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ABSTRACT 

Eicosapentaenoic (EPA) and docosahexaenoic (DHA) in marine oils are known to 

provide health benefits. However, marine oils are accompanied by saturated fatty acids. By 

enriching fish oils with EPA and DHA the beneficial effect of fish oils can be increased while 

limiting the detrimental effect of the saturated fatty acids. Fish oils need to be purified before 

consumption.  A number of methods have been used for extracting and purifying EPA and DHA 

enriched fish oils; however, thermal degradation and oxidation of polyunsaturated fatty acids 

(PUFAs) often occurs as a result of exposure to high temperatures, solvents and adverse 

conditions during processing. Therefore, it is important to develop a combined purification and 

enrichment method for EPA and DHA that minimizes the degradation and oxidation of PUFAs. 

A process which produces a dry powder microencapsulated fish oil enriched with EPA and DHA 

enclosed in a protein and peptide coating may suffice and result in higher market value and 

extended shelf life. Menhaden (MO) and salmon (SO) oils were used to develop the process. MO 

and SO were hydrolyzed by lipase at enzyme concentrations of 250, 500, 2500 U/g oil and 50, 

250, 1250 U/g oil, respectively, for up to 24h. The enzyme was subsequently inactivated and 

removed using centrifugal force. The fish oils enriched with EPA and DHA were purified using 

adsorption technology. The purified oils enriched with EPA and DHA were microencapsulated 

with protein and peptides. The lipase hydrolysis kinetics of MO and SO were well fitted with the 

Michealis-Menten model. Total EPA and DHA fractions increased from 21.1% to 38.9% for MO 

at 2500 U/g oil and from 20.1% to 32.8% for SO at 1250 U /g after 6 h of hydrolyzation. The 

adsorption process reduced impurities in fish oil enriched with EPA and DHA. 

Microencapsulated MO and SO enriched with EPA and DHA powders contained all the essential 

amino acids. This study demonstrated a method to enrich fish oils with EPA and DHA and to 
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purify the oils enriched with EPA and DHA. In addition, the study demonstrated the 

microencapsulation of fish oils enriched with EPA and DHA with a protein and peptide wall 

material.  
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CHAPTER 1 LITERATURE REVIEW 

1.1 Oils and Long Chain ω-3 PUFA 

 

Lipids provide a concentrated source of energy and essential fatty acids through daily 

dietary intake.  They also serve as important constituents of cell walls and carrier of fat-soluble 

vitamins.  In addition, lipids are essential for flavor, texture and mouthfeel of the food.  

Edible oils are mainly composed of triacylglycerols (also called neutral fats or 

triglycerides) with phospho- and glycolipids (PL and GL, respectively) comprising a small 

fraction.  Triacylglycerols are the combination of one unit of glycerol with three units of fatty 

acids.  A fatty acid contains a long hydrocarbon chain and a terminal carboxylate group.  Fatty 

acids have 3 major physiological roles: 1) fuel molecules for metabolism.  Fatty acids mobilized 

from triacylglycerols are oxidized to provide energy for a cell or organism.  Fatty acids are the 

main source of energy when undergoing a moderate exercise or resting. 2) Fatty acids are used to 

modify protein by the covalent bond to target them to membrane locations. 3) Fatty acid 

derivatives can serve as hormones and intracellular messengers. 

Fatty acid chain may contain two to more than thirty carbon atoms with various numbers 

of double bonds.  The fatty acids without double bonds are called saturated fatty acids; fatty 

acids containing one double bond are called mono-unsaturated fatty acids, while the ones that 

have more than one double bond are polyunsaturated fatty acids (PUFA).  In systematic chemical 

nomenclature the position of the double bonds is given by numbering from the carboxyl group.  

But an alternative notation numbers the carbon atoms from the terminal methyl group, i.e., the 

carbon furthest from the carboxyl group, known as the ω-carbon, and the position of the first 

double bond from the ω-carbon is known as ω-x or n-x, where x is the carbon number on which 

the double bond occurs (Figure 1.1).  There are two groups of essential fatty acids: ω-3 and ω-6 

(or n-3 and n-6) fatty acids, because the human body system cannot introduce ω-3 and ω-6 fatty 
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acids, even though can create double bonds between the carboxyl group and an existing double 

bond.  By contrast, plants can introduce a new double bond between existing double bonds and 

the terminal methyl group with the presence of enzymes (such as Δ
12

 and Δ
15

 – desaturases) 

(Ruxton and others 2005).  Mammals lack these enzymes and cannot synthesize ω-3 and ω-6 

fatty acids, but require a dietary source of these two essential fatty acids (Cunnane 2000).  The 

ω-3 PUFA group mainly consists of α-linolenic acid (18:3n3) (contained mainly in vegetable 

oils), stearidonic acid (SA, 18:4n3), eicosapentaenoic acid (EPA, 20:5n3) and docosahexaenoic 

acid (DHA, 22:6n3). The SA, EPA, and DHA are obtained from marine sources.  The ω-6 group 

is made up of linoleic acid (18:2n6), γ-linolenic acid (18:3n6), dihomo- γ- linolenic acid (20:3n6), 

and arachidonic acid (AA, 20:4n6).  All of these fatty acids contain all-cis, non-conjugated 

double bonds, and the first double bond occurs at carbon three or carbon six counting from the 

terminal methyl group.    

 

Figure 1.1 - Chemical composition of various fatty acids (Ruxton and others 2005) 
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Fish oils, which are rich in long chain ω-3 PUFA, have been receiving attention in the 

scientific and industrial areas because of its positive role in human health.  The potential benefits 

of ω-3 PUFA include reduced risk of cardiovascular diseases, hypertension and atherosclerosis, 

inflammatory and autoimmune disorders.  DHA is now recognized as an essential nutrient in the 

brain and retina for neural functioning and visual activity, respectively (Matouba and others, 

2008).  

1.1.1 Long Chain ω-3 PUFA and Cardiovascular Disease (CVD) 

Evidence indicated that dietary long chain ω-3 PUFA has beneficial effects in the prevention 

and treatment of CVD and detailed systematic reviews of the evidences were provided (Bucher 

and others 2002; Hooper and others 2003).  Based on a study of a sub-group of diabetic women, 

Hu and others (2003) observed a very high inverse relationship between fish intake and coronary 

heart disease (CHD), with a risk reduction of more than 60% for the highest fish intake and about 

30% reduction for women eating one to three fish meals per month.  

The GISSI-Prevenzione study (Anonymous, 1999) found that long chain omega-3 fatty 

PUFA supplementation (equivalent to 850 mg EPA and DHA/d) reduced the relative risk of 

death caused by acute myocardial infarction (MI) over 3.5 years by more than 10% and of 

cardiovascular death by at least 17%.  

There is a lack of a definitive mechanistic explanation on the cardioprotection of long 

chain n-3 PUFA.  It may arise from the intervention at either step leading to cardiovascular 

disease (i.e., atherosclerosis) or the step that ultimately causes death (e.g., MI and stroke) (Calder 

2004).  Ruxton and others (2005) summarized the possible mechanisms as: 1) alterations in 

plasma lipoprotein profiles, especially by reducing triacylglycerol concentrations and reducing 

the LDL: HDL cholesterol ratio; 2) reducing the endothelial activation, i.e., reduction in 
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expression of adhesion molecules and an increase in vascular nitric oxide (NO) production; 3) 

anti-arrhythmic effects on heart muscle; 4) improved plaque stability; 5) anti-thrombotic effects.  

1.1.2 Long Chain ω-3 PUFA and Infant Development 

 It was revealed in the early study (Pullarkat and Reha 1976) that the most abundant 

PUFA in rat brain lipid was DHA.  A lack of DHA in the last trimester of an infant may impact 

on the differentiation and multiplication of brain cells and hampering the function of cerebral 

membranes and consequently learning abilities.  This could be caused by the important role of 

DHA in creating fluidity in neuronal membranes, which can regulate neurotransmitters, promote 

the enzyme activity, bind protein, and transport nutrient for the brain cells (Yehuda and others 

1999; Bourre and others 1991).  DHA is also very crucial for the development of visual function. 

Phospholipid bilayers rich in DHA are important to the normal functioning of photoreceptor cells 

because of their high fluidity and enhanced rates of fusion and permeability.  

1.1.3 Long Chain ω-3 PUFA and Mental Health 

 The evidence for the role of ω-3 fatty acids in the aetiology and treatment of depression 

and other mental disorders were reported by many researchers (Freeman 2000, Mischoulon and 

Fava 2000; Haag 2003).  Cenacchi and others (1993) found that elderly patients treated with 

DHA-rich phosphatidylserine demonstrated significant reductions in depressive symptoms 

compared with a placebo-controlled group.  In a study with EPA, patients with unipolar 

depressive disorder experienced significant improvements in symptoms after 4 weeks of 

treatment (Nemets and others, 2002).  

1.1.4 Long Chain ω-3 PUFA and Immune Function 

 Arachidonic acid (AA) is the most abundant fatty acid found in human immune and 

inflammatory cells.  The balance between arachidonic acid (AA), and long chain ω-3 PUFA 

within immune and inflammatory cells is thought to affect the immune function and on 
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production of inflammatory mediators (Ruxton and others, 2005).  The function of 

supplementation with fish oil containing long chain ω-3 PUFA was reviewed by Ruxton and 

others (2005). It was shown to decrease neutrophil and monocyte chemotaxis, neutrophil and 

monocyte respiratory burst, neutrophil binding to endothelial cells, and production of the classic 

inflammatory cytokines TNF, IL-1, and IL-6.  

1.2. Introduction of Menhaden and Salmon Fish 

In the USA, currently, menhaden and salmon oils are commercially produced and both fish 

oils are abundant sources of polyunsaturated fatty acids, especially EPA and DHA.   

1.2.1 Menhaden Fish and Menhaden Oil 

Menhaden is an Americanized name but derived from the Indian word 

―Munnawhatteaug‖, meaning ―which enriches the earth‖.  It is a silver-scaled fish, with an 

average length of 18 inches and weight of 5 pounds for a full-grown individual.  Most of the 

menhaden fish consumed in the United States are caught from the Atlantic and gulf coasts.  

Atlantic menhaden (Brevoortia tyannus) are found in estuarine and coastal waters from 

northern Florida to Nova Scotia. They may live up to 10-12 years. In 2000, about 30% of U.S. 

Atlantic coast commercial fisheries landing by weight were Atlantic menhaden. People are 

becoming more and more aware of the high value of menhaden oil recently, as a result, the ex-

vessel value (the amount paid to fishers for their raw catch) for the Atlanta menhaden fish was 

increasing from $0.009/pound to $0.11/pound from year 1960 to year 2000 (National Marine 

Fisheries Service, Fisheries Statistics and Economics Division). 

Gulf menhaden (Brevoortia patronus) are distributed throughout the Gulf of Mexico 

from the Yucatan Peninsula to Tampa Bay, FL, and are most abundant in the north central Gulf 

of Mexico. The primary fishing ground for gulf menhaden includes the coastal regions of 

Alabama, Mississippi, Louisiana, and Texas (Gulf States Marine Fisheries Commission 2002). 
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During the period 2000 to 2004, Gulf annual landings have averaged 575,311 metric tons.  The 

menhaden landings in the Gulf of Mexico comprised about 11% of all U.S. landings, which is 

the second largest commercial fishery in the United States.  Final landings of gulf menhaden in 

2010 amounted to 379,727 metric tons (1,250 million standard fish), which was lower than past 

years because of the oil spill and weather (NOAA 2011). 

Menhaden are not commonly used for human consumption because of the oily taste and 

bony structure. They are usually used for bait in commercial fisheries and can also be processed 

into fishmeal and fish oil. The following procedure describes how the fish oils are produced: 

Firstly, the fish are caught by a fishing technique known as "purse seining".  They are pumped 

from the sea into refrigerated holds on the fishing vessels. Then they are transferred to temporary 

holding tanks until they are cooked.  The fish are cooked in indirect steam cookers (165 °F, 15- 

20 min). After cooking, the fish are conveyed to screw press conveyors where much of the water 

and most of the oil are squeezed from the fish. The oil/water mix goes through several banks of 

centrifuges to separate the oil and water without leaving much of either with the other. 

1.2.2 Salmon Fish and Salmon Oil 

Seafood companies process large quantities of both farm-raised and wild salmon each 

year. Salmon species vary with different oceans, which primarily include Atlantic Ocean species 

and Pacific Ocean species. The Atlantic Ocean has only one species of salmon: Salmo salar.  

Pacific species belong to the genus Oncorhynchus, such as Oncorhynchus masou (cherry 

salmon), Oncorhynchus tshawytscha (Chinook salmon), Oncorhynchus keta (Chum salmon), 

Oncorhynchus kisutch (Coho salmon), Oncorhynchus gorbuscha (Pink salmon), and 

Oncorhynchus nerka (red salmon).  Wright (2004) reported that several tons of fish processing 

waste is produced worldwide from salmon farming. The major salmon species that is raised in 

net-pen culture is Atlantic salmon (Salmo salar L.) (Sun and others 2002).  Alaska‘s wild salmon 
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resource is the greatest in the world. It was reported that 99,000 metric tons of salmon 

byproducts were produced from 331,798 metric tons of salmon harvested in Alaska in year 2006 

(ADFG 2007). The byproducts from salmon processing including heads, skins, frames, and 

viscera usually end up in landfills or rendering plants.  These byproducts could be converted into 

valuable products such as salmon hydrolysate and salmon oil (Wright 2004). The hydrolysate is 

typically produced by maceration of byproducts containing less fat followed by enzymatic 

digestion of protein and removal of bones (Kristinsson and Rasco 2000). Salmon oil can be used 

as a feedstock for biodiesel production via a transesterification process (El-Mashad and others 

2008).  Salmon oils have been claimed to help maintain human health because of the high 

concentration of ω-3 PUFAs (Kronhout and others 1985). Much of the oil in the salmon is found 

in the heads (15-18% lipids).  Sun and others (2002) found that Atlantic salmon viscera 

contained higher amounts of PUFAs than fillet portions.  

1.3 Oil Analysis and Fish Oil Deterioration 

Different analyses are required at different stages of oil processing and storage.  Before 

refining, for example, evaluating the free fatty acids (FFA) content of the oil is necessary to 

determine the lye amount and amount of oil loss after the neutralization process, to determine if 

the oil has been properly deodorized, and to serve as a quality indicator after storage. For final 

edible-oil products, organoleptic evaluations, peroxide value, FFA, and other analyses are 

utilized for assurance that the product has the required bland flavor.  Active oxygen method 

(AOM) stability has been utilized to ensure proper shelf life.  Nutritional listings of saturated, 

polyunsaturates, cholesterol, trans- fat, vitamins, and other product characteristics on food 

product labels require accurate analysis to identify the oil values.  To meet the governmental 

regulations, trace constituents such as pesticides or trace metals also need to be analyzed 

(O‘Brien 2003).  
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The analyses in this study include composition analysis and rancidity and stability 

characterization. Composition analysis includes saponification value, iodine value, fatty acid 

composition, and glyceride structure.  

The rancidity values, such as peroxide values (PV), p-Anisidine value, thiobarbituric 

acid-reactive substances (TBARs), and free fatty acids (FFA), are of prime importance for 

quality control of edible fats and oils. The conjugated carbon double bonds of PUFAs are very 

easily attacked by oxygen (autoxidation) resulting in hydroperoxides (indicated by PV). This 

reaction rate depends on the degree of unsaturation of the fatty acid and can proceed rapidly with 

the presence of light, heat, oxygen, moisture and catalysts such as metals in the oil (Robles and 

others 1998).   After a series of autocatalytic reactions, very diverse secondary oxidation 

products are formed including ketones, aldehydes, organic acids and other low molecular weight 

compounds.  p-Anisdine value estimates the amount of aldehydes (mainly 2-alkenals and 2, 4-

dienals) by reacting with each other to form a chromogen that is measured 

spectrophotometrically.  The secondary lipid oxidation products can also be evaluated by the 

measurement of malondialdehyde (MDA) reacting with thiobarbituric acid (TBA). Because the 

TBA test is not highly specific for MDA, the results of this measurement are generally expressed 

as thiobarbituric acid-reactive substances (TBARS) (Ang and Lyon 1990).  

These oxidation and decomposition reactions are summarized as follows: 1) Autoxidation: 
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2) Decomposition of hydroperoxides: Secondary products (e.g.,aldehydes, ketones, organic acid) 

 
 

The oxygen-centered free radicals, also known as reactive oxygen species (ROS), 

including superoxide, hydrogen peroxide, hydroxyl (HO
.
), peroxyl (ROO

.
) and alkoxyl (RO.) 

play an important role in the degenerative or pathological processes of various serious diseases in 

humans, such as aging (Burns and others 2001), cancer, coronary heart diseases, Alzheimer's 

disease (Diaz and others 1997), neurodegenerative disorders, atherosclerosis, cataract, and 

inflammation (Aruoma 1998).  

To minimize these reactions, 1) the oil processes should be done in an inert atmosphere 

(nitrogen or argon), if possible; 2) techniques that employ heating should be avoided; 3) EDTA 

can be added to inactivate the metal ions by forming chelate complex if necessary.   

During the storage of purified oils, these steps are usually used to reduce the rancidity 

occurrence: 1) for temporary storage, diluting the sample with a solvent such as petroleum ether 

(low oxygen solubility); 2) sealing the oil samples under vacuum with minimum headspace 

(Itolman 1966); 3) storing the samples at low temperature. The deterioration rate of oil samples 

at -20°C is only about 1/16th that of at room temperature. Temperatures between -40°C and -

80°C are required for storage of several years; 4) adding antioxidant additives to slow oxidation 

of PUFAs. Commonly used antioxidants are tertiary butylhydroquinone (TBHQ), butylated 

hydroxytoluene (BHT), and octyl gallate, at concentrations of below 200ppm according to 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T6V-517BB3M-3&_user=3787556&_coverDate=01%2F31%2F2011&_rdoc=1&_fmt=high&_orig=gateway&_origin=gateway&_sort=d&_docanchor=&view=c&_acct=C000061383&_version=1&_urlVersion=0&_userid=3787556&md5=1d08b69012fa78aa3e10f036256c2462&searchtype=a#bb0020
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T6V-517BB3M-3&_user=3787556&_coverDate=01%2F31%2F2011&_rdoc=1&_fmt=high&_orig=gateway&_origin=gateway&_sort=d&_docanchor=&view=c&_acct=C000061383&_version=1&_urlVersion=0&_userid=3787556&md5=1d08b69012fa78aa3e10f036256c2462&searchtype=a#bb0045
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T6V-517BB3M-3&_user=3787556&_coverDate=01%2F31%2F2011&_rdoc=1&_fmt=high&_orig=gateway&_origin=gateway&_sort=d&_docanchor=&view=c&_acct=C000061383&_version=1&_urlVersion=0&_userid=3787556&md5=1d08b69012fa78aa3e10f036256c2462&searchtype=a#bb0010
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regulations (Babovic and others 2010).   But these synthetic antioxidants could be promoters of 

carcinogenesis (Ito and others 1986) and liver swelling (Martin and Gilbert 1968).  Use of 

natural antioxidants has been suggested to avoid the potential toxicity of these synthetic 

antioxidants with an increased demand from consumers (Ahn and others 2002).  Many 

researchers have reported antioxidant effects of extracts from plants, such as rosemary, sage, 

thyme, grape seed, and pine bark (Barbut and others 1985; Buckley and others 1995; Babovic 

and others 2010; Demiral and Ayan 2011).  Most of the natural antioxidants are phenolic 

compounds or polyphenols.  Their antioxidant activity is based on their structure, hydrogen-

donating potential and ability to chelate metal ions. They may show higher efficiency than 

endogenous or synthetic antioxidants (Soobratte and others 2005). 

1.4 Oil Purification 

Sterol, waxes, lipid soluble vitamins, phenolics and other minor constituents comprise the 

unsaponifiable matter of oils. Also, during the processing and storage, food lipids undergo 

chemical and physical changes, and these changes should not exceed a desirable limit. The 

impurities produced from processing and storage may decrease product quality or processing 

efficiency. These impurities include moisture, dust, protein degradation products, free fatty acids, 

phosphatides, oxidation products, pigments and trace elements (e.g. copper, iron, sulfur, and 

halogens), polysaccharides and chlorinated pesticide residues (Young and others 1994). The 

objective of purifying fish oil was to remove the impurities which cause the unattractive color or 

taste or are harmful components. In the meantime, some of the natural components such as 

omega-3 fatty acids and tocopherols should be preserved. 

The conventional oil purification methods include degumming, neutralization, bleaching, and 

deodorization. The following figure summarizes the major refining stages of oil processing and 

the type of impurities removed during each step. 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T6V-517BB3M-3&_user=3787556&_coverDate=01%2F31%2F2011&_rdoc=1&_fmt=high&_orig=gateway&_origin=gateway&_sort=d&_docanchor=&view=c&_acct=C000061383&_version=1&_urlVersion=0&_userid=3787556&md5=1d08b69012fa78aa3e10f036256c2462&searchtype=a#bb0075
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T6V-517BB3M-3&_user=3787556&_coverDate=01%2F31%2F2011&_rdoc=1&_fmt=high&_orig=gateway&_origin=gateway&_sort=d&_docanchor=&view=c&_acct=C000061383&_version=1&_urlVersion=0&_userid=3787556&md5=1d08b69012fa78aa3e10f036256c2462&searchtype=a#bbb0125
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Figure1.2 - Refining stages of edible oils and the major impurities removed. 

 

1.4.1 Conventional Oil Purification Methods 

 Degumming 

 Degumming is usually carried out after separating the oil from the micella. The gums are 

phospholipids and they are classified as hydratable and nonhydratable phospholipids 

(Subramanian and others 1999). With the presence of water or acids the phospholipids become 

hydrated and can be removed (Hui 1996). In the water-degumming process, the hydratable 

phospholipids are easily removed from the oil by treatment with water or steam. For example, 

soybean oil contains large amounts of phospholipids, to remove the gum the oils are usually 

treated by adding 2-3% water, agitating the mixture at about 50°C, and separating the hydrated 

phospholipids by settling or centrifugation (Fennema 1996). During acid degumming, the 

hydratability of the nonhydratable is increased by the acid (phosphoric or citric acid) and then 
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they can be removed from the crude oil. The lipids removed by degumming are α-lipids because 

they are easily reacted with water and readily precipitate as oil-insoluble hydrates (Wiedermann 

1981). 

 Degumming has shown to effectively reduce lead, copper, arsenic, and zinc in menhaden 

oil (Elson and Ackman 1978). The degumming methods include water degumming, 

superdegumming, total degumming, ultrafiltration process, acid treatment, and enzymatic 

degumming. Acid degumming is a simple and widely used method, by which phosphorus or 

citric acids are used and the phosphorus content after degumming is about 15-80 mg/kg 

depending on the different oil resources and quality. The problem with acid degumming is that it 

is not suitable for all types of oils. Superdegumming and total degumming were designed as 

modified processes of acid degumming, but the problem is that they are not cost-effective. The 

ultrafiltration process is an effective way to preserve the thermal sensitive and bioactive 

components in the oil, but it also has poor economic performance problem. The enzymatic 

degumming is to use enzyme to hydrolyze nonhydratable phospholipids into their hydratable 

form. This enzymatic degumming process produces high quality oil with low oil loss but it is not 

mature so far (Yang and others 2008). 

 Marine oils are not usually degummed before being refined. The removal of 

phospholipids and mucilaginous materials in such oils is carried on together with the removal of 

free fatty acids by alkali-refining (Shahidi and others 1997).  

 Neutralization 

 

 Neutralization is also called alkali refining. It is performed on edible oils to remove free 

fatty acids and other gross impurities such as phosphatides, proteinaceous, and mucilaginous 

substances. Alkali refining may cause both physical and chemical changes in the oil. The alkali 

(normally diluted sodium hydroxide) added to the oil reacts with free fatty acids present to form 
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soap. Gums absorb alkali and are coagulated by hydration, much of the pigments are degraded, 

adsorbed on the gums or made water-soluble by the alkali and the insoluble matter is entrained 

with other coagulated materials (Bimbo and Crowther 1991). After adding alkali to crude oils, 

the mixture is slightly heated to break the emulsion and then the soapstock is removed by 

centrifugation (Cowan 1976; Carr 1978). The refined oil is washed with warm water to remove 

the last traces of soap (Kwon and others 1984). These impurities, if not removed, could affect the 

color, foam and smoke characteristics and/or cloudiness of the oil in later stages of processing 

that involve high temperatures. 

 The soap which is removed in the refining process is diluted with water and acidified to 

form fatty acids. The fatty acids are centrifuged to remove the aqueous phase, dried and used for 

production of fatty acids, soap or feed manufacturing. This product is called acid oil or 

acidulated soapstock by the oil industry (Bimbo and Crowther 1991). Alkali refining removes the 

β-lipids since they are nonwater precipitable and require addition of alkali or acid to be removed 

from the oil (Wiedermann 1981).   

 Bleaching 

 Normally, after alkali-refining, the oil would be bleached. Bleaching refers to the process 

for removing color compounds, natural pigments (e.g. carotenoids, chlorophyll, xanthophyll and 

polyphenols) and oxidation products; it also removes some suspended mucilaginous and colloid-

like matter (Chang 1967). The process will improve the color, flavor, appearance, and oxidative 

stability of the oil. The usual method of bleaching is by adsorption of the color producing 

substance and other compounds on an adsorbent material. Commonly used bleaching materials 

are natural clay (or earth), activated clay (or earth) and carbon (Cowan 1976). If the oil is easily 

bleachable, natural clay is usually used; if the oil is not readily bleachable, acid-activated clay is 
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used. Bleaching power of the acid-activated clay is greater than that of the natural clay (Boki and 

others 1989). 

 Deodorization 

 

 After several purification steps, the oil may contain volatile odor and flavor-active 

components originally present in the crude oil, the ―soapy‖ odor created by alkali-refining, and 

the ―earthy‖ odor generated by bleaching (Chang 1967). Deodorization is the last major step in 

the refining of edible oils. It is done to remove undesirable odors and flavors from the oil and 

ensure their shelf-life stability (Gavin 1978).  The deodorization is a steam distillation process to 

strip the volatile compounds from the nonvolatile oil (Bimbo and Crowther 1991). The 

conventional procedure is to steam strip the oil at 200-240°C. For most edible oils, deodorization 

does not have any significant effect on the fatty acid composition and sufficient tocopherols 

remain in the finished oil after the process. But for marine oils, the temperature may cause high 

oxidation of polyunsaturated fatty acids (PUFA). Dimamarca and others (1990) developed a 

process for deodorizing fish oil by high vacuum distillation at lower temperatures (< 150°C). 

They produced purified fish oil without destroying the long chain PUFA.  

The main problems with the conventional purification methods are that they are not only 

labor-intensive but also expensive. An easy-operating and economical method is necessary in the 

edible oil purification industry. In this study an adsorption method with combined adsorbents 

was applied. 

1.4.2 Adsorption 

An adsorption process is an alternative method to refine fish oils. This technique involves 

mass transfer of adsorbate from the fluid phase to the adsorbent surface until the thermodynamic 

equilibrium of the adsorbate concentration is reached. Adsorption is a cost effective method with 

less oil loss and less lipid oxidation because of the mild conditions applied. Different kinds of 
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adsorbents were used in purification of edible oils, such as activated earth, activated carbon, 

kiselguhr or diatomaceous earth (Bera and others 2004), metal oxide and metal phosphate 

adsorbents (Chapman 1994). Activated earth is by far the most common adsorbent for 

purification and color improvements of fats and oils (Du and others 2006; Lara and Park 2004).  

Activated earth is produced by the activation of bentonite using mineral acids under heating for a 

few hours.  Activation is a process that involves a series of chemical reactions, resulting in 

strongly protonated clay mineral surface and increased specific surface area from an original 40-

60 to about 200 m
2
 per gram of dry clay (Hymore 1996).  Proctor (1996) reported a novel 

adsorbent rice hulls for edible oil processing, which are the co-products for rice processing. The 

reason was that rice hulls are rich in amorphous silica, and are very effective in binding 

phospholipids in adsorption process. Bera and others (2004) used charred sawdust as adsorbent 

to refine several kinds of edible oils, and indicated it was an effective, economical, and cost-

effective method for the refinery industries.  Activated carbons have been widely used as 

adsorbents in technologies related to pollution abatement, pharmaceutical, and food industries 

due to their highly porous structure, big internal surface area and large adsorption capacity (Song 

and others 2005).  

1.5 Enrichment of ω-3 Polyunsaturated Fatty Acid  

Consumption of EPA and DHA in a concentrated form may be more beneficial than 

general fish oil itself because the concentrates contain less saturated fatty acid.  It has been 

suggested that PUFA concentrates, devoid of more saturated fatty acids, are much better than 

marine oils themselves because they allow daily intake of total lipids to remain as low as 

possible (Wanasundara and Shahidi 1998).  With the consumer awareness of benefits from 

PUFAs, there‘s a great demand for pharmaceutical industries to prepare highly pure PUFA 

concentrations.  Therefore, rapid and reliable methods to enrich PUFAs are required. 
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The most developed techniques used to concentrate PUFAs include urea fractionation, 

low temperature fractional crystallization, salt solubility methods, gas chromatography, and thin-

layer chromatography.  These techniques usually fractionate the fatty acids based on the number 

of double bonds or the chain length.  However, not all those methods are applicable to 

preparative or production scale (Robles and others 1998).  There are some newly developed 

processes to concentrate PUFAs, such as supercritical fluid technology and lipase-catalyzed 

hydrolysis reaction.  

1.5.1 Urea Fractionation 

The urea fractionation method is one of the common methods being used to concentrate 

PUFAs.  The theory of fractionation of organic compounds with urea is: When urea crystallizes 

from a solution of fatty acids of varying degrees of unsaturation, the saturated and 

monounsaturated fatty acids (long and straight-chain molecules), are first included in crystals 

and precipitates as hexagonal crystals, while the PUFAs remain in solution.  .  

Molina and others (1996) developed a process for purifying PUFAs from various sources, 

the marine microalga I galbana and the diatom P. tricornutum, using urea fractionation and 

reverse phase chromatography techniques (Figure 1.3). This process produced a fraction 

containing a highly pure form of eicosapentaenoic acid with a high yield from P. tricornutum 

biomass. But a large quantity of organic solvent was required and the cost was high ($188/g). 

1.5.2 Low Temperature Fractional Crystallization 

Low temperature fractional crystallization is also known as winterization.  This technique 

is based on melting points of the fatty acids. The more the double bonds the lower the melting 

points. Therefore, the PUFAs can be separated from saturated fatty acids by controlling the 

temperature.  Low temperature fractional crystallization is usually carried out in organic solvents,  



17 

 

 

Figure 1.3 - Indicative flowchart of EPA purification from wet microalga biomass. 

(1) culture from photobioreactor; (2) centrifugation; (3) freezer; (4) stirred tank under N2 

atmosphere; (5) cake filtration; (6) solvent extraction; (7) vacuum distillation; (8) crystallizer; (9) 

HPLC preparative column. 
 

such as acetone and different hydrocarbons.  The solubility of fatty acids in solvents increases 

with greater unsaturation and decreased with chain length, which is opposite for melting points 

(Scholfield 1979).  Arachidonic acid and its esters are liquid below -80ºC, so they always appear 

in the final filtrates of any solvent fractionation process. Arachidonic methyl acid ester with 

concentrations of up to 95% was obtained by a series of temperature fractionations (Shinowara 

and Brown 1940).  
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1.5.3 Salt Solubility Methods 

As with low temperature fractional crystallization, the salt solubility method is also one 

of the oldest methods concentrating PUFAs.  The solubility of fatty acid metal salts in organic 

solvents varies depending on the nature of the metal ion, the chain length, double bond number, 

and temperature.  Lithium soaps in acetone and alcohol is mostly used because the lithium salts 

of polyenoic fatty acids are soluble in 95% acetone while less unsaturated acids are relatively 

insoluble. Thus PUFAs may be separated from saturated and mono-unsaturated fatty acids 

(Marldey 1964).  The method is not considered a good one because of the safety concern of the 

lithium and utilization of acetone.  

1.5.4 Silica Gel Thin-layer Chromatography 

The thin-layer chromatographic method is a simple, reliable and inexpensive way to 

concentrate PUFAs (Shantha and Ackrnan 1991).  Thin-layer chromatography (TLC) is 

performed on a glass, plastic, or metal plate coated with the stationary phase and requires only 

small quantities of samples.  The separation is achieved because different compounds ascend the 

TLC plate at different rates in the mobile phase.  The silica gel is commonly used for lipid 

separations. Shantha and Ackman (1991) concentrated tetraene, pentaene and hexaene methyl 

esters from several natural sources to more than 85% with TLC plates.  However, TLC is more 

an analytical method than a preparative method. 

1.5.5 Preparative-scale Gas Chromatography 

Analytical gas-liquid chromatography provides excellent separation of polyunsaturated 

fatty acid esters but is difficult to scale-up. Hardy and Keay (1967) developed a procedure for the 

continuous preparation of highly purified methyl esters of octadecatetraenoic acid (C18:4), 

eicosapentaenoic acid (C 20: 5) and docosahexaenoic acid (C 22:6) from cod liver oil using a 

1.52 m × 6.35 mm column. Four steps were involved: cod liver oil saponification, PUFA 
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concentration with the urea method, preparative gas chromatography, and purification of PUFA 

fractions by thin layer chromatography on silicic acid plates. 

1.5.6 Supercritical Fluid Technology 

Supercritical fluids are unique because they have liquid-like densities and at the same 

time values of transport properties (e.g., viscosity and diffusion coefficient) intermediate 

between liquids and gases (McHugh 1986). Therefore they can be attractive media for 

extractions. The solubility of a solute in a supercritical fluid has been shown to be directly 

related to fluid density (concentration) (Chrastil 1982). For example, the solubility of a substance 

in a fluid can increase dramatically with pressure. This is more obvious near the critical point 

where the fluid is highly compressible and even a small increase in pressure can induce a large 

increase in fluid density.  Supercritical fluids exhibited retrograde and nonretrograde behaviors 

depending on the pressures used (Brule and Corbett 1984).  At pressures near the critical point, a 

moderate temperature increase can cause a large decrease in fluid density resulting in a decrease 

in solute solubility. This is known as retrograde behavior.  At much higher pressures, the fluid 

becomes less compressible and an increase in temperature induces a much less dramatic decrease 

in density. Thus, at higher pressures, an increase in temperature can cause an increase in 

solubility, which is called nonretrograde behavior. Concentration of PUFAs from fish oil is not 

as effective as from its methyl or ethyl esters. It was indicated that at the pressures below 250atm 

the esters exhibit retrograde behavior (Nilsson and others 1988). 

For food applications CO2 is the solvent of choice because it is nontoxic, non-flammable, 

readily available and relatively inexpensive. It‘s more suitable for the fish oil process because 

moderate temperatures (critical temperature and pressure are 31ºC and 7.3 MPa) are required and 

in a non-oxygen environment, which limits autoxidation, decomposition and/or polymerization 

of the PUFAs in fish oil.  Eisenbach (1984) reported a process of CO2 supercritical fluid 
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fractionation of fatty acid ethyl esters in the retrograde region at 150 atm and found that esters 

were separated primarily by carbon number and very concentrated (90-98%) fractions were 

obtained.  At higher temperatures, supercritical CO2 becomes less dense and solubility of the 

esters is decreased because of its retrograde property; the shorter chain components become 

more soluble than the longer chain ones, therefore the separation between these two are achieved. 

1.5.7 Lipase-catalyzed Hydrolysis Enrichment 

Most of the methods described above produce PUFA concentrate in the form of free fatty 

acids or their corresponding alkyl esters.  There‘s a strict limit for the content of FFA in fish oils 

for human consumption. It has been reported that methyl and ethyl esters of unsaturated fatty 

acids hydrolyze at a slower rate than their corresponding acylglycerols (Yang and others 1989).  

The acylglycerol form of PUFA is considered to be nutritionally more favorable than methyl or 

ethyl esters of fatty acids.  Several studies revealed the fact that alkyl esters of n-3 fatty acids can 

impair intestinal absorption in laboratory animals (El-Boustani and others 1982; Hamazaki and 

others 1987; Lawson L.D. and Hughes 1988).  From a marketing point of view, acylglycerols 

(mono-, di-, and triacylglycerols) are often promoted as being more ―natural‖ than free fatty 

acids and their methyl or ethyl esters (Haraldsson and Hoskuldsson 1989). 

Much attention has been given to microbial lipases to produce n-3 PUFA concentrates in the 

form of acylglycerols by hydrolysis of marine oils (Tanaka and others 1992; Hoshino and others 

1990; Shimada and others 1994; Yadwad and others 1991; Maehr and others 1994). ).  Lipases 

are one of the most important hydrolytic enzymes that can specifically hydrolyze carboxyl esters 

of triglycerides into free fatty acids and partial acylglycerols.  The advantages of lipase 

hydrolysis compared with chemical methods are saving energy and avoiding the formation of 

undesirable oxidation products, polymers, and isomeric conversion of natural cis-PUFAs to 

deleterious trans-PUFAs.  Another unique characteristic that lipases offer is selectively (i.e., 
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substrate, positional, and sterospecificity) concentrating on targeted fatty acids in triglycerides 

(Jaeger and Reetz 1998).  Breivik and others (1997) have reported that lipase-catalyzed 

enzymatic production of EPA and DHA concentrate from fish oil had shown potential in 

producing a high quality product because of the mild conditions of the process.  The reason that 

EPA and DHA can be concentrated by the lipase-assisted hydrolysis is because the 5 or 6 double 

bonds in EPA and DHA cause the molecules to be bent, not linear, so that they lie close to the 

ester bond and the lipase is less likely to hydrolyze the EPA and DHA ester bond (Bottino and 

others 1967).  

The rate of enzymatic reactions could be affected by several factors, including: (i) the nature 

of enzyme (activity, position- and substrate-specificity, etc.); (ii) the concentrations and ratios of 

reactants; (iii) the composition of oils or fatty acid mixtures; (iv) whether an organic solvent is 

used and its nature; (v) the water content and the water elimination system; (vi) temperature and 

pH; (vii) method of agitation; and (viii) the type of reactor (Robles and Molina 1998). 

Wanasundara and Shahidi (1998) systematically described the hydrolysis and separation 

methods to produce PUFAs from marine oils using eight different microbial lipases. The flow 

diagram is shown as in Figure 1.4.   It consists of five steps: hydrolysis of triglycerides, 

inactivation of lipase, neutralization of free fatty acids, separation of n-3 PUFAs with hexane, 

and evaporation of hexane.   

Many researchers adopted the same or similar processes to evaluate the effects of different 

lipases to enrich PUFAs from various sources of marine oils (Sun and others 2002; Okada and 

Morrisey 2007).  Table 1.1 summarized the properties of some of the lipases that have been used 

and their effectiveness on different oils.  
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Figure 1.4 – Enzymatic hydrolysis of marine oils and separation of acylglycerols and free 

fatty acids (Wanasundara and Shahidi 1998). 
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Table 1.1 Effectiveness of lipase on EPA and DHA enrichment of marine oils 
 

Lipase sources Literature author 

(year) 

Oil Effectiveness Lipase properties 

Aspegillus niger Sun and others 

(2002) 

Atlanta salmon 

oil 

Ineffective in 

increasing EPA and 

DHA 

Origin: Fungal 

Optimal temperature and 

pH: 30-40°C, 6.5 

Positional specificity: 1, 3- 

specific 
Wanasundara and 

Shahidi (1998) 

Seal blubber oil 

and menhaden 

oil 

Ineffective in 

hydrolyzing 

saturated fatty acids 

Okada and 

Morrissey (2007) 

Sardine oil No increase in EPA 

and minor increase 

in DHA  

Pseudomonas 

fluorescens 

Sun and others 

(2002) 

Atlanta salmon 

oil 

Ineffective in 

concentrating EPA 

and DHA 

Origin: Bacterial 

Optimal temperature and pH 

45-55°C; 8.0 

Positional specificity: none- 

specific 

Candida rugosa Sun and others 

(2002) 

Atlanta salmon 

oil 

Increased 42% 

EPA at 12h, 

increased 72% 

DHA at 12h 

Origin: Yeast 

Optimal temperature and 

pH: 30-50°C; 7.0 

Positional specificity: none- 

specific Okada and 

Morrissey (2007) 

Sardine oil Increased EPA 

from 26.87% to 

33.74%, DHA from 

13.62% to 29.94%. 

Rhizopus oryzae Sun and others 

(2002) 

Atlanta salmon 

oil 

Ineffective in 

concentrating EPA 

and DHA 

Origin: Fungal 

Optimal temperature and 

pH: 30-45°C, 7.0 

Positional specificity: 1, 3- 

specific 
Wanasundara and 

Shahidi (1998) 

Seal blubber oil 

and menhaden 

oil 

Increased DHA, 

decreased EPA 

Mucor javanicus Sun and others 

(2002) 

Atlanta salmon 

oil 

Ineffective in 

concentrating EPA 

and DHA 

Origin: Fungal 

Optimal temperature and 

pH: 30-45°C, 7.0 

Positional specificity: 1, 3- 

specific 
Okada and 

Morrissey (2007) 

Sardine oil No increase in EPA 

and minor increase 

in DHA 

Pseudomonas cepacia Sun and others 

(2002) 

Atlanta salmon 

oil 

Increased 60% 

EPA at 12h, 

increased 58% 

DHA at 12h 

Origin: Bacterial 

Optimal temperature and 

pH: 30-65°C, 7.0 

Positional specificity: none- 

specific 
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(table 1.1 continued)     

Candida cylindracea Okada and 

Morrissey (2007) 

Sardine oil Increased EPA and 

DHA contents 

Optimal temperature and 

pH: 30-50°C, 6.5 

Positional specificity: none- 

specific 

Mucor miehei Wanasundara and 

Shahidi (1998) 

Seal blubber oil 

and menhaden 

oil 

Ineffective in 

hydrolyzing 

saturated fatty acids 

in both oils 

Optimal temperature and 

pH: 30-45°C, 6.5-7.5 

Positional specificity: 1, 3- 

specific 

Rhizopus niveus Wanasundara and 

Shahidi (1998) 

Seal blubber oil 

and menhaden 

oil 

Increased 25.3% n-

3 fatty acids in seal 

blubber oil, 

increased 23% n-3 

fatty acids in 

menhaden oil 

Optimal temperature and 

pH: 30-45°C, 5.0-8.0 

Positional specificity: 1, 3- 

specific 

Candida cylindracea Wanasundara and 

Shahidi (1998) 

Seal blubber oil 

and menhaden 

oil 

Increased 50% 

EPA and 5 fold of 

DHA in seal 

blubber oil; 

increased 60% EPA 

and 70% DHA in 

menhaden oil 

Optimal temperature and 

pH: 30-50°C, 5.0-8.0 

Positional specificity: none- 

specific 

Chromobacterium 

viscosum 

Wanasundara and 

Shahidi (1998) 

Seal blubber oil 

and menhaden 

oil 

Increased 54% 

EPA and 

ineffective to DHA 

in seal blubber oil; 

increased 50% EPA 

and ineffective to 

DHA in menhaden 

oil 

Positional specificity: none- 

specific 

Geotrichum candidum Wanasundara and 

Shahidi (1998) 

Seal blubber oil 

and menhaden 

oil 

Increased 46% 

EPA and 2.5 fold of 

DHA in seal 

blubber oil; 

increased 38% EPA 

and 50% DHA in 

menhaden oil 

Origin: Fungal 

Optimal temperature and 

pH: 30-45°C, 6.0-8.0 

Positional specificity: none- 

specific 

Pseudomonas sp. Wanasundara and 

Shahidi (1998) 

Seal blubber oil 

and menhaden 

oil 

Increased 64% 

EPA and 

ineffective to DHA 

in seal blubber oil; 

increased 50% EPA 

and ineffective to 

DHA in menhaden 

oil 

Origin: Fungal 

Optimal temperature and 

pH: 40-60°C, 5.0-9.0 

Positional specificity: none- 

specific 
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(table 1.1 continued)     

Aspergillus oryzae Matouba and 

others (2008) 

Salmon Oil Not very effective 

(increased 16.8% of 

EPA+DHA) 

Optimal temperature: 37°C 

Positional pH: 7 

Specificity: 1, 3- specific 

 

Defects with this process are that a lot of organic solvents mostly hexane are utilized and 

many chemicals were added to the oils. All these researches focused on the effectiveness of 

lipase on the PUFAs enrichment but little information on scale up of the process is available.  

1.6 Microencapsulation 

1.6.1 Microencapsulation of Fish Oil  

Microencapsulation (ME) has been defined as ‗the technology of packaging solid, liquid 

and gaseous materials in small capsules that release their contents at controlled rates over 

prolonged periods of time‘. Such technologies are of significant interest to the pharmaceutical 

sector (e.g. for drug and vaccine delivery), but also have relevance for the food industry. The 

industrial production of foods often requires not only the addition of functional ingredients to 

control flavor, color, texture or preservation properties but also ingredients with potential health 

benefits are included.  Shahidi and Han (1993) summarized the six reasons for applying 

microencapsulation in the food industry: to reduce the core reactivity with environmental factors; 

to decrease the transfer rate of the core material to the outside environment; to promote easier 

handling; to control the release of the core material; to mask the core taste; and finally to dilute 

the core material when it should be used in only very small amounts. 

A microcapsule is a small sphere with a wall around the core materials. The material 

inside the microcapsule is referred to as the core, internal phase, or fill, whereas the wall is 

sometimes called shell, coating, wall material, or membrane.  The microcapsules may range from 

several millimeters in size (0.2-5000 μm) and have multitudes of shapes, depending on the 

materials and methods used to prepare them (Balassa and Fanger 1971).  
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Fish oil provides the main dietary source of long-chain ω-3 polyunsaturated fatty 

acids such as eicosopentaenoic acid (EPA) and decosohexaenoic acid (DHA), which are 

prone to oxidative degradation. This disadvantage has presented obstacles to the 

widespread use of fish oils in the food industry. When we attempt to add fish oils to 

foodstuffs the drawbacks limit their use to low-level addition and require special 

processing and storage methods to introduce fortified foods. Microencapsulation is an 

effective method for oxidative stabilization of edible oils. In these systems, stabilization 

occurs because the wall materials act as a physical and a permeability barrier for molecular 

oxygen diffusion (Matsuno and Adachi 1993). Recently many studies on 

microencapsulation of fish oils have been reported, most of which used polysaccharide or 

starch as wall materials (Gharsallaoui and others 2007).  

1.6.2 Protein/Peptides as Wall Materials  

Proteins have been widely used for excellent functional properties, which allow them to be a 

good coating material for the microencapsulation by spray-drying. In addition, proteins have 

high binding properties for flavor compounds (Gharsallaoui and others 2007).  Not only are the 

functional properties, proteins were also reported for nutritional value.  Proteins are 

indispensable nutrients for the structure and function of all living organisms.  Inadequate intake 

of protein results in a reduction or cessation of growth and a loss of weight (Wilson 2002).  

Appropriate intake of protein can be used to synthesize new tissues and generate energy (Shiau 

2002).  The mechanism by which proteins fuel the muscle is that the branched chain amino acids 

(BCAAs, including leucine, isoleucine, and valine) in proteins are oxidized by muscle during 

exercise to provide energy once short-term glycogen stores are expended (Kasperek and Snider 

1987; Wagenmakers 1998).  
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Proteins are also known for their benefits in preventing some diseases, mainly obesity and 

cardiovascular disease, which are two of today‘s health concerns. Obesity is a global public 

health problem that reached alarming proportions. In the U.S., the percent of adults over 20 years 

of age with BMI values of 25 kg/m
2
 or higher (overweight and obese) increased from 64.5 to 

66.3 according to data obtained in 1999-2000 and 2003-2004 (Ford and Mokdad 2008). It is 

estimated that 3.8 million men and 3.4 million women die every year from cardiovascular 

diseases (CVD), which have become the main cause of death worldwide (WHO, 2004).  

The most commonly used proteins in food industry are egg protein, whey protein, soy protein, 

and collagen.  

 Egg protein 

According to the information from the American Egg Board, eggs have been traditionally 

used as the standard of comparison for measuring protein quality because of their essential amino 

acid profile and high digestibility.  The most abundant amino acid in egg protein is one of the 

essential amino acids leucine.  Leucine is reported to be an inhibitor of protein degradation in 

skeletal muscle (Nakashima and others 2007; Tischler and others 1982) and liver (Meijer and 

Dubbelhuis 2004). In addition, in vitro and in vivo experiments both indicated that leucine can 

stimulate muscle protein synthesis (Suryawan and others 2008; Tischler and others 1982).  

Layman and Rodriguez (2009) observed that leucine is a critical element in regulating muscle 

protein synthesis and may be the key amino acid for optimizing skeletal muscle mass and muscle 

recovery from both resistance and endurance exercise.  

 Whey protein 

Whey protein is a milk protein ingredient that‘s been widely used for emulsification and 

coating properties (Kurt and Kilincceker 2011).  In addition, whey protein is one of the highest 

quality proteins available for commercial use because of the higher concentrations of branched 
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chain amino acids (BCAA) and essential amino acids compared with other sources of protein 

(Boza and others 2000).  Consumption of whey protein in combination with resistance training 

exercise can help adults build and maintain valuable muscle mass and manage weight through 

increasing satiety and maintaining lean body mass (U.S. Dairy Export Council). Calcium, 

magnesium, zinc, B-vitamins, and certain lipid fractions in whey may help reduce the risk of 

cardiovascular disease. Whey peptides may be involved in inhibiting platelet aggregation and 

lowering cholesterol levels (U.S. Dairy Export Council). 

 Soy protein 

Studies on both animals (Lin and others 2004) and humans (Anderson and others 1995) 

have shown that consumption of soy protein has beneficial impacts on risk factors for 

cardiovascular disease including lowering liver or blood triglyceride, total and LDL cholesterol 

levels, increasing HDL cholesterol and the ratio of HDL/LDL cholesterol. In 1999 the U.S. FDA 

(1999) claimed that soy protein could prevent the risk of coronary heart disease by lowering the 

cholesterol level, which promoted the production and consumption of soy protein in Western 

countries.  The intake of soy protein can suppress appetite because the peptides released from 

soy protein can stimulate cholecystokinin (CCK) release (Nishi and others 2001), which in turn 

contributes to food intake suppression (Reidelberger 1994).  

 Collagen 

Collagen is a protein that‘s been widely used in food industries to improve the elasticity, 

consistency, and stability of foods in an empirical way (Santana and others 2011).  As a natural 

polymer, collagen was used as drug delivery system materials (Berthold and others 1998) 

because of its excellent biocompatibility, compared to that of synthetic polymers. Collagen 

exhibits superior biocompatibility compared with other natural polymers because collagen is one 
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of the major components of extracellular matrix and plays important roles in various biological 

events. 

 Gelatin 

Gelatin is derived from the partial hydrolysis of collagen and contains high levels of 

hydroxyproline, proline and glycine. It is the most commonly used functional biopolymer in the 

food industry for food design, texture control, and emulsion stabilization. Another remarkable 

function of gelatin is its ability to serve as a barrier for sensitive food ingredients against 

unfavorable chemical and mechanical stresses (Kaushik and Roos 2007).  

 Dairy peptides 

  Peptides can be rapidly absorbed by the bloodstream and fuel the muscles. It‘s widely 

accepted and produced because of the rapid digestion speed and the health benefits with 

cardiovascular systems.  Ballard and others (2009) conducted a study on the effects of NOP – 47 

(Nitric oxide peptide) on vascular function in 20 healthy men and women. The results revealed 

that ingestion of NOP-47 resulted in a 28% increase in artery dilation and a significant peak 

forearm blood flow.  

 Consumption of a blend of proteins 

Paul (2009) blended isolated soy protein (ISP), whey protein, and casein and investigated 

the digestion rates of the blended proteins. He found that these three proteins has a digestion 

rates in the order of whey protein>ISP>casein, which created a ―time-release‖ effect that could 

prolong the delivery time of the absorbed amino acids to muscle thus resulting in a faster muscle 

recovery.  In addition, consumption of a mix of proteins may have more benefits for sports 

performance and provides nutritional advantages over consuming only one type of protein.  

The current dietary reference intake for the general population is 0.8 g/kg body weight 

per d (Otten and Meyers 2006). Individuals experiencing regular exercise training require more 
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dietary protein than sedentary individuals (Campbell and others 2007). Protein intake necessary 

to support N balance in strength athletes ranges from 1.2 to 1.7 g/kg body weight per day 

(Campbell and others 2007; Tipton and Witard 2007; Rodriguez and others 2009).  

1.7 Objectives 

1) To characterize the melting point, enthalpy, and rheological properties of unpurified 

menhaden oil and red salmon oil, and to determine the effects of temperature on the viscosity 

and oxidation rates of the unpurified menhaden oil and red salmon oil 

2) To determine the performance of chitosan, activated earth or activated alumina as an 

adsorbent and the combination of the 3 adsorbents to remove FFA and peroxides from the 

unpurified menhaden and salmon oils. To characterize the fish oils during the purification 

process on minerals, color, moisture content, insoluble impurities, water activity, and thermal 

properties.  

3) To purify the menhaden and salmon oil using adsorption columns packed with chitosan, 

activated alumina and activated earth and to determine the adsorption kinetics for removal of 

FFA and peroxides from the unpurified menhaden oil and red salmon oil by the adsorption 

columns.  

4) To develop fish oils containing enriched EPA and DHA by an enzymatic process with no 

organic solvent and chemicals involved 

5) To develop a protein powder containing fish oil with enriched EPA and DHA targeting on 

people seeking products having benefits on the cardiovascular system and/or managing weight 

by exercise. 
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CHAPTER 2 PHYSICAL PROPERTIES AND OXIDATION RATES OF UNREFINED 

FISH OILS 

2.1 Introduction 

Knowledge of physical and chemical properties of fish oil is essential for the design of a 

proper refining process, the analysis of production cost, and final quality evaluation. Impurities 

including moisture, dust, protein degradation products, free fatty acids, phosphatides, oxidation 

products, pigments and trace elements (e.g. copper, iron, sulfur, and halogens), polysaccharides 

and chlorinated pesticide residues, either inherent in the raw material or resulting from 

processing and from storage of the crude oil may decrease product quality (Young and others 

1994). Refining is required to remove these impurities from the crude fish oil (Wiedermann 

1981).  However, removing impurities may cause oxidation and oil loss and alter the thermal and 

rheological properties of the fish oils (Sathivel and others 2003).  Lipid oxidation is one of the 

limiting factors of fish oil acceptability, especially fish oil that contains high amounts of 

polyunsaturated fatty acids. Understanding rheological properties is essential in controlling fluid 

transfer, velocity, and energy requirements for pumping and heating fish oil and it can provide a 

basis for better control over fluid behavior during the process of fish oil refining (Huang and 

Sathivel 2008).  

Menhaden oil is rich in eicosapentaenoic (12.8 - 15.4%) and docosahexaenoic (6.9 - 9.1%) 

acids; the primary market for the oil is in aquaculture feeds (IFFO.net). In 2005, the estimated 

Gulf of Mexico menhaden oil production was 46,528 metric tons. Currently, menhaden oils are 

commercially produced by a wet rendering method.  The oil extracted by this process may be 

suitable for human consumption if the oil is purified of impurities such as proteins, free fatty 

acids, and oxidized components.  In 2006, 99,000 metric tons of salmon byproducts including 

heads, skins, frames, and viscera were generated from 331,798 metric tons of salmon harvested 
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in Alaska (Fiorillo 2005).  The byproducts which could be converted into valuable products such 

as salmon hydrolysate and salmon oil usually end up in landfills or rendering plants (Wright 

2004). Hydrolysate is typically produced by maceration of byproducts containing less fat fish 

byproducts followed by enzymatic digestion of protein and removal of bones (Kristinsson and 

Rasco 2000).  Huang and Sathivel (2008) separated the byproducts of red salmon processing into 

solid and liquid portions by mechanically pressing, thereby producing fish meal and fish.  

Salmon oil can be used as a feedstock for biodiesel production via a transesterification process 

(El-Mashad and others 2008).   

A large number of reports are available on the mechanism of lipid oxidation (Labuza 

1971; Karel 1992; Hamilton and others 1997) and the influence of temperature during storage on 

the quality of the stored oil (Lopez-Duarte and Vidal-Quintanar 2009; Romen-Nadal and others 

2007).  However, information on the effects of temperature on oxidation rate and changes in 

viscosity of menhaden and salmon oils is needed to obtain reliable predictive models for 

assessing the quality and predicting the purification process of fish oils.  

The objectives of the present study were: 1) to evaluate the thermal stability, melting 

point, enthalpy, and rheological properties of menhaden and salmon oils, and 2) to determine the 

effects of temperature on the viscosities and oxidation rates of menhaden and salmon oils. 

2.2 Materials and Methods 

2.2.1 Peroxide Value and Free Fatty Acids in Unrefined Fish Oils  

 Unrefined menhaden fish oil extracted using a rendering process was obtained from a 

commercial source (Aylesworth‘s Fish&Bait, Inc, St. Petersburg, FL). Unrefined salmon oil was 

produced from salmon processing byproducts including viscera, heads, skins, frame, and 

discarded fish obtained from a large commercial plant in Alaska.  They were characterized for 

peroxide value (PV) and free fatty acids (FFA).  PV of the unrefined fish oils was determined by 
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a titration method according to AOAC 965.33 (1999).  The results were expressed in terms of 

milliequivalent of peroxides per Kg of oil (meq/Kg).  FFA content of the unrefined oil was also 

determined using a titration method (AOCS Ca 5a-40, 1998) and the percentage of FFA was 

expressed as oleic acid equivalents.   

2.2.2 Density, Specific Gravity, Water Activity, and Moisture Content of Unrefined Fish 

Oils  

 

 Bulk density of the unrefined oils was determined in triplicate using a 25 mL glass-

measuring cylinder at 25°C.  The sample was filled to 25 mL, the weight to volume ratio 

determined, and bulk density values reported as g per mL.  Specific gravity of the unrefined fish 

oils was determined in triplicate using a 25 mL glass-measuring cylinder.  The net weight of the 

oil (g) was divided by the net weight of water (g) at 25°C to obtain the specific gravity.  A 

calibrated Rotronic water activity meter (AwQUICK, Rotronic Instrument Corp., Huntington, 

New York, USA) was used to measure the water activity of the unrefined oils at 25
o
C. The 

moisture content was measured according to the Karl Fischer titration method using a Mitsubishi 

Karl Fischer Moisturemeter (Mitsubishi Chemical Analytech Co., Ltd., Japan). 

2.2.3 Thermal Properties of Unrefined Fish Oils   

The differential scanning calorimetric experiments were conducted using a Differential 

Scanning Calorimeter (Model DSC Q20/ RCS 90, TA Instruments, New Castle, DE).  

Approximately 0.5 mg of the unrefined oil sample was placed in the aluminum sample vessel.  

The sample vessel was then placed on the sample platform while an empty aluminum vessel was 

placed on the reference platform.  To determine the phase transition of the unrefined oil sample, 

a linear heating rate of 5°C/min over a temperature range of -90 to 100°C was used.  The data 

collected was plotted and the thermogram peak points were used to determine the melting points.  
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A baseline was drawn through the beginning to the end of the endotherm peak.  The area 

encircled by the peak and the baseline was integrated for estimating the enthalpy (H).  

2.2.4 Rheological Properties of Unrefined Fish Oils 

Rheological properties of the unrefined oil samples were measured in triplicate using an 

AR 2000 Rheometer (TA Instruments, New Castle, DE) fitted with a plate geometry (acrylic 

plates with a 40-mm diameter, having a 400 m gap between the two plates).  Each sample was 

placed in the temperature-controlled parallel plate and allowed to equilibrate to 5, 10, 15, 20, 25, 

and 30°C.  The shear stress was measured at 5, 10, 15, 20, 25, and 30°C at varying shear rates 

from 10 to 200 s
-1

.  The mean values of triplicate samples were reported. 

The power law (Eq. 2.1) was used to analyze the flow behavior index of the unrefined oil 

sample. 

 = K
n
   (2.1) 

Where   = shear stress (Pa.s),  = shear rate (s
-1

), K = consistency index (Pa.s
n
), and n = flow 

behavior index.  The logarithms were taken on both sides of Eq. 1, and a plot of log  versus log 

 was constructed.  The resulting straight line yielded the magnitude of log K (i.e., intercept) and 

n (i.e., slope). 

The effect of temperature on apparent viscosity was described through the Arrhenius 

relationship as described in Eq. 2.2 (Rao 1999). 

 RTEaAek
/

    (2.2) 

where k is the reaction rate constant, A is the frequency factor,  Ea is the activation energy (kJ/ 

mol), R is the gas constant (8.314 J mol
-1

K
-1

), and T is the temperature (K). 
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Apparent viscosity of the unrefined menhaden oil sample was measured at 5, 10, 15, 20, 

25, and 30°C at a shear rate of 200 s
-1

 using the AR 2000 Rheometer.  A plot of Ln (apparent 

viscosity) versus 1/T (i.e., 1/absolute temperature) was constructed for each menhaden oil 

sample.  The slope of the straight line, the intercept and the regression coefficient were 

calculated using the trend line of the plot.  The magnitude of Ea was calculated as the slope of 

the plot multiplied by the gas constant, and A was an exponential of the intercept. 

2.2.5 Thermal Effect on the Lipid Oxidation and Free Fatty Acids of Unrefined Fish Oils 

For lipid oxidation rate study, 50 mL of oil samples were placed in amber bottles and 

were separately heated in a water bath at 35, 45, 55, 65, 75, and 85°C as described by Huang and 

Sathivel (2008).  Another amber bottle containing oil was held at room temperature, ca. 25°C ± 

1°C.  Samples were drawn every hour for PV (primary lipid oxidation) and FFA analysis for up 

to 6 h.  The effects of temperature on oxidation rates were described through the Arrhenius 

relationship as shown in Eq. 2.   

For lipid oxidation at different storage temperatures study, 500 ml of oil samples placed 

in glass containers were stored at 4
o
C and 50

o
C in Hotpack environmental chambers (Hotpack 

Inc., Philadelphia, PA).  Another glass container containing fish oil was held at room 

temperature.  The PV and FFA analyses were conducted for the stored samples from  week 0 to 

week 6.  The oil samples were analyzed at week 0 after they reached the storage temperature of 

4°C, room temperature, or 50 
o
C. 

2.2.6 Statistical Analysis 

Analysis of Variance (ANOVA) was conducted to evaluate the significance of observed 

differences among treatment means (SAS version 8.2, SAS Institute Inc., Cary, NC), followed by 

the post-hoc Tukey‘s studentized range test (SAS 2002). 
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2.3 Results and Discussion  

2.3.1 Peroxide Value, Free Fatty Acids, Density, Specific Gravity, Water Activity, and 

Moisture Content of Unrefined Fish Oils  

 

The initial peroxide value (PV) and FFA content of the unrefined menhaden oil was 5.70 

meq/Kg and 3.80%, respectively (Table 2.1), while salmon oil had a peroxide value at 5.66 

meq/Kg and FFA value at 0.67%, respectively (Table 2.2) .  PV is a good indicator of lipid 

oxidation.  Gracey and others (1999) have reported that the oil with PV less than 5 meq/Kg can 

be considered as fresh oil, while an edible oil with a PV of 7.5 meq/Kg is unacceptable for 

human consumption (Robards and others 1988; Schnepf and others 1991).  The initial FFA of the 

oil was higher than the acceptable level of FFA in purified fish oil that has been reported to be 

0.15% (Young 1986).  Higher FFA indicates that the oil will have a higher refining loss when the 

oil is neutralized.   

The menhaden oil bulk density (g/mL) was 0.93 ± 0.02, which was a little higher than 

values reported by Sathivel (2005) for red salmon oil (0.9 g/mL) and pink salmon oil (0.81 

g/mL). The unrefined salmon oil has similar bulk density as reported in red salmon oil.  The 

water activity of unrefined menhaden oil (0.52 ± 0.0) was slightly lower than those values 

reported by Sathivel (2005) for red salmon oil (0.57) and pink salmon oil (0.53). The salmon oil 

exhibited much lower water activity (0.37±0.02) than reported by Sathivel (2005) and it could be 

caused by the oil extraction process and the batch difference.  Specific gravities of the unrefined 

menhaden and salmon oils at room temperature were 0.93 ± 0.00 and 0.91±0.01, respectively.  

The moisture content in the unrefined menhaden oil was 0.15% ± 0.00% and 988.32 ± 25.66ppm.  

Moisture in the oil increases the FFA content of the oil by lipid hydrolysis reaction 

(Bhattacharya and others 2008).  
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Table 2.1 - Initial peroxide value, free fatty acids, density, specific gravity, and water 

activity of unrefined menhaden oil  

Properties  

PV (meq/Kg) 5.70 ± 0.34 

FFA (%) 3.80 ± 0.23 

Bulk density (g/mL) 0.93 ± 0.02 

Specific gravity
a
 0.93 ± 0.00 

Water activity (aW) 0.52 ± 0.00 

Moisture content (%)  0.15 ± 0.00 

Values are means ± SD of 3 determinations. 
  

a
Specific gravity was measured at room temperature.

  
 

 

Table 2.2 - Initial peroxide value, free fatty acids, density, specific gravity, and water 

activity of unrefined salmon oil  

Properties  

PV (meq/Kg) 5.66±0.12 

FFA (%) 0.67±0.01 

Bulk density (g/mL) 0.91±0.01  

Specific gravity
a
 0.91±0.01 

Water activity (aW) 0.37±0.02 

Moisture content (ppm)  988.32 ± 25.66 

Values are means ± SD of 3 determinations. 
  

a
Specific gravity was measured at room temperature.

  
 

2.3.2 Thermal Properties of Unrefined Fish Oils 

 

The DSC thermograms (Figure 2.1 and 2.2) show the endothermic peaks for the 

unrefined menhaden and salmon oils.  The melting points of the unrefined menhaden and salmon 

oils ranged from -69.5 to 27.2°C and -78.94 to 12.23°C, which were slightly different to the 

reported melting point range of -69.6 to -0.36°C, -64.7 to 20.8°C, and -64.5 to 14.9°C for red 

salmon, pink salmon oils (Sathivel 2005), and pollock oil (Sathivel and others 2008a), 

respectively.  The low melting point of the menhaden and salmon oils was attributed to 

triacylglycerols which contain unsaturated fatty acids (Tan and Che Man 2002).  The first 

melting peak of menhaden and salmon oils around -36.4°C and -44.71°C may be attributed to the 

presence of polyunsaturated fatty acids (Sathivel and others 2008a).  Oil samples with a higher 
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degree of unsaturated fatty acids melt at lower temperatures, whereas those with a higher degree 

of saturated fatty acids melt at higher temperatures.  The second and the third peaks of menhaden 

oil appear around the temperatures of -17.2 and -6.3°C, respectively.  This melting point at -

6.3°C may be attributed to the presence of linoleic acid (C18:2) and linolenic (C18:3) fatty acids, 

whose melting points range from -5.0 to -13.0°C (Sathivel and others 2008b).  Salmon oil has an 

endothermic peak at -11.05°C, which could also be caused by linoleic acid (C18:2) and linolenic 

(C18:3) fatty acids.  The peaks melted close to 0
o
C which might be attributed to the moisture in 

the sample (Berjak and others 1992; Conner and Bonner 2001).  Physical properties of 

triglycerides are more complex than those of the individual fatty acids because they contain three 

fatty acid groups.  In this study, we did not analyze the triglyceride composition of the oil 

samples.  All three peaks for the unrefined menhaden oil were not sharp; this might be attributed 

to the presence of impurities, such as phospholipids, ketones, and other materials in the unrefined 

fish oil (Sathivel 2005).  A similar DSC thermogram was reported for unrefined pollock oil by 

Sathivel and others (2008a) and for unrefined red salmon oil by Huang and Sathivel (2008).  

Crude fish oil contains impurities such as phospholpids, free fatty acids, aldehydes, ketones, 

water, and pigments.  Those impurities melt uncharacteristically compared to pure fatty acids.  

Fatty acids have their own melting points; therefore, sharp peaks were not observed for the two 

oils.  Sathivel and others (2008b) reported that the DSC thermograms of purified catfish oil 

showed sharper and narrower peaks than unrefined catfish oil.  The melting points of fish oil 

were sharper after each purification step that removed impurities from the oil. 

 Enthalpy of the oil explains whether oil changes from one physical state to another 

either by absorbing (endothermic) or releasing (exothermic) heat (Zhao and Yalkowsky 1999).  It 

is the amount of thermal energy which must be absorbed or evolved for 1 gram of a substance to 

http://en.wikipedia.org/wiki/Thermal_energy
http://en.wikipedia.org/wiki/Mole_(unit)


39 

 

-1.4

-1.3

-1.2

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-70 -50 -30 -10 10 30 50

Temperature (°C)

H
e
a
t 

F
lo

w
 (

W
/g

)

-69.51°C

-36.37°C

-17.20°C

-6.32°C

 1.70°C12.21°C

27.21°C
Enthalpy=20.20J/g

 

Figure 2.1 - DSC thermogram of unrefined menhaden oil with heat flow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 - DSC thermogram of unrefined salmon oil with heat flow. 
 

change states from a solid to a liquid, and the temperature at which it occurs is called the melting 

point.  The enthalpy of the menhaden and salmon oil was 20.2 and 43.33 kJ/kg, which are 

smaller than the reported enthalpy values for catfish oil (73.9 to 84.7 kJ/Kg) by Sathivel and 

others (2008b).  Tan and Che Man (2002) have reported that the oils with higher degrees of 

saturation required higher enthalpies during melting.  The study demonstrated that menhaden and 
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salmon oil required less enthalpy for melting due to high amount of long chain polyunsaturated 

fatty acids in the oil.  

2.3.3 Rheological Properties of Unrefined Fish Oils 

The power law parameters for the unrefined menhaden and salmon oil are given in Table 

2.3 and 2.4.  The flow behavior index (n) of the unrefined menhaden oil sample ranged from 

0.56 to 0.93, which indicated that non-Newtonian fluid behavior was observed at the lower 

temperatures (from 5°C to 25°C), while menhaden oil had a Newtonian behavior at 30°C.  The 

flow behavior index (n) of the unrefined salmon oil sample ranged from 0.99 to 0.96, which 

indicated that the unrefined salmon oil had a Newtonian behavior at 5 to 30°C.  The consistency 

index (K) values for the unrefined menhaden and salmon oil were higher at lower temperatures 

(Table 2.3 and 2.4). More than 40 fold increases in the magnitude of the K values between 5°C 

and 30°C was observed, which was much higher than that of unrefined salmon oil and pollock 

oil reported by Sathivel and others (2008a).  The presence of impurities in the fish oil might be a 

reason that the K values of menhaden oil were higher than those reported for unrefined pollock 

oil.  Table 2.2 and Figure 2.2 showed changes in apparent viscosity of the unrefined menhaden 

oil as a function of temperature.  The activated energy (Ea) indicated the energy barrier that must 

be overcome before the elementary flow process can occur (Rao 1999).  The magnitudes of Ea 

for unrefined menhaden and salmon oil were calculated according to Arrhenius equation (shown 

in Figure 2.3 and 2.5), which are 50.37 and 31.80 kJ/mol, respectively.  The predicted viscosity 

obtained by the Arrhenius equation agreed with the experimental viscosity (Figure 2.4 and 2.6).  

The degree of fit, as shown by the R
2
 value of 0.9837 (Figure 2.4) and 0.9977, indicated that 

changes in apparent viscosity with temperature could be modeled by the Arrhenius equation for 

the unrefined menhaden and salmon oils.  This study also showed that the magnitude of the 



41 

 

apparent viscosity of the unrefined menhaden and salmon oil was greatly influenced by 

temperature. 

Table 2.3 - Apparent viscosity at different temperatures of the unrefined menhaden oil  

 

 

 

 

 

 

 

 

 

 

 

Values are means ± SD of 3 determinations.  
a-g

Means with the same superscript letter in each row are not significantly different (P>0.05).  

n = flow behavior index; K = consistency index; Ea = activation energy; μ∞ = the frequency 

factor. 

 

 
Figure 2.3 - The Arrhenius plot for apparent viscosity of the unrefined menhaden oil. 

 

2.3.4 Lipid Oxidation Kinetics of Unrefined Fish Oils 

Peroxide value is a useful indicator of lipid oxidation, especially at the beginning of lipid 

oxidation (Choe and Min 2005).  The lipid oxidation, as indicated by the peroxide values, 

increased with increasing time and temperature. The unrefined menhaden oil stored at 25
o
C and  

Temperature (°C) n K (Pa.s
n
) Apparent viscosity (Pa.s) 

5 0.56 ± 0.02
f
 2.17 ± 0.02

a
 0.22 ± 0.01

a
 

10 0.68 ± 0.03
e
 0.69 ± 0.02

b
 0.13 ± 0.01

b
 

15 0.79 ± 0.02
d
 0.26 ± 0.01

c
 0.085 ± 0.00

c
 

20 0.83 ± 0.01
c
 0.17 ± 0.02

d
 0.067 ± 0.00

cd
 

25 0.85 ± 0.02
b
 0.11 ± 0.02

e
 0.050 ± 0.00

de
 

30 0.93 ± 0.01
a
 0.047 ± 0.00

f
 0.033 ± 0.00

f
 

Ea (KJ/mol)   50.37 ± 2.10 

μ∞   7.02E-11 ± 5.62E-12 
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Figure 2.4 - Predicted apparent viscosity from the Arrhenius plot vs the experimental 

apparent viscosity of the unrefined menhaden oil. 
 

Table 2.4 - Apparent viscosity at different temperatures of the unrefined salmon oil  

 

 

 

 

 

 

 

 

 

 

 

Values are means ± SD of 3 determinations.  
a-g

Means with the same superscript letter in each row are not significantly different (P>0.05).  

n = flow behavior index; K = consistency index; Ea = activation energy; μ∞ = the frequency 

factor. 

 
Figure 2.5 - The Arrhenius plot for apparent viscosity of the unrefined salmon oil. 

Temperature (°C) n K (Pa.s
n
) Apparent viscosity (Pa.s) 

5 0.99±0.01
a
 0.147±0.00

a
 0.137±0.00

a
 

10 0.99±0.01
a
 0.107±0.00

b
 0.102±0.00

b
 

15 0.99±0.00
a
 0.084±0.00

c
 0.079±0.00

c
 

20 0.98±0.01
a
 0.071±0.00

d
 0.063±0.00

d
 

25 0.96±0.01
b
 0.061±0.00

e
 0.050±0.00

e
 

30 0.96±0.01
b
 0.050±0.00

f
 0.041±0.00

f
 

Ea (KJ/mol)   31.80±1.55 

μ∞   1.09E-07±6.43E-09 
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Figure 2.6 - Predicted apparent viscosity from the Arrhenius plot vs the experimental 

apparent viscosity of the unrefined salmon oil. 

 

35
o
C for 6 hours exhibited minimal lipid oxidation, whereas those oils at 45-85°C showed 

greater lipid oxidation after 6 hours (Figure 2.7).  Similar results were observed for unrefined 

salmon oil (Figure 2.10).  The oxidation rate of oil sample at 85
o
C was the highest compared 

with the oil stored at 25
o
C, 35

o
C, 45

o
C, 55

o
C, 65

o
C, and 75

o
C.  The lipid oxidation rates of 

menhaden and salmon oil can be predicted by the Arrhenius model (Figure 2.8 and 2.11).  The 

activation energy (Ea) for lipid oxidation of the unrefined menhaden and salmon oil was 30.9 

and 27.73 kJ/mol, which was lower than the reported Ea value by Huang and Sathivel (2008) for 

lipid oxidation of the unrefined salmon oil (51.3 kJ/mol).  The Ea value for unrefined menhaden 

and salmon oil was in accordance with the previously reported Ea values for lipid oxidation of 

edible oils (24 to 240 kJ/mol) (Frankel 1993; Tan and others 2001).  This study showed that the 

magnitude of lipid oxidation for unrefined menhaden and salmon oil was greatly influenced by 

temperatures.  The degree of fit, as shown by the R
2
 value of 0.9563 and 0.9957 (Figure 2.9 and 

2.12), indicated that the lipid oxidation rate in relation to temperature could be well described by 

the Arrhenius equation for the unrefined menhaden and salmon oil.  In general, the hydrolysis of 

oil triacylglycerols occurs during heating due to the presence of moisture and lipase enzymes in 

the oil.  The FFA content of both the unrefined menhaden and salmon oil had not significantly 
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changed with increased temperature in our study, which suggested that the presence of the lipase 

enzymes in the oil samples might have been inactivated due to the heating.   

 
 

Figure 2.7 - Effect of time on peroxide formation in the unrefined menhaden oil at different 

temperatures. 

 
Figure 2.8 - The Arrhenius plot for the peroxide values of unrefined menhaden oil. 

 
Figure 2.9 - Predicted lipid oxidation rate from the Arrhenius plot vs the experimental 

oxidation rate of the unrefined menhaden oil. 
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Figure 2.10 - Effect of time on peroxide formation in the unrefined salmon oil at different 

temperatures. 

 
Figure 2.11 - The Arrhenius plot for the peroxide values of unrefined salmon oil. 

 

The menhaden and salmon oil storage study showed an increase in the formation of primary 

oxidation products in the unrefined menhaden oil with increased storage time at 4°C, room 

temperature, and 50°C (Figure 2.13 and 2.15).  The amount of accumulated hydroperoxide for 

the oil stored at room temperature was the highest since the first week of storage for the two oil 

samples.  Both of the oils stored at 50°C had a lower rate of hydroperoxide formation than 
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Figure 2.12 - Predicted lipid oxidation rate from the Arrhenius plot vs the experimental 

oxidation rate of the unrefined salmon oil. 

 

that of the oil stored at room temperature, which might be attributed to decomposition of primary 

hydroperoxides at an elevated temperature.  The rate of decomposition of primary 

hydroperoxides is higher at the elevated temperature and/or longer storage period; therefore, 

hydroperoxides might not have accumulated in the oil stored at 50°C compared to the oil at room 

temperature (Aidos and others 2002).  The accumulation of the primary oxidation products in the 

oil depends on the nature of the oil and the conditions under which the oxidation occurs (Guillen 

and Goicoechea 2009).  This study demonstrated that the rate of oxidation of the unrefined 

menhaden and salmon oils was influenced by both temperature and storage time.  Similar 

patterns of formation and decomposition of hydroperoxides were reported for herring oil stored 

at room temperature and elevated temperatures (Aidos and others 2002).   

The unrefined menhaden oil samples stored at 4
o
C, room temperature, and 50

o
C had 

similar FFA values at first 3 weeks of storage, while the FFA value of the oil stored at 50
o
C was 

higher than that of the oil samples stored at 4
o
C and room temperature after 6 week of storage 

(Figure 2.14).  The FFA increased from 3.72%±0.04 to 4.82%±0.06 at 50
o
C, while it increased 

from 3.61±0.1% to 3.92%±0.07 and from 4.05%±0.9 to 4.27%±0.04 at 4°C and at room 
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temperature, respectively during 6 weeks of storage.  The unrefined salmon oil samples stored at 

50
o
C had higher FFA values from the first week of storage (Figure 2.16).  After 6 weeks of 

storage, the FFA increased from 0.66%±0.00 to 1.51%±0.03 and from 0.66%±0.01 to 

0.98%±0.05 at 50
o
C and at room temperature, respectively, while it decreased from 0.67±0.01% 

to 0.52%±0.02 at 4°C. The increased FFA content in oil during storage was probably due to the 

oil hydrolysis that was influenced by the initial moisture content and presence of lipase in the 

oils. 

 
Figure 2.13 - Peroxide values of the unrefined menhaden oil during 6 weeks of storage. 

 

2.4 Conclusions 

 

Non-Newtonian fluid behavior was observed for unrefined menhaden oil at temperatures 

ranging from 5 to 25°C, while Newtonian behavior was evident at 30°C. Unrefined salmon oil 

exhibited Newtonian fluid behavior at temperatures ranging from 5 to 30°C. The peroxide values 

of the unrefined menhaden and salmon oils increased with increasing time and temperature.  The 

6 week storage study showed that the rate of hydroperoxide formation of the oil stored at 4 °C 
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Figure 2.14 - FFA contents of unrefined menhaden oil during 6 weeks of storage. 

 
Figure 2.15 - Peroxide values of the unrefined salmon oil during 6 weeks of storage. 
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Figure 2.16 - FFA contents of unrefined salmon oil during 6 weeks of storage. 

 

was lower than that of the oil stored at room temperature and at 50°C.  The FFA content of the 

oil increased during storage due to hydrolysis that was influenced by the initial moisture content 

of the oil.  The study demonstrated that changes in the magnitude of apparent viscosity and lipid 

oxidation of the unrefined menhaden and salmon oil with temperature could be well described by 

the Arrhenius equation.  This study further provides information on the temperature dependent 

viscosity and lipid oxidation rates of unrefined menhaden and salmon oils, parameters that are 

useful for optimizing unit operations for oil purification processes and final quality evaluation.  

As each oil purification step involves different temperature conditions, it is important to predict 

the apparent viscosity values and lipid oxidation rates of the oils at different temperatures.   



50 

 

CHAPTER 3 PURIFYING FISH OILS WITH BATCH ADSORPTION PROCESSES 

3.1 Introduction 

The objective of purifying fish oil is to remove the impurities which cause the 

unattractive appearance or constitute harmful components to human health. Concurrently, some 

natural components such as health beneficial pigments, omega-3 fatty acids, and tocopherols 

should be preserved. Conventional oil purification methods include degumming, neutralization, 

bleaching, and deodorization.  Degumming is a process to remove phospholipids from oil with 

the presence of water or acids (Hui 1996). Neutralization is performed on edible oils to remove 

free fatty acids and other impurities by adding alkali (usually diluted sodium hydroxide). Alkali 

refining may cause both physical and chemical changes in the oil.  Bleaching refers to the 

process for removing color compounds, natural pigments (e.g. carotenoids, chlorophyll, 

xanthophyll and polyphenols) and oxidation products as well as some suspended mucilaginous 

and colloid-like matter (Chang 1967). Deodorization is a steam distillation process to strip the 

volatile compounds from the nonvolatile oil (Bimbo and Crowther 1991).  The problems with the 

conventional purification methods are that they are not only labor-intensive, they are also 

expensive.  An easily operated and economical purification method is needed by the edible oil 

purification industry.  An adsorption method could be that method. This technique involves mass 

transfer of adsorbate from the fluid phase to the adsorbent surface until the thermodynamic 

equilibrium of the adsorbate concentration is reached. Different kinds of adsorbents have been 

used in purification of edible oils, such as activated earth, activated carbon, kiselguhr or 

diatomaceous earth (Bera and others 2004), and metal oxide and metal phosphate adsorbents 

(Chapman 1994).  Activated earth is produced by the activation of bentonite using mineral acids 

under heating for a few hours and is by far the most common adsorbent for purification and color 

improvements of fats and oils (Du and others 2006; Lara and Park 2004).   Activated alumina is 
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a porous dry powder made by thermal treatment of aluminum hydroxide comprising a series of 

non-equilibrium forms of partially hydroxylated aluminum oxide (Al2O3). The surface of 

activated alumina is a complex mixture of aluminum, oxygen, and hydroxyl ions which combine 

in specific ways to produce both acid and base sites, which are the cause of surface activity and 

so, are important in adsorption applications (Fleming 1998).  Chitosan, the product of 

deactylation of chitin and composed of N-acetylglucosamine (GlcNAc) and glucosamine (GlcN) 

residues, is the only cationic polysaccharide in nature.  Chitin is widely found in the exoskeleton 

of crustaceans, the cuticles of insects and the cell walls of fungi. Chitosan has very good 

adsorption capacity for dyes and metal ions due to the presence of a large number of free amino 

(-NH2) groups that can serve as the coordination and reaction sites (Huang and others, 2011). 

Mucha and Balcerzak (2005) reported chitosan as a water adsorbing agent.   

In this chapter, activated earth, activated alumina, and chitosan were used to adsorb the 

impurities from menhaden and salmon fish oils. However, using a single adsorbent was not 

effective in removing all the impurities because of the diversity of these impurities and the 

limitation of each adsorbent. Huang and Sathivel (2010) used a combined adsorption (activated 

earth) and neutralization process to purify salmon oil and it was more effective in reducing FFA, 

peroxides, and moisture contents than either the adsorption or neutralization process alone. 

However, the neutralization process could cause a higher oil loss (Appendix 1), therefore, a 

combined adsorption purification process using three adsorbents (chitosan, activated earth and 

activated alumina) was developed. The objectives of this study were to purify menhaden and 

salmon oil using a combined chitosan, activated alumina and activated earth adsorption process 

and to evaluate the quality of the purified fish oils. 
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3.2 Material and Methods 

3.2.1 Fish Oil Production and Purifying Methods  

Unrefined menhaden fish oil (MO) extracted using a rendering process was obtained 

from a commercial source (Omega Protein Inc., Houston.TX). Unpurified salmon oil (SO) was 

produced from salmon processing byproducts including viscera, heads, skins, frame, and 

discarded fish obtained from a large commercial plant in Alaska.  The unpurified salmon oil was 

extracted and stored at -40ºC until used. Shrimp chitosan obtained from Green Pastures Products 

Inc. (O'Neill, NE) was used in this study.  Activated alumina was obtained from Zapp's Potato 

Chips Inc. (Gramercy, LA) and activated earth was obtained from the BASF Chemicals Division, 

Geismar, LA.  

The batch adsorption study was conducted in glass containers. Thirty grams of MO/SO 

was placed into each glass container and 1.5 g of an adsorbent (chitosan, activated earth or 

activated alumina) was added separately. The adsorption reaction was carried out with constant 

agitation using a magnetic stirrer at 22 ± 1ºC. Experiments were repeated three times. Five 

different batch adsorption processes were used to purify MO/SO: process #1 involved 

purification of MO/SO by 5% (wt/wt of oil) chitosan (MCH/ SCH), process #2 involved 

purification of MO/SO by 5% (wt/wt of oil) activated earth (MAE/SAE), process #3 involved 

purification of MO/SO by 5% (wt/wt of oil) activated alumina (MAA/SAA), process #4 involved 

combined MO/SO purification processes of 5% (wt/wt of oil) chitosan, 1.5% chitosan plus 3.5% 

activated earth, and 5% activated alumina (M4/S4) in 3 steps, and process #5 involved combined 

MO/SO purification processes of 5% (wt/wt of oil) chitosan, 4% chitosan plus 1% activated 

earth, and 5% activated alumina (M5/S5) in 3 steps.   

3.2.2 Peroxide Value (PV), Free Fatty Acids (FFA), Moisture, and Iodine Value (IV) in 

Unrefined and Refined Fish Oils 
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The PV and FFA of the oil samples were measured by the methods described in 2.2.1. 

The moisture content was measured according to the method in 2.2.2.  Iodine value which is a 

measure of the unsaturation of the oils was measured following the AOCS official method Cd 1-

25 (1998). It was expressed in terms of number of centigrams of iodine absorbed per gram of 

sample (% iodine absorbed). All of the analyses were repeated three times. 

3.2.3 Color of the Unrefined and Refined Fish Oils 

Color of the unrefined fish oils was determined using the chroma meter LABSCAN XE 

(Hunterlab, VA, USA).  The data of colors were reported in CIELAB color scales (L* value is 

degree of lightness to darkness, a* value is degree of redness to greenness, and b* value is 

degree of yellowness to blueness).  Chroma and hue angle value were calculated as equation 3.1 

and equation 3.2, respectively.   

Chroma = [a*
2
 + b*

2
] 

½
   (3.1) 

Hue angle = tan
-1

 (b*/a*)   (3.2) 

Total color difference (TCD) was calculated from the L*, a* and b* values according to equation 

3.3 as described by Topuz and others (2008).  

TCD = [(L – L0)
2
+ (a – a0)

2
 + (b – b0)

2
] 

½
 (3.3) 

where L is degree of lightness to darkness, L0 is initial value of L, a is degree of redness to 

greenness, a0 is initial value of a, b is degree of yellowness to blueness, and b0 is initial value of 

b.  

3.2.4 Fatty Acid Profile and Mineral Concentrations in Unrefined and Refined Fish Oils 

Fatty acid composition of oil samples was determined at the USDA-ARS Laboratory, 

University of Alaska Fairbanks, AK.  FAMEs were prepared using a modified method of 

Maxwell and Marmer (1983).  A 20 mg sample of fish oil was dissolved in 4.5 mL isooctane and 

500 μL of internal standard (10 mg methyl tricosanoate (23:0)/mL isooctane) and 500 μL 2 N 
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KOH (1.12 g/10mL MeOH) was added to the mixture. The mixture was vortexed for 1 min and 

centrifuged to the separate upper layer. The separated upper layer was mixed with 1 mL of 

saturated ammonium acetate solution and the aqueous layer was removed and discarded. The 

mixture was centrifuged and the upper layer of the mixture was separated. Then 1 mL of distilled 

water was added to the separated upper layer and centrifuged, then 2-3 g anhydrous sodium 

sulfate was added, vortexed, and kept for 20-30 min. The mixture was centrifuged and the liquid 

containing methyl ester was separated. A 0.5 mL aliquot of isooctane containing methyl ester 

and 0.5 mL of isooctane were added to the amber GC vial.  The fatty acid analysis was done with 

a GC model 7890A (Agilent) fitted with a FAMEWAX™ (30m, 0.32mm x 0.25µm, Restek, 

Bellefonte, PA) column. Data was collected and analyzed using the GC ChemStation program 

(ver E.02.00.493 Agilent Technologies, Inc.). Helium was used as the carrier gas at an average 

velocity of 64cm/sec. Injector and detector temperature were held at 250°C and 280°C, 

respectively. A split injection (50:1 split ratio) was used and the oven programming was 195°C 

to 240°C at a rate of 5°C/min and held 2min for a total run time of 11 min. An autosampler 

performed the GC injection of standards and samples. The injection volume was 1 µL. Samples 

were identified by comparing retention times to standards. The standards used were: Supelco 37, 

PUFA #1, PUFA #3, and cod liver oil from Supelco (Bellefonte, PA). Data were expressed as 

percent of total integrated area. 

Mineral content of salmon oil samples was determined according to AOCS Ca17-01 and 

AOCS Ca 20-99 (1998) and reported as ppm. The mineral profile analysis of the oil samples was 

carried out in triplicate by the acid digestion method involving microwave technology (CEM 

microwave, MDS-2000, CEM 3 5 Corp., Matthews, N.C., U.S.A.). A 0.5 g sample was placed in 

a vessel and 6 mL HNO3 was added. The sealed vessel was heated until digestion was completed. 

The samples were cooled for 5 min. The inductively coupled argon plasma system (Model 
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CIROS, SPECTRO Analytical Instruments, Kleve, Germany) was utilized to determine the 

mineral profile. 

3.2.5 Rheological Properties of the Unrefined and Refined Fish Oils 

Rheological properties of the oil samples were measured in triplicate using an AR 2000 

Rheometer (TA Instruments, New Castle, DE) fitted with a plate geometry (plastic plates with a 

40-mm diameter, having a 200 m gap between the two plates).  Each sample was placed in the 

temperature-controlled parallel plate and allowed to equilibrate to 25
o
C.  The shear stress was 

measured at varying shear rates from 10 to 200s
-1

.  Apparent viscosities of the oil samples were 

measured at 25
o
C at a shear rate of 200 s

-1
 using the AR 2000 Rheometer.  The mean values of 

triplicate samples were reported. 

The power law (Eq. 3.4) was used to analyze the flow behavior index of the oil samples. 

 = K
n
     (3.4) 

where  =  shear stress (Pa.s),  = shear rate (s
-1

), K = consistency index  (Pa.s
n
), and n = flow 

behavior index.  The logarithms were taken on both sides of Eq. 1, and a plot of log  versus log 

 was constructed.  The resulting straight line yielded the magnitude of log K (i.e., intercept) and 

n (i.e., slope). 

3.2.6 Thermal Properties of Unrefined and Refined Fish Oils 

Thermal stability of the oil samples were analyzed using the Thermogravimetric 

Analyzer (Model Q50, TA Instruments, New Castle, DE).  Approximately 1-1.2 mg of the oil 

sample was added to an aluminum pan, the pan was placed in the furnace, and the exact sample 

weight was determined.  The sample was heated to 700
o
C under air atmosphere at an increasing 

rate of 5
o
C/min.  Sample weight differences were automatically recorded every 0.5 sec.  
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Collected data were analyzed and plotted using the TA Universal Analyzer Software.  The graph 

was normalized based on the sample weight basis. 

The differential scanning calorimetric experiments were conducted using a Differential 

Scanning Calorimeter (Model DSC 2920, TA Instruments, New Castle, DE).  Approximately 

0.5-1 mg of the unpurified oil samples were placed in aluminum sample vessels.  An empty 

aluminum vessel was placed on the reference platform.  To determine the phase transition of the 

unpurified oil samples, a linear heating rate of 5
o
C/min over a temperature range of -75 to 100

o
C 

was used.  The thermogram peak was used to provide an estimate of enthalpy (H).   

3.2.7 Statistical Analysis 

Means and standard deviations of the data collected were reported. Multiple comparison 

was performed at the significant level of P < 0.05 using SAS version 8.2 (SAS Institute Inc., 

2002). Tukey‘s studentized range tests were performed to detect significant differences among 

the different treatments. 

3.3. Results and Discussion 

3.3.1 Peroxide Value (PV), Free Fatty Acids (FFA), Moisture, and Iodine Value (IV) of 

Unrefined and Refined Fish Oils 

 

PV is a good indicator of initial lipid oxidation.  The initial PV of unpurified menhaden 

and salmon oil were 24.22±1.24 and 38.59±0.42 meq/kg of fish oil (Tables 3.1 and 3.2).  The 

results show that the MAE and SAE which are the menhaden and salmon oils purified by the 

activated earth have the lowest peroxide values (13.36 ±1.82 meq/Kg and 20.63±0.45 meq/Kg) 

among these oils.  It indicated that activated earth can effectively adsorb primary oxidation 

compounds compared with chitosan and activated alumina from both menhaden and salmon oils.  

Huang and Sathivel (2010) reported that the adsorption principles of activated earth on the 
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oxidization products could be related to hydrogen bonding, competition for adsorption sites; 

electrostatic field strength and intraparticles diffusion of molecules.  

Free fatty acid content (FFA) is one of the most harmful impurities in fish oils.  Reducing 

FFA is a very important goal in oil purification process.  Higher FFA indicates that the oil will 

have a higher refining loss when purified by neutralization.  Activated alumina decreased the 

free fatty acids of the menhaden and salmon oils from 2.76±0.29%
 
and 2.40±0.05% to 

2.14±0.06% and 1.75±0.03% after 1h of adsorption.  Activated alumina is an amorphous 

aluminum oxide from aluminum trihydrate.  The reason that it can decrease the free fatty acid 

concentration may be caused by the combination between aluminum oxides and the free fatty 

acids.  Neither chitosan nor activated earth was effective in reducing FFA from the SO, which is 

in agreement with Huang and Sathivel (2010).   The M4 and M5 had similar FFA contents 

compared with MAA, while S4 and S5 had similar FFA contents compared with SAA. 

Chitosan was the most effective adsorbent in reducing the moisture content, which 

decreased the moisture content of the menhaden and salmon oils from 3560±0.42 ppm and 

631.60±37.9 ppm to 591.45±0.5 ppm to 162.6±6.4ppm, respectively.  Chitosan is recognized as 

a hydrophilic compound and when added to the fish oils, it can adsorb water rapidly. Activated 

earth and activated alumina can also remove the moisture because of their adsorption capacities 

and reduced the moisture to 495.55±10.25 ppm and 399.95±2.05 ppm, respectively. M4 and M5 

had the lowest moisture contents (256.55±6.72ppm and 271.37±16.38ppm) among all the 

menhaden oil samples. Similarly, S4 and S5 had the lowest moisture contents (143.3±3.0ppm 

and 141.3±3.3ppm) among all the salmon oil samples. 

Iodine value (IV), also called iodine adsorption value or iodine number or iodine index, 

measures the degree of unsaturation of the oil and is expressed in terms of the number of 

centigrams of iodine absorbed per gram of sample.  Iodine value has been one of the standard 
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parameters related to chemical composition and quality of oils and is a way to tell the change in 

the fatty acid profile during processing or storage of the oil.  In this study, the IV of the unrefined 

and refined menhaden oils were around 179.71 to 181.18 cg I2/g oil, while the IV of salmon oils 

ranged from 170 to 178 cg I2/g oil which is a little higher than reported values (147.8-170 cg I2/g 

oil) for Atlantic salmon (S. salar) by Afseth and others (2006). Statistically there were no 

differences among the fish oil samples for IV. It means that the adsorption process may not 

change the degree of unsaturation and composition of fatty acid profile on both oils.  

Table 3.1 – PV, FFA, moisture, and IV of the unrefined and refined menhaden oils 

Sample PV (meq/kg) FFA (%) Moisture (ppm) IV (cg I2/g oil) 

MO 24.22±1.24
a
 2.76±0.29

a
 3560±0.42

a
 180.40±3.21

a
 

MCH 17.29±0.06
b
 2.82±0.10

a
 591.45±0.49

d
 179.98±2.14

a
 

MAE 13.36±1.82
c
 2.74±0.05

a
 897.9±16.97

c
 180.37±2.45

a
 

MAA 22.58±1.06
a
 2.14±0.06

b
 986.25±11.67

b
 181.18±0.56

a
 

M4 15.94±0.41
bc

 2.00±0.09
b
 256.55±6.72

e
 179.71±4.01

a
 

M5 15.88±0.50
bc

 2.04±0.08
b
 271.37±16.38

e
 180.70±2.89

a
 

Values are means ± SD of triplicate determinations. 
abcd

Means with the same letters in each 

column are not significantly different (P > 0.05). MO = unrefined menhaden oil; MCH = process 

involved purification of MO by 5% (wt/wt of oil) chitosan for 1h, MAE = process involved 

purification of MO by 5% (wt/wt of oil) activated earth for 1h; MAA = process involved 

purification of MO by 5% (wt/wt of oil) activated alumina for 1h; M4 = process involved 

combined MO purification processes of 5% (wt/wt of oil) chitosan, 1.5% chitosan plus 3.5% 

activated earth, and 5% activated alumina for 1h, respectively; M5 = process involved combined 

UPO purification processes of 5% (wt/wt of oil) chitosan, 4% chitosan plus 1% activated earth, 

and 5% activated alumina for 1h, respectively. PV = peroxide value; FFA = free fatty acid 

content; IV = iodine value. 
 

Table 3.2 – PV, FFA, moisture, and IV of the unrefined and refined salmon oils 

 PV (meq/kg) FFA (%) Moisture (ppm) IV (cg I2/g oil) 

SO 38.59±0.42
a
 2.40±0.05

a
 631.6±37.90

a
 176.02±4.21

a
 

SCH 35.20±0.20
b
 2.32±0.07

a
 162.6±6.36

d
 177.68±1.63

a
 

SAE 20.63±0.45
d
 2.45±0.05

a
 495.55±10.25

b
 177.19±5.32

a
 

SAA 34.19±1.02
b
 1.75±0.03

b
 399.95±2.05

c
 170.57±4.09

a
 

S4 24.34±0.17
c
 1.76±0.02

b
 143.3±2.97

d
 175.95±0.57

a
 

S5 26.03±1.48
c
 1.80±0.14

b
 141.3±3.25

d
  174.22±10.43

a
 

Values are means ± SD of triplicate determinations. 
abcd

Means with the same letters in each 

column are not significantly different (P > 0.05). SO = unrefined salmon oil; SCH = process 

involved purification of SO by 5% (wt/wt of oil) chitosan for 1h, SAE = process involved 

purification of SO by 5% (wt/wt of oil) activated earth for 1h; SAE = process involved  
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(table 3.2 continued) 

purification of SO by 5% (wt/wt of oil) activated alumina for 1h; S4 = process involved 

combined SO purification processes of 5% (wt/wt of oil) chitosan, 1.5% chitosan plus 3.5% 

activated earth, and 5% activated alumina, for 1h, respectively; S5 = process involved combined 

UPO purification processes of 5% (wt/wt of oil) chitosan, 4% chitosan plus 1% activated earth, 

and 5% activated alumina, for 1h, respectively. PV = peroxide value; FFA = free fatty acid 

content; IV = iodine value. 

 

3.3.2 Color of Unrefined and Refined Fish Oils 

The main pigments in fish oils are chlorophyll and carotenoids, notably astaxanthin and 

canthaxanthin, which are known for benefits for human health. Carotenoids pigments have been 

shown to be adsorbed from oil by adsorbents (Brekke 1980). Besides removing impurities from 

the fish oils, another purpose of this study is to retain these health beneficial pigments.  

Traditionally activated earth is a bleaching agent and can remove a lot of the pigments from oils. 

Tables 3.3 and 3.4 show the lightness (L*), redness (a*), yellowish (b*) values of the unrefined 

and refined fish oils. MAE and SAE having much lower or even negative a* values indicate that 

a reduction in red pigments occurred during the adsorption process by activated earth. The 

activated earth purified oil (MAE and SAE) had a large change in the lightness (L*), redness (a*), 

yellowish (b*) values and thus had total color difference (TCD) of 23.39 and 52.50 compared 

with the raw oil indicating that the color changed dramatically compared with the unrefined 

menhaden and salmon oils.  To retain more pigments, processes 4 and 5, the amount of the 

activated earth was reduced from 5% to 1.5% and 1%, respectively, and as a result, the TCD of 

M4 and M5 dropped to 22.83 and 19.38, and S4 and S5 dropped to 26.03 and 17.95, respectively.  

Of the three adsorbents, chitosan changed color the least and had a TCD of 0.75 for salmon oil. 

So the chitosan is considered to have little effect on color change of the oil. All of these results 

were consistent with the results by visual evaluation. 

Table 3.3- Color of the unrefined and refined menhaden oils  

Sample L* a* b* Chroma Hue angle TCD 
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(table 3.3 continued) 

MO 32.72±0.29
d
 14.42±0.07

a
 52.79±0.43

d
 55.55±0.44

d
 80.61±0.04

d
  

MCH 38.56±0.16
c
 13.85±0.03

a
 65.05±0.31

c
 67.55±0.30

bc
 83.59±0.08

c
 13.59±0.14

d
 

MAE 48.69±0.07
a
 2.72±0.05

c
 65.25±0.17

c
 65.75±0.17

c
 93.12±0.04

a
 23.39±0.20

a
 

MAA 40.11±0.26
c
 13.82±0.01

a
 67.55±0.43

bc
 69.98±0.43

b
 83.94±0.05

c
 16.51±0.08

c
 

M4 43.85±0.12
b
 9.76±0.32

b
 72.18±0.18

a
 73.80±0.20

a
 87.59±0.24

b
 22.83±0.19

a
 

M5 41.75±0.38
c
 12.80±0.04

a
 69.87±0.49

b
 72.07±0.46

ab
 85.06±0.08

c
 19.38±0.06

b
 

Values are means ± SD of triplicate determinations. 
abcd

Means with the same letters in each 

column are not significantly different (P > 0.05). See Table 3.1 for brief description of MO, 

MCH, MAE, MAA, M4, and M5. TCD = Total Color Difference. 

 

Table 3.4 - Color of the unrefined and refined salmon oils  

 

L* a* b* Chroma Hue angle TCD 

SO 37.27±0.05
e
 21.23±0.05

b
 61.00±0.08

a
 65.17±0.09

a
 76.24±0.02

e
 

 
SCH 37.38±0.20

e
 21.88±0.09

a
 61.23±0.32

a
 65.60±0.34

a
 75.76±0.02

f
 0.75±0.25

e
 

SAE  52.94±0.03
a
 -3.75±0.03

f
 17.55±0.04

d
 18.37±0.03

d
 108.55±0.12

a
 52.50±0.05

a
 

SAA 38.25±0.09
d
 20.18±0.03

c
 61.38±0.11

a
 65.21±0.11

a
 77.29±0.02

d
 1.49±0.08

d
 

S4 47.17±0.19
b
 5.40±0.03

e
 42.85±0.23

c
 43.95±0.24

c
 89.70±0.04

c
 26.03±0.10

b
 

S5 44.53±0.07
c
 9.42±0.02

d
 49.59±0.07

b
 51.12±0.07

b
 85.75±0.01

c
 17.95±0.03

c
 

Values are means ± SD of triplicate determinations. 
abcd

Means with the same letters in each 

column are not significantly different (P > 0.05). See Table 3.2 for brief description of SO, SCH, 

SAE, SAA, S4, and S5. TCD = Total Color Difference. 
 

3.3.3 Fatty Acid Methyl Ester (FAME) Composition of Unrefined and Refined Fish Oils 

Tables 3.5 and 3.6 show the compositions of the main fatty acids in the unrefined and 

refined menhaden and salmon oils. No differences were found among these fatty acids in the 

unrefined and refined menhaden and salmon oils. The reason is that these processes were 

conducted at room temperature without heating and the air in the amber bottles was also replaced 

by nitrogen so there were no factors causing the oxidation of the unsaturated fatty acids.  The 

EPA and DHA concentrations ranged between 16.86-17.07% and 6.38-6.86% for menhaden oils 

and 11.49-11.77% and 10.34-10.89% for salmon oils, respectively. 
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Table 3.5 – Fatty acid methyl ester (%) of the unrefined and refined menhaden oils  

Values are means ± SD of triplicate determinations. Fatty acids less than 5% are not reported.  
a
Means with the same letters in each column are not significantly different (P > 0.05). See Table 

3.1 for brief description of MO, MCH, MAE, MAA, M4, and M5. 

 

Table 3.6 – Fatty acid methyl ester (%) of the unrefined and refined salmon oils  

 SO SCH SAE SAA S4 S5 

C16  12.32±0.03
a
 12.30±0.31

 a
 12.43±0.19

a
 12.67±0.06

 a
 12.55±0.23

a
 12.51±0.19

a
 

C16:1n7  5.14±0.05
a
 5.20±0.12

a
 5.21±0.07

a
 5.34±0.06

a
 5.27±0.14

a
 5.25±0.06

a
 

C18:1n9  11.89±0.03
a
 12.01±0.23

a
 12.15±0.16

a
 12.33±0.04

a
 12.22±0.15

a
 12.11±0.18

a
 

C20:1n11  7.03±0.05
a
 7.12±0.09

a
 7.20±0.10

a
 7.23±0.08

a
 7.24±0.13

a
 7.16±0.12

a
 

C20:5n3  11.49±0.07
a
 11.64±0.19

a
 11.76±0.22

 a
 11.76±0.09

a
 11.77±0.15

a
 11.71±0.15

a
 

C22:1n11  11.40±0.14
a
 11.58±0.16

a
 11.65±0.20

a
 11.68±0.13

a
 11.67±0.23

a
 11.59±0.13

a
 

C22:6n3  10.89±0.15
a
 11.08±0.12

a
 11.16±0.28

a
 11.34±0.39

a
 11.13±0.52

a
 11.11±0.12

a
 

Values are means ± SD of triplicate determinations. Fatty acids less than 5% are not reported.   
a
Means with the same letters in each column are not significantly different (P > 0.05). See Table 

3.2 for brief description of SO, SCH, SAE, SAA, S4, and S5.  
 

3.3.4 Mineral Concentrations of the Unrefined and Refined Fish Oils 

Tables 3.7 and 3.8 listed the mineral and heavy metal contents of unrefined and refined 

oil samples. B, Fe, Zn, Al, Ca, Mg, Na, and Ar were the most abundant minerals in unrefined 

menhaden and salmon oils. After the five adsorption processes, most of these mineral contents 

decreased. Compared with chitosan and activated alumina, activated earth was most effective in 

reducing B, Fe, and Zn from the menhaden oil. AE decreased the iron contents from 19.15ppm to 

7.08ppm, which is below the acceptable level (8 ppm) for iron (Bimbo, 1998). For the salmon oil, 

activated earth effectively removed the Fe, Zn, Ca, S, and Na.  Activated alumina removed 

significant amounts of Ca and Mg from the menhaden fish oil. Chitosan had highest capacity for 

 Sample MO MCH MAE MAA M4 M5 

C14  10.63±0.13
a
 10.98±0.06

a
 10.54±0.05

 a
 10.67±0.10

 a
 10.63±0.14

a
 10.21±0.10

a
 

C16  19.19±0.05
a
 19.51±0.06

a
 18.69±0.15

 a
 19.00±0.11

 a
 18.88±0.12

a
 18.08±0.06

a
 

C16:1n7  11.21±0.15
a
 11.79±0.17

a
 11.31±0.06

 a
 11.52±0.04

 a
 11.42±0.03

a
 11.24±0.06

a
 

C18:1n9 8.00±0.07
a
 8.42±0.08

a
 8.07±0.03

 a
 8.10±0.06

 a
 8.15±0.05

a
 7.73±0.02

a
 

C20:5n3  16.86±0.18
a
 16.76±0.14

a
 17.02±0.17

 a
 17.07±0.15

 a
 16.89±0.07

a
 16.87±0.18

a
 

C22:6n3  6.53±0.03
a
 6.86±0.09

a
 6.61±0.09

 a
 6.66±0.06

 a
 6.64±0.13

a
 6.38±0.02

a
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adsorbing potassium which decreased from 7.83 to 4.95ppm. Chitosan effectively decreased the 

Al levels in both menhaden and salmon oils; however, activated alumina and activated earth 

increased the Al levels in the oil samples. This could be caused by the alumina in the adsorbents. 

Activated earth has a porous aluminium/silicate composition with a pore diameter of 50,000 

Angstroms. The difference in absorption capacity of these minerals is related to the physical 

structure of these adsorbents, because the adsorbate interaction potential largely depends on the 

pore size and geometry of the adsorbents (Yang 2003). MO and SO contained high contents of P 

(45.36 ppm and 38.60ppm) and they were reduced to 15.65 ppm and 17.88 ppm by activated 

earth. The phosphorus present in fish oils may be attributed to the phospholipids in the oil which 

is the main components of the gum presents in oils. Another complex that phosphorus can form 

is calcium-phosphate complexes (Young 1986). Even though all the three adsorbents were 

effective in reducing minerals or heavy metals from menhaden and salmon oils, there were still 

considerable amounts of minerals left in the oils after the adsorption processes. Huang and 

Sathivel (2010) reported that the neutralization process could reduce most of the minerals (Ca, 

Fe, Mg, P, Na, Ar) in salmon oils to trace amounts.  This could be caused by the washing step 

during the neutralization process which removes the water soluble impurities, especially 

phospholipids from the raw oil and most of minerals and heavy metals precipitated with the soap 

as saponification occurred during neutralization. The problem with the neutralization method is 

the increase of Na because of the addition of NaOH solution (Huang and Sathivel 2010). 

Table 3.7 - Minerals and heavy metal concentration (ppm) of unrefined and refined 

menhaden oils  

 MO MCH MAE MAA M4 M5 

Boron 30.6±1.13
a
 25.75±1.90

c
 24.8±0.42

c
 28.31±1.38

b
 19.75±1.21

d
 22.55±1.34

cd
 

Copper <1.2 <1.2 <1.2 <1.2 <1.2 <1.2 

Iron 19.15±0.78
a
 10.43±1.24

c
 7.08±0.59

d
 15.4±0.42

b
 8.07±0.64

d
 10.3±0.28

c
 

Manganese <1 <1 <1 <1 <1 <1 

Zinc 4.50±0.32
a
 4.06±0.65

b
 1.08±0.52

d
 3.48±0.36

c
 0.99±0.19

d
 1.06±0.07

d
 

Aluminum 5.34±1.27
b
 3.83±0.78

c
 6.06±0.78

a
 6.94±0.72

a
 4.59±1.82

b
 4.73±0.23

bc
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(table 3.7 continued)     

Barium <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 

Cadmium <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 

Chromium 1.80±0.08
a
 1.24±0.17

b
 0.89±0.13

c
 1.31±0.56

b
 1.19±0.37

b
 1.26±0.19

b
 

Calcium 37.75±1.48
a
 33.05±1.34

a
 23.56±1.36

b
 19.7±2.40

c
 17.65±1.03

c
 17.6±1.27

c
 

Cobalt <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 

Magnesium 8.86±0.21
a
 7.67±0.71

a
 5.11±0.06

b
 4.58±0.23

b
 3.16±0.25

c
 3.88±0.03

c
 

Lead <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 

Molybdenum <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 

Phosphorus 45.36±1.36
a
 20.34±1.22

b
 15.65±0.38

c
 18.34±2.65

bc
 17.56±1.78

bc
 17.41±0.89

bc
 

Potassium 7.83±0.46
a
 4.95±0.92

c
 6.06±0.48

b
 6.05±1.06

b
 4.78±0.28

c
 4.81±0.02

c
 

Nickel <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 

Selenium <14 <14 <14 <14 <14 <14 

Arsenic 18.55±1.62
a
 16.25±0.92

a
 <4 <4 <4 <4 

Sodium 36.15±1.20
a
 21.9±0.57

b
 22.2±1.75

b
 20.6±1.53

b
 17.1±1.41

c
 20.6±0.28

b
 

Values are means ± SD of duplicate determinations. 
abcd

Means with the same letters in each 

column are not significantly different (P > 0.05). See Table 3.1 for brief description of MO, 

MCH, MAE, MAA, M4, and M5. 

 

Table 3.8 - Minerals and heavy metal concentration (ppm) of unrefined and refined salmon 

oils  

 

SO SCH SAE SAA S4 S5 

Boron 36.20±1.70
a
 32.50±1.98

b
 34.80±1.84

a
 29.15±1.16

c
 33.00±2.21

b
 29.15±1.31

c
 

Copper <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 

Iron 5.90±0.24
a
 5.39±1.56

a
 1.25±0.04

c
 3.03±0.30

b
 1.86±0.15

c
 1.52±0.02

c
 

Manganese <1 <1 <1 <1 <1 <1 

Zinc 4.85±0.64
a
 4.06±2.65

ab
 1.73±0.62

b
 3.48±1.36

ab
 3.93±0.38

ab
 3.69±0.87

ab
 

Aluminum 12.60±1.27
b
 7.83±3.78

c
 16.00±0.94

a
 16.25±1.48

a
 11.23±0.82

b
 10.60±0.71

b
 

Barium <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 

Cadmium <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 

Chromium 1.47±0.08
a
 1.24±0.17

a
 1.20±0.23

a
 1.28±0.24

a
 1.19±0.37

a
 1.15±0.26

a
 

Calcium 42.87±0.58
a
 29.86±2.25

b
 17.90±2.26

c
 25.50±3.11

b
 27.65±4.03

b
 26.10±6.93

b
 

Cobalt <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 

Magnesium 8.53±0.49
a
 7.67±0.71

ab
 7.30±0.26

ab
 7.47±0.36

ab
 5.16±0.29

b
 4.42±0.18

c
 

Lead <1.2 <1.2 <1.2 <1.2 <1.2 <1.2 

Molybdenum <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 

Phosphorus 38.60±2.26
a
 25.75±0.35

b
 17.88±0.21

d
 25.65±2.33

b
 21.50±0.37

c
 22.70±1.13

bc
 

Potassium 26.18±2.23
a
 8.37±2.17

bc
 6.06±0.48

c
 8.21±1.70

bc
 4.70±0.68

c
 5.25±0.29

c
 

Nickel <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 

Sulphur 71.9±0.70
a
 71.15±3.04

a
 50.75±0.64

c
 59.85±0.07

b
 67.55±10.82

ab
 50.65±1.48

c
 

Selenium <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 

Arsenic 6.07±1.10
a
 4.84±0.35

b
 <4 <4 <4 <4 

Sodium 59.60±5.66
a
 45.30±4.10

b
 19.40±1.70

d
 25.30±3.82

cd
 28.00±3.11

c
 30.05±1.63

c
 

 



64 

 

(table 3.8 continued) 

Values are means ± SD of duplicate determinations. 
abcd

Means with the same letters in each 

column are not significantly different (P > 0.05). See Table 3.2 for brief description of SO, SCH, 

SAE, SAA, S4, and S5.  

 

3.3.5 Rheological Properties of the Unrefined and Refined Fish Oils 

The flow behavior index (n), consistency index (K) values, and apparent viscosity of 

unrefined and refined fish oil samples were tested at 25 °C. The results are listed in tables 3.9 

and 3.10.  The flow behavior index of MO (0.78) was much less than 1, which indicates that it 

exhibited shear thinning properties (Paredes and others 1989). The purified menhaden oils and 

all of the salmon oil samples were considered as Newtonian fluids at room temperature with n 

value very close to 1.  The consistency index is an indicator of the viscous nature of the samples, 

and the higher K values indicate a more viscous consistency (Paredes and others 1989). This 

result is in agreement with the apparent viscosity of the oils. All the oil samples became less 

viscous after the purification processes.  The viscosity of the oil could be affected by two factors, 

one of which is the impurities, such as minerals, insoluble impurities, free fatty acids, and 

moisture; the other factor is the fatty acid composition and the degree of unsaturation of the fatty 

acids. The interaction between oil and impurities may form an aggregated colloidal dispersion 

system and the oil exhibits higher viscosity (Teeter and Cowan 1956).  More unsaturated fatty 

acids will cause low viscosity of oils. 

Table 3.9 – Rheological properties of the unrefined and refined menhaden oils  

 

 

n K (Pa.s
n
) Viscosity (Pa.s) 

MO  0.78±0.02
b
  0.45±0.02

a
  0.05±0.00

a
  

MCH  0.98±0.03
a
  0.24±0.01

b 
 0.03±0.00

b
  

MAE  0.97±0.01
a
  0.23±0.01

b
  0.03±0.00

b
  

MAA  0.98±0.01
a
  0.23±0.01

b
  0.03±0.00

b
  

M4  0.99±0.00
a
  0.22±0.00

b
  0.03±0.00

b
  

M5  0.99±0.01
a
  0.22±0.00

b
  0.03±0.00

b
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(table 3.9 continued) 

Values are means ± SD of triplicate determinations. 
ab

Means with the same letters in each 

column are not significantly different (P > 0.05). See Table 1 for brief description of MO, MCH, 

MAE, MAA, M4, and M5. n = flow behavior index, K = consistency index. 

 

Table 3.10 - Rheological properties of unrefined and refined salmon oils  

  n K (Pa.s
n
) Viscosity (Pa.s) 

SO 0.98±0.02
a
 0.051±0.001

a
 0.046±0.001

a
 

SCH 0.99±0.01
a
 0.046±0.001

b
 0.044±0.000

ab
 

SAE 0.99±0.00
a
 0.045±0.001

b
 0.042±0.000

bc
 

SAA 0.99±0.00
a
 0.044±0.001

b
 0.043±0.000

bc
 

S4 0.99±0.00
a
 0.044±0.001

b
 0.042±0.000

c
 

S5 0.99±0.01
a
 0.044±0.001

b
 0.042±0.000

c
 

Values are means ± SD of triplicate determinations. 
abc

Means with the same letters in each 

column are not significantly different (P > 0.05). See Table 1 for brief description of SO, SCH, 

SAE, SAA, S4, and S5. n = flow behavior index, K = consistency index.   
 

3.3.6 Thermal Properties of the Unrefined and Refined Fish Oils 

The DSC thermograms (Figures 3.1 and 3.2) show differences in melting points of 

unrefined and refined fish oil samples. The DSC thermogram shows four to five main distinct 

endothermic peaks for the unrefined and refined oil samples. The low melting points of the oils 

were attributed to triacylglycerol which contained unsaturated fatty acids (Tan and Che Man 

2002). Oil samples with a higher degree of unsaturated fatty acids melt at lower temperatures, 

whereas those with a higher degree of saturated fatty acids melt at higher temperatures.  

Physical properties of triglycerides are more complex than those of the individual fatty 

acids because they contain three fatty acid groups. All peaks for both the menhaden and salmon 

oil samples were not sharp, except M4, M5, and S5. For both oils, the raw oils (MO and SO) 

were the flattest comparing with all of the purified oil samples. This might be attributed to the 

presence of impurities, such as phospholipids, ketones, and other materials in the (Young, 1978; 

Richardson, 1978). Those impurities component components melt uncharacteristically compared 

to pure fatty acids. Fatty acids have their own melting points; therefore, sharp peaks were not 
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observed for the raw oils. Sathivel and others (2008) reported that the DSC thermograms of 

purified catfish oil showed sharper and narrower peaks than unpurified fish oil. The melting 

points of fish oil were sharper after each purification step that removed impurities from the oil. 

These results support the use of DSC to evaluate fish oil quality. 

The thermal degradation of the unpurified and purified menhaden and salmon oils is 

given in Figures 3.3 and 3.4.  Weight loss of all the oils increased with increased heating 

temperature between 200 and 500ºC. At 550ºC, MO, MCH, MAE, MAA, M4, and M5 oil 

samples retained 1.95%, 0.49%, 0.17%, 0.65%, 0.38%, and 0.03% of their initial weight, 

respectively.  At 550ºC, SO, SCH, SAE, SAA, S4, and S5 oil samples retained 0.75%, 0.47%, 

0.29%, -1.57%, -0.27%, and 0.12%, of their initial weight, respectively.  M4, M5, S4, and S5 

had higher degradation rate comparing with other oil samples. The presence of impurities in the 

oil samples reduces heat transfer to unpurified oils; therefore, less energy available to evaporate 

the volatiles. Sathivel and others (2003) reported that the weight loss of oils due to thermal 

decomposition is higher in purified oils than those of unpurified oils. This study indicates that 

TG analysis may be useful in evaluating the quality of fish oils. 

3.4 Conclusions 

The results indicated that activated earth was most effective on reducing primary 

oxidation compounds from menhaden and salmon oils comparing with chitosan and activated 

alumina from both menhaden and salmon oils.  Activated alumina was very effective on 

removing free fatty acids (FFA) from both oils and neither chitosan nor activated earth was 

effective in reducing FFA. Chitosan exhibited the best function adsorbing the moisture in the fish 

oils.  No difference among the IV and FAMEs of the unrefined and refined menhaden oils were 

observed, indicating that the adsorption process did not change the degree of unsaturation and 

composition of fatty acid profile on both oils. Comparing with chitosan and activated alumina, 
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Figure 3.1 - DSC thermogram of MO, MCH, MAE, MAA, M4, and M5. 
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Figure 3.2 - DSC thermogram of SO, SCH, SAE, SAA, S4, and S5. 
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Figure 3.3 - Thermal degradation of MO, MCH, MAE, MAA, M4, and M5. 
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Figure 3.4 - Thermal degradation of SO, SCH, SAE, SAA, S4, and S5 

 



69 

 

activated earth was most effective reducing B, Fe, and Zn from the menhaden oil. For the salmon 

oil, activated earth effectively removed the Fe, Zn, Ca, S, and Na.  Activated alumina removed 

most amounts of Ca and Mg from the menhaden fish oil. Chitosan had highest capacity 

adsorbing with K and reduced from 7.83 to 4.95ppm. MO and SO contained high contents of P 

(45.36 ppm and 38.60ppm) and they were reduced to 15.65 ppm and 17.88 ppm by activated 

earth.  MO exhibited shear thinning properties, while purified menhaden oils and all the salmon 

oil samples are considered as Newtonian fluids at room temperature with n value very close to 1.  

All the oil samples became less viscous after the purification processes.  All DSC peaks for 

unrefined and refined menhaden and salmon oil samples were not sharp, except M4, M5, and S5. 

The thermal degradation of the unpurified and purified menhaden and salmon oils showed that 

M4, M5, S4, and S5 had higher degradation rate comparing with other oil samples. This study 

indicates that DSC and TG analysis may be useful in evaluating the quality of fish oils. From this 

study, a batch adsorption process was developed for purification of menhaden and salmon oils in 

reducing PV, FFA, moisture, and heavy metal content and retaining the fatty acid compositions.  
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CHAPTER 4 PURIFYING FISH OILS WITH COLUMN ADSORPTION PROCESSES  

4.1 Introduction 

Adsorption could be an attractive alternative for purifying fish oils. It is a separation 

process during which specific components of one phase of a fluid are transferred onto the surface 

of a solid adsorbent (McCabe and others 1993). Use of inexpensive adsorbents with less oil loss 

and less lipid oxidation render the method cost effective.  Lipid oxidation is reduced because of 

the mild conditions such as ambient temperature and atmospheric pressure that are employed in 

adsorption processes.  As mentioned in the previous chapter a laboratory scale batch study 

utilizing an activated earth, activated alumina, and chitosan  purification process to reduce 

hydroperoxides (PV), free fatty acids (FFA), moisture, and minerals in menhaden and salmon 

oils was conducted. The results showed that activated earth reduced PV, while chitosan and 

activated alumina reduced moisture and FFA, respectively.  The combined method which 

included adsorbents chitosan, activated earth and activated alumina effectively reduced PV, FFA, 

and moisture of the unpurified fish oils. 

In the laboratory experiments, certain aspects of the adsorption process were investigated 

by handling small amounts of raw materials to reduce the material constraints to a minimum. A 

proper laboratory scale study is very important because it gives information on the reaction 

mechanism, kinetics, and hydrodynamics, especially for a new reaction system (Dutta and Gualy 

2000). The laboratory process should mimic as closely as possible the anticipated design, 

hydrodynamic conditions, and operation of a commercial process.  Unfortunately, a close 

approach to the commercial system is not often possible in a lab-scale process (Inglezakis and 

Poulopoulos 2006).  Therefore, it‘s necessary to develop a continuous pilot scale adsorption 

process.   
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During pilot-plant experiments industrial constraints are taken into account and problems 

that may happen in industrial production must be dealt with adequately. Pilot plant operation is a 

tool for understanding physical and chemical mechanisms involved in the process and for 

generating data. Mathematical models are usually used to transform findings of pilot-scale 

experiments to commercial production (Trambouze 1990).  The scale of pilot plant production is 

very important because if it‘s too small there may be problems such as wall effects and slugging 

in the column, if it‘s too big, the cost could be too high (Knowlton 2000). The scale or size of the 

equipment in which the adsorption process takes place has different effects depending on the 

mechanism concerned, for example, chemical kinetics and thermodynamics are not affected by 

size, but heat transfer and mass transfer are both influenced by the size of the equipment 

(Inglezakis and Poulopoulos 2006). Huang and Sathivel (2010) reported that adsorption 

technology could potentially provide a simplified process for refining fish oil for human 

consumption. The results obtained in their study could be used to design and build an adsorption 

unit for purifying fish oils. However, to date there are few studies dealing with designing pilot-

scale adsorption columns to purify fish oils.  Therefore, the objectives of this study were to 

develop a continuous pilot scale adsorption purification process for unpurified menhaden and 

salmon oils, to study the mechanisms involved in this process, and to characterize both the 

unpurified and the resulting purified fish oils.    

4.2 Material and Methods 

4.2.1 Fish Oil Production and Purifying Methods  

Unrefined menhaden fish oil (MO) extracted using a rendering process was obtained 

from a commercial source (Omega Protein Inc., Houston.TX). Unpurified salmon oil (SO) was 

produced from salmon processing byproducts including viscera, heads, skins, frame, and 

discarded fish obtained from a large commercial plant in Alaska.  The unpurified salmon oil was 
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extracted and stored at -40ºC until used.  Activated alumina was obtained from Zapp's Potato 

Chips Inc. (Gramercy, LA) and activated earth was obtained from the BASF Chemicals Division, 

Geismar, LA.  

Unrefined menhaden or salmon oil samples (20 kg)  was each mixed with 1 kg of 

activated earth and 1 kg of activated alumina and stirred for 0, 30, 60, 90, 120, or 150 min in a 

covered vessel.  Nitrogen was injected into the container to replace the air.  The resulting 

mixtures were pumped at 6.0 kg/min through a pilot scale adsorption unit that contained two 

0.95 m tall and 0.24 m diameter adsorption columns lined with 5µm filter bags to filter out the 

adsorbents (Figure 4.1).  Experiments were repeated three times. Unpurified and purified oil 

samples were analyzed for fatty acids profile, peroxide value (PV), free fatty acids (FFA), 

moisture content, minerals, rheological and thermal properties. 

4.2.2 Peroxide Value (PV), Free Fatty Acids (FFA), and Moisture in Unpurified and 

Purified Fish Oils 

 

The PV and FFA contents were measured as described in 2.2.1. The moisture content was 

measured according to the method described in 2.2.2. All of the analyses were repeated three 

times. 

ColumnLiquid nitrogen

 

Stirring Pump

Fish oil and 

Adsorbents

Filter bag Filter bag

Column

Purified fish oil

Figure 4.1 - Flow diagram of the column purification process by adsorbents 
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4.2.3 Adsorption Kinetics of the PV, FFA, and Moisture in Fish Oils by Activated Earth 

and Activated Alumina 

 

A second- order kinetic model was used to describe the adsorption kinetics of the 

activated earth and alumina on PV, FFA, and moisture content in menhaden and salmon oils.  

Kinetic phenomenon by the reaction rate at which reactant A depletes can be modeled according 

to the generic model (Lima 2003): 

Ar  = 
dt

dCA = x

AkC     (eq. 4.1) 

where rA is the rate of reaction, dCA/dt is the rate at which the concentration of reactant A is 

changing with time, k is the reaction rate constant, CA is the concentration of the reactant A, and 

x is the order of reaction.  

When x=2, the generic kinetics model becomes: 

dt

dCA = 2

AkC           (eq. 4.2) 

This equation states that the rate of the depletion of reactant A is proportional to the square of the 

concentration of A.  Integration of the differential equation yields a second order reaction 

equation: 

Ac

1
= 

0

1

Ac
 + kt   (eq. 4.3) 

To determine the rate constant experimentally, 1/CA vs. time was plotted and a linear line 

was obtained. The rate constant is the slope of the best fit line.  

4.2.4 Fatty Acid Profile and Mineral Concentrations in Unrefined and Refined Fish Oils 

Fatty acid composition and mineral content of oil samples was determined by the method 

described in 3.2.4.  

4.2.5 Rheological Properties of the Unrefined and Refined Fish Oils 

Rheological properties of the oil samples were measured according to 3.2.5. 



74 

 

4.2.6 Thermal Properties of Unrefined and Refined Fish Oils 

Thermal stability of the oil samples were analyzed by thermal gravimetric analyzer 

following the procedure described in 3.2.6. The differential scanning calorimetric experiments 

were conducted as described in 3.2.6.  

4.2.7 Statistical Analysis 

Means and deviations of the data collected were reported. Multiple comparison was 

performed at the significant level of P < 0.05 using SAS version 8.2 (SAS Institute Inc., 2002). 

Tukey‘s studentized range tests were performed to detect significant differences among the 

different treatments. 

4.3 Results and Discussion 

4.3.1 Peroxide Value (PV), Free Fatty Acids (FFA), and Moisture Content of Unrefined and 

Refined Fish Oils 

 

PV indicates the initial lipid oxidation of the fish oils.  The unrefined menhaden oil had a 

peroxide value of 8.11±0.55 meq/Kg and immediately decreased to 5.01±0.14 meq/Kg after 

30min of purification with activated earth and activated alumina. After 120min of adsorption, PV 

dropped to 3.34±0.07 meq/Kg. The initial PV of the unrefined salmon oil was 8.72±0.10 meq/Kg 

and it was reduced to 3.71±0.42 meq/Kg after adsorbing with activated earth and activated 

alumina for 120min.  The oil with PV less than 5 meq/Kg can be considered as fresh oil (Gracey 

and others 1999), while an oil with a PV of 7.5 meq/Kg is unacceptable for human consumption 

(Robards and others 1988; Schnepf and others 1991). The results show that the mix of activated 

earth activated alumina can effectively adsorb primary oxidation products. Based on the results 

from the previous chapter, activated earth was an effective adsorbents for reducing PV and the 

adsorption principles of activated earth on the oxidization products could be related to hydrogen 

bonding, competition for adsorption sites; electrostatic field strength and intraparticles diffusion 

of molecules (Huang and Sathivel 2010). Prolonged purification (150min) elevated the PV of the 
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menhaden oil from 3.34±0.07 meq/Kg (purified for 120min) to 3.91±0.16 meq/Kg, and there‘s 

no significant change for PV of salmon oils after purification for 150min .  This means that the 

adsorption ability of the activated earth decreased with time and once equilibrium obtained, it 

would not adsorb any oxidative compounds from the fish oils and more agitation could have 

caused oxidation.  

 

Figure 4.2 - PV of the menhaden oil purified with column purification method by time. 

 

Figure 4.3 - PV of the salmon oil purified with column purification method by time. 

 

Lipid rancidity could be caused by a number of effects such as hydrolyzed and oxidation 

rancidity. Polyunsaturated acids are easily oxidized producing aldehydes and ketones which 

cause unpleasant taste. Hydrolyzed rancidity forms free fatty acids due to the hydrolysis of 
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triglycerides. This process may be promoted by the reaction of oil with moisture (Iqbal and 

Bhanger 2007). FFA is an important measure of food rancidity.  Reducing FFA is a very 

important goal in the fish oil purification process.  Higher FFA indicates that fish oil will have a 

higher refining loss when purified.  Activated earth and alumina decreased the free fatty acids of 

menhaden and salmon oils from 1.91±0.05% and 1.42±0.12% to 1.13±0.02% and 0.75±0.02%, 

respectively after 120min of adsorption (Figures 4.4 and 4.5).  After adsorbing for 150min, the 

FFA of the menhaden decreased to 0.99±0.01%, while the FFA of salmon oil had no significant 

change.  As indicated in chapter 3, activated alumina is very effective in reducing FFA because 

of the combination between aluminum oxides and the free fatty acids.  The adsorption process 

reached equilibrium at 120min for salmon oil and was still effective for reducing FFA for 

menhaden oil. 

 

Figure 4.4 - FFA of the menhaden oil purified with column purification method by time. 

 

Moisture can promote lipid hydrolysis and increase FFA concentration (Iqbal and 

Bhanger 2007) so it‘s necessary to remove the moisture in fish oil to prevent further rancidity. 

The initial moisture contents of menhaden and salmon oils were 4523.3±31.1ppm and 

1906.3±23.4ppm. Activated earth and activated alumina mix decreased the moisture content to 

670.3±16.2ppm and to 649.2±23.6ppm, respectively.  The capacity of the adsorbents could be 

http://www.sciencedirect.com/science/article/pii/S0308814611003657#b0055
http://www.sciencedirect.com/science/article/pii/S0308814611003657#b0055
http://www.sciencedirect.com/science/article/pii/S0308814611003657#b0055
http://www.sciencedirect.com/science/article/pii/S0308814611003657#b0055
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Figure 4.5 - FFA of the salmon oil purified with column purification method by time. 
 

 

Figure 4.6 - Moisture content of menhaden oil purified with column purification method by 

time. 

 

Figure 4.7 - Moisture content of salmon oil purified with column purification method by 

time.  
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attributed to the hydrogen bonding between adsorbents and fish oils (Huang and Sathivel 2010).  

4.3.2 Adsorption Kinetics of PV, FFA, and Moisture of Fish Oils by Activated Earth and 

Activated Alumina 

 

The adsorption of peroxides, free fatty acids, and moisture from the menhaden and 

salmon oils all best fit the second order kinetic model at certain time intervals (as shown in 

figures 4.8 to 4.13) .  After the adsorption equilibrium was obtained, the peroxides, free fatty 

acids, and moisture contents kept stable or slightly increased.  The adsorption of peroxides (PV) 

from menhaden oil followed the second kinetic model from time 0 to 120min with an adsorption 

rate constant (k) of 0.0015 and R
2
 of 0.9477. And the adsorption of peroxides from salmon oil 

followed the second kinetic model from time 0 to 60min (k = 0.0022 and R
2
 =0.935).  The 

second kinetic model could be used to describe the removal of the free fatty acids from 

menhaden and salmon oils at the time of 0 to 150min and 0 to 60min, respectively.  The 

adsorption of moisture by activated earth and activated alumina fit the second kinetic model up 

to 90 and 150min for menhaden and salmon oils.   The concentration of peroxides, free fatty 

acids, and moisture in menhaden and salmon oils can be predicted based on the adsorption rate 

constants at any time that followed the second order kinetic model.  Oliveira and Porto (2005) 

reported that the second order kinetic model was used for bleaching soybean and corn oils by 

bleaching earth (F180), which has given good agreement with the experimental data.   

4.3.3 Fatty Acid Methyl Ester (FAME) Composition of Unrefined and Refined Fish Oils 

One of the most important goals of the study was to retain the fatty acid composition of 

the fish oils.  As shown in tables 4.1 and 4.2, no differences were found among the main fatty 

acids in the unrefined and refined menhaden and salmon oils. The reason is that these processes 

were conducted at mild conditions (room temperature under nitrogen), so there were almost no 

factors causing the oxidation of the unsaturated fatty acids.  The EPA and DHA concentrations  
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Figure 4.8 - Second-order kinetic plots of peroxide adsorption by activated earth and 

alumina in menhaden oil.  

 

 

 
Figure 4.9 - Second-order kinetic plots of peroxide adsorption by activated earth and 

alumina in menhaden oil.  

 

 

 
Figure 4.10 - Second-order kinetic plots of free fatty acid adsorption by activated earth and 

alumina in salmon oil. 
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Figure 4.11 - Second-order kinetic plots of free fatty acid adsorption by activated earth and 

alumina in salmon oil.  

 

 
Figure 4.12 - Second-order kinetic plots of free fatty acid adsorption by activated earth and 

alumina in menhaden oil.  

 

 
Figure 4.13 - Second-order kinetic plots of free fatty acid adsorption by activated earth and 

alumina in salmon oil.  
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ranged between 15.02-15.38% and 7.69-7.82% for menhaden oils and 9.82-9.83% and 12.65-

12.68% for salmon oils, respectively. 

Table 4.1 - Fatty acid methyl ester (%) of the unrefined and refined menhaden oils  

 FAMEs UMO PMO 

C14  9.89±0.15
a
 9.94±0.06

a
 

C16  18.77±0.52
a
 18.08±0.67

a
 

C16:1n7 11.14±0.27
a
 10.95±0.34

a
 

C18:1n9  8.02±0.01
a
 8.00±0.03

a
 

C20:5n3  15.38±0.38
a
 15.02±0.55

a
 

C22:6n3  7.82±0.26
a
 7.69±0.31

a
 

Values are means ± SD of triplicate determinations. Fatty acids less than 5% are not reported.  
a
Means with the same letters in each row are not significantly different (P > 0.05). UMO = 

unrefined menhaden oil; PMO = Purified menhaden oil by adsorbing with activated earth and 

alumina for 150min.  

 

Table 4.2 - Fatty acid methyl ester (%) composition of the unrefined and refined salmon 

oils  

FAMEs USO PSO 

C16 14.27±0.33
a
 14.30±0.53

a
 

C16:1n7 5.54±0.11
a
 5.52±0.09

a
 

C18:1n9 16.83±0.34
a
 16.76±0.87

a
 

C20:1n11 8.09±0.17
a
 8.05±0.52

a
 

C20:5n3 9.83±0.42
a
 9.82±0.66

a
 

C22:1n11 6.99±0.18
a
 6.95±0.03

a
 

C22:6n3 12.68±0.25
a
 12.65±0.81

a
 

Values are means ± SD of triplicate determinations. Fatty acids less than 5% are not reported.   
a
Means with the same letters in each row are not significantly different (P > 0.05). USO = 

unrefined salmon oil; PSO = Purified salmon oil by adsorbing with activated earth and alumina 

for 150min.  

 

4.3.4 Mineral Concentrations of the Unrefined and Refined Fish Oils 

Metal, such as copper and iron, can catalyze oxidation of fish oil (Young 1986). Tables 

4.3 and 4.4 list the mineral and heavy metal contents of unrefined and refined oil samples. The 

first step in the oil purification process is the removal of phospholipids which is usually carried 
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out by degumming process. It involves mixing oil with 1-3% water with agitation for 30-60min 

at 70ºC to hydrate the phosphatides, followed by centrifugation to separate the degummed oil 

from the gums (Brekke 1980). Degumming reduces the phosphorus content of the oil from 500-

900 ppm to 12-170 ppm (Brown and Snyder 1985). The phosphorus present in fish oils may be 

attributed to the phospholipids in the oil which is the main components of the gum presents in 

oils. The column purification process decreased the phosphorus contents of the menhaden and 

salmon oils significantly (P > 0.05) from 45.36±1.36ppm and 38.60±2.26ppm to 16.42±0.37ppm 

and 17.85±1.14ppm, respectively. 

Another complex that phosphorus can form is calcium-phosphate complexes (Young 

1986).  B, Fe, Zn, Al, Ca, Mg, Na, and Ar were the most abundant minerals in unrefined 

menhaden and salmon oils. After the column adsorption processes, most of these mineral 

contents decreased. The adsorbents decreased the iron contents of the menhaden and salmon oils 

from 19.15ppm and 5.90ppm to 7.56ppm and 1.06ppm, which was below the acceptable level (8 

ppm) for iron (Bimbo 1998).  After the column adsorption process for 150min, the B, Zn, Cr, Ca, 

Mg, K, Na, and Ar contents in menhaden and salmon oils all significantly decreased.  Huang and 

Sathivel (2010) reported that the activated earth adsorption at 60 min reduced arsenic 

concentrations from 6.78 ppm to trace level (<0.2 ppm). The adsorbents increased the Al levels 

in the oil samples and may be caused by the alumina from the adsorbents.  

Table 4.3 - Minerals and heavy metal concentration (ppm) of unrefined and refined 

menhaden oils  

 UMO PMO 

Boron 30.6±1.13
a
 16.35±0.98

b
 

Copper <1.2 <1.2 

Iron 19.15±0.78
a
 7.56±0.37

b
 

Manganese <1 <1 

Zinc 4.50±0.32
a
 0.67±0.06

b
 

Aluminum 5.34±1.27
b
 6.05±0.22

a
 

Barium <0.2 <0.2 
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(table 4.3 continued) 

Cadmium <0.2 <0.2 

Chromium 1.80±0.08
a
 0.66±0.07

b
 

Calcium 37.75±1.48
a
 15.34±1.03

b
 

Cobalt <0.2 <0.2 

Magnesium 8.86±0.21
a
 3.64±0.52

b
 

Lead <0.2 <0.2 

Molybdenum <0.8 <0.8 

Phosphorus 45.36±1.36
a
 16.42±0.37

b
 

Potassium 7.83±0.46
a
 3.56±0.52

b
 

Nickel <0.4 <0.4 

Sulphur <22 <22 

Selenium <14 <14 

Arsenic 18.55±1.62
a
 <4 

Sodium 36.15±1.20
a
 18.43±0.37

b
 

Values are means ± SD of duplicate determinations. 
ab

Means with the same letters in each row 

are not significantly different (P > 0.05). UMO = unrefined menhaden oil; PMO = Purified 

menhaden oil by adsorbing with activated earth and alumina for 150min.  

 

Table 4.4 - Minerals and heavy metal concentration (ppm) of unrefined and refined salmon 

oils  

 

USO PSO 

Boron 36.20±1.70
a
 27.65±0.76

b
 

Copper <0.2 <0.2 

Iron 5.90±0.24
a
 1.06±0.34

b
 

Manganese <1 <1 

Zinc 4.85±0.64
a
 1.55±0.23

b
 

Aluminum 12.60±1.27
b
 14.35±0.88

a
 

Barium <0.2 <0.2 

Cadmium <0.2 <0.2 

Chromium 1.47±0.08
a
 0.89±0.07

b
 

Calcium 42.87±0.58
a
 20.17±0.64

b
 

Cobalt <0.2 <0.2 

Magnesium 8.53±0.49
a
 4.78±0.57

b
 

Lead <1.2 <1.2 

Molybdenum <0.8 <0.8 

Phosphorus 38.60±2.26
a
 17.85±1.14

b
 

Potassium 26.18±2.23
a
  5.64±2.17

b
 

Nickel <0.4 <0.4 
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(table 4.4 continued) 

Sulphur 71.9±0.70
a
 42.37±3.04

a
 

Selenium <0.5 <0.5 

Arsenic 6.07±1.10
a
 <4 

Sodium 59.60±5.66
a
 16.37±2.30 

Values are means ± SD of duplicate determinations. 
ab

Means with the same letters in each row 

are not significantly different (P > 0.05). USO = unrefined salmon oil; PSO = Purified salmon oil 

by adsorbing with activated earth and alumina for 150min. 

 

4.3.5 Rheological Properties of the Unrefined and Refined Fish Oils 

The flow behavior index (n), consistency index (K) values, and apparent viscosity of 

unrefined and refined fish oil samples were tested at 25 °C. The results are listed in Tables 4.5 

and 4.6.  The flow behavior index of MO (0.80) was much less than 1, which indicates that it 

exhibited shear thinning properties (Paredes and others 1989). The purified menhaden oils and 

all of the salmon oil samples are considered as Newtonian fluids at room temperature with n 

values very close to 1.  The consistency index is an indicator of the viscous nature of the samples, 

and the higher K values indicate a more viscous consistency (Paredes and others 1989). This 

result is in agreement with the apparent viscosity of the oils. The interaction between oil and 

impurities may form an aggregated colloidal dispersion system and the oil exhibits higher 

viscosity (Teeter and Cowan 1956).  This indicated that fewer impurities may present in the 

unrefined salmon oils.  

Table 4.5 - Changes on rheological properties of the menhaden oils by adsorption time 

 Time/min n  K (Pa.s
n
) Viscosity (Pa.s) 

0 0.80±0.00
b
 0.46±0.00

a
 0.051±0.00

a
 

30 0.99±0.00
a
 0.026±0.00

b
 0.030±0.00

b
 

60 0.98±0.00
a
 0.025±0.00

b
 0.031±0.00

b
 

90 0.98±0.00
a
 0.025±0.00

b
 0.030±0.00

b
 

120 0.99±0.00
a
 0.024±0.00

b
 0.029±0.00

b
 

150 0.99±0.00
a
 0.024±0.00

b
 0.029±0.00

b
 

Values are means ± SD of triplicate determinations. 
ab

Means with the same letters in each 

column are not significantly different (P > 0.05). n = flow behavior index, K = consistency index. 
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Table 4.6 - Changes on rheological properties of the salmon oils by adsorption time  

 Time/min n  K (Pa.s
n
) Viscosity (Pa.s) 

0 0.99±0.00
a
 0.046±0.00

a
 0.044±0.00

a
 

30 0.99±0.00
a
 0.042±0.00

b
 0.041±0.00

b
 

60 1.00±0.00
a
 0.041±0.00

b
 0.040±0.00

b
 

90 1.00±0.00
a
 0.040±0.00

b
 0.040±0.00

b
 

120 0.99±0.00
a
 0.041±0.00

b
 0.039±0.00

b
 

150 0.99±0.00
a
 0.041±0.00

b
 0.039±0.00

b
 

Values are means ± SD of triplicate determinations. 
ab

Means with the same letters in each 

column are not significantly different (P > 0.05). n = flow behavior index and K = consistency 

index.   

 

4.3.6 Thermal Properties of the Unrefined and Refined Fish Oils 

The DSC thermogram (Figures 4.14 and 4.15) show several distinct endothermic peaks 

for the unrefined and refined oil samples. The low melting points of the oils were attributed to 

triacylglycerol which contained unsaturated fatty acids (Tan and Che Man 2002). Oil samples 

with a higher degree of unsaturated fatty acids melt at lower temperatures, whereas those with a 

higher degree of saturated fatty acids melt at higher temperatures. All peaks for the unrefined 

menhaden oil sample were not sharp. This might be attributed to the presence of impurities, such 

as phospholipids, ketones, and other materials in the oil (Young 1978; Richardson 1978). Those 

impurities melt uncharacteristically compared to pure fatty acids. Fatty acids have their own 

melting points; therefore, sharp peaks were not observed for the raw oil. After purification with 

the column process with activated earth and alumina, the peaks of the purified menhaden oil 

became sharper because of the removal of the impurities.  Sathivel and others (2008) reported 

that the DSC thermograms of purified catfish oil showed sharper and narrower peaks than 

unpurified fish oil. The peaks of the salmon oils had no difference after purification by the 
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column adsorption.  As indicated by the rheological results, fewer impurities may present in the 

unrefined salmon oils, which means when purifying the salmon oil less change occurred.  

Figures 4.16 and 4.17 show the thermal degradation of unpurified and purified menhaden 

and salmon oils.  Weight loss of all of the oils increased with increased heating temperature 

between 100 and 500ºC. PMO had higher degradation rate compared with UMO. No difference 

was found between the degradation curves of USO and PSO. The presence of impurities in the 

oil samples reduces heat transfer to unpurified oils; therefore, less energy is available to 

evaporate the volatiles. Sathivel and others (2003) reported that the weight loss of oils due to 

thermal decomposition was higher in purified oils than those of unpurified oils. 

4.4 Conclusions 

A pilot scale fast and economically viable purification process was developed in this 

study. The mix of activated earth and activated alumina can effectively adsorb primary oxidation 

products. The prolonged adsorption process (150min) elevated the PV of the menhaden oil.  

Activated earth and alumina decreased the free fatty acids of menhaden and salmon oils from 

1.91±0.05% and 1.36±0.30% to 1.13±0.02% and 0.75±0.02%, respectively, after 120 min of 

adsorption.  Activated earth and activated alumina mix decreased the moisture content of 

menhaden and salmon oils from 4523.3±31.1ppm and 1906.3±23.4ppm to 670.3±16.2ppm and 

649.2±23.6ppm.  The adsorption process did not affect the main fatty acids in the unrefined and 

refined menhaden and salmon oils.  The column purification process decreased the phosphorus 

contents of the menhaden and salmon oils from 45.36±1.36ppm and 38.60±2.26ppm to 

16.42±0.37ppm and 17.85±1.14ppm, respectively.  After the column adsorption processes, most 

of the mineral contents decreased.  MO exhibited shear thinning properties and all of the purified 

menhaden oils and all of the salmon oil samples were considered as Newtonian fluids at room 

temperature with n values very close to 1.   Apparent viscosity of the oil samples decreased after 
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Figure 4.14 - DSC thermogram of UMO and PMO.  
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Figure 4.15 - DSC thermogram of USO and PSO.  
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Figure 4.16 - Thermal degradation of UMO and PMO.  
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Figure 4.17- Thermal degradation of USO and PSO.  

 

purification. After purification with activated earth and alumina for 120 min, the DSC 

endothermic peaks of the menhaden oil became sharper because of the removal of the impurities.   

The peaks of the salmon oils had no difference after purification by the column adsorption. PMO 

and PSO had higher thermal degradation rate comparing with UMO and USO.   The study 

demonstrated that the column purification process could reduce the PV, FFA, and moisture 

contents from unrefined menhaden and salmon oils without affecting the fatty acid compositions.   
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CHAPTER 5 A NOVEL METHOD FOR PRODUCING PURIFIED FISH OILS 

ENRICHED WITH EICOSAPENTAENOIC (EPA) AND DOCOSAHEXAENOIC ACID 

(DHA) 

 

5.1 Introduction 

Polyunsaturated fatty acids (PUFA) in fish oils, especially eicosapentaenoic acid 

(C20:5n3, EPA) and docosahexaenoic acid (C20:6n3, DHA), have been shown to have a positive 

effect on preventing a variety of human diseases and disorders (Uauy and Valenzuela 2000; 

Wanasundara and Shahidi 1998; Benatti and others 2004; Horrocks and Yeo 1999).  These fatty 

acids cannot be synthesized and can only be obtained by extraction from natural fats in which 

they naturally occur.  Overconsumption of fish oils to obtain benefits from ω-3 PUFAs may 

increase the intake of cholesterol and other saturated fatty acids which could have deleterious 

health effects (Haagsma and others 1982; Shahidi and Wanasundara 1998).   

It has been suggested that PUFA concentrates containing higher concentrations of EPA 

and DHA are much better than marine oils themselves because they allow daily intake of total 

lipids to remain as low as possible and, in particular, avoids intake of more saturated fatty acids 

(Wanasundara and Shahidi 1998). The market for fish oils enriched with ω-3 PUFAs is growing 

with the public awareness of the benefits from these enriched oils.  

A variety of methods have been used to enrich marine oils with EPA and DHA.  Many of 

the methods required extreme physical and chemical conditions and caused some degree of 

degradation of the fatty acids, formation of peroxides, and/or conversion of some of the cis- 

bonds to the trans- form.  Furthermore, many materials (acetone, hexane, and other organic 

solvents) that are not on the Grnerally Regognized as Safe (GRAS) list of the U.S. Food and 

Drug Administration were used in previous enrichment studies.  Fujita and others (1983) purified 

EPA by urea fractionation and distillation processes but some degree of cis-trans conversion 
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occurred, which is strictly undesirable for food or pharmaceutical use.  Low temperature 

fractional crystallization is another commonly used method but usually carried out in organic 

solvents, such as acetone and different hydro carbons (Shinowara and Brown 1940).  The salt 

solubility method mostly uses lithium soaps in acetone and alcohol because the lithium salts of 

polyenoic fatty acids are soluble in 95% acetone while less unsaturated acids are relatively 

insoluble (Marldey 1964). Supercritical fluid technology was used to separate a mix of fatty acid 

ethyl esters but the cost was very high (Eisenbach 1984).  Other methods such as thin-layer 

chromatographic and gas chromatographic methods require undesirably high amounts of organic 

solvents.  Most of the methods described above produce PUFA concentrate in the form of their 

corresponding alkyl esters.  The acylglycerol form of PUFA is considered to be nutritionally 

more favorable than methyl or ethyl esters.  Several studies revealed that alkyl esters of ω-3 fatty 

acids can impair intestinal absorption in laboratory animals (El-Boustani and others 1982; 

Hamazaki and others 1987; Lawson L.D. and Hughes 1988).  From a marketing point of view, 

acylglycerols (mono-, di-, and triacylglycerols) are often promoted as being more ―natural‖ than 

methyl or ethyl esters (Haraldsson and Hoskuldsson 1989). 

Much attention has been given to microbial lipases to produce ω-3 PUFA concentrates in the 

form of acylglycerols by hydrolysis of marine oils (Tanaka and others 1992; Hoshino and others 

1990; Shimada and others 1994; Yadwad and others 1991; Maehr and others 1994). ).  Lipases 

are one of the most important hydrolytic enzymes that can hydrolyze carboxyl esters of 

triglycerides into free fatty acids and partial acylglycerols.  Compared to salt and solvent 

methods, the hydrolytic process happens at mild conditions, uses less energy and can avoid the 

formation of undesirable oxidation products, polymers, and the isomeric conversion of natural 

cis-PUFAs to deleterious trans-PUFAs.  The reason that EPA and DHA can be concentrated by 

the lipase-assisted hydrolysis is because the 5 or 6 double bonds in EPA and DHA cause the 
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molecules to assume a bent, not linear configuration, so that they lie close to the ester bond and 

the lipase is less likely to hydrolyze the EPA and DHA ester bond (Bottino and others 1967).   

Many studies have been done to enrich fish oil with EPA and DHA in the form of glycerol (Sun 

and others 2002; Wanasundara and Shahidi 1998; Linder and others 2005).  In most of the 

methods, fish oils were hydrolyzed with lipase as the catalyst and the FFA generated were 

neutralized with KOH or NaOH, followed by enriched oil separation by hexane.  One 

disadvantage with these processes is that a high amount of organic solvents and chemicals were 

used to produce the oil enriched with EPA and DHA. The presence of organic solvents and 

chemicals might have negative health effects which necessitates their removal.    These multi-

step processes, including solvent and chemical removal are another disadvantage which includes 

the need for a considerable amount of equipment.  

Moisture, dust, free fatty acids, phosphatides, oxidation products, pigments and trace 

elements (e.g. copper, iron, sulfur and halogens) were found in raw fish oils (Young and others 

1994).  Conventionally a series of purification steps including degumming, neutralization, 

bleaching, and distillation are required to remove these impurities.   Fish oils, especially those 

containing higher concentrations of unsaturated fatty acids, are prone to oxidation during these 

processes because of duration of processing and extreme conditions employed.  Adsorption 

processes could be an alternative way of purifying fish oils with low cost and oil loss.  In this 

study, a novel enzymatic hydrolysis process was developed and used for enriching fish oils with 

EPA and DHA in form of acylglycerol. This method did not use chemicals to inactivate the 

enzyme or to neutralize the free fatty acids.  In general, a multi-step process is used to produce 

enriched fish oils.    In this study, a combined continuous two-step method (enrichment followed 

by purification) was developed for enriching fish oils with EPA and DHA. 
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5.2 Materials and Methods 

5.2.1 Sample Preparation 

 

Unrefined menhaden fish oil (MO) extracted using a rendering process was obtained 

from a commercial source (Omega Protein Inc., Houston.TX). Unrefined salmon oil (SO) was 

produced from processing salmon byproducts including viscera, heads, skins, frame, and 

discarded fish obtained from a large commercial plant in Alaska.  The microbial lipase (Candida 

Rugosa, CR) was purchased from Sigma-Aldrich Co., St. Louis, MO. 

5.2.2 Determination of Enzyme Activity 

A commercially available microbial lipase (Candida Rugosa, CR) was selected in this 

study to hydrolyze the fish oils. CR lipase is extracted from yeast and non-specific to the fatty 

acid positions on triglycerides. The optimum temperature and pH are 30-50°C and 7.0.  Enzyme 

activity of the lipase was determined by the enzymatic assay of lipase (EC3.1.1.3) from Sigma-

Aldrich substituting menhaden or salmon oil for olive oil.  Free fatty acids (FFA) released by the 

hydrolysis reaction (30 min) were titrated against 0.5 N sodium hydroxide and the pH changes 

were monitored by adding 0.1 mL thymolphthalein indicator solution (0.9% w/v). One unit of 

enzyme activity (U) was defined as the amount of enzyme that liberated 1 µmol of fatty acid in 1 

h at 37°C.   

5.2.3 Hydrolysis Reaction 

The hydrolysis of fish oils by CR lipase and the separation of the EPA and DHA enriched 

fraction were carried out by the following procedure.  Enzyme powder representing different 

amounts of lipase was dissolved in 25ml of phosphate buffer at pH 7.0 and then was mixed with 

50g of MO or SO in an amber bottle.  The air in the bottle was replaced by N2, and the bottle was 

capped to minimize lipid oxidation.  The hydrolysis reaction was maintained at 37°C in an 

incubator shaker (model 3525, LAB-LINE Instruments Inc., Melrose park, IL) at 250 rmp for a 
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certain period and lipase was separated by centrifugation at 10,000 rpm for 10min at 10ºC. Three 

layers were formed in the centrifuge tubes after centrifugation. The bottom layer was the 

aqueous phase, the middle layer was the enzyme powder and small amount of fish oil or 

impurities in the fish oil, and the upper layer was the desirable fish oil with high amounts of free 

fatty acid. The fish oils were collected and based on the previous study on oil purification, 

activated alumina (AA) was used to absorb the FFA from the fish oils.  Sixty percent (w/w) of 

AA was added to the fish oil and agitated with a magnetic stir bar at 60°C for 1h.  The AA, 

which was saturated by free fatty acids were separated with by centrifugation at 12,000 rpm for 

10 min at 4°C.  This step was repeated until all the FFA was removed from the oil.  Final EPA 

and DHA enriched menhaden (MOE) or salmon oil (SOE) was flushed with N2 and stored at -

20°C until further use. 

 

Figure 5.1 - enzymatic hydrolysis of menhaden or salmon oil and separation of 

acylglycerols and free fatty acids.  
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5.2.4 Kinetic Study of the Hydrolysis Process of the Fish Oils 

The changes in the free fatty acids during the hydrolysis process were described by 

Michaelis-Menten equation (Holmberg 1982): 

sK

sv
v

m 
 max                 (Eq.5.1) 

where v is the reaction rate, s is the concentration of reactant; vmax is the maximum rate at infinite 

reactant concentration, and Km is the Michaelis constant for the reactant.  

This model can be used to describe the changes in FFA of the oils as a function of time 

because they have similar curve shape. So Eq. 5.1 can be modified as follow: s for t, where t is 

the hydrolysis time, vmax for FE and Km for tH. FE has units of hydrolysis percentage and tH has 

units of time. As a result the empiric equation of Michaelis-Menten is formed as follow: 

F(t) – F(0) = 
tt

tF

H

E



*
           (Eq.5.2) 

F(t) is the FFA percentage at time t, F(0) is the FFA content in the raw oils, t is the hydrolysis 

time (h), FE and tH are constants.  

From equation 5.2, when t→∞, 

lim
t"3

(F(t))= lim
t"3

[F0 + tH+t
FE * t

]= F0 + FE

        (Eq.5.3) 

So FE represents the increases of the FFA content at the end of the process with infinite time, tH 

represents the time at which the process reach a FFA content corresponding to the half of the 

total change (FE).  

FFA of the fish oils were determined as described in 2.2.1. The model fitting to the 

experimental data was carried out using a curve fit program (CurveExpert 1.4, Copyright Daniel 

Hyams). The fit of the model was based on the correlation coefficient (R
2
). 
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5.2.5 Determination of Degree of Hydrolysis (DH) in the Hydrolyzed Fish Oils 

Degree of hydrolysis (DH) was determined by measuring the acid value of both raw and 

hydrolyzed oil as well as saponification value of raw oil according to American Oil Chemists‘ 

Society (AOCS) methods (AOCS 1998). Blanks (no enzyme) were determined at each treatment. 

DH was calculated according to the following equation: 

   (Eq.5.4) 

where, acid value is expressed as the number of mg of KOH required to neutralize free fatty 

acids present in 1 g of oil; the saponification value is defined as the number of mg of KOH 

required to saponify 1 g of oil.  

5.2.6 Analysis of Acylglycerol Composition of Hydrolyzed Fish Oils 

Acylglycerol composition was analyzed at the laboratory of the W. A. Callegari 

Environmental Center, Louisiana State University, LA following the ASTM international 

standard method D-6584 with minor modification. A 20 mg sample was weighed into a 10 mL 

septa vial. Using microlitre syringes, exactly 100 μL of each internal standard and MSTFA were 

added. After shaking the vials, they were allowed to sit for 15 to 20 min at room temperature. 

Approximately 2 mL of hexane were added to the vial and shaken. One μL of the reaction 

mixture was injected into the cool on-column injection port of the gas chromatography. The 

initial temperature was 50°C and it was held for 1min, then the temperature was increased to 

180°C at a rate of 15°C/min, and then 7°C/min to 230°C, finally 30°C/min to 380°C and held for 

10 min. Helium was used as the carrier gas with a flow rate of 3 mL/min and a flame ionization 

detector was used to detect the peaks.  The peaks were identified by comparing retention times 

with the standards.  The mono-, di, and triglycerides were separated according to carbon 

numbers (CN). Monoglycerides consist of the four overlapping peaks with relative retention 



98 

 

times (RRT) of 0.76 and 0.83 to 0.86 with respect to the internal standard tricaprin.  The 

grouping of 3 to 4 peaks with RRT of 1.05 to 1.09 (CN 34, 36, and 38) was attributed to 

diglycerides. Peaks with RRT of 1.16 to 1.31 (CN 52, 54, 56, and 58) were included in the 

calculation. 

5.2.7 Changes during the Enrichment of EPA and DHA in the Fish Oils 

 The menhaden and salmon oils were hydrolyzed with lipase at different units (50, 250, 

500, 1250, 2500, and 5000U) for 1h. The FFA and DH were determined after each hydrolysis 

treatment.  

The menhaden oils were treated according to the procedure described by Figure 5.1 with 

50, 250, and 1250 U of lipase for 3, 6, 12, and 24h, while salmon oils were hydrolyzed with 250, 

500, and 2500 U of lipase for 3, 6, 12, and 24h. The DH and acylglycerol fractions (MG, DG, 

and TG) were determined after the hydrolysis reaction.  The final oils with no FFA were 

collected for fatty acid composition analysis.   

The enzyme amount and hydrolysis time during the process were optimized with regards 

to high EPA and DHA production. Menhaden and salmon enriched with EPA and DHA were 

produced at the optimum conditions and analyzed for the fatty acid composition, PV, FFA, 

TBARs, rheological properties, and color.  

5.2.8 Fatty Acid Methyl Ester (FAMEs) Composition of the Fish Oils 

Fatty acid composition of oil samples was determined by the method described in 3.2.4.  

5.2.9 PV, FFA, TBARs, and Color of the Raw Fish Oil and Final Oil Enriched with EPA 

and DHA 

 

PV and FFA of the fish oils were determined as described in 2.2.1.  

A modification method according to Mei and others (1998) was employed for measuring 

the TBARs of emulsion samples. A thiobarbituric acid (TBA) solution was prepared by mixing 

15 g of trichloroacetic acid, 0.375 g of TBA, 1.76 mL of 12 N HCl, and 82.9 mL of H2O. TBA 
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solution (100mL) was mixed with 3 mL of 2% butylated hydroxytoluene in ethanol, and 2 mL of 

this solution was mixed with 6mg of oil sample. The mixture was vortexed for 10 sec and heated 

in a boiling water bath for 15 min. After the mixture cooled down to room temperature, it was 

centrifuged at 3400 × g for 25 min. The absorbance of the supernatant was measured at 532 nm. 

Concentrations of TBARS were determined from standard curves prepared with 0-0.02 mmol/L 

1, 1, 3, 3-tetraethoxypropane. 

Color of the powders was determined using the chroma meter LABSCAN XE (Hunterlab, 

VA, USA). The data of colors were reported in CIELAB color scales (L* value is degree of 

lightness to darkness, a* value is degree of redness to greenness, and b* value is degree of 

yellowness to blueness). Chroma and hue angle value were calculated as following:  

Chroma = (a*
2 

+ b*
2
) 

½
                      (Eq.5.5) 

Hue angle = tan
-1

 (b*/a*)                   (Eq.5.6) 

 5.2.10 Rheological Properties of the Raw Oils and Oils Enriched with EPA and DHA 

Rheological properties of the oil samples were measured according to 3.2.5. 

5.2.11 Statistical Analysis 

Analysis of Variance (ANOVA) was conducted to evaluate the significance of observed 

differences among treatment means (SAS version 8.2, SAS Institute Inc., Cary, NC), followed by 

the post-hoc Tukey‘s studentized range test (SAS 2002). 

5.3 Results and Discussion 

5.3.1 Degree of Hydrolysis (DH) of the Fish Oils Hydrolyzed with Different Amount of 

Lipase for 1h 

 

The purpose of this step was to optimize the lipase amount with respect lowering the cost 

of the process.  DH of menhaden and salmon oils hydrolyzed with 50, 250, 500, 1250, 2500, 

5000U of lipase for 1h are shown in Figure 5.2 and Figure 5.3. DH increased with the increase of 

lipase amount.  With lipase of 50U, 250U, 500U, 1250U, and 2500U, there was a big difference 
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in the DH values of MO and SO, while when higher amounts of lipase were used (5000U), the 

difference was smaller.  After hydrolysis with 2500U of lipase, the MO and SO had DH of 

51.36% and 62.51%, respectively.  To optimize the hydrolysis time based on the total EPA and 

DHA concentration in the final oil, the lipase amounts of 250, 500, and 5000U were selected for 

menhaden oil hydrolysis for up to 24h, and lipase amounts of 50, 250, and 1250U were selected 

for salmon oil hydrolysis for up to 24h.  

 
Figure 5.2 - Degree of hydrolysis (DH) of the menhaden oil hydrolyzed with different 

amount of lipase for 1h. 

 
Figure 5.3 - Degree of hydrolysis (DH) of the salmon oil hydrolyzed with different amount 

of lipase for 1h.  

 

5.3.2 Kinetics of the Hydrolysis Process of the Fish Oils  

Figures 5.4 and 5.5 show the FFA contents as function of hydrolysis time with different 

enzyme activity for menhaden (250, 500, and 2500U) and salmon (50, 250, and 1250U)oils.  The 
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results were fit using the Michealis-Menten model as function of hydrolysis time.  FE, tH , and the 

correlation coefficient (R
2
) were obtained for each oil at different enzyme activities. FE 

represents the increases of the FFA content at the end of the process with infinite time, tH 

represents the time at which the process reach a FFA content corresponding to the half of the 

total FFA change.  Higher amount of enzymes caused higher FE, which indicates that the enzyme 

amount could affect the final degree of hydrolysis. The FFA changes of menhaden oils 

hydrolyzed at 250, 500, and 2500 U lipase were 60.88, 65.86, and 80.62% at the end of the 

process, respectively, according to the Michealis-Menten model.  Salmon oils hydrolyzed at 50, 

250, and 1250U of lipase had FFA changes of 62.40, 66.84, and 82.58% at the end of the 

hydrolysis process.  When more enzymes were applied, smaller tH was obtained, which means 

that the half time of the hydrolysis reaction was affected by the enzyme amount.  The tH for both 

oils ranged among 1.13 to 2.34h except the salmon oil hydrolyzed with 50 U of lipase (tH = 

8.31h). This was caused by the comparatively extremely low level of lipase added to the salmon 

oil. R
2
 for both oils at different enzyme activities were from 0.996-1.000.  It means that the 

Michealis-Menten model is suitable to predict the kinetic of the hydrolysis of menhaden and 

salmon oils. And the parameters calculated from this study could be used to predict the changes 

on FFA contents at any time of hydrolysis.  

Table 5.1 - FE, tH, and R
2
 obtained from the Michealis-Menten model for menhaden oil 

hydrolysis  

 FE (%) tH (h) R
2
 

250 U 60.88 2.34 0.999 

500 U 65.86 1.55 0.996 

2500 U 80.62 1.13 0.998 

Table 5.2 – FE, tH, and R
2
 obtained from the Michealis-Menten model for salmon oil 

hydrolysis  

 FE (%) tH (h) R
2
 

50 U 62.40 8.31 0.999 

250 U 66.84 1.61 0.998 

1250 U 82.58 1.19 1.000 
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Figure 5.4 - Degree of hydrolysis (DH) of the salmon oil hydrolyzed with different amount 

of lipase for 1h. 

 
Figure 5.5 - Free fatty acid contents of the salmon oil hydrolyzed with different amount of 

lipase for 3, 6, 12, and 24h. 

 

5.3.3 Degree of Hydrolysis (DH) of the Fish Oils Hydrolyzed with Different Amount of 

Lipase for 3, 6, 12, and 24h 

 

The DH increased with the increase of the lipase amount from 250U to 2500U for 

menhaden oil, and a similar effect was found for the DH of the salmon oil with lipase from 50 to 

1250U. Both menhaden and salmon oils were hydrolyzed rapidly during the initial 3h.  

Afterwards, hydrolysis was more gradual, and only minor increases were shown throughout the 

6, 12, and 24h time periods. The highest DHs (81.64% and 81.47%) were shown by 2500 U and 
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1250 U lipase treatment at 24 h for MO and SO, respectively (Figures 5.6 and 5.7).  Sun and 

others (2002) reported that the CR lipase hydrolyzed salmon viscera oil a DH of 70% at 80h with 

800U/g oil.  A DH of 70% was obtained for menhaden oil after hydrolyzing for 75h under 200 

U/g of Rhizopus oryzae lipase (Wanasundara and Shahidi 1998), while the DH of sardine oil was 

78.40% when Candida rugosa lipase was applied at 500 U for 9 h (Okada and Morrisesey 2007). 

 
Figure 5.6 - Degree of hydrolysis (DH) of the menhaden oil hydrolyzed with different 

amount of lipase for 3, 6, 12, and 24h. 

 
Figure 5.7- Degree of hydrolysis (DH) of the salmon oil hydrolyzed with different amount 

of lipase for 3, 6, 12, and 24h. 

 

5.3.4 Changes during the Enrichment of EPA and DHA in the Fish Oils 

Figure 5.8 shows the changes in C16:0, C16:1n7, EPA, DHA and EPA+DHA content in 

the final menhaden oil obtained after oil lipase-catalyzed hydrolysis with 250, 500, 2500 U/g oil 
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followed by FFA removal with the adsorption process. Different amounts of lipase caused 

changes in fatty acid composition in the menhaden oil. Ideally, enzymatic activity followed by 

FFA removal will increase EPA and DHA concentrations while reducing saturated and mono-

unsaturated fatty acids in a period (Okada and Morrisesey 2007). The results showed that the 

contents of C16:0, C16:1n7, EPA, DHA and EPA+DHA of the menhaden oil were affected by 

enzyme amount and reaction time. The C16:0 content decreased significantly (p > 0.05) from 

22.58% to 17.05% after 3h and gradually decreased to 13.09% after 24 h with 250 U lipase; the 

same pattern was observed with lipase at 500 and 2500U, except that C16:0 presented at slightly 

lower levels, ranging from 22.58% to 10.44% and 22.58% to 10.84%. Also, levels of 16:1n7 

decreased significantly after 3h from 12.97% to 7.02%, 6.88%, and 7.60% with 250 U, 500 U 

and 2500 U, respectively; however the levels remained relatively constant for the rest of the 

hydrolysis reaction time (up to 24 h).  With CR 250 U, EPA content significantly increased from 

13.77% to 19.52% after 3 h and remained at relatively constant levels after 6 and12h (20.34% 

and 21.70%, respectively), but after 24h of hydrolysis, the EPA content decreased to 20.66%, 

which means the lipase started to facilitate hydrolysis of EPA at 24h with 250 U lipase.  A 

similar tendency was observed with CR 500 U except that EPA was present at slightly higher 

levels, ranging from 13.77% to 22.01%. When 2500 U lipase applied, EPA levels reached the 

highest amount at 3h to 21.64% and started to drop down to 16.37%. This result indicated that a 

high amount of EPA was removed by the hydrolysis reaction.  DHA levels also increased 

significantly after 3 h, from an original of 7.32% to 11.76% with 250 U, to 12.90% with 500U 

lipase, and to 17.26% with 2500U lipase. Gradual increases in DHA concentration from 11.76% 

to 14.34% with 250 U, 12.90% to 17.53% with 500U, and 17.26 to 22.55% with 2500 U 

occurred as hydrolysis continued to 24 h, and there was significant difference between 3 h and 
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longer reaction times. The highest total EPA and DHA fraction (39.54% and 39.95%) in the 

menhaden oil was found in the oil hydrolyzed with 2500 U lipase for 6 and 12h.  

Figure 5.9 shows the changes in C16:0, C16:1n7, C18:1n9, EPA, DHA and EPA+DHA 

content in the final salmon oil obtained after lipase-catalyzed hydrolysis with 50, 250, 1250 U/g 

oil followed by FFA removal with adsorption process.  Similarly to menhaden oil, different 

amounts of lipase caused changes in fatty acid composition of salmon oil. The results showed 

that the contents of C16:0, C16:1n7, C18:1n9, EPA, DHA and EPA+DHA of the salmon oil 

were affected by enzyme amount and reaction time. The C16:0 content decreased significantly 

(p > 0.05)from 14.58% to 12.34% after 3h and gradually decreased to 9.30% after 24 h with 50 

U lipase; the same pattern was observed with lipase at 250 and 1250U, except that C16:0 was 

present at much lower levels, ranging from 14.58% to 6.64% and 14.58% to 6.47%. Levels of 

16:1n7 decreased significantly after 3h from 7.30% to 4.78%, 3.50%, and 3.76% with 250 U, 

500 U and 2500 U, respectively; and then the levels gradually decreased to 3.27%, 3.12% and 

3.18%, respectively, with reaction time up to 24 h. The C18:1n9 content decreased significantly 

from 16.15% to 13.43% after 3h and gradually decreased to 9.34% after 24 h with 50U lipase; 

the same pattern was observed with lipase at 250 and 1250U, except that it was present at much 

lower levels, ranging from 16.15% to 7.66% and 16.15% to 7.67%, respectively. With lipase 50 

U, EPA content increased from 11.55% to 14.15% gradually after 24 h. With lipase 250 U, EPA 

content significantly increased from 11.55% to 14.32% after 3 h and remained at relatively 

constant levels after 6 and12h (15.04% and 15.54%, respectively), but after 24h of hydrolysis the 

EPA content decreased to 14.99%, which means the lipase started to facilitate hydrolysis of EPA 

at 24h with 250 U lipase. A similar tendency was observed for EPA with lipase 1250 U except 

that the highest content (15.49%) was achieved at 6h of hydrolysis and decreased to 14.14% at 

24h of hydrolysis. DHA content increased from 8.59% to 12.10% gradually after 24 h with lipase 
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50 U.  With lipase 250 U and 1250 U, DHA levels of the salmon oils increased significantly after 

3 h, from an original of 8.59% to 11.59% and 8.59% to 15.68%, respectively. Gradual increases 

in DHA concentration from 11.59% to 15.56% with 250 U up to 24h, while with 1250 U, the 

highest level (17.01%) of DHA occurred at 12h of hydrolysis and then dropped to 16.28% after 

24h of hydrolysis, which indicated that the hydrolysis reaction was hydrolyzing the DHA from 

the acylglycerol at 24h from salmon oil with 1250 U lipase. The highest total EPA and DHA 

fraction (32.12%) in the salmon oil was found in the oil hydrolyzed with 1250 U lipase for 6h.  

From the result, we can conclude that it was easier to hydrolyze EPA than DHA for the 

CR lipase in both menhaden and salmon oils. It is because EPA (C20:5n3) has less carbons and 

shorter a chain than DHA (C22:5n3) and thus much easier for the access of the lipase to ester 

bond which connects the fatty acids to glycerides. It was reported that most lipases including 

Candida rugosa discriminate against DHA more than EPA (Mukherjee and others 1993).   

The changes in levels of MG, DG, and TG in the unhydrolyzed menhaden oil and final 

menhaden oils that were hydrolyzed for 3, 6, 12, and 24h with 250, 500, and 2500 U of lipase are 

shown in Figure 5.8 (A, B, and C). The unhydrolyzed menhaden oil contained 73.53% TG, 

14.13% DG, and 12.34% MG. TG levels were significantly less in all final n - 3 PUFA 

concentrate compared to the original menhaden oil. TG levels were significantly reduced from 

73.53% to 45.92% with 250 U lipase after 3 h and finally decreased to 18.50% after 24 h. DG 

levels significantly increased from 14.13% to 33.18% after 3h of hydrolysis with 250 U lipase 

and then gradually decrease to 14.99% after 24 h of hydrolysis. That‘s because while the TG 

were hydrolyzed to DG, DG were hydrolyzed to MG at the same time, which resulted in a big 

increase in the MG level from 12.34% to 66.51% after 24h. The lipase at 500 U showed a similar 

trend as at 250 U, the only difference was that the TG and DG levels both had more decrease 

(TG: from 73.53% to 7.97% at 24 h, DG: from 14.13% to 9.03% at 24h). MG levels also 
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increased more than at 250 U (from 12.34% to 83.00% at 24h). There was a much steeper change 

on the TG, DG, and MG levels when 2500 U of lipase was applied to the menhaden oil for 

hydrolysis. After 3h of hydrolysis, the TG level decreased from 73.53% to 12.32% and gradually 

decreased to 3.43% after 24h. DG level had a constant decrease with the reaction time and 

dropped to 4.66% after 24h. MG level was elevated dramatically from 12.34% to 76.34% after 

3h hydrolysis and eventually increased to 91.90% after 24h.  

The changes in levels of MG, DG, and TG in the unhydrolyzed salmon oil and final 

salmon oils that were hydrolyzed for 3, 6, 12, and 24h with 50, 250, and 1250U of lipase are 

shown in Figure 5.9 (A, B, and C). The unhydrolyzed salmon oil contained 77.17% TG, 3.17% 

DG, and 19.53% MG. TG levels were significantly less in all final n - 3 PUFA concentrate 

compared to the original salmon oil. TG levels were significantly reduced from 77.17% to 

57.57% with 50 U after 3 h and finally decreased to 27.99% after 24 h.  DG levels significantly 

increased from 3.17% to 23.98% after 3h of hydrolysis with 50 U lipase and then gradually 

increased to 57.38% after 24 h of hydrolysis, which means most of the TG was hydrolyzed to 

DG after 24h. The lipase at 250 U showed a different trend than at 50 U, TG level decreased 

from 77.17% to 23.42%, but the DG levels were significantly increased to 30.95% at 12h and 

then dropped to 20.70% after 24h of hydrolysis. Also MG increased dramatically from 19.66% 

to 55.87% after 24 h hydrolysis. There was a more obvious change in the TG, DG, and MG 

levels when using 1250U of lipase. After 3h of hydrolysis, the TG level decreased from 77.17% 

to 49.80% and then decreased to 9.51% after 24h. DG level decreased to 26.13% after 6 h of 

hydrolysis and then dropped to 17.08% after 24h. MG level was raised dramatically from 

19.66% to 73.40% after 24h of hydrolysis.  

The tri-, di-, and monoglycerols in sardine oil changed from 86.20%, 13.40%, and 0.51% 

to 65.94%, 32.33%, and 2.08% after hydrolyzed with CR lipase for 9h at 250 U and similar 
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glycerol levels were found when 500 U of CR lipase were used (Okada and Morrissey 2007).  

The difference between the results in this study and previous study may be caused by different 

amounts lipase, the fatty acid profile of the fish oils, and/or the conditions for the treatment. 

 

 

 

 
Figure 5.8 - Changes in C16:0, C16:1n7, EPA and DHA concentration (%) in final 

menhaden oils hydrolyzed with different enzyme activities for 3, 6, 12, and 24h. A, C16:0; B, 

C16:1n7; C, EPA; D, DHA; E, EPA+DHA. 
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Figure 5.9 - Changes in C16:0, C16:1n7, C18:1n9, EPA and DHA concentration (%) in 

final salmon oils hydrolyzed with different enzyme activities for 3, 6, 12, and 24h. A, C16:0; 

B, C16:1n7; C, C18:1n9; D, EPA; E, DHA; F, EPA+DHA. 
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Figure 5.10 - Changes in TG, DG, and MG fractions of final menhaden oils hydrolyzed 

with different enzyme activities for 3, 6, 12, and 24h. A, 250U lipase; B, 500U lipase; C, 

2500U lipase. 
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Figure 5.11 - Changes in TG, DG, and MG fractions of final salmon oils hydrolyzed with 

different enzyme activities for 3, 6, 12, and 24h. A, 50U lipase; B, 250U lipase; C, 1250U 

lipase. 

 

5.3.5 PV, FFA, TBARs, EPA and DHA, and Color of the Raw and Final Fish Oils Enriched 

with EPA and DHA 

 

Based on the previous steps, the optimum conditions for enrichment of EPA and DHA 

were selected for menhaden and salmon oils, which are 2500 U/6h and 1250 U/6h, respectively. 

These oils were characterized for the PV, FFA, TBARs, EPA, DHA, and color. The results are 

shown in Tables 5.3 and 5.4. After the hydrolysis and adsorption process, the PV, FFA, and 

TBARs values of menhaden oil all decreased from 11.06±0.75 meq/kg oil to 1.49±0.13meq/kg 

oil, from 2.66±0.07% to 0.67±0.06%, and from 0.89±0.01mmol/kg to 0.56±0.01mmol/kg, 

respectively. Similar tendency were observed for salmon oil, the process decreased the PV, FFA, 

A 

C 

B 
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and TBARs of salmon oil from 14.71±1.26 meq/kg oil to 2.33±0.16meq/kg oil, from 

3.14±0.07% to 0.66±0.05%, and from 1.26±0.02mmol/kg to 0.62±0.03mmol/kg, respectively.  

As indicated in previous study, the activated alumina was very effective in reducing FFA and also 

effective in reducing PV.  

After the process, the menhaden oil had a darker (less L* value) and more yellowish and 

reddish color, while salmon oil became lighter and more yellowish and less red in color.   

Table 5.3 – PV, FFA, TBARs, EPA and DHA, color of MO and MOE 

 MO MOE 

PV (meq/Kg) 11.06±0.75
a
 1.49±0.13

b
 

FFA (%) 2.66±0.07
a
 0.67±0.06

b
 

TBARs (mmol/kg) 0.89±0.01
a
 0.56±0.01

b
 

EPA (%) 13.77±0.27
b
 20.38±0.22

a
 

DHA (%) 7.32±0.34
b
 18.47±0.68

a
 

EPA+DHA (%) 21.09±0.61
b
 38.85±0.89

a
 

L* 43.54±0.77
a
 40.24±0.06

b
 

a* 12.11±0.06
b
 14.80±0.03

a
 

b* 57.68±0.69
b
 66.96±0.11

a
 

Chroma 58.93±0.68
b
 78.14±0.08

a
 

Hue angle 68.58±0.12
b
 77.54±0.00

a
 

MO = unrefined menhaden oil; MOE = menhaden oil concentrated with lipase at 2500 U/g oil 

for 6h. Each value is an average of three determinations with its SD. Values with the same 

superscript letters in each row are not significantly different (p>0.05) 

 

Table 5.4 – PV, FFA, TBARs, EPA and DHA, color of SO and SOE  

 SO SOE 

PV (meq/Kg) 14.71±1.26
a
 2.33±0.16

b
 

FFA (%) 3.14±0.07
a
 0.66±0.05

b
 

TBARs (mmol/kg) 1.26±0.02
a
 0.62±0.03

b
 

EPA (%) 11.55±0.12
b
 16.27±0.11

a
 

DHA (%) 8.59±0.03
b
 16.53±0.27

a
 

EPA+DHA (%) 20.14±0.14
b
 32.80±0.38

a
 

L* 42.94±0.07
b
 43.55±0.01

a
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(table 5.4 continued) 

a* 14.38±0.08
a
 12.93±0.02

b
 

b* 52.20±0.53
b
 55.35±0.08

a
 

Chroma 54.14±0.53
b
 74.60±0.06

a
 

Hue angle 56.84±0.08
b
 76.86±0.00

b
 

SO = unrefined salmon oil; SOE= salmon oil concentrated with lipase at 1250 U/g oil for 6h. 

Each value is an average of three determinations with its SD. Values with the same superscript 

letters in each row are not significantly different (p>0.05) 

 

5.3.6 Rheological Properties of the Raw and Final Fish Oils Enriched with EPA and DHA 

The flow behavior index (n), consistency index (K) values, and apparent viscosity of the 

raw and concentrated oils at a shear rate of 200 s
-1

 were measured at 25°C. The results were 

listed in Tables 5.5 and 5.6.  The flow behavior index the raw menhaden oil was 0.825, which 

was much less than 1, which indicates it exhibited shear thinning properties (Paredes and others 

1989). The MOE, SO, and SOE all had n values close to 1, and are considered as Newtonian 

behavior fluids. The consistency index is an indicator of the viscous nature fluid, and higher K 

values indicate a more viscous consistency (Paredes and others 1989). After the enzyme process, 

both MOE and SOE had less K values, i.e., from 0.195 Pa.s
n
 to 0.035 Pa.s

n
 and 0.048Pa.s

n
 to 

0.041 Pa.s
n
, respectively. This result was in consistent with the apparent viscosity of the oil 

samples, which also decreased after the enzyme treatment. The reduction in the viscosity of both 

menhaden and salmon oils was caused by removing impurities such as phospholipids and FFA 

from the oils.  

Table 5.5 - Rheological properties of the MO and MOE  

 n K (Pa.s
n
) Viscosity (Pa s) 

MO  0.825±0.009
b
 0.195±0.011

a
 0.077±0.001

a
 

MOE  0.971±0.022
a
 0.035±0.004

b
 0.030±0.001

b
 

MO = unrefined menhaden oil; MOE = menhaden oil concentrated with lipase at 2500 U/g oil 

for 6h. Each value is an average of three determinations with its SD. Values with the same 

superscript letters in each column are not significantly different (p>0.05) 
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Table - 5.6 Rheological properties of the SO and SOE 

 n K (Pa.s
n
) Viscosity (Pa s) 

SO  0.982±0.005
a
 0.048±0.001

a
 0.044±0.001

a
 

SOE  0.987±0.002
a
 0.041±0.001

b
 0.038±0.000

b
 

SO = unrefined salmon oil; SOE= salmon oil concentrated with lipase at 1250 U/g oil for 6h. 

Each value is an average of three determinations with its SD. Values with the same superscript 

letters in each column are not significantly different (p>0.05) 

 

5.4 Conclusions 

The highest DHs (81.64% and 81.47%) of menhaden and salmon oils were obtained by 

2500 U and 1250 U lipase treatment for 24 h, respectively.  Menhaden oil treated with 2500 U 

lipase for 6 and 12h had the most total EPA and DHA fractions (39.54% and 39.95%) in the final 

oil, while the highest total EPA and DHA fractions (32.12%) in the salmon oil were found in the 

oil hydrolyzed with 1250 U lipase for 6h. The unhydrolyzed menhaden oil contained 73.53% TG, 

14.13% DG, and 12.34% MG.  After treated with 2500G lipase for 24h, the TG and DG levels of 

menhaden oil decreased to 3.43% and 4.66%, while MG level increased to 91.90%.  The 

unhydrolyzed salmon oil contained 77.17% TG, 3.17% DG, and 19.53% MG. After being 

hydrolyzed with 1250U of lipase for 24h, the TG, DG, and MG levels changed to 9.97%, 17.03%, 

and 72.87%.  This process not only optimized the lipase treatment for enrichment of EPA and 

DHA concentrations in menhaden and salmon oils but also indicated the kinetics of the process 

in which the lipase transformed most of the TG into MG.  After the EPA and DHA enrichment, 

PV, FFA, and TBARs values of menhaden oil (MOE) decreased from 11.06±0.75 meq/kg oil to 

1.49±0.13meq/kg oil, from 2.66±0.07% to 0.67±0.06%, and from 0.89±0.01mmol/kg to 

0.56±0.01mmol/kg. Similar tendencies were observed for salmon oil, the process decreased the 

PV, FFA, and TBARs of salmon oil from 14.71±1.26 meq/kg oil to 2.33±0.16meq/kg oil, from 

3.14±0.07% to 0.66±0.05%, and from 1.26±0.02mmol/kg to 0.62±0.03mmol/kg.  The MOE, SO, 

and SOE all had n values close to 1, and are considered as Newtonian behavior fluids, while MO 

was non-Newtonian fluid. The apparent viscosity significantly decreased after the enzyme 
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treatment.   This study developed a novel enzymatic method in combination with the adsorption 

technology to purify and enrich EPA and DHA in fish oils without organic solvent and chemicals.  
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CHAPTER 6 MICROENCAPSULATION OF FISH OILS CONTAINING ENRICHED 

EPA AND DHA  

 

6.1 Introduction 

Omega -3 PUFAs, especially EPA and DHA, has been shown to have beneficial effects 

in the prevention and treatment of cardiovascular diseases (Bucher and others 2002; Hooper and 

others, 2003).  The EPA and DHA enriched menhaden and salmon oils having greater levels of 

PUFAs, less saturated fatty acids, are much better than menhaden and salmon oils themselves 

(Wanasundara and Shahidi 1998).  However the EPA and DHA enriched fish oils are more 

susceptible to oxidative deterioration during processing, distribution and handling due to their 

high degree of unsaturation. Oxidation leads to the formation of unpleasant appearance, tastes 

and odors, and free radicals, which may have negative physiological effects and leads to the 

reduction of product's shelf life (Ahn and others 2008). Microencapsulation of oils in a 

polymeric matrix (wall) is an alternative that has been used by many researchers in order to 

protect unsaturated fatty acids against lipid oxidation, thus increasing their shelf life (Ahn and 

others 2008; Drusch and others 2009; Bae and Lee 2008).  

In the case of foods, the most common procedure for microencapsulation is spray drying. 

Microencapsulation with spray drying involves four stages: preparation of the dispersion or 

emulsion; homogenization of the dispersion; atomization of the infeed emulsion; and 

dehydration of the atomized particles (Shahidi and Han 1993). The mixture to be atomized is 

prepared by dispersing the core material, which is usually of hydrophobic nature, into a solution 

of the coating agent with which it is immiscible. The dispersion must be heated and 

homogenized, with or without the addition of an emulsifier depending on the emulsifying 

properties of the coating materials because some of them have interfacial activities. The obtained 
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emulsion is then dried by the evaporation of the solvent, usually water, which leads to the 

formation of microcapsules.  

Emulsification is a critical process for microencapsulation, in which many variables can 

influence the processing and the final characteristics of the product (Franco and others 1995).  To 

improve the emulsification process, droplet size of the dispersed phase and its polydispersity, as 

well as  knowledge of its viscous and viscoelastic properties should be measured, because all of 

them are related to the emulsion stability (Carrillo and Kokini 1988).  

Proteins and peptides are reported for many benefits including stimulating muscle protein 

synthesis and accelerating muscle recovery (Suryawan and others 2008; Tischler and others 1982; 

Layman and Rodriguez 2009), as well as cardiovascular health benefits (Ballard and others 2009; 

Lin and others 2004; Anderson and others 1995).  Egg protein contains abundant of leucine 

which can contribute to muscles‘ ability to use energy and help post-exercise muscle recovery 

(Layman and Rodriguez 2009). Whey protein has higher concentrations of branched chain amino 

acids (BCAA including leucine, isoleucine, and valine) so that when short-term glycogen stores 

are expended during exercise they can be utilized by muscle to provide energy (Kasperek and 

Snider 1987; Wagenmakers 1998). Soy protein has beneficial impacts on the risk factors for 

cardiovascular disease (Lin and others 2004, Anderson and others 1995). Collagen exhibits 

superior biocompatibility comparing with other natural polymer because collagen is one of the 

major components of extracellular matrix and plays important roles in various biological events. 

Peptides are widely accepted and produced because of the rapid digest speed and the health 

benefits to cardiovascular systems.  Proteins are considered to be the most commonly single used 

class of emulsifying agent used in the food industry. They are the ideal ingredients for food 

processors because of the natural, non-toxic, cheap and widely available properties. Tonon and 

others (2011) compared the different mechanisms of protein and emulsifier in stabilizing food 
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emulsions: Proteins stabilize emulsions by forming a viscoelastic adsorbed layer and the extent 

of protein adsorption to the layer is influenced by surface hydrophobicity and charge. Emulsifiers 

are more surface-active than proteins and can form a compact adsorbed layer, which relies on 

charge repulsion to stabilize emulsions.  

A blend of protein can create a ―time-release‖ effect that could prolong the delivery time 

of the absorbed amino acids to muscle thus resulting in a faster muscle recovery (Paul 2009). In 

addition, consumption of a mix of proteins may have more benefits for sports performance and 

provides nutritional advantages over consuming only one type of protein. Therefore, the 

objective of the study was to develop a protein powder containing fish oil with enriched EPA and 

DHA targeting people seeking products having benefits on the cardiovascular system or/and 

managing weight by exercise. 

6.2 Materials and Methods 

6.2.1 Emulsion Preparation 

The protein/peptide mix composed of whey protein (donated by Le Sueur Food 

Ingredient Co., Le Sueur, MN), egg protein (Jay Robb Enterprises Inc., Carlsbad, CA), soy 

protein (Whole Foods Market, Austin, TX), collagen (donated by Gelita AG, Sergeant Bluff, IA), 

gelatin (beefhide gelatin, donated by Gelita AG, Sergeant Bluff, IA), NOP-47 (donated by 

Glanbia Nutritionals Inc.,Carlsbad, CA), and peptopro (donated by DSM Nutritional Products, 

Ames, IA) at the same ratio (100g)  was dissolved into water (850g) in a 1L beaker and stirred 

using a RCT B S1 magnetic stir (IKA Labrotechnik, Janke & Kunkel GmbH & Co., Staufen, 

Germany) at room temperature. After dissolving, the concentrated menhaden/salmon oil (50g) 

along with 200ppm (based on oil weight) of rosemary oil was added to the beaker and they were 

homogenized well using a hand blender (Cuisinart Inc., East Windsor, NJ, USA) for 2 min. An 

ultrasonic processor (500 Watt Model, Cole-Parmer Instrument Co. Vernon Hill, IL) was applied 
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for 5 min for further homogenization and production of stable emulsions (MOEE and SOEE). 

The emulsion containing menhaden or salmon oil without addition of rosemary oil was prepared 

as control (MOEEC and SOEEC) to compare the antioxidant effect of the rosemary oil 

(Hawaiian Gardens, CA). 

6.2.2 Emulsion Stability, Moisture, Rheology Properties, and Microstructure of Emulsions 

Containing Enriched Fish Oils 

 

Emulsifying stability was carried out according to the method of Min and others (2003) 

with minor modifications. The emulsion sample (5 g) was placed into a 10 mL centrifugal tube 

and stored at -20ºC for 2 days and then allowed to thaw at room temperature for 3 hr. The 

thawed sample was centrifuged at 15,000 g for 40 min at -2ºC and the amount of oil separated 

was measured. Oil recovery % was calculated as (weight of oil recovered/ 5 g of emulsion 

sample) × 100. Moisture content in the emulsions was analyzed in triplicate following the AOAC 

standard methods 930.15 (AOAC 1999).   

Rheological properties were measured using an AR 2000 ex Rheometer (TA Instruments, 

New Castle, DE) fitted with plate geometry (steel plates with a 40-mm diameter and a gap of 200 

μm). The sample was placed in the temperature-controlled parallel plate and allowed to 

equilibrate to 4, 10, and/or 25ºC. The shear stress was measured at shear rates ranging from 10 to 

200 s
-1

. The power law (Eq. 6.1) was used to analyze the flow properties of the emulsion samples. 

 = K
n
   (Eq. 6.1) 

Where   = shear stress (Pa.s),  = shear rate (s
-1

), K = consistency index (Pa.s
n
), and n = 

flow behavior index.  The logarithms were taken on both sides of Eq. 6.1, and a plot of log  

versus log  was constructed.  The resulting straight line yielded the magnitude of log K (i.e., 

intercept) and n (i.e., slope). The mean values of n, K, and apparent viscosity (at 200 s
-1

) of 
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triplicate samples were reported.  The frequency sweep test was conducted from 0.6283 to 62.82 

rad/s at a constant temperature of 25ºC. 

The storage modulus and loss modulus of MOEE and SOEE were obtained using 

Universal Analysis (TA instrument) software and were calculated using Eq. 6.2 and 6.3 

cos     (Eq. 6.2) 

sin      (Eq. 6.3) 

where G (Pa) is the storage modulus, G (Pa) is the loss modulus, tan   is the loss tangent,  is 

generated stress, and  is oscillating strain. 

The microstructure of the two emulsions was determined using a light microscope (Nikon 

Microphot-FXA, Nikon Instrument Inc., Japan). A drop of the emulsion was observed at an 

objective magnification of 80. Images of the emulsion structure were accessed using image 

processing software with a CCD camera. 

6.2.3 Hydroperoxide, TBARs, and EPA, DHA Contents of the Fish Oils in Emulsion  

The hydroperoxide values (PV) of emulsions were measured according to the method of 

Boon and others (2008). A 0.2g of the emulsion was added into 1.5 mL of isooctane-2-propanal 

(3:1 v:v) solution and vortexed for 30 s. The organic phase was separated by centrifugation at 

3400 × g for 2 min. Then, 100 µL of organic phase was mixed with 2.8 mL of methanol-1-

butanol (2:1 v:v) followed by adding 15 µL of 3.94 M thiocyanate solution and 15µL of ferrous 

iron solution (prepared by mixing equal volumes of 0.144 M FeSO4
.
H2O and 0.132 M BaCl2, 

centrifuged and collected the clear supernatant). The mixture was vortexed and allowed to react 

for 20 min at room temperature. The absorbance was measured at 510 nm using a 

spectrophotometer (Thermo Fisher Scientific, Vernon Hills, IL). Hydroperoxide content was 

determined using a cumene hydroperoxide standard curve. 
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Thiobarbituric acid-reactive substances (TBARS) of the emulsions were determined to 

evaluate the emulsion oxidation during processing.  Emulsion containing fish oil without 

rosemary oil was used as control. A modified method according to Mei and others (1998) was 

employed for measuring the TBARs of emulsion samples. A thiobarbituric acid (TBA) solution 

was prepared by mixing 15 g of trichloroacetic acid, 0.375 g of TBA, 1.76 mL of 12 N HCl, and 

82.9 mL of H2O. TBA solution (100mL) was mixed with 3 mL of 2% butylated hydroxytoluene 

in ethanol, and 2 mL of this solution was mixed with 1 mL of emulsion sample. The mixture was 

vortexed for 10 sec and heated in a boiling water bath for 15 min. After the mixture cooled to 

room temperature, it was centrifuged at 3400×g for 25 min. The absorbance of the supernatant 

was measured at 532 nm. Concentrations of TBARS were determined from standard curves 

prepared with 0-0.02 mmol/L 1, 1, 3, 3-tetraethoxypropane. 

Fatty acid composition (only EPA and DHA were reported) of oil samples was 

determined by the method described in 3.2.4.  

6.2.4 Microencapsulation of Enriched Fish Oils 

The emulsion was spray dried to produce microencapsulated menhaden and salmon oil 

powders (MOEP and SOEP) by a pilot plant scale FT80/81 Tall Form spray dryer (Armfield, 

Ringwood, UK). The parameters for the spray dryer including inlet and outlet air temperature, 

inlet and outlet air velocity, inlet and outlet air relative humidity, internal diameter of ambient air 

intake pipe and exhaust air pipe, and mass flow rate of emulsion are listed in Tables 7.1 and 

7.2(Appendix). The velocity and temperature of inlet ambient and outlet air were recorded using 

an anemometer (Anemomaster Model 6162, Kanomax Inc. Japan).  The relative humidity of inlet 

and outlet air was measured using an Omega 4-in-1 multifunctional anemometer (Omega 

Engineering, Stamford, CT).  The emulsion, powder, and dust were analyzed for moisture 

content. The resulting powders were stored at 4
o
C, and the storage time did not exceed four days. 
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The drying procedure was carried out in triplicate. The estimated production rate was determined 

and compared with actual production rate; the evaporation rate of the emulsion and energy 

required to increase ambient temperature to inlet temperature (150°C) were determined as 

described in Appendix 7.1.2-7.1.4. 

6.2.5 Moisture, Water Activity (aW), Microencapsulation Efficiency (ME), and Color of the 

Microencapsulated Fish Oils Powders 

 

The spray dried powders stored at 4 °C were analyzed for moisture, water activity, color, 

and microencapsulate efficiency. The moisture content was determined using a CEM SMART 

System 5 microwave moisture/solids analyzer (CEM Corporation, Matthews, NC). A calibrated 

Rotronic water activity meter (AwQUICK, Rotronic Instrument Corp., Huntington, NY) was 

used to measure the water activity of the powders at room temperature. The amount of surface 

oil (OS) was determined to calculate the ME as described by Tan and others (2005) with a slight 

modification. Surface oil was determined by stirring 5 g of MFMO with 50 mL hexane in a 

covered 100 mL beaker at 25 °C for 10 min. The suspension was then filtered and the residue 

rinsed thrice by passing 20 ml of hexane each time. The surface oil was determined 

gravimetrically by weight difference after 60°C air drying for 30 min. The total oil (OT), which 

included both the encapsulated oil and surface oil, was determined according to the method 

described by (Shahidi and Wanasundara 1995). Five gram of powder was dispersed in 25 ml of a 

0.88% (w/v) KCl solution. Then 50 ml of chloroform, 25 ml of methanol and a few crystals of 

tert-butylhydroquinone (TBHQ) were added. The mixture was then homogenized using a high 

speed mixer for 5 min at 8,000 rpm. The mixture was transferred to a separatory funnel and the 

chloroform layer was collected and then chloroform was evaporated using a rotary evaporator at 

50°C to recover the oil. 

The ME was calculated as follows:  

ME= (OT-OS)/OT ×100%             (Eq.6.5) 



123 

 

Color of the powders was determined using the chroma meter LABSCAN XE (Hunterlab, 

VA, USA).   The equipment was calibrated using a black tile first and then a white tile. The data 

of colors were reported in CIELAB color scales (L* value is degree of lightness to darkness, a* 

value is degree of redness to greenness, and b* value is degree of yellowness to blueness). 

Chroma and hue angle value were calculated as following:  

Chroma = (a*
2 

+ b*
2
) 

½
                      (Eq.6.6) 

Hue angle = tan
-1

 (b*/a*)                    (Eq.6.7) 

6.2.6 Hydroperoxide, TBARs and EPA, DHA Content of Fish Oils in Powders  

  The hydroperoxide values (PV) of microencapsulated fish oil powders were measured 

according to the method of Boon and others (2008). A 0.5 g sample of microencapsulated 

powder was dispersed in 5 mL of distilled water. Then the dispersion was vortexed for 5 min to 

allow complete dispersion. A 0.3 mL aliquot of this dispersion was added into 1.5 mL of 

isooctane-2-propanal (3:1 v:v) solution and vortexed for 30 s. The organic phase was separated 

by centrifugation at 3400 × g for 2 min. Then, 100 µL of organic phase was mixed with 2.8 mL 

of methanol-1-butanol (2:1 v:v) followed by adding 15 µL of 3.94 M thiocyanate solution and 

15µL of ferrous iron solution (prepared by mixing equal volumes of 0.144 M FeSO4
.
H2O and 

0.132 M BaCl2, centrifuged and collected the clear supernatant). The mixture was vortexed and 

allowed to react for 20 min at room temperature. The absorbance was measured at 510 nm using 

a spectrophotometer (Thermo Fisher Scientific, Vernon Hills, IL). Hydroperoxide content was 

determined using a cumene hydroperoxide standard curve. 

TBARS content were tested to estimate the lipid oxidation of the microencapsulated 

powder. The microencapsulated powder was reconstituted as 10 % (w/w) emulsion by mixing 

with distilled water and vortexing for 5 min. The measurement of TBARS was as described in 
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6.2.3. The oil was extracted following the method to extract the total oil in the powder and 

analyzed for the EPA and DHA content using the method described in 6.2.3. 

6.2.7 Scanning Electron Microscopy (SEM) Image and Particle Size of the 

Microencapsulated Fish Oil Powders 

 

The morphology of the microencapsulated fish oil powders were evaluated by a scanning 

electronic microscopy (SEM) (JSM-6610LV, JEOL Ltd., Japan) using an acceleration voltage of 

5 kV. The samples were mounted on aluminum SEM stubs, coated with gold: palladium (60:40) 

in an Edwards S150 sputter coater (Edwards High Vacuum International, Wilmington, MA) and 

imaged with SEM.  

The particle size distribution was measured with a Microtrac S3500 light scattering 

system (MicroTrac, Largo FL) in wet operation. Isopropyl alcohol was used as carrying fluid. 

The system uses three fixed 780 nm solid state lasers with computer controlled single lens 

alignment and the measurement capability was from 0.24 to 2800 microns. During the 

measurement, a certain amount of powder samples was placed in the test chamber with 

circulating isopropyl alcohol. A period of 10 second ultra sound mixing at 20 watts was used 

before each test. The sample was pumped through sample cell at 40% of the maximum flow rate. 

Light was scattered from the tri-lasers from low to high angles (0-163 degrees). The whole light 

scatter pattern was collected. The volume distribution of the particle size was calculated using 

modified MIE-scattering technique.  

6.2.8 Amino Acid Profile of the Protein Powders 

Amino acid profiles of the protein powder was determined by the AAA Service 

Laboratory Inc., Boring, OR. Powder sample was hydrolyzed with 6N HCl and 2% phenol at 

110ºC for 22 h. Amino acids were quantified using a Beckman 6300 analyzer with post-column 

ninhydrin derivatization. Tryptophan and cysteine content were not determined. Only the most 
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common 16 amino acids and hydroxyproline and hydroxylysine were analyzed in this study. Due 

to the increased cost, determination of tryptophan and cysteine were not performed. 

6.2.9 Statistical Analysis  

Mean values from the three separate experiments or replicate analysis are reported with 

standard deviation. The statistical significance of observed differences among treatment means 

was evaluated by analysis of variance (ANOVA) (SAS Version 9.2, SAS Institute Inc., Cary, NC, 

U.S.A), followed by post hoc Tukey‘s studentized range test. 

6.3 Results and Discussion 

6.3.1 Emulsion Stability, Moisture, Rheology Properties, and Microstructure of Emulsions 

Containing Enriched Fish Oils 

 

No oil was recovered from MOEE and SOEE stored at -20
o
C for 2 days, which 

demonstrated both of the menhaden and salmon emulsion samples were stable.  The stability of 

the emulsion is related to many factors, such as droplet size, wall materials, and oil and wall ratio. 

The smaller droplet size has a positive effect on stabilizing the emulsions (Jafari and others 

2008).  Emulsion stability can influence the amount of encapsulated oil, microsphere quality and 

functionality (Lin and others 1995; Sheu and Rosenberg 1995; Kim and others 1996).  It‘s 

important to produce stable emulsions before they are spray dried to obtain microspheres (Tan 

and others 2005). The emulsions composed of different protein/peptides in this study are very 

stable as proteins can be used to stabilize foam and emulsions alone.  Kiokias and others (2007) 

reported that the electrostatic repulsion between the protein molecules at the interface prevented 

flocculation of the droplets and eventually stabilized the emulsions. 

The moisture contents in MOEE and SOEE were 85.59±0.03% and 85.63±0.08%, 

respectively.  The water ratio preparing the emulsion was 85%, and the extra water in the 

emulsion is from the moisture in the proteins and a trace amount from the oils.  The flow 

behavior index (n), consistency index (K) values, and apparent viscosity of MOEE and SOEE at 
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a shear rate of 200 s
-1

 were tested at 4, 10 and 25 °C. The results were listed in Table 6.1 and 6.2.  

The flow behavior index of both emulsions at the tested temperatures was much lower than 1, 

which indicates that they both exhibited shear thinning properties at these temperatures (Paredes 

and others 1989). Both Newtonian behavior and shear thinning non-Newtoniam behavior were 

reported for emulsions consisting of different oil and wall materials (Tonon and others 2011, 

Yanez-Fernandez and others 2008, Bae and Lee 2008). All of the n values increased with 

temperature. The consistency index (K) for both of the emulsions had higher values at lower 

temperature.  The consistency index is an indicator of the viscous nature of the emulsion system, 

and higher K values of these emulsion samples indicate a more viscous consistency (Paredes and 

others 1989). This result was consistent with the apparent viscosity of the emulsions. Both of the 

emulsions exhibited more than 9-fold higher apparent viscosity at 4°C comparing with 25°C.  

This effect could be caused by collagen which has good water binding capacity.  Zhang and 

others (2006) found that the viscosity of collagen was greatly influenced by temperature, while 

gelatin and collagen hydrolysates had only slight difference in viscosity when the temperature 

changed. The higher viscosity reduces the rate at which particle sediment or cream, resulting in 

better emulsion stabilization and thus avoiding droplets coalescence (McClements 2005). 

Table 6.1 - Rheological properties of the emulsions containing concentrated menhaden oil 

at different temperatures  

Temperature n K (Pa.s
n
) Apparent viscosity (Pa s) 

25ºC 0.736±0.014
a
 0.012±0.000

c
 0.049±0.002

c
 

10ºC 0.538±0.010
b
 0.088±0.007

b
 1.335±0.178

b
 

4ºC 0.245±0.003
c
 0.116±0.008

a
 4.580±0.355

a
 

Each value is an average of three determinations with its SD. Values with the same superscript 

letters in each column are not significantly different (p>0.05) 

 

Table 6.2 - Rheological properties of the emulsions containing concentrated salmon oil at 

different temperatures  

Temperature n K (Pa.s
n
) Apparent viscosity (Pa s) 
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(table 6.2 continued) 

25ºC 0.727±0.018
a
 0.015±0.000

c
 0.062±0.007

c
 

10ºC 0.399±0.075
b
 0.097±0.004

b
  3.095±0.378

b
 

4ºC 0.220±0.017
c
 0.127±0.009

a
 5.760±0.203

a
 

Each value is an average of three determinations with its SD. Values with the same superscript 

letters in each column are not significantly different (p>0.05) 
 

The G' (an elastic or storage modulus) and G'' (a viscous or loss modulus) of the 

emulsions (MOEE and SOEE) were determined as a function of angular frequency at 25 ºC 

(Figures 6.1 and 6.2). G' measures the energy recovered per cycle of sinusoidal shear 

deformation and G'' is an estimate of energy dissipated as heat per cycle (Rao 1999). The results 

showed a gradual increase in both the loss modulus and the storage modulus with increasing 

frequency.  G' was larger than G'' throughout the tested range of frequency (6.283 to 62.83 rad/s) 

for both emulsions, which indicated that they behaved as viscoelastic fluids.  Moschakis and 

others (2005) reported that viscoelastic fluid can retard the rearrangement of macroscopic phase 

separation and formed stable emulsions. 

 

 
Figure 6.1 - Viscoelastic properties of emulsions containing EPA and DHA enriched 

menhaden oil. G' = storage modulus; G'' = loss modulus. 
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Figure 6.2 - Viscoelastic properties of emulsions containing EPA and DHA enriched salmon 

oil. G' = storage modulus; G'' = loss modulus 

 

The oil droplets were observed under light microscopy for both emulsions (Figure 6.3 

and 6.4). The droplets were well distributed in the emulsion system as small spheres and most of 

the size ranges from 1-10µm, which is in agreement with most commercial emulsion droplet 

sizes (0.1-10 µm) (Walstra 1983).  There are many factors affecting the physical properties of the 

emulsion such as preparation methods, operating conditions, viscosities and ultimately affect the 

droplet formation from the emulsions (Iqbal and others 2011). A higher energy input could 

produce smaller droplets and emulsions with a smaller droplet size distribution (Forgiarini and 

others 2001). The energy input was not reported in this study.  According to Tonon and others 

(2011), higher oil concentrations can led to higher mean diameters of emulsion droplets. 

6.3.2 Hydroperoxides, TBARs, and EPA, DHA Contents of the Fish Oils in Emulsions  

Hydroperoxide contents (PV) and TBARs values characterize the lipid oxidation by 

quantifying the hydroperoxide amount because of autoxidation and decomposition of 

hydroperoxides, respectively. MOEE and SOEE, which had rosemary oil as an antioxidant, 
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Figure 6.3 - Light Microscopy image of the MOEE. Magnification: 80; MOEE = Emulsion 

containing enzyme treated menhaden oil. 

 
Figure 6.4 - Light Microscopy image of the SOEE. Magnification: 80; SOEE = Emulsion 

containing enzyme treated salmon oil 
 

exhibited significantly lower hydroperoxides (1.65±0.17 and 2.68±0.52 mmol/kg) and TBARs 

(0.73±0.00 and 0.68±0.00 mmol/kg) than the control emulsions (2.03±0.22 and 3.56±0.27 

mmol/kg for hydroperoxides and 0.95±0.04 and 0.98±0.03 mmol/kg for TBARs).  Many factors 

can influence the lipid oxidation in emulsions such as water soluble pro-oxidants and 

antioxidants, increased surface area and the presence of an interfacial membrane Coupland and 

MOE

E 

SOE

E 
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McClements 1996.  Furthermore, the homogenization time, temperature, amplitude could also be 

affecting the lipid oxidation.  In the menhaden and salmon emulsions, rosemary oil played an 

important role inhibiting the lipid oxidation.  The antioxidant activity of rosemary extracts is 

associated with the presence of several phenolic diterpenes such as carnosic acid, carnosol, 

rosmanol, rosmariquinone and rosmaridiphenol (Frankel 1996; Thorsen and others 2003; Che-

Man and Jaswir 2000) and antioxidant activity is based on their structure, hydrogen-donating 

potential and ability to chelate metal ions. Rosmanol had greater antioxidant activity than 

carnosol and both were more effective than α-tocopherol, BHT and BHA (Nakatani and Inatani 

1981) .  

There was no difference in the EPA and DHA content between the oils from control 

emulsions without rosemary and that from MOEE and SOEE containing rosemary oil.  The 

higher TBARs in the control emulsions were caused by the decomposition of the hydroperoxides 

in the fish oil (menhaden and salmon had PV of 1.49meq/kg and 2.33meq/kg, respectively) 

before emulsification process. The emulsion having rosemary oil contains phenolic compounds 

and may reduce the hydroperoxides in the oils and cause less decompositions.  The 

emulsification process without rosemary oil retained EPA and DHA but caused a higher 

oxidation. 

Table 6.3 – TBARs, and EPA, DHA contents of the menhaden oil in emulsion  

 MOEEC MOEE  

Hydroperoxide (mmol/kg oil) 2.03±0.22
a
 1.65±0.17

b
 

TBARs (mmol/kg)  0.95±0.04
a
 0.73±0.00

b
 

(table 6.3 continued)   

EPA (%)  19.68±0.18
a
  20.13±0.18

a
  

DHA (%)  18.54±0.46
a
  18.37±0.73

a
  

EPA+DHA (%)  38.22±0.64
a
  38.50±0.91

a
  

MOEEC = Emulsion containing enzyme treated menhaden oil without rosemary oil; MOEE = 

Emulsion containing enzyme treated menhaden oil with rosemary oil.  Each value is an average  
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(table 6.3 continued) 

of three determinations with its SD. Values with the same superscript letters in each row are not 

significantly different (p>0.05) 

 

Table 6.4 TBARs, and EPA, DHA contents of the salmon oil in emulsion  

 SOEEC SOEE  

Hydroperoxide (mmol/kg oil) 3.56±0.27
a
 2.68±0.52

b
 

TBARs (mmol/kg)  0.98±0.03
a
 0.68±0.00

b
  

EPA (%)  16.24±0.14
a
 16.38±0.02

a
  

DHA (%)  16.18±0.23
a
 16.14±0.13

a
  

EPA+DHA (%)  32.42±0.37
a
 32.52±0.15

a
  

SOEEC = Emulsion containing enzyme treated salmon oil without rosemary oil; SOEE = 

Emulsion containing enzyme treated salmon oil with rosemary oil. Each value is an average of 

three determinations with its SD. Values with the same superscript letters in each row are not 

significantly different (p>0.05). 

 

6.3.3 Moisture, Water Activity (aW), Yield, Microencapsulation Efficiency (ME), and Color 

of the Microencapsulated Fish Oil Powders 

 

Moisture content in the MOEP and SOEP were 4.02±0.25% and 3.99±0.04%, 

respectively. These results were a little higher than the maximum moisture specification for most 

dried powder in the food industry which is between 3-4% (Klinkesorn and others 2006). 

Klinkesorn and others (2006) reported a moisture range of 1-3% with inlet temperature from 165 

to 180°C. The higher moisture content may be caused by the inlet temperature (150 °C), the 

moisture content in the emulsion (85-86%), and the spray dryer performance.  Kelly and others 

(2002) found that the moisture content of spray dried products was highest when operated at 

lowest temperature.  The water activity was 0.189±0.001 and 0.186±0.002 for the MOEP and 

SOEP, which is much lower than the result (0.3) reported by Klaypradit and Huang (2008) and is 

comparable to the result (0.1-0.25) reported by Klinkesorn and others (2006). 

The yields of the MOEP and SOEP were 64.37±2.31% and 63.33±1.85%, respectively, 

which is comparable to those obtained by Tan and others (2005). The low yield was due to 

microspheres sticking to the inner wall of the spray dryer components. The amount of surface oil 
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on MOEP and SOEP were 0.086±0.013 and 0.086±0.011g/g powder, respectively. These results 

are higher than those (3.0-3.5g/100 g powder) reported by Klinkesorn and others (2006). The 

presence of the surface oil can influence adversely the physical properties of spray dried powders, 

such as flowability, bulk density and dispersibility and induces more rapid lipid oxidation 

(Granelli and others 1996; Keogh and others 2001). It should be noted that the surface oil 

extracted with hexane can also induce an extraction of encapsulated oil to some extent from the 

inner surface of microcapsules, thereby resulting in a lower ME than an actual content (Bae and 

Lee 2008). The ME for the two fish oil powders were 70.32±3.55% (MOEP) and 71.38±3.16 

(SOEP) and these values were lower than reported values (85-87%) by Klinkesorn and others 

(2006).  The higher ME means less surface oil on the microcapsules, and consequently, less 

sticking to the spray dryer resulting in a higher yield (Tan and others 2005).  The properties of 

wall and core materials as well as the emulsion characteristics and drying parameters are the 

factors that can affect the microencapsulation efficiency. The MOEP and SOEP both exhibited 

very light yellow color. 

Table 6.5 - Moisture, OS, OT, microencapsulation efficiency (ME), and color of MOEP 

Properties MOEP 

Powder moisture (%) 4.02±0.25 

Water activity (aW) 0.189±0.001 

Surface oil O
S
 (g/g powder) 0.086±0.013 

Total oil O
T 

(g/g powder) 0.289±0.008 

ME (%) 70.32±3.55 

(table 6.5 continued)  

Yield (%) 64.37±2.31 

L* 83.83±0.16 

a* -0.093±0.006 

b* 9.83±0.10 

Chroma 9.83±0.11 

Hue angle 13.90±0.15 
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(table 6.5 continued) 

MOEP =Powder containing enzyme treated menhaden oil. Each value is an average of three 

determinations with its SD.  

 

Table - 6.6 Moisture, OS, OT, microencapsulation efficiency (ME), and color of SOEP  

Properties SOEP 

Powder moisture (%) 3.99±0.04 

Water activity (aW) 0.186±0.002 

Surface oil O
S
 (g/g powder) 0.086±0.011 

Total oil O
T 

(g/g powder) 0.300±0.006 

ME (%) 71.38±3.16 

Yield (%) 63.33±1.85 

L* 86.06±0.34 

a* 0.21±0.01 

b* 6.79±0.13 

Chroma 6.80±0.13 

Hue angle 9.61±0.18 

SOEP = Powder containing enzyme treated salmon oil. Each value is an average of three 

determinations with its SD.  

 

6.3.4 TBARs and EPA, DHA Contents of the Fish Oils in Microencapsulated Powders 

The hydroperixodes of the MOEP vs control powder and SOEP vs control powder were 

2.55±0.37 vs 2.06±0.08 mmol/kg oil and 4.87±0.16 vs 2.98±0.24 mmol/kg oil, respectively. The 

TBARs of the MOEP vs control powder and SOEP vs control powder were 1.12±0.03 vs 

0.79±0.03 and 1.25±0.07 vs 0.72±0.03, respectively. The powders with rosemary oil exhibited 

lower hydroperixide contents and TBARs values comparing with control, which means the 

rosemary oil was effective in reducing lipid oxidation.  Lipid oxidation of microencapsulated oil 

is caused by oxidation of both surface and encapsulated oils (Hogan and others 2003).  Surface 

oil is prone to be oxidized because it‘s not ―protected‖ by the wall materials.  Therefore, lipid 

oxidation of the powders can be affected by microencapsulation efficiency (ME), which is 

related to the solid and oil concentration in the emulsion. Lower solid content and higher oil 
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concentration can lead to higher oxidation, which is related to lower encapsulation efficiency at 

this condition (Tonon and others 2011). In addition, rosemary oil helped retain the EPA+DHA of 

the menhaden and salmon oil in the microencapsulated powders at 38.41 and 32.53%, while the 

controls had only 34.14 and 30.95%, respectively. 

Table - 6.7 TBARs, and EPA, DHA contents of the menhaden oil in powder  

 Control MOEP 

Hydroperoxides (mmol/kg oil) 2.55±0.37
a
 2.06±0.08

b
 

TBARs (mmol/kg) 1.12±0.03
a
 0.79±0.03

b
 

EPA (%) 17.86±0.18
b
 19.93±0.27

a
 

DHA (%) 16.28±0.73
b
 18.49±0.81

a
 

EPA+DHA (%) 34.14±0.91
b
 38.41±1.08

a
 

Control = Powders containing enzyme treated menhaden oil without rosemary oil; MOEP = 

Powder containing enzyme treated menhaden oil with rosemary oil. Each value is an average of 

three determinations with its SD. Values with the same superscript letters in each row are not 

significantly different (p>0.05). 

 

Table 6.8 - TBARs, and EPA, DHA contents of the salmon oil in powder  

 Control SOEP 

Hydroperoxides (mmol/kg oil) 4.87±0.16
a
 2.98±0.24

b
 

TBARs (mmol/kg) 1.25±0.07
a
 0.72±0.00

b
 

EPA (%) 14.88±0.14
b
 16.14±0.14

a
 

DHA (%) 15.07±0.23
b
 16.40±0.05

a
 

EPA+DHA (%) 30.95±0.37
b
 32.53±0.20

a
 

Control = Powders containing enzyme treated salmon oil without rosemary oil; SOEP = Powder 

containing enzyme treated salmon oil with rosemary oil. Each value is an average of three 

determinations with its SD. Values with the same superscript letters in each row are not 

significantly different (p>0.05). 

 

6.3.5 Scanning Electron Microscopy (SEM) Image and Particle Size of the 

Microencapsulated Fish Oil Powders 

 

Scanning electron micrographs (SEM) showed that the spray-dried particles were 

spherical with surface indentations and no apparent surface cracks (Figures 6.5 and 6.6). The 

surface indentations were due to rapid particle shrinkage during the early stage of the drying 

process and high inlet temperature (Kim and Morr 1996). The continuous surface with no cracks 
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can offer good protection of the encapsulated oil (McNamee and others 1998).  Microstructures 

of spray-dried microcapsules have been shown to be affected by wall composition and properties, 

core and wall ratio, drying parameters (atomization conditions, drying temperatures, and feed 

properties), and storage conditions (Sheu and Rosenberg 1998;  Tan and others 2009). Both of 

the powders exhibited some extent of agglomeration, which could be related to the presence of 

the surface oil (Vega and Roos 2006). 

Most of the particle sizes for the two powders ranged between 20 to 40µm (Figures 6.7 

and 6.8). The result agrees with the scanning electron micrographs that shows various sizes of 

microparticles.  Tonon and others (2011) reported a higher range of particle size (0.1 to 477 µm) 

for the powders produced by gum arabic.  Solid content of the emulsion, which is related to 

viscosity, is the main factor affecting the particle size (Tonon and others 2011). The higher the 

feed viscosity, the larger are the particle size during spray drying (Masters 1991).  Inlet 

temperature is another factor affecting particle size. Higher temperature leads to faster drying 

rates and structure is formed at the early stage, thus, does not allow the particles to shrink during 

drying as does slow drying (Reineccius 2004).  Feeding solids (wall materials) have a similar 

effect in that the particles dry quickly if they are high in solids and cannot shrink as much 

(Masters 1991). 

 
Figure 6.5 - Scanning electronic microscopy (SEM) of MOEP.  MOEP =Powder containing 

enzyme treated menhaden oil. 

MOEP 
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Figure 6.6 - Scanning electronic microscopy (SEM) of SOEP. SOEP =Powder containing 

enzyme treated salmon oil. 

   

 
Figure 6.7 - Particle size distribution of powder containing enzyme treated menhaden oil. 

 

 
Figure 6.8 - Particle size distribution of powder containing enzyme treated salmon oil. 

SOEP 
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6.3.6 Amino Acid Profile of the Protein Powders 

The protein powder contains all of the essential amino acids (EAA) except cysteine 

which was not determined in this analysis. Leucine was the main EAA found in the protein 

powder (42.10±1.70 mg/g protein) followed by lysine (34.08±1.41 mg/g protein) and valine 

(24.11±1.00 mg/g protein).  According to Tarnopolsky (2004), the branched-chain amino acids 

(isoleucine, leucine, and valine) are preferentially oxidized compared with other amino acids 

during exercise.  Layman and Rodriguez (2009) observed that leucine is a critical element in 

regulating muscle protein synthesis and may be the key amino acid for optimizing skeletal 

muscle mass and muscle recovery from both resistance and endurance exercise.  In addition, 

leucine was reported to be an inhibitor of protein degradation in skeletal muscle (Nakashima and 

others 2007; Tischler and others 1982) and liver (Meijer and Dubbelhuis 2004). The powder is 

expected to improve performances of exercise due to the high leucine content.  

Table - 6.9 Amino acid composition of the protein powder  

Amino acid Concentration (mg/g protein) 

Hydroxyproline 16.73±0.86 

Aspartic acid 41.60±1.69 

Threonine
a
 19.85±0.83 

Serine 20.22±0.94 

Glutamic acid 68.88±2.85 

Proline 36.56±1.62 

Glycine 34.57±1.54 

Alanine 29.15±1.23 

Valine
a
 24.11±1.00 

Methionine
a
 2.68±0.15 

Isoleucine
a
 21.29±0.94 

Leucine
a
 42.10±1.70 

Tyrosine
a
 15.02±0.68 

Phenylalanine
a
 19.44±0.86 

Histidine
a
 9.16±0.42 

Hydroxylysine 1.56±0.09 

Lysine
a
 34.08±1.41 

Arginine 26.34±1.17 

Values are means of triplicate determinations. 
a
Essential amino acid. Cysteine and Tryptophan 

were not determined. 
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6.4 Conclusions 

Both the menhaden and salmon emulsion samples were stable. The n values of both 

emulsions decreased with the decreasing of the temperature. The consistency index (K) for both 

of the emulsions had higher values at lower temperature, which is in consistent with the apparent 

viscosity of the emulsions. Both of the emulsions exhibited more than 9-fold higher apparent 

viscosity at 4°C comparing with 25°C.  G' was larger than G'' throughout the tested range of 

frequency (6.283 to 62.83 rad/s) for both emulsions, which indicated that they behaved as 

viscoelastic fluids. The droplets were well distributed in the emulsion system as small spherical 

and most of the size ranges at about 1-10µm for both emulsions.  MOEE and SOEE, which have 

rosemary oil as antioxidant, exhibited significantly lower TBARs (0.73±0.00 and 0.68±0.00 

mmol/kg) than the control emulsion (0.95±0.04 and 0.98±0.03 mmol/kg).  Addition of rosemary 

oil didn‘t affect the EPA and DHA compositions in both menhaden and salmon oil emulsions.  

MOEP and SOEP had yields of 64.37±2.31% and 63.33±1.85% and ME of 70.32±3.55% and 

71.38±3.16%.  The moisture contentt in the MOEP and SOEP were 4.02±0.25% and 

3.99±0.04%, and the water activity was 0.189±0.001 and 0.186±0.002 for the MOEP and SOEP.  

Menhaden and salmon oil powders containing 200ppm rosemary oil had EPA+DHA levels of 

38.41 and 32.53%, while the controls had only 34.14 and 30.95%, respectively.  Scanning 

electron micrographs (SEM) showed that the spray-dried particles were spherical with surface 

indentations and no apparent surface cracks. Most of the particle sizes for the two powders 

ranged between 20 to 40µm. Leucine was the main EAA found in the protein powder 

(42.10±1.70 mg/g protein). This study demonstrated that the protein powder containing 

menhaden and salmon oils could be effectively produced by microencapsulation technology. 

These powders could provide health benefits for humans in prevention of cardiovascular disease 

and in weight management.
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CHAPTER 7 SUMMARY AND CONCLUSIONS 

The ω-3 PUFA especially EPA and DHA from fish oils may have a lot of potential 

benefits such as reduced risk of cardiovascular diseases, hypertension and atherosclerosis, 

inflammatory and autoimmune disorders. Menhaden (MO) and salmon oils (SO) are good 

sources of EPA and DHA but the high amounts of impurities may decrease product quality or 

processing efficiency.  Therefore an economically viable purification method is needed to 

remove impurities from unpurified menhaden and salmon oils.  The market for fish oils enriched 

with ω-3 PUFAs is growing with the public awareness of the benefits from these oils.  

Microencapsulation technology could be an effective method producing fish oil powder which 

delays the oxidation of the fish oils.  The objectives of the study were to characterize physical, 

thermal, rheological properties of unpurified menhaden oil and salmon oil, to develop an 

economically viable purification process, to design a process to enrich the EPA and DHA 

contents in fish oils and to develop a protein powder containing fish oil with enriched EPA and 

DHA.   

Unrefined menhaden oil at temperatures ranging from 5 to 25°C showed non-Newtonian 

fluid behavior, while Newtonian behavior was evident at 30°C. Unrefined salmon oil exhibited 

Newtonian fluid behavior at temperatures ranging from 5 to 30°C.  The 6 week storage study 

showed that the rate of hydroperoxide formation of the oil stored at 4 °C was lower than that of 

the oil stored at room temperature and at 50°C.   Changes in the magnitude of apparent viscosity 

and lipid oxidation of the unrefined menhaden and salmon oil with temperature could be well 

described by the Arrhenius equation.   

Activated earth, activated alumina, and chitosan were effective in reducing PV, FFA, and 

moisture from menhaden and salmon oils, respectively.  The batch adsorption process did not 

change the composition of fatty acid profile in both oils. Phosphorus contents of menhaden and 
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salmon oils were reduced from 45.36 ppm and 38.60ppm to 15.65 ppm and 17.88 ppm by 

activated earth, respectively. Activated earth was most effective in reducing B, Fe, and Zn in the 

menhaden oil. For the salmon oil, activated earth effectively removed the Fe, Zn, Ca, S, and Na.  

MO exhibited shear thinning properties, while purified menhaden oils and all of the salmon oil 

samples were considered as Newtonian fluids at room temperature.  All DSC peaks for unrefined 

and refined menhaden and salmon oil samples were not sharp, except M4, M5, and S5. The 

thermal degradation of the unpurified and purified menhaden and salmon oils showed that M4, 

M5, S4, and S5 had higher degradation rate compared with other oil samples. A batch adsorption 

process was developed in this study to purify menhaden and salmon oils in reducing PV, FFA, 

moisture, and heavy metal content and retaining the fatty acid compositions. DSC and TG can be 

applied to evaluate the quality of the unrefined and refined fish oils.  

A pilot scale, fast and economically viable purification process was developed in this 

study.  The results showed that the mix of activated earth and activated alumina can effectively 

adsorb primary oxidation products, free fatty acids and moisture from the MO and SO.  The 

column adsorption process did not affect the main fatty acids in the unrefined and refined 

menhaden and salmon oils.  The column purification process decreased the phosphorus contents 

of the menhaden and salmon oils from 45.36±1.36ppm and 38.60±2.26ppm to 16.42±0.37ppm 

and 17.85±1.14ppm, respectively.  After the column adsorption processes, most of the mineral 

contents decreased.  The study demonstrated that the column purification process could reduce 

the PV, FFA, and moisture contents from unrefined menhaden and salmon oils without affecting 

the fatty acid compositions.   

The menhaden and salmon oils were treated with lipase hydrolysis and EPA and DHA 

were enriched. Menhaden oil treated with 2500 U lipase for 6 and 12h had the highest total EPA 

and DHA fractions (39.54% and 39.95%) in the final oil, while the highest total EPA and DHA 
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fraction (32.12%) in the salmon oil was found in the oil hydrolyzed with 1250 U lipase for 6h. 

After treatment with 2500G lipase for 24h, the TG and DG levels of menhaden oil decreased 

from 73.53% and 14.13% to 3.43% and 4.66%, while MG level increased from 12.34% to 

91.90%.  The unhydrolyzed salmon oil contained 77.17% TG, 3.17% DG, and 19.53% MG. 

After hydrolysis with 1250U of lipase for 24h, the TG, DG, and MG levels changed to 9.97%, 

17.03%, and 72.87%.  The process transformed most of the TG into MG.  After the EPA and 

DHA enrichment processed, PV, FFA, and TBARs values of menhaden oil (MOE) decreased 

from 11.06±0.75 meq/kg oil to 1.49±0.13meq/kg oil, from 2.66±0.07% to 0.67±0.06%, and from 

0.89±0.01mmol/kg to 0.56±0.01mmol/kg, respectively. The process decreased the PV, FFA, and 

TBARs of salmon oil from 14.71±1.26 meq/kg oil to 2.33±0.16meq/kg oil, from 3.14±0.07% to 

0.66±0.05%, and from 1.26±0.02mmol/kg to 0.62±0.03mmol/kg, respectively.   

At the end of the research, the oils enriched with EPA and DHA were microencapsulated 

with a variety of proteins and a fish oil protein powder was developed. Both the menhaden and 

salmon emulsion prepared with 7 proteins were very stable. The droplets were well distributed in 

the emulsion system as small spheres and most of the size ranges at about 1-10µm for both 

emulsions.  MOEE and SOEE, which had rosemary oil as an antioxidant, exhibited significantly 

lower TBARs than the control emulsion.  Addition of rosemary oil didn‘t affect the EPA and 

DHA compositions in both menhaden and salmon oil emulsions.  Total contents of EPA and 

DHA in menhaden and salmon oil powders containing 200ppm rosemary oil were higher than 

that of the controls.   Scanning electron micrographs (SEM) showed that the spray-dried particles 

were spherical with surface indentations and no apparent surface cracks. Most of the particle size 

for the two powders ranged between 20 to 40µm. This study demonstrated that the protein 

powder containing menhaden and salmon oils can be effectively produced by 
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microencapsulation technology. These powders could provide health benefits for humans in 

prevention of cardiovascular disease and weight management. 
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APPENDIX 1: PURIFYING FISH OILS BY CONVENTIONAL METHODS  
 

Methods 

 

The PV and FFA of the oil samples were measured by the methods described in 2.2.1. The 

moisture content was measured according to the method in 2.2.2.   

Conventional methods:  

1. Degumming: 100 g crude catfish oil was removed from frozen storage, placed in a 600-

mL beaker, and heated to 70 °C in a temperature-controlled water bath; 3 mL 3% 

aqueous citric acid solution was added to the oil, and the mixture was thoroughly mixed 

at 70 °C for 1 min. The oil was then cooled to room temperature and centrifuged at 

2,560×g for 10 min to remove precipitated gum. 

2. Neutralization:  Sodium hydroxide (12.6 g of 9.5% NaOH solution) was added to the fish 

oils (100 g) and the mixture was heated to 65°C for 30 min with constant stirring with a 

magnetic stirrer. The sample was then cooled to room temperature and kept undisturbed 

for 6 h. After centrifuging at 2,560×g for 10 min, the oil was decanted from the 

precipitated soap. Demineralized water (50 mL) was added to wash out any remaining 

soap; this was repeated three times. Water and impurities were removed by centrifuging 

at 2,560×g for 10 min. 

3.  Bleaching: Fish oils were heated in a water bath and bleached with 4% (w/w) activated 

earth at 70 °C for 10 min with constant stirring using a magnetic stirrer. The activated 

earth with absorbed impurities was removed from the oil by centrifuging at 2,560g for 30 

min.   

4. Deodorization: The fish oils were was deodorized using a laboratory distillation unit. The 

distillation unit consisted of a 500-mL round bottom boiling flask with three outlets. One 
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outlet was connected to a vacuum pump, another outlet was connected to a glass 

distillation column, and the remaining outlet was sealed with a thermometer. The flask 

was placed on a heating system. The oil (100 mL) was added to the flask and heated to 

100 °C for 30 min under vacuum (5 mmHg). The temperature was manually controlled. 

The volatile products were condensed in a cooling system installed on the vacuum line 

and the distillate was collected. 

Results 

Menhaden and salmon oils were purified by the four main conventional methods 

(degumming, neutralization, bleaching, and deodorization) and the results on removal of 

peroxides and free fatty acids are shown in tables 7.1 and 7.2.  Degumming was effective 

removing peroxides but not free fatty acids from the MO and SO and had the highest oil loss. 

Neutralization was most effective decreasing PV and FFA; however the yield was comparatively 

lower. Bleaching had similar effects with degumming however the yield was higher than 

degumming method. Deodorization method didn‘t cause obvious changes on PV and FFA 

contents. 

Table 7.1 – PV, FFA, and Yield of the menhaden oil purified by conventional methods 

 

PV (meq/kg) FFA (%) Yield (%) 

MO 24.22±1.28
a
 2.79±0.02

b
 

 MD 17.82±0.74
b
 2.68±0.05b

b
 38.80% 

MN 8.62±0.14
d
 0.14±0.00

c
 47.10% 

MB 12.07±2.62
c
 2.62±0.11b

b
 76.30% 

ME 20.72±0.71
a
 2.05±0.11

a
 99.90% 

Values are means ± SD of triplicate determinations. 
abcd

Means with the same letters in each 

column are not significantly different (P > 0.05). MO = unrefined menhaden oil; MD = 

menhaden oil purified by degumming process; MN = menhaden oil purified by neutralization 

process; MB = menhaden oil purified by bleaching process; ME = menhaden oil purified by 

deodorization process.  
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Table 7.2 - PV, FFA, and Yield of the salmon oil purified by conventional methods 

 

PV (meq/kg) FFA (%) Yield (%) 

SO 35.46±1.54
a
 2.43±0.12

b
 

 SD 28.57±1.14
b
 2.47±0.02

b
 36.45% 

SN 10.58±0.37
d
 0.12±0.03

c
 52.89% 

SB 18.97±0.28
c
 2.22±0.09

b
 69.87% 

SE 31.40±2.71
a
 1.81±0.25

a
 98.56% 

Values are means ± SD of triplicate determinations. 
abcd

Means with the same letters in each 

column are not significantly different (P > 0.05). SO = unrefined salmon oil; SD = salmon oil 

purified by degumming process; SN = salmon oil purified by neutralization process; Bleaching = 

salmon oil purified by bleaching process; SE = salmon oil purified by deodorization process. 
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APPENDIX 2: SPRAY DRYING PROCESS AND CALCULATIONS 

 

The emulsions were dried using a pilot plant scale spray dryer (FT80 Tall Form Spray Dryer 

Armfield Inc., Ringwood, UK) under co-current drying conditions. A schematic representation 

of the pilot scale FT80 tall form spray dryer is shown in Fig. 7.1. The FT80 spray dryer includes 

inlet and exhaust air fans, an electrical air heating chamber, a tall dryer chamber, and a cyclone 

separator. Ambient air was blown into the air heating chamber by the inlet fan where the ambient 

air was heated by an electric resistance heater to 150°C. The heated air (inlet air) was blown into 

the top of the drying chamber. The temperature of emulsions was measured at the beginning of 

the procedure, and then the emulsion was separately fed through the hygienic progressing cavity 

pump to a spray nozzle where it was atomized and sprayed into the dryer chamber. The emulsion 

droplets were dried in the drying chamber yielding dried powder and dust. The dried powder, 

dust, and air were pulled to the bottom of the drying chamber and then to the cyclone separator 

by the exhaust fan. The powder and dust were separated in the cyclone separator. The powder 

separated by the cyclone separator was collected in the powder collector and the exhaust air was 

released though filter bag to the atmosphere. The filter bag captured the dust.  

The powder samples and dust were analyzed for moisture content according to the AOAC 

official method 930.15 (AOAC, 1999). The powder production rate was estimated and compared 

with the actual powder production rate. The actual powder production rate was the mass of the 

powder recovered from the powder collector divided by the time of production. The estimated 

production rate was the sum of the actual production rate and the average rate at which powder 

was retained within the spray dryer by such mechanisms as sticking to the walls of the spray 

dryer. The mass flow rate for water entering and leaving the spray dryer and the energy required 

to dry the emulsion in the production of powder were determined.  
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Figure 7.1 - Schematic representation of the pilot scale FT80 Tall Form Spray Dryer-

Armfield Limited®.  

Table 7.3 - Parameters for the spray dryer and spray drying process when drying MOEE  

 Inlet ambient air Outlet air 

Temperature (°C) 26.23±0.38 80.53±0.78 

Velocity (km/h) 70.73±0.92 19.19±0.14 

Relative humidity (%) 39.67±0.32 5.40±0.03 

Internal pipe diameter (m) 0.034 0.072 

Partial pressure exerted by water vapor (kPa) 1.41±0.01 2.56±0.01 

Saturation pressure of water vapor (kPa) 3.57 47.39 

Absolute humidity ×10
3
 (kg water/kg dry air) 8.81±0.07 16.11±0.08 

Specific volume of inlet or outlet air (m
3
/kg dry air) 0.86±0.00 1.03±0.00 

Mass flow rate (kg dry air/h) 74.80±0.93 76.14±0.39 

Specific heat of dry air at 26.23°C (kJ/kg.K) 1.0126 

Specific heat of water vapor at 26.23°C (kJ/kg.K) 1.88 
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Table - 7.4 Parameters for the spray dryer and spray drying process when drying SOEE  

 Inlet ambient air Outlet air 

Temperature (°C) 26.26±0.21 80.70±0.70 

Velocity (km/h) 70.64±0.53 19.21±0.17 

Relative humidity (%) 39.53±0.31 5.35±0.12 

Internal pipe diameter (m) 0.034 0.072 

Partial pressure exerted by water vapor (kPa) 1.41±0.00 2.54±0.06 

Saturation pressure of water vapor (kPa) 3.57 47.39 

Absolute humidity ×10
3
 (kg water/kg dry air) 8.75±0.02 15.97±0.37 

Specific volume of inlet or outlet air (m
3
/kg dry air) 0.86±0.00 1.03±0.00 

Mass flow rate (kg dry air/h) 74.70±0.59 76.19±0.56 

Specific heat of dry air at 26.34°C (kJ/kg.K) 1.0126 

Specific heat of water vapor at 26.34°C (kJ/kg.K) 1.88 

 

 Estimation of Production Rate  

The material balance expressed as average flow rates of dry solids entering and leaving the 

spray dryer system (Fig. 7.2) is described by Eq. (1). 

me = mP + md    (1) 

The production rate was estimated by the Eq. (2) 

mP = me - md     (2) 

where me is the average emulsion flow rate (kg dry solids/h); md is the average dust flow rate (kg 

dry solids/h); mP is the estimated powder production rate which included both the average actual 

production flow rate (mp) for the powder collected through powder collector vessel and product 

retained in the spray dryer. It was assumed that the physical properties of product retained in the 

spray dryer were the same as the powder product collected in cyclone collector vessel. 

Estimation of Evaporation Rate 

The moisture balance expressed as water entering and leaving the spray dryer system is 

described by Eq. (3).  

maaAHaa+mewe = maoAHao+mdwd+mPwp     (Eq.3) 
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Figure 7.2 - Material balance of a spray drying system.  

 

where maa is the dry air mass flow rate at the inlet (ambient air) (kg dry air/h); mao is the dry air 

mass flow rate of outlet air (kg dry air/h); me is the mass flow rate of the emulsion (kg dry 

solids/h); md is the mass flow rate of dust (kg dry solids/h); mP included both the product flow 

rate (mp) for the powder collected through cyclone vessel and product retained in the spray dryer; 

AHaa is the absolute humidity of inlet ambient air (kg water/kg dry air); AHao is the absolute 

humidity of outlet air (kg water/kg dry air); we is the moisture content (dry basis) of emulsion 

(kg water/kg dry solids); wd is the moisture content (dry basis) of dust (kg water/kg dry solids); 

wp is the moisture content (dry basis) of product (kg water/kg dry solids).  It has been assumed 

that the powder retained in the spray dryer has essentially the same moisture content as the 
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collected powder and that the encapsulation effectively removes that moisture from the air 

stream.   

The evaporation rate (Eva) was estimated from the moisture removed by the dry air as shown by 

Eq. (4).  

Eva = maoAHao –maaAHaa     (Eq.4) 

Also, the evaporation rate (Evp) was estimated based on the moisture content of emulsion, 

powder collected through cyclone vessel and dust using Eq. (5).  

Evp = mewe – mdwd - mPwp     (Eq.5) 

The dry air mass flow rate of inlet ambient air and dry mass flow rate of outlet air were estimated 

as described by the AlChE Equipment Testing Procedure (2003) using Eq. (6). 

'V

V
m    (Eq.6) 

where m is the dry air mass flow rate (kg dry air/h); V is the volumetric flow rate of inlet or 

outlet air (m
3
/h); V‘ is the specific volume of inlet or outlet dry air (m

3
/kg dry air). 

The volumetric flow rate of inlet ambient air and outlet air was calculated as described by 

Eq. (7) 

V = v × A    (Eq.7) 

where v is the average velocity of the inlet or outlet air (m/s) and A is the cross sectional area of 

the inlet or outlet air pipe (m
2
). 

The specific volumes of inlet or outlet dry air were calculated using Eq. (8) as described 

by Singh and Heldman (2001). 











1829

1
)4.22082.0('

AH
TV    (Eq.8) 

where T is the temperature of inlet ambient or outlet air (°C); AH is the absolute humidity of 

inlet ambient or outlet air (kg water/kg dry air). 
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The absolute humidity of the inlet ambient and the outlet air were calculated as Eq. (9) as 

described by AlChE Equipment Testing Procedure (2003) 

pw

pwxAH



325.101

622.0    (Eq.9) 

where AH is the absolute humidity of the inlet ambient or outlet air (kg water/kg dry air); and pw 

is the partial pressure exerted by water vapor (kPa). 

The partial pressure exerted by water vapor is estimated with Eq. (10) as described by Singh 

and Heldman (2001) 

pw = pv x RH   (Eq.10) 

where pw is the partial pressure exerted by water vapor (kPa); pv is the saturation pressure of 

water vapor (kPa); RH is the relative humidity (%). 

Estimation of Energy Required Drying the Emulsions 

The estimation of the energy required to dry the emulsions was obtained with Eq. (11) as 

described by Singh and Heldman (2001).  

Q = maacpΔT = maa(caa +cv AHaa)(Tad – Taa)     (Eq.11) 

where maa is dry air mass flow rate of inlet ambient air (kg dry air/h); cp is specific heat of inlet 

ambient air (kJ/[kg K]); caa is specific heat of inlet ambient dry air (kJ/[kg K]); cv is the specific 

heat of water vapor (kJ/[kg K]); AHaa is the absolute humidity of inlet ambient air (kg water/kg 

dry air); ΔT is the temperature difference between inlet ambient air and heated air (K); Tad is the 

temperature of the inlet drying air (K); and Taa is the temperature of inlet ambient air (K). 

Table - 7.5 Production rate, evaporation rate, and energy required for spray drying MOEE 

and SOEE  

 MOEE SOEE 

Estimated Production rate x 10
-3

 (Kg dry solids/h) 79.68±0.54 85.17±0.93 

Real Production rate x 10
-3

 (Kg dry solids/h) 76.82±0.02 81.61±0.02 

Evaporation rate (kg water/h)
1

 0.57±0.01 0.56±0.02 
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(table 7.3 continued) 

Evaporation rate (kg water/h)
2

 0.58±0.00 0.58±0.00 

Energy required to increase ambient temperature to 

inlet temperature (kJ/kg) 
9528.32±118.19 9511.07±74.88 

1
Calculated based on the moisture uptake by the dry air (kg water/h). 

2
Calculated based on the 

moisture content of the emulsion, powder collected through collector vessel, and dust (kg 

water/h).  MOEE= Emulsion containing enzyme treated menhaden oil, SOEE= Emulsion 

containing enzyme treated salmon oil. 
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