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Abstract 

Drought is a major challenge in rice production system worldwide. We conducted a 

phenotypic screening of the USA rice genotypes for drought tolerance and assessed genetic 

diversity using SSR markers. Identification of QTLs for drought tolerance during both vegetative 

and reproductive stage was done using genotyping by sequencing (GBS) based saturated SNP 

linkage map. The rice genotypes Jes, Leah, Roy J, Jazzman, and Madison were found to be 

drought tolerant. Population structure analysis grouped the USA rice genotypes into California, 

Louisiana, and Arkansas types. Marker-trait association showed that markers RM570 and 

RM351 were significantly associated with grain yield, spikelet fertility, and harvest index with 

7% of the phenotypic variance. RM302 and RM461 were significantly associated with shoot dry 

weight with 9% of the phenotypic variance. Fourteen additive QTLs were identified for root 

length, shoot length, fresh root mass, fresh shoot mass, number of tillers, dry root mass, dry 

shoot mass, and root-shoot ratio. A majority of the drought responsive QTLs were located on 

chromosome 1. The expression of QTLs varied under stress and irrigated conditions. Shoot 

length QTLs qSL1.38 and qSL1.11 were congruent to dry shoot mass QTL qDSM1.38 and dry 

root mass QTL qDRM1.11, respectively. Analysis of genes present within QTL intervals 

revealed many potential candidate genes such as laccase, Calvin cycle protein, serine threonine 

protein kinase, heat shock protein, and WRKY protein. In the reproductive stage drought 

screening, 21 QTLs were discovered for days to flowering, plant height, leaf rolling score, plant 

dry matter content, spikelet fertility, grain yield, yield index, and harvest index. A major QTL for 

plant height qPH1.38 was identified in a narrow confidence interval on chromosome 1. The 

QTLs, qDTF3.01 and qPH1.38, overlapped with the previously identified QTL qDTY1.1 and 

Hd9, respectively. A large-effect QTL qLRS1.37 was identified close to the sd1 locus on 

chromosome 1. A grain yield QTL qGY1.42 located on chromosome 1 contained only 4 
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candidate genes. There was no overlapping of QTLs for the root traits and the yield attributes. 

The important candidate genes present within the large effect drought tolerance QTL regions are 

MYB transcription factors, no apical meristem protein (NAC), potassium channel protein, 

nuclear matrix protein1, and chlorophyll A-B binding protein. The drought tolerant US rice 

genotypes identified in the genetic diversity analysis will be valuable for breeding programs 

whereas the candidate genes and the QTL information will set the foundation for application of 

marker-assisted pyramiding approach to improve drought tolerance in rice.
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Chapter 1. Introduction 

1.1. Rice: Importance and production 

Rice (Oryza Sativa L.) is an important cereal crop in the world both in terms of production 

and consumption. It is the staple food for almost half of the world’s population. Almost 90% of 

rice is produced in Asia (USDA 2018a). The global production of rice in 2017 was 725 million 

metric tons (USDA 2018b). China is the major producer of rice followed by India. Rice 

production in USA is concentrated in six major states, viz. California, Arkansas, Louisiana, 

Texas, Mississippi, and Missouri. The USA is ranked sixth among the rice exporting countries in 

the world with an annual export of 3.3 million metric tons in 2017. Among the US states, 

Arkansas produces the largest amount of rice followed by California and Louisiana (Statista 

2018). The total area under rice cultivation in the USA in 2017 was 996 thousand hectares with a 

total production of 9 million metric tons (USDA 2018b).  

1.2. Rice water requirements 

Rice is the biggest user of irrigation water in the world accounting for 34-43% of the total 

world’s irrigation water or 24-30% of the entire world’s fresh water resources. Rice is grown 

continuously flooded from transplanting until 7-10 days before harvest (Rice knowledge bank, 

IRRI, http://www.knowledgebank.irri.org/step-by-step-production/growth/water-management). 

The water requirement in rice varies depending upon the rice growing ecosystem. Rice is grown 

in both lowland and upland ecosystems. The water requirement of rice in lowland ecosystem is 

quite high. On an average, the water requirement of rice during its entire growth period to 

produce 1kg of rice is 1300-1500 mm, which is equal to 1432 liters of water. More than 90% of 

rice in the world is grown under lowland rice ecosystem (Halwart and Gupta 2004). The water 

requirement depends on the soil type of the rice growing area. Rice is usually grown in clayey 
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soils and the water requirement in heavy clay soil is 400 mm compared to 2000 mm in coarse-

textured soil (Rice knowledge bank, IRRI, http://www.knowledgebank.irri.org/step-by-step-

production/growth/water-management). The rise in temperature is expected to increase the water 

requirement for rice cultivation by 2-5% in 2046. Climate change is also expected to decrease the 

precipitation, which may affect the rainfed rice growing ecosystem in the world (Wang et al. 

2012). 

1.3. What is drought? 

In general, every drought definition is associated with low availability of water. Wilhite and 

Glantz (1985) classified drought into four major categories: meteorological, hydrological, 

agricultural, and socio-economic drought. Agricultural drought is of the major concern in crop 

growth and production and is defined as the insufficiency of water for crop growth. The level of 

water requirement in crops differs depending on the type of plant and its growth stage. Drought 

can be classified into three major categories based on the timing of its occurrence in lowland rice 

cultivation systems (Chang et al. 1979). Vegetative drought occurs at the seedling stage and is 

less harmful to the plants because they have optimum time to recover even after drought. 

Intermittent drought occurs between the rainfall events. It affects the plant‘s vegetative 

development. Terminal drought occurs during the flowering stage resulting in drastic reduction 

in grain yield. Plant breeding programs for drought tolerance are designed for a specific 

environmental condition called target environment (Fischer et al. 2003). Multiple target 

environments can be defined for a crop. The target environment for a lowland rice breeding 

program may depend on the rainfall pattern, soil type, frequency, and severity of the drought 

events.  
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1.4. Drought responses in rice  

Rice exhibits a large reduction in grain yield under drought. Rice plant displays various 

mechanisms to cope with the drought stress. Drought avoidance is a mechanism in which the 

plant tries to maintain its osmotic level either by developing a deeper root system or by reducing 

the plant water use. Delay in flowering is another strategy adapted by plants to escape from the 

drought environment. Drought tolerance is the ability of the plant to minimize reduction in grain 

yield even after exposure to drought conditions (Kamoshita et al. 2008). Several phenotypic and 

physiological adaptive mechanisms protect rice plants under drought stress.  

Higher leaf rolling, reduction in spikelet fertility, and reduction in grain yield are some of the 

major phenotypic changes in rice plants under drought stress (Bhattarai and Subudhi 2018a). 

Other physiological responses of plants under drought include reduction in leaf water content, 

increased canopy temperature, reduction in chlorophyll content, and increased proline 

accumulation (Shukla et al. 2012). Seedling stage drought screening can be done to assess 

drought tolerance in rice (Kato et al. 2008). However, it may not be the primary indication of the 

plant’s drought tolerance ability for sustainable yield. Most of drought tolerance studies 

conducted at reproductive stage are based on plant height, days to flowering, and yield (Ghimire 

et al. 2012; Palanog et al. 2014; Prince et al. 2015). Roots traits are important attributes that help 

rice plant to withstand drought. Drought tolerant plants tend to increase root length under 

drought stress (Bhattarai and Subudhi 2018b). Root length, root volume, root mass, and root 

angle are some important traits for consideration in drought tolerance screening. 

Identification of traits that can distinguish drought tolerant varieties from susceptible ones is 

necessary for any successful breeding program. Drought tolerance traits in rice have been 

classified as primary, secondary, integrated, phenological, and plant type traits (Kamoshita et al. 
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2008). Primary traits can be constitutive traits (root depth, branching angle) or induced traits 

(hard pan penetration, osmotic adjustment). Plant type traits (plant height, number of tillers) and 

phonological traits (days to flowering) are the characteristics of the plant and are highly 

heritable. Secondary traits (relative leaf water content, leaf rolling score, canopy temperature) are 

the combined effect of the primary traits and have influence on integrated traits (harvest index, 

spikelet fertility, grain yield). 

1.5. Genetic diversity in rice 

Genetic diversity study among the available germplasms is necessary before starting any crop 

improvement program. It helps to assess variability among the genotypes and identify suitable 

donors. Rice is a highly diverse plant species with various genome compositions (AA, BB, CC, 

DD, EE, FF, GG, HH, JJ, KK, and LL). The genus Oryza is comprised of 27 species and only 

two (O. sativa and O. glaberrima) are cultivated species (GRisP 2013). The classification of 

Oryza sativa into two sub-groups, indica and japonica, has been widely accepted. There are 

approximately 140,000 rice genotypes in the world. The International Rice Research Institute 

(IRRI) has preserved 100,000 rice genotypes from all around the world (FAO 2003). The USA 

rice genotypes are less diverse. Most of the southern USA rice varieties were found to be derived 

from 22 plant introductions and the rice varieties from California were found to be derived from 

23 introductions in early 1900s (Dilday 1990). 

Various techniques have been used to study genetic diversity in rice. Principal component 

analysis and cluster analysis have been extensively used to group the genotypes (Das et al. 

2013). Molecular markers like SSR and SNPs are widely used to uncover the small genetic 

variations among the individuals. The population structure analysis, a model-based approach, is 
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broadly used as a tool to understand the genetic variability (Das et al. 2013). Analysis of 

molecular variance, discriminant analysis, and principal coordinate analysis are also used. 

1.6. QTLs for root traits under drought stress 

The drought tolerance ability in rice depends on the root system. A drought tolerant genotype 

tends to increase root length and number of lateral roots under drought stress (Zheng et al. 2003; 

Uga et al. 2013). Various QTLs for root length, root thickness, and root penetration ability have 

been detected and incorporated into rice varieties to enhance drought tolerance (Steele et al. 

2006). Besides these, some large effect QTLs were detected for root penetration index and root 

pulling force on chromosome 4 (Zhang et al. 2001), root penetration index on chromosome 3 and 

10 (Ali et al. 2000). Zheng et al. (2003) identified 18 QTLs for seminal root length, adventitious 

root number, lateral root length, and lateral root number. Incorporation of these QTLs into the 

elite germplasm could be useful to increase the drought tolerance in rice. 

1.7. QTLs for yield and agronomic traits under drought stress 

Enhancing grain yield is the main objective of any rice breeding program. Identification of 

yield and yield-related traits and their introgression into adapted varieties is one of the best 

strategies to increase grain yield under drought. Several grain yield QTLs in various 

chromosomes of rice have been identified under drought. QTL12.1 was the first identified major 

grain yield QTL in rice under drought (Bernier et al. 2007). Another large effect QTL for grain 

yield, qDTY1.1, was identified on chromosome 1 (Ghimire et al. 2012). Besides these, qDTY2.2, 

qDTY3.1, qDTY3.2, qDTY4.1, qDTY6.1, qDTY9.1 were other major effect QTLs identified in rice 

(Venuprasad et al. 2009,2012b; Swamy et al. 2013; Yadav et al. 2013; Sandhu et al. 2014). The 

identified QTLs should be consistent in multiple genetic backgrounds and various target 

environments (Vikram et al. 2011; Prince et al. 2015). Marker assisted pyramiding of the large 
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effect QTLs in adapted varietal background is necessary to achieve higher grain yield under 

drought (Shamsudin et al. 2016). 

1.8. Rationale and objectives of the research 

Rice cultivation requires large amount of water. Scarcity of water and irregular rainfall 

pattern heavily affect rice production. Exploration of available rice germplasm for drought 

tolerance is necessary to breed drought tolerant varieties. The identification of QTLs and 

underlying candidate genes in QTL intervals can be helpful to adopt marker-assisted selection in 

breeding programs. The overall goal of this study is to generate genomic tools and resources to 

facilitate drought breeding efforts in USA rice. The specific objectives are as follows: 

1. Evaluation of genetic diversity, population structure, and marker-trait association for 

drought tolerance in rice germplasm of the United States 

2. Identification of drought responsive QTLs during vegetative growth stage of rice using a 

saturated GBS-based SNP linkage map 

3. Genetic analysis of yield and agronomic traits under reproductive stage drought stress in 

rice using a high-resolution linkage map  
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Chapter 2. Evaluation of Genetic Diversity, Population Structure, and Marker-Trait 

Association for Drought Tolerance in Rice Germplasm of the United States 

 

2.1. Introduction 

Rice is an important cereal crop both in terms of production and consumption. Nearly half of 

the world’s population relies on rice for their food. Global per capita rice consumption is 

increasing every year (Mohanty 2013). Various biotic and abiotic factors affect rice production. 

Rice is a hydrophyte and requires a large amount of water for its growth and development. Since 

the majority of rice producing areas in Asia and Africa are dependent on rain, drought stress, 

particularly during reproductive stages, reduces rice yield drastically and threatens food security 

for millions of people. Droughts in California and water restrictions in Texas have negatively 

affected rice production in the USA. It shifted the rice acreage to other crops leading to a decline 

in rice production (Howitt et al. 2015). Drought tolerance studies in rice are necessary to explore 

the available genetic resources, to understand the mechanism of tolerance, and to develop 

varieties suitable for water stress environments. 

Genetic diversity analysis helps to understand the variability present in rice germplasm. 

There are an estimated 140,000 diverse rice genotypes in the world. The gene bank in IRRI has 

preserved ~100,000 genotypes (FAO 2003). These genotypes have several desirable traits, which 

can be exploited for genetic enhancement. Identification of the rice genotypes with enhanced or 

stable yield under drought stress is an important prerequisite for breeding drought tolerant 

varieties. Genetic diversity study unravels such variation among the genotypes and explores the 

desirable agronomic attributes in them. Principal component analysis and cluster analysis based 

on the phenotypic attributes can be used to assess the genetic variability (Islam et al. 2018). Plant 

height, leaf rolling score, grain yield, spikelet fertility, and harvest index are some important 

traits used in drought screening experiments (Kamoshita et al. 2008). 
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The environmental influence on phenotypic trait expression limits the utility of genetic 

diversity studies based on phenotypic traits. On the contrary, assessment of genetic variability 

using molecular markers is useful in the context of crop improvement. Simple sequence repeat 

(SSR) markers have been extensively used to evaluate genetic diversity in rice (Das et al. 2013; 

Anandan et al. 2016). The SSR markers are multi-allelic and can detect more genetic variation 

compared to SNP (Tabanao et al. 2014) and AFLP markers (Xu et al. 2004). Narrow genetic 

diversity in USA rice genotypes was observed in a previous study using SSR markers (Lu et al. 

2005). However, the study was based on cultivars that have been released in the USA during the 

20th century. A comprehensive study of the genetic diversity in all available US germplasm, 

including the recently developed genotypes, is necessary.  

Population structure analysis is a model-based approach that classifies individuals to sub-

populations. It helps to identify the admixture or migrants in a population (Pritchard et al. 2000). 

Identifying the population structure before association analysis reduces type I and type II errors, 

which may arise due to unequal allele frequency between sub-groups (Pritchard et al. 2000).  

Marker trait association is useful to identify the marker loci linked to the traits of interest. It 

is based on the principle of linkage disequilibrium i.e. non-random association between the 

alleles at different loci (Anandan et al. 2016). Compared with the bi-parental mapping approach, 

the association mapping accounts for the recombination events that have been accumulated from 

the past several generations. Therefore, the results from such type of analysis reflect a larger 

amount of variation in the population.  

There has been no comprehensive study on drought tolerance ability of the USA rice 

genotypes till date. The objectives of this study were: (i) to screen the USA rice genotype 

collection for drought tolerance at the reproductive stage under greenhouse conditions, (ii) to 
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study the genetic variation and population structure in US rice collection, and (iii) to identify 

markers associated with agronomic traits, yield and yield-attributing traits under drought stress. 

2.2. Materials and methods 

2.2.1. Plant materials and drought tolerance screening 

The present study material consisted of 205 rice genotypes collected from National Genetic 

Resource Program (NRGS), Louisiana Rice Research Station (LRRS), and International Rice 

Research Institute (IRRI). Of these, 29 rice genotypes collected from IRRI were developed in 

different countries around the world. The remaining 176 rice genotypes were developed in 

various rice growing states of the USA. It included 60 genotypes from Louisiana, 47 from Texas, 

34 from Arkansas, 26 from California, 7 from Missouri, and 2 from Mississippi. The details of 

the genotypes used in the experiment and their states of origin were listed in Appendix Table A1.  

The above rice genotypes were screened for drought tolerance at the reproductive stage under 

greenhouse conditions. The experiment was conducted in a complete randomized design (CRD) 

with two replications. Plants were grown in 2-gallon plastic pots filled with silty clay soil. Three 

plants were allowed to grow in each pot. Plants were allowed to grow under ambient conditions 

with no moisture stress until the emergence of the panicles. Once a plant showed panicle 

initiation, it was removed from the watered bench and placed in a concrete bench without water. 

After exposing the plants to drought stress for one week without irrigation, the plants were 

moved to a bench with water. Various morphological and yield-attributing traits were measured 

to assess the level of drought tolerance in rice. Days to flowering (DTF) was measured as the 

number of days from planting to the emergence of the panicle. Number of tillers (NT) in each 

plant was counted. Leaf rolling score (LRS) was given following the protocol from standard 

evaluation system of rice (IRRI 2002) in the scale of 1-9. Shoot fresh weight (FW) was measured 
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as the fresh weight of the above-ground plant. Shoot dry weight (DW) was measured after drying 

the plant samples in oven at 650C for one week. Plant dry matter content (DMC) was measured 

as the ratio of shoot dry weight to shoot fresh weight and expressed in percentage. Spikelet 

fertility (SF) was calculated as the ratio of the number of fertile spikelets to the total number of 

spikelets in a plant and expressed in percentage. Grain yield (GY) was measured in each of the 

three plants and averaged. Harvest index (HI) was calculated as the ratio of grain yield to shoot 

dry weight and expressed in percentage. 

2.2.2. Genotyping 

Eighty SSR markers were used to genotype 184 rice genotypes. DNA was isolated from 

young leaf tissues of each genotype using CTAB method (Chen and Ronald 1999). 

Quantification of DNA was done using spectrophotometer (Nanodrop ND-1000, Thermofisher 

Scientific, MA, USA). A final DNA concentration of 50ng/µl was used for PCR amplification. 

The PCR reaction mixture contained 3µl of 50ng/µl DNA, 12.8 µl of water, 2.5µl of 10x PCR 

mixture, 2.5µl each of 25mM MgCl2, and 2mM dNTPs, 1.25µl 50 ng/µl of both forward and 

reverse primers, and 1U of Taq polymerase (Promega Corporation, Madison, USA). The PCR 

reaction profile consisted of 35 cycles of the following steps: denaturation at 940C for 45s; 

annealing at 550C for 45s (varied depending on the SSR marker); and extension at 720C for 1 

minute with a final extension at 720C for 5 min. The annealing temperature used for PCR 

reactions was obtained from the Gramene database (http://archive.gramene.org/markers/). The 

PCR products were run in 4.5% SFR agarose gel and were viewed under UV using gel 

documentation system.  
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2.2.3. Statistical analysis 

The mean values of the two replications were used for analysis. Mean, standard deviation 

(SD), genotypic coefficient of variation (GCV), phenotypic coefficient of variation (PCV), and 

heritability (h2) for each of the traits were determined. GCV, PCV, and heritability for each of 

the traits were calculated in Microsoft excel using the following formulae mentioned in Singh 

and Chaudhary (1979):  
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where, σ𝑝
2  = phenotypic variance, σ𝑔

2  = genotypic variance and X  = grand mean of the genotypes 

for the trait of interest. 

Correlations among the traits were calculated using Proc Corr procedure in SAS (SAS Inc. 

2011). Principal component analysis (PCA) was used to study the relationship among the 

genotypes and to identify the important variables contributing to the phenotype. Cluster analysis 

was used to group the genotypes based on the phenotypic traits. PCA and cluster analysis was 

done using JMP (SAS Inc. 2013). 

2.2.4. Genetic diversity and population structure analysis 

The presence and absence of the alleles were scored as 1 and 0, respectively. The expected 

band size of the PCR products was determined from the Gramene website 

(http://www.gramene.org/marker/). Gene diversity, average number of alleles per locus (AL), 
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major allele frequency (MAF), and polymorphism information content (PIC) were calculated 

using PowerMarker software V 3.5 (Liu and Muse 2005). Average number of alleles is the mean 

of the alleles present in all of the genotypes for a specific marker. Major allele frequency is the 

relative frequency of the most common allele for a particular marker. PIC was calculated as 

follows: 

𝑃𝐼𝐶𝑖 = 1 − ∑ 𝑃𝑖
2

𝑛

𝑖=1

 

Where, ‘i’ is the ith allele of the jth marker, n is the number of alleles at the jth marker and P is 

the allele frequency 

A model-based program ‘Structure 2.2’ (Pritchard et al. 2000) was used to assess the 

population structure. The parameters were set to 50,000 burns-in period followed by 50,000 

Markov Chain Monte Carlo (MCMC) simulations. It allowed the admixtures and correlated 

allele frequencies. The genotypes were classified into sub-populations based on its maximum 

membership probability. A genotype was considered to be in a sub-population if >70% of its 

composition came from that group, otherwise it was classified as an admixture. The optimum 

number of sub-population (K) was determined by running K values from 2 to 10. Each K value 

was run ten times. True value of K was determined using adhoc statistics K proposed by 

Evanno et al. (2005) in ‘Structure harvester’ (Earl and Vonholdt 2012).  

The unweighted pair group method with arithmetic mean (UPGMA) clustering was done 

using DARwin software (Perrier and Jacquemoud-Collet 2006). Dissimilarity matrix used for 

constructing the tree was computed using a shared allele index. The Molecular Analysis of 

Variance (MANOVA) among the sub-populations identified by structure was computed using 

GenAlex V 6.5 with 1000 permutations (Peakall and Smouse 2012). 
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2.2.5. Marker-trait associations 

Association of markers with traits was determined using generalized linear model (GLM) and 

mixed linear model (MLM) in TASSEL 5 (Bradbury et al. 2007). A significant marker trait 

association was declared when the p-value was less than 0.05. 

2.3. Results 

Significant variation for all nine traits was observed among genotypes (Table 2.1, Appendix 

Figure A1). The mean days to flowering for all rice genotypes grown under the greenhouse 

condition was ~75 days. The average leaf rolling score after exposure to drought was quite high 

(6.2). The percentage of phenotypic variance explained by our data was greater than 60% for all 

the variables. Both GCV and PCV were high for yield related traits i.e. spikelet fertility, grain 

yield, and harvest index. The GCV and PCV for days to flowering were low (12.5% and 12.9%, 

respectively). High heritability was observed for all the traits. There was a significant positive 

correlation between days to flowering and yield-related traits (Table 2.2). The number of tillers 

was negatively correlated with grain yield (-0.13) and harvest index (-0.17). Significant and 

moderate correlations between leaf rolling score and yield related traits were observed. Plant 

fresh weight did not correlate significantly with yield. However, plant dry matter content was 

significantly and negatively correlated with grain yield (-0.28) and other yield related traits. 

2.3.1. Principal component analysis 

Principal component analysis was done to identify the grouping pattern among the 

genotypes (Figure 2.1a). The first two principal components accounted for 36% and 31% of the 

genetic variance (Figure 2.1b). The scree plot indicated that the two principal components would 

be sufficient to explain most of the variability in the dataset (Figure 2.1c). The eigen values 

(Appendix Table A2) for three principal components were greater than one. These three  
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Table 2.1. Estimation of phenotypic and genetic parameters for various agronomic traits, yield, 

and yield related traits in rice genotypes under drought stress 

Traits Mean Range R-squarea GCVb PCVc Heritabilityd (%) 

Days to flowering  74.9 62-88 0.94 12.5 12.9 93.6 

Number of tillers 4.0 2.5-7 0.69 24.7 33.1 55.6 

Leaf rolling score 6.2 3-9 0.73 28.2 35.2 64.2 

Fresh weight (g/plant) 86.4 29.2-230.4 0.88 48.8 52.5 86.6 

Dry weight (g/plant) 38.8 25-93.5 0.91 36.8 38.7 90.2 

Plant dry matter content (%) 47.9 13.9-90.0 0.76 28.3 33.8 69.9 

Spikelet fertility (%) 30.4 0.1-90.0 0.88 99.1 106.0 87.5 

Grain yield (g/plant) 5.7 0.1-46.3 0.87 104.5 112.7 86.0 

Harvest index (%) 15.4 0.1-62.4 0.88 103.9 111.4 86.9 
aAmount of variation explained by the genotypes for the specific trait; bGenotypic coefficient of 

variation; cPhenotypic coefficient of variation; dBroad sense heritability; eLeaf rolling score was 

measured in the scale of 1-9, 1 being highly tolerant and 9 is highly susceptible 

 

Table 2.2. Pearson correlation coefficients among various agronomic traits, yield, and yield-

related traits in rice genotypes under drought stress 

 DTF NT LRS FW DW PDMC SF GY HI 

DTF 1.00 -0.06 -0.19** 0.55** 0.53** -0.39** 0.19** 0.23** 0.14** 

NT  1.00 -0.07 0.29** 0.25** -0.25** -0.11 -0.13** -0.17** 

LRS   1.00 -0.17** 0.07 0.52** -0.37** -0.45** -0.46** 

FW    1.00 0.84** -0.66** -0.07 0.03 -0.11 

DW     1.00 -0.30** -0.21** -0.13 -0.26** 

PDMC      1.00 -0.21** -0.28** -0.22 

SF       1.00 0.68** 0.70** 

GY        1.00 0.93** 

HI         1.00 
**Significant at 0.01 level of probability; DTF, Days to flowering; NT, Number of tillers; LRS, 

Leaf rolling score; FW, Fresh plant weight (g/plant); DW, Dry plant weight (g/plant); PDMC, 

Plant dry matter content (%); SF, Spikelet fertility (%); GY, Grain yield (g/plant); HI, Harvest 

index (%) 

 

principal components could be used to represent all the variables in the data set. PCA classified 

the nine variables into three groups (Appendix Table A3). Principal Component 1 (PC1) 

represented yield related traits viz. leaf rolling score, spikelet fertility, grain yield, and harvest 

index. PC2 indicated shoot related traits such as days to flowering, fresh weight, dry weight, and 

plant dry matter content and PC3 represented the number of tillers. The most representative 

variable in group 1 and group 2 were harvest index and fresh weight, which represented 73% and 
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68% of the variability within the group, respectively. PCA did not show any distinct clustering of 

the USA genotypes contingent to any state. However, most of the genotypes from California 

were clustered in quadrant 3. 

Figure 2.1. Principal component analysis (PCA) plot of various agronomic traits, yield, and 

yield-related traits in the USA rice genotypes. (a) Scatter plot of the various rice genotypes 

represented in two major principal component axes. No sufficient clustering was observed except 

the California genotypes in the third quadrant. (b) Grouping of the variables in two principal 

components. PC1 represented yield-related traits and PC2 represented the agronomic traits. (c) 

Scree plot showing the eigen values for all the nine principal components 

2.3.2. Cluster analysis 

The nine phenotypic traits in rice under drought stress (Table 2.3) classified the genotypes 

into six clusters (Table 2.4, Figure 2. 2). The level of tolerance of each cluster was assessed by 

mean values of grain yield and yield-related traits (spikelet fertility and harvest index). The 

genotypes clustered in group 6 were considered to be highly tolerant under drought stress. The 
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mean grain yield of genotypes in group 6 was 10.3 g/plant; the spikelet fertility and harvest index 

were 54.4% and 28.4%, respectively. Group 6 included drought tolerant check genotypes (Dular, 

SLO16, and Kalia), salt tolerant genotype (Geumgangbyeo), and Bengal. It also included many 

genotypes from Louisiana, Texas, Arkansas, and California. Group 3 included the rice genotypes 

that were moderately tolerant to drought. It included drought tolerant checks (N-22, Chengri, 

Djogolon, and Pin Kaeo) and some USA rice genotypes (Newbonnet, Cypress, and Caffey). The 

mean spikelet fertility, grain yield, and harvest index for the genotypes in this group were 46%, 

6.3g/plant, and 22%, respectively. Tolerant rice genotypes, Early prolific, Rexona, Hybrid mix, 

and Jefferson, were grouped in Cluster 4. The spikelet fertility, grain yield, and harvest index of 

the genotypes in this group were 25%, 4g/plant and 11%, respectively. Cluster 1, 2, and 5 

contained the genotypes that were susceptible to drought. The mean grain yield for these groups 

was 2.5, 3, and 1.5 g/plant, respectively. Cluster 5 contained the genotypes, which were most 

susceptible to drought. It included popular genotypes Alan, Terso, Tauri Mai, Nipponbare, 

Cocodrie, and Texmont. 

Table 2.3. Mean value of each group identified by cluster analysis for agronomic traits, yield, 

and yield related traits in the USA rice genotypes under drought stress 

Groupa Countb DTF NT LRS FW DW PDMC SF GY HI 

1 (S) 36 83.0 3.8 6.8 121.4 52.8 44.7 15.3 2.5 5.9 

2 (MS) 37 70.3 4.0 6.9 77.3 33.7 47.5 15.1 3.0 8.4 

3 (T) 22 70.1 4.0 6.8 57.2 32.0 57.7 46.0 6.3 21.6 

4 (MT) 17 72.4 6.0 6.0 97.0 42.5 47.1 25.4 4.0 11.1 

5 (HS) 17 66.5 3.3 8.0 39.4 28.7 73.7 13.1 1.5 5.4 

6 (HT) 68 77.2 3.7 4.9 91.6 37.9 42.2 54.4 10.3 28.4 
aSix different groups identified by cluster analysis: susceptible (S),  moderately susceptible 

(MS), tolerant (T), moderately tolerant (MT), highly susceptible (HS), and highly tolerant (HT); 
bNumber of rice genotypes in each group; DTF, Days to flowering; NT, Number of tillers; LRS, 

Leaf rolling score; FW, Fresh plant weight (g/plant); DW, Dry plant weight (g/plant); PDMC, 

Plant dry matter content (%); SF, Spikelet fertility (%); GY, Grain Yield (g/plant); HI, Harvest 

index (%) 
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Table 2.4. Classification of the USA rice genotypes for drought tolerance based on various 

agronomic traits, yield, and yield related traits under drought stress 

Group 

(Level of 

tolerance) 

List of rice genotypes 

Group 1 

(Susceptible) 

Starbonnet-1, Rexark-1, Starbonnet-2, Bluebonnet, Toro, Nova, Glutinous 

selection, FL378, Melrose, Arkansas fortune, Prelude, Rexark Rogue-9262, 

RD, Nova-66, Stormproof, Carolina Gold, Rexark-2, Lady wright, Sierra, 

Zenith-2, Epagri, C-4, Tokalon, Texas Patna, TP-49, Moroberekan, Lacrosse, 

Salvo, Delitus-120, Delitus, Rexark Rogue-9214, Nira-43, Nira, Cheriviruppu, 

Pokkali 

Group 2 

(Moderately 

Susceptible) 

Bond, CL162, Tebonnet, S-201, Calrose, Gulfrose, Early Colusa, Vista, M-

202, Cheniere, M-102, Jackson, Azucena, LA-0702086, R-52, Sabine, M-301, 

Calrose-2, Conway, M-201, Catahoula, Bluebelle, Vegold, Bluebelle-2, 

Pacos, Caloro, MS-1995-15, Gold Zenith, Brazos, Smooth Zenith, Newrex, 

Kamrose, Colusa, Family-24, Nato, Calady, Skybonnet 

Group 3 

(Tolerant) 

Newbonnet, Cypress, Jazzman-2, Jodon, R-50, Pin Kaeo, N-22, Trenasse, 

Presidio, Kokubelle, Lafitte, Mermentau, Dixieblle, Palmyra, Rico-1, Early 

Wataribur, Maybelle, Della-2, Chengri, Kalia-2, Djogolon, Caffey 

Group 4  

(Moderately 

Tolerant) 

Early Prolific, MS-1996-9, CL261, Hybrid Mix, Lebonnet, Lotus, Damodar, 

Rexona, S-301, CL111, M-204, CL131, R27, Neches, Lavaoa, Bellemont, 

Jefferson 

Group 5 

(Highly 

Susceptible) 

Alan, Terso, Tauri Mai, M-103, Carlpearl, Maxwell, Nipponbare, M-401, 

Belle Patna, Earlirose, M302, Cocodrie, Millie, Texmont, Gody, Rossmont, 

Adair 

Group 6 

(Highly 

Tolerant) 

Zenith, Mars, Arkose selection, Saturn Rouge, Della, Hill Long Grain, Nortai, 

Cody, Jasmine-85, Evangeline, Dawn, Asahi, Rey, Acadia, CR5272, Saturn, 

SLO16, Northrose, Bengal, Dellamti, Katy, Taggert, FL478, Lacarus, CL152, 

MO R-500, Arkose, Gold Nato, Earl, LAH10, LA0802140, CL181, Wells, 

Templeton, TCCP-266, CL161, Glutinous Zenith, Hill medium, Magnolia, 

R54, Century Rogue, Toro-2, Short Century, Century Patna, SP14, Orion, 

CSR-11, Jupiter, Mercury, Dellrose, Geumgangbyeo, CL142, Madison, R-

609, Roy J, Neptune, Lacassine, Pirogue, Dellmont, Jazzman, Leah, IRRI147, 

Ecrevisse, PSVRC, Dular, Jes, Kalia, LA110 
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Figure 2.2. Clustering of the rice genotypes based on nine phenotypic traits under drought stress  
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2.3.3 Genetic diversity 

Among the 80 SSR markers used for genotyping, five markers (RM7187, RM192, 

RM126, RM116, and RM512) were monomorphic (Table 2.5). The maximum number of alleles 

was 6 in RM8085. A total of 272 alleles were observed with an average of 3.4 alleles per SSR 

marker. The major allele frequency for the polymorphic markers ranged between 0.39-0.97, with 

an average of 0.74. The genetic diversity of the markers varied from 0.05 (RM598) to 0.66 

(RM8219). Polymorphism information content (PIC) among the polymorphic markers ranged 

between 0.05 (RM598) to 0.58 (RM488, RM8219, and RM 3428). 

Table 2.5. Details of SSR markers used in genotyping of the rice genotypes, major allele 

frequency, number of alleles, genetic diversity, and PIC values 

Marker Chr. 
Positiona 

(Mb) 
Repeat motifb 

Product 

sizec 

(bp) 

Major 

allele 

frequency 

No. of 

alleles 

Genetic 

diversity 
PICd 

RM259 1 7.4 (CT)17 162 0.81 3 0.33 0.29 

RM493 1 12.2 (CTT)9 211 0.73 3 0.43 0.38 

RM466 1 17.2 (AG)17 230 0.59 3 0.56 0.49 

RM129 1 19 (CGG)8 205 0.83 3 0.30 0.27 

RM9 1 23.3 (GA)15GT(GA)2 136 0.78 4 0.36 0.33 

RM488 1 24.8 (GA)17 177 0.53 5 0.63 0.58 

RM246 1 27.3 (CT)20 116 0.82 6 0.33 0.31 

RM302 1 32.9 (GT)30(AT)8 156 0.81 4 0.33 0.30 

RM212 1 33 (CT)24 136 0.87 4 0.24 0.23 

RM8085 1 34.8 (AG)26 126 0.53 6 0.58 0.49 

RM315 1 36.7 (AT)4(GT)10 133 0.76 3 0.39 0.35 

RM431 1 38.8 (AG)16 251 0.80 4 0.34 0.31 

RM104 1 40.1 (GA)9 222 0.66 4 0.48 0.41 

RM84 1 NA (TCT)10 113 0.87 4 0.23 0.22 

RM110 2 1.3 (GA)15 156 0.80 4 0.33 0.30 

RM174 2 7 (AGG)7(GA)10 208 0.58 3 0.56 0.48 

RM550 2 12.4 (CCT)8 231 0.69 3 0.47 0.42 

RM262 2 20.7 (CT)16 154 0.86 3 0.25 0.23 

RM13600 2 24.2 (AG)11 122 0.61 5 0.57 0.51 

Table 2.5. continued       
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Marker Chr. 
Positiona 

(Mb) 
Repeat motifb 

Product 

sizec 

(bp) 

Major 

allele 

frequency 

No. of 

alleles 

Genetic 

diversity 
PICd 

RM263 2 25.8 (CT)34 199 0.72 4 0.45 0.40 

RM240 2 31.4 (CT)21 132 0.73 4 0.44 0.40 

RM211 2 NA (TC)3A(TC)18 161 0.85 4 0.26 0.25 

RM327 2 NA (CAT)11(CTT)5 213 0.78 4 0.36 0.34 

RM60 3 0.1 (AATT)5AATCT(AATT) 165 0.75 4 0.40 0.36 

RM7332 3 0.4 (ACAT)11 205 0.69 2 0.43 0.34 

RM523 3 1.3 (TC)14 148 0.59 4 0.58 0.53 

RM22 3 1.5 (GA)22 194 0.65 3 0.47 0.38 

RM569 3 1.9 (CT)16 175 0.54 4 0.61 0.54 

RM517 3 6.1 (CT)15 266 0.67 3 0.45 0.36 

RM14980 3 13.9 (AG)17 382 0.84 3 0.27 0.24 

RM16 3 23.1 (TCG)5(GA)16 181 0.71 4 0.45 0.41 

RM168 3 28.0 T15(GT)14 116 0.8 5 0.34 0.32 

RM570 3 35.5 (AG)15 208 0.45 4 0.64 0.57 

RM335 4 0.7 (CTT)25 104 0.57 4 0.61 0.56 

RM3471 4 6.3 (CT)21 147 0.59 3 0.57 0.51 

RM6314 4 18.4 (CTT)11 169 0.82 3 0.30 0.26 

RM6250 4 24.8 (CTC)8 187 0.95 2 0.10 0.09 

RM7187 4 27.4 (ATAG)7 157 1.00 1 0.00 0.00 

RM437 5 3.8 (AG)13 275 0.86 3 0.24 0.23 

RM289 5 7.8 G11(GA)16 108 0.86 3 0.25 0.23 

RM598 5 16.7 (GCA)9 159 0.97 3 0.05 0.05 

RM6054 5 22.7 (CCG)12 128 0.78 4 0.34 0.30 

RM274 5 26.8 (GA)15-7-(CGG)5 160 0.84 3 0.28 0.26 

RM587 6 2.3 (CTT)18 217 0.77 3 0.38 0.34 

RM3 6 19.4 (GA)2GG(GA)25 145 0.87 6 0.23 0.23 

RM5371 6 25.8 (TC)13 143 0.76 3 0.38 0.34 

RM461 6 30.1 (AAAC)6 195 0.52 3 0.56 0.46 

RM314 6 NA (GT)8(CG)3(GT)5 118 0.95 3 0.10 0.10 

RM192 7 0.2 (TGG)5 267 1.00 1 0.00 0.00 

RM3449 7 13.4 (CT)19 179 0.72 3 0.44 0.4 

RM5793 7 17.4 (AGC)8 127 0.85 4 0.27 0.26 

RM351 7 23.9 (CCG)9(CGAAG)4 134 0.71 3 0.45 0.40 

RM172 7 29.5 (AGG)6 159 0.51 3 0.56 0.46 

Table 2.5. continued       
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Marker Chr. 
Positiona 

(Mb) 
Repeat motifb 

Product 

sizec 

(bp) 

Major 

allele 

frequency 

No. of 

alleles 

Genetic 

diversity 
PICd 

RM152 8 0.6 (GGC)10 151 0.72 4 0.44 0.4 

RM1376 8 3.1 (AG)31 199 0.59 4 0.58 0.54 

RM515 8 20.2 (GA)11 211 0.52 3 0.61 0.53 

RM256 8 24.2 (CT)21 127 0.93 3 0.13 0.12 

RM126 8 NA (GA)7 171 1.00 1 0.00 0.00 

RM8219 9 1.5 (GA)11 169 0.39 3 0.66 0.58 

RM6475 9 12.8 (GCC)9 209 0.67 4 0.51 0.47 

RM566 9 14.7 (AG)15 239 0.6 5 0.58 0.53 

RM107 9 20 (GA)7 189 0.84 3 0.28 0.26 

RM6707 9 22.2 (TAT)8 113 0.79 3 0.33 0.28 

RM6862 9 NA (TGC)9 113 0.78 2 0.34 0.28 

RM216 10 5.3 (CT)18 146 0.66 5 0.51 0.46 

RM8207 10 9.8 (TTC)23 191 0.52 4 0.63 0.58 

RM596 10 15.2 (GAC)10 188 0.67 2 0.44 0.35 

RM258 10 18 (GA)21(GGA)3 148 0.85 3 0.27 0.24 

RM3451 10 21.5 (CT)19 208 0.77 4 0.37 0.33 

RM271 10 NA (GA)15 101 0.82 4 0.31 0.29 

RM26045 11 1.8 (TC)12 297 0.49 3 0.59 0.51 

RM116 11 5.7 (CT)9 258 1.00 1 0.00 0.00 

RM3428 11 13.4 (CT)18 156 0.42 3 0.65 0.58 

RM209 11 17.8 (CT)18 134 0.6 4 0.58 0.53 

RM7277 11 24.2 (ATCT)10 148 0.83 2 0.29 0.25 

RM7187 11 NA (AT)29(GT)7 146 0.94 4 0.11 0.11 

RM20 12 0.9 (ATT)14 140 0.86 3 0.25 0.23 

RM512 12 5.1 (TTTA)5 214 1.00 1 0.00 0.00 

RM7195 12 9.9 (ATAG)7 138 0.73 4 0.44 0.40 

RM5609 12 23.9 (AAG)9 158 0.84 3 0.28 0.26 

Mean     0.74 3.4 0.37 0.33 
aPhysical position of the marker in the chromosome in megabase (Mb); bRepeat sequence of the 

SSR marker; cExpected size of the PCR product in base pair (bp); dPolymorphism information 

content 
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2.3.4. Population structure analysis 

The population structure of the rice genotypes was analyzed with software ‘Structure’ using 

Bayesian clustering method. The membership fractions of 2-10 were used to classify the 

genotypes (Appendix Figure A2). The log likelihood LnP (D) and Evanno’s deltaK identified 

eight distinct clusters of the population (Figure 2.3, Figure 2.4). The subgroup 1 (SG1) contained 

12 genotypes all of which were japonica type. The other genotypes grouped together in this sub-

group were admixtures. It contained the genotypes from Arkansas and Texas. Subgroup 2 (SG2) 

contained 19 genotypes and some admixtures. This subgroup was mostly dominated by the rice 

genotypes from Texas. All the genotypes in SG2 were japonica subspecies. SG3 contained the 

check genotypes and salt tolerant lines obtained from IRRI. They were mostly of indica 

subspecies. A few Louisiana genotypes and two weedy rice (MS-1995-15 and MS-1996-9) 

genotypes obtained from Mississippi fell in this subgroup. Fourteen genotypes were under SG4. 

All of them, except Moroberekan and R-27, were from Louisiana. SG5 contained four genotypes 

(Delitus-1206, Evangeline, Nira, and Leah) from Louisiana. SG6 contained 26 genotypes from 

Texas and Louisiana. All sixteen genotypes in SG7 were from Louisiana except Pin Kaeo and 

Kalia. Among the 20 genotypes in SG8, three (Arkose, Asahi, and Kamrose) were from 

Arkansas and the others were developed in California. 

In the Unweighted pair group method with arithmetic mean (UPGMA) clustering, Louisiana 

genotypes were separated from other USA rice genotypes (Figure 2.5). The check genotypes 

obtained from IRRI were highly diverse and did not cluster together with the USA genotypes. 

The rice genotypes from Arkansas, California, and Texas were grouped together. However, 

California genotypes were separated from other USA genotypes within the subgroup.  
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Figure 2.3. Estimation of population structure using LnP(D) derived K for determining the 

optimum number of subpopulations. The maximum value of delta K was found to be at K=8, 

which indicated the entire population can be divided into eight subpopulations 

 

2.3.5. Analysis of molecular variance 

Eight subpopulation groups obtained by ‘Structure’ were analyzed for the significant genetic 

differentiation between and among the groups. AMOVA revealed that 42% of the total variation 

was among the groups and 58% of the total variation was within the group (Table 2.6). The 

variation within the group and the variation among the groups were significantly different. 

2.3.6. Marker trait association 

GLM and MLM revealed 53 and 25 marker-trait association for nine yield and agronomic 

traits, respectively (Table 2.7). Five marker trait associations were observed for days to 

flowering using GLM method and two associations were observed using MLM method. RM517 

and RM3471 were associated with days to flowering in both methods. RM168, associated with 

number of tillers, contributed only 3% of the phenotypic variance (PV). GLM and MLM together 
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Figure 2.4. The estimated population structure of rice genotypes (K=8). The y-axis corresponded 

to the subgroup membership and the x-axis represented the genotype. The genotypes with the 

probability of ≥70% were assigned to a specific subgroup, while the others were classified as 

admixtures. 

detected four markers (RM129, RM351, RM256, and RM216) linked to leaf rolling score. 

RM351 in chromosome 7 showed a strong association (6% PV) with leaf rolling score. Besides 

these, GLM detected RM 129, RM152, and RM216, which contributed 5% of the genetic 

variation for leaf rolling score. There were five markers that were significantly associated with 

shoot fresh weight, in both GLM and MLM methods. RM302 in chromosome 1 located at 33 Mb  
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Figure 2.5. Unweighted pair group method with arithmetic mean (UPGMA) tree of rice 

genotypes using SSR markers. Different color codes represented rice genotypes developed in 

various states in the USA. Check genotypes were developed in different countries of the world 

and were obtained from IRRI. 

Table 2.6. Analysis of molecular variance (AMOVA) among the eight sub-populations identified 

by ‘Structure’ software 

Source of variation DFa SSb MSSc Estimated variance % variance P-valuec 

Among Population 7 790.77 112.96 6.34 42 <0.0001 

Within Population 124 1095.75 8.84 8.84 58 <0.0001 

Total 131 1886.52  15.18 100  
aDegree of freedom; b,Sum of squares; cMean sum of squares; dLevel of significance 
 

position showed 5% phenotypic variation for fresh weight. For dry weight, GLM and MLM 

detected 14 and 5 markers, respectively. RM302, RM3471, RM461, and RM8207 explained 9%, 

6%, 8%, and 7% of the phenotypic variability, respectively for dry weight in GLM analysis. 

RM315 showed association with plant dry matter content in both methods. Both GLM and MLM 
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Table 2.7. Significant marker trait association in rice genotypes under drought stress using GLM 

(Q) and MLM (Q+K) model 

Traits Marker Chr. Pos. 

(Mb) 

GLMa (Q) Model MLMb (Q+K) Model 

F-value P-valuec R-squared F-value P-valuec R-squared 

Days to 

flowering 

RM246 1 27.3 6.46 0.01 0.03    

RM22 3 1.5 8.12 <0.01 0.03 7.61 0.01 0.04 

RM517 3 6.2 5.00 0.03 0.02    

RM335 4 0.7 4.38 0.04 0.02    

RM3471 4 6.3 10.25 <0.01 0.05 4.87 0.03 0.03 

No. of Tillers RM168 3 28.1 4.80 0.03 0.03 4.16 0.04 0.03 

Leaf rolling 

score 

RM129 1 19.0 9.23 <0.01 0.05 4.26 0.04 0.02 

RM168 3 28.1 7.69 0.01 0.04    

RM570 3 35.6 8.35 <0.01 0.04    

RM351 7 23.9 10.53 <0.01 0.06 5.25 0.02 0.04 

RM152 8 0.7 10.60 <0.01 0.05    

RM256 8 24.3 4.54 <0.01 0.02 5.51 0.02 0.03 

RM566 9 14.7 4.98 0.03 0.02    

RM216 10 5.4 11.27 <0.01 0.05 4.38 0.04 0.02 

RM7195 12 9.9 4.68 0.03 0.03    

Fresh weight 

RM302 1 33 10.27 <0.01 0.05 10.1 <0.01 0.05 

RM431 1 38.9 6.08 0.01 0.03 6.81 0.01 0.04 

RM3471 4 6.3 5.50 0.02 0.03 4.32 0.04 0.02 

RM289 5 7.8 4.72 0.03 0.02 5.62 0.02 0.03 

RM5371 6 25.8 6.06 0.01 0.03 4.22 0.04 0.02 

RM1376 8 3.2 5.25 0.02 0.03    

RM566 9 14.7 4.58 0.03 0.02    

Dry weight 

RM129 1 19.0 5.98 0.02 0.03    

RM302 1 33.0 20.95 <0.01 0.09 5.74 0.02 0.04 

RM212 1 33.1 4.66 0.03 0.02    

RM262 2 20.8 4.48 0.04 0.02    

RM1498

0 
3 13.9 7.17 0.01 0.03    

RM570 3 35.6 7.58 0.01 0.03    

RM3471 4 6.3 11.72 <0.01 0.06 8.43 <0.01 0.05 

RM289 5 7.8 6.39 0.01 0.03 6.82 0.01 0.04 

RM587 6 2.3 4.98 0.03 0.02 3.98 0.05 0.02 

RM3 6 19.5 4.56 0.03 0.02    

RM5371 6 25.8 7.54 0.01 0.03    

RM461 6 30.1 9.77 <0.01 0.08 8.45 <0.01 0.09 

RM351 7 23.9 8.37 <0.01 0.04    

RM8207 10 9.8 7.48 0.01 0.07    

Plant dry matter  

content 

RM315 1 36.7 6.60 0.01 0.03 6.27 0.01 0.04 

RM6054 5 22.8 4.33 0.04 0.02    

Table 2.7 continued     
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Traits Marker Chr. Pos. 

(Mb) 

GLMa (Q) Model MLMb (Q+K) Model 

F-value P-valuec R-squared F-value P-valuec R-squared 

Spikelet fertility 

RM431 1 38.9 6.09 0.01 0.03 4.44 0.04 0.03 

RM168 3 28.1 5.23 0.02 0.03    

RM570 3 35.6 11.76 <0.01 0.06 7.25 0.01 0.04 

RM6054 5 22.8 8.95 <0.01 0.04 7.17 0.01 0.04 

RM351 7 23.9 6.68 0.01 0.04 5.02 0.03 0.03 

RM216 10 5.4 5.29 0.02 0.03    

Grain  

Yield 

RM523 3 1.3 5.38 0.02 0.03    

RM517 3 6.2 5.50 0.02 0.03    

RM570 3 35.6 5.80 0.02 0.03 4.12 0.04 0.03 

RM351 7 23.9 6.56 0.01 0.04    

RM256 8 24.3 5.47 0.02 0.03    

Harvest  

Index 

RM523 3 1.3 5.41 0.02 0.03    

RM570 3 35.6 5.27 0.02 0.03 4.04 0.04 0.03 

RM598 5 16.8 4.12 0.04 0.02    

RM351 7 23.9 10.51 <0.01 0.06 5.23 0.02 0.07 
aGeneralized linear model; bMixed linear model (MLM accounts for the population structure and 

kinship matrix); cLevel of significance; dVariance contributed by the marker 
 

detected four markers associated with spikelet fertility. RM 570 located in 35.6 Mb region of 

chromosome 3 contributed 6% of the phenotypic variance for spikelet fertility in GLM model. 

GLM detected five markers associated with grain yield. RM570 was detected in both the 

methods. Four marker trait associations were detected for harvest index in rice using GLM 

method. MLM detected two markers (RM570 and RM351) associated with harvest index. 

RM351 showed a strong association with harvest index with a phenotypic variance of 6% and 

7% by GLM and MLM methods, respectively. 

2.4. Discussion 

Exploring the available genetic resources is the first step in any successful breeding program. 

Drought tolerance studies in the USA rice germplasm have been given the least attention until 

now. However, with the current trend of climate change, drought is becoming a major threat to 

crop production, especially in rice. Drought increases the days to flowering, reduces the plant 

height, and reduces spikelet fertility, resulting in reduced grain yield (Kamoshita et al. 2008; 
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Ndjiondjop et al. 2010; Sandhu and Kumar 2017; Bhattarai and Subudhi 2018a). Leaf rolling is 

an important first indicator for measuring drought responsiveness in rice (Prince et al. 2015; 

Bhattarai and Subudhi 2018b). A high average leaf rolling score of USA rice germplasm 

indicated their susceptibility under drought. Correlation studies indicated that leaf rolling score 

negatively affected grain yield and spikelet fertility in rice. Therefore, early selection for yield 

could be done by scoring the leaf rolling under drought stress. A reduction in spikelet fertility 

observed under drought stress was responsible for the drastic reduction in grain yield and harvest 

index. The yield reduction of >50% under drought stress was reported in earlier studies (Vikram 

et al. 2011; Swamy et. al. 2017). The genotypic coefficient of variation and the phenotypic 

coefficient of variation indicated a wide variation in yield, spikelet fertility, and harvest index. It 

indicated that the USA rice germplasm collection include both drought tolerant and susceptible 

genotypes. High heritability for grain yield and yield attributing traits under drought stress 

implied that these traits could be used as primary selection criteria in any drought screening 

experiment (Kumar et al. 2014). Heritability values of >70% for days to flowering and grain 

yield had been reported earlier (Vikram et al. 2011; Dixit et al. 2014; Swamy et al. 2017). The 

heritability for grain yield under drought stress was high compared to that of non-stress (Swamy 

et al. 2017). 

High degree of variation for drought tolerance in USA rice germplasm was evident from the 

principal component analysis. The variation in drought tolerance among rice genotypes was not 

dependent on the state of origin, except for the rice genotypes from California. Most of the 

California genotypes were separated from the rice genotypes from other states and were more 

susceptible to drought. PCA further clarified that the three variables i.e. harvest index, fresh 

weight, and number of tillers, were sufficient to capture most of the variation in the data. These 



 
 

32 

three important traits could be used to screen the rice genotypes for drought tolerance. 

Furthermore, cluster analysis of the USA rice genotypes grouped them according to their level of 

drought tolerance. Tolerant genotypes had high spikelet fertility and grain yield under drought 

compared to that of the susceptible ones. The rice genotypes from various states grouped under 

the drought tolerant category included Zenith, Mars, Arkrose, Asahi, Katy (from Arkansas), 

Dawn, Madison, Hill Long Grain (from Texas), MO R-500 (from Missouri), Rey, Della, Acadia, 

Saturn, Bengal, Dellmati, Taggert, Magnolia, Wells, Templeton (from Louisiana). The inclusion 

of CL142, CL111, and Mermentau under the drought tolerant group in our study was in 

agreement with an earlier study (Singh et al. 2017). Some deep rooting genotypes like 

Moroberekan and Azucena were clustered in the susceptible group. This may be due to the fact 

that these deep rooting genotypes were not able to penetrate into the soil in the pot experiment. 

Some salt tolerant rice genotypes like Damodar, Cypress, Caffey, Jupiter, and Jazzman (De Leon 

et al. 2015) showed drought tolerance under the greenhouse conditions. The rice genotypes 

showing both salt and drought tolerance may be due to similar physiological responses and co-

expression of the genes under both stress conditions (Nounjan et al. 2018). 

The rice genotypes from six major rice growing states of the USA were evaluated for genetic 

diversity using molecular markers. SSR markers were useful to identify small allelic variation 

among the individuals (Tabanao et al. 2014). The average PIC in our study was 0.33 which was 

less compared to the average PIC of 0.54 in the global rice collection (Zhang et al. 2011). The 

PIC value with a range of 0.21 - 0.50 was observed in USA rice in previous studies (Xu et al. 

2004; Lu et al. 2005). A lower PIC value indicated the presence of low genetic diversity in USA 

rice germplasm (Xu et al. 2004; Islam et al. 2018). The genetic diversity of japonica subspecies 

was small compared to its indica counterpart. The average PIC of the global japonica rice 
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collection was 0.42 and the European collection of tropical japonica rice was 0.37 (Courtois et 

al. 2012). The dominance of japonica subspecies in USA rice germplasm collection may be the 

reason for low genetic diversity compared to the global collection. 

A model-based approach of population structure identified eight subgroups. Previous studies 

in rice had identified two to eight subpopulations (Nachimuthu et al. 2015; Anandan et al. 2016; 

Pradhan et al. 2016; Islam et al. 2018). The threshold to identify a genotype into a specific 

subgroup varied from 60-80%. Our stringent threshold of 70% similarity, to be in a specific 

group, identified 49 genotypes as admixtures. Population structure analysis separated the check 

genotypes of indica group from the japonica USA genotypes. The rice genotypes from 

California, Louisiana, and Arkansas were different from each other, whereas the rice genotypes 

from Texas appeared to be a mixture of the rice genotypes from Louisiana and Arkansas. Few 

rice genotypes from Arkansas matched closely with the California rice genotypes. It was 

concluded that the USA rice genotypes could be classified into three major groups depending on 

the state of origin i.e. Louisiana, Arkansas, and California. These differences in rice genotypes 

from the three major rice-growing states may be due to the different rice growing ecosystems 

prevailing in those regions. A similar study in US weedy rice showed variation in the rice 

genotypes according to the region of origin (Shivarin et al. 2010). 

The result of the model-based structure analysis agreed to the results from the UPGMA tree. 

It indicated that the USA rice genotypes were completely different from the Asian rice genotypes 

(Lu et al. 2005) as they were separated distinctly from each other. The two weedy rice genotypes 

from Mississippi (MS-1995-15 and MS1996-9) were closer to the indica type check genotypes. 

Marker-trait association studies have been implemented in many germplasm collections to 

identify the molecular markers linked with a trait of interest (Pradhan et al. 2016; Swamy et al. 
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2017). The marker RM22, associated with days to flowering under drought stress, co-localized 

with previously identified QTLs qDTF3.01 (Bhattarai and Subudhi 2018a), DTY3.2 (Vikram et 

al. 2016) and heading date locus hd9 (Lin et al. 2012). RM246 was linked to days to flowering 

and photosynthetic rate in rice (Ramchander et al. 2016). This explained the probable correlation 

between the photosynthetic rate and the days to flowering. A previously identified marker 

RM517 controlling the DTF QTL (qDTF3.3) (Vikram et al. 2016) was identified in our study. 

RM152 was correlated with the leaf rolling score, which was associated with leaf water content 

and stomatal conductance in rice under drought stress (Ramchander et al. 2016). RM216 co-

localized with the previously identified QTL qDTY10.1 (Vikram et al. 2011). RM302 was linked 

with plant fresh weight and plant dry weight with a phenotypic variance of 9%. This marker co-

localized with the previously identified QTL for leaf water content (Ramchander et al. 2016) 

suggesting dependence of plant biomass on leaf water content. Both plant biomass and leaf water 

content were highly correlated with drought tolerance in rice. The two novel markers (RM8207 

and RM461), identified in this study with a contribution of 7-8% toward phenotypic variance, 

were responsible for plant dry weight under stress. The markers, RM212 and RM262, which co-

localized with the previously identified QTLs for plant height (Prince et al 2015) and grain yield 

(Swamy et al. 2017), were associated with plant dry weight under stress. The markers associated 

with grain yield and yield components could be used directly to select plants for yield. RM431, 

closely linked to QTL qDTY1.1 (Venuprasad et al. 2012), was related to spikelet fertility. A new 

marker, RM351, on chromosome 7 was associated with spikelet fertility, grain yield, and harvest 

index with a phenotypic variance of 7%. RM523 and RM570 were the two important markers 

controlling grain yield and harvest index in rice. These novel markers could be used in drought 

breeding program for direct selection of yield. 
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2.5. Conclusions 

Drought in rice is a major constraint in rice growing areas of the USA and other parts of the 

world. It is predominantly grown in lowland, well-watered condition. However, the disturbance 

in the global climate is limiting the availability of water for agricultural purpose. Since drought 

tolerance studies in the USA rice germplasm are limited, the drought tolerant USA genotypes 

identified in this study will be useful for breeding drought tolerant rice varieties. A low genetic 

diversity observed in USA rice germplasm calls for introduction of the new diverse germplasm 

to enhance genetic diversity. The molecular markers that were associated with the gain yield and 

agronomic traits under drought stress will be useful for marker-assisted breeding to develop 

varieties with enhanced yield and stability under drought prone areas. 
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Chapter 3. Identification of Drought Responsive QTLs During Vegetative Growth Stage of 

Rice Using a Saturated GBS-Based SNP Linkage Map 

 

3.1. Introduction 

Rice is predominantly grown in well-watered conditions. But it is also grown in upland and 

rainfed lowlands, which constitutes 45% of the global rice production area. The majority of the 

rice growing areas in Asia and Africa are dependent on rain (Hijmas and Serraj 2009). The yield 

reduction in rice grown in these drought-affected areas is estimated to be 44-71% (Pandey and 

Bhandari 2009). Therefore, development of drought tolerant rice varieties is necessary to 

improve food security on a global scale. 

Drought may occur at any growth stage of the crop. Early season drought occurs at the 

vegetative stage of growth and affects leaf growth and stem elongation. Intermittent drought 

occurring in between the rainfall intervals affects the development of the root system. Terminal 

drought occurs at the end of the growing period particularly during the flowering stage, affecting 

grain filling and spikelet fertility (Kamoshita et al. 2008). There are three mechanisms of plant’s 

tolerance to drought stress i.e. drought escape, drought avoidance, and drought tolerance (Basu et 

al. 2016). Efforts are made to incorporate these mechanisms for developing drought tolerant rice 

varieties using both conventional and molecular breeding approaches.  

Identification of QTLs for drought tolerance is a preferred breeding strategy to develop 

varieties tolerant to drought. However, the cost involved in phenotyping and genotyping of large 

number of individuals in breeding programs has been a significant bottleneck. The stage of plant 

growth, target environment, and the intensity of drought are important factors to be considered 

while identifying the QTLs for drought tolerance in rice (Kamoshita et al. 2002). Several QTLs  

This chapter, previously published as Bhattarai, U, Subudhi PK (2018) Identification of drought responsive QTLs 

during vegetative growth stage of rice using a saturated GBS-based SNP linkage map. Euphytica 214:38, is 

reprinted here by the permission of Springer Nature 
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have been identified for drought tolerance traits at both seedling and reproductive stages 

(Srividhya et al. 2011; Vikram et al. 2011; Venuprasad et al. 2012; Palanog et al. 2014; Sandhu 

et al. 2014; Saikumar et al. 2014; Prince et al. 2015; Swamy et al. 2017). Consistent and large 

effect QTLs for yield under drought stress are necessary for use in breeding program. Prince et 

al. (2015) identified large effect yield QTLs on chromosomes 1, 4, and 6 which can be 

introgressed to stabilize rice productivity under drought stressed environments. Identification of 

drought responsive QTLs in seedling stage is more focused on root and shoot traits. Deep root 

traits in plants are responsible for tolerance to a drought environment and increased yield (Uga et 

al. 2013). The study on drought tolerance should therefore include identification and 

incorporation of both root and shoot trait QTLs during seedling, vegetative and reproductive 

growth stages of the plant. 

Precise phenotyping of traits associated with drought tolerance is required for precise 

identification of QTLs. Two types of phenotyping strategies have been suggested by Blum 

(2002). The first strategy includes phenotyping of the constitutive traits like flowering time, stay 

green traits, and root depth etc. The second one involves phenotyping of the stress responsive 

traits under drought stress. It includes accumulation of osmolytes, membrane thermostability, 

and leaf water content etc. Drought resistance mechanism in rice includes both drought tolerance 

via osmotic adjustment and drought avoidance aided by a deep root system (Zhang J. et al. 

2001).  

Roots are important plant organs for plant growth and survival. Proper growth of root is 

essential in rice during seedling establishment, nutrient uptake, and water absorption. Longer 

root length, higher root biomass, and increased root shoot ratio are necessary for plants to 
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increase the water absorption capacity and remain productive under drought stress (Comas et al. 

2013). QTLs governing the root traits under drought stress in rice have been identified by various 

researchers (Champoux et al. 1995; Ali et al. 2000; Zhang J et al. 2001; Zhang WP et al. 2001; 

Courtois et al. 2003). A deep root system combined with tissue tolerance and shorter growth 

duration is an important drought avoidance strategy in rice (Champoux et al. 1995; Dixit et al. 

2014). Both additive and epistatic QTLs are important in controlling root traits in rice (Zhang 

WP et al. 2001). Pleiotropic effects have been reported for some highly correlated traits (Ali et 

al. 2000). Therefore, selection for root traits can be done by selecting other secondary traits.  

Identifying the best marker system for QTL analysis is crucial in any molecular breeding 

program. Various markers systems (RFLP, RAPD, SSR, and AFLP etc.) have been used to map 

many agronomic traits on the rice genome (Gowda et al. 2003). However, these marker systems 

are labor-intensive, technically demanding, and are not amenable for generating markers in large 

number for constructing a saturated linkage map. Availability of whole genome sequence 

information of rice made it easy to generate unlimited number of markers in rice. Single 

nucleotide polymorphism (SNP) marker is now preferred by many researchers for genotyping in 

breeding programs due to increased efficiency and cost effectiveness (Swamy and Kumar 2013). 

Genotyping by sequencing (GBS) is amenable for generating large number of markers, which 

can be used to prepare a saturated genetic map to identify QTLs with narrow confidence 

intervals (De Leon et al. 2016). In this study, we mapped the QTLs related to root and shoot 

traits in a recombinant inbred line (RIL) population developed from the cross Cocodrie x N-22 

under drought stress at the vegetative stage using a high-density GBS-based SNP linkage map 

and identified several potential candidate genes involved in enhancing drought tolerance. 
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3.2. Materials and methods 

3.2.1. Plant materials and phenotyping 

A RIL population was developed from a cross involving two rice varieties, N-22 and 

Cocodrie. Cocodrie is a drought susceptible US variety released by the Louisiana State 

University Agricultural Center (Linscombe et al. 2000) and N-22 is a well-known donor for 

drought tolerance (Vikram et al. 2011). The F1 plants were selfed to generate F2 generation 

which was then advanced by single seed descent method to obtain F7:8 RILs. One hundred and 

eighty-one RILs and two parents were phenotyped during the vegetative growth stage for root 

and shoot traits inside a plastic tunnel at Louisiana State University during the summer of 2015 

(June-July) (Appendix Figure B1). Seventy-five-centimeter-long plastic pots were used to allow 

maximum root growth of plants. The pots were filled with sand and soil (1:1) and placed 

vertically in a 30cm deep tray filled with water. Five seeds were planted in each pot and allowed 

to grow for one week. After one week, three plants per pot were retained to grow until the 

measurements were taken. The experiment was conducted in a completely randomized design 

with two replications. There were two sets of experiments: control experiment, where plants 

were allowed to grow in well-irrigated condition and stress experiment, where drought stress was 

imposed. After five weeks of plant growth, water was drained out from the tray in the stress 

experiment and irrigation was withheld for 10 days. Measurements were taken on 45-day old 

plants. The plants along with soil were taken out of the pot and washed with water to remove soil 

from the roots. Root length was measured from the base of the culm to the tip of the root. Shoot 

length was measured from the base of the culm to the tip of the plant. Fresh root mass was 

measured immediately after washing the roots and draining the residual water from it. Fresh 

shoot mass was measured by detaching the shoot from the plant. Dry root and shoot mass were 
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measured after oven drying the samples at 65oC for 5 days. Numbers of tillers were counted. 

Root-shoot ratio was derived as the ratio of dry root weight to dry shoot weight.  

3.2.2. Data analysis 

 The mean value from each pot was used for analysis. The distributions of all the traits were 

visualized by making the frequency distribution graphs in Microsoft Excel 2010. SAS 9.3 was 

used for statistical analysis (SAS Institute 2011). Descriptive statistics were obtained using 

PROC MEANS procedure in SAS. Analysis of variance was done using PROC GLLIMIX in 

SAS with line as a fixed effect and replication as a random effect. Pearson correlation 

coefficients among the traits was computed for both stressed and non-stressed environment using 

PROC CORR procedure in SAS. Broad-sense heritability was estimated on family mean basis 

using the SAS code of Holland et al. (2003).  

3.2.3. DNA Isolation and sequencing 

Leaf samples were collected from 21-day old seedlings of each of the 181 RILs and parents 

(Cocodrie and N-22). DNA was isolated using modified CTAB method (Murray and Thomson 

1980) and purified using Genomic DNA clean and concentrator (Zymo Research Corp. CA, 

USA) following manufacturer’s instruction. DNA quantity was assessed using NanoDrop ND-

1000 Spectrophotometer (Thermo Fisher Scientific, Wilmington, USA) and the samples were 

diluted to 30-100 ng/μL for library construction. ApeKI restriction enzyme was used for library 

preparation following a protocol modified from Elshire et al. (2011). Library preparation and 

single-end sequencing of the GBS libraries were done at the Genomic Diversity Facility of the 

Cornell University. 
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3.2.4. Sequence data analysis and SNP identification 

The raw sequence was analyzed using Tassel 3 GBS pipeline (Glaubitz et al. 2014). A Tassel 

plugin was used to remove the raw sequences without having a barcode. Good barcoded reads 

were aligned with the reference sequence using Bowtie 2 (Langmead and Salzberg 2012). SNP 

calling and filtering were done using the Tassel pipeline. The duplicate SNPs were merged and 

the SNPs with low coverage and high heterozygosity were removed. SNPs having a high rate of 

genotyping error or not in linkage disequilibrium (LD) with other nearby SNPs on the same 

chromosome were purged. The SNPs retained after filtering using Tassel pipeline were subjected 

to manual filtering. The heterozygous SNPs were encoded as missing. SNPs with monomorphic 

allele between the two parental lines were discarded. All the SNP markers with >10% of the 

missing value were removed manually before analysis. A total of 4748 SNP markers were 

retained for linkage map construction. 

3.2.5. Linkage map construction and QTL analysis 

 Linkage map construction and QTL analysis were done using QTL ICIMapping 4.1 (Meng et 

al. 2015). Since our mapping population is a RIL population, we used ‘2’ to represent the 

Cocodrie allele, ‘0’ to represent the N-22 allele and ‘-1’ for any missing data. The grouping of 

the SNP markers was based on their physical map location on the chromosomes. The ordering of 

the markers within each chromosome was based on the recombination events between the 

markers. Recombination distance was calculated using Kosambi mapping function (Kosambi 

1944).  

Eight phenotypic traits were used for QTL mapping. Mean phenotypic data was used for 

analysis. Interval mapping (IM) and Inclusive Composite Interval mapping (ICIM) were used to 

detect the additive QTLs. A logarithm of odds (LOD) value greater than 2 was used to declare 
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the significant QTLs. Since rice is a diploid species and the average chromosome length in our 

experiment was ~140cM, the LOD value 2 is sufficient to explain almost 95 percent of the 

probability of being a significant QTL in that region (Ooijen 1999). A LOD value greater than 3 

was used to declare the significant epistatic QTLs. The left and the right markers flanking the 

QTLs were determined. QTLs were named according to the trait name, chromosome number, 

and their physical map position on the genome. For example, qSL1.38 represents QTL for shoot 

length on chromosome 1 at 38 Mb position of the genome. The parental source of QTL effect 

was determined from the additive effects of the QTLs.  

3.2.6. Identification of candidate gene and gene ontology 

 The position of SNP markers flanking the QTL regions was used against the MSU rice 

reference genome annotation release 7.0 to identify the genes present within the QTL regions. 

All the genes within the identified QTLs were listed. These gene lists for each trait were 

annotated into different gene ontology groups using agriGO gene ontology (GO) analysis toolkit 

(Tian et al. 2017). The significant gene ontology terms were classified into three major 

functional groups: biological process, molecular function, and cellular component.  

3.3. Results 

3.3.1. Phenotypic performance 

There was a significant difference in performance between the parents in both stressed and 

non-stressed environments for all traits (Table 3.1). Mean values for all the traits were higher in 

N-22 compared with Cocodrie and distributions of these traits were normal (Figure 3.1). 

Transgressive segregation of RILs was observed on both sides of the distribution. There were 

significant differences among the RILs for all the traits. Heritability for all the traits was high in 

both environments. 
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Root length of Cocodrie remained the same in both stressed and non-stressed conditions 

whereas it was increased in N-22 under water stress (Appendix Figure B2). The mean root 

lengths of the RILs lie between the parents in both environments. Both parents experienced a 

reduction in shoot length, fresh and dry shoot mass under water stress. N-22 showed a greater 

reduction in shoot length compared with Cocodrie. The mean and range of the RIL populat ion 

for shoot length were smaller under water stress than in the non-stress environment. N-22 had 

greater fresh root mass and shoot mass compared to Cocodrie under both environments. 

Although both parents and the RIL population showed a reduction in fresh root mass under 

drought stress, the reduction was greater in N-22. The number of tillers increased under water 

stress for N-22; however, it was decreased for Cocodrie and the RIL population. Dry shoot mass 

was reduced in both parents under water stress condition. N-22 and RIL mean showed a decrease 

in dry root mass under water stressed condition compared to well-irrigated condition. Root-shoot 

ratio increased for both the parents and RIL population under drought stress.  

3.3.2. Correlations among the traits 

Significant correlation was observed among many of the traits studied (Table 3.2). Root 

length was significantly and positively correlated to most of the traits in both conditions with the 

exception of number of tillers and root shoot ratio under drought stress. However, number of 

tillers and root-shoot ratio were significantly correlated to root length only under non-stress 

condition. Shoot length, fresh root mass, fresh shoot mass, dry root mass, and dry shoot mass 

were significantly and positively correlated to each other in both the conditions. Number of 

tillers was negatively correlated to shoot length but uncorrelated to root-shoot ratio under 

drought stress. The root-shoot ratio was negatively correlated to dry shoot mass and positively 

correlated to dry root mass under drought stressed environment. 
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Figure 3.1. Frequency distribution of various root and shoot traits under water stress condition in 

Cocodrie x N-22 RIL F8 population 

3.3.3. GBS and Linkage map construction 

The molecular linkage map, constructed using 4748 SNP markers, covered 365 Mb of rice 

genome with a total genetic length of 1693cM (Table 3.3). The average length of chromosome 

per SNP was 141 cM with 2.8 markers per cM. There were 2007 recombination points along the 

whole rice genome with 2.4 SNPs per unique recombination points. A total of 19 gaps greater 

than 5 cM length were found along 12 rice chromosomes of which the maximum number of 4 

gaps was on chromosome 1.  

3.3.4. QTL mapping  

Inclusive composite interval mapping (ICIM) identified fourteen QTLs for various roots 

and shoot traits in rice under water stress condition (Table 3.4; Figure 3.2) and nineteen QTLs 

under irrigated condition (Table 3.5). Twenty-seven QTLs were identified by interval mapping 
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(Table 3.6) under water stress condition and thirty-one QTLs were identified under irrigated 

condition (Table 3.7).  

3.3.4.1. Root length QTLs 

Both IM and ICIM mapping detected one QTL (qRL12.04) for root length in chromosome 12 

under water stressed environment (Table 3.4; Table 3.6). The QTL explained 5% of the total 

phenotypic variation and the allele with increased effect was contributed by N-22. Two QTLs for 

root length, qRL2.04 and qRL1.08, identified under non-stress condition (Table 3.5) explained 

7% and 5% of the phenotypic variation, respectively, and the desirable alleles for both the QTLs 

were contributed by N-22. There were four pairs of epistatic QTLs for root length identified by 

interval mapping (Appendix Table B1). None of those epistatic QTLs co-localized with the 

additive QTLs. Among four pairs of epistatic QTLs, three of those have the mean increasing 

effect from N-22 allele and only Cocodrie contributed the trait enhancing allele for qRL6.28. 

These epistatic QTLs contributed 9% of the total phenotypic variation. 

3.3.4.2. Shoot length QTLs 

Five shoot length QTLs were identified under water stressed condition. The qSL1.38 was 

detected in both IM and ICIM methods and it accounted for 19% and 35% of the phenotypic 

variation, respectively. Among the shoot length QTLs under drought stress, qSL1.37and qSL4.06 

were the major effect QTLs with a high LOD score contributing 36% and 18% of the total 

phenotypic variation, respectively. The allele with increasing mean effect was contributed byN-

22 for qSL1.37 whereas it was Cocodrie for qSL4.06. Four additive QTLs were detected for 

shoot length under non-stress condition. Nine pairs of epistatic QTLs were identified for shoot 

length. One of the additive QTL qSL4.25 co-localized with the epistatic QTL. These epistatic 
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Table 3.1. Phenotypic characterization of parents and RIL population developed from the cross Cocodrie x N-22 for various root and 

shoot traits under drought stress and non-stress environments 

Traita 

Non-Stressed Stressed 
% reduction in trait 

mean under stressc 

Cocodrie 

mean 

N-22 

mean 

RIL 

mean 

RIL 

Range 
h2b Cocodrie 

mean 
N-22 

RIL 

mean 

RIL 

Range 
h2 Cocodrie N-22 

RL (cm) 41.75 53.00* 47.39 17.2-74.0 0.72 41.00 64.50** 50.89 28.7-78.6 0.86 1.80 -21.7 

SL (cm) 82.75 103.00* 92.15 33.1-142.2 0.80 70.05 73.65ns 79.66 
40.6-

119.5 
0.90 15.35 29.35 

FRM (g) 1.64 3.27** 2.38 1.0-4.7 0.76 1.45 3.08** 2.08 1.0-5.9 0.84 11.59 5.81 

FSM (g) 6.10 12.74** 8.79 2.9-23.5 0.72 4.05 7.02* 5.20 0.7-15.2 0.81 33.61 44.9 

NT 2.84 4.83** 3.97 1.0-8.7 0.65 2.33 5.84** 3.43 1.0-7.0 0.67 17.96 -20.91 

DSM (g) 2.22 3.20* 3.03 0.6-8.4 0.77 1.69 2.23* 1.90 0.8-3.7 0.72 23.87 30.31 

DRM 

(g) 
0.19 0.50** 0.40 0.03-1.37 0.86 0.24 0.46** 0.37 0.07-0.83 0.80 26.32 8.00 

RSR 0.08 0.16** 0.13 0.03-0.47 0.81 0.14 0.21** 0.19 0.05-0.69 0.73 -75.00 -31.26 
a RL, Root length; SL, Shoot length; FRM, Fresh root mass; FSM, Fresh shoot mass; NT, Number of tillers; DSM, Dry shoot 

mass; DRM, Dry root mass; RSR, Root shoot ratio; CV, coefficient of variation. b h2: Broad sense heritability on family mean 

basis.*, **: Significant difference between the means of Cocodrie and N-22 at 5% and 1% level of probability, respectively. ns not 

significant c Negative values indicate increase in trait means. 
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Table 3.2. Pearson correlation matrix among various root and shoot traits in the Cocodrie x N-22 RIL population under drought stress 

and non-stress environments. Values above diagonal are the correlation among traits under non-stress condition and values below 

diagonal are the correlations among traits under drought stress condition 

Traita RL (cm) SL (cm) FRM(g) FSM (g) NT DSM (g) DRM (g) RSR 

RL (cm) 1.00 0.17* 0.47*** 0.53*** 0.28*** 0.45*** 0.46*** 0.31*** 

SL (cm) 0.25*** 1.00 0.22** 0.30*** -0.12 0.46*** 0.37*** 0.12 

FRM (g) 0.26*** 0.21** 1.00 0.57*** 0.42*** 0.51*** 0.52*** 0.32*** 

FSM (g) 0.38*** 0.32*** 0.57*** 1.00 0.43 0.63*** 0.54*** 0.26*** 

NT 0.07 -0.31*** 0.26*** 0.42*** 1.00 0.27*** 0.38*** 0.31*** 

DSM (g) 0.23** 0.54*** 0.40*** 0.51*** 0.15* 1.00 0.58*** 0.07 

DRM (g) 0.16* 0.34*** 0.21** 0.23** 0.15* 0.41*** 1.00 0.80*** 

RSR 0.04 0.02 -0.03 -0.07 0.09 -0.23** 0.71*** 1.00 
a RL, Root length; SL, Shoot length; FRM, Fresh root mass; FSM, Fresh shoot mass; NT, Number of tillers; DSM, Dry shoot 

mass; DRM, Dry root mass; RSR, Root shoot ratio. * significant at 0.05 level of probability; ** significant at 0.01 level of 

probability; *** significant at <0.001 level of probability. 
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Table 3.3. Summary of the SNP markers distribution and genome coverage in the linkage map of the Cocodrie x N-22 RIL population 

Chr 

No. of 

SNP 

Markers 

Chromosome 

length 

coverage 

(bp)a 

Genetic 

length 

(cM)b 

No. of 

recombination 

points 

No. of SNP 

markers/cM 

No. of SNP 

markers/unique 

position 

Minimum 

interval 

(cM) 

Maximum 

interval 

(cM) 

Average 

interval 

(cM) 

No. 

of 

gaps 

>5cM 

1 711 43219493 238.8 278 2.98 2.56 0.30 7.54 0.86 4 

2 596 35384138 161.9 210 3.68 2.84 0.30 8.86 0.77 2 

3 509 35756527 187.1 258 2.72 1.97 0.30 4.73 0.73 0 

4 288 35464762 158.9 148 1.81 1.95 0.31 7.20 1.07 3 

5 320 29187384 120.9 158 2.65 2.02 0.30 6.34 0.77 1 

6 357 29702863 141.1 157 2.53 2.27 0.30 9.74 0.90 1 

7 394 29327089 141.6 165 2.78 2.38 0.30 7.42 0.86 1 

8 279 28081119 125.1 137 2.23 2.04 0.30 7.32 0.91 1 

9 354 22348084 98.8 144 3.58 2.46 0.30 7.94 0.69 1 

10 310 22051113 95.8 115 3.23 2.70 0.30 5.09 0.83 1 

11 306 27689871 111.9 113 2.73 2.71 0.30 5.80 0.99 2 

12 324 27095052 110.9 124 2.92 2.61 0.30 9.44 0.90 2 

Total 4748 365307495 1692.8 2007 33.86 28.51 3.61 87.42 10.28 19 

Mean 395.7 30442291.3 141.1 167.3 2.82 2.38 0.30 7.28 0.84 1.58 
a Physical length of chromosome in base pairs (bp).  
b Length of the chromosome based on recombination events and measured in centimorgan (cM).
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QTLs showed 3-9% of the phenotypic variation. The alleles for four of the nine epistatic QTLs 

were contributed by N-22 and the alleles for other five epistatic QTLs were from Cocodrie. 

3.3.4.3. Fresh root mass QTLs 

One additive QTL (qFRM1.36), detected by both IM and ICIM for fresh root mass under water 

stress condition, explained 7% of the total phenotypic variation and the desirable allele was 

contributed by N-22. Two QTLs (qFRM1.37 and qFRM7.11) for fresh root mass under non-

stress condition accounted for 11% and 5% of the phenotypic variation, respectively. Ten pairs 

of epistatic QTLs were found for fresh root mass. The alleles with increasing effect for all of 

these epistatic QTLs were from N-22. None of the additive QTL for fresh root mass co-localized 

with the epistatic QTLs. 

3.3.4.4. Fresh shoot mass QTLs 

One additive QTL (qFSM8.11) explaining 5% of the total phenotypic variation for fresh 

shoot mass was identified on chromosome 8 by both IM and ICIM mapping under water stress 

condition. The increasing mean effect for this QTL was contributed by Cocodrie allele. Four 

additive QTLs were identified for fresh shoot mass during irrigated condition with each  

explaining 4-8% of the total phenotypic variation. Seven pairs of epistatic QTLs were detected 

for fresh root mass. None of these epistatic QTLs co-localized with the additive QTLs. Four and 

five pairs of interacting QTLs have increasing effects from N-22 and Cocodrie, respectively. 

3.3.4.5. Number of tillers QTLs 

Two additive QTLs on chromosome 3 were detected for number of tillers under drought 

stress. Each QTL explained 7% of the phenotypic variation and the allele for increasing mean 

effect in these QTLs were contributed by N-22. Two pairs of epistatic QTLs were detected for 

number of tillers in rice under drought. N-22 allele contributed toward increased effect at both of 
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Table 3.4. Additive QTLs for various root and shoot related traits in the Cocodrie x N-22 RIL population under water stressed 

condition identified by ICIM 

Traita QTLb Chr 
Position 

(cM) 
Left Marker Right Marker 

Interval 

Size (bp) 
LODc 

PVE 

(%)d 

Additive 

effect 

Number 

of genes 

in the 

QTL 

Parental 

allele with 

increasing 

effect 

RL qRL12.04 12 30 S12_4402981 S12_4833513 430532 2.2 5.1 -2.35 49 N-22 

SL 

qSL1.11 1 68 S1_11086521 S1_11356196 269675 2.2 1.6 1.90 38 Cocodrie 

qSL1.38 1 188 S1_38023681 S1_38286772 263091 30.4 35.8 -8.87 43 N-22 

qSL3.24 3 109 S3_24014766 S3_24061769 47003 2.7 2.1 2.18 9 Cocodrie 

qSL4.06 4 32 S4_6504436 S4_6630807 126371 17.6 17.9 6.23 19 Cocodrie 

qSL4.29 4 115 S4_29179250 S4_29482850 303600 3.2 2.6 2.40 43 Cocodrie 

FRM qFRM1.36 1 180 S1_36461341 S1_36027561 433780 2.6 6.7 -0.15 65 N-22 

FSM qFSM8.11 8 53 S8_11845128 S8_15630955 3785827 2.2 5.4 0.40 539 Cocodrie 

NT 
qNT3.34 3 180 S3_34874041 S3_35150742 276701 3.3 6.4 -0.19 52 N-22 

qNT3.28 3 135 S3_28513305 S3_28809504 296199 3.4 6.8 -0.19 44 N-22 

DRM 

qDRM1.11 1 68 S1_11086521 S1_11356196 269675 2.4 5.5 0.03 38 Cocodrie 

qDRM1.37 1 184 S1_37376121 S1_37561874 185753 3.4 7.6 -0.04 35 N-22 

qDRM8.25 8 104 S8_25099054 S8_25341501 242447 2.2 4.4 -0.03 35 N-22 

DSM qDSM1.38 1 188 S1_38023681 S1_38286772 263091 4.9 11.3 -0.13 43 N-22 
a RL, Root length; SL, Shoot length; FRM, Fresh root mass; FSM, Fresh shoot mass; NT, Number of tillers; DRM, Dry root mass; 

DSM, Dry shoot mass. 
b qRL, qSL, qFRM, qFSM, qNT, qDRM, and qDSM are QTLs for root length, shoot length, fresh root mass, fresh shoot mass, 

number of tillers, dry root mass, and dry shoot mass, respectively. The number before the decimal indicate chromosome and the 

number after decimal indicate the physical location of the QTL in mega base pair.  
c LOD: Logarithm of odds 
d PVE (%): Percentage of phenotypic variance explained by the QTL 
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Table 3.5. Additive QTLs for various root and shoot related traits in the Cocodrie x N-22 RIL population under irrigated condition as 

identified by ICIM 

Trait a QTLb Chr. 
Position 

(cM) 
Left Marker Right Marker 

Interval 

size (bp) 
LODc 

PVE 

(%)d 

Additive 

effect 

No. of 

genes 

in the 

QTL 

Parental 

allele with 

increasing 

effect 

RL 
qRL1.08 1 49 S1_8361311 S1_8402167 40856 2.9 5.0 -2.18 7 N-22 

qRL2.04 2 22 S2_4310292 S2_4408126 97834 3.4 8.4 -2.82 15 N-22 

SL 

qSL1.14 1 80 S1_14612053 S1_17898781 3286728 2.1 3.0 2.94 477 Cocodrie 

qSL1.38 1 188 S1_38023681 S1_38286772 263091 23.4 42.3 -10.29 43 N-22 

qSL4.32 4 132 S4_32621161 S4_33263832 642671 3.3 4.6 3.38 100 Cocodrie 

qSL5.23 5 93 S5_23719865 S5_23790439 70574 2.3 3.0 -2.70 14 N-22 

FRM 
qFRM1.37 1 182 S1_37089296 S1_37273187 183891 5.1 11.2 -0.22 25 N-22 

qFRM7.11 7 54 S7_11034818 S7_12924619 1889801 2.6 5.4 0.15 258 Cocodrie 

FSM 

qFSM1.38 1 190 S1_38286772 S1_38611845 325073 3.7 7.8 -0.76 50 N-22 

qFSM3.13 3 90 S3_13604998 S3_16656021 3051023 3.2 6.6 0.70 450 Cocodrie 

qFSM5.20 5 73 S5_20111573 S5_20319917 208344 2.6 5.4 -0.63 26 N-22 

qFSM10.11 10 41 S10_11045261 S10_11388953 343692 2.3 4.4 0.59 43 Cocodrie 

DRM 

qDRM2.03 2 19 S2_3854717 S2_4310292 455575 2.0 3.2 -0.04 72 N-22 

qDRM3.30 3 157 S3_30663783 S3_30800456 136673 2.2 3.2 -0.04 26 N-22 

qDRM6.10 6 58 S6_10836601 S6_11170855 334254 3.9 6.0 0.06 48 Cocodrie 

qDRM6.06 6 34 S6_6463372 S6_7403500 940128 6.7 10.8 -0.08 135 N-22 

DSM 
qDSM1.37 1 182 S1_37089296 S1_37273187 183891 4.6 11.8 -0.30 25 N-22 

qDSM7.05 7 110 S7_5450298 S7_5566085 115787 2.0 4.3 0.18 24 Cocodrie 

RSR qRSR2.03 2 17 S2_3854717 S2_4310292 455575 3.9 8.2 -0.02 73 N-22 
a RL: Root length, SL: Shoot length, FRM: Fresh root mass, FSM: Fresh shoot mass, NT: Number of tillers, DRM: Dry root mass, 

DSM: Dry shoot mass, RSR: Root shoot ratio. 
b The number before the decimal indicate chromosome and the number after decimal indicate the physical location of the QTL in 

mega base pair.  
c LOD: Logarithm of odds.  
d PVE (%): Percentage of phenotypic variance explained by the QTL.
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Table 3.6. Additive QTLs for various root and shoot related traits identified by Interval Mapping (IM) in Cocodrie x N-22 RIL 

population under water stressed condition 

Phenotype QTLa Chr 
Position 

(cM) 
Left Marker Right Marker 

Interval 

Size (bp) 

LOD 

b 

PVE 

(%)c 

Additive 

effect 

Number 

of genes 

in the 

QTL 

Parental 

allele with 

increasing 

effect 

Root 

Length-IM 
qRL12.04 12 30 S12_4402981 S12_4833513 430532 2.2 5.1 -2.35 49 N-22 

Shoot 

length-IM 

qSL1.37 1 182 S1_37089296 S1_37273187 183891 17.4 16.0 -8.02 25 N-22 

qSL1.38 1 188 S1_38023681 S1_38286772 263091 22.3 19.3 -8.75 43 N-22 

qSL1.39 1 200 S1_39692180 S1_39526933 165247 9.9 9.7 -6.16 25 N-22 

qSL4.25 4 97 S4_25750452 S4_27194959 1444507 2.6 2.8 3.31 226 Cocodrie 

qSL7.005 7 1 S7_553805 S7_612387 58582 2.7 2.9 3.38 8 Cocodrie 

qSL7.03 7 24 S7_3920648 S7_4483382 562734 3.3 3.8 3.87 79 Cocodrie 

qSL9.03 9 4 S9_3884948 S9_4427876 542928 2.5 2.7 3.23 73 Cocodrie 

Fresh Root 

Mass-IM 

qFRM1.22a 1 92 S1_22128076 S1_22191567 63491 2.5 4.4 0.22 7 Cocodrie 

qFRM1.22b 1 98 S1_22796323 S1_22958631 162308 2.2 3.8 0.20 23 Cocodrie 

qFRM1.36 1 180 S1_36461341 S1_36027561 433780 2.7 4.7 -0.16 65 N-22 

qFRM5.28 5 119 S5_28710628 S5_28744011 33383 2.0 3.6 -0.14 5 N-22 

Fresh 

Shoot 

Mass-IM 

qFSM8.11 8 53 S8_11845128 S8_15630955 3785827 2.2 5.4 0.40 539 Cocodrie 

No. of 

Tillers-IM 

qNT3.34 3 180 S3_34874041 S3_35150742 276701 2.0 3.7 -0.17 52 N-22 

qNT3.28 3 135 S3_28513305 S3_28809504 296199 3.4 6.3 -0.22 44 N-22 

qNT3.27 3 126 S3_27263281 S3_27364861 101580 3.2 5.8 -0.21 15 N-22 

qNT3.06 3 35 S3_6156903 S3_6332631 175728 2.3 4.1 0.17 26 Cocodrie 

qNT4.05 4 30 S4_5728245 S4_6059987 331742 2.7 5.1 -0.19 52 N-22 

qNT5.23 5 89 S5_23200302 S5_23218617 18315 2.7 4.9 0.19 1 Cocodrie 

Dry Root 

Mass-IM 

qDRM1.21 1 89 S1_21626281 S1_21068987 557294 2.4 5.2 0.04 72 Cocodrie 

qDRM1.38 1 188 S1_38023681 S1_38286772 263091 2.7 6.1 -0.03 43 N-22 

qDRM8.25 8 104 S8_25099054 S8_25341501 242447 2.3 4.9 -0.03 36 N-22 

Table 3.6. continued           
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Phenotype QTLa Chr 
Position 

(cM) 
Left Marker Right Marker 

Interval 

Size (bp) 

LOD 

b 

PVE 

(%)c 

Additive 

effect 

Number 

of genes 

in the 

QTL 

Parental 

allele with 

increasing 

effect 

Dry Shoot 

Mass-IM 

qDSM1.28 1 134 S1_28234412 S1_28190405 44007 2.6 3.7 -0.10 4 N-22 

qDSM1.36 1 180 S1_36461341 S1_36027561 433780 4.5 6.4 -0.13 65 N-22 

qDSM1.38 1 188 S1_38023681 S1_38286772 263091 4.9 7.1 -0.13 43 N-22 

qDSM8.08 8 47 S8_8971655 S8_9136647 164992 2.2 3.2 0.09 20 Cocodrie 

Root 

Shoot 

ratio-IM 

qRSR10.11 10 41 S10_11045261 S10_11388953 343692 3.0 8.5 -0.02 42 N-22 

a qRL, qSL, qFRM, qFSM, qNT, qDRM, qDSM, and qRSR are QTLs for root length, shoot length, fresh root mass, fresh shoot mass, 

number of tillers, dry root mass, dry shoot mass, and root shoot ratio, respectively. The number before the decimal indicate 

chromosome and the number after decimal indicate the physical location of the QTL in mega base pair;  b LOD is logarithm of odds; c 

PVE (%) is percentage of phenotypic variance explained by the QTL 
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Table 3.7. Additive QTLs for various root and shoot related traits identified by Interval Mapping (IM) in the Cocodrie x N-22 RIL 

population under irrigated condition 

Phenotype QTLa Chr. 
Position 

(cM) 
Left Marker Right Marker 

Interval 

size (bp) 
LODb 

PVE 

(%)c 

Additive 

effect 

No. of 

genes in 

the QTL 

Parental 

allele with 

increasing 

effect 

Root 

Length -

IM 

qRL2.04 2 22 S2_4310292 S2_4408126 97834 3.4 7.1 -2.82 15 N-22 

Shoot 

Length -

IM 

qSL1.21 1 91 S1_21230560 S1_21995746 765186 2.9 2.4 5.32 110 Cocodrie 

qSL1.33 1 168 S1_33239950 S1_33415088 175138 5.1 4.2 -5.35 22 N-22 

qSL1.35 1 178 S1_35776217 S1_35761539 -14678 13.4 9.9 -8.30 1 N-22 

qSL1.37 1 182 S1_37089296 S1_37273187 183891 14.9 11.1 -8.81 25 N-22 

qSL1.38 1 189 S1_38023681 S1_38286772 263091 21.6 14.9 -10.18 41 N-22 

qSL1.39 1 200 S1_39692180 S1_39526933 165247 6.7 5.3 -6.06 25 N-22 

Fresh 

Root 

Mass- IM 

qFRM1.37 1 182 S1_37089296 S1_37273187 183891 3.9 6.8 -0.20 25 N-22 

qFRM1.38 1 190 S1_38286772 S1_38611845 325073 3.8 6.5 -0.19 51 N-22 

Fresh 

Shoot 

Mass-IM 

qFSM1.36 1 181 S1_36252166 S1_37068548 816382 2.8 4.8 -0.70 119 N-22 

qFSM1.38 1 190 S1_38286772 S1_38611845 325073 3.2 5.5 -0.75 51 N-22 

qFSM3.16 3 89 S3_16260951 S3_16599892 338941 2.4 4.8 0.71 40 Cocodrie 

qFSM3.12 3 72 S3_12741486 S3_12847784 106298 2.2 3.7 0.61 20 Cocodrie 

qFSM6.06 6 34 S6_6463372 S6_7403500 940128 2.1 3.6 -0.60 134 N-22 

Number of 

Tillers - 

IM 

qNT3.31 3 158 S3_31005190 S3_31490364 485174 3.3 4.7 -0.26 71 N-22 

qNT6.27 6 116 S6_27149332 S6_27427622 278290 3.5 5.1 -0.27 46 N-22 

qNT6.26 6 111 S6_26499660 S6_26675063 175403 3.3 5.0 -0.27 23 N-22 

qNT6.25 6 106 S6_25146090 S6_25717883 571793 3.1 4.7 -0.26 89 N-22 

qNT6.24 6 95 S6_24332630 S6_24728241 395611 2.7 4.2 -0.25 48 N-22 

Table 3.7. continued           
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Phenotype QTLa Chr. 
Position 

(cM) 
Left Marker Right Marker 

Interval 

size (bp) 
LODb 

PVE 

(%)c 

Additive 

effect 

No. of 

genes in 

the QTL 

Parental 

allele with 

increasing 

effect 

Dry Root 

Mass – IM 

  

qDRM2.03 2 20 S2_3854717 S2_4310292 455575 2.1 3.8 -0.05 73 N-22 

qDRM3.30 3 157 S3_30663783 S3_30800456 136673 2.2 3.7 -0.05 26 N-22 

qDRM3.16 3 91 S3_16459035 S3_16450935 8100 3.5 5.9 0.06 1 Cocodrie 

qDRM3.13 3 78 S3_13860899 S3_13948553 87654 3.8 6.5 0.07 10 Cocodrie 

qDRM6.06 6 34 S6_6463372 S6_7403500 940128 3.3 5.6 -0.06 135 N-22 

Dry Shoot 

Mass - IM 

qDSM1.37 1 182 S1_37089296 S1_37273187 183891 4.8 8.1 -0.32 25 N-22 

qDSM1.38 1 190 S1_38286772 S1_38611845 325073 4.4 7.1 -0.30 51 N-22 

qDSM3.12 3 74 S3_12907150 S3_12946497 39347 2.9 4.6 0.24 3 Cocodrie 

qDSM10.05 10 26 S10_5341617 S10_5412997 71380 3.0 5.1 0.27 11 Cocodrie 

Root 

Shoot 

Ratio - IM 

qRSR2.03 2 17 S2_3854717 S2_4310292 455575 3.4 6.8 -0.02 73 N-22 

qRSR3.34 3 180 S3_34874041 S3_35150742 276701 2.0 4.2 -0.01 53 N-22 

qRSR6.06 6 33 S6_6463372 S6_7403500 940128 2.3 4.8 -0.02 135 N-22 
a qRL, qSL, qFRM, qFSM, qNT, qDRM, qDSM and qRSR are QTLs for root length, shoot length, fresh root mass, fresh shoot mass, 

number of tillers, dry root mass, dry shoot mass and root shoot ratio respectively. The number before the decimal indicate 

chromosome and the number after decimal indicate the physical location of the QTL in mega base pair.  b LOD is logarithm of odds c 

PVE (%) is percentage of phenotypic variance explained by the QTL
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Figure 3.2. Map positions of QTLs for eight root and shoot traits on the genetic linkage map 

developed in an F8 RIL population from the cross Cocodrie x N-22. QTLs for these traits under 

drought stress and irrigated conditions were identified using ICIM mapping procedure. The 

QTLs expressed under drought stress are indicated by the arrow heads and the QTLs expressed 

under irrigated condition are indicated by the triangle. The QTL alleles contributing toward 

increased mean by N-22 are indicated by the arrows pointing upwards and the QTL alleles 

contributed by Cocodrie are shown by the arrows pointing downwards. Vertical triangles 

indicated the increasing mean effect for the trait by N-22 allele, whereas the triangle pointing 

downwards showed the Cocodrie allele responsible for the increasing effect on the trait. Dark 

regions in the linkage map are the marker saturated regions and the white regions are the gaps 

between the markers. 

 

these pairs of interacting QTLs. These interacting QTLs were independent of the additive QTLs 

identified for number of tillers. 

3.3.4.6. Dry root mass QTLs 

ICIM detected three QTLs for dry root mass under drought stress condition. The qDRM8.25 was 

identified in both IM and ICIM mapping procedures. Each of these QTLs accounted for 4-7% of 

the total variation in phenotype. N-22 alleles were responsible for increasing effect for dry
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root mass QTLs qDRM1.11 and qDRM1.37. However, Cocodrie allele increased mean 

phenotypic value at the qDRM8.25. Four QTLs were detected for dry root mass during normal 

condition. Three of those QTLs (qDRM2.03, qDRM3.30, and qDRM6.06) were detected by both 

IM and ICIM methods. There were four pairs of epistatic QTLs identified for dry shoot mass. No 

additive QTLs co-localized with the identified epistatic QTLs.  

3.3.4.7. Dry shoot mass QTLs 

One dry shoot mass QTL (qDSM1.38) was detected by both IM and ICIM mapping. It 

accounted for 11% of the total phenotypic variation and the alleles for increased mean effect 

were contributed by N-22. Two QTLs were detected for dry shoot mass under non-stress 

condition. These QTLs individually explained 4-11% of the variation in phenotype. Seven pairs 

of epistatic QTLs were diagnosed for dry shoot mass. The increasing effects in three pairs of 

these QTLs were contributed by N-22 allele and the mean increasing effects in other four pairs of 

QTLs were contributed from Cocodrie allele. 

3.3.4.8. Root shoot ratio QTLs 

One QTL (qRSR2.03) was detected by ICIM for root shoot ratio under irrigated condition. It 

accounted for 8% of the total phenotypic variation and the increasing mean effect was due to the 

contribution from N-22 allele. Ten pairs of epistatic QTLs were identified for root shoot ratio. 

The mean increasing effect in six of these QTL pairs were due to N-22 alleles and the increasing 

effects in four other QTL pairs were due to Cocodrie alleles.   

3.3.5. Mapping of segregation distortion loci 

Mapping of segregation distortion loci showed nine regions that deviated from 1:1 

segregation ratio (Appendix Table B2). Three segregation distortion loci were observed in each 

of the chromosome 1 and 10, one each on chromosomes 2, 4, and 12. Among the nine, three of 



 

61 

the distortion loci deviated more towards Cocodrie and six loci towards N-22. The size of the 

segregation distortion loci varied from 25 kb on chromosome 12 to 325 kb on chromosome 10. 

Segregation distortion loci on chromosome 1 at 95 cM and 109 cM position were highly skewed 

in favor of N-22. None of the additive and epistatic QTLs identified in our study co-localized 

with the segregation distortion loci. 

3.3.6. Co-localization with previously identified QTLs  

To study the robustness of our QTL mapping, we conducted a survey to determine the 

congruency of the previously reported QTLs with the QTLs identified in this study. Four of our 

shoot length QTLs co-localized with the previously reported QTLs (Table 3.8). The QTLs, 

qSL1.37 and qSL1.38, located within the chromosomal region of 37,851,779 - 38,894,388 bp in 

chromosome 1, co-localized with plant height QTL qDTH1.1 (Drought tolerant height) (Vikram 

et al. 2011). Two QTLs at the chromosomal location (26,857,374 - 30,334,896 bp), qSL4.25 and 

qSL4.29, were similar to qPH4 detected by Xu et al. (2004). QTL for tiller number qNT3.28 was 

located in the same chromosomal region as qNOT3.2 (Hemamalini et al. 2000). Two QTLs for 

dry root mass (qDRM1.38 and qDRM1.37) co-localized with the two previously reported dry 

root mass QTLs in 38 Mb and 37 Mb region of chromosome 1, respectively (Shen et al. 2001; 

Nguyen et al. 2004). Dry shoot mass QTL (qDSM1.38) was located at the same chromosomal 

region to the previously reported qDTB1.1 (Vikram et al. 2011). Dry shoot mass QTL qDSM8.08 

co-localized with shoot dry weight QTL reported by Nagata et al. (2002). QTLs for fresh root 

mass (qFRM1.22b) was congruent with the same chromosomal region as previously identified 

QTL FRW1c (Li et al. 2005). The localization of some of our QTLs with the previously reported 

QTLs showed the consistency and reliability of our mapping procedures. 
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3.3.7. Gene ontology analysis 

Due to high saturation of SNP markers on the linkage map, numbers of genes in QTL confidence 

intervals were as low as nine genes for qSL3.24 whereas there were 539 genes for qFSM8.11. 

The total numbers of genes identified in 14 QTLs under drought stress were 1052 with an 

average of 75 genes per QTL (Additional table 1, Available upon request). The listed candidate 

genes for each trait were classified for gene ontology groups (Table 3.9; Additional table 2, 

Available upon request). Among 49 genes for QTL controlling root length, there were 22 genes 

that were annotated for at least one gene ontology group. There were 10 significant gene 

ontology terms for the genes controlling root length. Seven gene ontology terms were specific to 

biological processes and 3 were specific to molecular function. The percentage of genes assigned 

to at-least one gene ontology term ranged from 45% for root length to 72% for fresh root mass. 

Among 1052 genes, 534 genes were assigned to at least one gene ontology term. These 534 

annotated genes were classified into 362 significant gene ontology terms. There were 199 gene 

ontology terms identified as biological processes, 142 as molecular function and 21 as cellular 

component. 

3.4. Discussion 

Drought is a major abiotic stress which reduces rice productivity in both uplands and rainfed 

lowlands. Understanding the genetics of drought tolerance is necessary to develop rice varieties 

that can maintain high yield in drought affected regions. The QTL mapping is a useful tool to 

identify the chromosomal regions and the genes associated with drought tolerance. The QTL 

analysis using linkage maps with limited number of markers results in large confidence interval 

of QTLs, which makes the mapping work less precise and inefficient. GBS is a low depth whole 

genome sequencing approach, which can be used to generate large number of SNPs between the 
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lines (Elshire et al. 2011). Using a high-density SNP linkage map facilitated by GBS, QTLs for 

drought responsive root and shoot traits were identified with narrow confidence intervals that led 

to identification of candidate genes in this study.  

A clear understanding of the genetics of root system under drought stress is necessary to 

develop the plant ideotype with a better root system. There was a 22% increase in root length in 

the donor N-22 under drought stress compared to the control environment. Deep root is an 

important adaptive mechanism of drought tolerant cultivars because it helps the plants to extract 

water from deep layers of the soil during water stress (Champoux et al. 1995; Zheng et al. 2003; 

Uga et al. 2013). N-22 was superior to Cocodrie in respect of shoot length, fresh shoot mass, 

fresh root mass, number of tillers, dry shoot mass, dry root mass, and root-shoot ratio. The 

reduction in shoot length and shoot mass was greater in N-22 compared to Cocodrie under 

drought stress. However, the reduction in root mass was more for Cocodrie. The increase in root 

length, reduction in shoot length, and shoot mass are some of the adaptive features, which should 

be incorporated for developing drought tolerant rice cultivars (Kamoshita et al. 2002; Uga et al. 

2013). Transgressive segregation was observed for all the traits in both directions suggesting 

contribution of alleles from both parents toward trait manifestation (Ali et al. 2000). High 

heritability values for all the traits in both the environmental conditions indicated less 

environmental influence on these traits. 

Correlation studies showed that the root length and root biomass were positively correlated to 

shoot length and shoot biomass, which is in agreement with earlier report (Yadav et al. 1997). 

This increase in shoot length, shoot biomass, and root length under drought may be due to the 

increase in water and nutrient uptake capacity of the deeper root system (Yoshida and Hasegawa 

1982; Champoux et al. 1995). Shoot length was negatively correlated to number of tillers which 
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Table 3.8. List of previously reported QTLs co-localized with the QTLs identified in this study 

Traitsa 
This study Previous studies  

QTL  Position of QTLs (bp) QTL  Marker interval Position of QTLs (bp) Referencesb 

SL 

qSL1.37 

qSL1.38 

37089296-37273187 

38023681-38286772 
qDTH1.1 

RM11493-

RM431 
37851779-38894388 1 

qSL4.25 

qSL4.29 

25750452-27194959 

29179250-29482850 
qPH4 RM241-G102 26857374-30334896 2 

NT qNT3.28 28513305-28809504 qNOT3-2 RZ448-RZ519 28789373-28812372 3 

DRM 
qDRM1.38 38023681-38286772 TRDW1.1 RG727-RG109 38280484-38531467 4 

qDRM1.37 37376121-37561874 Total root weight QTL RZ730-RZ801 34937981-40566030 5 

DSM 

qDSM1.38 38023681-38286772 qDTB1.1 RM315-RM431 36734135-38894388 1 

qDSM8.08 8971655-9136647 Shoot Dry weight QTL xnpb38-xnpb104 
8923052-8924004,  

34470620-37713609 
6 

FRM qFRM1.22b 22796323-22958631 FRW1c RM306-RM5 22796323-22958631 7 
a SL: Shoot length, NT: Number of tillers, DRM: Dry root mass, DSM: Dry shoot mass, FRM: Fresh root mass 
b 1: Vikram et al. 2011, 2: Xu et al. 2004, 3: Hemamalini et al. 2000, 4, Nguyen et al. 2004, 5: Shen et al. 2001, 6: Nagata et al. 

2002, 7: Li et al. 2005 
 

Table 3.9. Gene ontology (GO) analysis of QTL regions for each drought responsive trait 

 

Traits 

Total 

number of 

genes  

Number of 

annotated 

genesa  

Percentage of 

genes annotated 

Number of significant gene ontology termsb 

Biological 

Process 

Molecular 

Function 

Cellular 

component 

Total 

Root Length 49 22 44.9 7 3 0 10 

Shoot Length 152 69 45.4 27 18 2 47 

Fresh root mass 65 47 72.3 32 14 2 48 

Fresh shoot mass 539 257 47.7 61 52 9 122 

Number of tillers 96 56 58.3 27 23 4 54 

Dry root mass 108 57 52.8 32 22 4 58 

Dry shoot mass 43 26 69.5 13 10 0 23 

Total 1052 534  199 142 21 362 
a Total number of genes assigned to at least one GO terms   
b A significant gene ontology is declared when the p-value of the assigned GO is less than 0.001 
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could be due to plant’s allocation of assimilates in increasing the number of tillers while 

reducing the plant height (Yoshida and Hasegawa 1982). 

The average QTL interval in our study was 0.486 Mb. This narrow confidence interval, 

compared to previously identified QTLs, would be useful for marker assisted selection and 

pyramiding of the desired QTLs in high yielding varieties. In addition, QTLs with small 

confidence intervals can accelerate fine mapping and QTL cloning with less time and effort. 

Marker assisted pyramiding of drought tolerant QTLs have been done by several researchers 

(Shamsudin et al. 2016a, b) to incorporate drought tolerance in elite varieties. Grain yield QTL 

during drought was useful to increase yield under drought stress condition (Swamy et al. 2017). 

The congruence of drought tolerant QTL DTY1.1 (Vikram et al. 2011) with the QTL (qSL1.38) 

identified in our study illustrated the importance of secondary agronomic traits in improving 

grain yield under drought stress conditions. 

In this study, QTLs controlling several roots and shoot attributes at the vegetative stage of 

plant growth under drought stress were identified and compared with those identified under 

control condition. The root length QTLs under drought stress were different from those identified 

under irrigated condition. This may be due to the difference in expression of the genes for root 

length under stress and non-stress environments (Zhang WP et al. 2001). The increase in root 

length under drought stress may be due to cell wall loosening and expansion of the cell 

membrane (Zheng et al. 2003). There were 49 genes involved in the qRL12.04 confidence 

interval. One of these genes, Brevis radix (BRX) was known to regulate cell proliferation and 

elongation in the root system in addition to its involvement in brassinosteroid (BR) pathway and 

in regulation of auxin-responsive genes (Rodrigues et al. 2009). The other two QTLs controlling 
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root length under non-stress environment were located on chromosomes 1 and 2 and contained 7 

and 15 genes, respectively.  

Adaptation to drought stress can be achieved by reducing shoot growth. This is evident by 

reduced plant height under drought stress compared to the control environment in both parents 

and the RIL population (Table 3.1). Five shoot length QTLs were detected under water stress 

conditions. The QTL qSL1.38 was adjacent to the sd1 locus (38.3 Mb) and contained 43 genes. A 

tight linkage between sd1 and drought yield QTL qDTY1.1 was earlier reported (Vikram et al. 

2015). The Sd1 locus was found to be associated with many underground and above ground traits 

in rice (Yadav et al. 1997). The qSL1.38, co-localized with qDSM1.38, explained the positive 

association between shoot mass and the shoot length. Presence of QTLs in the same genomic 

region for different traits is expected for highly correlated traits (Ali et al. 2000). The interacting 

QTLs had a very low contribution to phenotypic variation suggesting minor role of epistasis in 

controlling the shoot length under drought stress. Genes encoding Universal stress protein 

(LOC_Os01g19820), Calvin cycle protein (LOC_Os01g19740), and Pentatricopeptide protein 

(LOC_Os01g19548, LOC_Os01g65840) were present in these QTL regions. The Universal 

stress protein and Calvin cycle proteins were reported to improve drought tolerance in plants 

(Sinha et al. 2016; Kwasniewski et al. 2016) whereas the Pentatricopeptide protein was known to 

regulate the stomatal closure and prevent plants from dehydration (Jiang et al. 2015). The 

genomic region of the major QTL qSL4.06 harbored genes such as OsFBX121 - F-box domain 

containing protein, expressed (LOC_Os04g11890), O-methyltransferase (LOC_Os04g11970), 

and Glycosyltransferase (LOC_Os04g12010), which were reported to improve abiotic stress 

tolerance in plants (Lam et al. 2007; Keppler and Showalter 2010; Yan et al. 2011).  Drought 

tolerance in plants can be either due to metabolic regulation or osmoregulation. However, the 
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molecular mechanism of drought tolerance in rice via osmotic adjustment may be different from 

that of the avoidance mechanism obtained by developing a deep root system (Zhang J et al. 

2001).  

Root mass contributes to adaptation and growth of plants under drought stress. The QTL 

qFRM1.36 controlling the fresh root mass in rice under drought condition contained 65 genes 

within its confidence interval. Two important candidate genes present in this QTL region were 

WRKY (LOC_Os01g62510) and Laccase protein (LOC_Os01g62480, LOC_Os01g62490, 

LOC_Os01g62600). WRKY gene family is involved in enhancing drought tolerance in rice by 

reducing cell death, water loss, and electrolyte leakage with increased proline content (Jiang et 

al. 2016). Laccase gene family, involved in catalytic activity, oxidoreductase, ligase, and 

hydrolase activity, is known for enhancing tolerance to copper stress in Arabidopsis (Liu et al. 

2017). 

The decrease in shoot mass during water stress may be one of the adaptive mechanisms in 

plants that help to accumulate metabolites in roots under water stress (Kamoshita et al. 2002). 

One QTL on chromosome 8 was identified to control fresh shoot mass under drought stress 

condition. However, QTLs for fresh shoot mass under irrigated condition was observed on 

chromosomes 1, 3, 5, and 10. Serine threonine protein kinase gene (LOC_Os08g23290), present 

in this QTL region, was strongly induced under drought and extreme salinity conditions (Kulik et 

al. 2011).  

The QTLs for number of tillers were mostly concentrated on chromosome 3. Coatomer 

subunit protein (LOC_Os03g50340, LOC_Os03g50350), heat shock protein 

(LOC_Os03g61940), and cytochrome P450 (LOC_Os03g061980) were some of the candidate 

genes present in these QTL regions. The Coatomer protein is involved in cellular process, 
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localization, and membrane related functions whereas heat shock protein and cytochrome P450 

are responsible for the metabolic function and catalytic activity. Cytochrome P450 genes were 

reported to be drought responsive (Gorantla et al. 2007). Heat shock proteins, responsible for 

exhibiting universal tolerance to various abiotic stresses like heat, drought, salt, and cold, were 

expressed in root, stem, leaf, internode, and spikelet during drought stress (Wang et al. 2015) 

Dry root mass indicates the amount of dry matter present in the root system, which can be 

used by the plants during stress condition. Three additive QTLs controlling dry root mass in rice 

under drought stress were identified by ICIM. The candidate genes present in this QTL region 

included Cytochrome P450 gene (LOC_Os08g39694), G-patch domain (LOC_Os08g39880), 

ENT domain (LOC_Os08g39970), and Ty3-gypsy class protein (LOC_Os08g39910). Dry root 

mass QTLs under well-irrigated conditions differed from those under stress conditions. They 

were located on chromosomes 2, 3, and 6. In our study, the qDSM1.37 co-localized with fresh 

root mass QTL (qFRM1.37) under irrigated condition. Both qDSM1.38 and qDSM8.08 

overlapped the same QTL regions reported in earlier studies (Vikram et al. 2011; Nagata et al. 

2002). There was only one QTL qRSR2.03 for root shoot ratio identified under during irrigated 

condition and its overlapping with the dry root mass QTL qDRM2.03 was corroborated by a 

strong correlation between these traits. Li et al. (2005) identified a QTL for root shoot ratio in 

chromosome 6, which co-localized with the QTL for root shoot ratio qRSR6.06 identified by 

interval mapping under non-stress environment. 

3.5. Conclusions 

The high-resolution mapping of QTLs in this study using a high-density SNP linkage map 

led to the selection of several candidate genes in the QTL regions, which may be involved in 

some adaptive mechanisms in both root and shoot system leading to enhanced drought tolerance. 
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The consistent QTLs for drought related traits can be introgressed into adaptive high yielding 

varietal backgrounds to develop drought tolerant rice varieties. For more precise breeding effort, 

validation of the role of candidate genes in improving drought tolerance followed by the 

development gene-based markers should be undertaken. 
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Chapter 4. Genetic Analysis of Yield and Agronomic Traits Under Reproductive Stage 

Drought Stress in Rice Using a High-Resolution Linkage Map 

4.1. Introduction 

Rice is an important food crop grown all around the world. Due to high water requirement, 

rice cultivation in the rainfed and water limiting environments is severely affected. Irrigated rice 

covers 55% of the rice-growing areas and produces 75% of the total production while the 

remaining is contributed by areas exposed to moisture stresses (CGIAR Science Council 2009). 

Since rice productivity in irrigated areas has stagnated, efforts should be made to increase rice 

production in the rainfed ecosystem. Exploitation of natural genetic variation to develop drought 

tolerant varieties and effective water management practices are some of the strategies to address 

this challenge. 

Drought tolerance in rice is inherently complex involving multiple mechanisms. Phenotyping 

for drought tolerance should involve primary traits (plant height, root length, and number of 

tillers), secondary traits (plant water status, leaf rolling, and leaf death) and integrated traits 

(spikelet fertility, harvest index, and test weight) (Kamoshita et al. 2008). Identification of 

quantitative trait loci (QTLs) and genes controlling the root traits (Uga et al. 2013; Bhattarai and 

Subudhi 2018) and various other physiological traits (Zhang et al. 2001, Nguyen et al. 2004) has 

been done in the past. But due to poor correlation of these traits with yield, there has been little 

progress in improving rice productivity in drought prone areas. Yield improvement is dependent 

upon several yield component traits. Progress has been made in developing drought tolerant 

cultivars by direct selection for yield. However, due to low heritability of yield, it is difficult to 

make improvement in both yield and drought tolerance simultaneously (Palanog et al. 2014). 

This chapter, previously published as: Bhattarai U, Subudhi P (2018) Genetic analysis of yield and agronomic traits 

under reproductive-stage drought stress in rice using a high-resolution linkage map. Gene 669:69-76, is 

reprinted here by the permission of Elsevier 
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Plant height, spikelet fertility, plant biomass, and harvest index are some associated traits that 

influence grain yield in rice (Prince et al. 2015). Therefore, QTLs for yield along with other 

highly heritable yield component traits would be an effective strategy to enhance yield under 

drought stress.  

Efforts have been made to identify drought-tolerant donors and to develop suitable selection 

criteria for breeding drought-tolerant varieties (Kumar et al. 2014). Several QTLs for drought 

tolerance have been identified in the past (Bernier et al. 2007; Saikumar et al. 2014; Palanog et 

al. 2014; Dixit et al. 2014a, 2014b; Prince et al. 2015; Solis et al. 2018). Most of these QTL 

studies were based on direct selection for yield. QTLs for yield have been identified on 

chromosomes 1, 2, 3, 6, and 12. The qtl12.1 was the first yield QTL for drought tolerance at the 

reproductive stage (Bernier et al. 2007). This QTL has been used in marker-assisted breeding to 

develop a drought-tolerant version of ‘Sabitri’, a popular rice variety of Nepal (Dixit et al. 

2017b). A large effect reproductive stage drought responsive QTL (qDTY1.1) has been identified 

on chromosome 1 (Ghimire et al. 2012; Venuprasad et al. 2012) with a consistent effect in 

various genetic backgrounds. A possible linkage between qDTY1.1 and sd1 affects the 

introgression of this yield enhancing QTL to elite varieties (Vikram et al. 2015). Besides this, the 

drought-tolerant QTLs on chromosome 2 (qDTY2.1, qDTY2.2, and qDTY2.3) for grain yield 

were also identified (Palanog et al. 2014). A reduction in flowering duration due to the 

interaction of qDTY3.2 with two other QTLs qDTY1.1 and qDTY12.1 was observed. Drought 

tolerant rice varieties could be developed by marker-assisted breeding and QTL pyramiding of 

drought-tolerant QTLs. An interaction between two or more QTLs was reported to increase grain 

yield under drought stress (Swamy et al. 2013; Sandhu et al. 2018). Pyramiding drought tolerant 

QTLs (qDTY2.2, qDTY3.1, and qDTY12.1) in Malaysian rice variety showed increase in yield 
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(Shamsudin et al. 2016). Identification of stable large effect QTL across various environments 

and genetic backgrounds is needed to develop drought-tolerant rice varieties.  

QTL based identification and cloning of genes has been helpful for rice improvement (Uga et 

al. 2013). A limited effort has been made in the past to study drought tolerance in USA rice 

varieties. In this study, we identified the drought-tolerant QTLs for yield and various yield 

attributing traits in rice at the reproductive stage drought stress using a recombinant inbred line 

(RIL) population involving a susceptible southern US rice variety ‘Cocodrie’. 

4.2. Materials and methods 

4.2.1. Development of mapping population 

The mapping population comprised of RILs derived from a cross between Cocodrie and N-

22. Cocodrie is a high yielding rice variety developed by Louisiana State University Agricultural 

Center and is sensitive to drought (Linscombe et al. 2000). N-22 is a popular drought tolerant 

cultivar with low yield potential (Kumar et al. 2014). The F1s derived from a cross between 

Cocodrie and N-22 were selfed for six generations and the seeds were advanced by single seed 

descent method to generate F7 RILs for drought phenotyping and genotyping. 

4.2.2. Phenotyping under drought stress 

One hundred eighty-one RILs and two parents (Cocodrie and N-22) were phenotyped for 

drought tolerance. The experiment was conducted inside the greenhouse of Louisiana State 

University Agricultural Center during summer 2016. Plants were grown in 2-gallon plastic pots 

filled with silty clay soil. The pots were placed in a plastic covered concrete bench filled with 

water. Nutrient solution (0.2%) was prepared using Jack’s Professional (20-20-20) (J.R. Peters, 

Inc.) and was applied every week for the first four weeks of plant growth. Slow release fertilizer 

‘Osmocote’ (4 g) was applied in every pot after 35 d and 55 d of plant growth. Three plants were 
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grown in each pot. There were three replications and the experiment was conducted in 

completely randomized design. Two replications were subjected to drought treatment and one set 

was used as control. The pots were transferred from the irrigated bench to the non-irrigated 

bench when the plants started to emerge panicle. The plants were left un-irrigated for one week. 

The degree of drought severity was assessed by observing >50% spikelet sterility in majority of 

the RILs and some irreversible damage in highly susceptible RILs. After one week, the plants 

were replaced in the bench filled with water. Irrigation was continued until the plants attained 

physiological maturity. The control bench was continuously irrigated until harvest. 

Measurements were taken on three plants from each pot in each replication for morphological 

and yield parameters. Days to flowering (DTF) was determined as the number of days for 

emergence of the panicle. Plant height (PH) was measured from the base of the culm to the tip of 

the plant. Leaf rolling score (LRS) was determined following the standard evaluation system 

(SES) of rice (IRRI, 2002). Dry matter content (DM) was measured as the ratio of dry plant mass 

to the fresh plant mass and was expressed in percentage. Grain yield per plant (GY) was 

measured averaging the gain yield from all drought treated plants in each replication. Yield index 

(YI) was calculated as the ratio of the plant yield at drought and control condition. Harvest index 

(HI) was calculated as the percentage ratio of grain yield to the biomass yield under drought 

stress. Root length, dry root mass, and root shoot ratio were measured under both stress and 

control environment in the same mapping population in an earlier experiment and the detailed 

protocol on phenotyping was described in Bhattarai and Subudhi (2018). 

4. 2.3. Statistical analysis 

Statistical analysis was carried out using SAS 9.3 (SAS Inc. 2011). Frequency distribution 

graphs were constructed using a pivot table in Microsoft Excel 2010. Mean, standard deviation, 
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and coefficient of variance were computed using PROC MEANS procedure. Analysis of 

variance (ANOVA) was estimated using PROC MIXED procedure in SAS, considering the line 

as fixed effect and replication as random effect. Broad-sense heritability (based on family mean 

basis) was estimated in SAS using the SAS code (Holland et al. 2003). Pearson correlation 

coefficients were calculated using PROC CORR procedure. The previously generated data on 

root traits under both stress and non-stress environments in the same mapping population was 

used for determining correlation with four yield-related traits (spikelet fertility, grain yield under 

stress, yield index, and harvest index). Principal component analysis (PCA) was done to 

understand the relationship among the variables. PCA was done using JMP software (SAS Inc. 

2013). 

4. 2.4. Linkage mapping and QTL analysis 

A total of 4748 SNPs previously generated by genotyping by sequencing (GBS) in Cocodrie 

x N-22 RILs were used for the construction of linkage map and QTL mapping (Bhattarai and 

Subudhi 2018). Linkage mapping and QTL analysis were performed using interval mapping 

(IM) and inclusive composite interval mapping (ICIM) software (Meng et al. 2015). The markers 

were placed on the linkage map based on the physical map of the reference genome Nipponbare. 

Kosambi mapping function was used to calculate the genetic distance between the markers 

(Kosambi 1944). Both additive and epistatic QTLs were identified. The additive QTLs having 

LOD scores greater than 2 were considered as significant and the epistatic QTLs with LOD 

scores greater than 4 were considered as significant. The nomenclature of QTLs was done 

following the procedure described earlier (Bhattarai and Subudhi 2018). For example, a QTL for 

days to flowering in chromosome 3 and 1Mb region is written as qDTF3.01. A positive additive 
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effect represented contribution of Cocodrie allele toward increased trait mean and a negative 

additive effect indicated N-22 allele responsible for increasing the trait mean. 

4.2.5. Gene ontology and annotation 

The QTL intervals were determined by the physical position of the SNP markers flanking the 

respective QTLs. All the genes present in each QTL interval was retrieved from the MSU rice 

genome annotation project database (http://rice.plantbiology.msu.edu/). Trait-wise gene ontology 

annotation was done using agriGo gene ontology analysis toolkit (Tian et al. 2017). Singular 

enrichment analysis (SEA) tool in agriGO was used to find the gene ontology term. The 

suggested locus ID from Gramene database (http://www.gramene.org/) was used as a 

background for the analysis. The significance of the GO terms was tested using the 

hypergeomatric statistical test method with a significance threshold of 0.05. The significant gene 

ontology terms for each trait were classified for biological process, molecular function, and 

cellular component. 

4.2.6. Differential expression of the genes 

The data on differentially expressed genes in N-22 under both stress and non-stress 

conditions were retrieved from Shankar et al. (2016) and the expression of candidate genes 

within the QTL flanking markers were analyzed. The expression details of genes within the 

important QTL regions (PVE > 7% or confidence interval < 100kb) were manually checked to 

determine the differentially expressed genes. The genes present within the QTL intervals and 

also significantly differentially expressed based on the transcriptome data (Shankar et al. 2016) 

were labeled as the candidate genes. The plant parts in which these candidate genes were 

expressed were identified using Affymetrix gene chip data (NCBI database: GSE24048, GSE 

26280, GSE25176, GSE41647) available in Genevestigator (Hruz et al. 2008). 
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4.3. Results 

4.3.1. Performance of parents and RILs under drought 

The parents showed significant differences for all traits except for leaf rolling score and plant 

dry matter content (Table 4.1). N-22 showed early flowering (72 d) compared to Cocodrie (78 d). 

The spikelet fertility and grain yield for N-22 were higher (58% and 11.3 g/plant) than that of 

Cocodrie (34% and 2.9 g/plant), respectively. A higher yield index was observed for N-22 

(0.30). A low harvest index was observed for both the parents; however, it was numerically 

higher in N-22 (18%) compared to that of Cocodrie (5%). A moderate coefficient of variation 

was observed for all traits except for harvest index (97%), indicating a wide variation among the 

RILs. The heritability was high for days to flowering and plant height. A moderate heritability 

was observed for all other traits except spikelet fertility which had a low heritability. The 

frequency distribution showed a nearly normal distribution for all traits (Figure 4.1). The RILs 

showed transgressive segregation on both sides. Analysis of variance showed significant 

differences among the RILs for all traits (Appendix Table C1). 

Table 4.1. Various statistical parameters for yield and yield-related traits under reproductive 

stage drought stress in Cocodrie × N-22 RIL population  

Trait 
Parents RILs 

N-22 Cocodrie Mean SDa CVb Heritabilityc 

Days to flowering 72 78** 76.3 5.4 24.5 0.95 

Plant height (cm) 93.7 77.7* 97.9 23.8 24.3 0.94 

Leaf rolling score 4.0 5.0ns 5.3 1.6 29.9 0.72 

Plant dry matter content (%) 49.4 50.2ns 40.2 13.0 32.5 0.66 

Spikelet fertility (%) 57.9 33.9* 39.3 25.5 64.8 0.36 

Grain yield under stress 

(g/plant) 
11.3 2.9* 8.1 5.4 66.5 0.62 

Yield index 0.3 0.1* 0.4 0.3 65.3 0.63 

Harvest index (%) 17.7 5.3* 13.6 13.2 97.3 0.78 
*,**Difference between the mean value of Cocodrie and N-22 significant at 5% and 1% level of 

probability, respectively;  nsNon-significant 
aStandard deviation 
bCoefficient of variation (%) 
cHeritability (broad sense) 
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4.3.2. Trait associations 

Most of the traits showed significant correlations with each other except plant dry matter content 

(Table 4.2). Plant dry matter content was significantly and negatively correlated only to plant 

height and yield. Days to flowering, plant height, and leaf rolling score were negatively 

correlated to spikelet fertility, grain yield, yield index, and harvest index. The grain yield was 

highly correlated to spikelet fertility, yield index, and harvest index. Leaf rolling score was 

negatively and significantly correlated with grain yield, spikelet fertility, yield index, and harvest 

index. No significant correlations were observed between root parameters and yield under 

drought stress (Appendix Table C2.). However, a negative and significant correlation was 

observed between root length and spikelet fertility under control condition.  

 

 

Figure 4.1. Frequency distribution for various yield and yield related traits in Cocodrie x N-22 

RIL population under reproductive stage drought stress. The traits include days to flowering, 

plant height, plant dry matter content, spikelet fertility, grain yield under stress, yield index, and 

harvest index. The parental and RIL mean are represented by arrows pointing downwards. C, N, 

and R indicate Cocodrie, N-22, and RIL means, respectively. 
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Table 4.2. Correlation coefficients among various yield and yield-related traits under 

reproductive stage drought stress in Cocodrie × N-22 RIL population  

Trait$ DTF PH LRS DM SF GY YI HI 

DTF 1 0.24** 0.21** 0.06 ns -0.17* -0.23** -0.20* -0.17* 

PH  1 0.47** -0.16* -0.31** -0.09 ns -0.11 ns -0.27** 

LRS   1 -0.05 ns -0.43** -0.24** -0.29** -0.29** 

DM    1 0.07ns -0.18* -0.09 ns 0.02 ns 

SF     1 0.50** 0.43** 0.44** 

GY      1 0.67** 0.73** 

YI       1 0.56** 

HI        1 
$DTF, Days to Flowering; PH, Plant height (cm); LRS, Leaf rolling score; DM, Plant dry matter 

content (%); SF, Spikelet fertility (%); GY, Grain yield under stress (g); YI, Yield index; HI, 

Harvest index (%) *,**Significant correlation at 5% and 1% level of probability, respectively 
nsNon significant 

 

4.3.3. Principal component analysis 

The principal component analysis, conducted for all the traits, projected three important 

principal components (Appendix Table C3.). The first and the second principal components 

explained 39% and 17% of the total variation. The three principal components explained a 

cumulative of 69% of the total variation. The first principal component was associated with 

yield-related traits such as spikelet fertility, yield under drought stress, yield index, and harvest 

index (Appendix Table C4., Figure 4.2). The second principal component accounted for shoot 

related traits like plant height, leaf rolling score, and plant dry matter content. The third principal 

component was related to days to flowering. There were three component traits in our study that 

included yield component, shoot component, and days to flowering.  

4.3.4. QTL analysis 

QTL analysis was based on 4748 GBS-based SNP markers (Bhattarai and Subudhi 2018). 

Interval mapping (IM) and Inclusive composite interval mapping (ICIM) detected 31 and 21 

QTLs for eight traits, respectively (Table 4.3, Appendix Table C5.). The phenotypic variance 

explained by these QTLs ranged from 2.4-47.4% and 2.8-24.7% in ICIM and IM analyses,  
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Figure 4.2. Principal component (PC) analysis of eight yield and yield related traits in rice. Each 

trait is indicated by one projected arrow. The lines indicate the direction and magnitude of the 

variable’s contribution to the principal component. The principal components are shown in the 

axis and the variance contributed by each principal component is indicted inside the parentheses: 

(a) component analysis between PC1 and PC2, (b) component analysis between PC2 and PC3, 

and (c) component analysis between PC1 and PC3. 

respectively. Although ICIM detected QTLs on eight different rice chromosomes, majority of 

them (8) were located on chromosome 1 (Figure 4.3). Inclusive composite interval mapping 

detected two QTLs (qDTF3.01 and qDTF11.08) for days to flowering with phenotypic variances 

of 13% and 7%, respectively. The favorable alleles for both QTLs came from Cocodrie. Interval 

mapping detected eight QTLs for days to flowering. Both ICIM and IM detected qDTF3.01. 

Interval mapping detected five QTLs controlling days to flowering on chromosome 3. Five plant 

height QTLs were detected by both ICIM and IM method. The QTLs for plant height were 

clustered on chromosome 1. qPH1.38 was a major effect QTL with a LOD score of 35 and a 

phenotypic variance of 47%. The favorable allele for this QTL was contributed by N-22. The 

other QTLs detected for plant height under stress were on chromosomes 3, 5, and 9.
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Table 4.3. List of additive QTLs for yield and yield-related traits identified using ICIM in Cocodrie × N-22 RIL population under 

reproductive stage drought stress 

Traitsa QTLb Chrc Genetic  

Pos. (cM) 

Physical  

Pos. (Mb) 

Left Marker Right Marker LODd PVE 

(%)e 

Additive 

effect 

Favorable 

parental allele 

DTF qDTF3.01 3 5 1.11-1.50 S3_1110340 S3_1497144 4.40 12.5 1.60 Cocodrie 

qDTF11.08 11 44 8.95-9.00 S11_8950871 S11_9004531 2.51 6.9 1.20 Cocodrie 

PH qPH1.07 1 39 7.06-7.08 S1_7055941 S1_7080781 2.72 2.4 3.64 Cocodrie 

qPH1.38 1 193 38.29-38.61 S1_38286772 S1_38611845 34.77 47.4 -16.31 N-22 

qPH3.32 3 207 32.85-33.29 S3_32853301 S3_33287194 2.75 2.5 -3.73 N-22 

qPH5.24 5 98 24.89-25.27 S5_24888719 S5_25271367 4.17 3.8 -4.60 N-22 

qPH9.14 9 57 14.85-15.32 S9_14854433 S9_15323072 4.50 4.5 5.02 Cocodrie 

LRS qLRS1.37 1 186 37.27-37.37 S1_37273187 S1_37368297 8.70 18.1 -0.57 N-22 

qLRS7.07 7 43 7.18-8.03 S7_7182433 S7_8031540 3.48 6.6 0.35 Cocodrie 

qLRS12.17 12 67 17.79-19.26 S12_17786116 S12_19257062 3.08 6.2 -0.33 N-22 

DM qDM1.07 1 39 7.06-7.08 S1_7055941 S1_7080781 2.53 5.3 2.65 Cocodrie 

qDM3.33 3 207 33.00-33.07 S3_33000563 S3_33074353 2.97 6.7 3.00 Cocodrie 

SF qSF1.38 1 193 38.29-38.61 S1_38286772 S1_38611845 3.70 7.7 -5.35 N-22 

qSF6.23 6 98 23.93-24.29 S6_23928806 S6_24288517 2.17 4.1 3.87 Cocodrie 

qSF7.0.4 7 0 0.43-0.55 S7_425945 S7_553805 3.92 7.8 -5.39 N-22 

qSF11.19 11 71 19.37-19.70 S11_19374580 S11_19696359 2.79 5.8 4.67 Cocodrie 

GY qGY1.42 1 241 42.93-42.97 S1_42928362 S1_42966746 2.10 6.1 -1.03 N-22 

YI qYI1.42 1 242 42.98-43.07 S1_42981696 S1_43065133 2.24 5.0 -0.06 N-22 

qYI12.03 12 29 39.37-40.53 S12_3937337 S12_4053360 2.36 5.3 -0.06 N-22 

HI qHI1.37 1 188 37.56-37.74 S1_37561874 S1_37740707 3.59 7.0 3.63 Cocodrie 

qHI6.25 6 114 25.15-25.72 S6_25146090 S6_25717883 2.02 3.7 2.65 Cocodrie 
aDTF, Days to Flowering; PH, Plant height (cm); LRS, Leaf rolling score; DM, Plant dry matter content (%); SF, Spikelet fertility 

(%); GY, Grain yield under stress (g); YI, Yield index; HI, Harvest index (%) 
bThe name of the QTL. ‘q’ followed by the abbreviation of the trait, followed by the chromosome number, one decimal place and the 

physical location of the QTL in mega base pair cChromosome number in which the QTL is present. dLogarithm of odds value for the 

individual QTL ePhenotypic variance explained by the QTL expressed in percentage 
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Figure 4.3. Genetic map showing the positions of QTLs for eight yield and yield related traits in 

Cocodrie x N-22 RIL population. The QTLs for these traits under reproductive stage drought 

stress were identified by ICIM. The QTLs represented by star and square indicated that the 

alleles for these QTLs are contributed by Cocodrie and N-22, respectively. The saturation of the 

markers in the linkage map is indicated by the dark lines. The vertical line on the left show the 

scale for genetic length of chromosomes. 

Inclusive composite interval mapping discovered three QTLs for leaf rolling score 

(qLRS1.37, qLRS7.07, and qLRS12.17). Both ICIM and IM detected qLRS1.37 and qLRS7.07. 

The qLRS1.37 accounted for 18% of the phenotypic variance and the increasing mean effect for 

this QTL came from N-22 allele. The phenotypic variances contributed by qLRS7.07 and 

qLRS12.17 were 7% and 6%, respectively. Two QTLs for plant dry matter content (qDM1.07 

and qDM3.33) were detected by ICIM; the alleles for increasing mean effect in both these QTLs 

were contributed by Cocodrie. The QTLs, qDM1.07 and qDM3.33, overlapped with the plant 

height QTLs qPH1.07 and qPH1.32, respectively. 
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Four QTLs controlling the spikelet fertility were identified by ICIM procedure. Both IM and 

ICIM detected qSF1.38 and qSF7.04. The qSF1.38 overlapped with the plant height QTL and 

explained 8% of the phenotypic variance. There were two other spikelet fertility QTLs detected 

by interval mapping at 39 Mb and 40 Mb positions on chromosome 1.  

Both the mapping procedures discovered one QTL controlling the grain yield under stress. 

The grain yield QTL, qGY1.42 was at 42 Mb position on chromosome 1. It contributed only 6% 

of the phenotypic variance and the mean increasing effect in this QTL was due to the N-22 allele. 

Two QTLs for yield index (qYI1.42 and qYI12.03) were mapped by both IM and ICIM; the 

alleles for increasing mean effect for both QTLs came from N-22. Each QTL explained 5% of 

the phenotypic variance. ICIM and IM identified two (qHI1.37 and qHI6.25) and three (qHI1.37, 

qHI1.42 and qHI3.24) QTLs for harvest index, respectively. qYI1.37 accounted for 7% of the 

phenotypic variance. The increasing mean effects for both qHI1.37 and qHI6.25 were due to 

Cocodrie alleles. 

Nine epistatic QTLs with LOD values greater than 4.0 were identified for six traits by ICIM 

procedure (Appendix Table C6, Appendix Figure C1). Among these QTLs, two were intra-

chromosomal epistatic QTLs. These two intra-chromosomal QTLs were discovered on 

chromosomes 3 and 4; and were responsible for controlling plant height and plant dry matter 

content, respectively. Another epistatic QTL combination was for spikelet fertility on 

chromosomes 4 and 8. Three grain yield epistatic QTLs were found to be interacting in 

chromosomes 2, 3, 4, and 8. One epistatic QTL each for yield index and harvest index was 

observed. The epistatic QTLs did not overlap with any of the additive QTLs detected. 
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4.3.5. Gene annotation and ontology study 

A total of 989 genes were located within 21 QTL regions identified in this study (Additional 

table 4.3, Available upon request). The average number of genes per QTL was 45 (Table 4.4). 

Leaf rolling score had 357 genes within 3 QTL regions. However, the grain yield QTL harbored 

only four genes. Among all identified genes, 44% were annotated with agriGO. Gene ontology 

(GO) study revealed 463 GO terms for all eight traits. One hundred twenty-seven GO terms each 

were identified for plant height and leaf rolling score. Two GO terms were identified for one 

annotated gene present in grain yield QTL. The number of significant GO terms was quite small 

with only 64 being significant at the threshold value of 0.05. All significant GO terms for all 

traits were listed in Appendix Table C7. There were 30 significant GO terms for days to 

flowering. Most of these GO terms were categorized as biological processes and were 

responsible for the regulation of metabolic processes. The genes for two yield-related traits, 

spikelet fertility and harvest index, contained 15 and 3 significant GO terms, respectively. The 

GO terms for these traits included regulation of various biological pathways and enzyme 

activities. 

4.3.6. Differential expression of genes within the QTL regions 

 There were 8 significantly up-regulated genes and 2 significantly down-regulated genes (p < 

0.05) in 6 important QTL regions under drought stress (Table 4.5). The gene regulating fatty acid 

hydroxylase (LOC_Os03g03370) was up-regulated and may be responsible for days to 

flowering. The large effect QTL qPH1.38, and qSF1.38 contained two genes (mitochondrion 

protein, and no apical meristem protein) that were differentially expressed under drought stress. 

Four genes were differentially expressed for the QTLs controlling leaf rolling score. MYB 

family transcription factor and no apical meristem protein were the notable up-regulated genes in 
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these QTL regions. The qSF7.0.4 controlling the spikelet fertility had one major up-regulated 

potassium channel protein gene. Two genes (LOC_Os01g64920 and LOC_Os0164960) in 

harvest index QTL (qHI1.37) were down-regulated during drought stress. These genes were 

responsible for nuclear matrix protein 1 and chlorophyll A-B binding protein, respectively. 

The above ten differentially expressed genes were expressed in five different parts of the rice 

plant. LOC_Os01g64350 was highly expressed in panicle. LOC_Os01g64960, 

LOC_Os01g66120, LOC_Os07g01810, and LOC_Os03g03370 were expressed in the shoot parts 

i.e. seedling, flag leaf, and leaf, whereas LOC_Os01g66120, and LOC_Os01g64960 were highly 

expressed in roots under drought stress (Appendix Figure C2). 

4.4. Discussion 

Drought is a major issue in rainfed and upland rice producing ecosystem around the world. 

Yield reduction is pronounced in areas experiencing drought stress (Palanog et al. 2014; 

Shamsudin et al. 2016). Using a dense linkage map, drought responsive QTLs were identified in 

narrow confidence intervals followed by identification of candidate genes within the QTL 

regions. This helped to narrow down the number of drought responsive genes. Although the yield 

potential of Cocodrie was much higher in well-watered condition compared to N-22, it showed 

significantly lower yield under drought stress. Yield index showed the potential of plants to 

produce grains under moisture stress compared to control condition. A higher yield index 

indicates better performance under stress condition. N-22 showed a higher yield index 

suggesting its better performance under drought compared to Cocodrie. High heritabilities for 

days to flowering and plant height indicated that these traits were least influenced by 

environmental conditions. However, higher environmental influence was observed for spikelet  
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Table 4.4. Gene ontology (GO) analysis of the genes present in QTL interval for each trait 

Traita Number of 

QTLsb 

Number of 

genesc 

Number of 

genes/QTL 

Number of 

annotated 

genesd 

% of genes 

annotated 

Number of 

GO terms 

Number of 

significant GO 

termse 

% of 

significant GO 

terms 

DTF 2 58 29 28 48.2 56 30 53.6 

PH 5 238 47.6 120 50.4 127 9 7.1 

LRS 3 357 119 143 40.0 127 7 5.5 

DM 2 17 8.5 12 70.6 3 0 0 

SF 5 173 34.6 64 37.0 90 15 16.7 

GY 1 4 4 1 25 2 0 0 

YI 2 29 14.5 13 44.8 12 0 0 

HI 2 113 56.5 49 43.4 46 3 6.5 

Total 22 989 45 430 43.5 463 64 13.82 
aDTF, Days to Flowering; PH, Plant height (cm); LRS, Leaf rolling score; DM, Plant dry matter content (%); SF, Spikelet fertility 

(%); GY, Grain yield under stress (g); YI, Yield index; HI, Harvest index (%) 
bTotal number of QTLs identified for each trait 
cTotal number of genes present within all the QTL region identified for the specific trait 
dNumber of genes which are assigned at-least one gene ontology terms 
eGO terms with the p-value less than 0.05 
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Table 4.5. List of differentially expressed genes present within the identified important drought 

responsive QTL regions in N-22  

Trait QTL 
Differentially expressed 

gene 
Regulationa Gene function 

Days to 

flowering 
qDTF3.01 LOC_Os03g03370 Up Fatty acid hydroxylase 

Plant 

height 
qPH1.38 

LOC_Os01g66120 Up No apical meristem protein 

LOC_Os01g66240 Up Mitochondrion protein 

Leaf 

rolling 

score 

qLRS1.37 

LOC_Os01g64310 Up No apical meristem protein 

LOC_Os01g64340 Up Expressed protein 

LOC_Os01g64350 Up Expressed protein 

LOC_Os01g64360 Up MYB family 

Spikelet 

fertility 

qSF1.38  
LOC_Os01g66120 Up No apical meristem protein 

LOC_Os01g66240 Up Mitochondrion protein 

qSF7.0.4 LOC_Os07g01810 Up Potassium channel protein 

Harvest 

index 
qHI1.37 

LOC_Os01g64920 Down Nuclear matrix protein 1 

LOC_Os01g64960 Down Chlorophyll A-B binding protein 
aUP: up-regulation of genes, Down: down-regulation of genes 

 

fertility. A moderate to low heritability for yield was observed in the present study which agrees 

in earlier studies (Palanog et al. 2014, Solis et al. 2018). 

Correlations among the traits help to select the secondary traits for use in crop improvement. 

The negative correlation of plant shoot traits with yield-related traits suggested that the early 

flowering and dwarf plants may increase yield (Khowaja et al. 2009; Dixit et al. 2014; Palanog et 

al. 2014). A high correlation of grain yield with spikelet fertility, harvest index, and yield index 

under drought stress showed that these integrated traits can be used to improve grain yield in rice 

(Prince et al. 2015). Similarly, leaf rolling score could also be used as an early selection criterion 

to increase yield in plant breeding programs. Yield was not affected by length and mass of the 

root which was evident from the correlation between root traits and the yield traits under water 

stress. The increase in root length and root mass during water stress increased the plant’s 
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tolerance to drought (Bhattarai and Subudhi 2018). However, this increase might not always be 

responsible for increase in yield (Khowaja et al. 2009). 

In this study, drought responsive QTLs were identified on all chromosomes except 

chromosomes 2, 4, and 8. The region on chromosome 1 (37.2- 38.6 Mb) was identified as QTL 

hotspot with four QTLs within 1.4Mb region. This region harbored many QTLs with a large 

impact on grain yield and plant height (Dixit et al. 2014). We identified 2 QTLs for days to 

flowering on chromosomes 3 and 11. qDTF3.01 co-localized with the grain yield QTL qDTY3.2 

(Vikram et al. 2016) and the flowering locus Hd9 (Lin et al. 2002). This observation indicated 

that the increase in yield under drought stress may be due to early flowering nature of the plant 

which helped them to escape the drought stress. This locus was not only responsible for 

increasing grain yield under drought stress but was also responsible for maintaining cooler 

canopy temperature which might contribute towards increasing the grain yield (Saikumar et al. 

2014).  

A reduction in plant height under drought stress was observed in rice (Saikumar et al. 2014). 

Two QTLs for plant height (qPH1.07 and qPH1.38) on chromosome 1 co-localized with the 

QTLs for plant dry matter content and spikelet fertility. The major effect QTL qPH1.38 co-

localized with the previously identified large effect yield QTL qDTY1.1 (Vikram et al. 2011, 

Venuprasad et al. 2012). Although this QTL was tightly linked to sd1 locus, it was not 

responsible for increasing yield under drought stress (Khowaja et al. 2009; Vikram et al 2015). 

Our QTL mapping approach using a saturated genetic map followed by scanning of the 

differentially expressed genes in the qPH1.38 region helped us to exclude the involvement of sd1 

in imparting drought tolerance (Vikram et al. 2015). Based on the gene expression data of N-22 

under drought stress, two genes, no apical meristem protein (NAC) (LOC_Os01g66120), 
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mitochondrion protein (LOC_Os01g66240) were identified as possible candidates for future 

investigation (Table 4.5). The gene encoding NAC protein was highly expressed during drought 

and salinity (Dixit et al. 2014; Hu et al. 2015; Swamy et al. 2017). Another QTL qPH9.14 co-

localized with the grain yield QTL qDTY9.1, which was expressed under both moderate and 

severe drought stress (Swamy et al. 2013) and was reported to control the spikelet fertility under 

drought (Yue et al. 2005). The QTLs identified for both shoots and panicle traits indicated that 

the same set of genes can be expressed in different parts of the plant and could affect different 

traits.  

Leaf rolling score was a good early indicator of plants’ tolerance to drought. It was possible 

that the same QTLs may be expressed to govern both shoot traits and yield (Prince et al. 2015). 

Therefore, selection for yield during the drought condition could be made by observing the leaf 

rolling in rice. We detected a QTL that controlled both leaf rolling score (qLRS1.37) and harvest 

index (qHI1.37). This region (37.2- 37.3Mb) was identified downstream of the sd1 locus 

(38.3Mb). The QTL hotspot for grain yield and many other agronomic traits was previously 

identified (Venuprasad et al. 2012; Kumar et al. 2014). The QTL for leaf rolling score 

(qLRS12.17) was the same QTL that was previously identified as a large-effect QTL for grain 

yield (qtl12.1) under drought stress (Bernier et al. 2007). This QTL was responsible for 

increasing the plant water uptake by 7% under water-limited condition (Bernier et al. 2009). It 

had been incorporated into a popular rice variety ‘Sabitri’ from Nepal to improve its drought 

tolerance (Dixit et al. 2017b). 

 Increase in grain yield is one of the major objectives of any plant breeding program. In this 

study, QTLs for spikelet fertility, grain yield, yield index, and harvest index were identified. The 

QTL for spikelet fertility qSF1.38 co-localized with the previously identified grain yield QTL 
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qDTY1.1 (Vikram et al. 2015). Co-localization of QTLs was earlier reported (Prince et al. 2015). 

Three new QTLs on chromosomes 6, 7, and 11 were identified for spikelet fertility. One novel 

QTL affecting the grain yield under drought stress was identified at 42 Mb position on 

chromosome 1. This QTL was also responsible for yield index. The QTL spread within 38 Kb 

genomic region and harbored only 5 genes. A new QTL for yield index was located upstream of 

DTY12.1 on chromosome 12. There were two QTLs for harvest index in this study. The qHI1.37 

was present upstream of sd1 locus and another QTL qHI6.25 co-localized with an earlier 

identified QTL qDTY6.1 (Dixit et al. 2014). This QTL pyramided with SUB1 provided tolerance 

to both drought and submergence in rice (Dixit et al. 2017a). Therefore, the QTLs identified in 

this study offer opportunity to develop new drought-tolerant varieties using marker-assisted 

breeding and QTL pyramiding. 

Both pleiotropic and epistatic interactions were involved in governing drought tolerance in 

rice (Solis et al. 2018). Root related QTLs identified in previous mapping experiment using the 

same mapping population (Bhattarai and Subudhi 2018) did not co-localize with the yield QTLs 

in this study. The absence of correlation between root traits and yield components was in 

agreement with the observation of Khowaja et al. (2009). However, there were reports regarding 

involvement of drought tolerant QTLs in improving yield which might be due to increased water 

uptake and root characteristics (Bernier et al. 2009; Catolos et al. 2017). The contrasting results 

may be due to the difference in genetic backgrounds and the environments. 

4.5. Conclusions 

The success of any QTL mapping lies in identifying large effect and stable QTLs in a narrow 

confidence interval. Using a high-density SNP map, three major QTLs (qDTF3.1, qPH1.38 and 

qLRS1.37) were identified. Majority of drought tolerant QTLs were identified on chromosome 1. 
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Identification of the differentially expressed genes within the QTL region helped to reduce the 

number of candidate genes associated with drought tolerance. Ten differentially expressed genes 

in 6 QTL regions were identified as potential candidate genes for validation in future before 

incorporating them into breeding program to develop drought tolerant rice cultivars. 
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Chapter 5. Conclusions 

Rice is a major crop grown all over the world. It is mostly grown in lowland areas with 

adequate water supply. Upland rice cultivation is also in practice but not common due to low 

yield. Global climate change is affecting the agricultural production. Availability of water for 

agricultural purpose is declining gradually. With all these constraints, rice cultivation is 

becoming a challenge in all rice growing areas of the world. Therefore, the development of high 

yielding rice genotypes with reduced water requirement is necessary. 

Exploration of the available germplasm resources is the first step in every successful 

breeding program. Although low genetic diversity in USA rice germplasm is well documented, 

our drought tolerance screening experiment revealed several US genotypes such as Jes, Leah, 

Roy J, Jazzman, Madison, Lacassine, and Glutinous zenith as drought tolerant. Principal 

component analysis showed a high degree of variation for tolerance to drought in USA rice 

germplasm. The variation in drought tolerance among rice genotypes was not dependent on the 

state which released them except for rice genotypes from California. Most of the California 

genotypes were separated from the rice genotypes from other states and were more susceptible to 

drought. Our study concluded that plant biomass, harvest index, and number of tillers were 

important traits for drought tolerance screening in rice. The average PIC of the USA rice 

collection was 0.33 which was less compared to the average PIC of the global rice collection. 

Further, population structure analysis revealed that the USA rice genotypes can be differentiated 

based on the US states of origin. The rice varieties from Louisiana were separated from the rice 

varieties from the other states of USA. Texas and Arkansas rice varieties were closely related, 

whereas the rice varieties from California formed a distinct group. The markers, RM523 and 

RM570, were associated with grain yield in rice under drought stress. Similarly, a new marker 
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RM351 on chromosome 7 was linked with spikelet fertility, grain yield, and harvest index with a 

phenotypic variance of 7%. These markers will be useful for direct selection of yield under 

drought. 

Root plays a vital role in drought tolerance capacity of rice. Drought tolerant genotypes 

tend to increase the root length under drought stress. There was 22% increase in root length in 

the donor N-22 under drought stress compared to the control environment. A new QTL 

(qRL12.04) controlling the root length under drought stress was identified in our study. Two 

more QTLs for root length, qRL2.04 and qRL1.08, were identified under non-stress condition. 

Some large effect QTLs for shoot length (qSL1.38, qSL4.06) and dry shoot mass (qDSM1.38) 

were also identified.  The high-resolution QTL mapping helped in identifying the candidate 

genes in the QTL regions. 

Reproductive stage drought is most detrimental for rice cultivation. It drastically reduces 

grain yield. Identification of QTLs for drought tolerance at the reproductive stage is needed to 

stabilize rice productivity in drought prone areas. The negative correlation of leaf rolling score 

with spikelet fertility, grain yield, yield index, and harvest index, suggested the utility of LRS as 

an early selection criterion for yield traits. Two major QTLs for days to flowering (qDTF3.01 

and qDTF11.08) with a phenotypic variance of 13% and 7%, respectively, were identified. 

Majority of drought tolerant QTLs were identified on chromosome 1. One new QTL for grain 

yield under drought (qGY1.42) in chromosome 1 with a phenotypic variance of 6% was mapped. 

Three major QTLs (qDTF3.1, qPH1.38 and qLRS1.37) for drought tolerance at flowering stage 

were mapped on the high-density SNP map. Identification of differentially expressed genes 

within the QTL regions helped to identify the candidate genes associated with the traits. Ten 

differentially expressed genes in 6 QTL regions were identified as potential candidates for 
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drought tolerance. Validation of the role of these candidate genes for drought tolerance is 

necessary before incorporating them in any plant breeding program. 

 In summary, the USA rice collection contained some drought tolerant genotypes based on 

our evaluation in greenhouse condition. These genotypes can be used as donors in drought 

breeding programs. The genetic diversity of USA rice collection is very low. Therefore, 

introduction of new genotypes and the hybridization with the exotic germplasms is necessary to 

increase genetic diversity in US rice germplasm. Although large number of QTLs were identified 

for various root traits, agronomic traits, and yield attributes in this study, the large effect QTLs 

should be given immediate attention for validation and incorporation into elite varieties to 

enhance drought tolerance. Pyramiding of QTLs associated with root traits and above ground 

traits may lead to development drought tolerant rice varieties. 
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Appendix A. Supplementary Information for Chapter 2 

 

Table A1. List of rice genotypes used in the experiment, their source of origin, subtype and the 

sub-group as classified by structure software 

S. 

N 

Genotype Sourcea  Sub-

typeb 

Sub-

groupc 

S. 

N 

Genotype Source  Sub-type Sub-

group 

1 Hasawi International Indica NG 36 Jazzman Louisiana Japonica AD 

2 Cheriviruppu International Indica SG3 37 Neptune Louisiana Japonica SG4 

3 Pokkali International Indica SG3 38 Caffey Louisiana Japonica SG4 

4 Nona Bokra International Japonica NG 39 Templeton Louisiana Japonica SG6 

5 Capsule International Indica NG 40 Taggert Louisiana Japonica SG6 

6 FL478 International Japonica SG3 41 Jazzman-2 Louisiana Japonica AD 

7 FL378 International Japonica SG3 42 Jes Louisiana Indica SG3 

8 TCCP-266 International Indica SG3 43 CL162 Louisiana Japonica SG3 

9 IRRI147 International Indica SG3 44 CL181 Louisiana Japonica SG7 

10 Epagri International Indica SG3 45 CL111 Louisiana Japonica SG7 

11 Damodar International Indica AD 46 CL131 Louisiana Japonica SG7 

12 Chengri International Indica SG3 47 Cypress Louisiana Japonica SG7 

13 CSR11 International Indica SG3 48 CL161 Louisiana Japonica SG7 

14 PSVRC International Indica SG3 49 LA0702085 Louisiana Japonica SG7 

15 Pin Kaeo International Indica SG7 50 CL261 Louisiana Japonica SG4 

16 Dular International Indica SG3 51 N-22 International Indica SG3 

17 Moroberekan International Japonica SG4 52 CR5272 International Indica SG3 

18 Nipponbare International Japonica AD 53 Agami International Indica NG 

19 Geumgangbyeo International Indica SG3 54 Arang International Indica NG 

20 IR-29 International Indica NG 55 Kalia-2 International Indica SG3 

21 Cocodrie Louisiana Japonica SG7 56 SLO16 International Japonica SG3 

22 R609 Louisiana Indica SG3 57 Djogolon International Indica SG3 

23 LAH10 Louisiana Japonica SG3 58 Colusa Louisiana Japonica AD 

24 LA0802140 Louisiana Japonica SG7 59 Acadia Louisiana Japonica NG 

25 Cheniere Louisiana Japonica SG7 
60 

Delitus-

1206 
Louisiana 

Japonica SG5 

26 Bengal Louisiana Japonica SG4 61 Tokalon Louisiana Japonica AD 

27 CL152 Louisiana Japonica SG7 62 Evangeline Louisiana Japonica SG5 

28 Roy J Louisiana Japonica AD 63 Pirogue Louisiana Japonica SG4 

29 Rey Louisiana Japonica SG6 64 Rexona Louisiana Japonica SG3 

30 CL142 Louisiana Japonica SG6 65 Nira Louisiana Japonica SG5 

31 Mermentau Louisiana Japonica SG7 66 Magnolia Louisiana Japonica AD 

32 Jupiter Louisiana Japonica SG4 67 Lacrosse Louisiana Japonica SG4 

33 Wells Louisiana Japonica SG6 68 Sunbonnet Louisiana Japonica SG6 

34 Catahoula Louisiana Japonica SG7 69 Ecrevisse Louisiana Japonica AD 

35 Kalia International Indica SG7 70 Toro Louisiana Japonica SG6 
Table A1. continued 
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S. 

N 
Genotype Source  Sub-type 

Sub-

group 

 S. 

 N      
Genotype Source  Sub-type 

Sub-

group 

71 Nato Louisiana Japonica 
AD 

106 
Rexark 

Rogue_9262 
Texas 

Japonica SG1 

72 Saturn Louisiana Japonica AD 107 Smooth Zenith Texas  SG1 

73 Della Louisiana Japonica SG6 108 Short Century Texas Japonica SG2 

74 Vista Louisiana Japonica SG4 109 Family 24 Arkansas Japonica SG1 

75 Trenasse Louisiana Japonica AD 110 Century Patna Texas Japonica SG2 

76 LA110 Louisiana Japonica SG3 111 Early Colusa California Japonica SG8 

77 Leah Louisiana Japonica 
SG5 

112 
Rexark 

Rogue_9214 
Texas Japonica 

AD 

78 Toro-2 Louisiana Japonica NG 113 Century Rogue Texas Japonica SG2 

79 Mercury Louisiana Japonica SG4 114 Nira 43 Texas Japonica AD 

80 Lacassine Louisiana Japonica 
AD 

115 
Arkose 

Selection 
Arkansas Japonica 

AD 

81 Jodon Louisiana Japonica AD 116 Pecos Texas Japonica SG1 

82 Dellrose Louisiana Japonica SG6 117 Skybonnet Texas Japonica SG6 

83 Lafitte Louisiana Japonica SG4 118 Tebonnet Arkansas Japonica SG6 

84 Dellmati Louisiana Japonica SG7 119 M-202 California Japonica SG8 

85 Earl Louisiana Japonica SG4 120 M-102 California Japonica SG8 

86 Della-2 Louisiana Japonica SG7 121 Rico 1 Texas Japonica AD 

87 Gulfrose Texas Japonica AD 122 M-103 California Japonica SG8 

88 R27 Missouri Japonica SG4 123 Katy Arkansas Japonica SG2 

89 Starbonnet Arkansas Japonica AD 124 S-301 California Japonica SG8 

90 Zenith Arkansas Japonica AD 125 Maybelle Texas Japonica SG1 

91 Rexark Arkansas Japonica SG3 126 Sierra Texas Japonica SG6 

92 Earlirose California Japonica SG8 127 Lotus Texas Japonica SG6 

93 Caloro California Indica AD 128 Neches Texas Japonica SG6 

94 Gody California Japonica SG4 129 Carolina Gold Texas japonica SG1 

95 Bond Arkansas Japonica AD 130 Presidio Texas Japonica SG1 

96 Newbonnet Arkansas Japonica SG6 131 Sabine Texas Japonica AD 

97 Vegold Arkansas Japonica SG6 132 Lavaca Texas Japonica SG6 

98 Gold Zenith Arkansas  AD 133 MS-1995-15 Mississippi Japonica SG3 

99 Belle Patna Texas Japonica SG6 134 MS-1996-9 Mississippi Japonica SG3 

100 Nova Arkansas Japonica AD 135 Delitus Louisiana Japonica AD 

101 Palmyra Missouri Japonica SG1 136 Salvo Louisiana Japonica AD 

102 Nova 66 Arkansas Japonica AD 137 Stormproof Arkansas Japonica SG1 

103 
Glutinous 

Zenith 
Texas Japonica 

SG3 
138 Calady California 

Japonica SG8 

104 Dawn Texas Japonica SG2 139 Zenith-2 Arkansas Japonica SG1 

105 Bluebelle Texas 
Japonica SG6 

140 
Arkansas 

Fortuna 
Arkansas 

japonica SG2 

Table A1. continued 
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S. 

N 

Genotype Source  Sub-type Sub-

group 

S. 

N 

Genotype Source  Sub-

type 

Sub-

group 

141 Arkrose Arkansas japonica SG8 174 Terso California Japonica SG8 

142 Prelude Arkansas Japonica SG2 175 Texas Patna Texas Japonica SG1 

143 Asahi Arkansas Japonica SG8 176 Bluebonnet Texas Japonica SG2 

144 Kamrose Arkansas Japonica SG8 177 Cody California Japonica SG2 

145 Newrex Texas Japonica AD 178 RD Texas Japonica SG6 

146 M-301 California Japonica SG8 179 Rexark-2 Arkansas Japonica SG1 

147 S-201 California japonica SG8 180 Calrose-2 California japonica SG8 

148 M-401 California Japonica SG8 181 TP 49 Texas Japonica AD 

149 M-302 California Japonica SG8 182 SP 14 Texas Japonica AD 

150 Bellemont Texas Japonica AD 183 C-4 Texas Japonica SG1 

151 M-201 California Japonica 
AD 

184 
Hill Long 

Grain 
Texas Japonica 

AD 

152 Northrose Arkansas Indica AD 185 Nortai Arkansas Japonica AD 

153 Calrose California japonica SG2 186 Brazos Texas Japonica AD 

154 Bluebelle-2 Texas Japonica SG2 187 Lebonnet Texas Japonica SG2 

155 
Lady 

Wright 
Arkansas Japonica 

AD 
188 

Saturn 

Rogue 
Arkansas 

Japonica SG2 

156 
Early 

Prolific 
Arkansas 

Japonica SG1 
189 Mars Arkansas Japonica 

AD 

157 Hybrid Mix Texas Japonica AD 190 Starbonnet Arkansas Japonica AD 

158 
Hill 

medium 
Texas Japonica 

SG3 
191 Gold Nato Arkansas 

 SG2 

159 
Glutinous 

Selection 
Texas 

Japonica SG2 
192 Earlirose-2 California Japonica 

NG 

160 R-50 Missouri Japonica 
SG2 

193 
Early 

Wataribur 
California 

Japonica SG8 

161 MO R-500 Missouri Japonica AD 194 Conway California Japonica NG 

162 R-54 Missouri Japonica SG2 195 Texmont Texas Japonica NG 

163 R-52 Missouri Japonica AD 196 Alan Arkansas Japonica NG 

164 R-27-1 Missouri Japonica NG 197 Millie Arkansas Japonica NG 

165 Jefferson Texas Japonica SG2 198 Dellmont Texas Japonica NG 

166 Melrose Texas Japonica AD 199 Rosemont Texas Japonica NG 

167 Dixiebelle Texas Japonica AD 200 Orion Arkansas Japonica NG 

168 Jasmine 85 Texas Indica AD 201 M-204 California Japonica SG8 

169 Carlpearl California Japonica AD 202 Adair Arkansas Japonica NG 

170 Madison Texas Japonica SG6 203 LaGrue Arkansas Japonica NG 

171 Tsuri Mai California Japonica SG8 204 Jackson Texas Japonica NG 

172 Kokubelle California Japonica AD 205 Azucena International Indica NG 

173 Maxwell California Japonica SG8      
a source where the variety has been developed (International means the variety has been 

developed in any other countries except USA), b Indica or japonica subtype, c Sub-group as 

classified by Structure software (SG: Subgroup, AD: Admixture, NG: Not genotyped) 
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Table A2. Eigen vectors and eigen values of the principal components for various agronomic 

traits, yield, and yield-related traits in rice genotypes under drought stress 

 

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 

Eigen value 3.24 2.77 1.08 0.76 0.40 0.35 0.28 0.05 0.04 

Variation (%) 36.05 30.81 12.04 8.49 4.46 3.97 3.17 0.54 0.47 

Cumulative 36.05 66.86 78.90 87.39 91.85 95.82 98.98 99.53 100.00 

DTF 0.24 0.38 0.42 0.04 0.62 0.25 -0.42 0.03 0.05 

NT -0.08 0.18 -0.80 0.44 0.25 0.18 -0.16 <0.01 0.02 

LRS -0.40 0.01 0.29 0.59 -0.17 -0.47 -0.41 -0.01 0.04 

FW 0.11 0.57 <0.01 0.04 -0.27 -0.10 0.22 0.52 0.52 

DW -0.01 0.54 0.16 0.29 -0.18 0.17 0.41 -0.48 -0.36 

PDMC -0.31 -0.35 0.27 0.40 0.18 0.51 0.40 0.24 0.20 

SF 0.44 -0.16 <0.01 0.28 0.44 -0.56 0.44 <0.01 -0.01 

GY 0.49 -0.14 0.05 0.30 -0.34 0.19 -0.16 0.46 -0.51 

HI 0.48 -0.22 0.02 0.23 -0.29 0.19 -0.16 -0.48 0.54 

 

PC, Principal components; DTF, Days to flowering; NT, Number of tillers; LRS, Leaf rolling 

score; FW, Fresh plant weight (g/plant); DW, Dry plant weight (g/plant); PDMC, Plant dry 

matter content (%); SF, Spikelet fertility (%); GY, Grain Yield (g/plant); HI, Harvest index (%) 

 

 

Table A3. Representative groups of traits identified by PCA analysis of various agronomic traits, 

yield, and yield-related traits in rice genotypes under drought stress 

Groups No. of variables 

in each group 

Most representative 

variable 

Variation within 

cluster (%) 

Overall variation 

(%) 

1 4 Harvest index 0.73 0.32 

2 4 Fresh weight 0.68 0.30 

3 1 No. of tillers 1.00 0.11 
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Figure A1. Frequency distribution of the various agronomic traits, yield, and yield-related traits 

in rice genotypes under drought stress 
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Figure A2. Estimated population structure of rice genotypes based on the membership fraction 

for K=2 to K=10 
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Table B1. Epistatic QTLs for various root and shoot related traits identified by Interval Mapping (IM) in the Cocodrie x N-22 RIL 

population under water stressed condition 

Phenotype QTL1a 
Chr. 

 1 

Pos.1 

(cM) 
LeftMarker1 RightMarker1 QTL2a 

Chr. 

2 

Pos.
2 

(cM) 

LeftMarker2 RightMarker2 LODb PVE 

(%)c 

Add 

1d 

Add 

2e 

Add x 

Addf 

Root 

Length 

qRL6.28 6 126 S6_28019279 S6_28021750 qRL6.07 6 41 S6_7788675 S6_7933830 3.07 9.97 -1.26 0.83 2.62 

qRL7.03 7 20 S7_3892845 S7_3976452 qRL7.19 7 75 S7_19188413 S7_19306981 3.02 8.86 -0.72 1.28 -2.56 

qRL3.22 3 107 S3_22735459 S3_23020366 qRL9.11 9 24 S9_11218694 S9_11434669 3.37 8.67 0.50 -0.13 -2.67 

qRL8.27 8 120 S8_27458765 S8_27384353 qRL11.07 11 38 S11_7244556 S11_7426709 3.05 8.30 -0.94 0.36 -2.55 

Shoot 
Length 

qSL2.32 2 142 S2_32333805 S2_32458819 qSL2.05 2 2 S2_554664 S2_778122 3.62 4.35 0.31 -0.79 3.98 

qSL4.25 4 104 S4_25750452 S4_27194959 qSL4.23 4 75 S4_23194872 S4_23150306 3.12 4.97 3.32 -0.77 -4.07 

qSL1.40 1 215 S1_40478022 S1_40705018 qSL4.19 4 110 S4_19236701 S4_18975813 3.21 9.30 -3.04 2.50 -3.90 

qSL4.28 4 114 S4_28342068 S4_29179250 qSL5.21 5 85 S5_21788829 S5_21839740 3.42 6.69 3.16 -2.15 3.70 

qSL1.06 1 35 S1_6333407 S1_6943788 qSL8.03 8 25 S8_3472333 S8_3802712 3.07 3.99 -1.02 -0.21 3.72 

qSL4.02 4 14 S4_2407777 S4_4321194 qSL10.20 10 86 S10_20449122 S10_21032523 3.35 4.14 1.27 -1.36 3.93 

qSL6.25 6 40 S6_25081992 S6_25111550 qSL10.18 10 71 S10_18108623 S10_18258549 3.03 3.68 0.66 0.13 3.70 

qSL7.02 7 15 S7_2717377 S7_3316814 qSL10.15 10 61 S10_15894101 S10_16140874 3.25 6.60 2.98 0.39 -3.83 

qSL4.09 4 125 S4_9392529 S4_13158661 qSL11.16 11 53 S11_16085790 S11_16448415 3.23 3.92 0.32 0.24 -3.75 

Fresh Root 

Mass 

qFRM1.40 1 210 S1_40016682 S1_40478022 qFRM1.40 1 215 S1_40478022 S1_40705018 18.30 4.54 0.23 -0.29 -0.86 

qFRM2.19 2 77 S2_19367035 S2_20325320 qFRM2.18 2 72 S2_18661775 S2_19167826 7.49 3.29 -0.62 0.61 -0.56 

qFRM1.02 1 15 S1_2425271 S1_3509893 qFRM3.04 3 27 S3_4903639 S3_5301261 3.27 0.75 0.12 -0.04 -0.17 

qFRM1.21 1 90 S1_21230560 S1_21995746 qFRM4.16 4 44 S4_16795210 S4_17838166 3.59 0.82 0.17 -0.11 -0.24 

qFRM5.14 5 45 S5_14082123 S5_16517328 qFRM5.16 5 50 S5_16601737 S5_17246658 7.50 3.66 0.45 -0.43 -0.67 

qFRM6.04 6 26 S6_4715280 S6_5656440 qFRM6.04 6 21 S6_4715280 S6_5656440 13.32 3.67 0.57 -0.69 -0.55 

qFRM8.24 8 100 S8_24396362 S8_24844138 qFRM8.23 8 95 S8_23531495 S8_24143416 8.66 3.34 -0.61 0.64 -0.56 

qFRM5.24 5 15 S5_2536669 S5_2495045 qFRM9.14 9 49 S9_14554692 S9_14623034 3.21 0.53 0.03 0.01 -0.17 

qFRM11.26 11 13 S11_2666525 S11_3246051 qFRM11.02 11 8 S11_2188349 S11_2666525 10.71 3.86 0.40 -0.47 -0.55 

qFRM12.04 12 35 S12_4833513 S12_5581320 qFRM12.05 12 40 S12_5581320 S12_6566235 12.56 3.47 -0.53 0.51 -0.55 

Table B1. continued               
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Phenotype QTL1a 
Chr. 

 1 

Pos.1 

(cM) 
LeftMarker1 RightMarker1 QTL2a 

Chr. 

2 

Pos.

2 
(cM) 

LeftMarker2 RightMarker2 LODb PVE 

(%)c 

Add 

1d 

Add 

2e 

Add x 

Addf 

Fresh 

Shoot 

Mass 

qFSM1.40 1 210 S1_40016682 S1_40478022 qFSM1.40 1 215 S1_40478022 S1_40705018 10.34 9.99 1.44 -1.57 -1.80 

qFSM2.18 2 72 S2_18661775 S2_19167826 qFSM3.36 3 187 S3_36366411 S3_36293343 3.46 2.85 0.02 -0.16 0.52 

qFSM4.18 4 49 S4_18975813 S4_19236701 qFSM4.15 4 39 S4_15947149 S4_16543430 5.67 9.62 -1.73 1.49 -1.66 

qFSM5.14 5 45 S5_14082123 S5_16517328 qFSM5.16 5 50 S5_16601737 S5_17246658 3.15 8.93 1.72 -1.67 -1.88 

qFSM4.15 4 39 S4_15947149 S4_16543430 qFSM6.29 6 136 S6_29661482 S6_29794732 3.43 2.37 -0.07 0.08 0.51 

qFSM3.24 3 112 S3_24662730 S3_24845126 qFSM11.03 11 18 S11_3423882 S11_3485041 3.08 2.44 0.15 -0.09 -0.49 

qFSM7.08 7 50 S7_8795148 S7_9344830 qFSM11.18 11 3 S11_1851686 S11_1939712 3.23 2.24 -0.13 -0.04 0.50 

qFSM11.26 11 102 S11_26213113 S11_26959420 qFSM12.18 12 5 S12_1853909 S12_1883341 3.39 2.57 -0.05 -0.24 0.52 

Number of 
Tillers 

qNT1.25 1 120 S1_25275758 S1_26447134 qNT6.15 6 1 S6_1523304 S6_1909168 3.03 8.63 -0.01 -0.10 -0.23 

qNT2.30 2 137 S2_30823340 S2_31011182 qNT8.22 8 85 S8_22107509 S8_22155070 3.52 9.89 0.08 0.04 -0.21 

Dry Root 

Mass 

qDRM6.19 6 71 S6_19730828 S6_19918181 qDRM6.13 6 66 S6_13499374 S6_13177618 3.47 9.59 0.08 -0.07 -0.09 

qDRM1.21 1 90 S1_21230560 S1_21995746 qDRM10.02 10 11 S10_2494063 S10_2484885 3.02 9.16 0.06 0.04 0.05 

qDRM2.19 2 77 S2_19367035 S2_20325320 qDRM11.03 11 23 S11_3245887 S11_3855765 3.30 7.99 -0.01 0.01 0.04 

qDRM9.08 9 14 S9_8165314 S9_8942722 qDRM12.19 12 65 S12_19257062 S12_19492731 3.15 6.09 0.01 -0.01 -0.03 

Dry Shoot 

Mass 

qDSM1.24 1 110 S1_24665184 S1_24958936 qDSM3.30 3 152 S3_30361166 S3_30382168 3.02 4.97 -0.04 0.04 0.12 

qDSM1.09 1 60 S1_9873666 S1_10011753 qDSM7.12 7 55 S7_12924589 S7_13244713 3.34 5.56 0.03 -0.05 -0.11 

qDSM3.24 3 112 S3_24662730 S3_24845126 qDSM8.15 8 55 S8_15711098 S8_15976748 3.33 5.94 -0.01 0.06 -0.10 

qDSM1.23 1 100 S1_23171705 S1_23339178 qDSM11.16 11 53 S11_16085790 S11_16448415 4.59 7.10 0.05 0.15 0.17 

qDSM4.22 4 79 S4_22450799 S4_22428384 qDSM11.07 11 38 S11_7244556 S11_7426709 3.31 5.11 -0.03 0.02 -0.11 

qDSM11.25 11 98 S11_25112259 S11_25140979 qDSM12.18 12 5 S12_1853909 S12_1883341 3.12 4.71 -0.01 0.01 0.11 

qDSM2.30 2 137 S2_30823340 S2_31011182 qDSM12.14 12 55 S12_14722646 S12_15344105 3.29 5.40 0.03 0.02 -0.11 

Table B1. continued               
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Phenotype QTL1a 
Chr. 

 1 

Pos.1 

(cM) 
LeftMarker1 RightMarker1 QTL2a 

Chr. 

2 

Pos.
2 

(cM) 

LeftMarker2 RightMarker2 LODb PVE 

(%)c 

Add 

1d 

Add 

2e 

Ad 
d x 

Addf 

Root 

Shoot 

Ratio 

qRSR1.40 1 215 S1_40478022 S1_40705018 qRSR1.40 1 220 S1_40705018 S1_40884049 3.78 6.59 0.07 -0.07 -0.06 

qRSR2.19 2 77 S2_19367035 S2_20325320 qRSR2.18 2 72 S2_18661775 S2_19167826 3.37 6.60 -0.06 0.05 -0.06 

qRSR1.05 1 30 S1_5521992 S1_5863007 qRSR3.24 3 112 S3_24662730 S3_24845126 3.11 2.05 0.00 0.00 -0.02 

qRSR2.05 2 2 S2_778122 S2_554664 qRSR3.05 3 27 S3_4903639 S3_5301261 3.12 2.10 0.00 -0.01 -0.02 

qRSR1.07 1 45 S1_7702003 S1_8235309 qRSR7.01 7 5 S7_1316514 S7_1792249 3.31 2.95 0.01 -0.01 -0.02 

qRSR8.02 8 1 S8_261276 S8_498009 qRSR10.13 10 51 S10_13377773 S10_13599476 3.71 2.60 -0.01 -0.01 0.02 

qRSR1.21 1 90 S1_21230560 S1_21995746 qRSR10.24 10 11 S10_2494063 S10_2484885 3.39 2.85 0.03 0.02 0.02 

qRSR2.19 2 77 S2_19367035 S2_20325320 qRSR11.03 11 23 S11_3245887 S11_3855765 3.69 3.27 -0.01 0.01 0.02 

qRSR12.04 12 30 S12_4402981 S12_4833513 qRSR12.04 12 35 S12_4833513 S12_5581320 4.49 7.05 -0.06 0.06 -0.05 

qRSR1.23 1 100 S1_23171705 S1_23339178 qRSR12.19 12 65 S12_19257062 S12_19492731 3.44 2.61 0.03 0.03 0.03 
 

a qRL, qSL, qFRM, qFSM, qNT, qDRM, qDSM and qRSR are QTLs for root length, shoot length, fresh root mass, fresh shoot mass, 

number of tillers, dry root mass, dry shoot mass and root shoot ratio respectively. The number before the decimal indicate 

chromosome and the number after decimal indicate the physical location of the QTL in mega base pair.  
b logarithm of odds;  
c Percentage of phenotypic variance explained by the QTL;  
d Additive effect of QTL1;  
e Additive effect of QTL2;  
f Epistatic effect between QTL 1 and QTL 2
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Table B2. Mapping of segregation distortion loci in the Cocodrie x N-22 RIL population 

Chromosome Position 

(cM) 

Left Marker Right Marker Marker 

Interval (bp) 

LODa Segregation ratiob 

Cocodrie N-22 

1 95 S1_22441843 S1_22495172 53329 25.89 0.13 1 

1 109 S1_24665184 S1_24958936 293752 11.39 0.31 1 

1 227 S1_41353426 S1_41629534 276108 4.2 1 0.51 

2 30 S2_9838728 S2_9922843 84115 3.33 0.55 1 

4 51 S4_19245327 S4_19306756 61429 6.01 1 0.44 

10 43 S10_11626385 S10_11951640 325255 4.35 0.5 1 

10 25 S10_5314446 S10_5341825 27379 4.49 0.5 1 

10 16 S10_2493909 S10_3091088 597179 5.05 0.47 1 

12 0 S12_550217 S12_524851 25366 3.12 1 0.56 
a Logarithm of odds  
bsegregation ratio is the proportion of the alleles contributed by each parent. Since we used a RIL 

population, the expected segregation ratio is 1:1. Segregation ratio of 0.13:1 means the ratio is 

skewed towards N-22 parent and does not follow the expected Mendelian ratio of 1:1 
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Figure B1. Experimental setup for drought experiment to evaluate root traits in rice 
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Figure B2. Difference in root length between N-22 and Cocodrie under water stress and non-

stress condition 
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Appendix C. Supplementary Information for Chapter 4 

 

Table C1. Analysis of variance for yield and yield-related traits in the Cocodrie × N-22 RIL 

population under reproductive stage drought stress. 

Trait MSSa SSEb F-value P-valuec 

Days to flowering 55.54 3.49 15.87 <0.0001 

Plant height (cm) 1044.45 87.85 11.89 <0.0001 

Leaf rolling score 3.63 1.3 2.79 <0.0001 

Dry matter content (%) 238.68 101.03 2.36 <0.0001 

Spikelet fertility (%) 750.83 545.45 1.38 0.015 

Grain yield under stress (g) 39.74 18.26 2.18 <0.0001 

Yield index 0.11 0.04 2.22 <0.0001 

Harvest index (%) 237.94 111.38 2.14 <0.0001 
aMSS is mean sum of square 
b SSE is sum of square of error 
cP-value is the level of significance for the difference between the RILs 

 

 

Table C2. Correlation coefficients among yield-related traits and root traits in the Cocodrie × N-

22 RIL population under reproductive stage drought stress 

Traits 

Stress Control 

Root length 

(cm) 

Dry root 

mass (g) 

Root shoot 

ratio 

Root length 

(cm) 

Dry root 

mass (g) 

Root shoot 

ratio 

Spikelet fertility (%) 0.03 -0.08 -0.07 -0.16* -0.13 -0.07 

Grain yield under stress (g) 0.08 0.08 0.04 -0.08 -0.13 -0.09 

Yield index 0.01 0.06 0.02 -0.10 -0.11 -0.03 

Harvest index (%) 0.06 -0.04 0.03 -0.01 -0.13 -0.09 
*Significant correlation between the traits at 5% level of probability 
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Table C3. Eigen value for the eight principle components and variance explained by each 

principal component 

Principal component Eigenvalue Percenta Cumulative Percentb 

  1 3.12 39.03 39.03 

  2 1.40 17.44 56.47 

  3 0.98 12.22 68.69 

  4 0.83 10.37 79.06 

  5 0.56 6.97 86.03 

  6 0.51 6.43 92.46 

  7 0.40 5.04 97.50 

  8 0.20 2.50 100.00 
aPercentage of variance explained by each principal component 
bCumulative variance explained by each additional principal component 

 
 

 

Table C4. Eigen vectors for each principal component for yield and yield-related traits in rice 

Trait Prin1 Prin2 Prin3 Prin4 Prin5 Prin6 Prin7 Prin8 

Days to flowering -0.22 0.15 0.65 -0.67 -0.15 -0.11 0.07 -0.07 

Plant height -0.25 0.59 0.10 0.11 0.62 0.00 -0.37 0.16 

Leaf rolling score -0.33 0.43 0.11 0.36 -0.41 0.49 0.37 0.02 

Plant dry matter content -0.04 -0.48 0.66 0.47 0.27 0.11 0.00 -0.10 

Spikelet fertility 0.41 -0.06 0.00 -0.35 0.30 0.76 0.08 0.11 

Grain yield under stress 0.46 0.34 0.11 0.11 -0.09 0.00 -0.18 -0.77 

Yield index 0.43 0.26 0.13 0.10 0.25 -0.36 0.69 0.20 

Harvest index 0.45 0.12 0.28 0.15 -0.42 -0.03 -0.43 0.54 
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Table C5. List of additive QTLs for yield and yield-related traits in the Cocodrie × N-22 RIL 

population under reproductive stage drought stress using interval mapping (IM) 

Trait QTLsa Chrb Pos 

(cM)c Left Marker Right Marker LODd PVE 

(%)e 

Additive 

effect 

Parental 

effect 

Days to 

flowering 

qDTF3.01 3 5 S3_1110340 S3_1497144 5.05 5.42 1.84 Cocodrie 

qDTF3.03 3 15 S3_3069783 S3_3408012 5.00 5.50 1.85 Cocodrie 

qDTF3.05 3 29 S3_5496857 S3_5545956 4.17 4.48 1.68 Cocodrie 

qDTF3.06 3 39 S3_6763336 S3_7002098 3.64 3.91 1.56 Cocodrie 

qDTF3.10 3 71 S3_10656190 S3_10941996 3.60 4.30 1.64 Cocodrie 

qDTF9.12 9 48 S9_12697203 S9_13964645 2.54 2.81 1.32 Cocodrie 

qDTF10.14 10 57 S10_14261588 S10_14469114 2.76 2.99 -1.39 N-22 

qDTF11.08 11 44 S11_8950871 S11_9004531 3.06 3.33 1.45 Cocodrie 

Plant height 

qPH1.28 1 138 S1_28190405 S1_28383640 2.13 2.72 -5.44 N-22 

qPH1.31 1 154 S1_31008477 S1_31033244 2.21 2.82 -5.45 N-22 

qPH1.37 1 186 S1_37273187 S1_37368297 19.65 20.13 -14.50 N-22 

qPH1.38 1 192 S1_38023681 S1_38286772 24.52 24.69 -15.99 N-22 

qPH7.02 7 17 S7_2717377 S7_3316814 3.90 5.11 7.2406 Cocodrie 

Leaf rolling 

score 

qLRS1.37 1 186 S1_37273187 S1_37368297 7.47 10.92 -0.56 N-22 

qLRS1.38 1 193 S1_38286772 S1_38611845 6.67 9.94 -0.53 N-22 

qLRS7.04 7 0 S7_425945 S7_553805 2.83 4.36 0.35 Cocodrie 

qLRS7.07 7 42 S7_7182433 S7_8031540 2.71 4.54 0.36 Cocodrie 

qLRS12.19 12 68 S12_19106376 S12_19379440 2.78 4.38 -0.36 N-22 

Plant dry 

matter 

content 

qDM1.07 1 43 S1_7295376 S1_7604334 2.22 5.50 2.60 Cocodrie 

Spikelet 

fertility 

qSF1.38 1 192 S1_38023681 S1_38286772 3.77 6.74 6.13 Cocodrie 

qSF1.39 1 203 S1_39580930 S1_39526933 2.45 4.14 4.77 Cocodrie 

qSF1.40 1 208 S1_40016682 S1_40478022 2.82 4.91 5.21 Cocodrie 

qSF3.0.6 3 0 S3_645267 S3_723901 2.89 4.82 -5.14 N-22 

qSF7.0.4 7 0 S7_425945 S7_553805 2.78 4.63 -5.07 N-22 

qSF12.24 12 98 S12_24162384 S12_24262862 2.78 4.67 -5.08 N-22 

Grain yield 

under stress 
qGY1.42 1 241 S1_42928362 S1_42966746 2.10 6.12 -1.02 N-22 

Yield index 
qYI1.42 1 242 S1_42981696 S1_43065133 2.24 4.99 -0.06 N-22 

qYI12.03 12 29 S12_3937337 S12_4053360 2.36 5.27 -0.06 N-22 

Harvest 

index 

qHI1.37 1 188 S1_37561874 S1_37740707 3.29 7.74 3.63 Cocodrie 

qHI1.42 1 241 S1_42928362 S1_42966746 3.02 7.18 -3.49 N-22 

qHI3.24 3 149 S3_24801891 S3_24951818 2.05 4.88 2.87 Cocodrie 
aThe name of the QTL. ‘q’ followed by the abbreviation of the trait, followed by the 

chromosome number, one decimal place and the physical location of the QTL in mega base pair 
bChromosome number  
cPosition of the QTL in genetic map 
dLogarithm of odds value for individual QTL 
ePhenotypic variance explained by the QTL expressed in percentage 
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Table C6. List of epistatic QTLs for yield and yield-related traits in the Cocodrie × N-22 RIL population under reproductive stage 

drought stress using inclusive composite interval mapping (ICIM) 

Trait$ QTL 1a Chr1b Pos1 

(cM)c 

Left 

Marker1 

Right 

Marker1 
QTL 2a Chr2b Pos2 

(cM)c 

Left 

Marker 2 

Right 

Marker 2 
LODd PVE 

(%)e Add1f Add2g 

Add 

x 

Addh 

PH 
qPH4.16 4 45 S4_16795210 S4_17838154 qPH4.33 4 135 S4_3326832 S4_33121074 4.1 9.2 1.2 2.3 -4.7 

qPH3.31 3 200 S3_31944839 S3_32058772 qPH11.11 11 55 S11_16931121 S11_16969972 4.8 8.1 -1.2 -0.3 -4.7 

DM qDM3.14 3 100 S3_14006351 S3_13604998 qDM3.13 3 110 S3_13604998 S3_14015710 5.0 3.2 7.1 -7.8 -6.5 

SF qSF4.05 4 30 S4_5728274 S4_6059987 qSF8.06 8 40 S8_6155282 S8_7256740 4.0 8.2 -0.2 1.0 -5.3 

GY 

qGY2.05 2 35 S2_5852996 S2_5848610 qGY3.05 3 30 S3_5496857 S3_5545956 4.3 9.2 0.2 -0.3 -1.4 

qGY4.30 4 125 S4_30600109 S4_31395132 qGY8.08 8 45 S8_8574594 S8_8874263 4.4 10.1 0.4 -0.1 -1.4 

qGY2.03 2 20 S2_3854717 S2_4310292 qGY8.21 8 85 S8_21174020 S8_21441966 4.9 10.8 0.3 -0.2 -1.5 

YI qYI2.22 2 100 S2_22663089 S2_22746914 qYI7.39 7 25 S7_3920664 S7_4483382 5.1 14.3 -0.1 0.1 -0.1 

HI qHI1.08 1 5 S1_852431 S1_1098433 qYI4.25 4 100 S4_25750452 S4_27194959 4.7 10.3 -1.1 0.1 4.1 
$PH, Plant height (cm); DM, Plant dry matter content (%); SF, Spikelet fertility (%); GY, Grain yield under stress (g); YI, Yield index; 

HI, Harvest index (%) 
aThe name of the QTL. ‘q’ followed by the abbreviation of the trait, followed by the chromosome number, one decimal place and the 

physical location of the QTL in mega base pair 
bChromosome number  
cPosition of the QTL in genetic map 
dLogarithm of odds value for the combined effect of QTL1 and QTL2 
ePhenotypic variance explained by the combined effect of QTL1 and QTL2 expressed in percentage 
fAdditive effect of QTL1 
gAdditive effect of QTL2 
hEpistatic effect of the interaction between the QTL1 and QTL2 
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Table C7. Significant gene ontology (GO) terms identified for each trait using agriGO and their classification into various sub-classes 

Trait GO accession Term typea Term P-value 

Days to 

flowering 

GO:0080090 P regulation of primary metabolic process <0.01 

GO:0019222 P regulation of metabolic process <0.01 

GO:0031323 P regulation of cellular metabolic process <0.01 

GO:0050789 P regulation of biological process <0.01 

GO:0032774 P RNA biosynthetic process <0.01 

GO:0010467 P gene expression <0.01 

GO:0065007 P biological regulation <0.01 

GO:0060255 P regulation of macromolecule metabolic process <0.01 

GO:0016070 P RNA metabolic process <0.01 

GO:0051252 P regulation of RNA metabolic process <0.01 

GO:0006355 P regulation of transcription, DNA-dependent <0.01 

GO:0006351 P transcription, DNA-dependent <0.01 

GO:0031326 P regulation of cellular biosynthetic process <0.01 

GO:0045449 P regulation of transcription <0.01 

GO:0019219 P regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process <0.01 

GO:0010468 P regulation of gene expression <0.01 

GO:0009889 P regulation of biosynthetic process <0.01 

GO:0050794 P regulation of cellular process <0.01 

GO:0051171 P regulation of nitrogen compound metabolic process <0.01 

GO:0010556 P regulation of macromolecule biosynthetic process <0.01 

GO:0006350 P transcription 0.01 

GO:0044249 P cellular biosynthetic process 0.02 

GO:0044237 P cellular metabolic process 0.02 

GO:0008152 P metabolic process 0.03 

GO:0009058 P biosynthetic process 0.03 

GO:0030528 F transcription regulator activity <0.01 

GO:0016491 F oxidoreductase activity 0.04 

GO:0043226 C organelle 0.04 

GO:0043229 C intracellular organelle 0.04 

GO:0005622 C intracellular 0.03  

Table C7. continued 
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Trait GO accession Term typea Term P-value 

Plant 

height 

GO:0006575 P cellular amino acid derivative metabolic process <0.01 

GO:0006576 P cellular biogenic amine metabolic process <0.01 

GO:0006519 P cellular amino acid and derivative metabolic process <0.01 

GO:0044106 P cellular amine metabolic process <0.01 

GO:0009308 P amine metabolic process 0.01 

GO:0006520 P cellular amino acid metabolic process 0.01 

GO:0034641 P cellular nitrogen compound metabolic process 0.02 

GO:0043565 F sequence-specific DNA binding 0.02 

GO:0030528 F transcription regulator activity 0.02 

Leaf 

rolling 

score 

GO:0008219 P cell death <0.01 

GO:0016265 P death <0.01 

GO:0012501 P programmed cell death <0.01 

GO:0006915 P apoptosis <0.01 

GO:0008234 F cysteine-type peptidase activity <0.01 

GO:0016757 F transferase activity, transferring glycosyl groups <0.01 

GO:0016758 F transferase activity, transferring hexosyl groups <0.01 

Spikelet 

fertility 

GO:0032774 P RNA biosynthetic process 0.01 

GO:0045449 P regulation of transcription 0.04 

GO:0050789 P regulation of biological process 0.04 

GO:0006355 P regulation of transcription, DNA-dependent 0.04 

GO:0065007 P biological regulation 0.02 

GO:0019219 P regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process 0.04 

GO:0050794 P regulation of cellular process 0.03 

GO:0051171 P regulation of nitrogen compound metabolic process 0.04 

GO:0051252 P regulation of RNA metabolic process 0.04 

GO:0006350 P transcription 0.02 

GO:0006351 P transcription, DNA-dependent 0.01 

GO:0043169 F cation binding 0.03 

GO:0043167 F ion binding 0.03 

GO:0003700 F transcription factor activity 0.03 

Table C7. continued    
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Trait GO accession Term typea Term P-value 

Spikelet 

fertility 
GO:0017111 F nucleoside-triphosphatase activity 0.04 

Harvest 

index 

GO:0070011 F peptidase activity, acting on L-amino acid peptides <0.01 

GO:0008233 F peptidase activity 0.01 

GO:0004175 F endopeptidase activity 0.03 
aTerm type: P, biological process; F, molecular function; C, cellular component 
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Figure C1. Genetic network of epistatic QTLs for eight yield and yield related traits under 

reproductive stage drought stress in rice 
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Figure C2. Expression potential of the genes in five different parts of the rice plant  
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125 

 

 



 

 

126 

 

 

 



 

 

127 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

128 

Vita 

 Uttam Bhattarai is a Nepalese citizen by birth. He attended his undergraduate college 

from Institute of Agriculture and Animal Sciences at Tribhuvan University, Nepal. After 

graduation, Uttam was awarded a Nepal Aid Fellowship from Indian Embassy in Nepal to pursue 

his master’s degree in plant breeding and genetics in India. Uttam completed his master’s degree 

from Assam Agricultural University, Jorhat India in 2013. Prior to starting his Ph.D., he did two 

months internship at Academia Sinica Taiwan during July and August 2013. Uttam joined Dr. 

Prasanta Subudhi’s lab in January 2014 as a Ph.D. student. He is working on genetics of drought 

tolerance in USA rice genotypes. During his Ph. D studies at Louisiana state university, Uttam 

also graduated his master’s in applied statistics as a dual degree from the same university. He has 

already published two first authored publications from his Ph.D. research.  


