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ABSTRACT 

Polyphenols are major dietary components in fruits and vegetables. Many research and 

epidemiological studies have reported that phenolic compounds, such as anthocyanins, may have 

a protective effect against various degenerative diseases. Phenolics in grape wine have been 

extensively studied but information on changes of phenolics in wine and vinegar made from 

other fruit crops is limited, however. This research started with the objective of determining the 

effect of proteases in preventing phenolic and, specifically, anthocyanin degradation in the 

ethanolic fermentation of black raspberries to reduce sugar content. The results of this study led 

to investigations of changes of other polyphenols in persimmons and blueberries during both 

ethanolic (vinification) and vinegar (acetification) fermentations.  

Initial results showed that a 1% neutral bacterial protease could retain anthocyanin in open 

vinification of black raspberries but the protease treatment provided no benefit when a closed 

fermentation was used. Additional research using closed vinification followed by acetification of 

persimmons indicated that phenolics were significantly affected by these fermentations.  

Phenolics in astringent persimmons were significantly degraded during both vinification and 

acetification while phenolics in non-astringent persimmons actually increased during vinification 

but decreased during acetification. In blueberries, anthocyanin and epicatechin were increased 

during vinification but decreased during acetification.  

The lipid-protective properties of fruit wine and vinegar was also investigated. In this study of 

antioxidant properties, blueberry vinegar was more effective than blueberry juice or blueberry 

wine in preventing EPA and DHA degradation in salmon oil-in-water emulsion model system.  

This thesis research provides informative insights concerning changes in polyphenols, such as 

anthocyanin, during vinification and acetification of some fruit crops. The information is 



x 
 

especially beneficial to the juice, wine and vinegar industries since polyphenols are one of the 

major health promoting constituents in fruit juices, wines and vinegars. 
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CHAPTER 1. INTRODUCTION

Phytochemicals in fruits, vegetables and grains have been extensively studied throughout 

decades. Many of them have been identified and associated with the prevention of cancer, heart 

disease and other diseases. Black raspberries have been long known to contain substantial 

amount of anthocyanins and total phenolics (Torre and others 1977; Hong and others 1990; 

Moyer and others 2002). The high antioxidant capability of black raspberries is attributed to the 

high anthocyanin and phenolics content. Black raspberries have been linked to many possible 

health benefits such as acting as angiogenesis inhibitors, preventing inflammatory effects, 

protecting against DNA damage and exhibiting anti-cancer activity (Harris and others 2001; 

Lazze and others 2003; Liu and others 2005; Kresty and others 2006). Persimmons, though not 

popular in Western countries, are extensively studied in Asian countries. Persimmons contain 

high amounts of biologically active compounds such as ascorbic acid, polyphenols and tannins 

(Gorinstein and others 1994; Bubba and others 2009). Because of the high bioactive compounds, 

persimmons have been associated with various health benefits such as anticarcinogenic and 

antidiabetic effects, and prevention against rise in plasma lipids. (Katwase and others 2003; Lee 

and others 2006; Park and others 2008).  

Blueberries are also one of the most popular fruits that are widely known to be rich in 

phytochemicals such as phenolic compounds and flavonoids. Blueberry phenolics exhibit various 

protective effects which include antioxidant, anti-inflammatory and anti-carcinogenic properties 

(Wedge and others 2001; Sellapan and others 2002; Zheng and others 2003; Neto 2007). Several 

phenolic acids such as gallic acid, caffeic acid, and others have been identified in rabbiteye 

blueberry and Southern highbush blueberries. Some anthocyanins have also been identified in 

lowbush, highbush, rabbiteye and Tifblue blueberries. The major anthocyanins in lowbush and 
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Tifblue blueberries were cyanidin-3-arabinoside, malvidin-3-glucoside and others (Shahidi and 

others 2004). These phenolic acids and anthocyanins are the major phytonutrients in blueberries 

and have significant health promoting effects both in vitro and in vivo.  

Phenolic compounds are very important components in fruits, juices and wine because they 

contribute to the sensory characteristics such as color, astringency, bitterness, flavor, and taste. 

Furthermore, the phenolic compounds in juice products and wine are purported to have distinct 

health benefits. According to several epidemiologic studies with wine, regular moderate 

consumption reduces the risk of coronary heart disease, type 2 diabetes, cancers and lowers the 

risk of overall mortality (German and others 2000; Jackson 2008).  

 Vinegar has been used as a seasoning in cooking since ancient times. However, consuming fruit 

or wine vinegar as a drink on a regular basis is becoming increasingly popular, especially in Asia, 

because of the potential health benefits.  According to the Nielson Company, vinegar sales 

increased 1.6% in 2006 with specialty vinegars, such as red wine vinegar and balsamic vinegar, 

leading the way (Vinegar Institute 2010).  Also, the Japanese market for vinegar drinks was 

estimated at $559.6 million and is expected to grow 15% annually (Berry 2007).  Recent 

research has reported that vinegar has anti-glycemic effects on type 2 diabetes adults, anti-

obesity effects, anti-hypertensive effects, and anti-bacterial activity. It reduces cholesterol and 

triacyglycerols, inhibits cancer cells, and serves as a refreshing drink after exercise. (Kondo S 

and others 2001; Fushimi and others 2002; Shimoji and others 2004; Fushimi and others 2006; 

Medina E and others 2007; Kondo T and others 2009; Johnson and others 2010).  

Wine vinegar beverages could provide potential health benefits from both the phenolic 

compounds and acetic acid (vinegar) in the drink. However, little is known about the changes of 

individual phenolic compounds during alcohol fermentation and acetification processes in fruit 
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crops other than grapes. Also, the potential protective effect of wine vinegar is currently limited. 

This research began with an industry supported project intended to produce black raspberry juice 

with reduced sugars and high antioxidant content using a brief ethanolic fermentation.  During 

production, it was found that antioxidant content decreased and polyphenoloxidase was thought 

responsible.  Polyphenoloxidase (PPO) is found naturally in most plants including most fruits 

that have high commercial value. It accounts for catalyzing some undesirable enzymatic 

browning reactions and also degrading anthocyanins in some fruit (Labuza and others 1986; 

Francis 1989). Many inhibitors such as sulfite and ascorbic acid have been used to inhibit the 

PPO activity; however, some research has indicated a more novel approach.  The protein 

structure of PPO may be susceptible to protease enzymes which could alter PPO activity but 

information about using proteases to prevent anthocyanin degradation is still limited. Therefore, 

the initial project was designed to investigate the effect of proteases in preserving anthocyanins 

in a sugar-reduced black raspberry juice. Unfortunately, the total amount of anthocyanins in 

black raspberry juice reduced during the brief fermentation process exceeded any positive benefit 

that could be provided by proteases.  

The black raspberry project provided inspiration for the subsequent research. Upon completion 

of the black raspberry project, it was clear that significant changes of phenolic compounds could 

occur with alcoholic fermentation.  Furthermore, it was suspected that aerobic acetification of the 

wine to vinegar would affect phenols even more. Due to limited access to appropriate fresh fruit 

at the time, persimmons were used for the next phase of the research.  In this persimmon 

research, total phenolics and antiradical activity were investigated during the persimmon wine 

and vinegar fermentation processes, and a comparison was made between astringent and non-

astringent persimmons. 
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The persimmon project improved skills and provided ideas for a more thorough investigation of 

changes in phenolic compounds in blueberries during wine and vinegar fermentation later in the 

summer when fruit was plentiful.  

The major objectives of this research includes:  

1) Investigating the effect of proteases in reducing PPO activity and retaining anthocyanins 

during ethanolic fermentation of black raspberry juice 

2) Screening changes of total phenolics and antiradical activity in astringent and non-astringent 

persimmons during ethanolic wine and subsequent acetification fermentation to vinegar. 

3) Determining the changes in a select group of phenolic compounds in blueberries during wine 

and vinegar production. 
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CHAPTER 2. LITERATURE REVIEW  

2.1 Fruit Substrates 

2.1.1 Introduction 

Blueberries (Vaccinium sp) and black raspberries (Rubus occidentalis) are widely consumed 

around the world, especially in the Western countries while persimmons are more popular in 

Asia . The most common blueberries produced in the commercial scale include lowbush (wild), 

highbush and rabbiteye (cultivated) blueberries (Kalt 2001). Blueberries are rich in anthocyanins, 

proanthocyanidins, phenolic acids, flavonols, and catechin (Kader and others 1996; Skrede and 

others 2000; Smith and others 2000). The total contents of phenolics in blueberries are affected 

by the degree of maturity at harvest, pre-harvest environmental condition, postharvest 

environmental condition, and cultivars (Sahidi 2004). 

Black raspberries are one of the richest sources of anthocyanins and polyphenols among fruits 

and vegetables (Tian and others 2006). The content of phenolic compounds in raspberries is 

affected by cultivar, maturity, processing and geographic area of origin (Rommel and others 

1993; Wang and others 2000). 

Persimmons have been studied and used in Asian countries for centuries.  They have been found 

to contain high amounts of biologically active compounds that have been associated with various 

health benefits. 

2.1.2. Total Phenolics and Anthocyanins in Berries Species 

After investigated 87 highbush blueberries (Vacciunium corymbosum L.) and species-

introgressed highbush blueberry cultivars, Ehlenfeldt and other (2001) reported that the total 

content of phenolics in the fruit ranged between 430-1990 mg/kg of fresh weight expressed in 

gallic acid equivalents. The total anthocyanin contents ranged from 890-3310mg/kg fresh weight 
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expressed as cyanidin-3-glucoside equivalents. Sellapan and others (2002) investigated various 

Georgia-grown rabbiteye blueberry cultivars (Vaccinium ashei Reade) and reported that total 

phenolics in these blueberries were between 127 – 1973.4 mg/kg fresh weight expressed in gallic 

acid equivalents and total anthocyanins were between 2700.2 - 6690.1 mg/kg fresh weight 

expressed in cyanidin-3-glucoside equivalents. Gallic, caffeic, p-coumaric, ferulic and ellagic 

acids were identified in rabbiteye and Northern highbush blueberries (V. corymbosum L.). Also, 

Sahidi (2004) found rabbiteye blueberries contained higher levels of catechin (145.3 – 3874.8 

mg/kg fresh weight) than southern highbush (V. darrowii ) blueberries (98.7 292.8mg/kg fresh 

weight). 

The composition of black raspberry anthocyanins has been extensively studied. The 

anthocyanins that have been previously identified and quantified include: cyanidin 3-glucoside, 

cyanidin 3-sambubioside, cyanidin 3-rutinoside, cyanidin 3-xylosylrutinoside and pelargonidin 

3-rutinosdie (Torre and others 1977; Tian and others 2006). Cyanidin 3-rutinoside and cyanidin 

3-xylosylrutinoside are the predominant anthocyanins, comprising 24-40 and 49-58% of total 

anthocyanins in black raspberries (Tulio and others 2008). The total anthocyanin in black 

raspberries has been reported to be about 228 ±54 mg/kg of fresh weight and as high as 

1770mg/100g of freeze-dried black raspberries (Wang and others 2000; Harris and others 2001).  

The total phenolics in black raspberry have also been reported to be 1900±35 mg/kg fresh weight 

expressed in gallic acid equivalents (Wang and others 2000). Gallic acid, protocatechuic acid, p-

Coumaric acid, ferulic acid, and hydrobenzoic acid are the phenolic acids that have been 

identified in black raspberries (Liu and others 2005; Wu and others 2009).  

 



- 7 - 
 

2.1.3. Health Benefits of Berries 

Blueberries are rich in phenolics and anthocyanins as discussed in the previous section. Berry 

phenolics and anthocyanins are widely known to improve human health because of their high 

antioxidant properties. Intake of anthocyanins from black currents resulted in significantly 

improved night adaptation in human subjects, and similar benefits were also observed after 

administration of anthocyanins from bilberries (Nakaishi and others 2000; Muth and others 

2000). In vivo and in vitro studies have shown that anthocyanins can reduce cancer cell 

proliferation, inhibit tumorigenesis, reduce inflammation and enhance capillary strength (Koide 

and others 1997; Folts 1998; Hou 2003; Kang and others 2003).   Other phytochemical 

compounds from blueberries can reduce cancer risk by inhibiting cancer cell proliferation and 

inducing apoptosis (Yi 2005; Seeram 2006). Consumption of blueberries can promote 

cardiovascular health by lowering blood cholesterol and lipid level (Kalt and others 2008).  

Black raspberries have been extensively investigated and reported to be the chemopreventive 

dietary constituents. Liu and others (2005) reported that black raspberry extract and fractions 

contain angiogenesis inhibitors that can potentially inhibit tumor growth. Consumption of black 

raspberries can help to prevent cancer development in colon, esophagus, and liver (Harris and 

others 2001; Kresty and others 2001; Reen and others 2006).  

In summary, the phenolics and anthocyanins in blueberries and black raspberries prevent 

proliferation of cancer cells, exhibit antioxidant effects and many other biochemical functions, 

such as regulating the activities of metabolizing enzymes, repairing DNA oxidative damage and 

modulating nuclear receptors, gene expression and subcellular signaling pathway (Seeram 2008). 
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2.1.4 Phenolics in Persimmons 

Persimmon is one of the most popular fruit crops in Asian countries. China, Korea and Japan are 

the leading world persimmons producers, with production of approximately 2.5 million, 0.5 

million, and 250,000 metric tons, respectively, in 2008 (FAOSTAT 2011). Persimmon is 

generally categorized into two categories: astringent and non-astringent. The major difference 

between astringent and non-astringent persimmons is that astringent persimmons contain large 

amounts of soluble tannins at maturity (Macheix and others 1990; Suzuki and others 2005) while 

non-astringent persimmons do not. The pulp of the astringent persimmon is almost unpalatable 

before maturity but that of the non-astringent persimmon is sweet even when the fruit is still firm. 

Persimmons contain a rich source of nutrients such as ascorbic acid, condensed tannins, 

carotenoids, and other polyphenols that are beneficial to human health (Homnava and others 

1990; Gorinstein and others 1994; Gu and others 2008).  

Persimmons are known to contain high amounts of phenolic compounds such as p-coumaric 

(425-615µg/g), gallic acid (159-221µg/g), protocatechuic (63-241 µg/g), proanthocyanidins and 

tannins consisted of catechin (0.8-3.33mg/100g dry weight), epicatechin (0.5-1.5mg/100g dry 

weight), epigallocatechin (0.45-2.25mg/100g dry weight), catechin-gallate, gallocatechin and 

gallocatechin-gallate (Matsuo and other 1978; Haslam and other 1988; Gorinstein and others 

1994; Suzuki and others 2005).  

2.1.5. Health Benefits of Persimmons 

Several researchers have reported the potential health benefits of persimmon due to its high 

antioxidant properties. Studies show that persimmons possess antitumor and multidrug resistance 

reversal properties (Kawase and others 2003), antidiabetic effects (Lee and others 2006), 

hypocholesterolemic and antioxidant effects (Gorinstein and others 1998), and prevent the rise in 
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plasma lipids (Matsumoto and others 2006). Persimmon vinegar also exhibits antitumor effects 

(Mishima and others 2000), antioxidative effects (Takeshita and others 2007) and prevents 

metabolic disorders induced by chronic alcohol administration (Moon and others 2008). Two 

flavonol glucosides, isolated from persimmon, have been shown to have a hypotensive action in 

rats (Funayama and other 1979).  

2.2 Anthocyanins 

2.2.1. Introduction 

Anthocyanins constitute a special class of flavonoids.  They are water-soluble pigments that give 

most plants the red, purple, and blue color. Blackberries, blueberries, red and black raspberries, 

bilberries, cherries, currents, grape, pomegranates and cranberries contain substantial 

anthocyanin.  However, anthocyanins are not present in certain other red fruits, such as tomato 

and hot pepper, in which carotenoids are the predominant pigments. The total content of 

anthocyanins vary among fruits depending upon, fruit cultivar, growing temperature and light, 

pulp pH, sugar content, and the presence of enzymes, ascorbic acid, oxygen, condensation 

products, metals, and copigmentation (Francis 1989; Sahidi and others 2004).  

2.2.2 Chemical Structures and Properties                                                                                                                                                                                                                                  

About 260 anthocyanins have been identified and approximately 70 have been found in fruits 

(Sahidi and others; 2004; Francis 1989). Six major anthocyanidins are commonly found in nature: 

(1) pelargonidin, (2) cyanidin, (3) peonidin, (4) delphinidin, (5) petunidin and (6) malvidin. Of 

these, cyanidin is the most common anthocyanidin (Heywood 1972).  

Anthocyanins are glycosides of anthocyanidins with a typical A-ring benzoyl and B-ring 

hydroxycinnamoyl as shown in Figure 2.1 (Harborne 1989). In other words, they are 



- 10 - 
 

hydroxylated and methoxylated derivatives of phenyl-2-benzopyrylium (flavylium salt structure, 

Figure 2.1).  Anthocyanin molecules usually consist of an aglycone base on the flavylium 

nucleus, a group of sugars and, sometimes, a group of acyl acids (Francis 1989). They are cations 

in acid media and their structure is stabilized by resonance with many mesomeric forms 

(Macheix and others 1990). Table 2.1 shows the structures of some naturally occurring 

anthocyanidins.   

Anthocyanins are unstable compounds. Their stability depends on many factors such as pH, heat, 

storage temperature, contaminants, etc. Loss of color can occur during food processing of plant 

products. Among the factors mentioned above, anthocyanins are especially sensitive to pH. 

Anthocyanins exist in four different forms in solution: neutral or ionized quinonoidal base, 

flavylium cation or oxonium salt, the colorless pseudobase and chalcone. 

 

  

 

Figure 2.1. Basic structure of anthocyanindins 
Source: Harborne 1989 

           



- 11 - 
 

 
Table 2.1. Structures of naturally occuring anthocyanidins. 

 Substitution patterna 
Anthocyanidin 3 5 6 7 3’ 4’ 5’ 
Common Structures        
Pelargonidin OH OH H OH H OH H 
Cyanidin OH OH H OH OH OH H 
Peonidin OH OH H OH OMe OH H 
Delphinidin OH OH H OH OH OH OH 
Petunidin OH OH H OH OMe OH OH 
Malvidin OH OH H OH OMe OH OMe 
        
Rarer Structures        
Aurantinidin OH OH OH OH H OH H 
6-Hydroxycyanidin OH OH OH OH OH OH H 
5-Methylcyanidin OH OMe H OH OH OH H 
Rosinidin OH OH H OMe OMe OH H 
Pulchellidin OH OMe H OH OH OH OH 
Europinidin OH OMe H OH OMe OH OH 
Hirsutidin OH OH H OMe OMe OH OMe 
Capensinidin OH OMe H OH OMe OH OMe 

a Numbering according to the anthocyanidin C-Numbering system in the 
structures scheme 
Source: Harborne  1989 
 

 

Figure 2.2 shows the pH effect on the predominant forms of anthocyanins.  In terms of visual 

color, the flavylium cation which appears red is the most important. Most intense red color of 

anthocyanins occurs between pH 1 – 3 under the equilibrium condition between the flavylium 

cation and colorless carbinol base. This is the reason most anthocyanin colorants can only be 

used under pH 4 

(Shahidi 2004; Francis 1989). 
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Figure 2.2 Chemical structures of anthocyanin chromophores. 
Source: Shahidi 200 

 

2.3. Wine 

2.3.1. Background 

Wine is an alcoholic beverage made from fermented juices, typically grape juice.  The history of 

wine can be traced back 7,500 years ago, with the earliest residues of wine dating from early to 

mid-fifth millennium B.C. (McGovern and others 1996). Many researchers believe that the 
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discovery and development of wine originated in southern Caucasia, which includes present-day 

northwestern Turkey, northern Iraq, Azerbaijian and Georgia. Most ancient and medieval wine 

resemble today’s dry to semidry table wine. In these early years, wines turned vinegary by spring 

because the knowledge regarding methods of protecting wine from oxidation and microbes was 

scarce. Therefore, prolonged shelf life of wine was rare in ancient times. Nevertheless, the 

modern expression of wine started in the seventeenth century when the use of sulfur as a 

disinfectant in barrel treatment was recognized and widely adapted by the wine makers. This 

innovation increased the shelf life and quality of wine, allowing us to enjoy a wide variety of 

wine throughout the year (Jackson 2000).  

Many types of wines are available today. However, there is no generally accepted classification 

system for wine. They may be categorized by alcohol content, sweetness, carbon dioxide content, 

grape variety, fermentation or maturation process, and geographic origin. Wines can also be 

divided into categories such as still table wine, sparkling wines and fortified wine for taxation 

purposes. Table wine has 9-14% alcohol content while fortified wine has 17 – 22% alcohol by 

volume (Jackson 2000). 

Wine is consumed in many countries worldwide.  However, Europe is the region that produces 

and consumes the largest amount of wine by volume in the world. According to the Wine 

Institute (2005), Unites States, Italy, France and Spain are the top wine producers while France, 

Italy and United States were the top three wine consumers in 2008. Statistics on wine production 

and consumption for several countries are given in Figure 2.3.  
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Figure 2.3. World wine production and wine consumption countries (2008). 
Source: Wine Institute (2010) 

 
Continued from Figure 2.3. 

 

             

 

The process of wine making or vinification incurs multiple steps of fermentation that is 

monitored in a well-controlled environment. Primary fermentation (alcohol fermentation) and 

secondary fermentation (malolactic fermentation) are the two major processes in wine making. 

During primary fermentation, sugars in fruit must are rapidly transformed into alcohol by yeasts. 

Most of the sugars are converted into alcohol in the primary stage. Secondary fermentation takes 
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place anaerobically often in different fermenting barrels. The principal effect of secondary 

fermentation is the reduction in acidity since lower acidity gives wine a desirable “mellow” and 

“fat” characteristics (Peynaud 1984).  

2.3.2. Wine Fermentation 

2.3.2.1. Alcoholic Fermentation – Primary Fermentation 

Alcoholic fermentation is the primary stage of the wine fermentation process where sugar is 

converted to alcohol and carbon dioxide by yeasts. Gay-Lussac gave a chemical formula to 

explain the reaction:  

Sugar (100) = Alcohol (51.34) + Carbon Dioxide (48.66) 

However, Pasteur later showed that the Gay-Lussac equation is only valid for 90% of the sugar 

transformed because the rest is converted into other organic compounds such as glycerol, 

succinic acid, and acetic acid. More research was conducted and other by-products were 

identified in the reaction: lactic acid, butyleneglycol, acetaldehyde, pyruvic acid, higher alcohols, 

ethyl acetate and some other substances present in minute quantities (Peynaud 1984). 

Yeasts are very important in the alcoholic fermentation because they play an active role in 

converting sugar into alcohol. Therefore, several important factors, such as temperature, air and 

nutrients, must be controlled and monitored in order to keep yeasts alive. 

2.3.2.1.1. Yeasts 

Yeasts are a collection of fungi that possess a particular unicellular growth habit. Yeasts in grape 

wine fermentation can be found in many shapes: elliptical or ovoid, elongate, spherical and 

apiculate. They reproduce in two ways: (1) vegetative reproduction by budding (2) formation of 

spores, which produces more yeasts after germination (Peynaud 1984; Ruf 2003).   
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During natural fermentation of grapes, different species of yeasts predominate over each other at 

different stages. For example, apiculate start the fermentation in sulfited must and produce the 

initial alcohol. However, apiculate yeasts can only tolerate 3% - 4% alcohol, so Saccharomyces 

ellipsoideus quickly takes over at this time and, by mid-fermentation, the initiation yeasts will 

have disappeared. Toward the end of fermentation when higher alcohol content is achieved, 

Saccharomyces oviformis, the less sensitive yeast becomes predominant and can tolerate up to 18% 

of alcohol (Peynaud 1984).  

Temperature, air and nutrients are the three major factors that affect the growth of yeasts. 

Temperature is the predominant factor that influences the yeast metabolism. Yeasts only develop 

properly in a narrow range covering a maximum of twenty degrees. At warmer temperatures 

(>20°C), the cells rapidly decline at the end of the fermentation; at colder temperatures (<14°C), 

the start of fermentation is almost impossible. Yeasts require air or oxygen initially to multiply. 

Without oxygen, they only reproduce a few generations and their growth stops. Also, yeasts need 

oxygen biologically to synthesize sterol and to assimilate fatty acids with long chain molecules 

which they need. Therefore, oxygen is of great importance for sterol synthesis and the initiation 

of fermentation.  In most fruit, yeasts normally have abundant sugars during fermentation as a 

carbon source. However, their need for nitrogen is poorly satisfied because of the limited 

resources in many common fruit musts. Yeasts consist of 25-60% nitrogenous substances. They 

need nitrogen to reproduce and form new cells. Often the addition of nitrogenous substances 

such as ammonium nitrate into the fermentation process is vital for the survival, growth and 

multiplication of yeasts (Peynaud 1984).  
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2.3.2.2. Malolactic Fermentation – Secondary Fermentation 

Malolactic fermentation is the secondary fermentation process following alcoholic fermentation 

in grape wine. Malolactic fermentation is also called the concluding or refining fermentation. It 

is the biochemical deacidification or degradation of malic and other acids. This fermentation 

process promotes the quality and improves microbial stability of grape wine. It appears to be the 

critical point that distinguishes the production of good wine from the production of less premium 

wine (Peynaud 1984).  

 2.3.2.2.1. Lactic Acid Bacteria 

Lactic acid bacteria play an important role in malolactic fermentation. They provoke the 

reduction of malic acid to lactic acid, creating a less acidic and better drinkability characteristic 

in grape wine. Lactic acid bacteria can be found in various shapes which include round or oval, 

pelleted, long or short and sometimes sinuous. The genera of wine bacteria are Leuconostoc 

(heterofermentive cocci), Pediococcus (homofermentive cocci), and Lactobacillus (bacilli). 

There are two basic kinds of lactic acid bacteria in wine. The first type is desirable and 

predominantly decomposes malic acid and, secondarily, sugar, citric acid but not tartaric acid 

and glycerol. They are the normal malolactic fermentation agents and form only few volatile 

acids. The second type is the noxious bacteria that decompose pentoses, tartaric acid and glycerol. 

They raise volatile acidity and usually cause wine spoilage.  

2.3.2.2.2. Effects of Malolactic Fermentation 

The effects of malolactic fermentation include reduction of acidity, influencing stability and 

affecting sensory characteristics of the wine (Peynaud 1984; Ruf 2003).    

Deacidification is the principal effect of malolactic fermentation. The reduction in acidity and 

rise in pH increase the smoothness and drinkability of wine, making the wine more supple. The 
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reduction in total acidity in grape wine is not explained by the tartaric precipitation during 

clarification but by the disappearance of malic acid. With the disappearance of malic acid, the 

level of lactic acid increases and the acidity decreases because malic acid possesses two acid 

functions but lactic acid carries only one. This explains the decrease in acidity when malic acid is 

transformed into lactic acid by lactic acid bacteria. The following shows the overall reaction of 

malolactic fermentation (Peynaud 1984): 

Malic acid (1g) = Lactic acid (0.67g) + Carbon dioxide (0.33g) 

During malolactic fermentation, malic and citric acids are consumed. The more microbially 

stable tartaric and lactic acids are the only acids left after this fermentation process. Thus, 

secondary fermentation is thought to promote microbial stability because of the production of 

more stable tartaric and lactic acids. On the other hand, malolactic fermentation can actually 

decrease microbial stability when the initial pH of the must is high. Spoilage organisms will start 

growing above pH 3.5. Therefore, it is important to keep the initial fermentation pH under 3.5 to 

prevent undesirable growth of spoilage microbes (Ruf 2003). 

Deacidification decreases the acidity of the wine by replacing the malic acid that is more 

aggressive on the tongue with the lactic acid that is milder and more palate-pleasing. Other than 

the acids, many different volatiles are synthesized during fermentation. For example, diacetyl 

compounds that are formed under an appropriate environment often provide a desirable fragrance 

to the wine at the threshold of 1-4mg/liter. Above this threshold, the fragrance is too strong and 

is often considered as an undesirable off-odor. Temperature, pH, and variability of lactic acid 

bacteria are the factors that influence the taste of the wine. Different fermenting temperatures, 

variable pH and species of lactic acid bacteria will create different volatiles thereby influencing 

the sensory characteristics of wine. For instance, Leoconostoc oenos often predominates during 
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malolactic fermention at pH under 3.5 and this lactic acid bacteria species is less likely to 

produce undesirable off-odors (Ruf 2003).  

2.3.3. Health Benefits of Wine  

Excessive alcohol consumption (alcoholism) has long been associated with various detrimental 

health effects such as liver damage, hypertension, stroke, digestive tract cancers, fetal alcohol 

syndrome.  However, recent studies have concluded that moderate wine consumption could 

lower the risk of all-cause mortality by 20-30% (Ruf 2003).  

Phenolic compounds are an important constituent in wine. Not only do they contribute to the 

sensory characteristics such as flavor, color and astringency in wine, they also provide some 

potential health benefits to the consumers. The composition of phenolics in wine varies among 

the types and cultivars of the fruits used, the extraction methods and the vinification processes. 

For instance, longer primary fermentation favors greater extraction of phenolics from the fruit by 

the ethanol produced during the fermentation process. In general, young wine contains low to 

medium molecular weight phenolics while aged wine contains relatively higher molecular 

weight of polymerized phenolic compounds (Sahidi and others 2004).  

The medicinal uses of wine can be dated back to the ancient Egyptians. Even though wine had 

been widely used for medicinal purposes for thousands of years, the benefits of wine 

consumption was reviewed and investigated in the late 1900s because of the serious alcoholism  

at that period of time. It was not until recently that scientists became interested in the medicinal 

uses of wine and started to investigate the potential health benefits in depth. Phenolic compounds 

in wine are the major components that have been extensively studied by scientists for potential 

health benefits such as cancer and heart disease etc. Scientists have concluded that the 

antioxidant effects of wine phenolics have a positive influence in preventing various chronic 
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diseases, for instance limiting LDL oxidation and improving lipoprotein metabolism thereby 

reduce the risk of heart disease (Maxwell and others 1994; German and other 2000). Wallerath 

and others (2002) reported that resveratrol, which is a polyphenolic compound in red wine, 

accounted for the cardiovascular protective effects in vivo. Recent studies have also shown that 

moderate consumption of wine could significantly reduce various expressions of cardiovascular 

disease such as hypertension, stroke, and heart attack (Sahidi and others 2004; Corder and others 

2006). Ebeler and others (1996) have also shown that while moderate consumption of wine can 

reduce the risk of certain cancers, excessive consumption can cause cancers. In short, moderate 

consumption of wine is encouraged for the potential health benefits.  

2.4. Vinegar 

2.4.1. Background 

Vinegar is defined by Cruess (1958) as a condiment made from starchy and sugary materials 

obtained by alcoholic and subsequent acetic fermentation. Vinegar has been in the human diet 

for thousands of years. The earliest descriptions of vinegar were made by Babylonians in about 

5000 BC. The Babylonians used dates, which are high in sugar content, to make their first 

vinegar. The sugar in dates can be turned first into alcohol and then into vinegar. Besides use as a 

condiment, vinegar was also prescribed by Hippocrates, “the father of modern medicine”, for all 

kinds of ailments in Greece (Diggs 2000).  

Vinegar is a popular condiment, which is used as a flavoring ingredient and preservative in 

cooking and food processing. Many types of vinegar can be produced using various types of 

source materials such as rice, fruit musts, wine (red and white), barley, distilled alcohols, etc. 

Vinegar plays an important role in salad dressings, pickles, ketchup, hot sauces, mayonnaise and 

other sauces. Acetic acid is the predominant flavoring ingredient and antimicrobial component in 
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vinegar. As described by Diggs (2000), from a chemical standpoint, vinegar is, in fact, nothing 

but a weak acid with small amounts of soluble extractives and mineral salts obtained from the 

raw materials. These extractives and salts give the vinegar its distinctive flavor and quality. 

Therefore, different kinds of vinegars have their own flavor and characteristics.              

2.4.2. Acetification Process 

Acetification is the fermentation process where alcohol is converted into vinegar by acetic acid 

bacteria in the presence of air. Acetobacter, or so called acetic acid bacteria, are the major 

bacteria involved in the acetification process. The methods of producing vinegar range from the  

traditional to the most current industrialized methods.  To date, three types of acetification 

processes, which include the Orleans process, submerged fermentation and generator 

fermentation, are used to produce many types of vinegar (Morales and others 2001). The Orleans 

method, which is also called the slow process, is the oldest way of producing vinegar. The 

generator process and the submerged culture acetification are the quick processes that are used 

for commercial vinegar production today (Tan 2005).  Details of the Orleans process, submerged 

fermentation and generator fermentation will be discussed later in sections 2.4.3.2 to 2.4.3.3 

respectively. 

2.4.2.1. Acetic Acid Bacteria 

Vinegar is primarily made by acetic acid bacteria called Acetobacters. Acetobacters produce 

vinegar by converting alcohol, which is produced by yeasts, to acetic acid. These 

microorganisms are biologically defined as aerobic and non-sporiferous microbes. They are gram 

negative, pleomorphic and reproduce by duplicating themselves. They are usually rod-shaped but 

they also exist in round, thread and other forms. Acetobacters are motile and often use their 
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flagella as the mean to move. However, their motility depends on age, oxygen supply, medium, 

etc. (Gonzalez and others 2004; Diggs 2000).  

                                 
 
  Figure 2.4. Acetic acid bacteria.   
 Source: Vinegar Connoisseurs International.  

 

2.4.2.2. Mother of Vinegar 

Mother of vinegar is also called the zoogloea, vinegar bees, vinegar mat and mycoderma. It 

appears as a mat floating at the top of the fermenting vinegar when using the “Orleans” method. 

It can be either thick or thin and the surface may be smooth or textured. The colors vary from 

transparent to dark brown to black. The mother of vinegar is composed of cellulose and the 

acetic acid bacteria. It is useful in converting the alcohol into acetic acid; however, it is 

sometimes undesirable in commercial production because it clogs up machinery and slows down 

the process (Diggs 2000). 

2.4.3. Understanding the Vinegar Making Process 

Vinegar making is a biological process where carbohydrate is turned into acetic acid through a 

multi-step fermentation processes. In general, a double fermentative process (Figure 2.5) is used, 

which starts with a sugar source which is converted first to ethyl alcohol and then to acetic acid. 

However, in some cases, a triple fermentative process (Figure 2.6) is used such as in rice wine 
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vinegar, where the rice starch is first broken down into fermentable sugars which are then 

fermented to alcohol and then to acetic acid or vinegar.  

 

 

Figure 2.5. Double Fermentation 

Figure 2.6. Triple Fermentation.  

 

Double or triple fermentation involve a three-step or four-step reaction involving the conversion 

of starch to sugar by enzymes, conversion of sugar to ethanol by yeast fermentation under 

anaerobic conditions, conversion of ethanol to hydrated acetaldehyde, and finally 

dehydrogenation to acetic acid by aldehyde dehydrogenase and the aid of Acetobacter under 

aerobic conditions (Nichol 1979; Canning 1985). Kehrer (1921) established the detailed 
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acetification reactions as shown below (Figure 2.7). 

Theoretically, every 100 parts of sugar will produce approximately 50 – 55 parts of acetic acid 

under favorable conditions. In other words, to achieve 5.2% acetic acid, the fermentation should 

start with a 10% sugar solution (Diggs 2000). The remaining sugar metabolites are either lost 

through volatilization or converted to other compounds (Ghommidh and others 1986). 

 

 
Figure 2.7. Conversion of alcohol to acetic acid reaction. 
Source: Kehrer 1921 

 

 

2.4.3.1. Orleans Process 

The Orleans process is the slowest and oldest method. It is named after the French city famous 

for creating good quality vinegars for many generations. The Orleans process is also the best 

method of producing a good quality vinegar in large quantity compared to submerged 

fermentation and generator fermentation (Diggs 2000). In this process, a wine solution greater 
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than 5% alcohol is used for successful acetification. Phosphates and nitrogeneous nutrients must 

be added to the mash if the alcohol content in the fermenting liquid is less than 5% (Mitchell 

1916). Wood barrels are usually used as the converter in this process and the alcoholic 

fermenting liquid is filled to approximately ¾ full of the barrel. Holes are drilled at the end of the 

barrel. They are left opened for air exposure but are covered with a screen to avoid flies and 

other insects. About 20-25% of fresh vinegar is added to the fermenting liquid to increase the 

acidity strength that provides optimum growth for the acetic acid bacteria. The mash is then 

fermented in the wood barrel at 21°C - 29°C for about 1 – 3 months. In this period, a slimy, 

leathery and gelatinous layer of “mother of vinegar” is formed at the top of the liquid (Peppler 

and others 1967). About 1/3 of the vinegar is drawn for bottling purpose and an equivalent 

amount of alcohol liquid is added back to the fermenting liquid (Cruess 1958).  

2.4.3.2. Generator Fermentation  

Generator fermentation, also called quick process, was developed by the German chemist 

Schutzenbach in 1832. Vinegar generators are large barrel like containers made in different sizes, 

shapes and wood materials. The generators have a false bottom with holes, designed for the 

entrance of air. Near the top of the generator, is a false top or perforated plate with a rotating 

sparger that provides uniform distribution of the vinegar stock. In this process, wood shavings 

are usually used as a packed bed media where the acetic acid bacteria can grow and form a thick 

slimy layer around the wood shavings (Peppler and others 1967). The re-circulated fermenting 

liquid trickles toward the bottom of the barrel while the air moves upward toward the top of the 

generator. The process takes about 3-7 days under the optimum temperature of 29°C - 32°C. 

Upon completion, only 2/3 of the vinegar is drawn for bottling and an equivalent amount of the 

mash is added back to the generator (Hickey and Vaughn 1954; Diggs 2000; Tan 2005).  
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2.4.3.3. Submerged Fermentation  

Submerged fermentation is the most common vinegar-making method in commercial practice 

today (Hickey and others 1954). In this process, the fermenting liquid is constantly stirred and 

aerated for the optimum growth of the acetic acid bacteria (DeLey and others 1984). The 

temperature in the fermenter is also controlled and maintained at its optimum level by 

refrigeration. It works more efficiently than generator fermentation because of the improved 

aeration, stirring and temperature control. Semi-continuous is a typical operation mode in the 

industrial scale. In this operation, a certain volume of the vinegar is discharged and a like amount 

of ethanolic mash is replenished at the end of each cycle (De Ory and others 2004). 

2.4.4. Health Benefits of Vinegar 

Vinegar has been used as a medicine since ancient times. Hippocrates, the “father of modern 

medicine”, prescribed vinegar as an antibiotic to treat patients. He also told his patients that 

oxymel (a combination of honey and vinegar) was a good remedy to clear up phlegm and 

congestion. Hippocrates also prescribed it for other ailments such as respiratory disorders and 

others (Orey 2009). Even though many medicinal properties have been ascribed to vinegar over 

thousands of years, very few of these properties have been scientifically proven through medical 

trials to be effective for human health.   

Today, the most common medical research about vinegar includes blood glucose control or 

diabetic management, possible cholesterol and triacyglycerol effects and antitumor activity. 

According to Ostman and others (2005), vinegar could lower glucose and insulin responses in 

healthy subjects. The Fushimi (2006) research group reported that dietary acetic acid can reduce 

serum cholesterol and triacyglycerols in rats fed with a cholesterol-rich diet. Shimoji and others 
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(2004) also showed that vinegar made from unpolished rice can inhibit Azoxymethane-induced 

colon carcinogenesis in rodents.  
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CHAPTER 3. MATERIALS AND METHODS 

3.1. Wine Fermentation (Alcohol Fermentation) 

Primary fermentation and secondary fermentation are two major fermentation steps in wine-

making process. Primary fermentation, also called alcoholic fermentation, focuses on the 

multiplication of yeasts and the conversion of sugar to alcohol. Temperature, aeration, yeasts 

nutritional needs, and acidity are the factors that influence the quality of wine during primary 

fermentation. The optimum temperature for fermentation of red wine is between 26°C to 30°C. 

For making white wine, a lower temperature is preferred, in the range of 18°C to 20°C. 

Appropriate oxygen and nitrogenous supply are important for the multiplication of the yeasts. 

The optimum pH should be controlled between pH 3 to 4. Secondary fermentation or malolactic 

fermentation is another important fermentation step continued after primary fermentation. The 

principle effect of malolactic fermentation is to reduce the acidity level while improving the 

drinkability and quality of wine. The conditions for malolactic fermentation include the influence 

of pH, temperature, ethanol and other chemical and biological factors. During secondary 

fermentation, the preferable pH and temperature are between pH 3 to 4 and 20°C to 25°C 

(Peynaud 1984; Ruf 2003).     

 

3.2. Vinegar Fermentation (Acetification) 

The Orleans process, generator process and submerged acetification are the three main vinegar 

fermentation processes in the vinegar industry. The Orleans process is the most traditional and 

slowest process among these. It takes up to 3 months for the completion of a bath of vinegar. 

Nevertheless, it is also considered the best vinegar processing method for producing good quality 

vinegars. Compared to the Orleans process, the generator process and submerged acetification 
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are less time consuming. These processes take only 3-7 days under optimum conditions (Diggs 

2000; Tan 2005). 

In the persimmon and blueberry experiments, the Orleans process was chosen because it is the 

most non-destructive and natural method compared to the generator process and submerged 

acetification. Since we were interested in examining the anthocyanins profile and antioxidant 

properties of the persimmons and blueberries during the acetification process, it was preferable 

to eliminate any unnecessary ingredients and harsh processing methods. The generator process 

and submerged acetification both require a large amount of oxygen incorporation in a short 

period of time and special cooling, both of which may greatly influence the quality of the vinegar 

due to excessive oxidation; therefore, the Orleans process was the most preferred method in this 

experiment.  An overall process flow diagram can be seen in Figure 3.1. 

 

3.3. Black Raspberries 

3.3.1. Wine Fermentation Treated with Proteases  

Frozen black raspberries were supplied by a grower in Washington state. The fruits were thawed 

overnight at 4°C and then ground into mash. Commercial proteases such as Neutral Bacterial 

Protease, Ficin, Liquipanol were obtained from EDC (New York, NY) and Bromelain, Acid 

Protease, Fungal Protease, Neutral Protease were obtained from Bio-Cat Inc. (Troy, VA). To 

screen for the proteases that had the potential to retain anthocyanin in black raspberry, proteases 

were mixed with black raspberry mash and incubated at 47° for 2 hours. Total selected 

anthocyanin was quantified by HPLC and the most effective proteases (top three) were chosen 

for the black raspberry fermentation experiment designed to remove sugar. The black raspberry 

mash was mixed thoroughly with 1%, 0.1% and 0.01% of Acid Protease and Neutral Bacterial 
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Protease. In a volumetric flask, appropriate amount of dry yeast (Lallemand Inc, Canada) and 

yeast energizer (L.D. Carlson, Ohio) were added to the treated black raspberry mash and the 

mixture was mixed thoroughly. The volumetric flask was then covered with cheese cloth and the 

mash was subjected to primary fermentation for 2 days under room temperature. After 2 days of 

fermentation, cheese cloth used to cover the volumetric flask was substituted with an air-lock 

and the mash was subjected to further fermentation at room temperature for another 5 days. 

Black raspberry wine for chemical analysis was obtained by squeezing and filtering the mash 

through four-layers of cheesecloth. 

 

3.3.2. Determination of Total Selected Anthocyanin 

An appropriate amount of wine obtained from each treated sample was diluted 20 times with 

methanol. An HPLC system was employed to isolate and quantify anthocyanins. The HPLC 

system consisted of a Supelco (Bellefonte, PA) Discovery C18 column (id 3 mm x 25 cm), a 

Waters 2690 separation module, a 996 photodiode array detector, and a Millennium32 

chromatography manager.  The mobile phase was a mixture of A: 10 % acetic acid in water and 

B: acetonitrile, with percentage of A: 10% acetic acid in water ramped from 100% to 55% in 45 

min with a constant flow rate of 0.8 ml/min.  The chromatogram obtained at a wavelength of 520 

nm was used to quantify the anthocyanins. The total selected anthocyanins was the summation of 

the three detected peaks area, with the retention time 12.7, 13.2 and 15.2 minute, as shown in the 

HPLC chromatogram (see Appendix A and B). The concentration of total anthocyanin was 

calculated based on a standard curve.  
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PREVIEW OF ALCOHOL AND VINEGAR FERMENTATION 

 

Figure 3.1. Alcohol fermentation and acetification flow chart 
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3.4. Persimmons  

3.4.1. Alcoholic Fermentation - Primary Fermentation  

Astringent (Diospyros kaki c.v. Tamopan)  and non-astringent (Diospyros kaki c.v. Fuyu Imoto) 

persimmons were harvested from Burden Research Center, LSU Agcenter, Louisiana during Fall 

2010.  Figures 3.2 and 3.3 contain images of the persimmon cultivars used. The fruit were 

cleaned and sepals were removed. Persimmons were cut and crush into mash by a commercial 

grinder (W.J. Fitzpatrick Company, Chicago, IL). 

 

 
Figure 3.2. Astringent persimmon tree (left) and fruit (right) grown at Burden Research Center, 
Louisiana.  
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Figure 3.3. Astringent and non-astringentpersimmon fruits. 

The pH, titratable acidity and Brix of the fruit must were measured before primary fermentation. 

The appropriate amount of dry wine yeast (Lallemand Inc, Canada) and yeast energizer (L.D. 

Carlson, Ohio) were added to the persimmon mash, stirred and mixed thoroughly (Figure 3.4). 

The fermenting vessel was then covered with four-layers of cheesecloth and the must was 

fermented at room temperature (23-25°C) for 5 days.  

 

                               
      Figure 3.4. Primary fermentation of astringent (left) and non-astringent (right) persimmon. 

 

Astringent Non-Astringent Astringent Non-Astringent 
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3.4.2. Malolactic Fermentation - Secondary Fermentation 

After 5 days of primary fermentation, young persimmon wine was obtained by pressing and 

filtering the must through four-layered cheesecloth. The fermenting liquid was then transferred 

to a clean glass fermenting vessel and the opening of the flask was covered with an air-lock. The 

fermenting liquid was fermented at 18°C for another 2 weeks. 

 

                     
  Figure 3.5. Secondary fermentation of astringent (left) and non-astringent (right) persimmon.  

 

3.4.3. Vinegar Fermentation - Orleans Process 

The initial pH, titratable acidity, total phenolics and total radical scavenging activities of 

persimmon wine were measured. An active mother of vinegar was produced in a 1000ml beaker 

(Figure 3.6) by adding 400ml of the persimmon wine mixed with the instructed amount of 

vinegar culture - “Natural Mother of Vinegar, white wine” (Beer & Winemaking Supplies Inc. 

Northampton, MA). The beaker was covered with a 4-layers of cheesecloth and then fermented 

under 24°C for 2 weeks or until the mother of the vinegar was formed as a floating layer at the 

top of the solution. The mother produced was then used to produce a new batch of vinegar by 
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transferring the mother to another 1000ml beaker and 400ml of persimmon wine was added. The 

beaker was again covered with a 4-layers of cheesecloth and then fermented under 24°C for 2 

weeks or until the desired acidity was achieved. This batch of persimmon vinegar made with the 

in-house mother of vinegar was later analysed by several physicochemical analyses. All other 

vinegars were produced in like manner using a self generated mother of vinegar to prevent any 

possible interference that could later intervene with the analyses. 

 

                      

        Figure 3.6. Acetification of astringent (left) and non-astringent (right) persimmon. 

 

3.4.4. Physicochemical Analysis  

Titratable acidity, pH, brix, and alcohol content are the important parameters in wine and vinegar 

fermentation process. These parameters are the critical factors that contribute to the quality of the 

wine and vinegar. 

A spectrophotometer is a device that can measure the intensity of the lights at different 

wavelengths. Total phenolics can be quantified by spectrophotometer through the Folin-

Mother of  
Vinegar 
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Ciocalteau method. Free radical activity can also be determined by this device through DPPH 

radical scavenging assay.  

3.4.4.1. pH, Titratable Acidity & Brix 

Titratable acidity (TA) and pH were measured using an Orion EA920 pH meter and Thermo 

Orion 915600 (Orion, MA) pH probe. Titratable acidity was determined as ml of 0.1N NaOH 

used to obtain an endpoint of pH= 8.20. Malic acid is the major acid in fresh persimmon fruit and 

acetic acid is the major acid in persimmon vinegar (Daood and others 1991; Lee and others 

2009). The formula to calculate %TA as malic acid and acetic is as below: 

%TA (Malic Acid) = 
��	��	���		
	�	��	���		
	��.��

��	
	������	������
 

 

%TA (Acetic Acid) = 
��	��	���		
	�	��	���		
	��.��

��	
	������	������
 

 

Percentage of sugar (brix) was measured using BS RFM 80 digital refractometer (Bellingham 

Stanley Limited, England). 

 

3.4.4.2. Total Phenolics 

The total phenolics were measured by Folin-Ciocalteau microscale colorimetry method 

(Waterhouse 2002). A 20 µl of sample or standard solution (gallic acid) was mixed with 100 µl 

of Folin-Ciocalteau reagent (Sigma-Aldrich, St Louis, MO) and 1.58 ml of distilled water. The 

mixture was mixed thoroughly by vortex and incubated under room temperature for 5 minutes. 

Three hundred µl of sodium carbonate solution (200g in 800ml of distilled water) was then 

added to the mixture and the result was incubated at 40°C in a waterbath for 30 minute. Sample 
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was measured at 765 nm by Lambda 35 uv/vis spectrometer (Perkin Elmer,CT, USA). Standard 

curve was calculated using 0, 5, 10, 15, 25 and 50 mg/100ml gallic acid solutions. Results were 

expressed as mg gallic acid (GAE) per 100ml of sample (mg GAE/100ml). Figure 3.7 shows the 

intensity of the blue color is proportional to the concentration of total phenolics in samples. 

 

                     
Figure 3.7. Folin-ciocalteau microscale colorimetry method. Test tube A has the highest amount 
of total phenolics while test tube C has the lowest.  
 
 

3.4.4.3. Antiradical Activity 

Free radical scavenging activity or antiradical activity was determined with DPPH (1,l-diphenyl-

2-picrylhydrazil radical) assay. The antiradical activity was evaluated according to Burda and 

others (2001) and Heimler and others (2006) with slight modification. All products were diluted 

5 times before preparing for analysis. A 20 µl of sample was mixed with 2 ml of DPPH solution 

(0.025g/l methanol). The mixture was then incubated under room temperature for 20 minutes. 

The absorbance was measured at 516 nm by Lambda 35 uv/vis spectrometer (Perkin Elmer,CT, 

USA). The antiradical activity was calculated as a percentage of DPPH solution decoloration 

versus methanol (blank). Figure 3.8 shows the color disintegration of the DPPH solution after 30 

minutes. The lighter the color of the solution after 30 minutes of incubation, the more powerful is 

  A        B       C    

Total Phenolics decrease 
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the free radical scavenging activity. 

% of Inhibition = {[Absorbance of DPPH solution at t = 0min - Absorbance of DPPH solution at 

t = 30min] / [Absorbance of DPPH solution at t = 0min] x 100 

              

                  Figure 3.8. Free radical scavenging activity  by DPPH solution. 
 

 

3.5. Blueberries 

3.5.1. Alcoholic Fermentation – Primary Fermentation  

Fresh blueberries, Vaccinium ashei, (Tifblue Rabbiteye Blueberry) were harvested from Bob R. 

Jones-Idlewild Research Station, Louisiana, during the summer of 2010 (Figure 3.9). A stalk 

separator (BEI Incorporated, MI) was used to de-stalk the blueberries in bunches (Figure 3.10). 

Without any washing, the blueberries were packed into 1-gallon Ziploc® bags after de-stalking 

and kept frozen under -30°C until further use.  

The frozen blueberries were thawed under 4°C overnight before proceeding to primary 

fermentation (Figure 3.11). After thawing, the blueberries were lightly crushed by hand and 

transferred to a plastic fermenting vessel. The pH, titratable acidity and brix of the fruit must 

were measured. The blueberry mash was subjected to primary fermentationas indicated in 3.4.1. 

  A     B             A      B           

10 minute later 30 minute later 
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Figure 3.9. Tree (left) and fruits and Tifblue rabbiteye blueberry grown at Bob R. Jones - 
Idlewild Research Station, Louisiana. 

 

 

 

                      
Figure 3.10. Stalk separator (left) and the procedure of separating the branches and leaves from 
the fruits. 
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 Figure 3.11. Primary fermentation of blueberries in a plastic fermenting vessel.  

3.5.2. Malolactic Fermentation - Secondary Fermentation 

After five days of primary fermentation, young blueberry wine was obtained by squeezing the 

must by hand and filtering through four-layered cheesecloth. Secondary fermentation (Figure 

3.12) was performed as indicated in 3.4.2. 

                     

Figure 3.12. Secondary fermentation in glass fermenting vessel. Transferring and filtering 
blueberry must (left) into a cleaned glass fermenting vessel and the vessel was covered with an 
air-lock (right).   
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3.5.3. Vinegar Fermentation - Orleans Process 

The initial pH, titratable acidity, anthocyanins, epicatechin, total phenolics and total radical 

scavenging activities of blueberry wine were measured. Blueberry vinegar (Figure 3.13) was 

made according to the method described in 3.2.3.              

            

                       Figure 3.13. Acetification of blueberry wine in a beaker.  

3.5.4. Physicochemical Analysis 

High pressure liquid chromatography or high performance liquid chromatography (HPLC) is a 

commonly used chromatographic method that can separate, identify and quantify chemical 

compounds. The amount of anthocyanins and epicatechin in blueberries can be quantified by 

using HPLC. 

Eicosapentaenoic acid (EPA) and Docosahexaenoic acid (DHA), components of marine fish oil, 

are the essential omega-3 polyunsaturated fatty acids (PUFA) that provides profound health 

benefits such as preventing cardiovascular disease and cancer (Siddiqui and others 2004). 

However, the use of marine oil is limited by the oxidative susceptibility. Lipid oxidation is a 

major problem in food, neutraceutical and pharmaceutical industry. In this experiment, EPA and 

DHA in the salmon oil-in-water emulsion (SOE) were measured at 0 day and after 3 days to 

Mother of Vinegar 
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observe the oxidative degradation effects. A gas chomatrograph with flame ionizing detector 

(GC-FID) was used to determine the EPA and DHA in SOE. Gas chromatography is a sensitive 

instrument that is commonly used in chemical analysis. It can effectively separate the 

compounds in the sample through the column and detect the compounds by its detector.  

3.5.4.1. pH, Titratable Acidity & Brix 

Titratable acidity (TA), pH and Brix were measured according to the method as indicated in 

3.2.4.1. Malic acid is the major acid in blueberry (Ashurts 2005) and acetic acid is the major acid 

in blueberry vinegar. 

The formula to calculate %TA as malic acid and acetic is as below: 

%TA (Malic Acid) = 
��	��	���		
	�	��	���		
	��.��

��	
	������	������
 

 

%TA (Acetic Acid) = 
��	��	���		
	�	��	���		
	��.��

��	
	������	������
 

 

3.5.4.2. Total Selected Anthocyanins and Epicatechin Profile 

Appropriate amount of sample were centrifuged and supernatant was obtained in a 2ml vial. A 

sample was then subjected to HPLC analysis for anthocyanins and epicatechin isolation and 

quantification. The HPLC system (Figure 3.14) consisted of a Waters 2690 Separation Module 

equipped with a Waters 996 Photodiode Array Detector (Milford, MA), Supelco Discovery C18 

column (id 3 mm x 250mm) and a Millennium 32 chromatography manager. The mobile phase 

consisted of solvent A: 10% acetic acid (concentrated acetic acid/distilled water, 10/90, v/v) and 

solvent B: acetonitrile, with percentage of acetic acid in water ramped from 100% to 0% in 90 

min at 2.0 ml/min. The injection volume was 100 µl. The chromatograms obtained at a 



- 43 - 
 

wavelength of 520nm and 287nm were used to quantify anthocyanins and epicatechin 

respectively. Total selected anthocyanins was the summation of the seven detected peaks area, 

with the retention time 13.3, 14.8, 16.2, 18.0, 19.4, 20.7 and 22.2 minute, as shown in the HPLC 

chromatogram (see Appendix D). Epicatechin was detected at 12.0 minute of the retention time 

(see Appendix E).  The concentration of anthocyanins and epicatechin were calculated based on 

a standard curve.  

                             

 Figure 3.14. High Performance Liquid Chromatography (HPLC). 

 

3.5.4.3. Total Phenolics 

Total phenolics of the blueberry samples were measured according to the method as indicated in 

3.2.4.2. 
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3.5.4.4. Antiradical Activity 

DPPH antiradical activity and % of inhibition were measured and calculated according to the 

method as indicated in 3.2.4.3. 

 

3.5.4.5. EPA and DHA in Salmon Oil-in-water Emulsion 

Unrefined salmon oil was produced by processing salmon byproducts (viscera, heads, skins, 

frame, and discarded fish) obtained from a commercial plant in Alaska. To prepare the oil-in-

water emulsion, a 1% of salmon oil-in-water emulsion was made using 0.1% of Tween20 

(Sigma-Aldrich, St Louis, MO) as the emulsifier. Four gram of salmon oil was mixed with 

396ml of distilled water and 0.4g of Tween20. To create the oil-in-water emulsion, the mixture 

was sonicated (Figure 3.15) (Cole Parmer Ultrasonic Processor, Vernon Hills, IL) for 10 minutes 

in a water bath filled with ice water. For each sample, 15ml of the emulsion was added to a 50ml 

glass vial with a stir bar at the bottom. One percent and 9.1% of blueberry juice, wine and 

vinegar were added to the emulsion. The samples were oxidized in a magnetic-stirring water bath 

(Lauda-Brinkmann, Delran, NJ) at 40°C for 3 days.  

The docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were determined using the 

method of Yue and others (2010) by GC-FID. Heptadecanoic acid (C17:0) was used as an 

internal standard at 100ppm (0.1mg/ml) in hexane. One ml of the emulsion was mixed and 

vortexed (Thermolyne Corporation, Dubuque, IA) with 2ml of C17:0 hexane solution. The 

supernatant was then transferred to another clean test tube. This step was repeated twice for 

better oil extraction. The supernatant was then dried by nitrogen gas flow until all supernatant 

evaporated. Two ml of BCl3-methanol and 1 mL 2, 2’-dimethoxypropane were added to the 

dried test tube. The mixture was vortexed and heated in a water bath at 60°C for 30min for the 
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derivatization of fatty acid methyl esters. After that, the sample was incubated in tap water at 

room temperature for 5 min. After cooling, 2ml of hexane and 1ml of distilled water were then 

added to the mixture. The mixture was vortexed and centrifuged (Clay Adam, Sparks, MD). The 

upper layer of hexane was transferred to another test tube, dried with sodium sulfate and then 

transferred to a 2ml GC vial.  

A GC with a FID detector (Hewlett Packard 5890, Agilent Technologies, Palo Alto, CA) was 

used to determine the EPA and DHA concentration. The column was a Supelco SP2380 (30m × 

0.25mm) (Bellefonte, PA). Helium was used as a carrier gas at the flow rate of 1.2ml/min. The 

injection volume was 1 ul and the split ratio was 1:100. The injector and detector temperature 

was 250 and 270oC respectively. The oven temperature was held at 50 oC for 3 min and then 

increased to 250oC at 4.0 oC /min. The retention time of EPA and DHA were 43 and 50 minute, 

respectively (see Appendix F). The concentration of EPA and DHA were calculated using C17:0 

(Sigma-Aldrich, St Louis, MO), the internal standard, as the reference.  

 

 

                        

         Figure 3.15. Preparing salmon oil-in-water emulsion by using sonication.  
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3.6. Statistical Analyses 

All data was analyzed with the Statistical Analysis System (SAS, Cary, NC). The result of 

anthocyanin, epicatechin, total phenolics and antiradical activity were evaluated statistically for 

differences using one-way analysis of variance (ANOVA). The EPA and DHA value were also 

statistically analyzed for differences between the control and treated samples using two-way 

ANOVA. Significance of all tests was set at P ≤ 0.05. All results reported were expressed as 

mean ± standard error.  
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CHAPTER 4. RESULTS AND DISCUSSION 

4.1. Black Raspberry 

Total anthocyanin content in the black raspberry juice was 207.72 mg/100ml as compared to the 

reported range of 244.8 to 541.3mg/100ml (Dossett and others 2010). Many reasons could be 

attributed to the variation found, for example the cultivars and other environmental differences 

(Ozgen and others 2008). 

Plant proteases such as ficin, papain and bromelain have been reported to be effective in 

preventing enzymatic browning. Ficin was reported to be effective in preventing black spot 

formation in shrimp (Taoukis and others 1990). Papain and ficin were shown to be as effective as 

sulfilte in slowing the rate of enzymatic browning in apple and potato slices (Labuza and others 

1992). In this experiment, seven different proteases were screened in an attempt to control 

destruction of anthocyanins in black raspberry: Acid Protease, Liquipanol, Neutral Bacterial 

Protease, Ficin, Bromelain, Fungal Protease, and Neutral Protease. According to table 4.1, Acid 

Protease (AP), Liquipanol (L) and Neutral Bacterial Protease (NBP) were the top three proteases 

that could potentially retain total selected anthocyanins in black raspberry; therefore AP, L and 

NBP were selected to study the effect of proteases in preventing anthocyanin degradation in 

ethanolic fermentation of black raspberries to reduce sugar content.  

4.1.1. Total Selected Anthocyanins  

Black raspberry mash was treated 1% Acid Protease (AP), Liquipanol (L) and Neutral Bacterial 

Protease (NBP) before the ethanol fermentation began. Figure 4.1 and table 4.2 shows the total 

selected anthocyanins remaining in black raspberry after 1 week of open fermentation with and 

without protease treatments compared with fresh juice. The open fermentation is the common 
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industry practice for removal of sugars without accumulating appreciable ethanol. The data of 

Liquipanol treatment was dropped because of huge variation.  

Table 4.1. Anthocyanins in Black Raspberry After Treated with 1% Proteases. 

Products                                        Total Selected Anthocyanins (mg/100ml of juice) 

Control                                                        207.72±3.18                        
Acid Protease                                              237.09±8.37                                        
Liquipanol                                                  198.99±10.75                                        
Neutral Bacterial Protease                          197.04±6.98                                        
Ficin                                                            163.37±7.92                                        
Bromelain                                                   177.28±6.83                                        
Fungal Protease                                          173.48±7.17                                        
Neutral Protease                                         169.30±20.75 

No protease was added in Control (black raspberry mash). 1% of the proteases were added to 
fresh ground black raspberry fruit mash and incubated at 47ºC for 2 hrs. The mash was later 
squeezed and filtered through 4-layered cheese clothes to obtain juice for analysis. 
 

 

Figure 4.1.Selected Anthocyanins in Black Raspberry (BRB) Ferments After Treatments with 1% 
Proteases. J: Fresh juice - no protease – no fermentation; C: Control – no protease; AP: Acid 
Protease; NBP: Neutral Bacterial Protease. Products were fermented for 1 week in a beaker, with 
the opening covered with cheesecloth. Values are expressed as mean ± standard error. 
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Results showed that NBP retained more anthocyanins than AP and control (C) – fermented juice 

with no protease added. One percent NBP and AP retained 128% and 42% more anthocyanins, 

respectively, compared to C; however, only NBP was statistically different from AP and C. 

Fresh black raspberry juice contained the most anthocyanins among all samples. While 

anthocyanins in C were degraded by 63%, anthocyanins in black raspberry mash treated with 1% 

NBP were only degraded by 16% compared to J. It is clear that processing and open ethanolic 

fermentation significantly affected the black raspberry anthcyanins and protease treatments could 

alleviate some of the destruction. A 1% NBP treatment was effective in retaining anthocyanins in 

fermented black raspberry mash. 

 

Table 4.2.Anthocyanin (ACN) in Black Raspberry Fermentation Products After Treated with 1% 
Proteases. 

Sample ACN 
(mg/100ml) 

J 113.07±4.32b 
C  41.39±3.60c 
AP  58.71±8.81c 
NBP  94.61±3.34b 
J: Fresh juice with no treatment; C: Fermentation with no protease; AP: Acid Protease; NBP: 
Neutral Bacterial Protease. Products were fermented for 1 week in a beaker, with the opening 
covered with cheesecloth. Values are expressed as mean ± standard error. Within the same 
column, means followed by different letters are significantly different at P ≤ 0.05. 

 

Figure 4.2 and table 4.3 shows the results of total selected anthocyanins remaining in black 

raspberry after 2 days of aerobic (primary) fermentation continued by 5 days of anaerobic 

(secondary) fermentation. The samples were treated with lower concentrations than the previous 

test, 0.1% and 0.01% of AP and NBP, respectively, before fermentation. 
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Figure 4.2.Anthocyanin in Black Raspberry Ferments After Treating with 0.1% and 0.01% 
Proteases. J: Fresh juice - no protease – no fermentation; C: Control – no protease; AP: Acid 
Protease; NBP: Neutral Bacterial Protease. Products were fermented for 1 week in a flask, with 
the opening covered with air-lock. Values are expressed as mean ± standard error. 

 

Clearly, closed fermentation helped retain more anthocyanins than the open fermentation used 

previously.  Results showed that 0.1% NBP retained the most anthocyanins among all. It 

preserved 8% more anthocyanins than the control (C). Though AP and NBP at 0.1% and 0.01% 

were effective in retaining more anthocyanins, the samples were not statistically different from 

one another as shown in table 4.2.  

Results in table 4.2 and 4.3 reveal that differences in fermentation process critically affect the 

total anthocyanin remained after 1 week of fermentation. Fermentation that involved 2 days of 

aerobic continued by 5 days of anaerobic fermentation was more effective in retaining 

anthocyanin than the one-week aerobic fermentation carried out in an opened beaker. Two 

hundred and thirty two percent more anthocyanin (compared C in table 4.2 and 4.3) was retained 

while shorter period (2 days instead of 7 days) of aerobic fermentation was introduced to the 

fermentation process. Also, with 2 days of aerobic and 5 days of anaerobic fermentation, the 
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fermented black raspberry juice (C) contained 22% more anthocyanin than the fresh black 

raspberry juice (J) (table 4.3). 

Table 4.3.Anthocyanin (ACN) in Black Raspberry Fermentation Products After Treated with 0.1% 
and 0.01% Proteases. 

Sample Concentration  
(%) 

ACN 
(mg/100ml) 

J - 113.07±4.32b 
C - 137.44±3.53a 
AP 0.1 141.31±8.52a 
AP 0.01 140.58±3.51a 
NBP 0.1 149.37±7.10a 
NBP 0.01 142.91±5.02a 
J: Fresh juice with no treatment; C: Control; AP: Acid Protease; NBP: Neutral Bacterial Protease. 
Products were fermented for 1 week in a flask, with the opening covered with air-lock. Values 
are expressed as mean ± standard error.Within the same column, means followed by different 
letters are significantly different at P ≤ 0.05. 

 

In conclusion, while 1% of neutral bacterial protease effectively retained total selected 

anthocyanin in open fermented black raspberry juice by 128%, the results for closed 

fermentation were much less dramatic. None of the 0.1% and 0.01% of protease treatments 

significantly differed from the control in closed fermentation. While comparing the fermentation 

process that involved 2 days of aerobic fermentation followed by 5 days of anaerobic 

fermentation to the process that involved 7 days of aerobic fermentation, shorter aerobic 

fermentation retained 232% more anthocyanin than the longer aerobic fermentation process.  

The results from this study indicated that while proteases may have a positive effect preventing 

PPO activity and preserving anthocyanins, the fermentation process also had a greater impact on 

anthocyanins. For this reason, further studies involving alcoholic and acetic fermentations impact 

on fruit anthocyanins were warranted. 
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4.2. Persimmon 

4.2.1. pH, Titratable Acidity and Brix 

Titratable acidity (TA) of persimmon juice and wine were expressed in % malic acid since malic 

acid is the predominant acid in persimmon (Daood and others 1991; Lee and others 2009). TA of 

persimmon vinegar was expressed in % acetic acid because acetic acid is the major acid in 

vinegar. pH of astringent and non-astringent persimmon juice decreased 42.9% and 45.6%, 

respectively, after wine and vinegar fermentation. Wine and vinegar fermentation increased 

titratable acidity of astringent and non-astringent persimmon by 14 and 11 times respectively. 

Brix of astringent and non-astringent persimmon juice decreased 81.7% and 81.4%, respectively, 

after primary wine fermentation. Detailed data was shown in Appendix D.  

 

 

Figure 4.3. pH, titratable acidity and brix of astringent and non-astringent juice and fermentation 
products. AJ & NJ: astringent and non-astringent juice; AW1 & NW1: astringent and non-
astringent persimmon after primary wine fermentation; AW2 & NW2: astringent and –non-
astringent persimmon after secondary wine fermentation; AV & NV: astringent and non-
astringent persimmon vinegar. Values are expressed as mean ± standard error. 
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4.2.2. Total Phenolics and Antiradical Activity 

Figure 4.3, 4.4 and table 4.4 show the total phenolics (TPH) and antiradical activity (AR) of 

astringent and non-astringent persimmons with both  ethanolic and acetic acid fermentations. 

Astringent persimmon unfermented juice contained the most total phenolics and possessed the 

strongest antiradical activity among all treatments. Total phenolics in astringent persimmon juice 

were about 90 times more than that in non-astringent. Antiradical activity was 73 times stronger 

than non-astringent juice. Total phenolics in astringent persimmon juice were significantly 

degraded during the primary and secondary wine fermentation while antiradical activity was only 

significantly degraded during the primary wine fermentation. Acetification process also degraded 

total phenolics and antiradical activity; however, TPH and AR of astringent persimmon wine 

were not statistically different from astringent persimmon vinegar. 

The detected level of TPH and AR in non-astringent persimmon juice was lower than that in 

non-astringent persimmon wine and vinegar. This was probably because TPH in non-astringent 

persimmon was susceptible to alcoholic extraction when alcohol was produced during the 

primary wine fermentation; thereby significantly increased TPH in NW1.  

According to our results, comparing astringent to non-astringent persimmon juice and 

fermentation products, only astringent persimmon juice was significantly different from non-

astringent juice. Astringent persimmon wine and vinegar were not statistically different from 

non-astringent persimmon wine and vinegar in terms of TPH and AR determined.  

 



- 54 - 
 

 

Figure 4.4.Total phenolics in astringent and non-astringent persimmon juice and fermentation 
products. AJ & NJ: astringent and non-astringent juice; AW1 & NW1: astringent and non-
astringent persimmon after primary wine fermentation; AW2 & NW2: astringent and –non-
astringent persimmon after secondary wine fermentation; AV & NV: astringent and non-
astringent persimmon vinegar. Only AJ and AW1 were diluted 100 and 10 times respectively, 
others were not diluted. Values are expressed as mean ± standard error. 

 

 

Figure 4.5.Antiradical activity in astringent and non-astringent persimmon juice and 
fermentation products. AJ & NJ: astringent and non-astringent juice; AW1 & NW1: astringent 
and non-astringent persimmon after primary wine fermentation; AW2 & NW2: astringent and –
non-astringent persimmon after secondary wine fermentation; AV & NV: astringent and non-
astringent persimmon vinegar. Values are expressed as mean ± standard error. 
 

Overall, in astringent persimmon, TPH was significantly degraded in primary and secondary 

wine fermentation but not in acetification process. However, AR was only significantly degraded 

during primary wine fermentation but not secondary wine fermentation and acetification. As for 
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non-astringent persimmon, primary wine fermentation significantly increased TPH. Secondary 

wine fermentation and vinegar fermentation degraded TPH; however, they were not statistically 

different. AR had the similar trend as TPH in non-astringent persimmon but the activity was not 

statistically different. Determination of specific phenolic compounds which are abundant in 

persimmon, such as tannins and polyphenols (Piretti 1991; Gu and others 2008) is needed to 

confirm either elevation or degradation of phenolic compounds was incurred during the wine and 

vinegar fermentation in astringent and non-astringent persimmon. 

Table 4.4.Summary of total phenolics (TPH) and antiradical activity (AR) of astringent and non-
astringent persimmon juice and fermentation products. 

Products            TP 
(mg/100ml GAE) 

            AR 
           (%) 

AJ 945.00±16.82a          607.77±36.56a 
AW1 151.20±19.77b             27.88±5.05b 
AW2   26.83±1.90cd             10.07±0.72b 
AV     1.15±2.11d               4.25±1.40b 
NJ   10.50±1.50d               8.25±2.46b 
NW1   97.94±2.22c             33.54±2.62b 
NW2   32.66±0.48cd             22.44±2.91b 
NV   17.62±0.95cd             18.69±3.34b 
 
AJ & NJ: astringent and non-astringent juice; AW1 & NW1: astringent and non-astringent 
persimmon after primary wine fermentation; AW2 & NW2: astringent and –non-astringent 
persimmon after secondary wine fermentation; AV & NV: astringent and non-astringent 
persimmon vinegar. Values are expressed as mean ± standard error. Within the same column, 
means followed by different letters are significantly different at P ≤ 0.05. 
 

4.3. Blueberries 

4.3.1 pH, Titratable Acidity, and Brix  

The pH of fresh blueberry juice was 3.10 (Figure 4.5 and Appendix C) and it decreased to 2.62 

after wine and vinegar fermentation. Titratable acidity (TA) of blueberry juice and wine were 

expressed in % malic acid since malic acid is the predominant acid in blueberry (Ashurts 2005). 
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The TA of blueberry vinegar was expressed in % acetic acid because acetic acid is the major acid 

in vinegar. Titratable acidity in fresh blueberry juice was about 0.8% but it increased to 1.5% 

during primary and secondary wine fermentation. During acetification process, TA in blueberry 

must quickly multiplied 3.2 times in about 2 weeks. The Brix of the fresh blueberries decreased 

43%, from 9.8% sugars to 5.6% sugar at the end of primary wine fermentation in 5 days.  

 

Figure 4.6. pH, TA and Brix of Tifbluerabbiteye blueberry juice and fermentation products. TA 
is expressed in % of malic acid for J, W1, W2 and % of acetic acid for V. Brix is expressed in % 
of sugars. J: fresh juice; W1: fermentation product after primary wine fermentation; W2: 
fermentation product after secondary wine fermentation; V: fermentation product after 
acetification. Values are expressed as mean ± standard error.         

 

4.3.2 Total Anthocyanin  

Total anthocyanin content (ACY) of the blueberry juice was lower than that of the blueberry 

wine and vinegar (Figure 4.6). Blueberry must, after primary and secondary ethanolic 

fermentation, had 266% and 169% more anthocyanin than the fresh juice, respectively, while the 

blueberry vinegar contained only 27% more anthocyanin than the juice. While total anthocyanins 

were increased during the primary fermentation, it was later decreased 27% (W2) and then 
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decreased another 53% (V) during the secondary fermentation and acetification process.  

During primary wine fermentation, the anthocyanin content peaked at 8.54mg/100ml of 

blueberry must. This tremendous increase may be due to the ethanol produced during the 

fermentation assisting in extracting the anthocyanins from the fruit pulp; thereby increasing the 

amount of anthocyanins in the wine. Various solvents, such as ethanol, methanol, acetone, 

trifluoroacetic, hydrochloric and phosphoric acid, have been successfully used to increase 

anthocyanin extraction (Mazza and others 2003; Nicoue and others 2007; Mane and others 2007). 

Therefore, the ethanol produced during the primary fermentation could be the potential 

extraction agent that is accountable for the anthocyanin elevation. Our findings are similar to the 

results of Mazza and others (1999) who found that total anthocyanins in grape wine increased 

during the early stages of ethanolic fermentation, peaking at 2-3 days after the start of 

fermentation and decreasing during malolactic fermentation.  

 

Figure 4.7. Total anthocyanin content of blueberry juice and fermentation products. J: fresh juice; 
W1: fermentation product after primary wine fermentation; W2: fermentation product after 
secondary wine fermentation; V: fermentation product after acetification. Values are expressed 
as mean ± standard error.                                                                                                                                                                                        



- 58 - 
 

4.3.3. Epicatechin 

According to Zhao (2007), epicatechin is the major flavan-3-ol in blueberries and it is present at 

a concentration of 1mg/100g fresh weight. Therefore, other than anthocyanin, it is also important 

to determine and quantify the concentration of epicatechin throughout the fermentation processes. 

Epicatechin concentration (EPC) was highest in the blueberry must after primary fermentation 

and lowest in the fresh blueberry juice (Figure 4.7). After primary and secondary wine 

fermentation, epicatechin in blueberry wine increased by 227% (W1) and 157% (W2), 

respectively, compared to that of the fresh juice. The epicatechin content in blueberry vinegar 

after acetification was 78% more than that in blueberry juice. Although epicatechin was 

significantly increased during primary fermentation, it was later degraded during secondary wine 

fermentation and acetification.  

 

Figure 4.8. Epicatechin of fresh Tifbluerabbiteye blueberry juice and fermentation products. J: 
fresh juice; W1: fermentation product after primary wine fermentation; W2: fermentation 
product after secondary wine fermentation; V: fermentation product after acetification. Values 
are expressed as mean ± standard error.                                                                                                                                                           
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4.3.4. Antiradical Activity  

Antiradical activity (AR) of the blueberries was represented in percentage of inhibition of the 

decoloration of DPPH solution. The free radical scavenging activity was the highest in blueberry 

must during primary wine fermentation and the lowest in blueberry vinegar (Figure 4.8). 

Antiradical activity increased by 28% during primary fermentation and then decreased by16% 

and 28%, respectively, during secondary wine fermentation and acetification compared to that of 

the fresh blueberry juice. Even though the overall trend was in line with the trend of total 

anthocyanin and epicatechin, differences in antiradical activity throughout the fermentation 

processes were not significant.  

 

Figure 4.9.Antiradical activity of Tifbluerabbiteye blueberry juice and fermentation products. J: 
fresh juice; W1: fermentation product after primary wine fermentation; W2: fermentation 
product after secondary wine fermentation; V: fermentation product after acetification. All of the 
samples were diluted 5 times. Values are expressed as mean ± standard error.                                                                                                                                                 
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4.3.5. Total Phenolics 

Total phenolics were the highest in fresh blueberry juice (Figure 4.9). Throughout the wine 

fermentation and acetification process, only primary wine fermentation significantly reduced the 

total phenolics in blueberry by 21%. The total phenolics in W1, W2 and V were not statistically 

different from one another. Also, the overall trend of the total phenolics did not agree with that 

of the total anthocyanin, epicatechin and antiradical activity during the fermentation processes. 

On the other hand, antiradical activity and total phenolics of W1, W2 and V shared some 

similarity and were not statistically different from one another. Other than anthocyanin and 

epicatechin, this experiment did not account for other phenolic compounds that could also be 

part of the total phenolics in blueberry. Therefore, this could partly explain the disagreement 

stated above. In addition, Folin-Ciocalteau colorimetry method that was used in this experiment 

has the disadvantage of responding to sugar and sulfur dioxide (Waterhouse 2002). This could 

elevate the apparent phenolic content in the fresh juice which contained sugars.  

 

Figure 4.10.Total phenolics of fresh Tifbluerabbiteye blueberry juice and fermentation products. 
J: fresh juice; W1: fermentation product after primary wine fermentation; W2: fermentation 
product after secondary wine fermentation; V: fermentation product after acetification; GAE: 
gallic acid equivalent. Values are expressed as mean ± standard error.                                                                                                      
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4.3.6. Overall Changes of Phenolics and Antioxidant Activity  

In general, the results of total anthocyanin (ACY), epicatechin (EPC) and antiradical activity 

(AR) of blueberry juice and fermentation products were in line with one another. ACY, EPC, and 

AR were increased during primary wine fermentation process but were later decreased during 

secondary wine fermentation process. After that, they further decreased during the acetification 

process. During wine fermentation, most of the alcohol is produced during the primary 

fermentation (alcohol fermentation). The increase of alcohol content during alcohol fermentation 

significantly raised the ACY, EPC and AR of the fermentation products, by escalating the 

extraction from the fruit pulp. Initial alcoholic fermentation increased ACY, EPC and AR while 

acetification responded oppositely. Our findings are in accordance with Su and others (2007) in 

that blueberry wine contained more total anthocyanin and possessed stronger antiradical activity 

than that in blueberry juice and vinegar. Andlauer and others (2000) investigated the influence of 

acetification process on phenolic compounds in cider, red and white wine and vinegar. They 

concluded that acetification process decreased the total phenolics in cider vinegar (40%), red 

wine vinegar (13%) and white wine vinegar (8%). Also, Su and others (2006) compared the 

antioxidant properties of blueberry juice, wine and vinegar pomace. They reported that wine 

pomace has the highest antioxidant activites while vinegar pomace has the lowest. They also 

concluded that acetification significantly decreased TPH, ACY and antiradical activity. In short, 

our conclusion is in line with that of Andlauer and others (2000) and Su and others (2006, 2007). 
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Table 4.5.Summary of total anthocyanin content (ACY), total epicatechin (EPC), total phenolics 
(TPH), and antiradical activity (AR) of blueberry juice and fermentation products. 

Sample      ACY 
(mg/100ml) 

     EPC 
(mg/100ml) 

    TPH 
(mg/100ml) 

AR 
 (%) 

J 2.33±0.10c         19.13±0.93d 49.89±1.80a 32.17±2.07a 
W1 8.54±0.16a 62.65±0.64a 39.60±0.84b 41.03±4.32a 
W2 6.26±0.17b 49.07±0.60b 40.12±1.07b 27.09±3.14a 
V 2.96±0.17c 33.99±0.89c 39.15±1.99b 23.27±4.13a 
 
J: fresh juice; W1: fermentation product after primary wine fermentation; W2: fermentation 
product after secondary wine fermentation; V: fermentation product after acetification. All 
values are expressed as mean ± standard error. Within the same column, means followed by 
different letters are significantly different at P ≤ 0.05.  

 

4.3.7. Changes in Concentration of EPA and DHA in Salmon Oil-in-water Emulsion 

Eicosapentaenoic acid (EPA) and Docosahexaenoic acid (DHA) contents in salmon oil are 

reported to be in the range of 6.2-7.9% and 9.1-10.5%, respectively (Frankel and others 2002; 

Barrow and others 2008). Salmon oil used in this experiment contained 9.20±0.75 (%) of EPA 

and 8.10±0.60 (%) of DHA by GC-FID. The slight variation is probably because of the varieties 

of the salmon species used and the discrepancy of the testing method applied in the experiments. 

Nevertheless, the slight discrepancies can be considered insignificant in this case while we are 

comparing the salmon oil-in-water emulsion (SOE) internally instead of externally. 

Figures 4.10 to 4.11 and table 4.5 show the EPA and DHA remaining in SOE after treatment 

with 1% and 9.1% of blueberry juice, wine and vinegar. After 3 days of incubation in a warm 

water bath, EPA and DHA in the control SOE (C3) degraded 87% and 91% respectively while 

compared to that in the control at 0 days (C0). One percent of juice (J1), wine (W1) and vinegar 

(V1) effectively prevented the degradation of EPA by 57%, 70% and 77%, respectively, and 

DHA by 57%, 72% and 79%, respectively. In addition, 9.1% of juice (J10), wine (W10) and 

vinegar (V10) prevented the degradation of EPA by 73%, 77% and 75%, respectively, and DHA 
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by 80%, 84% and 88% respectively. Even though 9.1% treatment was more effective than the 1% 

treatment in preventing the degradation of EPA and DHA, both the treatments were not 

statistically different in terms of EPA. As for DHA, although the results showed that 9.1% and 1% 

treatments were statistically different with the calculated p-value of 0.034, the p-value was very 

close to our significant difference level which was at P ≤ 0.05. Therefore, 9.1% treatment was 

close to having the same effect as the 1% in preventing DHA degradation. In other words, 1% of 

treatment was sufficient enough to prevent EPA and DHA degradation in SOE. A similar finding 

was reported by Luther and others (2007). They investigated the inhibitory effect of black 

raspberry seed extract on lipid oxidation in fish oil and reported that black raspberry seed extract 

significantly reduced the degradation of n-3 polyunsaturated fatty acid.  

 

Figure 4.11. Eicosapentaenoic acid (EPA; C20:5n-3) remained in 1% salmon oil-in-water 
emulsion (SOE) after 3 days of incubation. C0: control at 0 day; C3: control after 3 days; J1, W1, 
V1: blueberry juice, wine, vinegar at 1%; J10, W10, V10: blueberry juice, wine, vinegar at 9.1%. 
Values are expressed as mean ± standard error. 
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Figure 4.12. Docosahexaenoic acid (DHA; C22:6n-3) remained in 1% salmon oil-in-water 
emulsion after 3 days of incubation. C0: control at 0 day; C3: control after 3 days; J1, W1, V1: 
blueberry juice, wine, vinegar at 1%; J10, W10, V10: blueberry juice, wine, vinegar at 9.1%. 
Values are expressed as mean ± standard error. 

 
Table 4.6. Summary of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) remained 
in salmon oil-in-water emulsion after 3 days of oxidation.  

Sample       EPA  
(mg/100mg) 

     DHA  
(mg/100mg) 

C0 9.20±0.75a 8.10±0.60a 
C3 1.20±0.60c 0.70±0.50c 
J1 5.20±0.55b 4.70±0.60b 
W1 6.40±0.30ab 5.90±0.20ab 
V1 7.10±0.30ab 6.50±0.30ab 
J10 6.75±0.15ab 6.55±0.15ab 
W10 7.05±0.35ab 6.85±0.35ab 
V10 6.85±0.05ab 7.15±0.35ab 
 
C0: control at 0 day; C3: control after 3 days; J1, W1, V1: blueberry juice, wine, vinegar at 1%; 
J10, W10, V10: blueberry juice, wine, vinegar at 9.1%. Values are expressed as mean ± standard 
error. Within the same column, means followed by different letters are significantly different at  
P ≤ 0.05.  
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In this experiment, blueberry vinegar contained less anthocyanin, epicatechin and total phenolics 

and possessed weaker antiradical activity; however, it was the strongest agent in preventing EPA 

and DHA oxidation compared to blueberry juice and wine. Therefore, phenolics compounds, 

such as anthocyanin and epicatechin, were not the only factor that influenced the degradation of 

EPA and DHA in this oil-in-water emulsion system. Other factors, such as the physical location 

of the antioxidant, its interaction with other food components and environmental conditions, 

have to be considered in a heterogeneous food system as well (Decker 2005).  

In this experiment, other than the phenolic compounds, pH could be an important factor that 

influenced the lipid oxidation in the SOE system. Few studies investigated the effect of pH on 

antioxidant compounds in oil-in-water emulsions but the results were contradictory. Some show 

that the rate of lipid oxidation increases with increasing pH in oil-in-water emulsions (Huang and 

others 1996; Sorensen and others 2008) but others disagree (Shimada and others 1994; Donnelly 

and others 1998). A food matrix is a very complex system; therefore, a lot of measures should be 

taken into consideration before an established conclusion is made. Though several studies have 

shown that pH has an effect in oil-in-water emulsions, it is clear that pH can impact the oxidative 

stability of the emulsions in various way, such as its effect on the reactivity, solubility, size of the 

droplets and partitioning of the reactive species involved (Mcclements and other 2000; Sorensen 

and others 2008). This may explain the inconclusive result of whether lower or higher pH retards 

lipid oxidation. Therefore, further research has to be done to confirm the impact of pH on 

specific antioxidant compounds in the complex oil-in-water emulsions.  
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CHAPTER 5. SUMMARY, CONCLUSION AND FUTURE RESEARCH 

“Phytochemicals and functional foods” is one of the hottest terms that have attracted significant 

attention from scientists, health professionals and food manufacturers in recent decades. 

Anthocyanin and other phenolic compounds from various fruits and vegetables are the major 

constituents that are accountable for optimal health. This research started with a curiosity to 

know if proteases were capable in preventing anthocyanin degradation in sugar-reduced (open 

ferment to reduce sugars) black raspberry juice. The curiosity led the research group to search 

and in searching, ideas about investigating the changes of phenolic compounds during 

fermentation flourished. Though phenolic compounds in grape wine have been extensively 

studied, the information about the changes in phenolic compounds of other fruit crops during 

wine and vinegar fermentation is limited, however. Therefore, upon the completion of the black 

raspberry project, fresh persimmons and blueberries were used to investigate the changes of 

polyphenols during alcohol and vinegar fermentation.  

Our findings concluded that: 

1) One percent of neutral bacterial protease can potentially prevent anthocyanin degradation in 

fermented black raspberries 

2) Total phenolics in astringent persimmons was degraded throughout the alcohol and vinegar 

fermentation processes. However, in non-astringent persimmons, alcohol fermentation increased 

but acetification decreased the total phenolic 

3) In blueberries, alcohol fermentation increased but acetification decreased anthocyanin and 

epicatechin. While comparing the ability of blueberry juice, wine and vinegar in preventing EPA 

and DHA degradation, blueberry vinegar was the most effective agent among all.  

A more established research that focuses on the anti-oxidative effect of blueberry wine and 



- 67 - 
 

vinegar in preventing lipid oxidation of fish oil can be designed and conducted. Other than using 

GC-FID to detect the concentration of docosahexaenoic acid (DHA) and eicosapentaenoic acid 

EPA (EPA) in salmon oil-in-water emulsion (SOE) before and after oxidation, thiobarbituric 

acid (TBA) method could also be used to access the overall lipid oxidation in SOE model system. 

Though EPA and DHA are the major fatty acids in salmon oil, alpha-linolenic acid (C18:3) is 

also an important fatty acid in salmon oil. It could be quantified together with EPA and DHA by 

GC-FID in future research.  
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APPENDIX A. CHROMATOGRAM OF ANTHOCYANIN IN BLACK RA SPBERRY 
FERMENTATION PRODUCTS AFTER TREATED WITH 1% PROTEAS ES IN 

OPENED BEAKER 
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APPENDIX B. CHROMATOGRAM OF ANTHOCYANIN IN BLACK RA SPBERRY 
FERMENTATION PRODUCTS AFTER TREATED WITH 0.1% AND 0 .01% 

PROTEASES IN VOLUMETRIC FLASK COVERED WITH AIR-LOCK  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C: Control; 0.01AP, 0.01NBP: treated with 0.01% acid protease, neutral bacterial protease; 
0.1AP, 0.1 NBP: treated with 0.1% acid protease, neutral bacterial protease.  
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APPENDIX C. SUMMARY OF PH, TA AND BRIX OF BLUEBERRY JUICE AND 
FERMENTATION PRODUCTS  

 

 

Products pH TA 
(%) 

Brix 
(%) 

J 3.10±0.03 0.80±0.03 9.90±0.10 
W1 3.10±0.01 1.50±0.03 5.60±0.05 
W2 2.90±0.02 1.50±0.02 5.40±0.05 
V 2.62±0.07 4.80±0.01 5.30±0.10 
 
TA is expressed in % of malic acid for J, W1, W2 and % of acetic acid for V. Brix is expressed 
in % of sugars. J: fresh juice; W1: fermentation product after primary wine fermentation; W2: 
fermentation product after secondary wine fermentation; V: fermentation product after 
acetification. Values are expressed as mean ± standard error.   
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APPENDIX D. SUMMARY OF PH, TA AND BRIX OF ASTRINGENT AND NON-
ASTRINGENT PERSIMMON JUICE AND FERMENTATION PRODUCTS 

Products pH TA 
(%) 

Brix 
(%) 

AJ  5.59±0.05 0.28±0.10 24.10±0.01 
AW1 4.44±0.01 0.72±0.06 6.30±0.04 
AW2 4.39±0.01 0.69±0.02 6.10±0.01 
AV 3.19±0.04 3.95±0.03 4.40±0.02 
NJ 6.04±0.06 0.26±0.10 22.6±0.01 
NW1 4.47±0.02 0.60±0.06 5.60±0.03 
NW2 4.32±0.07 0.72±0.08 6.10±0.01 
NV 3.28±0.08 2.88±0.04 4.20±0.02 
 
TA expressed in % malic acid for AJ, AW1, AW2, AJ, NJ, NW1, NW2 and % of acetic acid for 
AV & NV. AJ & NJ: astringent and non-astringent juice; AW1 & NW1: astringent and non-
astringent persimmon after primary wine fermentation; AW2 & NW2: astringent and –non-
astringent persimmon after secondary wine fermentation; AV & NV: astringent and non-
astringent persimmon vinegar. Values are expressed as mean ± standard error. 
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APPENDIX E. ANTHOCYANIN CHROMATOGRAM OF TIFBLUE RAB BITEYE 
BLUEBERRY JUICE AND FERMENTATION PRODUCTS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 J: fresh juice; W1: fermentation product after primary wine fermentation; W2: fermentation 
product after secondary wine fermentation; V: fermentation product after acetification. 
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APPENDIX F. EPICATECHIN (EPC) CHROMATOGRAM OF TIFBL UE RABBITEYE 
BLUEBERRY JUICE  

 

 

J: Blueberry juice; W1: fermentation product after primary wine fermentation; W2: fermentation 
product after secondary wine fermentation; V: fermentation product after acetification. 
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APPENDIX G. CHROMATOGRAM OF EPA AND DHA IN SALMON O IL-IN-WATER 
EMULSION W ITH 1% AND 10% TREATMENT AT 0 DAY AND 3 DAY OF 

INCUBATION 
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Continued From Appendix F.  

 

BJ1, BW1, BV1: treated with blueberry juice, wine, vinegar at 1%; BJ10, BW10, BV10; treated 
with blueberry juice, wine, vinegar at 9.7%; solid red oval: EPA; doted green oval: DHA.  
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APPENDIX H. SAS PROGRAM OF STATISTICAL ANALYSES 
 

SAS Program for the Analyses of Total anthocyanin Content of Blueberry Juice and 
Fermentation Products 

 

 
SAS Program for the Analyses of Epicatechin of Blueberry Juice and Fermentation Products
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SAS Program for the Analyses of Total Phenolics of Blueberry Juice and Fermentation Products 

 

 

SAS Program for the Analyses of Antiradical Activity of Blueberry Juice and Fermentation 
Products 
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SAS Program for the Analyses of EPA Remained in Salmon Oil-in-water Emulsion after 3 days 
of Incubation 

 

SAS Program for the Analyses of DHA Remained in Salmon Oil-in-water Emulsion after 3 days 
of Incubation 
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SAS Program for the Analyses of Antiradical Activity of Persimmon Juice and Fermentation 
Products 

 

 

SAS Program for the Analyses of Total Phenolics of Persimmon Juice and Fermentation 
Products 
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SAS Program for the Analyses of Total Anthocyanin of Black Raspberry Juice and Fermentation 
Products After Treated with 1% Proteases 

 

SAS Program for the Analyses of Total Anthocyanin of Black Raspberry Juice and Fermentation 
Products After Treated with 0.1% and 0.01% Proteases 
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