressirlg tdv&scending Intellectual
Demand for mathematics. Finally, the CGl literature laid out a progresspnl@ém-solving
strategy levels.

According to CGl literature, children reach the higher levels of problempgplvi
strategies when they move beyond the more basic strategies of direahgadel counting
methods to routinely using a flexible choice of strategies and engagirigtional thinking
(Carpenter et al., 1999; Carpenter et al., 2003).

Relational thinking entails a flexible approach to calculation in which expresare

transformed on the basis of at least implicit use of fundamental properties loémum

operations...Relational thinking represents a fundamental shift from an etiitifocus

(calculating answers) to an algebraic focus (examining relati@i@obs et al., 2007, p.
260)
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More specifically, students who think relationally tend to simplify cattada by using number
relations, view the equal sign as signifying a relationship between twacssiprg, and can
generalize relations explicitly based on the underlying fundamental pespefrarithmetic.

There is a common theme found in Krutetskii's description of mathematictifig gi
children, the characteristics of mathematics students as they exgefiecending Intellectual
Demand on the continuum toward expertise, and the CGI focus on relational thinking as an
elevated level of problem solving. They all describe higher levels of thinkingladingthe
ability to think in terms of mathematical relationships. The continuum of Ascenteltettual
Demand further implies the element of being exposed to new ideas as studertssprod path
toward expertise. Therefore, | propose the following operational definition of matibam
challenge: Students are challenged mathematically when they engage in exploring, discovering,
or utilizing mathematical relationships, are exposed to new mathematical ideas, and experienc

Ascending Intellectual Demand on a path toward expertise as mathematical thinkers.

Adding to the Literature

This chapter has focused on the literature of Cognitively Guided Instruction,
mathematical giftedness and challenge. Little has been done to britigetapese fields of
study. My study will contribute by examining the experiences of matheattatgifted students
in CGI classrooms in relation to mathematical challenge. | have proposed aaedini
challenge that begins to synthesize these various fields. Furthermayge$tsa connection
between the two major frameworks discussed in this chapter. The framework oflidgce
Intellectual Demand is used by teachers as a curriculum planning guidendaaditating
students as they move along the continuum from novice to apprentice to practitionertto expe

The frameworks of problem-solving strategy levels guide teachers in undengtémelr
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students’ thinking as it progresses from basic strategies toward moreisafgdsstrategies such
as relational thinking. Students cycle through the levels of both frameworks aspiesvare
introduced and explored, but do not necessarily begin at the first level again. Althoédb the
framework for curriculum planning has a broader purpose than addressirfge gpebiem-
solving strategies, the commonalities between the two frameworks alt@ignment. |
propose the following intersection between these two frameworks to help chaesttterdevel

of Ascending Intellectual Demand experienced by the mathematidiéigt gtudents in a CGl
classroom as they engage in problem solving (see Figure 1). Chaptenmshwdeifurther
discussion of implications of this alignment of CGlI strategy levels with fail2hallenging

mathematically gifted students.

CGI/AID Framework

Problem-Solving Strategy Levels Levels of Ascending Intellectual Demand,

from CGlI Literature the Novice to Expert Continuum in Mathematics,
from the Parallel Curriculum Model

(Hedrick & Flannagan, 2009, p. 262)

Representing each item or group: Novice:

Direct Modeling

Repeated Addition for Multiplication e Applies the skills of discrete mathematics, but
lacks a conceptual understanding

Non-anticipatory Coordination e Identifies the principles, but cannot apply then
unless prompted

Additive Coordination: Sharing One e Computes, efficiently, but lacks fluency

item at a Time e Sees limited relationships among numbers angd

number systems

¢ Identifies only the most basic patterns
Needs frequent feedback and assurance during
problem solving

e Sees the “right answer” as the goal

Figure 1. Alignment of CGI problem-solving strategy levels with levels of Ascegdi
Intellectual Demand. Novice to Expert Continuum in Mathematics by Hedrick, K.,
Flannagan, J. S. (2009). Ascending intellectual demand in the parallel curriculum model.
Tomlinson et al., (2009)The parallel curriculum: A design to develop learner potential and
challenge advance learners®2d. (p. 262). Copyright 2009 by National Association of Gifted
Children.
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Problem-Solving Strategy Levels
from CGI Literature

Levels of Ascending Intellectual Demand,
the Novice to Expert Continuum in Mathematics,

from the Parallel Curriculum Model
(Hedrick & Flannagan, 2009, p. 262)

Counting Strategies,

counting)

(i.e. counting on, repeated addition, sk

Additive Coordination: Sharing groups

ip

Apprentice:

Connects the relationships among mathematical
facts and skills through concepts

er

lex

Flexible Use of
Strategies

Relational Thinking
Notation with Equations

in the analysis of mathematical situations
Appreciates the role of mathematics in other
disciplines

Formulates questions for research that can be
addressed through one or more fields of
mathematics

and

o Computes fluently and makes reasonable estimates
of items o Applies skills with confidence and develops great
Grouping and understanding beyond number and operations
Combining Strategies e Makes connections across mathematical ideas

_ e Understands the principles that frame a field (i.e.
Ratio: , measurement, algebra, geometry, statistics)
Repeated Halving e Develops skills and understanding through comp
Factors problem solving

. e Sets goals that extend beyond computational
Derived Facts accuracy
Flexible Use of Strategies
Relational Thinking

Practitioner:
Derived Facts e Uses the principles of mathematics to make
Number Facts connections among concepts across multiple fiel
Computational Fluency within mathematics

o Makes appropriate selections about which tools &
Multiplicative methods to use
Coordination e Understands patterns, relations, and functions

o e Applies skills with automaticity
Multiplicative e Understands change in a variety of contexts
Strategies e Uses a variety of tools and methods with efficien

Figure 1. Alignment of CGI problem-solving strategy levels with levels of Ascepdin
Alignment of CGI problem-solving strategy levels with Ascending letéllal Demand. Novice
to Expert Continuum in Mathematics by Hedrick, K., & Flannagan, J. S. (2009). Asgendin
intellectual demand in the parallel curriculum model. In Tomlinson et al., (26@9gllel
curriculum: A design to develop learner potential and challenge advance ledm&62).
Copyright 2009 by National Association of Gifted Children.
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(CGI/AID Framework continued)

Problem-Solving Strategy Levels Levels of Ascending Intellectual Demand,

from CGI Literature the Novice to Expert Continuum in Mathematics,
from the Parallel Curriculum Model

(Hedrick & Flannagan, 2009, p. 262)

Expert:

Uses computation as merely a means to an end
¢ Questions existing mathematical principles

Computational Fluency e Moves easily among the fields of mathematics
through the use of macroconcepts (common concepts

Relational Thinking across disciplines or topics)

Notation with Equations e Links mathematical principles to other fields through

real-world problems

o Seeks the challenge of unresolved problems and|the
testing of existing theories

e Seeks flow through the manipulation of tools and
methods in complex problem solving

e Views unanswered questions in other disciplines
through the concepts of mathematics

e Uses reflection and practice as tools for self-
improvement

Figure 1. Alignment of CGI problem-solving strategy levels with levels of Ascemndin
Alignment of CGI problem-solving strategy levels with Ascending letéllal Demand. Novice
to Expert Continuum in Mathematics by Hedrick, K., & Flannagan, J. S. (2009). Asgendin
intellectual demand in the parallel curriculum model. In Tomlinson et al., (26@9allel
curriculum: A design to develop learner potential and challenge advance leg§m@&2).
Copyright 2009 by National Association of Gifted Children.

Common Core Standards
In our current educational climate, it is relevant to place the preceding atfomand
discussion in the context of the recommendations of the Common Core Standards for
Mathematical Practice:

Make sense of problems and persevere in solving them.
Reason abstractly and quantitatively.

Construct viable arguments and critique the reasoning of others.
Model with mathematics.

Use appropriate tools strategically.
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e Attend to precision.

e Look for and make use of structure.

e Look for and express regularity in repeated reasoning.

These standards “describe ways in which developing student practitioners aicthengi of

mathematics increasingly ought to engage with the subject matter asdhey gnathematical

maturity and expertise throughout the elementary, middle and high schodl Y€ESSI,

2010, p. 8). Itis interesting to note that both the Common Core practices and the idea of

Ascending Intellectual Demand drew, in part, from the ideas of the NatiosahRé Council

(2000) that suggested studying the characteristics of experts sfmmpeople learn.
Summary of Literature Review

The bodies of literature reviewed in this chapter inform the central topic ot
mathematically gifted students in CGI classrooms. The background of ®@epniEuided
Instruction was described with its origins in the understanding of studentsematical
thinking, the taxonomy of problem types and strategy levels, and finally the deeslophthe
CGl professional development program. Research was presented that showediviee posi
influence that the professional development had on both teachers and students.

The literature on the characteristics of mathematical giftedairesshallenging learning
environments was discussed. Similarities were drawn between the learnmoger@yrits
recommended by the gifted education literature and the description of classybwachers
who had experienced CGI professional development. | then introduced literature on
mathematical challenge, higher order thinking skills, zone of proximal devetbpame
Ascending Intellectual Demand to support the operational definition of mathehchiadlenge
for elementary students. The operational definition guided this study asctedlénd analyzed

data for evidence of challenge. The final focus was an alignment of two frakse W@l
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strategy levels and levels of Ascending Intellectual Demand, the BFAImework, used to

further characterize the level of challenge in the CGI classroorhssiattidy.
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CHAPTER 3: METHODS

This study investigated the experiences of mathematically gifted aad@&ty students
in classrooms using the principles of Cognitively Guided Instruction (CGlpdatdi what extent
and in what ways they are engaged and challenged in mathematics learnititerdtoee in
Chapter 2 presented a rationale for developing the following operational definition of
mathematical challenge: students are challenged mathematitaythey engage in exploring,
discovering, or utilizing mathematical relationships, are exposed to new naditedndeas, and
experience Ascending Intellectual Demand (AID) on a path toward esgpadgimathematical
thinkers.

Using a multiple case study research design, two cases of CGI classangint by
exemplary teachers were studied. The research methods included observingtifredide
students and teachers during CGIl math lessons, examining the students’ probiegn-sol
strategies, and interviewing the participants. Yin (2009) stated “the anadytefits from
having two (or more) cases may be substantial” (p. 61) and therefore suggestewamof two
or three replications. Collecting data from two cases provides more cargmildence for a
more robust study (Herriot & Firestone, 1983,cited in Yin, 2009, p. 53).

Yin (2009) suggests a “replication, not sampling logic” (p. 54) for using multipée cas
studies such that carefully selected cases would predict similar redlohsng themes to
emerge, and if similar results do not emerge, the cases would provide contessiltgyfor
predictable reasons. In this study, the cases were selected based oretiwemiean exemplary
CGl teacher with the prediction that exemplary teachers would be mosttokaigvide
challenge for gifted students. The data from three different grade tdvel cases (a third

grade class, and a fourth/fifth split grade class) allowed for compamohgontrasting in a
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cross-case analysis which added to the overall picture of mathematittallysjudents obtained
from the within-case analysis.

This study used a parallel mixed design in which the quantitative and qualitaties phas
occurred approximately at the same time and addressed related elemenssaofdiesearch
guestion (Teddlie & Tashakkori, 2009). The sentiment of this study is more qualitetive
guantitative but as quantitative data was collected at each classrognmfasihation was
gained that framed the collection of the qualitative data. For instance, mgadudents’

“finish time” for the problems revealed that some students finished their preblkery quickly.
This led to more attentive observation of what the teachers did to further engagsttldests
once the students had finished the problems. Teddlie and Tashakkori (2009) warned that a
parallel mixed design can be difficult to implement due to having to pay attention to bs#s pha
at the same time. However, with this study focusing on a small number of students and one

teacher in one of two classrooms at a time, this design was more useful than burdensome

Participants and Setting

The focus of this study was on mathematically gifted students situated in tivo CG
classrooms taught by exemplary teachers using a CGI approach tonaidtkenstruction. The
purposive selection process of the two classrooms was based on finding ex&@dleagchers
who each had at least one mathematically gifted student in their claskbsughA one aspect of
the research question focused on the teachers and their strategiesdorgeagd challenging
students, the students were the primary unit of analysis since it was thesstredgrunses to the
teachers’ strategies that determined whether or not the strategiesl @/okallenging situation.

Institutional Review Board approval was procured and all students, their parents and t

teachers in the participating classrooms were asked to sign informed consedie(pm
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English and Spanish) to grant their permission to be included in the study. All but one of 24
third graders returned informed consent. Twenty of the 28 students of the fourth/ftftirasbd
class returned informed consent. To ensure confidentiality, the student nameswee letter
codes, which | used when taking field notes and transcribing interview and observiioAltla
records were kept secure and only used by the researcher. Pseudonymsdverenugang

this report.

The CGI Teacher Participants

The two teachers selected for this study were chosen using the follovtangcr

¢ An elementary school teacher who had participated in at least two y&2®& pfofessional
development and had been implementing the principles of CGl in their classrooms;

e An elementary school teacher recommended as an exemplary CGI teaaleGhby
professional development leader;

¢ An elementary school teacher whose classroom had at least one mathnggtiedl
student.

Although it was not a prerequisite for the teacher to have knowledge of mathegiéiedaless,

the teachers selected were able to identify their mathematictéigl gtudents as well as

describe characteristics that were similar to Krutetskii’s getsmn (1976).

Ms. B, the third grade teacher, began CGI professional development in hezdirsify
teaching. Within her six years of teaching experience, she participatedenyears of CGlI
professional development, the Arkansas CGI Leadership Institute, and hasG@ugfear 1
and apprenticed to teach CGI Year 2.

Ms. K, the teacher of a fourth/fifth grade split class, also has sig {eaching

experience. She had been first introduced to CGI through professional developnredtlnffe
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her school in her second and third years of teaching. For the next two yearstisipatealin
CGl Years 1 and 2. In addition to this, she completed a Math Science Partnership wdrashop t

focused on students’ thinking about fractions and decimals.

Description of the Setting

Both case studies were conducted at the same elementary school withiicteodlistr
18,810 students, in an Arkansas city of 69,797 (U.S. Census Bureau, 2010). Although it was
convenient to have both cases at the same elementary school, this factor was dertecbnsi
when choosing the teachers for participation. This K-5 school has a student population of 529,
with 97% eligible for the free/reduced lunch program, indicating low econoaticsstand 80%
English Language Learners (ELL). The student body is made up of 76% Hispanic, 19%
Caucasian, and 5% other ethnicities/races. The school is located in a d&y664t Caucasian,
35% Hispanic, and 10% other ethnicities/races. The school district has supported CGI

professional development for its teachers.

The Mathematically Gifted Student Participants

Once the exemplary teachers were identified and agreed to partinigatestudy, the
teachers reviewed their list of students who had scored advanced on the previsus year
standardized test (SAT 10 for thd graders, and Arkansas Benchmark Exam for tHg™
graders). From the list of advanced students, the teachers indicated whiclssheaientost
highly recommended as mathematically gifted as well as a second lexklasfced students.
These recommendations were based not only on test scores, but also from thg teacher
observations of students’ excellent problem-solving abilities for seven months oeeutke of
the school year. They also recommended a few students as strong math studexdd and g

mathematical thinkers who had not scored advanced on the previous year’'s standaadized ex
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attributing the lower scores to language-related issues as EnglighdgamLearners. Of the 15
students selected for the study, 12 of the students were raised with Spahehfast language
and began learning English in kindergarten. One of the 15 participants was ramsgchbih
Spanish and English. The remaining two students were raised in Englismggaakies. Only
three of the 12 English Language Learners were considered fluent istEaglhe time of the
previous year’s standardized test and four students were considered fluanlageyeat the time
of this study (see English Language Development Assessment, ELDAs stdrables 1 and 2).
Because this study was being conducted approximately one year afies\loels year's exams
had been given, and because the students’ language skills continued to grow, the fidacher
that their knowledge of their students’ mathematical ability was a moveaaegudge of ability
than the previous year’s test score. The teachers attributed their cokfidesftdge of their
students’ abilities to the nature of Cognitive Guided Instruction which focuseésdents
thinking and mathematical communication. The class discussion phase of the CGksuth le
in particular, was a fruitful time to hear the advanced mathematical thinkihgioftudents. In
interviews with the 15 student participants, all of them considered themselvesuenbén
English, even those with lower ELDA scores, and reported that they had no trouble
understanding the English during the math discussions.

Test of Mathematical Abilities for Gifted Students (TOMAGS). To obtain an
objective measure of mathematical giftedness, and because the schoo$iaded standardized
tests can have a ceiling effect in which high scores may not indicate ¢m ethe student’s
mathematical ability, the teachers administered the Test of Matlaimakiilities for Gifted
Students (TOMAGS) (Ryser & Johnsen, 1998) to their classes. TOMAGS, a norencefd

measure of mathematical reasoning and problem-solving ability assosiitenathematical
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giftedness, has Cronbach’s coefficient alpha of .92 for the Primary TOM&@8es K-3) and
.88 for the Intermediate TOMAGS (grades 4-6), indicating little test éRyser & Johnsen,
1998). The sample used for norm-referencing contained a 12% Hispanic population, although
there was no information about fluency in English within this subgroup. Testingiédnilrgi
within this subgroup revealed a coefficient alpha of .88 for the Primary TOMAGBggK-3)
and .88 for the Intermediate TOMAGS (grades 4-6). For construct validity, TOMR&G&S
statistically significant correlations indicating concurrent vafigiith the Otis-Lennon School
Ability Test (OLSAT), the quantitative battery of the Cognitive Abilitiesst (CogAT), and the
mathematics total of the Stanford Achievement Test (SAT). Both retyabild validity were
tested for subgroup comparisons of Mexican American students versus non-Maxiea0af
students, indicating little or no testing bias in this group.

Identifying mathematical gifted students among the advanced student§he
TOMAGS test identified five students likely to be mathematicallyedifusing a cut-off score of
95" percentile. Of these five students, there were three third graders, chegfaater, and one
fifth grader. The rationale for choosing this cut-off score is as follows. (thera of
TOMAGS suggest that a student in thd" Prcentile is very likely to be mathematically gifted,
being two standard deviations above the mean. This is close to Miller's (1990) eshatat-
3% of the population is mathematically gifted. TOMAGS further suggests titkengs in the
92" to 97" percentile range may be gifted. Since TOMAGS has a standard error of
measurement that suggests a student’s true score could be about 5 percentile fEvjrdclotw
off score of 98 percentile would increase the chances that the students may be giftedr Furthe
justifying the cut-off score, the Johns Hopkins Center for Talented Youth recomatsngs

level testing for students who score at th8 p8rcentile on a nationally-normed standardized
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test (Assouline & Lupkowski-Shoplik, 2005), to determine if they are capable of sguahygth
at a higher grade level than their own. The rationale of identifying thetfidkents who scored
at or above the 35percentile on the TOMAGS as mathematically gifted was later supported by
the findings that this group of students consistently completed the daily classizcbieectly,
compared to a lesser rate of success among advanced students who scoredhzéoveatle.

Top tier advanced (mathematically gifted) and second tier advanced students. The
scope of this study was expanded beyond the five mathematically gifted stodectade ten
other advanced students. Classifying two tiers of advanced students, a "top tier
mathematically gifted students and a “second tier” of advanced students, akbovaed f
interesting comparison showing differences between the two groups. The txjvéaced
group ranked high on all three measures: TOMAGS, advanced on district standastinggl t
and teacher recommendation (Table 1). The second tier advanced group of stokedtsigh
on two of the three measures (Table 2), with the exception of one student who was included
because he was highly recommended by the teacher but did not score advanced on the other tw
measures. Observation of his participation and work during pilot visits to the mthss a
conversations with both his classroom teacher and ELL teacher indicated tlest lteely

mathematically gifted, but language and personal issues interfered svethdaess at test-taking.
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Table 1

Top Tier Advanced Students based on Success on Three Measures

Pseudonym Grade TOMAGS Teacher 2010 Score, Level/ 2010 ELDA/
Percentile Recommendation 2011 Score, Level 2011 ELDA
(TR)
Dominic 3° o7 Highest TR Adv/737 Adv 4%/4
Jasmin ) og" Highest TR Adv/717 Adv 4%/4
Freddy g 97" Highest TR Adv/641 Adv 4%/4
Andre A" 97" Highest TR 731 Adv/ 695 Adv 5/5
Geraldo & og" Highest TR 775 Adv/ 774 Adv 4/4

Note: Cut off score for advanced on Arkansas Benchmark: 3rd grade 640, 4th grade 640, 5th
grade 698.3" graders took SAT 10 ad%graders in April 2010 and Arkansas Benchmark'as 3
graders in April 20114"/5" graders took the Arkansas Benchmark'&@"graders in April

2010 and as"graders in April 2011.

ELDA: Engjlish Language Development Assessment Composite Score rdiaeda *ELDA

score for 2 graders was based on teacher survey, not a standardized test. ELDA Spgees Ra
from 1 to 5 (5 is full English proficiency). See Appendix A for more details.

Table 2

Second Tier Advanced Students based on Success on One or Two Measures

Pseudonym Grade TOMAGS Teacher 2010 Score, Level/ 2010 ELDA/
Percentile Recommendation 2011 Score, Level 2011 ELDA

(TR)

Maya 3 8g" High TR Adv/674 Adv NA

Julia 3 a4h TR Adv/663 Adv 4%/4

Natalie 9 od’ Highest TR 698 Adv/759 Adv  4/5

Alana 4" od" High TR 731 Ad/732 Adv  5/4

Anita 4" 70" TR 681 Adv/682 Adv  3/3

Katerina .4 34" TR 745 Adv/646 Adv  4/5

Sylvia gh g4 High TR 694 Adv/727 Adv  NA

Allen 5h 73 TR 682 Adv/767 Adv  NA

Roberto & 73 Highest TR 615 Prof/633 Prof  2/3

Kara B 3¢ TR 688 Adv/661 Prof 5/5

Note: Cut off score for advanced on Arkansas Benchmark: 3rd grade 640, 4th grade 640, 5th
grade 698.3“ graders took SAT 10 as8%yraders in April 2010 and Arkansas Benchmark'as 3
graders in April 2011. "¥5™ graders took the Arkansas Benchmark'&@®Bgraders in April

2010 and as'graders in April 2011.

ELDA: English Language Development Assessment Composite Score rdiaeda *ELDA

score for 2° graders was based on teacher survey, not a standardized test. ELDA Segees Ra
from 1 to 5 (5 is full English proficiency). See Appendix A for more details.
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Data Collection

In preparation for conducting this study, four pilot observations helped formulate the
processes for collecting the data. The interview questions were piloted stufieats.
Observing the identified students and teachers during CGI math lessons, egdherstudents’
problem-solving strategies, and interviewing the participants provided a schd®n of the
mathematically gifted students’ experiences, their perception of lbbaedlenged, and the
teacher strategies that enhanced this experience. In this descripticinodohayy, three phases
of a CGI math lesson are referred to: Phase 1, the problem-posing phase in wigabhtée
poses the problem(s), Phase 2, the problem-solving phase in which students are [gjieimam
to solve the problem(s) in whatever way makes sense to them, and Phase 3, ¢jyesiaaitegy
discussion phase, the culmination of the lesson in which teacher-selected statkgiestare

shared and discussed by the class.

Interviews

Pre- and post-study semi-structured interviews with studentand teachers.The
study began with a semi-structured interview of each student (Appendix B) foousatttudes
toward math, math class, and the issue of being challenged. This interviewnadsbasean
icebreaker to help the student feel at ease. After the observations, wiakdatét analysis
suggested the teachers served as mentors for the advanced students, studiemtbevere
guestioned about this possibility. The teachers were interviewed (Appendix C)tabout t
knowledge of their mathematically gifted and advanced students and the issuéeofoit
them. Their responses informed the list of what to look for during class observateatheis
were interviewed after the series of observations to further question them apsum wéich

they tried to extend the thinking of their advanced students (teacher extensidmishall
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conversation with the teachers throughout the study allowed for more understanding of the
teachers’ goals and concerns. After a list of teacher extensions wagtszhigm the data
analysis, the teachers were asked if the list accurately reflectedhépwi¢wed their
interactions with students. This member check indicated an accurate report.

Post-lesson student interviewsAfter each lesson observation, most of the advanced
participants were interviewed. This structured interview (Appendix D) inclugbadrasurvey

of perceived challenge using a Likert scale of 1 to 5, with 5 being the highest.

Observation
The study included observations of the CGI math period 10 times per class. Ms. B’s
third grade CGI lessons lasted for about one hour, and one lesson was complete in one day. Ms
K’s fourth/fifth grade class also spent at least an hour a day in a CGIl mait, fenivever
several lessons spilled over into the next day due to the elaborate discussions, trewseanly s
distinct math lessons were observed throughout the 10 observations of Ms. K’s class. |
considered my role to be that of a “participant observer” which "combinesipaitita in the
lives of the people being studied with maintenance of a professional distandmtiat a
adequate observation and recording of data” (Fetterman, 1998, pp. 34-35). | wasyprimaril
passive as | observed and usually did not participate in the lesson, but | did have s@oiont
with the students while casually walking around during the problem-solving prdoéssmal
conversations with the teachers about the lessons took place before and aftef bassachers
were aware that the focus of the study was challenging the mathédingiited and advanced
students. Many of our conversations centered on ideas for challenge, some of evkichine.
Recording the lesson observations involved a combination of field notes, audio recording,

and video recording, looking for evidence of higher level thinking among the advandedtst
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and what teachers did to extend their thinking. Field notes were taken on a codinglreebrd s

(Appendix E), using one coding sheet for Phase 1 and 2 (switching ink colors for eactophase

keep track of the phase in which the evidence occurred) and a new copy of the codifay shee

Phase 3 (again switching ink colors). The coding/record sheet included a listeoftsand

teacher actions that would indicate evidence of the operational definition ohgeall&he

items on the list were generated prior to beginning this study rather than cibdictgpas and

looking for themes. This a priori approach was possible because | was fantilignenCGl

literature and that of higher order thinking in relation to challenge, had observeddiit|

lessons when piloting the study, and had these items confirmed by interviewinactinerse

Two items were added to the list after observing the teachers fornuthys sThese items were

coded during review of the videos and field notes after completion of the observations.
During observations, sometimes | simply checked off that | saw eviddatage¢o a

certain category on the coding sheet, but often | wrote a few details about whextvedbs

When the evidence noted involved a specific student, | used the code letter spéla#lyin

student, rather than a checkmark. During Phase 2, the problem-solving phase in whinth stude

were working at their tables, | circulated the classroom for thdiffesminutes, noting on my

clipboard coding/record sheet which students finished the problems within two minutesrand t

which students finished within five minutes (but not within 2 minutes). Per my request, M

asked her students to record their finish times on their papers, but made it cléas thas not

a race to see who finishes first. She explained to the class that the amouatao$tudent

spends on a problem gives us information about the problem and the strategy chosen for solving

the problem. | occasionally placed the portable audio recorder on a table athehieadher

was having a conversation with a student about his or her work, in order to capture evidence
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the teacher’s extending the student’s thinking. To assist me in rememberirgnifieasice of
certain teacher and student actions and interactions as | later reviewenbthengs, | jotted a

few reminder notes. During the Phase 3 strategy-sharing phase, a videoreaoreled the
discussion of the selected strategies, focusing on the board at the front of theitfotme

students gathered in front of the board. Field notes were taken during this phasedbthighli
main points and to note comments from students that may have been inaudible with tfee.recor

During the observations, | recorded the beginning and ending time of each plesksédns.

Document Collection

Test scores for identification of advanced students.Arkansas State Mathematics
Benchmark and SAT-10 scores were collected from the previousoyadentifying students as
advanced. The current year’s scores became available at the end of thgeahdbls were not
used for identification, but are reported in Tables 1 and 2. TheA®B/Mwas administered and
scored for identifying students as mathematically gifted.

Student work. Student work was collected to examine solution strategies fdermse
of using higher level strategies and for thinking in terms ofheraatical relationships. The
student work also showed how many problems were completed, how mawera were
correct, and if there were extra problems done by the particiffaitsvere not given to the rest

of the class. Teacher feedback to problems was sometimes written on studemnss’ pape

Data Analysis
A meta-inference process (Teddlie & Tashakkori, 2009, p. 12) was used to analyze th
data in which quantitative and qualitative data were integrated with eacmtgpeing the
other. Although there are two components to the research question “to what extent laad in w

ways are mathematically gifted students challenged in a CGirates8,” it seemed natural to
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integrate the analysis of the data rather than separating the two componangdyfsis. One
explanation for this natural integration might be that the challenge féiebstudent was a
function of the actions of the teacher.

Both within case and cross case analyses were used in this study. Hocagthi
analysis, third grade class results and fourth/fifth grade classsresiri reported separately.
For cross case analysis, third grade and fourth/fifth grade results wereredmpaother
analysis that spanned across the cases was the comparison of the top tier ativdaertisdos all
grades to the second tier advanced students of all grades. In a combination cdsz@swl
within case analysis, all three grades were compared for some datas@dwatrends were
similar for both cases, data from the two cases were also reported for tieegndugd of
advanced participants.

All interviews and audio recordings of teacher/student interactiorestvaerscribed.
Only some of the video recordings were transcribed due to the extensive amouatibfdok
to type in mathematical conversation. Viewing and listening to the videos dinasly
favorable, rather than reading a video transcript, in that hearing voice intonattbssesng
facial expressions added to the meaning gleaned from the conversations.

The first step of organizing the data was to create a chart (Appendix F) dneeich
lesson’s assigned problem was recorded, along with the total time altotssdving it. The
chart displays information about each student’s solutions for each problem set, inalbding
problems were completed correctly and which were not. From this, the perceotage af the
problems completed by the top tier and the second tier groups was calculated xakftenireg a
student’s problem-solving strategies, the main strategies were noted onrtHeratach

problem (i.e. number facts, grouping and combining, relational thinking) and if stucssd
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relational thinking to help solve a problem based on their knowledge of a previous solution.
Reviewing the coding/record sheets from observations, | noted on the chart wihetstedent
finished within 2 or within 5 minutes (but not within 2 minutes). Since the students’ atexe |i
in order of my perception of their ability and included several non-advanced studéets at
bottom of the table for the sake of comparison, this table not only provided an important
reference as | worked through other data, but it also gave a good visual of trendsyotihefla
the chart provided a visual for comparing top tier and second tier students and how ticecdva
students compared to students who were not advanced (i.e. use of certain strategies)
From the post-lesson student interview data, the average of students’ rapegseofed
challenge for each problem, on a scale of 1 to 5, was calculated to get a sensealfatieiaht
demand according to the students. This data was calculated for top tier advehsedomd tier
advanced, and per grade level, to look for differences. Another suggestion of uméllect
demand came from observing how quickly students finished the problems. Therefeated er
table that showed which students finished the problems early, either within 2snamwvithin 5
minutes (but not within 2 minutes). Information about whether or not the teacher dramide
extension of the student’s thinking in Phase 1 or 2 (gathered from coding/record sheets,
reviewing audio recordings of teacher-student interaction, and from exarstoohents’ work)
was then overlaid on the same table to begin to see the picture of the teatirtssatef
challenging their students. The percentage of times the students reeaisteel textensions was
calculated and related to if the students had finished early. | calculateddbetpge of times
the top tier, second tier, and each grade level finished early. To reveal nmactinegtthese
students had after finishing early, the average time allotted for the prebleimg phase for

both classes was first calculated, as well as the average time ftoirthgrade class and
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fourth/fifth grade class individually. Then, for those students who finished delgetcentage
of the time spent solving the problems out of the total time allotted was calculate

The next step of analysis was to review all coding/record sheets and audio
recordings of Phase 1 and Phase 2 for frequency and examples, per class, ot¢égudeof
extensions provided to challenge the students. This begins to address the component of the
research question “in what ways do the teachers challenge their students?” dfailyhis, |
collapsed some of the existing categories on the coding/record sheet andeortfamz within
Bloom’s Revised Taxonomy to provide a stronger case for their connection with lengéls of
thinking, which is necessary for Ascending Intellectual Demand. Both wgisim &nd cross
case data were considered, but the cross case analysis of what both teaprentyfréid to
extend student thinking will hold more weight in the analysis. To supplement thiatptese
of ways in which teachers attempted to challenge their students, studentwtsawienents
were provided on one particular type of extension. Teacher interview datexaeneed to
further understand the teachers’ intent for using these extension strategiels as for other
ideas on how to challenge their mathematically gifted students.

Returning to the students’ work for a second round of analysis, | re-examined tim stude
work with the operational definition of challenge in mind to see if the students wekathin
terms of mathematical relationships. | studied the solutions of both the advanced and non-
advanced students to describe them in terms of CGlI strategy levels, withrniiiseptieat
working at higher levels corresponds with Ascending Intellectual Demac@mpared the use
of the higher level strategies between top tier and second tier students ancedosagh to the

time that students took to solve the problems.
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Analyzing the observational data (field notes and video recordings) for eeidénc
higher level thinking during the Phase 3 strategy-sharing discussion followedaa ®nmat as
in Phases 1 and 2. Viewing the Phase 3 videos, | coded for the categories (Appenber E) eit
with a checkmark, a direct quote with a code to mark who said it, or a brief account of the
evidence. A few gaps were filled in by referring to the field notes. Forzanglthis coded
data, I collapsed some categories and rearranged them within the broagtenesatd Bloom's
Revised Taxonomy. Then frequencies of types of higher level thinking wereatettahd
examples of these types were selected.

An important part of the analysis was to tie in students’ perceptions of tba,l&ssn
post-lesson interview data, with the frequency data on types of higher levehghirtor the top
tier group and the second tier group, | calculated the average student ratings of howethalle
they felt by the entire lesson experience (beyond the problems they solved) and lothieguc
enjoyed the lesson. | compared the average ratings of perceived chaflémgentire lesson to
the average ratings of perceived challenge of the problem solved, anddsstiedent comments
from interview data to show what they liked about the lesson.

The final analysis of data addressed if and how students were exposed to sew idea
component of the operational definition of mathematical challenge. | reviewedcdimaeiats of
problems assigned and the observational data, listing and categorizing ¢eerttupfourth,
fifth, and sixth grade standards. | counted, per grade level, how many lessons inictuaed a
grade level topics. Student interview data was analyzed by grade level aml tier students
versus second tier students, to calculate the percentage of lessons in whiuis séydeted
learning a new idea. Calculating the percentage of the new ideas thahd@nase 3 as

opposed to Phase 2 added detail to the analysis. Another student interview question asked if
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students found any other student’s strategy of interest, which suggested ahimteazsing
new ideas. | analyzed these responses for top tier and second tier, and, iy daksilating

the percentage of lessons in which students found other students’ strategieest. int

Literature Used for the Methodology

In choosing to do a qualitative study, | considered how my findings can best centoibut
the literature. Lester (2005) discussed the role of mathematics edueatanch and pointed to
the potential of a blended approach using both qualitative and quantitative methods tpatevesti
guestions. He considered the role of theory in education research and how theggesearch
philosophical stance may affect the research, and suggests utilizing a cdrfcaptexaork for
designing and conducting inquiry

Yin (2009) provided guidance in how to perform a case study, utilizing recommended
methods such as observation and interview to collect data. He promoted the case @tudy a
appropriate methodology for answering the questions “how” and “why”. In my case of
mathematically gifted students in CGI classrooms, | focused on howdhagdinteract, how
challenged they feel, and how the teacher interacts with them to providiectotal stimulation.

Yin refers to case studies as being explanatory, exploratory, and descriihggadterize my
study as exploratory and descriptive.

Considering the CGI emphasis on children’s strategies for solving math pspblem
examining student work was a key component of this study. Borko, Kuffner, and Arnold (2007)
stated that classroom artifacts, such as student work, reflect actuattiosal activities better
than teachers’ interpretations of those activities. In this study, aafythe student work as
well as student commentary relating to it was considered when looking d@neei of

challenge.
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Trustworthiness

The trustworthiness of a study is the degree to which the results of thastudy
convincing to an audience and “worth paying attention to” (Lincoln & Guba, 1985, p. 300 as
cited in Teddlie & Tashakkori, 2009). It includes credibility and transferabiiualitative
research (Teddlie & Tashakkori, 2009) that address issues similar to intedredtarnal
validity, respectively, of quantitative research.

This study used multiple methods of observation, interviews, and document analysis,
with the prolonged engagement of multiple observations in two case studies tooaltbenfies
to arise and to be confirmed. The data was analyzed both within case and cross case
Furthermore the data was analyzed with respect to meeting the @ftanaperational
definition of challenge as well as how it aligned with a framework of CiGllavels.

This attention to the triangulation of the multiple methods as well as the mualtiplyses led to
a “convergence of evidence,” (Yin, 2009, p. 117) and increased the credibility of this stud

Other than conversations with my committee members regarding the methods and
findings of this study, | had several “peer debriefing” discussions (Tefidleshakorri, 2009,
p. 210) through all phases of the study with another expert on Ascending Intellechaid)e
Dr. Sandra Kaplan. Dr. Kaplan is a professor of education at the University of i@outhe
California, is well known for her work in gifted education, and is one of the authors of the
Parallel Curriculum Model. In particular, Dr. Kaplan agreed that it wasoreable to adapt the
AID framework in the way that | had chosen to align it with the CGI frameworkatfigm-
solving levels. Once the analysis of the data was complete and a list of wdyshrteachers
challenge their students had been made, | asked the teachers to revistaatha fmember

check” (Teddlie & Tashakkori, 2009, p. 213) to confirm if my interpretation of whathtady
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done was reasonable, which they affirmed. These efforts of soliciting tieflban others
further increased the credibility of this study.

A “thick description” of the data and data collection methods adds to the trangfecdbil
the interpretation and conclusions of the data (Teddlie & Tashakkori, 2009, p. 213)edsexr
the chances that the conclusions could be applied in similar settings. It &s®itp@ossible for
others to replicate the study. In this study, | was careful to document tha datarganized
manner to allow for efficient retrieval for data analysis. The studewt® was filed per lesson
per class in a labeled folder and strategy types were labeled on thalgrapers. The
coding/record sheets and field notes for each lesson were kept in these foldescriptions of
any audio recording of student/teacher interaction during Phase 2 was printed oydtamd ke
these “per lesson” folders. Interview responses were transcribecbeieally and filed both per
individual interview and per question (i.e. all the students responses to question #1, etc.).
Observation videos were kept in two electronic folders, one for each class. &Vigsving the
recordings, | made one summary coding/record sheet for each class. Wingrtloediata,
which included writing direct quotes to use as examples, | notated from whscmlthe data
came. | also recorded the data such that it was clear from which phlsdesfson it originated.
These efforts provided an audit trail that can be used to verify the methods andlteethes

increasing the transferability of this study.
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CHAPTER 4: RESULTS

To address the research question "to what extent and in what ways are meafigmat
gifted students challenged in a CGI classroom?", data came from ctassiogervations of math
lessons taught by two exemplary CGI teachers, analysis of student work ohgs of t
mathematically advanced students, and interviews with these studentsiatehtters. The
students were classified as either “top tier advanced” or “second tier advartird grade
teacher, Ms. B, was observed teaching 10 lessons within a four week period. Fourthiffifth spl
grade teacher, Ms. A, was observed 10 times over a four week period, for a total of seven
lessons, some of which took two days to complete. Each lesson had three phases: Phase 1
(problem-posing), Phase 2 (problem-solving), or Phase 3 (strategy-sharing aisdidigc

In collecting data addressing the extent of mathematical challengeteheof data
collection had to remain close to the operational definition of mathematicad roipall
Reviewing that definition, mathematical challenge centers around thar&tgh, discovery, and
utilization of mathematical relationships and involves Ascending lotaé Demand. Such
demand requires exposure to new ideas inviting the students to continue upon a path toward
expertise. Thus the data collection from lesson observation and student worksdonalysed
on relationships and higher order thinking necessary for Ascending IntellBetonand as well
as exposure to new ideas. The data collection from student interviews focused therne on
self-reports of the challenge level of the problems and the lesson as wglbasare to new
ideas. Observation of how quickly students finished the problems further deshabed t
challenge level of the problems.

The report begins with evidence of the extent of challenge by reporting thetstude

perspective of how challenged they felt by the problems assigned in Phase 2, therthigiki
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self-report with data on the percentage of times they finished early,rdentsge of time the
early-finishing students worked on the problems out of the allotted problem-solvagatich
their percentage of correct answers. The next section will introducegsesathat the teachers
used to extend students' thinking during the problem-solving phase as well as fyazfiilbese
extensions, and provide student feedback from interview data on one strategy in paiticular
then turn to the students' work to see if their problem-solving strategies shadeace of
relational thinking and other high level strategies. Transitioning to the Phaséegisharing,

| provide frequency and examples of higher level thinking, including focus ororedhips, in
this discussion phase. The students’ ratings of perceived challenge and enjofythe overall
lesson experience are then reported. The final piece of data regarding thefesttatienge
involves to what degree the topics and ideas were new to these advanced students, beginning
with the self-report by students of learning new topics as well as inter@$ter students’
strategies. This is followed by a count of lesson topics that were aboeelgvatistandards.
Throughout this report, teacher and student interview comments are provided to fyore ful

reveal the results of this investigation.

Students’ Perceptions of Challenge
In preparation for asking the students to rate how challenged they felt aftdesson,
the students defined what the word “challenged” meant to them in relation tolassth The
most common responses were similar to these two responses: “it medlyshianeato think”
and “the problem is hard”. Two other comments were “when | feel challengeght inaive to
ask the teacher a question” and “it's more interesting”. One student destrtledge as “like
being on an escalator” and said that she did not like being stuck on the escalatduddiis s

did not mention the idea of “exploring relationships”, but their references to “thinkidgha
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are suggestive of the higher order thinking and Ascending Intellectual Demakdy thlements
of the operational definition of mathematical challenge applied throughoututis st

After each math lesson, | conducted a brief interview with the top tier advandedtst
and the majority of those in the second tier. One interview question targeted howgsthlle
they felt solving the day’s problems. An example of a typical problem used in both CGl
classrooms is presented here to show how multiple problems are generated from one root
problem. Following the root problem are four sets of “number choices” (as thetsand
students refer to them) to fill in the blanks, thus creating a total of four possiblemsybl
usually increasing in difficulty:

Angelais making _ cookies. Each cookie willget _ of a cup of frosting.

How many cups of frosting are needed for all the cookies?

(12, 1/3) (36, 1/3) (72, 1/3) (72, 2/3)

The students were familiar with this format and knew to place the number cimibeslanks,
one at a time. For instance, the first problem was “Angela is making 12 so@aeh cookie

will get 1/3 of a cup of frosting. How many cups of frosting are needed for albthées?” A
second problem was generated by replacing the “12” and the “1/3” with the next raioloey,
“36” and “1/3”, and so on. To allow for differentiated instruction, the teachers allowed the
students to begin with any set of number choices. However, the advanced studdgtbagam
with the first choice and worked through all number choices. When interviewed about their
perceived challenge level of the day’s problems, students gave a separgtioraach problem
generated by each number choice. The number of ratings varies per studembtsavesy
student was interviewed each day and not all students completed the same numbegragprobl

The averages of these ratings are reported in Table 3. The perceived chatieggerovided
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by the students slightly declined with increased grade level. In addition,rtevee challenge
ratings by the top tier advanced students were slightly lower than thgsratfered by the
second tier advanced students.

Table 3

Averages of Students’ “Perceived Challenge” Ratings of Individual Problems

Class Top Tier Advanced Second Tier Advanced

3% graders 1.6(n= 39 ratings, 3 students) 2.3 (n= 25 ratings, 2 students)
4" graders 1.5(n= 23 ratings, 1 student) 1.7 (n= 48 ratings, 3 students)
5 graders 1 (n=25ratings, 1 student) 1.5 (n= 70 ratings, 4 students)
4"/5™ graders 1.2(n=48 ratings, 2 students) 1.6 (=118 ratings, 7students)
Combined Results

3Y4"s" 1.4 (n= 87 ratings, 5 students) 1.7 (n=143 ratings, 9 students)

Note: The ratings were based on a Likert Scale of 1 to 5, with 1 “not challenging”, and/5 “ve
challenging”.

Challenge Suggested by Problem-Solving Times and Teachers’ Extensions

Noting how quickly the advanced students finished the assigned problems in Phase 2, the
problem-solving phase of the lesson, further suggests the degree of difficulty enedwamd
thus how challenged they were by the assigned problems. Observations focusednts whale
finished within 2 minutes and within 5 minutes (which does not include those who finished
within 2 minutes). The finish time was established primarily by observation, aitimg
students’ self-report (from the fourth/fifth grade class) and confirmationgithie post-lesson
interview while discussing their work. The average time allotted for the pneddéving phase
of the lesson was 22 minutes (more specifically, an average of 19 minutes for theatthérd gr
class and an average of 28 minutes for the fourth/fifth grade class). | also lookegalénce of
teachers’ extending the advanced students’ thinking during Phase 1 and 2, regéfulists
times, and refer to these as teacher extensions. These findings aedrgpodables 4 and 5,

displaying for each lesson which students finished in either 2 or 5 minutes and wheibtea or
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teacher extension was offered. The types and frequency of extensionedrategn Table 6.

The within 2 minute and within 5 minute finish times represent the time in which tla satiof
problems was completed and does not include time spent on extensions prompted by the teache
Table 4

Top Tier Advanced Students who finished assigned Problems within 2 or 5 minutes, along with
when Teachers provided Extensions

Lesson # L1 L2 L3 L4 L5 L6 L7 L8 L9 L10
Students

3% graders

Dominic e (2)e (2) (2)e 2e (5 e (5)e e (2)e
Jasmin e e 5)e (He e e e (5)e e (5)e
Freddy e (5) (2) (Be e e (5)e @ (2)e
Time allotted 23 22 11 15 23 20 30 5 25 15
4" graders

Andre (2)e (5)e e e

5" graders

Geraldo Qe (2)e Qe ((2e (e (2)e (2)e

Time allotted 20 25 21 35 29 26 38

Note: (2) denotes student finished within 2 minutes, (5) denotes student finished within 5
minutes, but not within 2 minutes, “e” denotes that teacher provided some kind of@xtensi
the student during Phase 1 or Phase 2, @ denotes student was absent at the time of data
collection.

For reporting percentages based on Table 4 and 5 data, each student’s experience of an
individual lesson is considered an “instance,” and the percentage of times tinéssfindehed
early are out of the total number of instances. The term “finished earlyisnieat students
finished the assigned problems within 2 minutes or 5 minutes while the rest cstevorked
on the same problems for up to the entire time allotted to problem solving, which wasageave
22 minutes. The three top tier students in fAgi&de class finished early 55% of the time.
The teacher then provided some type of extension to the students in 69% of thesesinstance
the other class, the top tielf dgrader finished early 29% of the time (or 2 of the 7 instances),

with extensions provided both times. The top tfegeader finished early in 100% of the
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instances with extensions provided 100% of the time. Of the “finished early” inst&08é of
them involved students finishing the problem within 2 minutes.

Combining data for students of all grades, the top tier advanced students finishéu earl
58% of the 43 instances. The teachers provided extensions in 84% of these instances.
Disregarding whether or not a student finished early, the teachers providediens to top tier
students 58% of the time. Considering the amount of time allotted to the problem-solving phase
of each lesson, the top tier students who finished early used 17% of the time allotteglegecom
their problems. Separating these data by class!tigea8le top tier students used 27% of the
time and the W5™ grader top tier students used only 9% of the time.

Table 5 illustrates the frequency of the second tier advanced students finishyng earl
Fifth graders finished early more frequently thdhgBaders or % graders. For all grades
combined, second tier advanced students finished early in 18% of the 71 instanceschiEne tea
provided extensions to the students who finished early in 46% of these instances. One second
tier student commented, “If | finish early and tell her they were easgigbg me another
problem that’s harder so | can get more advanced.” Disregarding wbetinara student
finished early, the teacher provided extensions to the second tier advanced stustE¥iof the
instances. Taking into account the time allotted to the problem-solving phase adssact) in
the 13 out of 71 instances in which the second tier advanced students finished early, they used

16% of the allotted time to complete the problems.
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Table 5

Second Tier Advanced Students who finished assigned Problems within 2 or 5 minutes, along
with when Teachers provided Extensions

Lesson # L1 L2 L3 L4 L5 L6 L7 L8 L9 L10
Students

3% graders

Maya e e (5) e e e e e e e
Julia @ e

Time allotted 23 22 11 15 23 20 30 5 25 15
4" graders

Natalie e e 5) 5)

Alana e e e

Anita e e e e

Katerina e e e

5" graders

Sylvia (5)e (5)e e (2) (2)e (5)e

Allen e e e @ @

Kara e e e (5)

Roberto e (5) (5) @ (2)e (5)e @

Time allotted 20 25 21 35 29 26 38

Note: (2) denotes student finished within 2 minutes, (5) denotes student finished within 5
minutes, but not within 2 minutes, “e” denotes that teacher provided some kind of extension t
the student during Phase 1 or Phase 2, @ denotes student was absent.
During interviews, the teachers were asked what they typically do torfaithkkenge a
student who has finished the problems early. Ms. K responded,
| question students’ strategies and try to push their thinking beyond what they have
shown in their solutions. Sometimes | provide a different number choice to lsew if t
are making a different type of mathematical connection. | also ask them t® thefat
thinking with a number sentence.
When introducing the problems for the day, she occasionally reminded students to exeatdiff
strategy for solving the problems if they finish early, but would make it ttheamew strategy
should be representative of the student’s ability (i.e. if the student does not needltthenode

problem by drawing a picture to understand it, the time should not be spent on direct modeling).

Ms. B’s interview responses were similar but she elaborated on how she pusteddots’
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understanding of properties of operations as they notate their thinking by watitimger
sentences. When | asked Dominic what Ms. B does to challenge his thinking, he résponde
“She might have done higher numbers for me, try harder problems, make me notate it down, not
really, but it was a choice that would be harder to notate it down.” At one observatioredhe ne
for extension came right as Ms. B had finished posing the problem when two of thex top ti
students quietly said that they already knew the answer. Without mésbegf, the teacher said
“then I'd like you to work on the notation”.

Another consideration that may help characterize the difficulty of the preldssigned
is whether or not the students got the correct answer and if they finished tbesentf number
choices. The top tier advanced students correctly completed 95% of the problersscdiite
tier advanced correctly completed 81% of the problems. These percentagealowdated out
of all the problems assigned and any problem that a student got wrong or did not finish was
counted incorrect.

Types of Extension Strategies used by Teachers to Challenge Studeritisinking
during Problem-Solving

The teachers regularly used strategies to extend the thinking of theirtstoegond the
scope of producing a correct solution to a specific problem. Tables 4 and 5 detadleseaitved
instances of the teachers’ providing extensions for the advanced students during Phasg 2. M
of these extensions were provided to other students, too, since the practice of exending
student’s thinking is embedded in the CGI philosophy, but only extensions for the advanced
participants were tracked for this study.

The types and examples of teacher extension strategies presente@tlatd 7 came
from 10 classroom observations per teacher, recordings of one-on-one interaceachef &nd

student as well as teacher facilitation of small group challengessanafystudents’ work, and
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teacher interviews. These extensions ranged from simple verbal prompts to mplexcom
strategies, such as providing a special challenge question intended fol greuopabf advanced
students. However, 98% of the extensions were based on the students’ working on the original
root problem assigned to the whole class. Since the idea of “extending one’s thimilgs
reaching higher levels of cognitive thought, the extension strategies in7Tal#ecategorized

based on Bloom’s Revised Taxonomy.

Table 6

Frequency and Examples of Observed Teacher Extensions provided to Advanced Students in
Phases 1 or 2

Extensions relating to Problems Assigned " gde 5" grade

Teacher assigns...

Problems with differentiated number choices All lessons Abbiess
for students to choose at which level to begin

(this extension was available to the entire class

but only the advanced students typically solved

using the harder number choices)

A harder number choice to begin with 5 -

A new number choice after student finishes all

number choices from original problem, sometimes 10 12
designed to elicit relational thinking based

on the solutions to the previous number choices

Advanced students to work together on the problem 4 -

A challenge investigation, after students finish
original problem, designed for a group to discuss 1 2
and formulate a generalization

A challenge investigation, after student finishes
original problem, designed for the individual to - 1
work on

Note: The frequency count is the number of observed instances of each extension throughout the
10 observations per classroom.
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Grouping Practices

Two of these extension strategies involved the teacher forming a group of advanced
students to work together on problems, rather than working individually or with other statlent
their assigned tables. Their regular table seating had a mix of studeieisalithough there
was always at least one good math student present in addition to the advanced student at the
table. One grouping practice involved the selection of about four of the advanced gtudents
work together on the daily problem, or a more challenging, yet related, problesse Students
worked at a whiteboard easel in the corner of the room as well as on their indilighedrcs.

The teacher was observed initiating their discussion, then circulatingsthef the classroom
helping other students, periodically returning to facilitate the advanced gdisgission using
many of the higher level thinking prompts mentioned in Table 7.

Another grouping practice involved selecting the first few students who cieah e
problems of the day and giving them a challenge question to investigate based @ncain ide
guestion that had sprung from a previous day’s discussion. Students worked in their group on
guestions that were designed to elicit a generalization while the rest tdthevas at their seats

finishing the daily problems. One group challenge investigation involved students making a

generalization about the size of the product when multiplying by fractioaesrehole
numbers. Another group investigation related dividing by a fraction to multiplcdtie to
increasing the number of groups. In all small group discussions, the studerdostayged on
the problems for the duration of the time allotted to Phase 2 problem solving.

| questioned students about their attitudes with respect to working in small gritlups w
other advanced math students. All advanced students expressed positive attitakes tow
engaging in math problem solving with peers whose mathematical abilitymiées $o theirs.

For instance, Freddy said, “If there are harder problems, we can work tddettvéhen me and
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Jasmin and Dominic did (referring to that day’s problem they had worked on atéhéengthe

corner of the classroom). We can learn a lot from each other.” Dominic addef€llglad to

have other students that are smart with me [sic] and they’d encourage med’ cAfdided,

“Sometimes when I'm by myself | feel like | can’t do it but when I'mihwothers and see that

they are doing it, I tell myself I can, too.” Sylvia said,
If | was at the same table as those people, it would work out much better. | coutd talk t
my group and they would actually understand what | was saying. I'll je]tarrent]
group what | was thinking, and they say, ‘What? What do you mean by that? Show me,’
and I'm thinking, ‘Oh, great.’

And finally, Andre liked the idea of working together with other advanced math ssuakscduse

“the best students won't copy off you because they are already good at math.”

Table 7

Frequency and Examples of Observed Teacher Extensions provided to Advanced Students in
Phases 1 or 2, categorized within Bloom’s Revised Taxonomy

Extensions relating to Interaction of Teacher with Students during Prololemds

3% grade 15" grade Example

Applying:

Teacher encourages student

to use relationships between

number choices to solve the problems
(relational thinking).

Problem: 8 people each eating %
pizza, with the second number choige
(16, %4). “You found that 8 people
will eat a total of 6 pizzas. If we

change the problem to 16 people, dqg
you need to start from scratch to solye
it, or can you use something you
found out in your first problem?”

7 9

(continued)
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Table 7 (continued)

Frequency and Examples of Observed Teacher Extensions provided to Advanced Students in
Phases 1 or 2, categorized within Bloom’s Revised Taxonomy

Extensions relating to Interaction of Teacher with Students during Problemdsol

3% grade 15" grade Example

Analyzing:

Teacher asks students to compare. 12 6 | Froma small group challenge that
sprung from a class problem involving
how many portions in 12 cups:
“Geraldo wrote 12 % = 24 and Kara
has 12 x 2 =24. Are these the sanr

Teacher asks student to look 4 5 “How could dividing by different A

for mistake or flaw in thinking, numblers give you the same answer~

or utilizes a counterexample to clarify. 12+-=12+27"
“What would happen if you divided

Teacher poses a ‘what if’ situation. 2 3 by ¥a instead of ¥2 ?”

Teacher asks student if they agree 3 3 | “Maya said that you can split it into

or disagree with a statement. thirds. Do you agree?”

Evaluating: “How did you know that 3/8 was half

3,?

Teacher asks student to 19 11 of %7

justify their reasoning.

Teacher asks student if 5 2 | Inresponse to Maya’s conjecture that

something is always true splitting a fraction in half gives you an

or to prove a conjecture even number denominator, “Will that

always be true? Is there a way you
can prove that?”

(continued)
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Frequency and Examples of Observed Teacher Extensions provided to Advanced Students in
Phases 1 or 2, categorized within Bloom’s Revised Taxonomy

Extensions relating to Interaction of Teacher with Students during Problemdsol

3% grade

15" grade

Example

Creating: Teacher facilitates theeationof new ideas.

Teacher encourages students to try
another strategy for solving the problem
different from their first solution strategy.

Teacher encourages student to
connect their thinking to 8 4
underlying properties of arithmetic.

Teacher encourages student to
make connections, see
relationships, and express them
using mathematical notation.

29

Teacher encourages student 3
to make conjectures.

Teacher encourages student 5
to formulate a generalization.

28

This was an expectation of all students
that both teachers had established af
the beginning of the school year, and
students were occasionally reminded.

Teacher helped student see that when
she multiplied 2 x 1 ¥, she was using
the distributive property as her work
indicated she had carried out the
operations in this way (2 x 1) + (2 x
Yo)=2x(1+%).

“I want to challenge you to write a
number sentence that explains the
relationship that you found.”

“What do you think you need to do
whenever you add fractions with
unlike denominators?”

F7=

“You've got 12+ % =12x2, 12 % =
12x3, 12- % = 12x4. Will this always

work? Tell me, is there a pattern
here?

Note: These frequencies are based on what was observed during class, or in reviewing
recordings and student work. It is unlikely that all evidences of extensiorcamreed since |
was concentrating on multiple facets. Thus, it is likely that the actupidneies are higher than

reported here.

Evidence of Higher Level Strategies in Students’ Problem-Solving

Tables 6 and 7 illustrated the efforts of the teachers to encourage high#rifdueg,

such as relational thinking, during the problem-solving phase of the lesson. To cbafirm t
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students were engaging in relational thinking and other higher level preblemg strategies, |
examined the students’ work. This allowed me to investigate the issue ohgkdllem another
direction by seeing if the teachers’ extension efforts were reflantthe students’ problem-
solving strategies. | looked at their strategies in terms of the operat&fimation of challenge
that included the key idea of thinking in terms of relationships, the more specifidefiition
of relational thinking that refers to relating numerical expressions, andahlem-solving
strategy levels from the CGl literature. | noted when students expresteshmatcal
relationships using equations (number sentences as their teachers would say).

Every solution of every advanced student indicated the use of relational thinking, from
the simple statement 1%+=§ to recognition of the more complex situation thét>18 is

equivalent to 3 x 4. The continuum of problem solving strategy levels described in the CGI
literature was evident in both classrooms, with the less advanced studentdypusiagi direct
modeling and the more advanced students primarily expressing relationships wigr num
sentences. The advanced students often had a flexible use of strategiksnigriacluding use
of direct modeling for a portion of the problem or repeated addition, combining and grouping of
numbers, and number facts.

The following are examples of advanced students’ use of relational thinkingndsal
problem of “4 kids sharing 6 cakes”, Dominic,"agader, knew that each kid would get at least

1 cake, and that there would be 2 cakes left to be shared 4 ways. Recognizing that 2 cakes
divided 4 ways could be represented%asDominic was using multiplicative coordination, the
highest strategy level for solving equal sharing problems (Empson & Levi, 20&Teldted

one expression to another by writing the total of 6 cakes as 4+1+1 % 4;2;)& (% + %),

concluding that each kid would get ﬁ‘reakes.
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In another equal sharing problem of 8 kids sharing 14 candy bars, a group of advanced
students used direct modeling to help them divide up the remaining 6 candy barscbricd ea
receives one bar. Four of the bars were split into 8 halves, and 2 of them into 8 fourths. With
guidance from the teacher, they expressed the sharing of these 14 candy bar8 as4l4 2 =
(8x1) + (8 x %2) + (8 x V4).

In a multiple groups problem, Dominic used the highest level strategy again, a

multiplicative strategy, (Empson & Levi, 2011) as he solved the following :

Six kids, each with é cookies, how many total cookies?

He wrote 6 x % then solved it by breaking it down in this way:
6x2=12

12+4=16
Jasmin, a third grader, also used the following multiplicative strategy, botng@sed the 2/3

into 1/3's first:

6x2=12
3xi=1

3
6 x==2

3
3xi=1

3
12 +4=16

Jasmin initially used a multiplicative strategy in solving the sameprotiem with the number
choice of 2%, by writing:
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6x2

6x2=12

6 X

Whereas Julia had expressed éas 6 groups ofz—, Jasmin’s relational thinking included a less

obvious interpretation of the expression which led her to write the following relaifpsns

Table 8 shows how the types of strategies of 8™ 4grade advanced students primarily
fall within the higher level strategies for a multiple groups problem compa@tiér students in
the class. The students marked as “regular” students are the partioiphetstudy who were
not advanced participants. These students had an ability range from low abilifly tvbrage
ability. The strategies of the top tier advancBdyrader and top tier advancell grader are in
the two highest level categories.

Table 8

Frequency of Strategies for a Multiple Group Problem as defined by Empson and Levi (2011)
with two additional intersecting Categories

Problem: 12 cookies each get 1/3 cup of frosting. How many total cups of frosting is needed?
(12) (36,7) (72,7) (72,)

Strategy Frequency Example
Represents Each Group The student represented each fractional gro{ip,
. . 1 . .
Direct Modeling or 3 regular™graders either drawing twelv? cups of frosting (direct
1 advanced”klgrader modeling), or writin% repeatedly twelve
3 regular 8 graders times (repeated addition).

Repeated Addition

(continued)
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Table 8 (continued)

Frequency of Strategies for a Multiple Group Problem as defined by Empson and Levi (2011)
with two additional intersecting Categories

Problem: 12 cookies each get 1/3 cup of frosting. How many total cups of frostiregléedfie
(12,9) (36,7) (72,7) (72.5)

Strategy Frequency Example

(Intersecting Category):

Repeated Addition & 1 regulal grader For the first number choice (1513’ the

Grouping/Combining 3 advancefigraders student represented each group using

Strategies 2 regulal" graders repeated addition to get 4 cups as an answer,
3 advancedsgraders then used more efficient grouping/combining

Flexible Use of Strategies strategies for solving with subsequent

number choices, based on their knowledge of
their first answer, i.e. 4+4+4 cups to frost 3
cookies.

Grouping/Combining 1 regulal’ §rader . .
Strategies Instead of representing each fractional grotip,

the student combines fractional groups in gn
efficient way and counts these groups.
Ingrid knew that 3 thirds make 1 whole. She
set up a table counting whole cups of frosting
instead of fractional cup, listing cookies in
multiples of 3 up to 72 cookies. The teachdr
extended her thinking by guiding her to
change her counting strategy for subsequent
number choices. The student did not see that
36 X 2 =72, so continued to count in
multiples of 12.
Cookies | Cups of Frosting

3

6

9

12

24

36

48. . .

O|IN|O[AWINEF

[ N

(continued)
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Frequency of Strategies for a Multiple Group Problem as defined by Empson and Levi (2011)

with two additional intersecting Categories

73

Problem: 12 cookies each get 1/3 cup of frosting. How many total cups of frosting is needed?

(12,9) (36,) (72,7) (72.9)

Strategy

Frequency

Example

(Intersecting Category):

Grouping/Combining
Strategies &
Multiplicative
Strategies

Flexible Use of Strategies
Relational Thinking

1 advancet grader

(top tier advanced)

1 advanced™grader

Andre used a multiplicative strategy to relate the
fractional group in the first number choice to a
total (12 x 1/3 = 4 cups), then used efficient
grouping/combining strategies to solve the other
number choices:

12 + 12 = 24 cookies need 8 cups
24 + 12 = 36 cookies need 12 cups
Using a multiplicative strategy again to relate the

2 number choices (3§) and (72%) by notating

36x2=72, he then state that

12 cups + 12 cups = 24 cups (to frost the 72
cookies)

24x2 = 48 cups (for 2/3 cup frostir

Multiplicative
Strategies

Relational Thinking

1 advanced™grader

(top tier advanced

Geraldo related the fractional grouping to a tofal
by multiplicative reasoning for all number
choices:

(12%) 12 +3 =4 cups
(36,) 4x3=12cups
(72,3) 12x2 =24 cups
(72,%) 24x 2 =48 cups

Note:n=20 students in Ms. K's"45™ grade class

Two top tier students finished the cookies and frosting problems within 2 minutes. One

second tier student finished this problem within 5 minutes. All three of these studshts us

multiplicative strategies and relational thinking as part of their solutions
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Evidence of Higher Level Thinking during Phase 3 Strategy Discussion

The final phase of the lesson, the Phase 3 strategy sharing and classodisbagsin
with the teachers purposefully selecting three or four students’ solutitegstsato be shared
that would serve as a springboard to discuss mathematical relationships. Mgd&dsswrote
their solutions on the board before discussion began, then explained their strategiasketien
Ms. A used a document camera to project the selected students’ papers ome aasking
other students to explain how the student solved the problem and then asking foatiterific
from the selected student when necessary. Ms. K commented, “When we shaesssl @ah
call on the advanced students when higher level concepts are brought up in discussaads
guestion them on what they know to push them to the next level of thinking.” Both teachers
spent considerable time asking students to compare strategies, whichatagst for much
mathematical discussion. The length of Phase 3 for the 10 third grade lessons averaged 34
minutes per discussion. The length of Phase 3 for the seven fourth/fifth grade fassaged
50 minutes per class, with several discussions continuing over the course of tvas tag/s
discussion often evolved beyond the discussion of the original strategies. Rguissvindeo
recordings of the discussions, | coded for frequency of types of higherhauehy and
categorized each within Bloom’s Revised Taxonomy. Incidences of student ugkesflavel

thinking and teachers encouraging students to use such thinking are presented in Table 9.
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Frequency and Examples of Higher Level Thinking (student or teacher-initiated) in hase
Strategy Sharing and Discussion, categorized within Bloom’s Revised Taxonomy

Category of "Bgrade  #/5™ grade Example

Higher Level Thinking

Analyzing:

Comparing 21

Looking for mistakes

or flaw in reasoning, or 15
utilizing a counterexample

to clarify

Posing a “what if” situation. 5

(continued)

15

13

3 grade Example:

Ms. B: “You're saying that these problems are
similar (3 kids sharing 2 cakes and 6 kids sharin
cakes). They are different problems, yet why ar
we getting the same answer?”

4"/5" grade Example:

After confusion whether 6 ;—:and% X 6 meant the

same thing, discussion ensued that resulted in
students drawing pictures to model both
expressions, as well as the related expressions

% ,6x2,and 6 = 2, which then led to their
misunderstandinas beina clarifie

D

6 X

3" grade Example:
Ms. B: “You said earlier tha% = 3+2 is false.

What made you change your mind?” Student
remembered the answer on the board to the “2 |
share 3 cakes” problem was 3+2=1% and
reasoned that 1 1/2-2=+% :% therefore% =3+2

must be a true statement.

4"/5" grade Example:

After Andre explained how a grouping of “4 kids
will eat 3 whole pizzas” helped him quickly solvg
“16 kids eating ¥4 pizza each”, Ms. K posed a
counterexample of grouping 3 kids to make the

point that not any humber choice would work out

as well as Andre’grouping of 4 kids

ids

3 grade Example:
Ms. B: “What if we changed the probleml—llt&% :

can we use the same idea?” (doubling a
denominator to get the common unit)

4"/5" grade Example:

Ms. K: “What if you had decided to split it into

eighths. Would it have been easier or harder?”
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Table 9 (continued)

Frequency and Examples of Higher Level Thinking (student or teacher-initiated) in Phase 3,
Strategy Sharing and Discussion, categorized within Bloom’s Revised Taxonomy

Category of "Bgrade H/5™ grade Example
Higher Level Thinking

(continued, Analyzing)

3rd grade Example:

Teacher asks students 14 15 Ms. B: “He says that this 12 x ¥z in

i .they agree or disagree his number sentence represents 12

with a statement. groups of %. Do you agree or
disagree?

4"/5" grade Example:

Ms. K: “Will you say that again so
we can make a good argument for or
against it?”

Evaluating: ” _
3" grade Example:

Ms. B: “What is one half of a third?

Justifying reasoning. 34 25 !
Dominic: “ g”

Ms. B: Why do you say%” ?
Dominic: “Because it takes two
sixths to make one third.”

4"/5" grade Example:

Ms. K: “How can we verify that 12 X

é = 4 expresses the relationship in

this problem? Where are the 1§Z,
and 4 in Eva’s picture?”

3 grade Example:

Ms. B: “You think we can break
down thirds into sixths? How can we
prove that?”

4"/5" grade Example:
A student had conjectured that “when
you multiply it's more and when you
divide it's less.” Ms. K responded,
“Is that always true?” Geraldo
offered the counterexample of 12 x |2
= 6 to disprove the conjecture.

Teacher asks students to 10 7
consider if something is

“always true” or how they

could prove a conjecture.

(continued)
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Table 9 (continued)

Frequency and Examples of Higher Level Thinking (student or teacher-initiated) in Phase 3,
Strategy Sharing and Discussion, categorized within Bloom’s Revised Taxonomy

Category of "Bgrade W5 grade Example
Higher Level Thinking

Creating: Teacher facilitates theeation 39 grade Example:Jasmin’s solution to “6

of new ideas. kids, 2% brownies each” included:
Connecting thought process 9 5 3 X % =1,6 x% =1,and 3 x% =1.
in strategies to the underlying Ms. B guided the class in seeing how her|
properties of arithmetic. solution utilizes the distributive property:

6x2=(6x3)+(6x3)=(3x3)+
1 1

(3X§)+(6X§)

4"/5" grade Example:Featuring two

strategies for solving a problem, Ms. K
guided the class to representing one

strategy with the number sentence, 1? X
= 4, and the other strategy with the numbjer
sentence 4 x (3 %) = 4, then to seeing

how the associative property verifies thei
equivalence.

Examples of making connections:

3" grade: For a “14 sharing 8” problem, the
teacher guided students in making connectigns
between the direct modeling solution and
solution without pictures, only number
sentences. The students matched the number
sentences8x1=8,8x%=4,and 8 x ¥ =2,
with the pictures of 8 wholes, 8 groups of 1/2,
and 8 groups of Ya.

4"/5™ grade: “We are trying to make a
connection between Andre’s and Kara'’s
strategies by finding Andre’s pattern in Kara's
strategy.

Making connections,

seeing relationships, 58 4
and expressinghem

using mathematical notation.

Examples of seeing relationships:

3% grade: Ms. B: “What is the relationship between ¥4 and ¥ ?”

Dominic: “You need two ¥4's to make a half.”

Ms. B: “So if | need two ¥'s to make a half, then % is wdfdt: ? ... Let'slook at2 and 4. 2is
whatof 4?

Freddie: Half.

4"/5" grade: Students noticed that 1/3 x 12 = 4 and 4 + 12 = 1/3 have an inverse relatid@ship i
“fact families” of whole nurbers operation

(continued)
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Table 9 (continued)

Frequency and Examples of Higher Level Thinking (student or teacher-initiated) in Phase 3,
Strategy Sharing and Discussion, categorized within Bloom’s Revised Taxonomy

Category of "Bgrade H/5™ grade Example
Higher Level Thinking

(continued, Creating: Teacher facilitates ¢heationof new ideas.)

Examples of creating mathematical expressions to notate thinking:
3 grade: This notation represents a connection between the thinking behind two students’

strategies and verifies equivalent forms of the same answer:

3 3 6 4 2
_+_=_:Z+Z=1+%:11/2'

4 4 4
4th/5" grade: This notation represents a connection between the thinking behindtineats’
strategies: 2x1%=1%+1%=(Y%+%)+(1+1).

, _ 3 grade Example:
Making conjectures 10 11 | ms. B: “Think of what kind of unit

helped us adc% +% . Can you make
a conjecture of what kind of units
would help us adcizi +§ ?

4" grade Example:

A student conjectured, “Taking half
of an odd whole number gives you a
whole number and a hal

Formulating Generalizations 10 5| 39 grade Example:
In response to a student who said that
% is the same a% because 3 is half of

6, Ms. B asks the class, “Is it always
true that the top of the fraction is half

of the bottom when it's equal t%).

4"/5" grade Example:

The class had verified that dividing b
1 is the same as multiplying by 2,
then explored other fractions (dividin
by 1/3 is the same as multiplying by
dividing by ¥ is the same as
multiplying by 4) and made the
generalization that dividing by a unit
fraction has the same result as
multiplying by the number of parts th
fraction is split into.

<

QT

14




79

Students’ Perceptions of the Challenge Level of the Overall Lesson
Having explored evidence of higher level thinking in all phases of the CGlI ledsens, t
next report details the students’ attitude regarding the entire lesson. dalthimterview,
students’ were asked to rate how challenged they felt considering thdedsgs as a whole,
including the discussion and strategy sharing phase (Table 10) rather thha gsdlienge level
of the problem alone (reported again for comparison in Table 11).
Table 10

Averages of Students’ “Perceived Challenge” Ratings of the entire Lesson

Students Top Tier Advanced Second Tier Advanced

3 graders 2.1(n= 23 ratings, 3 students) 3.8 (n= 15 ratings, 2 students)
4" graders 2.4(n= 7 ratings, 1 student) 2.8 (n= 15 ratings, 3 students)
5" graders 1.7(n= 7 ratings, 1 student) 2.9 (n= 21 ratings, 4 students)
4"/5™ graders 2 (n=14 ratings, 2 students) 2.8 (n= 36 ratings, 7students)

Combined Results  2.1(n= 37 ratings, 5 students) 3.1 (n= 51 ratings, 9 students)
3I’d/4th/5th

Note: The ratings were based on a Likert Scale of 1 to 5, with 1 “not challenging”,“aady5
challenging”.

Table 11

Comparison of Students’ “Perceived Challenge” Ratings of Individual Problems to their
“Perceived Challenge” Ratings of the Entire Lesson

Students Top Tier Advanced Second Tier Advanced
Individual Problem/Entire Lesson  Individual Problem/Entire Lesson

3% graders 1.6 /2.1(.5 increase) 2.3 /3.8 (1.5increase)

4" graders 1.5/ 2.4.9 increase) 1.7/ 2.8 (1.1 increase)

5" graders 1.0/ 1.7.7 increase) 1.5/2.9 (1.4 increase)

4"/5™ graders 1.2/ 2 (.8increase) 1.6/ 2.8 (1.2 increase)
Combined Results 1.4 /2.1.7 increase) 1.7 /3.1 (1.4 increase)
gd/4thysth

Note: The ratings were based on a Likert Scale of 1 to 5, with 1 “not challenging”, aedy5 “
challenging”.

The perceived challenge levels increased when the students considetagdshe ¢

discussion as part of the criteria for rating, compared to the ratings péitteived challenge
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level of the assigned problems alone (Tables 3 and 11). On average, withouicsepgrtatr
nor class, this was a 1 point increase, on a 5 point scale. The perceived chelelngitihe
whole lesson was 1 point lower for the top tier students than the second tier studenighéyd sl
lower for fifth graders than third graders.
Table 12 shows evidence for challenge based on Barbeau and Taylor’s (2005)idescript
of mathematical challenge:
A challenge has to be calibrated so that the audience is initially puzziedubhas the
resources to see it through. The analysis of a challenging situation may
not necessarily be difficult, but it must be interesting and engaging. (p. 126)
An example of how students were interested and engaged comes from the fotjootieg At
the end of a lesson in which students were enthusiastically arguing ifia ceripecture was
true or not, Ms. K saidwe’re going to have to stop here for today to go to specials”
immediately followed by a disappointed and somewhat-in-unison “ohhhhh!” fromuithenss.

Table 12

Averages of Students’ Ratings in Response to the Post-lesson Question: “On a scale of 1 to 5,
where 5 is the most, how much did you enjoy today’s lesson?”

Class Top Tier Advanced Second Tier Advanced

3 graders 4.96 (n=23ratings, 3students) 4.73 (n= 15 ratings, 2 students)
4" graders 5.00 (n= 7 ratings, 1 student) 5.00 (n= 15 ratings, 3 students)
5" graders 5.00 (n= 7 ratings, 1 student) 4.86 (n= 21 ratings, 4 students)
4"/5™ graders 5.00 (n=14 ratings, 2 students)  4.92 (n= 36 ratings, 7students)

Combined Results  4.97 (n= 37 ratings, 5 students)  4.86 (n= 51 ratings, 9 students)
Note: The ratings were based on a Likert Scale of 1 to 5, with 1 “I did not enjoy the leasdn”,
5 “l enjoyed the lesson very much”.

Details of how the students enjoyed the lesson came from the post-lesson interview
guestion, “what was your favorite part of today’s lesson?” Some student respurisde:

* The discussion

* How we figured out that dividing by 3 is same as taking 1/3 of something
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* How both mine and Jasmin’s strategies were very efficient

» Sharing strategies and learning from others’ mistakes

» | liked the math because it was tricky. | got a chance to think about it.

* Working in a small group

* My extra problem (from the top tier student who typically reported not beinfgogatl)
» | liked solving the problem and giving more details

* My favorite part was when | couldn’t figure out . . . because it made me figure out the
relationship between...

Evidence of Challenge by Exposure to New ldeas

The final criterion in the evaluation of the extent of challenge is that of exposoesv
ideas as students move along a path toward expertise. | begin by suggestimgabaainced
students’ interest in other students’ strategies indicates an interesmim¢enew ideas.

Table 13 suggests some evidence that advanced students found other studentssstrategi
particularly interesting during the discussion phase. From both observing thesgsspageng
attention during the discussion phase of the lesson and from listening to studersdexig
the daily interviews why they liked certain strategies, | got aestvat they were interested in
other ways to solve problems beyond their own strategies. Alana commentedsédikg
other strategies because | can see other people how they got theiikeleasber sentences.”
The interest in others’ strategies was stronger among the third griaol\ees;er, the third grade
post-lesson interviews were conducted in the classroom in which the students daedd siil
the shared strategies on the board. When asked this question, the students typiedItyp tine
board and looked at the strategies before answering. The fourth/fifthigrakews were
conducted outside the classroom. Also, the fourth/fifth grade teacher sharedtdtgestrone at

a time on the document camera so they were visible for a shorter amount of time.
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Table 13

Percentage of Students’ Interview Responses indicating they particularly liked ra®tttent’s
Strategy shared during Discussion Time

Class Top Tier Advanced Second Tier Advanced Both Tiers
3% graders 83%(n=23) 80% (n=15) 82%(n=38)
4"/5™ graders 36%(n=14) 50% (n=36) 46%n=50)
Combined Results  54%n=37) 76% (n=51) 61% (n=88)
3rd/4th/5th

Note:n = # of interview responses
The data in Table 14 came from two post-lesson interview questions. One question asked
if students learned a new mathematical idea during the lesson and the ottiéf thelketried a
new strategy. Noticing that students rarely reported trying a newgratcollapsed the results
of these two questions into one category, deciding that trying a new gtiitgagder the
category of learning a new mathematical idea. The percentage ofatbematical ideas was
less for the top tier advanced students than the second tier advanced students @mithdefH
graders compared to the third graders. Table 15 reports during which phase the sanoskea
Table 14

Percentage of Student Interview Responses indicating they learned a new Mathematical Idea

Class Top Tier Advanced Second Tier Advanced
3 graders 57%n=23) 80% (n=15)

4" graders 57%n=7) 73% (n=15)

5" graders 29%(n=7) 67% (n=21)

4"/5™ graders 43%(n=14) 69% (n=36)
Combined Results 519%n=37) 76% (n=51)

3rd/4th/5th

Note:n = # of interview responses
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Table 15

Percentage of (self-reported) New Ideas learned during the Problem-Solving Phake and
Discussion Phases

Class Phase 2 Phase 3
Problem-Solving Discussion/Strategy-Sharing
3% graders 28% 72%
4"/5™ graders 28% 72%
Combined Results 28% 72%
3rd/4th/51h

Note: Percentage is out of 88 interview responses
Finally, to provide further evidence for the extent to which these studentsxpesed
to new mathematical ideas, Tables 16 and 17 identify the topics discussed irsbhess that
were above grade level standards based on the K-8 Mathematics Curricalnewerk
(Arkansas Department of Education, 2004). Even though Arkansas is transitioning to Common
Core Mathematics Standards, the 2011 Arkansas benchmark test was based otinilpstekes
framework.
Table 16

Mathematics Topics explored in the 3rd Grade Class that were Above
3" Grade Level Standards

4" Grade
Standard

B Grade
Standard

8 Grade
Standard

Using a fraction to represent

division of whole numbers

Associative property

Fraction addition with
like denominators

Fraction addition with
unlike denominators

Multiplication of fractions
Simplifying fractions

Converting mixed numbers
to improper fractions

Distributive property

Mixed number
addition

Multiplication diale
number by mixed number

Division by a fraction or
mixed number

Proportional reasoning
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Table 17

Mathematics Topics explored in th&8th Grade Class that were Above Grade Level for 4
Graders (both columns) or above level f8tdraders (second column)

5" Grade B Grade

Standard Standard
Fraction addition with like denominators Mixed number addition
Fraction addition with unlike denominators Multiplication of whole

number by mixed number
Multiplication of fractions

Simplifying fractions Division by a fraction or
mixed number
Converting mixed numbers to improper fractions

Distributive property Proportional reasoning

| saw evidence of exposure to above grade keypgts in each of the ten third grade
lessons. In the fourth/fifth grade class, the fourth graders were exposed t@edute/&evel
topics (fifth grade or sixth grade) in all seven of the lessons. In that sassettle fifth graders
were exposed to above grade level topics (sixth grade) five out of the sesmrsleB many
cases, these topics were not necessarily an intended goal of the lesson.lliMedia how the
discussion often evolved into talking about advanced topics when she said to her students,
“Sometimes it depends on what you guys say and | think, oooohhh, we can go there! So

sometimes what you guys say and discover changes my direction.”
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CHAPTER 5: DISCUSSION

This study sought to answer the central question “to what extent and in what vays ar
mathematically gifted students challenged in a CGI classroom?¥elaped the following
operational definition and used it as a basis for answering this question:

A student is challenged mathematically when he or she engages in exploring,

discovering, or utilizing mathematical relationships, is exposed to new mditema

ideas, and experiences Ascending Intellectual Demand on a path towardsexaee¢ti

mathematical thinker.
| begin with an analysis of the findings in relation to each of the three compai¢hée
operational definition of challenge: 1) mathematical relationships, 2) Asgemtellectual
Demand, and 3) exposure to new ideas. This is followed by a discussion of the sardgths
weaknesses of the CGI classroom experience for mathematicsdly gitidents. The CGI/AID
Framework will then be examined to provide recommendations for what teachels tafill in
the gaps to further challenge mathematically gifted students. Finalitgtlons of this study
and implications for future research will be discussed.

In this concluding chapter, | speak in general of the mathematically advandedts,
referring to both the top tier advanced and the second tier advanced, because tiaeteends
similar for both. However, the top tier advanced students experienced ldsagiéhan the
second tier advanced students, further suggesting that having usell free@tile cutoff score
on the Test of Mathematical Abilities for Gifted Students identified a giwaipctn reasonably
be called “mathematically gifted.” Although both groups were cleaiaaced math students
and benefited from the rich mathematical discourse in their CGI classro@®snis that any

deficiency in challenge is more an issue for the top tier students and thatdhe ser
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advanced students are relatively well-situated. Thus, the conclusions afidyipsttain
particularly to the top tier advanced students, the mathematically gifigehss. Similarly,
perceived challenge as expressed by both groups of students declined as tlevegisade |

increased. The following discussion can be read with both these trends in mind.

Addressing the Operational Definition of Mathematical Challenge

Component 1 for Mathematical Challenge: Focus on Mathematical Relationgbs

Learning of mathematics in these two CGI classrooms was focused on mtthém
relationships. This criterion of the operational definition of mathematicdkecigal was in place.
Teachers posed problems to elicit relational thinking and prompted studentsessexpr
mathematical relationships during the problem-solving phase. The advancedssivetent
exploring, discovering, and utilizing mathematical relationships, evident bystiation
strategies and their participation in the discussions. This was most evidenttdaeraxgensive
discussion time, as the teachers encouraged students to find relationships withimvaad be
strategies, express a variety of mathematical ideas by writingi@ugiaand connect other math

topics to that of the problem they solved.

Component 2 for Mathematical Challenge: Ascending Intellectual Demah

With emphasis on mathematical relationships, these CGI classroomsewiézegfounds
for challenge to take place. However, challenge is relative to the individdahea
relationships must be at a level permitting each individual to experiencadhsgéntellectual
Demand. For instance, Geraldo, the top tier fifth grader, reported to havetooddng concept
of common denominators since third grade and did not find the discussion of equivalent fractions
challenging. However, when the class digressed one day to explore howioatiiiplof

fractions is like division, he was very interested in exploring this further. €Bober picked up
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on his interest and gave him a related challenge problem the next day, aftérfineshad the
regularly-assigned problem. The challenge problem was designed to digwofraction
division algorithm. Geraldo was temporarily stumped but, with a small amoursicbietes
scaffolding, could see the relationship between dividing by a number and mudfipiyits
reciprocal. The teacher had placed him in his zone of proximal development, thusimgcttea
intellectual demand. Knowing when a gifted student needs intellectubdra@lequires skill
and attentiveness on the part of the teacher, recognizing even brief signs of studeetand
making instant decisions to facilitate that student in a new direction. Reqitindit Ascending
Intellectual Demand is an “escalating match between learner and aumfiolomlinson et al.,
2009, p. 11) it guides teachers as they consider how to challenge their students.

Knowing the extent to which students are challenged is related to wayscim tivby
were challenged. The next sections will focus on other significant watyghehCGI teachers
pressed the intellectual demand for their students beyond what might be @xhaidsore
average classroom experience. Limitations of these ways are also didoussther describe
the extent of the challenge.

Problemization of simple problems. The students’ self-reports of perceived challenge
can approximate the degree of challenge they experienced as they selassigined problems.
Their average perceived challenge level of the assigned problems wds4dar top tier
advanced students and 1.7 for second tier advanced students, on a scale of 1 to 5 with 1 meaning
‘not challenged’). The top tier advanced students finished the problems within 5 nfouites
an average of 22 minutes allotted to the class for problem solving) 57% of the hitie, w
suggests the problems were relatively easy for them. The teachers did, hdwequently use

strategies to extend their students’ thinking during this problem solving phase.
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The students perceived the challenge of the entire lesson as higher theatitigeof the
assigned problem alone (2.1 for the top tier students and 3.1 for the second tier students).
Hiebert (as cited in Empson, 2003) pointed out that the cognitive level of a problem ctavd be
but the problemization of it in the hands of a skilled teacher and an active group opa@ntci
students could make it a high cognitive level experience. Problemization of problem
refers to the extensive elaboration of the problem that extends the mathktiatioag beyond
a simple solution. In the cases of the two CGI classrooms in my studyhailesszvation |
witnessed problemization as the teachers used the somewhat-simple wath@assigned that
day as a springboard for a deeper mathematical discussion. TeadlBsslssions in which
students compared different strategies for solving the problem and looked for camecti
between them. They delved into more depth at the math concepts behind the solutions as
different number choices for the same root problem were discussed. Teadmnsatilness
for problemization was evident as they took advantage of opportunities for studentsverdisc
new related concepts and to express the numerous mathematical relatidvadvigs e
discovered by using mathematical notation of equations. These rich discussiostsahivays
led to exposure to above grade level topics and lasted an average of 42 minutes, further
supporting the idea that although the individual problems may have been easy for some to solve
the problemization raised considerably the level of thinking.

Number choices for solving problems.The most common strategy of differentiated
instruction in these CGI classrooms was the use of more challenging nchmobmss for the
same root problem. Although it is a practice that efficiently allows studeatmainstream
classroom to self-differentiate, its limitations are apparent wienessults show top tier students

completing all number choices in a fraction of the time that other students takarkdtfor a
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while with a new topic, such as when the third grade students were transitioninglthmm a
thirds and halves with a common unit of sixths, to being challenged to finding a commfar unit
thirds and fourths.

With mathematically gifted students possessing a high ability foepsomy
mathematical information and keen mathematical memory (KrutetSkig)1these students
catch on quickly to both procedures and concepts and retain the knowledge to apply at a
subsequent time. Once the concept is mastered, a mathematically gifted rsiayleae adding
eighths and twelfths as no more difficult than adding halves and thirds. The teachbe mus
attentive to the moment when these students have conceptually mastered a tagiceantya
for a greater challenge. This may be evidenced by a quick finish time wiffleteraxplanation
of the process.

The selection of number choices for the root problems observed in this study were ofte
designed to elicit relational thinking from one number choice to the next, encousagilegts to
look for relationships between sets of numbers. Problems that could be solved usomalelat
thinking between number choices often led students to quick solutions particularlyhehen t
advanced students recognized the relationship between number sets meant thereavould be
relationship between answers. Although the third graders were just begmseg such
relationships, the fourth and fifth graders were getting accustomed to lookithgholand
getting good at applying them to produce quick answers to subsequent problems. Hiweever
students did not always take advantage of the relationships between number choigeshe s
problems, perhaps finding their chosen methods to be just as easy. HowereagldtEnships
between the number choices did offer another interesting way to solve problemdittaatipr

may have been easy for some students, and serves as another way for the stodérds tioel
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problem once they have finished with their initial strategies. The teatiustyecognize that
when relational thinking in this manner becomes easy for these students, theybehprdpared
to challenge the student in new ways.

Emphasis on notation of mathematical relationshipsBoth teachers emphasized
expressing mathematical relationships using equations and making connectiatizcimatical
properties. This elevated the level of instruction beyond any specific apa¢h promoting a
deeper algebraic understanding of numbers. The prevalence of this notation in this’stude
work and in class discussion is a reflection of the teachers’ efforts to pustyties level
understanding.

Intellectual Peer Groups. Placing the advanced students together provided increased
opportunities for discussion among these intellectual peers that prolonged gjagjement with
the problem. This also presented students with the opportunity to lead their own nialema
discussions, increasing autonomy, a kind of challenge in itself (Diezmann &rgy&©02). In
the group investigations, the students were challenged to develop generalibaiyond those
expected of the other students.

Higher order thinking skills emphasized in teacher extensions. The teachers
interacted with the advanced students on a regular basis with the intentnolirextheir
thinking to higher levels. This attention facilitated students in seeing commebttween ideas,
notating their work, making conjectures, and justifying their solutions. Othes tyf higher
order thinking were prevalent, too, as categorized in Tables 6 — 9, thus increasimgltbctual

demand.
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Component 3 for Mathematical Challenge: Exposure to New Ideas

Mathematical challenge requires that students are exposed to nesvratital ideas in
order to move them along the path toward expertise. The evidence of exposwedeasas
discussed next.

Above Grade Level Topics. Third and fourth graders were exposed to above grade level
topics, based on the Arkansas Mathematics Framework (2004), during all the obsssved.|
The fifth graders experienced above grade level topics in all but two @&stbenls. The
assigned problems were such that they could be solved with knowledge expected of atudent
grade level using either intuitive methods such as direct modeling or withsophisticated

methods and advanced knowledge. For instance, for the third grade problem “How many

cookies are there altogether if there are 6 kids each \éiﬁoﬁkies,” most regular students
modeled the problem by drawingi—Zookies for each of 6 kids, then adding. The advanced

students manipulated number relationships such as 6 x 2 aiqiha/arious ways, writing

equations to express their thinking. Their multiplicative solutions used the sixthgjeautlard
of multiplying a whole number by a mixed number. The teachers took advantage of the
students’ choice of strategies to connect their work to the distributive progéftia, grade
standard.

Embedded in the CGI philosophy is the idea that if students are allowed to makefsense
mathematics in their own ways, even advanced concepts can be accessilohe tdHisetouches
on the idea of autonomy, in this case ‘open process’ for solving problems, as an important
element of a challenging mathematical task (Diezmann & Watters,.2008)is study, the

advanced students had the freedom in their strategy choice to take fullaggvahivorking
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with advanced concepts. Their teachers were skilled at seizing opportimnéidend students’
thinking to advanced concepts when their readiness was apparent.

Students were also exposed to above grade level topics during the classodisthesse,
when the sharing of and discussion of strategies often led to exploration obduation of
advanced ideas. Third grade had 12 above grade level topics, fourth grade had 10 above level
topics, and fifth grade had four above grade level topics. The number of above grade level topic
decreased as the students’ grade level increased, but only slightly from tloudhogirade. The
nature of a split grade class for the fourth/fifth grade class may haseccthe fourth grade
exposure to new topics to be higher than expected and the fifth grade number to ltledower
expected. Perhaps the presence of fifth graders raises the bar cfimstiar the fourth
graders, and the presence of fourth graders lowers the bar for the fidfénggr&chools should
consider whether or not a mathematically gifted student would benefit from bategiph a
split level class, and only place them strategically.

Despite the relatively high exposure of above grade level topics noted in these
observations, students’ self-reports on the challenge level of the probleen®wgeven for
problems that offered above grade level opportunities. Students’ self-reports balkbege
level of the entire lesson (that included the class discussion) were higreill on the low side
for the top tier students and middle of the range for the second tier studentBndiingsmay be
an indication that the advanced students, particularly the top tier students, kerédns@eme of
these above grade level topics already. Students’ self-reports did leddithey greatly enjoyed
the math lessons, so perhaps the exposure to and discussion of the above grade $ekeptopic

them interested.
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A final consideration with implications for increasing the challenge oframbdastudents
is that several topics that were above grade level at the time of thyaasliuige introduced in
earlier grades with the Common Core Standards (CCSSI, 2010). As grade Higrismath
topics with the Common Core Standards, teachers may need to reconsider whschvitbpic
challenge mathematically gifted students.

Self-report of learning new mathematical ideas|t is interesting to note that although
math topics that were above grade level standards were mentioned at es@rydeshe third
and fourth graders, the students’ self-reports of learning new mathendgi@sipresented
conflicting data. The self-reports of the top tier students claimed theel@ new ideas only
57% of the time, and the second tier self-reports claimed learning new ideasd 8@9& of the
time, respectively. The fifth graders were exposed to above grade learsisin five of the
seven (71%) lessons. This was close to the percentage reported by secotid giaxdigrs, but
the top tier student reported learning a new idea only 29% of the time. ltenthgtlihese
above grade level topics were discussed earlier in the year and wergeorew tahese
students. However, recalling that 72% of these reported new ideas were emcbduatang the
strategy-sharing discussion time further describes the opportunitiestfeemadical challenge
that the discussions offered.

Interest in other students’ strategies.| proposed earlier that a student demonstrating
interest in another student’s strategy is tangentially related turlgesomething new because it
suggests the willingness of a person to learn. In the third grade class, 82% wd¢imésst
reported particularly liking another student’s strategy. In the foutthfjifade class, the
percentage dropped to 46%. However, both results show strong student interest’ivotkers

The difference in the two percentages may suggest that the strateigg-$tvanat of the third
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grade class may be preferable to that of the fourth/fifth grade class. Md.Hehselected third
graders write their strategies on a long white board and all stragtgyesl on the board during
the discussion, along with what was added during the discussion as connections were made
between strategies. | interviewed Ms. B’s students in the classroom Wwegtteadd access to the
board when asked if they like any of the other strategies in particular. Mdektedlthe
students’ papers that she wanted to share. She then projected them on a screenpome at a t
using a document camera. She would overlap two strategies when talking about @esinecti
between them. When the discussion ended, the strategies were no longer visiblel. b coul

beneficial to the students to have full view of all the strategies foakteec comparison.

Discussion of the Extent of Challenge

Taylor (2009) stated that mathematical challenge is a hard construeasure.
Although I could count the frequency of teacher extensions and connect them to the giserof hi
order thinking skills to imply increased intellectual demand, | could not measudedginee to
which these extensions increased the intellectual demand with each studenihaotiy the
self-report. The teachers provided a classroom environment that emphadizechatiaal
relationships, focused on higher order thinking skills to increase the intelleetmand, and
exposed to students to new mathematical ideas. Seemingly, the three compiathents
operational definition of mathematical challenge were present, and the stwaeaton a
promising path toward expertise. Yet the mathematically advanced students daimdb feel
challenged. Perhaps there is an inherent feeling within gifted studenys abwae reaching for
something more, thus they honestly do not feel completely satisfied or chall&ged@aplan,

personal communication, September 26, 2011). However, assuming that the studentsdpercept
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of low challenge is accurate, there must be a deficit in some elentéetrohthematical

environment these exemplary teachers provide.

A Weak Link in the Problems Assigned

Students’ reports of low challenge and their ability to quickly finish probkrggest the
assigned problem as a weak link, in spite of the masterful problemization thetedda the
lessons. The literature review emphasized the importance of elevatcitatignge level of the
task assigned to mathematically gifted students (Diezmann & Watté;, l26nningsen &
Stein, 1997; Tomlinson, et al., 2009). Elevating the challenge level of the task in a CGI
classroom beyond the selection of number choices may be a key to elevatingjldrege to be

experienced by advanced students.

Underestimating the Mathematical “Gift”

The examination of students’ problem-solving strategies showed that the atlvance
students comfortably used mathematical notation to express relational thinkimgasvtiee
regular students did not. This indicates that the advanced students responded txtiees’ te
diligent encouragement to work on notation and relational thinking. It is unlikelyhiha
graders would ordinarily use such extensive notation in their solutions ifébehdr had failed
to encourage it. Yet, ability to formalize ideas such as expressing relationsimgs
mathematical notation is one of Krutetskii’'s (1976) characteristics of matieal giftedness.
Thus, these students may have readily gravitated to the practice of notation waen it w
introduced by their teachers, and not considered it a challenge per se, é¥gnade3 Perhaps
educators underestimate how quickly mathematically gifted studentsaato concepts. What
teachers consider challenging to mathematically gifted studentsenayhb in the realm of their

ability rather than challenging, or challenging for only a short while.
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Even though educators understand the constructivist view that students have prior
knowledge and that instruction should build on that prior knowledge, perhaps the depth of the
mathematically gifted students’ prior knowledge is underestimated in atneammsclassroom, as
is the rate at which these students learn. Noting the trend that the studesis’epeevel of
challenge decreased with the older students may suggest that these staedainserbing
information at a “compound rate” rather than a “simple rate” and that educd¢anands are not
keeping up with the pace of the students’ minds. The students in this study were exposed t
above grade level topics and had teachers who pressed for higher level thinkstid, rgetd a
low to mediocre level of challenge; this may be more indicative of how muglatbeapable of
rather than a deficiency of any instructional approach.

Perhaps building on the prior knowledge of students who have a great deal more prior
knowledge than other students entails 1) teachers’ learning more about the@wiedge that
mathematically gifted students have, and 2) providing more complex problemsetéuthor
engage the prior knowledge. With the emphasis on mathematical communication and
understanding students’ thinking in a CGI classroom, CGI teachers alreaglytare
knowledgeable of what their students know and how they think. They are, therefore, sel-poi
to look more deeply. Assigning tasks that are more complex may allow for deefearts
knowledge to be revealed than would otherwise surface from a simpler task. With thpgsrinc
of Cognitively Guided Instruction, teachers gain more understanding of tilngénsgs’ to further

know how to guide their progress in the students’ zone of proximal development.

Conclusions from a Somewhat Paradoxical Situation
One key to answering the central question regarding the extent to whivbnmasically

gifted students are challenged in CGI classrooms lies in resolving valydirst seem like a
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paradoxical situation presented by the self-reports. On one hand, the advanced dithdents
feel very challenged by the problems they were assigned. Their ratifgsaerall lesson
were higher than the ratings of the problems, but still only 2.7 for all advanced staden?sl
for the top tier advanced students, on the 5 point scale. Although Alana spoke of how she liked
the strategy-sharing discussions, she also said, “but not when there is a lotsgfeihen easy
strategies.” Yet when students were asked to rate how mucbknjoyedthe day’s lesson, their
responses were almost invariably a “5”. A possible paradox arises hérat, ting students did
not feel very challenged yet they really enjoyed the lessons. As Bartdiagor (2005)
stated, “. . . a challenging situation may not necessarily be difficult, imutst be interesting and
engaging” (p. 126). However, a student could certainly enjoy a math lesson wablog f
challenged by it. For instance, playing math baseball and speedily tatyelasy problems to
get to the next base, or dividing up real cookies to show fractions is pleasurableybut eas
Perhaps there is no paradox at all. Consider, though, that these students weréganpliy
baseball nor dividing real cookies. They were engaging in mathematicalstiscand writing
advanced mathematical notation and found it very enjoyable. There could be a deeper
significance here.

| suggest that the reason that students gave “enjoying the lesson” the taghgstas
that they found a mentor in their teacher. Perhaps they found a kindred spirit in seilseone
who loves math as much as they do. They found someone who was interested in their
mathematical thinking and was not only willing to discuss mathematical hdeasuld keep up
with their arguments and their questions. These teachers provided an environmech in whi
exploring and talking about mathematics was enjoyable for these students. r&a \\dveer

level of challenge might have otherwise caused a lack of interest, the exemefdor teacher
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sustained students’ interest. Mentorship is a recommended scaffoldiegystatstudents at
the practitioner level of Ascending Intellectual Demand (Hedricka@fagan, 2009). With the
idea of mentoring in mind, | returned to interview students again after anatiigimigqta for this
study. When asked if they admired their teachers for their knowledge of math ianutéhest
in helping them learn math, they responded favorably. Dominic said,
| like math all the time and she made me like it more by showing me new issdtieg
letting me notate down my strategies or if | can use a better stratkgyasks me
guestions like ‘how did you do this?’ and *how did you times this so fast?’
Natalie commented, “She also tells us what math she learns like at hehopsKs
Anita said it was important that her teacher likes math because “iksisentiath it means she
can teach us more about math. She can help us with any questions and help us get advanced with
equations.” | followed up by asking Ms. K if she felt that her students ses henantor. She
responded,
| can definitely see the kids seeing us as a mentor because my kidsealgally me
when they want to try a new strategy or push themselves to a more efficient orealdvanc
strategy. They rely on me to say if it's more efficient or more reasonabteetitnes
they just look up to us wanting to know if it's advanced or not.
Participant Frameworks Revisited: The Mentor-Mentoree Relatonship
Empson (2003) reported the importance of participant frameworks to the animation of
low-achieving students in a classroom that focused on children’s mathentatikalg. She
found that, “the use of task-based participant frameworks to analyze studenneegaged
learning in mathematics classrooms can provide useful insights into the obsuiccess and
failure in mathematics” (p. 337). In her study of low achieving students, tteematical
success of the students depended on their interaction with the teacher. “Under other

circumstances — for example, working with a teacher who did not recognize trermatctal

potential of informal strategies or attempting to solve problems that did noteewdag they
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knew — one can easily imagine their failure" (p. 337-338). Although this statemgmintten
with low-achieving students in mind, | propose that it has significant meaningyfeabhieving
students, too, and their interaction with a mentoring teacher. But in the cas@emaatally
gifted students, ‘engaging what they know’ when they know a lot requiresheetasith a solid
understanding of mathematical content and pedagogical knowledge so as notitursiofnot
taking these students to the next level. The knowledgeable teacher would engageaticathem
gifted students by inviting them into a participant framework in a mentor-neentelationship,
devoted to challenging mathematical thought within the CGI classroomecultur

So why is this so compelling? Clasen and Clasen (2003) ‘ttetenentor serves as
teacher, advisor, and role model, guiding the youth toward excellence and helpinig \adttia
the individual and the talent” (p. 265). Although the degree of challenge expdriantiee
students was not high in these two case studies, other elements of the CGhegpdtlean
exemplary teacher kept students on a path toward expertise. The exemplaysteacouraged
mathematical discourse which allowed students to think and discuss like aiqmactn the
discipline of mathematics, along the continuum of Ascending IntellectuabhbednmVith a
teacher-mentor, the CGI experience puts mathematically gifted studéimésr element, beyond

what a traditional math class would tend to offer.

The Research Question: To what Extent were the Mathematically Giftedt&dents
Challenged?

In short, these students were in an environment that supported the components of the
operational definition of mathematical challenge to a respectable dexpes:dn mathematical
relationships, exposure to new ideas, and attention to Ascending IntellectuahdDeihe rich
mathematical discourse, attention to notation of mathematical relationsidpheaopportunity

to have an exemplary teacher as a mentor makes a CGlI classroom a pramisomgreent for
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mathematically gifted students. The students’ voices said, however, that hltheygnjoyed
the CGI math lessons, they were not particularly challenging. This discues already
suggested some elements of the lessons that need attention. The following cdmdinues t
discussion with the goal of determining how teachers can improve on what atr@asiylid

foundation for challenging mathematically gifted students in a mainstkesroom.

The CGI/AID Framework: Moving to the Next Level of Ascending Intellectual Demand

It is useful to turn to the framework for guidance to further challenge #tksaced
students. The CGI/AID Framework (Figure 3 in Chapter 2) aligned the lev@lSIgbroblem-
solving strategies with the levels of Ascending Intellectual Demamd frovice to apprentice to
practitioner to expert. This alignment allowed the opportunity to describe netibalhy gifted
students in a CGI classroom primarily as practitioners, one step aaayife expert level,
relative to elementary mathematics. Thinking as practitioners of matiesnthey were making
connections, understanding relationships, using efficient strategies for pradiieng, and
formulating conjectures (the presence of the latter two charaacternatre the main criteria for
setting them apart from the previous level of apprentice).

The mathematically gifted students’ high ability along with the opportsruti¢he CGI
classroom allowed these students some entry to the expert level of the Asdetadieciual
Demand continuum. This was initially evidenced by their problem-solvinggieatthat
exhibited computational fluency and relational thinking. What follows is a distussieach of
the eight characteristics of the expert level of Ascending Intellebermand (Hedrick &
Flannagan in Tomlinson et al., 2009, p. 269) in relation to the students’ experiences, or lack of,

to help pinpoint areas for increasing the challenge level in CGI classroom
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Expert Characteristic #1: Uses Computation as merely a Means to an End

Recall that expertise is relative to the grade level, so these stuadsatiuent with
respect to grade level standards of computation. They were also fluent ialsoveegrade
level computation. Students efficiently used computation as a tool for solving problems.

Expert Characteristic #2: Moves easily among the Fields of Mathemat through the Use
of Macroconcepts

The Parallel Curriculum Model defines a “macroconcept” as a gedegabr
understanding that extends across disciplines or topics (Tomlinson et al., 2009, p. 127).
Thinking in terms of relationships is a macroconcept in that it spans all aré¢adyoirs
mathematics. Relational thinking, or relating numerical expressions with anyimgler
understanding of properties of operations, is also a macroconcept, giving aaialfgeus to a
variety of math topics. The strong emphasis on exploring mathematical rédgignscluding
relational thinking, and making connections between topics in a CGI classroonhgises t
students entry to the expert level of Ascending Intellectual Demand. Mdtbaliyayifted
students’ aptitude for understanding mathematical relationships and makingtmrsmeetween

topics clearly matches them with this characteristic of expertise.

Expert Characteristic #3: Questions existing Mathematical Princifes

The extensive discussion phase of the CGI lesson offered opportunities for questioning
mathematical ideas, especially as new concepts were developed. Olsefite advanced
students during these discussions revealed their interest and ability in quesherpnigciples

of elementary mathematics, and making related conjectures.
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Expert Characteristic #4: Seeks Flow through the Manipulation of Tools ath Methods in
Complex Problem Solving

Flow is a term that was coined to describe being deeply engrossed in arcadtyinsi
enjoyable activity that has a stimulating amount of challenge commemsuitiatone’s ability
(Csikszentmihalyi, 1990). Considering how quickly many of the advanced studeritsditie
assigned problems, the nature of the problem solving cannot likely be describegbesccom
enough to have allowed for a sustained period of engagement in the problem itself. Adis furt
points to the assigned problem as needing to offer more complex challenge ito ondee
students beyond the level of practitioner. However, the engagement and enjoyment of the
advanced students in the extensive discussion phase of the lesson was high, and thateexperie
could likely be considered flow. Ideally, the assigned problems should be challanding
engaging enough such that the experience of solving the problem is as rewadistgssng

the solutions.

Expert Characteristic #5: Seeks the Challenge of Unresolved Problemsdathe Testing of
Existing Theories

Relative to elementary mathematics, an unresolved problem could be interpreted as on
that contains a mathematical idea new to the student but that does not have a solusion that i
readily apparent to the student without more engaged investigation. Thera fearémes
when | observed advanced students who were not sure how to begin a problem. In most other
cases, however, the solution seemed readily apparent as they were able to inesgiatdgges
immediately. Providing more complex problems could develop the students’ skillarioiinm
an approach to a problem whose solution is not clear at first.

‘Testing of existing theories’ relative to elementary mathematwld be interpreted as

the next logical step to ‘questioning existing principles’ (characte#s). Questions that lead
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to exploration and developing conjectures should lead to testing of the conjectures, ongbroof a
justification. If a theory is interpreted as an explanation, students wouldigatesind test the
explanation, looking for justification of the existing explanation. Justificat@as awccommon
theme in the CGI classrooms but | would suggest it could be taken to a higherrd¢kel fo

mathematically gifted students, with more targeted teacher guidance.

Expert Characteristic #6: Links Mathematical Principles to other Relds through Real-
World Problems

The assigned problems receive further scrutiny with this characteriggcehding
Intellectual Demand, perhaps also revealing the most promising suggestion for. change
Although sharing sandwiches and pizza are part of the real world for elem&ngents, they
do not offer the type of interdisciplinary application of mathematics thatderst would need to
experience to move to the next level of expertise. Assigning problems with ntloeatic real-
world applications could increase the challenge level and engage the studentsefaytthef

Phase 2.

Expert Characteristic #7: Views Unanswered Questions in other Dagplines through the
Concepts of Mathematics

The CGI lessons observed did not include topics from other disciplines, although Ms. B
referred to some interdisciplinary activities that her classes do thwatithe year that utilize
mathematics. At the elementary level, unanswered questions in other discipliltesegeal
themselves to students either during other subject lessons or during their awchrese
investigations. Individual students, or those in groups, who find a question of interest which
could have a mathematical solution could be encouraged to investigate that questian furthe
This idea would involve a longer term assignment that would extend beyond a typgal clas

period. If students who typically finish problems early were involved in a longressearch
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investigation, for instance, they could work on it after they finish the assignedmsobléhis
type of extension suggested in the expert level of Ascending Intellectoaidemay suggest
that a mathematically gifted student may need something beyond the reatypmfal CGlI

lesson, as enriching as it is, to reach toward expertise.

Expert Characteristic #8: Uses Reflection and Practice as Tools for IE&mprovement

Not surprisingly, the CGI emphasis on understanding students’ thinking has both
classroom teachers well-prepared for using reflection as a tool for stusifisiprovement.
In the interviews, students showed interest in and the ability to reflect upon theirablenpr
solving strategies, other students’ strategies, and how they felt aboutstine déshe day. The
strategy-sharing discussion allowed students to reflect on their own soluti@mpareson to
others. The idea of reflection could be more formally put into place in a CGlodassvith
teacher-student conferencing on a regular basis or by students’ writingrialgur

The idea of using practice as a tool for self-improvement needs furtheradiqi in a
CGl classroom. With the CGI lessons having a minimum length of one hour including an
extensive discussion period, the students were certainly experiencingpagtiee at
mathematical discourse. However, with only a few problems assigned, deegdet that
problemization occurred, the mathematically gifted students may want ashdoee practice
on challenging mathematics problems. They may need problems beyond thoseahtheest
class is doing to advance them to the next level in mathematical thinking. dtbeotiiat the
rich mathematical discourse in a CGl lesson is enough to sustain the interesttavzation of

the mathematically gifted, but not to significantly advance it.
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Summary of Recommendations

Increase the Challenge Level of the Problem

Several indicators in this study pointed to the assigned problem as the root of the
students’ perception of low challenge, particularly for top tier advanced ghertgrade level
students. These students need more significant differentiation, which maarskeift from
using number choices to differentiate to using different problems altogeétwee challenging,
complex problems may keep students engaged for the entire problem-solvingdimeraase
the chances that they can experience flow in the act of problem-solving. The pematysss
of characteristics of the expert level suggests ways to accomplish thisgdahs real-world
applications of mathematics that connect with other disciplines. Challengihgmstically

advanced students with open-ended problems was a common suggestion in the literatre revi

Provide Feedback

When students are given differentiated assignments, it is essentslthexits receive
feedback to validate the worth of the assignment for the student and to monitor and guide the
students’ progress. The differentiated instruction for the two CGI classradiis study was
providing number choices of increasing difficulty for the root problems. Although only the
advanced students completed the problems using all the number choices, the tvezrehers
skilled at bringing their solutions into the class discussion and making connedtionisen
easier solutions. If challenging mathematically gifted studentitaindy requires assigning
them problems different from what the other students work on, it should be done in a way that
does not sacrifice the rich connections that are made during the whole-classahsitizdsi
benefit all levels of students. The problems should be related to the other studertsh bl

that incorporating some aspect of them into the discussion is still possible and peyduitilie
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still offering feedback to the advanced students who worked on the problems. However, it is
likely that there are elements of advanced problems that are not appropribéerést of the
class. Teachers then should make a point of providing feedback during the problem-solving

process or during individual conferences at other times of the day.

Small Group Challenges

The advanced students favored the idea of working with other advanced students in
groups. Whether they were working on the daily problem or a special challenge proiblem, w
the occasional facilitation of the teacher, they stayed engaged whiemetics for the length of
the problem-solving time. Teachers should be attentive to ideas that come up duatisgjiaiis
time that particularly intrigue the advanced students, and pose a group chialerstjgation of
that topic the next day. These are opportunities to elevate the challengeslsttedents prove
conjectures and make generalizations working with their peers. The group cowddi®elp of

top tier students with an ongoing rotation of second tier students into the group.

Vertical Alignment between Grade Levels

With mathematically gifted students coming into a classroom each yiaadvianced
knowledge and abilities, it is important that the new teachers find out from therfmachers
what advanced work the student has mastered to avoid unnecessary repetition in tirigupcom
year. Considering how the top tié? §rader reported the lowest challenge, and that he would be
in middle school the next year with the possibility of taking Algebra eastyearsations with
middle school math teachers may be important in deciding how to challenge a studenast
year of elementary school. CGIteachers also should not rule out the podisilitgrtain

mathematically gifted students are capable of being acceleratedgioea iade for
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mathematics. Pre-assessment and above level testing (Stanley, Lupkowskg&ine, 1990)

can aid in these situations.

Mentor-based Clustering for Top Tier Advanced Students

The benefits offered by CGI to mathematically gifted students inlacla&room have
been clarified in this study, yet so have the shortcomings. | propose tllafittiency in
challenge felt by the top tier advanced students in a CGI classroom couldéeasity
remedied by implementing mentor-based clustering. Mentor-based clusteufdjcluster a
small group of top tier advanced students with the grade level CGI teacheanvhest
challenge them mathematically and serve as their mentor. Creatitiga mass of the highest
ability students makes it easier and more likely that teachers idtelitiate for their unique
needs and capabilities (Winebrenner, 2001; Winebrenner & Brulles, 2008). This grouping
practice could be implemented in a CGI classroom without compromising otheplasndiose

to the CGI philosophy.

Limitations

This “best practices” study focused on two math classrooms of exem@te&thers.
The results would not necessarily be repeated in another CGI classroom widrdeeico did
not have as much CGlI experience, as much mathematical content knowledge to kebpghe wi
advanced thinking of these students, nor as much enthusiasm and inclination to press for
challenge as these teachers exhibited. These teachers werefahvaremathematically
advanced students and had considered ways to challenge them even before | had entered the
classrooms. They both admitted, to some degree however, that my presence iastgreomcls
with the intent of this study further pressed their awareness of ofjiatlemathematically gifted

students. | suggest that it is possible for a CGI teacher to be exemplaot pe aware of the
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needs of mathematical gifted students, and results may be different & seather were studied
instead. Furthermore, this study took place in the last six weeks of the schdollgaang the
benchmark testing. Although the teachers said they covered topics that tine@ylynaould

have covered, the relief of the pressure from standardized testing mapfheaueced what they
chose to do. Also, having been in the classroom for a condensed period of time, approximately
four weeks per teacher, rather than multiple visits over a longer period of timenteck the

gaining of a long term perspective.

Implications for Future Research

The teachers in this study were exemplary in their ability to undergteir students’
mathematical thinking and for their methods of extending their students’ thinkingjter hi
levels. The teachers’ also had enough depth in their own mathematics knowledggrizeeco
the advanced thinking of their mathematically gifted students. Likewisewte artful in
orchestrating a productive mathematical conversation with both individuahsswated a class of
students. This study sought @xemplaryteachers to see what was possible for challenging
mathematically gifted students, but it could be useful to explore the oppositein§tudy
randomly chosen CGlI teachers on a broader scale could further describe themee ot
mathematically gifted students in CGI classrooms. Surveying @G@Glhées on which strategies
they use to challenge their advanced students might suggest interventiamusilthaicrease the
challenge levels for such learners. Specific interventions recomohegdais study such as
mentor-based clustering or increasing the complexity of the assignedmralduld be studied

for their effectiveness in CGI classrooms.
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Closing Summary

This study examined the issue of challenge for top tier and second tienraatadly-
advanced students in two CGI classrooms taught by exemplary teacherslopdd an
operational definition of what it means for an elementary student to be challenged i
mathematics learning. Although there were many elements of the &Stabms that created a
challenging environment, and the advanced students reported enjoying the libesodisl not
report feeling very challenged. | created a conceptual framework it Whlgned levels of
Ascending Intellectual Demand with levels of CGI problem-solving stregdgihelp describe
the level of challenge experienced by these students, and to suggest what couldtbe done
increase the challenge. A central conclusion was that the complexityaddigaed problems

should increase for the advanced students, particularly for the mathemajiitadl students.
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Appendix A English Language Development Assessment (ELDA)
Explanation of Composite Proficiency Levels for grades K, and 1-2

Level 1-Pre-functional indicates that the student who is limited English proficient:

* may understand some isolated spoken words, commands, and questions, but often requires non-
verbal cues and frequent repetition

* may speak or repeat common phrases and words and can ask one- to two-word questions

» demonstrates an understanding of concepts of print (left to right, top to bottom) andaan foll
one-step directions depicted graphically

* achieves written communication only through drawing pictures; may be able ttettepy or

words successfully; or may form letters from memory but is unable to tramsaiting

Level 2— Beginningindicates that the student who is limited English proficient:

* understands short, simple oral statements on familiar topics; follows simiestap

directions; requires frequent repetition and rephrasing

» predominantly uses formulaic speech patterns and memorized phrases; respond®ihs quest
with one- to twoword answers

* begins to identify the names of letters; begins to recognize the differetions of words; can
follow multi-step directions depicted graphically

* achieves written communication through drawing pictures or dictating wacadsgvise or edit
with teacher support; commits frequent mechanical errors

Level 3—Intermediate indicates that the student who is limited English proficient:
 understands sentence-length statements and questions; understands main ideadetdisome
from

conversations and simple oral texts; is beginning to develop key vocabulary, intezpreng,

and understand some idioms

* restructures learned language into original speech; has limited vocamdanagked errors in
speech; can use language to retell, describe, narrate, question, and instructf]urrithot

» comprehends single words and simple text, as well as simple sentenceesandtaimple
compounding; recognizes the different functions of words, and that words have multiple
meanings

* participates in writing activities with teacher support; writes snajpld compound sentences; is
beginning to write with phrases; uses transition words; can edit, usually agtetesupport;

most writing is descriptive, expository, procedural, or narrative

Level 4 — Advancedndicates that the student who is limited English proficient:

 understands most school/social conversations; grasps main ideas and relailant det
comprehends most gradelevel vocabulary and idioms; is developing a wide racgdarhic
vocabulary in the content areas

* restructures language to communicate orally; uses connective devipesdes a mostly
coherent, unified, and sequenced manner; has sufficient vocabulary to communicate in most
situations; is fluent but may hesitate or make errors in spontaneous commuisitasitrens
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* reads familiar text with little support, but needs support to comprehend unfaextiar
identifies all story elements; is beginning to read across text typegpahdwhat they read to
other activities

* participates in writing activities with minimal support; restructlm@swn language in writing;
writes mostly coherent, unified, and sequenced sentences; uses connectieatelveceange of
grammatical structures, with some errors; possesses a strong soamilaog and a functional
academic vocabulary; writes and edits all text types

Level 5 — Full English Proficiencyindicates that the student who is limited English proficient:
 understands most grade-level speech, both social and academic; understands maith ideas a
relevant details at a level comparable to a native English speaker anthgrsale level; has a
broad range of vocabulary including idiomatic language

* responds orally in a coherent, unified, and sequenced manner; uses a variety of connective
devices; understands and uses a range of simple and complex grammattakstrhas
grammar and vocabulary comparable to a native English speaker at the sanhevetadel
shows flexibility, creativity and spontaneity speaking in many contexts

* participates in reading activities at grade level comparable to thglisk speaking peers with
little teacher support; reads across text types; has an increasiegfaugial and academic
vocabulary; understands multiple word meanings

* participates in writing activities with no teacher support; edits compferrsee structures with
some errors; utilizes precise social and academic vocabulary; understansis dh@uance and
subtlety in writing for different audiences

Explanation of Composite Proficiency Levels for grades 3-12

Level 1 - Pre-functionalindicates that the student who is limited English proficient is:
 Beginning to understand short utterances

* Beginning to use gestures and simple words to communicate

* Beginning to understand simple printed material

* Beginning to develop communicative writing skills

Level 2 - Beginningindicates that the student who is limited English proficient can:

» Understand simple statements, directions, and questions

» Use appropriate strategies to initiate and respond to simple conversation

» Understand the general message of basic reading passages

» Compose short informative passages on familiar topics

Level 3 - Intermediateindicates that the student who is limited English proficient can:
» Understand standard speech delivered in school and social settings

» Communicate orally with some hesitation

» Understand descriptive material within familiar contexts and some compiatives

» Write simple texts and short reports

Level 4 - Advancedindicates that the student who is limited English proficient can:

* |dentify the main ideas and relevant details of discussions or presentatianside range of
topics

* Actively engage in most communicative situations familiar or unfamiliar

» Understand the context of most text in academic areas with support
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» Write multi-paragraph essays, journal entries, personal/business ktiggeative texts in an
organized fashion with some errors

Level 5 - Full English Proficiencyindicates that the student who is limited English proficient
can:

» Understand and identify the main ideas and relevant details of extended disoussio
presentations on familiar and unfamiliar topics

» Produce fluent and accurate language

» Use reading strategies the same as their native English-speakisigopgerve meaning from a
wide range of both social and academic texts

» Write fluently using language structures, technical vocabulary, and appeopritihg
conventions with some circumlocutions

Arkansas Department of Education, (201Guide to understanding scores on the English
Language Development Assessment (ELBX.Ransased.org/testing/assessment/elda.html
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Appendix B Semi-Structured Student Interview

Questions to be asked one student at a time, at the beginning of the stud

1.

| understand that your school considers you as “advanced” in math. Do you feel like you

are good at math?

. Do you remember always being good at math?

Is math one of your favorite subjects? If so, what do you like about it?

What other subjects do you like a lot?

| know your class spends a lot of time discussing different strategisslfimg math

problems. Have you noticed if your ways of solving problems are very diffecant fr

your classmates?

During a math lesson, do you think you spend more time than your classmates solving the
assigned problems or less time?

Give me some examples of what it means to you to be challenged in math class? (or how
do you feel when you are being challenged in math?)

Do you feel like you are being challenged in your math class? (may xgledaion
such as “do the problems take a fair amount of thought to do?”)
If you finish the assigned problems early (before the discussion time), whatido y

typically do?

10.Do you have any ideas as to what would make math class more challengiogZor y

11.Would you like to be grouped with other students who are as good at math as you are?

12.1s there anything else you would like to tell me about “you and math”?
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Relational Thinking Problems to do (for researcher to have a baseline senfor how the
participants think):
Before you begin this problem, I'd like you to read it to me and think about it for a moment

before you start to solve it.

Whole numbers: 78 +63= __ +64 Time:
25+37+75=__ Time:
Fractions: 51/3+2 1/3=2+__ Time:
2 Ya+1lYa= +3Y Time:

Post-Study Interview, exploring the idea of mentoring (performed at the bginning of the
next school year)

1. Tell me what were the kinds of things that your teacher last year dickeyoa like
math class?

2. What did you like best about the way that your teacher last year taught math?

3. Can you think of things that your teacher did last year that made math moestintg
for you?

4. Can you think of things your teacher did last year that made math more cimgjl&rg
you last year?

5. Can you think of things your teacher did last year to make you learn matt? better
6. Did your teacher inspire you and encourage you to be even better at math?

7. Was your teacher last year someone you felt you could look up to, admire her for her
knowledge of math, and you could ask her any math question and she would be able to
help you with it? (also how much, on a scale of 1 to 5)

8. How important is it to you that your teacher likes math and is really stégtén helping
you learn math? (on a scale of 1 to 5)
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Appendix C Semi-structured Teacher Interview
Questions to be asked at the beginning of the study:

1. Tell me about your background with CGI (professional development, how many years
you have tried it in the classroom, etc.) and how many years you’'ve belkimgeac

2. How would you describe the characteristics of your mathematical adivanmkents?

3. At the beginning of the school year, was there one characteristic in parti@ailatood
out and helped you identify them as mathematically advanced?

4. Have you taught math using a non-CGI approach?

5. (If yes,) was it any easier to identify your mathematicallyntizle students in a CGI
classroom?

6. How do your mathematically advanced students differ from your other students?

7. (If not answered above,) Can you describe how their problem-solving stsadiétge
from your other students?

8. Are than any students who are not labeled “advanced” for the mathematics agnchm
whom you have found to be advanced mathematical thinkers?

9. In what ways do you try to challenge your mathematically talented stutlemg a CGI
lesson?

10.Do you have any students who you worry are not being challenged?

11.How do you arrange the seating of your advanced students?



121

Questions to be asked near the end of the study:

1.

8.

9.

In these past few weeks, do you feel that your awareness, pen¢eptid
understanding of your mathematically advanced students have changeds@nd i
what ways?

Which of your strategies for challenging them do you think works best?

In the previous interview, | asked you to describe strategies that you Usslémge
your mathematically advanced students. Which of these strategies do youehink a
the most effective (or do you feel that each one has its own merit?)

Which strategies do you typically use when you see that a student has solved a
problem very quickly and is done?

How do you think the CGI approach benefits the mathematically advanced students
Do you think there are any drawbacks of the CGI approach to learning math for the
mathematically advanced students? Please describe, if so.

Beyond the CGlI lessons, do you offer any other mathematical experiences to your
mathematically advanced students (enrichment activities, challengerassts,

projects, etc.)?

How do you think that the CGI approach is beneficial to ELL students?

Do you think that there are disadvantages to this approach for the ELL students?

10. Some teachers feel that when they work with the gifted students, theytribglec

struggling students, and when they work with the struggling students, they rikeglect
gifted students.
a) Do you find it is difficult to reach both the mathematically advanced stuaedts

the struggling students in the same class?
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b) Does the CGI approach make it any easier to handle both ends of the ability
spectrum or does it hinder it?

11.Has every student had a chance to share strategies this year? Somemuilrethd

12. If you could easily make any change happen,
a) what would you like to see happen to help keep mathematically talented students
challenged?
b) What resources would be useful to make this happen?

13. So far | have observed CGIl lessons after benchmark exams. | have observed how,
despite the fact that students only work on a few problems in a lesson, there is so much
math that is discussed in the sharing time. | have also observed how you notice when the
class seems to be struggling with a certain concept, you go back and reuwever,

| don’t have a clear picture of how you “cover the standards” throughout the Amear

most of your lessons CGl lessons and you ensure that the “content” is withinRersre t
some lessons that are more traditional? Do the students ever do practe¢hstiee

involve more repetition of certain skills and concepts?

14. One additional question with respect to my being in the classroom after benchmarks:
Between the fact that it was after benchmark testing so you did not need to be
concerned about covering certain topics in your lesson, and the approach that we took
with this study that we were pressing to see to what extent we could chalienge t
advanced students, how typical or not were the math lessons that | observed? i.e.
were they longer than usual, were those problems typical of what you would have
covered after benchmarks anyway, etc.?

15. Finally, did you sense that by pressing more toward the advanced studentsi that y
were “losing” any of the lowest ability students more than on a typical day?

16. Anything else that you would like to tell me about CGI and mathematically
advanced students?

Post-study question:

Do you think your mathematically advanced students look up to you as a mentor in thaiglea
of mathematics?
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Appendix D Post-lesson Student Interviews
Questions to be asked after each math lesson (with the student work of the day in front of
student):
1. What was your favorite part of today’s math lesson?
2. Was there anything you didn’t like about today’s lesson?
3. Did you learn a new math concept today (something you hadn’t known before)? (can
point to their work)
4. Did you come up with a new strategy for solving today’s problem or a mathena¢aal
that you had not thought of or used before?
5. Was there any strategy that one of your classmates shared duringidistioss that you
found particularly interesting? (did you learn anything new from it?)
6. On a scale of 1 to 5, how challenging (easy or hard) did you find today’s problems to be?
(5 is hardest)
7. On ascale of 1 to 5, how challenged did you feel today when you solved today’s
problems? (5 is the most challenged)

8. On ascale of 1 to 5, how much did you enjoy today’s lesson?
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Appendix E Coding/Record Sheet for Classroom Observation

Date: Teacher

Math topic/problem:

(Red ink) Phase 1, Problem Posing begins
(Blue ink) Phase 2, Problem Solving begins Problem Solving Ends
(Green ink) Phase 3, Strategy Sharing ends

Record times of students’ finishing problems if finished within 5 minutes.
If exact time is not known, “2” means under 2 minutes, and “5” means under 5 minutes

Code name (initials) Done with | Done with
First problem | All
problems

Each participant is assigned a letter(or initials). Each letter noted on the csieicklicates a
coding of that action involving the student represented by that letter. A checkmark als@sdicat
coding of an action when it did not seem significant to associate with a particular student. The
different colors of ink indicate in which of the 3 phases the event occurred.
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Comments/Questions that indicate Higher-level Thinking: Phase @mes: to )

Student

Teacher

Student compares/critiques strategies with
another student.

Teacher asks student to compare.

Student detects other student’s or teacher’s
mistake or flaw in thinking.

Teacher asks student to look for mistake or
flaw in thinking.

Student expresses a conjecture of or realizat
of a mathematical relationship (may be an
“aha” moment).

on

Teacher asks student to look for a relationsh
or make a conjecture.

Teacher encourages student to express
relationship with mathematical notation,
including relating to number properties

Student makes a comment that indicates a
generalization (inductive reasoning,
formalized).

Teacher encourages student to make a
generalization.

Student asks a “what if” question or shows
curiosity for more knowledge beyond the mai
topic.

Teacher asks student a “what if” question or
another question to extend student’s thinking

Other categories (student or teacher) below:

Teacher asks student to justify their reasoning.

Teacher gives problem to the class that has
number choices built in for the same root
problem

Teacher gives extra problems to the class in
case they finish the main problem early

Teacher gives student another problem to da
(not given to rest of class)

Teacher asks student for a different strategy
that is representative of student’s ability.

Teacher gives student feedback on student’s
work (on extra problems?)
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Comments/Questions that indicate Higher-level Thinking: Phase 1€d), Phase 3 (green)

(times: to

)

Student

Teacher

Student compares/critiques strategies with
another student.

Teacher asks student to compare.

e Student detects other student’s or teacher’s .
mistake or flaw in thinking.

Teacher asks student to look for mistake or
flaw in thinking.

e Student expresses a conjecture of or realizatjon e
of a mathematical relationship (may be an
“aha” moment).

Teacher asks student to look for a relationsh
or make a conjecture.

o e Teacher encourages student to express
relationship with mathematical notation,
including relating to number properties

e Student makes a comment that indicates a e Teacher encourages student to make a
generalization (inductive reasoning, generalization.
formalized).

e Student asks a “what if” question or shows e Teacher asks student a “what if” question or
curiosity for more knowledge beyond the main another question to extend student’s thinking
topic.

Other categories (student or teacher) below: e Teacher asks student to justify their reasoning.

Teacher gives problem to the class that has
number choices built in for the same root
problem

Teacher gives extra problems to the class in
case they finish the main problem early

Teacher gives student another problem to da
(not given to rest of class)

Teacher asks student for a different strategy
that is representative of student’s ability.

Teacher gives student feedback on student’s
work (on extra problems?)

Other Observation Notes: Teacher:

Date:
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Per Student Reporting of Correctness of Solution, Relational Thinking, Straseg¥idish Time,

etc.
Name | Scores Problem 1 | Problem 2 Problem 3 | Problem 4 | Problem 5
(5th) TOMAGS/ 3 kids share 4 Maria ate ¥ bag of | 12 cupcakes, 8 kids, ¥ pizza 12 cups cat food,
d 4™ gr. Benchmark/ sandwiches. How | candy. Lori ate %2 1/3 c. frosting, each, How much 1 Y% cups per day,
pseudonym | gn gr. Benchmark much for each kid?| bag of candy. Total | How much total? | total? How many days?
(advanced 697+) (3,4) (3,8) (6,20) eaten? (Y2, ¥%2) (12,1/3) (36, 1/3) | (8, ¥4) (16, %) (12,1%)
(12,40) (6,10) (Y, 1/4)(1/2, 1/8) (72, 1/3) (72, (20, %) (40, %) Plus group
(10,25) 2% .,3Ya) (4%, 3 2/3) challenge
1/3)
Geraldo| 99"/775/774 |[CCCCC |[CCCCC |[CCCC CCcc+C|C
Adv/iAdv | (2) 2) (2) (2) (2)
i Number facts Number facts Number sentences Number sentences| Number sentence
ngheSt TR (mental) (Mental) RT RT
Sylvia | 847694/725 |CCCCX |[CCCC (5)|CCCX CCCC C
Adv /Adv (5) Number sentenges Number facts (2) (2)
Highest R Number sentences Equivalent fractions| RT Direct modeling Number sentence
RT Chunking
RT
Allen 736821767 cCCCCO CCCO0O CcCCO0O0 CCC(c)
Direct modeling Number sentences | Direct modeling Direct modeling
R Adv /Adv RT Direct Modeling Number facts Chunking
Roberto| 73%/615/633 | C C C CO ccCccCcC |CcccX C
Prof/Prof g_llj_mber sentences (5) (5) (2)
i Mental math Number facts Chunking
ngheStTR Direct modeling RT
Kara 39"'/688/661 [CCCCO [CCCCX CCCC CCO0O0 C
Number sentences| Number facts Table Direct Modeling
Adv /Prof Direct modeling Equivalent fractions| Number facts Chunking (5) .
TR RT Chunking
Ingrid | 37th/661/ @ | CCCC() | CCCO |[CCXO C
Adv/ Direct modeling Chunking Chunking Direct modeling
Equivalent fractions| Table Table Number sentence
Number sentences RT
Ruby /| 1685 |[CCCCC |CCXCC CcCCo0o0 CCCO C
/Prof Number sentence | Direct modeling Direct modeling Direct modeling Direct modeling
Direct modeling Table Chunking Table
Number facts RT
Sharina /661/677 | CCO0O0O ccccc |00cCO oocCcC C
JAdv/Prof Direct modeling Direct modeling Number facts Number sentence | Direct modeling
Equivalent fractions | Chunking Chunking
Number sentences
Katey /562 | XX00O0 XXXO00 XX00 XXXO0
/Bas Direct modeling Direct modeling Direct modeling | Table
Time allotted for Problem Solving | 20 minutes | 25 minutes 21 minutes 35 minutes29 minutes

Includes small

group challenge

C: correct answer
C: correct answer gotten by using relational thigkbased on previous answers
(c): problem not finished but was on the way taect answer
X: incorrect answer _Xincorrect answer but was using relational thigkbased on previous answers
X+: incorrect answer but strategy was sound andddoave led to correct answer
0: problem not attempted
(2) solved in under 2 minutes (5) solved in urdleminutes




Name | Scores Problem 6 Problem 7
(5th) TOMAGS/ Lawnmower holds 3 | % + 1/8 cup syrup.
4™ gr. Benchmark/ | gallons gas. Each Total? If there is 1 cup of
pseudonym 5" gr. Benchmark | lawn takes % gall. syrup is it enough for 2
(advanced 697+) |(—|l%v Eim; Ia;\//gs)’? g?yS? (2/4, 148%I (1/4, 1/3)
, 1/4, %a, us group challenge
Geraldo| 99"/775/774| CCCC +ext |CC (2)
(2) Number sentences
Adv/Adv Number sentences Equivalent fractions
Highest TR RT
Sylvia | 84"/694/725|CCCC (5)|CX
Number sentences Direct modeling
AdviAdv |
Highest TR
Allen | 73%682/767 C X
Direct modeling
Adv/Adv
TR
Roberto| 73rd/615/633 CCCC (6
Counting
Prof/Prof Number sentence
Highest TR
Kara 39th/688/661 C C C C CoO
Direct modeling Direct modeling
Adv/Prof TR
Ingrid | __ /661/ | C(X)CC XX
Chunking Direct modeling
IProf/Prof Direct modeling
Ruby |/ /685/CCO0O X0
Counting Direct modeling
/Prof
Sharina| __ /661/677| CC X0 CX
Chunking Direct modeling
[Prof/Prof
Katey /[ 1562| X X X X
/Bas
Time allotted for Problem Solving 26 minutes 38 minutes

C: correct answer

C: correct answer gotten by using relational thigkbased on previous answers

(c): problem not finished but was on the way tmaect answer

X: incorrect answer _Xincorrect answer but was using relational thigkbased on previous answers
X+: incorrect answer but strategy was sound andddoave led to correct answer

0: problem not attempted
(2) solved in under 2 minutes (5) solved in urdleminutes
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Name | Scores Problem 1 | Problem 2 | Problem 3 | Problem 4 Problem 5
(4th) TOMAGS/ 3 kids share 4 Maria ate %2 bag | 12 cupcakes, 8 kids, ¥ pizza each), 12 cups cat food,
seudonym 4’: gr. Benchmark/ | sandwiches. How | of candy. Lori ate | 1/3 c. frosting, How much total? 1 Y% cups per day,
P 5" gr. Benchmark | much for each Y% bag of candy. How much total? | (8, %) (16, %) How many days?
(advanced 640+) kid? Total eaten? (12, 1/3)(36, 1/3) | (20, ¥4) (40, 34) (12,1 %)
(3,4) (3,8) (6,20) | (¥2,%2) (72,1/3) (72, 2/3)
(12,40) (6,10) (Y, 1/4)(1/2, 1/8)
(10,25) 2% .,3Ya) (4%, 3
1/3)
Andre 97/731/695|CCCCC |[CCCCC | CCCC CCO0O0 C
Direct modeling Direct modeling (2) Chunking (5)
Adv/Adv g_llj_mber facts Number sentenceg RT Guess and check
. RT Decomposing
Highest TR Number sentence
Natalie | 987698/759| CCCCC |[CCXCC |[CCO00 CCCC C
Direct modeli Direct modeli Numb t g
AQV | DI | R seniseed M (6) )
JAdv RT CR:?_unkmg Chunking
Highest TR
Alana 90'/731/732|CCCCC |[CCCCC |[000(X) cccCcC CcC +C
Number facts Direct modeling Direct modeling Chunking (2)
Numb t Numb t g Chunki Tabl .
Adv/Adv R_Lll_m er sentence | Number sentence unking able Chunking
TR
Anita 70th/681/682 CCCCC |[CCCCC |CCO0O0 CCCcCc+C |C
Number facts Direct modeling Number sentence | Number sentences | Chunking
Number sentence§ Number sentence§ Chunking Grouping Number sentence
Adv/Adv RT RT
TR
Katerina| 12"/745/646 | CCCCC |[CCCCC |[CCCO CCCC X
Direct modeling Direct modeling Direct modeling Direct modeling Direct modeling
Adv/Adv Number facts RT
TR
Henry / 1663]CCXO0O |[CCCCO0O |CCO0O0 XCXC
JAdv Direct modeling Direct modeling Direct modeling Direct modeling
Gloria / /588 XX000 X000 X000 C
Direct modeling Direct modeling Direct modeling Direct modeling
Number sentenceg
/Prof
Lala / /572 CXX00 |XXO0O0 X000
/Prof Direct modeling Direct modeling Direct modeling
Jenni / /550 I CXOO0O0 [ XX0XO0 XXXO0 XX00
/Bas Direct modeling Direct modeling Direct modeling Direct modeling
_ _ Counting
Time allotted for Problem Solving | 20 minutes | 25 minutes| 21 minute 35 minutes 29 minutes

C: correct answer
C: correct answer gotten by using relational thigkbased on previous answers
(c): problem not finished but was on the way twaect answer
X: incorrect answer __Xincorrect answer but was using relational thigkbased on previous answers

X+: incorrect answer but strategy was sound andddeave led to correct answer

0: problem not attempted
(2) solved in under 2 minutes (5) solved in uridleninutes




Name Scores Problem 6 Problem 7
(4th) TOMAGS/ Lawnmower holds | ¥ + 1/8 cup syrup.
peutonym | 591 BSTChTAN | 3 galone 0o e Lot e !
(ad?/énced 640+) How many Iavgns.’? engugh )f/org days?
(1/2,1/4, %, 3/18) | (1/4,1/8) (1/4, 1/3)
Andre 9731/695| CCCC CX
Number sentence | Direct modeling
Chunki
AdVIADV | Direct modeling
Highest TR
Natalie | 967698/759 | C C CcCC cC
Adv Chunking Direct modeling
IAdv R
Highest TR
Alana od/731/732| CCCC CX
Chunking Direct modeling
Adv/Adv Direct modeling
TR
Anita 70th/681/682 CC C C CX
Chunking Direct modeling
Direct modelin
Adv/Adv BT g
TR
Katerina| 12"/745/646 | X X 0 0 X X
Direct modeling Direct modeling
Adv/Adv
TR
Henry /1663 CX
JAdv Direct modeling
Gloria / /588 CCO0O CX
Direct modeling Direct modeling
[Prof
Lala / /572 | CCO0O0 XX
/Prof Direct modeling Direct modeling
Jenni / /550 |CC XX XX
/Bas Chunking Direct modeling
Time allotted for Problem Solving 26 minutes 38 minutes

C: correct answer

C: correct answer gotten by using relational thigkbased on previous answers

(c): problem not finished but was on the way twaect answer
X: incorrect answer

X: incorrect answer but was using relational thigkbased on previous answers
X+: incorrect answer but strategy was sound andddeave led to correct answer

0: problem not attempted
(2) solved in under 2 minutes (5) solved in uridleninutes

130



131

Name Scores Problem1 | Problem2 | Problem3 | Problem4 | Problem5
(3fd) TOMAGS/ 8 kids share 14 4 kids share 7 2 kids share 3 6 kids, each with | 6 kids, each with
39gr.Benchmark | candy bars. How sandwiches. How | cakes. How much| 2 2/3 cookies. 2 Y4 brownies. How
pseudonym
(advanced 586+) | much per kid? much per kid? per kid? How many in all? | many in all?
(8,14) (4,7) (12,8) (2.3) (4,6) (6,2 2/3) (6,2 ¥4) (6, 2 5/6)
Small group: (4,7)
Dominic | 97/737 C (c) CC (5 CC (2 c(()C CC (2
Direct modeling Number facts Decomposing Number facts Number facts
Adv
. Number facts Number Sentences| Number facts Number sentences Number sentences
Highest TR | Number sentences
Jasmin | 9%/717 C (c) C X+ CC (5C [C(5)(c) CcCC
Direct modeling Number facts Number facts Decomposition Decomposition
Adv
. Number facts Number sentences | Number sentences| Number facts Number facts
ngheSt TR Number sentences| Pictures Number sentences Number sentences
Freddie | 9%/641 C (c) CC (5 CC (2 C (5) CcCC
Direct modeling Number facts Number facts Decomposing Counting w/model
Adv
. Number facts Number sentences | Number sentences| Counting w/model
Highest TR Counting w/model
Maya 89"/674 C (c) C CC (5 C ccC
Direct modeling Number facts Number facts Counting w/model | Counting w/model
Adv
Number facts Number sentences | Number sentences| Number sentences
TR Number sentences| Direct modeling Count w/Model
Julia 84"/663 C ccC cC X+ ccC
Direct modeling Counting w/model | Number sentences| Counting w/model | Counting w/model
Adv
R Counting Count w/Model
Jaime | 84"/692 X X X X X
Adv Counting Number sentences
Direct modeling
Juan 84"/686 C ccC X C (c)
Adv Direct modeling Direct modeling Counting w/model | Counting w/model
Gissela | 237486 X XX XX X X0
Bas Direct modeling Counting w/model | Direct modeling Counting w/model | Direct modeling
Counting
Time allotted for Problem Solving | 23 minutes | 22 minutes 11 minutes 15 minutes | 23 minutes

C: correct answer
C: correct answer gotten by using relational thigkbased on previous answers
(c): problem not finished but was on the way tmaect answer
X: incorrect answer __Xincorrect answer but was using relational thigkbased on previous answers
X+: incorrect answer but strategy was sound andddoave led to correct answer
0: problem not attempted
(2) solved in under 2 minutes (5) solved in uridleninutes
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Name Scores Problem 6 | Problem 7 | Problem 8 | Problem 9 Problem 10
(3fd) TOMAGS/ 6 cups dog food. Eating 1/3 pizza Francisco drank | Daniel has 2/3 Jacquelyn ate 2/3
seudonvm 3 gr.Benchmark | ¥ cup each day. and % pizza. How| Y2 cup milk. Jay | Hershey bar, candy bar. Brother
P y (advanced 586+) | How many days? | much total? How | drank ¥4 cup. Fernando has 1/3. | ate 1/12. How much
(2/2)(1%2)(1/4)(3/4) | much left? How much total? | How much more? | total?
(173, %) (113, Ya) (1/2, Ya) (2/3,1/3) (5/6,1/3) | (2/3, 1/12)
(1/4, 1/8) (7112,1/2)(3/4,2/3)
Small group Small group
(1/2,1/5) Small group
Dominic | 97/737 cccc)y|lcccc CcCC CCCC C (2)
Number sentences| (easel) (easel) Equivalent fractions
Hi hA?\{I'R Number facts Direct modeling I(Eizg\?;z(:t) Direct modeling Direct modeling
ignes Counting fractions Equivalent fractions| Number sentences
RT Di . Number sentences
irect modeling RT
Jasmin | 9%/717 CCCX+ |CccccC CcC CCCC C (5)
Number sentences| (easel) (easel) Equivalent fractions
. Adv Number facts Direct modeling (5)_(easel) Direct modeling Direct modeling
ngheSt TR | chunking 523&?\':m Equivalent fractions| Number sentences
Di . Number sentences
iﬁ irect modeling
Freddie | 9%/641 CCX+0 |ccCccCcC CC (5 @ C (2
Adv Counting (easel) (easel) Equivalent fractions
. Direct modeling Equivalent Direct modeling
H|gh95t TR fractions Number sentences
Direct modeling
Maya 843674 cccc ccccC CC (5 CCCX+
Adv Direct modeling (easel) (easel) (board)
Number sentences| Direct modeling Direct modeling
TR Number Sentences
Julia 847663 CCCx+ |cccc |e CCCX+ |[C (ease)
Adv Direct modeling (easel) (board) Direct modeling
Number sentences| Direct modeling Direct modeling Number sentence
TR Number sentences Number Sentences | Equivalent fractions
Jaime | 84"/692 C000 (c)
Adv Counting w/model Direct modeling
Number sentence
Juan 84"/686 C000 XX00
Counting w/model | Direct modelin
Adv 9 g
Gissela | 239486 CX00 X X X0 (c)
Counting w/model | Direct modeling Direct modeling
Bas
Number sentence
Time allotted for Problem Solving| 20 minutes 30 minutes tbngroup | 25 minutes 15 minutes

C: correct answer

C: correct answer gotten by using relational thigkbased on previous answers

(c): problem not finished but was on the way tmaect answer

X: incorrect answer __Xincorrect answer but was using relational thigkbased on previous answers
X+: incorrect answer but strategy was sound andddeave led to correct answer

0: problem not attempted

(2) solved in under 2 minutes (5) solved in ursleminutes
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Appendix G Institutional Review Board (IRB) Approval

IVERSITY OF

ARKAN SAS

THE YOU OF

210 Administration e Fayetteville, Arkansas 72701 e (479) 575-2208 ¢ (479) 575-3846 (FAX)
Email: irb@uark.edu

Research Compliance
Institutional Review Board

April 26, 2011
MEMORANDUM
TO: Kim McComas
Laura Kent
FROM: Ro Windwalker
IRB Coordinator
RE: New Protocol Approval
IRB Protocol #: 11-04-614
Protocol Title: Mathematically Talented Students' Experiences with Cognitively
Guided Instruction
Review Type: [1EXEMPT [X]EXPEDITED []FULL IRB

Approved Project Period: Start Date: 04/26/2011 Expiration Date: 04/25/2012

Your protocol has been approved by the IRB. Protocols are approved for a maximum period of
one year. If you wish to continue the project past the approved project period (see above), you
must submit a request, using the form Continuing Review for IRB Approved Projects, prior to the
expiration date. This form is available from the IRB Coordinator or on the Compliance website
(http://www.uark.edu/admin/rsspinfo/compliance/index.html). As a courtesy, you will be sent a
reminder two months in advance of that date. However, failure to receive a reminder does not
negate your obligation to make the request in sufficient time for review and approval. Federal
regulations prohibit retroactive approval of continuation. Failure to receive approval to continue
the project prior to the expiration date will result in Termination of the protocol approval. The
IRB Coordinator can give you guidance on submission times.

This protocol has been approved for 114 participants. If you wish to make any modifications
in the approved protocol, including enrolling more than this number, you must seek approval
prior to implementing those changes. All modifications should be requested in writing (email is
acceptable) and must provide sufficient detail to assess the impact of the change.

If you have questions or need any assistance from the IRB, please contact me at 210
Administration Building, 5-2208, or irb@uark.edu.
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