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ABSTRACT 

 

 

Amino acids were previously found to modify starch functionalities and potentially 

increase starch utilization. The effect of amino acids at different pH levels on the pasting 

properties, thermal characteristics, and resistant starch (RS) formation of rice starch was 

investigated. Prior to the analyses, pretreatment of starch was done by adding amino acid 

(aspartic acid, leucine, lysine and tyrosine) at 6% dry weight basis and dispersing the mixture in 

distilled water, solutions adjusted with HCl and NaOH to pH 4, 7 and 10, and buffers of acetate, 

phosphate and carbonate at the same pH levels, respectively. Samples in HCl/NaOH solutions 

were mixed at room temperature and at 40+2
o
C. The slurries were stored at -80

o
C and 

lyophilized. 

Lysine and aspartic acid raised the breakdown (BD) and reduced the total setback (TSB) 

at all pHs using HCl/NaOH, with aspartic acid exhibiting the greater effect. Lysine shortened the 

pasting time (PTime) without affecting the peak temperature (PT) and increased the peak and 

conclusion temperatures with or without pH adjustment. Tyrosine in pH 10 solution reduced the 

PTime. In buffers, lowering of the peak viscosity, PTime and PT was observed, but was mainly 

attributed to the buffers. Heating at 40+2
o
C likewise decreased the paste viscosities and 

gelatinization temperatures, but raised the PTime and PT, with lysine having the most profound 

effect. Samples added with aspartic acid and leucine generally caused substantial increases in RS 

yields. No conclusive results on RS formation were obtained based on effect of charges. 

Therefore, charges in additives played an important role in altering pasting and thermal 

properties of rice starch, but not in controlling RS formation. 

To determine effect of hydroxyl-containing amino acid, starch was added with tyrosine, 

gelatinized, and lyophilized. The sample in pH 10 solution (HCl/NaOH) had higher BD and TSB 



xi 

 

than native starch. RS yields of gelatinized samples were negatively correlated to treatment in 

pH 10 solution. Compared to pretreated samples, gelatinized samples had higher paste viscosities 

and RS values.  

In conclusion, amino acids in combination with pH treatments can be used to alter rice 

starch functionalities, and may consequently enhance formation of RS. 
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CHAPTER 1. INTRODUCTION 

 

 

Starches have been used in the food industry for numerous applications. This is made 

possible by modification of native starch to improve its functional properties either by physical, 

such as heat or moisture treatments, or chemical means through etherification, esterification, 

cross-linking and grafting of starch (Wurzburg, 1986). Among the properties improved by these 

treatments are low shear resistance, thermal resistance, and high retrogradation potential (Hui et 

al., 2009). These properties, called functional characteristics, relate to the behavior of a starch 

product when subjected to various processing treatments, and determine the applications suitable 

for the starch. 

Gelatinization refers to the process in which starch undergoes order-disorder transition 

with the application of heat in the presence of excess water. The gelatinization temperature of 

starch (GT), or the temperature at which 90% of the starch granules have swollen irreversibly in 

hot water (IRRI, 2006),  is commonly determined using the Differential Scanning Calorimeter 

(DSC). DSC measures the gelatinization onset, peak, conclusion, and enthalpy. These thermal 

properties provide information on the energy required to disrupt molecular order and therefore 

are of particular importance to food processors who need to optimize heat input, cooking time 

and temperature, and reduce process cost (Bao and Bergman, 2004). 

The process in which starch is further heated in water is called pasting, which is the 

formation of a viscous material comprised of leached amylose and disintegrated starch granules. 

Pasting properties reflect the cooking behavior of starch, such as water binding capacity, cooking 

stability, retrogradation potential, and pasting time and temperature. Generally, these properties 

are important indicators of final product quality (Newport Scientific, 1998). 
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Incorporation of amino acids to native starch was previously demonstrated to alter starch 

functional properties (Liang and King, 2002, Ito et al., 2004, Ito et al., 2006a, 2006b, Lockwood 

et al., 2008, An and King, 2009). Using starches of different botanical origins, these studies 

indicated that charged amino acids impact the pasting and gelatinization behavior of starches 

more than neutral ones. Lysine, when added to ozonated rice starch, reduced the water binding 

capacity and pasting time, and produced starch with better cooking stability and lower pasting 

viscosities. Lysine also lowered the enthalpy of amylose-lipid complexes (An, 2005), which also 

affect starch pasting properties (Zhou et al., 2002). In their study on sweet potato starch, 

Lockwood et al. (2008) reported that aspartic acid produced a starch with lower cooking stability 

and retrogradation potential, while lysine made a starch that is more resistant to shear during 

cooking. Lysine (Ito et al., 2004) and glutamic acid (Kinoshita et al., 2008) depressed the peak 

viscosity of potato starch. These studies all indicated that charged amino acids have an effect on 

gelatinization temperature of the starches (Liang and King, 2002, Ito et al., 2004, Ito et al., 

2006a, 2006b, Kinoshita et al., 2008, Lockwood et al., 2008, An and King, 2009). 

Alteration of functional properties of starch can decrease its digestibility due to the 

formation of resistant starch (RS). Processing and storage conditions that affect gelatinization 

and retrogradation were demonstrated to influence RS formation (Eerlingen et al., 1993, Eggum 

et al., 1993, Garcia-Alonso et al., 1999, Kim et al., 2006, Park et al., 2009). Chemical 

modifications, such as oxidation, dextrinization and cross-linking of starches were likewise 

shown to increase RS yields (Wolf et al., 1999). Growing interest in RS is due to its reported 

physiological benefits such as hypoglycemic and hypocholesterolemic effects and anticancer 

properties (Sajilata et al., 2006). Because it is indigestible by body enzymes, RS elicit no 

glycemic response. RS is fermented in the gut to form short chain fatty acids (SCFAs) such as 
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propionate which was shown to inhibit cholesterogenesis and lipogenesis in animals (Lopez et 

al., 2001).  SCFAs are beneficial substrates for colonic epithelial cells, and thus, RS had been 

implicated in colorectal cancer mitigation (Niba and Niba, 2003). Hence, modification of starch 

may increase its utilization and at the same time lead to the production of novel food ingredients 

with health promoting properties. It is therefore worthwhile to investigate whether amino acid 

additives show an effect on starch functional properties and influence the RS formation of starch.  

Effects of amino acids on functional properties and RS formation of rice starch was 

investigated by An in 2004. In her study, she observed a significant increase in RS yield in rice 

starches with added aspartic acid. Ito et al. (2004) noted that pH affects charges of amino acids, 

so they fixed the pH at 7 when they assessed the impact of amino acid net charge on the 

gelatinization of potato starch. Their study confirmed the findings of Liang and King (2002) 

regarding the strong effect of charged amino acids without pH treatments. Varying the pH levels 

would therefore provide more understanding of the contribution of amino acids on starch 

functionalities and potentially, RS formation. 

This study primarily aimed to determine the effect of various amino acids in different pH 

systems on the pasting and thermal properties, and RS formation of rice starch. The study also 

investigated changes in these starch properties using a treatment procedure in which starch and 

amino acid mixtures were slurried in different hydrating mediums and dried prior to starch 

analysis. Lastly, it investigated for the first time the use of a hydroxyl group-containing amino 

acid (tyrosine), which was postulated to markedly change starch properties due to its hydrogen 

bonding capability. 
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CHAPTER 2. REVIEW OF RELATED LITERATURE  

 

2.1 CARBOHYDRATE  

2.1.1 Starch  

Starch is the major dietary source of carbohydrates and is the most abundant storage 

polysaccharide in plants. It is present in high amounts in roots, tubers, cereal grains and legumes 

(Eerlingen and Delcour, 1995) and also occurs in fruit and vegetable tissues (McCleary et al., 

2006). Starch is a polymer of glucose linked together by -D-(1-4) and/or -D-(1-6) glycosidic 

bonds. The starch granule mass comprises 70% amorphous regions, which consists of amylose 

and branching points of amylopectin molecules, and 30% crystalline, which is mainly composed 

of the outer chains of amylopectin (BeMiller, 2007, Eerlingen and Delcour, 1995, Perdon et al., 

1999, Sajilata et al., 2006).  

Amylose is the linear portion of the starch, with glucose residues linked by -D-(1-4) 

bonds. Depending on the species, amylose constitutes typically 20 to 30% of starch (Bertoft, 

2004), has a degree of polymerization (DP) of 500 to 6000 (Eerlingen and Delcour, 1995), and 

molecular mass ranging from10
7
 to 10

9
 g/mol (Hizukuri, 1996). The variable number of 1,6-

branching points, as well as amount of glucose monomers, makes it difficult to determine 

amylose content in different starches (Haase, 1993). The long chains of amylose can form single 

or double-helical structures (Sajilata et al., 2006) with hydrophobic cavities that can complex 

with lipids and iodine (Englyst et al., 2000). Amylose does not dissolve easily in water and forms 

rigid gels (McCleary et al., 2006).  

Amylose is the main component of starch which undergoes retrogradation, or the 

recrystallization of gelatinized starch (Hibi, 1998). In this process, the long chains of amylose 

form helices, either singly or doubly (with other amylose chains), which then align to form 
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 insoluble crystallites resistant to enzymatic action (BeMiller and Whistler, 1996). 

Amylopectin is a larger branched molecule with 4 to 5% of its glycosidic bonds as         

-D-(1-6) linkages (Klaus et al., 2000, Eerlingen and Delcour, 1995). Amylopectin is one of the 

largest molecules in nature, with a degree of polymerization (DP) averaging 2 million and a 

molecular mass severalfold greater than amylose (Hizukuri, 1996). It easily dissolves in hot 

water and does not form a gel (McCleary et al., 2006). Starches that contain only amylopectin 

are termed waxy starches. Most amylopectin molecules have three branch chain fractions that 

differ in lengths. The outermost chains, or the A chains, comprise the smallest fraction, whereas 

the short and long B chains form the two other fractions.  The longer B chains and shorter A 

chains determine the properties of starch and starch-based foods (BeMiller, 2007). 

2.1.2 Gelatinization  

 Gelatinization is a process by which starch granules irreversibly lose their molecular 

order, called birefringence, as a result of a series of events when starch granules are heated in 

excess water. First, the granules swell as hydrogen bonds in the amorphous portions are 

disrupted. Next, water, which acts as plasticizer, is absorbed. More hydration and swelling occur 

in the amorphous regions as the temperature rises, causing the crystallites to break apart, and 

then undergo hydration and melting. Lastly, polymer molecules, particularly those of amylose, 

leach out of the granules and viscosity increases (Biliaderis, 1991, Eerlingen and Delcour, 1995, 

BeMiller 2007).  

Gelatinization temperature (GT) and the temperature range of gelatinization depend on 

the type of starch, method of measurement, starch-water ratio, pH, absence or presence of 

swelling-inhibiting or swelling–promoting salt, salt concentration, and presence and 

concentration of a solute (eg. sucrose) (BeMiller, 2007). Sugars and other polyhydroxy  
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compounds increase GT, while simple salts have a lowering effect (Evans and Haisman, 1982).  

The Differential Scanning Calorimetry (DSC) is the most common technique used to 

study the thermal properties of starches. It measures first-order (melting) and second-order (glass 

transition) transition temperatures and heat flow changes in polymeric materials and gives 

information on order-disorder phenomena of starch granules (Biliaderis et al., 1986). 

Gelatinization is an endothermic process. In the DSC curve of starch at intermediate 

water levels, three endothermic transitions are usually observed. The first two endotherms 

correspond to the disorganization of starch crystallites (Biliaderis et al., 1986), or gelatinization, 

wherein glass transitions of water-plasticized amorphous portions and then non-equilibrium 

melting of the microcrystallites of the partially crystalline amylopectin occur (Slade et al., 1996). 

The third endotherm, which occurs at higher temperature, relates to the melting of complexes 

formed by amylose and native lipids (Biliaderis et al., 1986). Crystallite quality and the overall 

crystallinity of the starch are measured by the peak temperature (Tp) and the enthalpy of 

gelatinization ( H), respectively (Tester and Morrison, 1990). Onset temperature (To) and 

completion temperature (Tc) determine the boundaries of the different phases in a 

semicrystalline material like starch (Biliaderis et al., 1986).  

2.1.3 Pasting 

Continued heating of starch in excess water with stirring causes the granules to further 

swell, the amylose to leach more, and the granules to disintegrate, forming a viscous material 

called paste (BeMiller, 2007). Pasting occurs after or simultaneously with gelatinization. Pasting 

properties of starch are important indicators of how the starch will behave during processing and 

are commonly measured using the Rapid Visco Analyzer (RVA). Figure 2.1 shows a typical 

RVA pasting curve. In the RVA test, starch is mixed with water to allow for hydration and held 
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for a short time above ambient temperature. Heating proceeds, resulting in swelling of starch 

granules. As heating continues, an increase in viscosity can be observed, which reflects the 

process of pasting. The temperature at the onset of viscosity increase is termed pasting 

temperature. Viscosity increases with continued heating, until the rate of granule swelling equals 

the rate of granule collapse, which is referred to as the peak viscosity (PV). PV reflects the swell-

ling extent or water-binding capacity of starch and often correlates with final product quality 

since the swollen and collapsed granules relate to texture of cooked starch. Once PV is achieved, 

a drop in viscosity, or breakdown, is observed as a result of disintegration of granules. Break-

down is a measure of the ease of disrupting swollen starch granules and suggests the degree of 

stability during cooking (Adebowale and Lawal, 2003). Minimum viscosity, also called hot paste 

viscosity, holding strength, or trough, marks the end of the holding stage at the maximum 

temperature of the RVA test. Cooling stage begins and viscosity again rises (setback) which is 

caused by retrogradation of starch, particularly amylose. Setback is an indicator of final product 

texture and is linked to syneresis or weeping during freeze-thaw cycles. Viscosity normally 

stabilizes at a final viscosity or cold paste viscosity, which is related to the capacity of starch to 

form viscous paste or gel after cooking and cooling (Batey, 2007, Newport Scientific, 1998). 

Other components naturally present in the starchy material or additives interact with 

starch and influence pasting behavior (Newport Scientific, 1998). The presence of proteins with 

disulfide linkages confers shear strength and gelatinized paste rigidity to rice starch (Hamaker 

and Griffin, 1993, Xie et al., 2008). Beta-glucans added to rice starch reportedly increase the 

paste viscosities (Banchathanakij and Suphantharika, 2009). Lipids complexed with amylose  

tend to enhance retrogradation of rice starch. Beta-cyclodextrin and amino acids also altered 

pasting behavior of rice starch (Liang and King, 2003). With amino acids, pasting profiles were 
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Figure 2.1 Typical Pasting Curve of Starch as Measured by RVA. 

 

 

 

 

 

 

 

 

 

 

 



9 

 

more affected by charged amino acids than neutral ones in rice (An and King, 2009, Liang and 

King, 2003), sweet potato (Lockwood et al., 2008), and potato starches (Ito et al. 2004, 2006a). 

2.1.4 Retrogradation 

 Retrogradation refers to the processes that cause starch gels to become less soluble during 

cooling due to recrystallization of starch molecules (BeMiller and Whistler, 1996). 

Retrogradation occurs when the amylose leached from starch granules during gelatinization 

interacts with amylopectin chains of swollen starch granules, forming a rigid structure (Kurakake 

et al., 2009). This is the reason for the increased firmness of cooked food after cooling or 

storage. Both amylose and amylopectin fractions are important in the retrogradation process. 

Amylose undergoes rapid crystallization as soon as cooling begins and retrogradation depends on 

the amylose content in the sample, the amount that is free and uncomplexed with lipids, and its 

molecular weight distribution. Amylopectin, on the other hand, recrystallizes slowly and the 

degree of retrogradation depends on the chain length distribution of amylopectin (Philpot et al., 

2006).  Retrogradation due to amylose is favored at lower starch concentration (Orford et al., 

1987) and results in a material very resistant to enzymatic hydrolysis (Ring et al., 1988). 

Recrystallization and retrogradation of amylopectin is dominant at a higher concentration of 

solids (Orford et al., 1987) and the polymer formed is more loosely bound than retrograded 

amylose (Englyst et al., 1992) and hence, highly susceptible to amylolysis (Ring et al., 1988).  

2.2 RICE 

2.2.1 Rice and Rice Starch 

Rice (Oryza sativa L.)  is a staple food of more than half of the world’s population , 

particularly in Asian countries (Juliano, 1985).  It has been cultivated on almost all continents 

and has been consumed by humans for at least 5,000 years (Bao and Bergman, 2004). China, 
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India and Indonesia were believed to be where rice was first cultivated, and thus the origin of the 

three races of rice – japonica, indica, and javanica (Juliano, 1993). Japonica and indica types are 

considered the two sub-species of rice, and each sub-species is comprised of genotypes with 

varying cooking and processing properties (Hizukuri et al., 1989, Bao and Bergman, 2004). The 

short and wide japonica rices typically cook soft, moist and sticky (Bao and Bergman, 2004) and 

retrograde slowly (Hizukuri et al., 1989), whereas the long and thin indica rices usually cook 

firm, dry and fluffy (Bao and Bergman, 2004) and retrograde rapidly (Hizukuri et al., 1989).  

Javanica rice belongs to the japonica race (IRRI, 2007a).  The characteristics of the different 

rices are controlled by their starch composition. 

Mostly consumed in its cooked milled form, rice is also made into flour or starch for use 

in pharmaceutical, food, and animal feed products. Rice starch has found many applications 

because of its many excellent characteristics. It has neutral taste and hence does not affect the 

final flavor of the product where it is incorporated in (Bao and Bergman, 2004). Rice starch has 

the smallest granules of the commercial starches (2-9 m) (BeMiller, 2007), and it is known to 

form a soft gel, making it a desirable fat mimetic in a wide array of food products. Also, rice 

starch does not contain gluten and therefore do not invoke allergic responses in humans (Bao and 

Bergman, 2004).   

2.2.2 Physicochemical Properties Related to Processing and Eating Quality 

Milled rice contains about 90% starch. In rice starch, amylose has a greater effect on the 

processing properties and eating quality. Amylose is directly correlated to the hardness, 

whiteness and dullness of cooked rice and volume expansion and water absorption during 

cooking. Varieties with a low amylose level have a soft and sticky cooked texture while those 

with high amylose content have flaky and hard texture (Juliano, 1985). Rice varieties are usually 
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classified in terms of amylose content as waxy (1-2% amylose), very low (2-9%), low (10-20%), 

intermediate (20-25%), and high (25-30%) (IRRI, 2007b).  Waxy rice occurs in both japonica 

and indica rice sub-species (Bao and Bergman, 2004). 

While amylose content is the most important physicochemical property of rice related to 

its cooking and eating quality, GT also affects consumer preference and acceptance of a rice 

variety because GT is directly associated with cooking time (Juliano, 1993). Heat energy needed 

to completely gelatinize starch, on the other hand, is important for food processors, because this 

determines the heat input, cooking time, and temperature of processing (Bao et al., 2007). 

Classifications of starches according to GT as measured by the DSC are: low, 64 to 67
o
C Tp; 

intermediate, 68 to 71
o
C; and high, 75 to 79

o
C (Tester and Morrison 1990). 

2.2.2.1 Amylose Determination Methods 

Complexation with iodine changes the color of amylose to blue-black and is the basis of 

the commonly used colorimetric method of determining the amylose content in a sample (Juliano 

et al., 1981). Mahmood et al. (2007) attributes the method’s widespread use to its economical 

advantage and greater throughput per day over other methods available. The use of delicate 

reagents such as enzymes is also not required (Mahmood et al., 2007).  

Yun and Matheson (1990), however, noted a major limitation of the colorimetric method 

 relying on the color formation of the starch-iodine complex. The amylopectin portion of the 

starch also produces a reddish-purple compound when complexed with iodine (BeMiller and 

Whistler, 1996), which subjects the measurements to uncertainties. Amylose standards obtained 

from various sources that vary widely in terms of quality, the presence of lipids that could 

interfere with the assay, and the pH of the final solution are other possible sources of error 

(Bhattacharya, 2009). Therefore, results from this method could either be lower or higher than 
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the actual value (Singh et al., 2003), such that the value obtained is termed ―apparent amylose‖ 

or ―amylose equivalent‖ (Bhattacharya, 2009). 

Gibson et al. (1997) developed a method that estimated the amount of the polysaccharide 

after precipitation with concanavalin-A (Con A), a lectin that can selectively precipitate 

amylopectin from starch through the formation of a complex under defined conditions of pH, 

temperature and ionic strength. Yun and Matheson (1990) refined this method by including an 

ethanol pretreatment of the starch sample to extract the lipids, which can also complex with 

amylose and interfere with colorimetric determinations. The amylose is then either reacted using 

phenol-sulfuric acid reagent or hydrolyzed enzymatically. The use of phenol-sulfuric acid 

reagent, however, could yield a higher amylose value, which may be due to the presence of non-

starchy polysaccharide (Yun and Matheson, 1990). Megazyme International Ireland Ltd. (Co. 

Wicklow, Ireland) developed an amylose/amylopectin assay which is based primarily on the 

method of Yun and Matheson (1990), but utilized only the enzymatic hydrolysis. 

2.3 MODIFIED STARCH 

2.3.1 Starch Modification 

 Native starches have been used for a variety of food applications. However, they lack 

important functional characteristics. These characteristics include viscosity, texture and 

emulsifying properties, clarity of formed pastes, and binding properties (Keeling, 1997). In 

addition, some starch-based products are not usually made or consumed after gelatinization, but 

stored at low temperatures, which causes gels of native starches to shrink, undergo syneresis, and 

toughen in the process called retrogradation (Lillford and Morrison, 1997).  

 Modification either by chemical or physical means is done to overcome the shortcomings 

of native starches and to increase the usefulness of starch. Physically altered starches include 
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pregelatinized, redried, extruded, sonicated and irradiated starches (Wurzburg, 1986, Bao and 

Bergman, 2004). The types of chemical modifications commonly used are crosslinking of 

polymer chains, derivatization, depolymerization, pregelatinization, and combinations of these. 

With starch modification, the following properties can be achieved: reduced energy needed for 

cooking (improved gelatinization and pasting), altered cooking properties, enhanced solubility, 

increased or decreased paste viscosity, reduced or enhanced gel formation, improved gel 

strength, reduced gel syneresis, improved interaction with other substances, better stabilizing 

properties, enhanced film formation, improved water resistance of films, decreased paste 

cohesiveness, and improved stability to acid, heat, and shear (BeMiller, 2007).   

 Chemical modification of starch depends on the hydroxyl groups of the amylose and 

amylopectin, and very few of these hydroxyl groups are reacted, with degree of substitution 

(usually with ester or ether groups) values of <0.1. Chemical modifications currently allowed for 

use in foods in the United States include esterification with acetic anhydride, succinic anhydride, 

mixed anhydride of acetic and adipic acids, 1-octenylsuccinic anhydride, phosphoryl chloride, 

sodium trimetaphosphate, sodium tripolyphosphate, and monosodium orthophosphate; 

etherification with propylene oxide; reaction with hydrochloric and sulfuric acids; bleaching with 

hydrogen peroxide, peracetic acid, potassium permanganate, and sodium hypochlorite; oxidation 

with sodium hypochlorite; and treatment using various combinations of these chemical reactions 

(BeMiller, 2007).   

2.4 RESISTANT STARCH 

2.4.1 Forms 

 Starch can be subdivided into three types based on in vitro digestion: rapidly digestible 

starch (RDS), slowly digestible starch (SDS) and resistant starch (RS) (Englyst et al., 1992). 
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RDS and SDS represent the starch fractions that are completely digested while RS is the portion 

which resists digestion in the small intestines of healthy individuals and is available for 

fermentation in the large bowel (Englyst et al., 2000). RS physiologically functions like dietary 

fiber (McCleary et al., 2006), notably by the reduction of plasma glucose and insulin levels and 

the increase in faecal bulk (Cairns et al., 1995). RS has been believed to account for 30% of the 

total fiber fraction in the diet (Englyst, 1989), the only difference being fiber not of starch origin 

(i.e. plant cell wall polysaccharides) (Englyst et al., 1987, Haralampu, 2000). RS is implicated in 

the prevention of gastrointestinal diseases like colon cancer, since its fermentation in the gut 

leads to the formation of short-chain fatty acids, such as acetate, propionate and butyrate, which 

have health-promoting properties (Hung et al., 2005, Zhang et al., 2007).  RS acts as substrate for 

the growth of probiotic microorganisms (Birkett et al., 2000), reduces the formation of gall 

stones, decreases cholesterol levels, inhibits fat accumulation (Lopez et al., 2001), and improves 

the bioavailability of calcium (Younes et al., 2001), magnesium, zinc, iron and copper (Lopez et 

al., 2001, Sajilata et al., 2006). 

RS is categorized into physically inaccessible starch (RS1), starch made indigestible by 

inhibitory action of enzymes (RS2), retrograded starch, particularly the amylose portion (RS3), 

and chemically modified starch (RS4) (Eerlingen and Delcour, 1995, Goñi et al., 1996, Sajilata et 

al., 2006). RS1 represents starch present in foods with very dense structure such as whole grains 

and partially milled seeds and in some processed starchy foods and is heat stable in most normal 

cooking operations (Sajilata et al., 2006). Foods such as boiled rice, pasta, whole-grain bread, 

maize and legumes are also found to contain RS1 (Englyst et al., 2000). RS2 is the form which is 

tightly packed, has a high density and is partially crystalline, preventing enzymatic action. It can 

be found in foods with uncooked starch such as raw potato, bananas (Eerlingen and Delcour, 
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1995), raw cereal flours, dry-baked biscuits and legumes (Englyst et al., 2000). RS3 is the 

fraction which forms when there is heat-moisture treatment involved, that is, during cooling of 

gelatinized starch (Eerlingen and Delcour, 1995, Sajilata et al., 2006). Cooling and ageing of the 

gel cause the reformation of a crystalline structure among the polymers, the phenomenon termed 

as retrogradation (Englyst et al., 1992). RS4, on the other hand, is developed after some chemical 

or thermal treatments to the starch (Sajilata et al., 2006), with the indigestibility usually 

accounted to substituents or new glycosidic bonds formed by dry heat (Hung et al., 2005). 

Among these four types, RS3 is the most common form in the diet. Furthermore, RS3 is 

considered the most important because it is generated due to food processing (García-Alonso et 

al., 1998) and has a huge potential for use in a wide array of applications in the food industry due 

to its thermal stability (Haramlampu, 2000). 

Studies have indicated a positive correlation between amylose content and amount of 

resistant starch (Berry, 1986, Sagum and Arcot, 2000, Rosin et al., 2002, Zhang et al., 2007). As 

described in Section 2.1.1, the amylose molecule has an extended shape that winds to form 

singular or double helical structures.  On the outside surface of the single helical amylose are the 

hydrogen-bonding O2 and O6 atoms which can bond with aligned chains, causing retrogradation 

and syneresis, or the liberation of some of the bound water in the gel (BeMiller and Whistler, 

1996). The aligned chains, which possess extensive inter- and intra-strand hydrogen bonding, 

may then form double stranded crystallites that are fairly hydrophobic, very slightly soluble, and 

resistant to amylases. The formed product is RS3 (Chaplin, 2008).  

Aside from the amylose content, many other factors influence the RS levels formed in a 

food product. These include the botanical source, starch interactions with other components, 

structure of starch granules, the presence of other components or antinutrients (eg. phytic acid), 
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processing, and storage conditions (Cairns et al., 1995, Escarpa et al., 1997, Rosin et al., 2002, 

Kumari et al., 2007). According to Zhang et al. (2007), milled rice samples with similar amylose 

contents can have different RS levels and the protein content was directly correlated to the 

amount of RS in foods. The physical form of starchy foods (eg. coarse ground cereals) (Birkett et 

al., 2000) and the degree of chewing (Muir and O’Dea, 1992) likewise affect RS levels.  The 

presence of ions (potassium and calcium) and catechins greatly induces RS formation, while 

nutrients (albumin, olive oil and sucrose), pectins, gums and phytic acid affect it to a lesser 

extent (Escarpa et al., 1997). In regards to processing, factors contributing to RS formation are 

water content, heating temperature (Berry, 1986, Sagum and Arcot, 2000), pH, time, number of 

heating and cooling cycles, freezing, drying (Englyst et al., 1987), and storage time and 

temperature (Eerlingen et al., 1993). In a study by Sagum and Arcot (2000), the high amylose 

rice variety Doongara had significantly higher RS when pressure-cooked than when boiled. 

Modification of starch either by physical or chemical means were also shown to reduce starch 

digestibility (Saura-Calixto and Abia, 1991). 

2.4.2 RS Assays 

Because of the many beneficial physiological effects of RS, accurate estimation of RS 

levels in the diet is necessary. In vitro techniques that have been developed to measure RS in 

 foods are either enzymatic-gravimetric or enzymatic-chemical (Englyst et al., 1987, Kim et al., 

2003). Enzymatic-gravimetric approaches are based on the premise that resistant starch is the 

portion of starch that remains undigested by enzymes (Eerlingen et al., 1993). In this method, 

starch is hydrolyzed in phosphate buffer using three enzymes: heat stable -amylase, protease, 

and amyloglucosidase (AOAC, 1995). After enzymatic digestion, precipitation with ethanol is 

carried out. The mixture is filtered, washed with ethanol and acetone, and dried. The resultant 



17 

 

residue is the RS.  Eerlingen et al. (1993) used an enzymatic-gravimetric method to quantify RS 

in autoclaved starch and obtained comparable results with those in published reports. Meanwhile, 

Kim et al. (2003) suggested a simplified technique by using only the heat stable -amylase after 

they found out that their results had correlated well with those assayed using three enzymes as in 

the AOAC method. RS obtained using enzymatic-gravimetric methods, however, does not 

necessarily represent RS obtained under in vivo conditions because of different pH and 

temperature conditions and the enzymes used (Eerlingen et al., 1993, Monro, 2004).  

Enzymatic-chemical assays of measuring RS are either direct or indirect. Direct methods 

measure the RS after removal of digestible starch while indirect methods determine RS as the 

difference between total and digestible starch (Walter et al., 2005). Goñi et al. (1996) proposed a 

direct method of determining RS in food and food products, citing that a fraction of resistant 

starch often remains in analytically determined dietary fiber.  This method involves addition of 

pepsin solution to the sample to remove proteins to enhance amylase accessibility, avoid starch-

protein interactions, and simulate physiological conditions. Then, the enzyme -amylase is 

added to remove digestible starch and then RS is solubilized and hydrolyzed using 

amyloglucosidase (AMG). The glucose concentration is determined using glucose oxidase-

peroxidase reagent and then read against a glucose water standard curve. The quantification of 

RS is expressed as mg of glucose x 0.9 (Goñi et al., 1996). In this method, however, Zhang et al. 

(2007) noted that serious fermentation occurred in the incubation medium and that RS might or 

might not be affected by microbial growth in the supernatant. They, thus, investigated the impact 

of antimicrobial agents – antibiotics and sodium benzoate – on the RS levels. They found out 

that a significant decrease in RS levels had resulted from antibiotics addition, suggesting that 

without the antimicrobial agents, there was overestimation of RS since microbial growth  



18 

 

inhibited the action of -amylase. 

The method currently accepted by AOAC International and AACC International for 

measuring RS is that developed by McCleary and Monaghan (2002). This method involves 

incubation of starch with -amylase with AMG to solubilize and hydrolyze the non-resistant 

fraction. The reaction is stopped by the addition of alcohol and the pellet is separated by 

centrifugation, washed with ethanol, and centrifuged again. The collected RS is dispersed in 

potassium hydroxide with stirring in an ice-water bath and then neutralized with acetate buffer. 

A high concentration of AMG is added to hydrolyze RS to glucose, which in turn is measured 

with glucose oxidase-peroxidase reagent (GOPOD) colorimetrically (McCleary and Monaghan, 

2002). Data obtained using this method in an interlaboratory analysis were comparable with in 

vivo measurements (McCleary et al., 2002). The method, however, is best suited for finely milled 

samples (Monro, 2004) and samples containing more than 2% RS (Megazyme, 2002). The 

absence of protease in the assay could also overestimate the RS levels because starch-protein 

interactions or starch encapsulated in a protein matrix might be detected as RS. An earlier AOAC 

standard assay (AOAC Method 996.11, 1998), which also does not utilize protease, gave higher 

RS values than the method of Siljeström and Asp (1985), which involves hydrolysis of the 

sample with protease after -amylase in the first step and solubilization with alkali (Walter et al., 

2005).  

Researchers led by Englyst (Englyst et al., 1992, Englyst et al., 2000) developed a 

procedure that quantifies RS indirectly, as well as other starch fractions from foods. The main 

procedure involves enzymatic hydrolysis of starch and then measurement of glucose released. 

Starch is first treated with protease and then incubated with amylolytic enzymes (pancreatic 

amylase, amyloglucosidase and invertase) under specified temperature, pH, viscosity and 
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mechanical mixing. RDS and SDS are measured after 20 min and 120 min incubation, 

respectively. RS is the fraction that remains undigested after 120 min and determined from the 

difference of total starch and digestible starch fractions. This method was validated in vivo using 

healthy ileostomy subjects as model for digestion in the small intestine (Englyst et al., 1996). 

The downside of the Englyst method, however, is the inaccurate measurements for foods with 

low RS levels due to accumulation of errors of two experimental determinations (Goñi et al., 

1996). 

2.5 AMINO ACIDS 

2.5.1. Amino Acids and Their Properties 

An amino acid is the building block of proteins. It consists of a carbon atom covalently 

bound to a hydrogen atom, an amino group, a carboxyl group, and a side-chain R group. The side 

chain R group determines the physicochemical properties of the amino acid, which include the 

net charge, solubility, chemical reactivity, and hydrogen bonding potential. Aliphatic (alanine, 

isoleucine, leucine, methionine, proline, and valine) and aromatic (phenylalanine, tryptophan, 

and tyrosine) side chains render hydrophobicity to the amino acids. The guanidino, amino and 

imidazole groups in arginine, lysine and histidine, respectively, have a basic character and hence, 

the net charge of the amino acids is positive at neutral pH. Carboxyl groups in aspartic and 

glutamic acids, on the other hand, make the net charge negative at neutral pH (Damodaran, 

1996). The structures of representative amino acids are shown in Table 2.1. 

 Amino acids behave both as acids and bases and can exist in different ionized forms 

depending on the pH of the medium. When both of the acidic and amino groups of an amino acid 

are ionized (i.e. its net charge is zero), the amino acid becomes a zwitterion. This occurs at the 

isoelectric point (pI), which is specific to the amino acid.  In a more acidic medium where 
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pH<pI, the amino acid becomes the weaker acid and therefore accepts proton, turning the amino 

acid positively charged. Conversely, in a more basic solution where pH>pI, the amino acid acts 

as the stronger acid and donates proton, causing its net charge to become negative. Several 

amino acids have side chains containing ionizable groups. The pH at which the concentrations of 

the protonated and deprotonated ionizable groups  is called pK (Damodaran, 1996). The pK’s 

and pI values of representative amino acids are presented in Table 2.2.    
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Table 2.1 Representative Amino Acids and Their Structures. 

Name Symbol Structure at neutral pH 

Aspartic acid ASP 

 

Leucine LEU 

 

Lysine LYS 

 

Tyrosine TYR 
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Table 2.2 pK and pI Values of Ionizable Groups of Amino Acids Used in This Study.
1,2 

Name 

pK 

pI 
-COOH -NH3

+
 

Side Chain    

(Free AA) 

Aspartic acid 1.88 9.60 3.65 2.77 

Leucine 2.30 9.60 -- 5.98 

Lysine 2.18 8.95 10.53 9.74 

Tyrosine 2.20 9.11 10.07 5.96 
1
Values given at 25

o
C. 

2
Damodaran, 1996  
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CHAPTER 3. MODIFICATION OF RICE STARCH PROPERTIES BY ADDITION OF 

AMINO ACIDS AT VARIOUS pH LEVELS 

 

 

3.1. INTRODUCTION 

Rice starch possesses unique qualities, such as hypoallergenicity and bland taste, which 

make it a desirable food ingredient. Native starches, however, are unstable under various 

temperature, shear and pH conditions so that their application in the food industry is limited. 

Hence, to achieve more desirable functional characteristics and increase their utilization, native 

starches are oftentimes modified either through moisture-heat treatments, by reaction using 

various chemicals, through enzymatic means, or by genetic manipulation (Bao and Begman, 

2004). Meanwhile, other components that co-exist with the starchy material can interact with 

starch and consequently affect its functional behavior (Newport Scientific, 1998). Not widely 

practiced as a starch modification technique, utilization of additives to alter rice starch properties 

is worth exploring.  

The use of amino acids as additives to native starch holds promise as an alternative starch 

modification technique. Different amino acids have been demonstrated to alter functional 

characteristics in various native starches (Liang and King, 2003, Ito et al., 2004, Ito et al., 2006a, 

Lockwood et al., 2008, An and King, 2009). In rice starch, aspartic acid was shown to lower 

viscosity and setback values, resulting in a starch with increased retrogradation stability. 

Arginine, on the other hand, increased the tendency for retrogradation (Liang and King, 2003). 

Lysine lowers the swelling power and pasting time. The starch produced had better cooking 

stability and lower pasting viscosities (An and King, 2009). Lowering of peak viscosity by lysine 

(Ito et al., 2004) and glutamic acid was also observed in potato starch (Kinoshita et al., 2008). In 

general, charged amino acids had greater effect on controlling the pasting properties of starch  
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(Liang and King, 2003, Ito et al., 2004, An and King, 2009).  

Significant alterations on the pasting behavior of starch are not the sole effects of amino 

acid additives. Charged amino acids, whether positive or negative, elevate the GT and reduce the 

gelatinization enthalpy of amylose-lipid complexes in rice starch (Liang, 2001, An, 2005). The 

enhancing effect on starch gelatinization of the charged amino acids is not specific to the starch 

source, as what was proven by Ito et al. (2004) and Lockwood et al. (2008) in their studies on 

potato starch and sweet potato starches, respectively. Moreover, larger increments in GT of 

potato starch were observed in amino acids with positive or negative net charge than in neutral 

ones when the amount of incorporated amino acids was increased (Ito et al., 2006a, Kinoshita et 

al., 2008). 

Gelatinization is an essential step leading to the formation of enzyme-resistant starch. 

Resistant starch (RS) is the sum of all starch and its components that are not digested in the small 

intestine and become available for fermentation in the gut of healthy individuals (Englyst et al., 

2000). RS is of current interest because of its numerous reported health effects. It is now well-

known that RS physiologically behaves like dietary fiber and helps in the prevention of chronic 

diseases like colon cancer. Altering the functional properties of starch through the use of amino 

acid additives could also result in RS formation, and pave the way for the development of novel 

functional food ingredients. Lysine, when conjugated to starch via the Maillard reaction, was 

shown to lower the swelling and solubility of the starch, and thus believed to also reduce starch 

digestibility (Yang et al., 1998). Liang and King (2003) who observed an increase in relative 

crystallinity of rice starch after addition of amino acids also believed that this could enhance the 

formation of RS. In 2009, An and King confirmed this finding in their study on oxidized rice 

starch. Aspartic acid and leucine enhanced the RS yield of a commercial rice starch oxidized  
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with pure oxygen and ozone, respectively (An and King, 2009).  

Based on published reports, amino acids contribute to changes in starch properties 

because of their properties, notably their charges. In this study, the effect of amino acids in 

combination with different pH conditions was tested. Also, an amino acid with a hydroxyl group 

capable of forming hydrogen bonds with starch has never been tested in altering the pasting and 

gelatinization properties, and was thus investigated using tyrosine. Unlike treatments adapted by 

other authors wherein amino acids were added to starch during functional properties 

measurements, treatments made in this study involved incorporation of amino acids to starch in 

the presence of a dispersing agent and then subsequently dried before analysis of starch 

properties. This study hypothesized that this treatment would allow interactions between amino 

acid and starch (eg. possible complex formation) to occur and consequently be more effective in 

altering starch functionalities. In addition, the effect of the different modifications on formation 

of RS was determined. 

3.2. MATERIALS AND METHODS 

3.2.1. Chemicals 

Commercial rice starch (S7260) and amino acids, namely DL-aspartic acid (negatively 

charged), DL-leucine (neutral), DL-lysine (positive) and DL-tyrosine (hydroxyl group), were 

obtained from Sigma-Aldrich Co., Inc. (St. Louis, MO). Total dietary fiber assay kit            

(TDF-100A) was purchased from Sigma-Aldrich Co., Inc. (St. Louis, MO).  Enzymes for 

amylose/amylopectin Con A method and enzymatic-chemical method for RS quantification were 

obtained from Megazyme International Ireland Ltd. (Bray, Co. Wicklow, Ireland). All chemicals 

used for the pH solutions and other reagents for the different tests were of analytical grade. 
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3.2.2. Sample Treatment and Preparation  

The following treatments were used in this study: 

A. Dispersal medium 

1. distilled water 

2. distilled water with pH adjusted to 4, 7, and 10 using 0.10 N solutions of HCl and 

NaOH  

3. buffers of pH 4 (acetate, 0.10 M), 7 (phosphate, 0.10 M) and 10 (carbonate-

bicarbonate, 0.05 M) 

B. Temperature of reaction: (a) room temperature (1 min) and (b) 40+2
o
C (15 min).  

Distilled water was used to determine changes in behavior of starches due to amino acids 

only. pH levels were selected such that amino acids will not be at the pIs. Buffers were tested to 

ensure stability of the pHs during reactions. Heating of the starch suspension was done to check 

effects on the reaction of the starch-amino acid and dispersant at a temperature below the 

gelatinization point of starch. 

Rice starch (15-20 g) was weighed into a beaker and amino acids were added at 6% 

starch dry weight basis. The mixture was dispersed in the liquid medium (1:4 wt/vol starch-to-

liquid ratio) with continuous mixing under a magnetic stirrer. For the A.2. samples, mixing was 

carried out at different temperatures (B). Starch suspensions were transferred into weighing 

boats, covered with paper, stored at -80
o
C overnight, and lyophilized. Dry samples were ground 

using a Udy Cyclone Sample Mill (Udy Corp., Port Collins, CO) and stored at room temperature 

until analyzed. Two replicates were prepared per treatment. Figure 3.1 shows the schematic of 

the sample preparation. 

A separate set of experiments were done to further test the effect of tyrosine on rice 
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Figure 3.1 Flowchart of Sample Preparation and Treatment. 
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starch functionalities. Native rice starch was weighed into an RVA canister according to the 

procedure in Section 3.2.4 and then tyrosine (6% dwb) was added into it. The dispersant was 

added into the canister and the mixture subjected to RVA analysis. Gels obtained after the test 

were transferred into weighing boats, stored and lyophilized as the other samples for further 

analysis.  

3.2.3. Properties of Native Rice Starch 

3.2.3.1. Proximate Analysis 

Native rice starch control was analyzed for crude protein (N x 5.95) (Method 954.01), 

crude fiber (Method 962.09), ash (Method 942.05) and lipid (Method 920.39) contents (AOAC, 

2005). Moisture contents of the native rice starch control and lyophilized treated starch were 

determined using AOAC Method 925.10 (2005).  

3.2.3.2. Amylose Content Determination  

Analysis of the amylose content was performed using the Megazyme Amylose/ 

Amylopectin Assay kit (Megazyme International Ireland Ltd., Co. Wicklow, Ireland). Briefly, 

20-25 mg of starch sample was weighed into a screw capped tube and 1 mL of DMSO was added 

to the tube with gentle stirring at low speed on a vortex mixer. The tube was capped and heated 

in a boiling water bath until the sample was completely dispersed. The contents of the sealed 

tube was vigorously mixed at high speed on a vortex mixer, and then the tube was placed in a 

boiling water bath and heated for 15 min, with intermittent high-speed stirring on a vortex mixer. 

The tube was allowed to cool to room temperature for about 5 min and 2 mL of 95 % (v/v) 

ethanol was added with continuous stirring on a vortex mixer. A further 4 mL of ethanol was 

added, and the tube was capped and inverted to mix. The tube was allowed to stand for 15 min. 

After this, it was centrifuged at 2,000 x g for 5 min. The supernatant was discarded and the tube 
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was drained on tissue paper for 10 min, ensuring all of the ethanol drained. The pellet was mixed 

with 2 mL of DMSO with gentle vortex mixing. The tube was then placed in a boiling water bath 

for 15 min and mixed occasionally. Upon removing the tubes from the boiling water bath, 4 mL 

of Con A (Concanavalin A, a lectin protein) solvent was immediately added. The Con A solvent 

was prepared by diluting to 30% the concentrated Con A solvent. The concentrated Con A 

solvent was a solution of sodium acetate buffer containing the salts sodium chloride, 

CaCl2.2H2O, MgCl2.6H2O, and MnCl2.4H2O and adjusted to pH 6.4.   

The contents of the tubes with the Con A solvent were mixed thoroughly and then 

quantitatively transferred by repeated washing with Con A solvent to a 25-mL volumetric flask. 

The mixture was diluted to volume with Con A solvent (Solution A).  

To a 2.0-mL Eppendorf
®

 microfuge tube, 1.0 mL of Solution A was transferred. Then, 

0.50 mL of Con A was added. The tube was capped and gently mixed by repeated inversion. The 

tube was allowed to stand for 1 h at room temperature, and then centrifuged at 14,000 x g for       

10 min in a microfuge at room temperature. One milliliter of the supernatant was transferred into 

a 15-mL centrifuge tube and 3 mL of 100 mM sodium acetate buffer, pH 4.5 were added. The 

contents were mixed and the tube was lightly stoppered and heated in a boiling water bath for     

5 min to denature the Con A. Then, the tube was placed in a water bath at 40°C. After 

equilibration for 5 min, 0.1 mL of amyloglucosidase (3300 U/mL)/ -amylase (500 U/mL) 

enzyme mixture was added and the tube was incubated at 40°C. After 30 min incubation, the 

tube was centrifuged at 2,000 x g for 5 min.  An aliquot of 1.0 mL was taken from the 

supernatant and combined with 4 mL of glucose oxidase (>12,000 U)/peroxidase (>650 U) 

(GOPOD) reagent. The tube was incubated at 40°C for 20 min, along with the reagent blank and 

the D-glucose controls. For the reagent blank, 1.0 mL of 100 mM sodium acetate buffer was 
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used, while for the D-glucose controls 0.1 mL of D-glucose standard solution (1 mg/mL) and 0.9 

mL of sodium acetate buffer was pipetted into the tube. The absorbance of each sample and the 

D-glucose controls was read at 510 nm against the reagent blank. 

To determine the total starch, 0.5 mL of Solution A was mixed with 4 mL of 100 mM 

sodium acetate buffer, pH 4.5, in a screw capped tube. Then, 0.1 mL of amyloglucosidase/        

-amylase solution was added and the mixture was incubated at 40°C for 10 min. An aliquot (1.0 

mL) of this solution was transferred into a glass test tube, combined with 4 mL of GOPOD 

reagent, and mixed well. It was incubated at 40°C for 20 min. This incubation was performed 

concurrently with the samples and standards. 

Percentage amylose was calculated as: 

Amylose, % (w/w) = Absorbance (Con A Supernatant) x 6.15 x   100 

                               Absorbance (Total Starch Aliquot)   9.2        1     

  

                     =  Absorbance (Con A Supernatant)  x  66.8 

                       Absorbance (Total Starch Aliquot) 

where 6.15 and 9.2 are dilution factors for the Con A and Total Starch extracts, respectively. 

3.2.3.3. Rheological Properties 

Dynamic (oscillatory) rheological temperature sweep test of native rice starch was carried 

out using a rheometer (AR 2000ex, TA Instruments-Waters LLC, New Castle, DE). Starch was 

dispersed in distilled water at 9% wt/vol and about 1 ml of the suspension was loaded on the 

rheometer plate. A parallel plate geometry (40-mm diameter) was used and the gap was set at  

0.2 mm. The frequency was maintained at 1 Hz and the strain was fixed at 3%. The temperature 

was equilibrated to 50
o
C and maintained for 1 min. It was then raised from 50

o
C to 95

o
C at a rate 

of 12
o
C/min. The storage (elastic) modulus (G’) and loss (viscous) modulus (G‖) were 

determined using the software Rheology Advantage Data Analysis Program (TA Instruments- 
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Waters LLC, New Castle, DE). Duplicate samples were measured. 

3.2.4. Pasting Characteristics Determination Using the Rapid Visco Analyzer (RVA) 

Pasting characteristics of the rice starch samples were evaluated with a RVA-4 machine 

(Newport Scientific Pty. Ltd., Warriewood NSW, Australia) using the AACC Method 61-02 

(Newport Scientific, 1998). Prior to analysis, the volume of water and weight of starch sample 

were determined based on the following formula: 

S = 88 x 3.00 / (100 – M) 

W = 28.0 – S 

where S is the corrected sample mass (g), M is the actual moisture content of the sample (% as 

is) determined based on AOAC Method 925.10, and W is the corrected water volume (mL). 

Briefly, distilled water (~25.4 g) was measured into an RVA canister. Then, an appropriate 

weight (~2.60 g) of starch sample was weighed into a pan and transferred into the canister with 

water. The paddle was placed into the canister and the sample was thoroughly dispersed into the 

liquid by vigorously jogging the blade up and down at least 10 times through the sample. The 

canister, with the paddle, was inserted into the instrument and the measurement cycle was started 

by carefully pressing the motor tower.  Each sample was first held at 50
o
C at a spindle speed of 

960 rpm. After 10 sec, the rotating speed was reduced to 160 rpm. Next, the temperature was 

increased at 12
o
C /min to 95

o
C and held at the temperature for 2.5 min. It was finally cooled to 

50
o
C. The speed was kept at 160 rpm until the end of the test. The pasting temperature (PT), 

peak viscosity (PV), minimum viscosity (MV), final viscosity (FV), and peak time (PTime) were 

measured by the RVA with the ThermoCline for Windows v. 3 (TCW3) software. Total setback 

(TSB) and Breakdown (BD) were calculated as the difference between FV and MV, and PV and  

MV, respectively. Analysis was done in duplicate. 
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3.2.5. Thermal Properties Analysis Using a Differential Scanning Calorimeter (DSC) 

Starch thermal properties were determined using a differential scanning calorimeter 

(DSC) (TA Q100, TA Instruments, Newcastle, DE). Starch (10 mg) was weighed into a steel 

DSC pan and 20 L of distilled water was added. The pan was sealed with a lid and o-ring and 

equilibrated at room temperature for at least 1 hr. Heating was carried out from 35
o
C to 140

o
C at 

a rate of 5°C/min. A pan containing 20 L of distilled water was used as reference. Onset (To), 

peak (Tp), and conclusion (Tc) gelatinization temperatures were measured and gelatinization 

enthalpy ( H) was calculated from the area of the peak endotherm using  the Universal Analysis 

2000 Software (version 4.5A, TA Instruments-Waters LLC, New Castle, DE). DSC runs were 

done in duplicate. 

3.2.6. Resistant Starch Assay 

3.2.6.1. Enzymatic-Gravimetric Technique 

Resistant starch yield of native and treated rice starches, and starch-tyrosine dried gels 

were determined by the enzymatic-gravimetric method, as described in Sigma Technical Bulletin 

No. 74 TDFAB-3 with several modifications (Kim et al., 2003). Starch sample was weighed to 

0.20g into a 125-mL Erlenmeyer flask and dispersed in 0.08 M phosphate buffer (20mL, pH 6.0). 

Next, 0.05 mL of heat stable α-amylase (68,300 U/mL) was added. The flask was covered with 

aluminum foil and placed in a water bath at 95°C for 15 minutes, agitating the flask gently at      

5-min intervals. After cooling to room temperature, the solution was adjusted to pH 7.5+0.2 by 

addition of 0.275N aqueous NaOH solution and protease (P3910) (0.02mL, 50mg/mL solution of 

protease in phosphate buffer). The mixture was placed in a shaking incubator at 60°C for 30 min. 

The mixture was cooled to room temperature and then adjusted to pH 4.3+0.2 by adding 0.325 N 

aqueous HCl solution. Then, 0.02mL of amyloglucosidase (10,863 U/mL; A9913) was added. 
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The mixture was placed again in a shaking incubator at 60°C for 30 min. Four volumes of 95% 

ethanol (10 mL each) were added and the mixture was allowed to stand overnight at room 

temperature for complete precipitation. The insoluble residue was collected using a Whatman #2 

filter paper. It was washed twice with 15mL of absolute ethanol and once with 10 mL acetone. 

The residue was dried in an oven at 40°C overnight. 

The yield of resistant starch was determined as: 

Resistant starch (%) =   residue weight (g)  x 100% (dry weight basis) 

                               sample weight (g) 

Crystalean, a commercial high amylose maize starch was used as check sample. 

Measurements were done in duplicate. 

3.2.6.2. Enzymatic-Chemical Approach 

The enzymatic-chemical method was performed according to the AOAC Method 2002.02 

and AACC Method 32-40 using the Megazyme kit (Megazyme International Ireland Ltd., Co. 

Wicklow, Ireland). Native starch, treated samples and RS control (52.5% dwb resistant starch) 

provided in the kit were weighed at 100+5 mg into screw cap tubes, which were gently tapped to 

ensure no sample adhered to the sides of the tube. Then, 4.0 mL of pancreatic α-amylase            

(3 Ceralpha Units/mg, 10 mg/mL) containing AMG (3 U/mL) was added to each tube. The tube 

was tightly capped, dispersed thoroughly on a vortex mixer, and attached horizontally in a 

shaking water bath, aligned in the direction of motion. The tube was incubated at 37
o
C with 

continuous shaking (200 strokes/min). After shaking for exactly 16 hr, the tube was taken out of 

the water bath, uncapped, and the contents were treated with 4.0 mL of ethanol (99%) with 

vigorous mixing on a vortex mixer. After this, the tube was centrifuged at 1,500 x g (approx. 

3,000 rpm) for 10 min (non-capped). The supernatant was carefully decanted and the pellet re-

suspended in 2 mL of 50% ethanol and agitated using a vortex mixer. A further 6 mL of 50% 
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ethanol was added, the tube was mixed and centrifuged again at 1,500 x g for 10 min. Again, the 

supernatant was decanted and the suspension and centrifugation steps were repeated once more. 

Finally, the supernatant was decanted and the tube inverted on absorbent paper to drain excess 

liquid. 

 A magnetic stirrer bar (5 x 15 mm) was added to each tube, followed by 2 mL of 2 M 

KOH. The pellet was re-suspended (and the RS dissolved) by stirring for about 20 min in an 

ice/water bath over a magnetic stirrer. Then, 8 mL of 1.2 M sodium acetate buffer (pH 3.8) was 

added to each tube with stirring on a magnetic stirrer. Immediately, 0.1 mL of AMG            

(3300 U/mL) was added, the contents were mixed well under a magnetic stirrer, and the tube was 

placed in a water bath at 50
o
C. The tube was incubated for 30 min with intermittent mixing on a 

vortex mixer. 

The tube was directly centrifuged at 1,500 x g for 10 min. The final volume in the tube 

was approximately 10.3 mL (+0.05 mL). For the RS control, the contents of the tube was 

transferred into a 100-mL volumetric flask and then diluted to volume with distilled water. From 

this, an aliquot was taken and transferred into a screw cap tube. This was centrifuged together 

with the samples. 

From each tube, 0.1 mL aliquot (in duplicate) of the supernatant was transferred into 

glass tubes, added with 3.0 mL of GOPOD reagent, and mixed well using a vortex mixer. A 

reagent blank was prepared by mixing 0.1 mL of 0.1 M sodium acetate buffer (pH 4.5) and      

3.0 mL of GOPOD reagent. Glucose standards were prepared (in quadruplicate) by mixing      

0.1 mL glucose (1 mg/ mL) and 3.0 mL l GOPOD reagent. The samples, blank and standards 

were incubated for 20 min at 50
o
C, cooled, and the spectrophotometer was set to 0 using the 

 reagent blank. The absorbance was measured at 510 nm against the reagent blank. 
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The percentage of RS was calculated on ―as is‖ basis using the following formula: 

i. For samples 

RS (g/100 g sample)  =   A x F x (10.3/0.1) x (1/1000) x (100/W) x (162/180) 

       =   A x F/W x 9.27 

ii. For Resistant Starch Control (>10% RS) 

RS (g/100 g sample) =   A x F x (100/0.1) x (1/1000) x (100/W) x (162/180) 

    =   A x F/W x 90 

where A= average absorbance (reaction) read against the reagent blank; F = conversion factor 

from absorbance to micrograms (the absorbance obtained for 100 g glucose in the GOPOD 

reaction is determined and F = 100 (micrograms of glucose divided by the GOPOD absorbance 

for this 100 g of glucose); 100/0.1 = volume adjustment (0.1 mL taken from 100 mL); 1/1000 = 

conversion from micrograms to milligrams; W = ―as is‖ weight of test portion analyzed; 100/W 

= factor to present starch as a percentage of test portion weight; 162/180 = factor to convert from 

free glucose, as determined, to anhydro-glucose as occurs in starch; 10.3/0.1 = volume 

adjustment (0.1 mL taken from 10.3 mL) for test portion containing 0-10% RS where the 

incubation solution is not diluted and the final volume is 10.3 + 0.05 mL. 

3.2.7. Statistical Analysis 

Analysis of variances (ANOVA) of the pasting parameters (PV, MV, BD, TSB, FV, PT, 

PTime), gelatinization temperatures (To, Tp, Tc), enthalpy of gelatinization, and resistant starch 

yield were determined using SAS (Statistical Analysis System) version 9.1 software package 

(SAS Institute, Cary, NC). Post hoc multiple comparisons were carried out using Tukey’s 

studentized range test. When ANOVA was not suitable, comparison of treatments was performed 

using Student’s t test. For the RS values, Grubb’s test was performed to eliminate outliers. The 
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 level of significance used in all tests was p<0.05. 

3.3. RESULTS AND DISCUSSION 

3.3.1. Properties of Native Starch 

3.3.1.1 Proximate Composition 

The crude protein, lipid, crude fiber, and ash of the native starch are presented in      

Table 3.1. The native rice starch contained 0.64% crude protein, which may be residual 

endosperm storage protein or protein entrapped within the granules (BeMiller, 2007). A minimal 

amount of lipid (0.03%) was present while no detectable level of crude fiber was determined 

from the native rice starch. Lipids present could be free fatty acids and/or lysophospholipids, 

which may occur as free lipid or complexed with amylose (BeMiller, 2007). 

3.3.1.2 Amylose Content 

The native rice starch contained 26.26+0.65% amylose. Rice varieties containing this 

level of amylose belong to the high amylose category (>25%) (IRRI, 2007b). This can be 

verified from its pasting profile, wherein a high cooling viscosity was observed (Figure 3.2). The 

increase in viscosity is due to the high degree of entanglements of amylose during retrogradation 

(Batey, 2007).  

3.3.1.3 Rheological Properties 

The results of the temperature sweep test of the native starch suspension are illustrated in 

Figures 3.3A-3.3B. At lower temperature (50-53.5
o
C), the storage modulus (G‖) is greater than 

the loss modulus (G’), which indicates that the energy applied on the suspension was dissipated 

viscously and the behavior of the sample is liquid-like (sol) (Rao, 2007). This is due to the 

increasing dissolution of amylose molecules with temperature (Bao and Bergman, 2004). 

However, the value of G’ became much higher at a temperature between 73.0
o
C and 76.9

o
C 



37 

 

Table 3.1 Proximate Composition of Native Rice Starch (Control). 

Component Level (g/100g dry basis) 

Protein (N x 5.95) 0.64 

Crude Fat 0.03 

Crude Fiber, maximum 0.00 

Ash 0.13 
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Figure 3.2 RVA Pasting Curve of Native Rice Starch (Control). 
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Figure 3.3 Storage Modulus (G’) and Loss Modulus (G‖) of Native Rice Starch during the 

Temperature Sweep Test Showing (a) the Full Profile at 50-95
o
C and (b) at Lower Temperatures. 

A 

B 
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Table 3.2 Dynamic Moduli during Rheological Temperature Sweep Test of Native Rice Starch. 

Temperature (
o
C) G’ (Pa) G” (Pa) 

50.5 0.005 + 0.02 0.013 + 0.02 

52.1 0.006 + 0.00 0.008 + 0.01 

53.6 0.008 + 0.00 0.008 + 0.00 

55.0 0.004 + 0.00 0.004 + 0.00 

57.7 0.004 + 0.00 0.007 + 0.00 

58.9 0.005 + 0.00 0.003 + 0.00 

61.5 0.004 + 0.01 0.006 + 0.00 

62.8 0.008 + 0.01 0.005 + 0.01 

65.4 0.024 + 0.03 0.013 + 0.01 

66.6 0.032 + 0.05 0.014 + 0.01 

69.2 0.044 + 0.06 0.020 + 0.02 

70.5 0.053 + 0.07 0.031 + 0.03 

73.0 0.124 + 0.10 0.088 + 0.04 

74.3 0.324 + 0.11 0.243 + 0.06 

76.9 36.933 + 16.78 22.240 + 3.49 

78.2 226.467 + 131.66 96.035 + 25.12 

80.7 347.133 + 194.11 155.400 + 25.03 

83.3 436.600 + 233.18 234.500 + 57.56 

84.6 466.033 + 241.70 264.550 + 69.37 

87.1 509.533 + 246.15 304.450 + 79.27 

88.3 526.200 + 243.03 319.650 + 86.20 

90.9 1001.500 + 462.02 534.750 + 93.69 

92.2 2853.667 + 2171.40 1078.400 + 446.33 

94.7 7579.667 + 4385.20 2732.500 + 287.79 
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Figure 3.4 DSC Curve of Native Rice Starch. 
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 (Table 3.2). The point where a cross-over (G’=G‖) was observed is called the gel point. At the 

gel point, the material behaves at the borderline between liquid- and gel-like. From this point on, 

the sample’s gel- or solid-like character (G’>G‖) (Figure 3.3B) dominated the viscous behavior 

(Mezger, 2006). This change to the viscoelastic solid state is attributed to the interaction of 

leached amylopectin with the amylose matrix (Bao and Bergman, 2004).  

The gel point determined by the rheometric test occurred near the gelatinization 

temperature (Tp = 74.68
o
C) of native rice starch measured by the DSC (Figure 3.4). The storage 

modulus measured by rheometer gives information only on the disruption of intermolecular 

interactions that lead to the formation of paste, whereas gelatinization temperatures measured by 

DSC provide an insight of the melting of both intra- and intermolecular double helices of starch 

(Matalanis et al., 2009).  

3.3.2 Pasting Properties 

3.3.2.1 Amino Acids without pH Treatments 

 Pasting properties of rice starches with amino acids added differed significantly from 

those of the native rice starch control (Table 3.3). The treatments significantly lowered the paste 

viscosities of rice starch (Figure 3.5). Among treatments, LYS had the highest PV of all amino 

acids, 2066.0+11.6 cP. This treatment shortened the PTime without causing a considerable 

change in PT, which implies that addition of lysine to starch without pH adjustment would 

produce starch that cooks easily. ASP, likewise, reduced the PTime (Table 3.3). Addition of the 

neutral leucine and tyrosine had no effect. These findings indicate that charges in amino acids 

play a role in regulating the rate of swelling and collapse of starch granules. Ito et al. (2006b) 

attributed the changes in the pasting profile to the binding of the amino acids to starch chains. 

Lysine was believed to reduce swelling of starch granules by binding with starch chains and  
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Table 3.3 Effects of Additives on the Pasting Characteristics of Native Rice Starch without pH 

Treatment.
1,2,3,4,5 

Sample Additive PV MV BD FV 

Control NoAA 2341.5+37.5a 1893.5+30.4a 448.0+7.1c 3433.0+46.7a 

NopH 

ASP 1882.8+31.8c 1294.3+34.5c 588.5+3.7a 2152.3+35.1c 

LEU 1951.0+78.9c 1603.0+46.2b 348.0+34.3d 3021.5+114.0ab 

LYS 2066.0+11.6b 1572.5+14.5b 493.5+11.5b 2895.0+25.7ab 

TYR 1903.8+16.3c 1594.5+19.8b 309.3+3.8d 2863.0+58.1bc 

 

Sample Additive SB TSB PTime PT 

Control NoAA  1091.5+9.2a 1539.5+16.3a 6.44+0.0a 81.6+0.0c 

 

NopH 

ASP    269.5+3.9d   858.0+4.8b 6.32+0.1b 91.7+0.4a 

LEU  1070.5+43.2a 1418.5+68.8ab 6.45+0.0a 87.9+1.7b 

LYS    829.0+15.9c 1322.5+21.4ab 5.60+0.0c 80.8+0.1c 

TYR    959.3+45.5b 1268.5+43.1ab 6.50+0.0a 90.3+0.0a 
1
PV=Peak Viscosity; MV=Minimum Viscosity; BD=Breakdown; FV=Final Viscosity; 

 SB=Setback; TSB=Total setback; PTime=Time to peak; PT=Pasting Temperature 
2
NopH=No pH Treatment 

3
NoAA=No Amino Acid; ASP=Aspartic Acid; LEU=Leucine; LYS=Lysine; TYR=Tyrosine 

4
Units: Viscosity (cP); Temperature (°C); Time (minute) 

5
Different letters within a column for each pasting property indicate means are significantly 

different at p≤0.05 
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Figure 3.5 Pasting Curves of Rice Starches Added with Amino Acids without pH Treatment. 
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restricting starch-solvent interaction (Ito et al., 2006b). This binding could be electrostatic in 

nature (Ito et al., 2006a). In ozone-treated starch, lysine also exerted greater effect on altering the 

pasting behavior than aspartic acid, which may be due to formation of complex between the 

positively charged ammonium group of lysine and the anionic groups (carbonyl and carboxyl) of 

ozonated starch (An and King, 2009). 

Leucine and tyrosine decreased the BD, suggesting that stability to shear during cooking 

was improved by both the neutral amino acids (Table 3.3). ASP was the only sample with 

significantly lower TSB than the native starch control (Figure 3.5). These results are in 

agreement with earlier reports (Liang and King, 2003, An and King, 2009). 

3.3.2.2 Amino Acids with pH Treatment Using HCl/NaOH Solutions 

Table 3.4-3.6 show the pasting profiles of the starches with amino acids at adjusted pH 

levels using solutions of HCl and NaOH. The use of the pH 4 solution did not result in 

significant hydrolysis of the starch, since PV was the only property affected (Table 3.4). With 

added amino acids, therefore, the changes in the pasting profile are due to the additives and not 

the pH medium. In this pH solution, the negative charged aspartic acid and positive charged 

lysine significantly increased the BD of rice starch. The neutral charged leucine and tyrosine had 

an opposite effect (Table 3.4), in which the viscosity of the warm paste dropped but the starches 

still had a strong tendency to retrograde as shown by their TSB values.  However, all the amino 

acid additives had lower TSB values than the control, with aspartic acid having the lowest value 

at 882.3+17.2. This effect was attributed only to the amino acids, since no difference was 

observed without amino acids in pH 4 solution. Lysine was the only additive which changed the  

PTime (Figure 3.6) without affecting the PT. It reduced the PTime value by 14% (Table 3.4).  

The pasting parameters of the starches treated in pH 7 solution using HCl and NaOH  
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Table 3.4 Effects of Additives on the Pasting Characteristics of Native Rice Starch Dispersed in  

pH 4 Solutions with HCl/NaOH.
1,2,3,4

 

Sample Additive PV MV BD FV 

Control NoAA 2341.5+37.5a 1893.5+30.4a 448.0+7.1c 3433.0+46.7a 

pH 4 

 

NoAA 2270.5+9.1b 1849.0+10.0a 421.5+11.1c 3398.8+15.6a 

ASP 1910.3+31.7d 1317.5+16.1d 592.8+16.4a 2199.8+31.0d 

LEU 1933.5+29.8cd 1570.3+31.6b 363.3+13.0d 2925.3+43.7b 

LYS 1974.3+18.3c 1433.3+20.8c 541.0+4.7b 2805.8+19.1c 

TYR 1903.8+14.8d 1522.5+10.7b 381.3+6.6d 2924.0+32.6b 

 

Sample Additive SB TSB PTime PT 

Control NoAA 1091.5+9.2a 1539.5+16.3a 6.44+0.0ab 81.6+0.0d 

pH 4 

 

NoAA 1128.3+17.1a 1549.8+25.0a 6.44+0.0ab 82.6+0.4d 

ASP   289.5+5.7d   882.3+17.2c 6.38+0.1b 92.4+0.8a 

LEU   991.8+20.6b 1355.0+30.5b 6.50+0.0a 89.5+1.0b 

LYS   831.5+18.3c 1372.5+21.6b 5.52+0.0c 81.4+0.4d 

TYR 1020.3+18.1b 1401.5+23.6b 6.44+0.0ab 87.5+1.0c 
1
PV=Peak Viscosity; MV=Minimum Viscosity; BD=Breakdown; FV=Final Viscosity; 

 SB=Setback; TSB=Total setback; PTime=Time to peak; PT=Pasting Temperature 
2
NoAA= No Amino Acid; ASP= Aspartic Acid; LEU= Leucine; LYS= Lysine; TYR=Tyrosine 

3
Units: Viscosity (cP); Temperature (°C); Time (minute) 

4
Different letters within a column for each pasting property indicate means are significantly 

different at p≤0.05 
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Figure 3.6 Pasting Curves of Rice Starches Added with Amino Acids in pH 4 Solutions. 
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solutions are presented in Table 3.5. All treatments, including pH 7 solution without amino acids, 

resulted in decreased PV, MV and FV (Figure 3.7). This denotes that the treatments stabilized 

the intermolecular cohesion within the starch granules resulting in more rigid swollen granules 

(Ito et al., 2004). Again, charges played an important role in regulating the pasting properties, as 

can be seen by the elevation of the BD by aspartic acid and lysine, which had negative and 

positive net charges at this pH, respectively. As in the previous treatments, lysine caused the 

PTime values to drop while the PT was unchanged. Leucine and tyrosine, which both had zero 

net charge in this pH solution, produced starches with very similar pasting profiles.  

In pH 10 solution, the impacts of aspartic acid and lysine on BD and TSB were the same 

as in pH 7 (Tables 3.5-3.6). In terms of PTime and PT, lysine exhibited the same effects as in the 

previous treatments, indicating that it made the starch easier to cook at all pH levels tested in this 

study. This is in spite of its reduced amount of charge due to deprotonation of one ammonium 

group at this pH. These results support the findings of Ito et al. (2004) that charged amino acids 

impact the pasting properties, whether positive or negative. 

Actual pH of the samples without amino acids in pH 4, 7 and 10 solutions were 6.14, 

6.22 and 6.54, respectively. This indicated that the starch had a buffering effect. This is most 

likely why these were smaller, but significant effects on pasting properties, compared to samples 

with amino acids in the different solutions. The neutral amino acids followed the same pH 

pattern. The aspartic acid and lysine samples had pHs of around 3.11 and 9.65, respectively, in 

all pH solutions made with HCl and NaOH. 

3.3.2.3 Amino Acids with pH Treatment Using Buffer Solutions 

Table 3.7 shows the pasting profile of starches treated with amino acids in acetate buffer. 

The PV and MV of the starch were unaffected by the buffer treatment alone. Buffer effects were 
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Table 3.5 Effects of Additives on the Pasting Characteristics of Native Rice Starch Dispersed in  

pH 7 Solutions with HCl/NaOH.
1,2,3,4

 

Sample Additive PV MV BD FV 

Control NoAA 2341.5+37.5a 1893.5+30.4a 448.0+7.1c 3433.0+46.7a 

pH 7 

 

NoAA 2167.0+67.9b 1757.0+56.2b 410.0+12.8d 3323.5+52.9b 

ASP 1935.8+42.4c 1315.5+32.0e 620.3+13.7a 2241.0+46.7e 

LEU 2005.0+5.8c 1598.3+8.2c 406.8+11.0d 3054.5+16.6c 

LYS 1938.5+22.2c 1432.5+17.4d 506.0+14.3b 2752.5+12.2d 

TYR 1948.5+14.3c 1539.3+7.5c 409.3+21.0d 3003.5+24.6c 

 

Sample Additive SB TSB PTime PT 

Control NoAA 1091.5+9.2ab 1539.5+16.3ab 6.44+0.0a 81.6+0.0cd 

pH 7 

 

NoAA 1156.5+68.3a 1566.5+63.7a 6.45+0.0a 82.6+0.4c 

ASP   305.3+10.6d   925.5+14.8d 6.40+0.1a 91.8+0.1a 

LEU 1049.5+11.4b 1456.3+21.0b 6.47+0.1a 87.7+0.7b 

LYS   814.0+17.5c 1320.0+21.5c 5.58+0.1b 81.2+0.5d 

TYR 1055.0+12.1b 1464.3+30.1b 6.38+0.1a 87.3+0.7b 
1
PV=Peak Viscosity; MV=Minimum Viscosity; BD=Breakdown; FV=Final Viscosity; 

 SB=Setback; TSB=Total setback; PTime=Time to peak; PT=Pasting Temperature 
2
NoAA=No Amino Acid; ASP=Aspartic Acid; LEU=Leucine; LYS=Lysine; TYR=Tyrosine 

3
Units: Viscosity (cP); Temperature (°C); Time (minute) 

4
Different letters within a column for each pasting property indicate means are significantly 

different at p≤0.05 
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Figure 3.7 Pasting Curves of Rice Starches Added with Amino Acids in pH 7 Solutions. 
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Table 3.6 Effects of Additives on the Pasting Characteristics of Native Rice Starch Dispersed in 

pH 10 Solutions with HCl/NaOH.
1,2,3,4

 

Sample Additive PV MV BD FV 

Control NoAA 2341.5+37.5a 1893.5+30.4a 448.0+7.1cd 3433.0+46.7a 

pH 10 

 

NoAA 2215.0+47.1b 1777.3+36.4b 437.8+12.8cd 3371.8+51.7a 

ASP 1847.0+50.3d 1253.0+44.2d 594.0+28.1a 2155.0+57.5d 

LEU 1926.8+43.8cd 1539.3+24.9c 387.5+31.1d 2976.5+80.2b 

LYS 2023.8+38.9c 1492.0+11.2c 531.8+31.4b 2810.0+56.7c 

TYR 1965.0+36.5c 1515.8+21.2c 449.3+17.6c 3096.8+40.6b 

 

Sample Additive SB TSB PTime PT 

Control NoAA 1091.5+9.2bc 1539.5+16.3ab 6.44+0.0a 81.6+0.0c 

pH 10 

 

NoAA 1156.8+16.8a 1595.5+24.2a 6.42+0.0ab 82.4+0.1bc 

ASP   308.0+15.0e   902.0+21.8d 6.37+0.0ab 92.3+0.1a 

LEU 1049.8+43.1c 1437.3+73.0b 6.45+0.1ab 85.8+2.9b 

LYS   786.5+18.6d 1318.0+48.3c 5.60+0.1c 81.6+0.1c 

TYR 1131.8+6.1ab 1581.0+23.0a 6.32+0.0b 85.2+2.1bc 
1
PV=Peak Viscosity; MV=Minimum Viscosity; BD=Breakdown; FV=Final Viscosity; 

 SB=Setback; TSB=Total setback; PTime=Time to peak; PT=Pasting Temperature 
2
NoAA=No Amino Acid; ASP=Aspartic Acid; LEU=Leucine; LYS=Lysine; TYR=Tyrosine 

3
Units: Viscosity (cP); Temperature (°C); Time (minute) 

4
Different letters within a column for each pasting property indicate means are significantly 

different at p≤0.05 
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Figure 3.8 Pasting Curves of Rice Starches Added with Amino Acids in pH 10 Solutions. 
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Table 3.7 Effects of Additives on the Pasting Characteristics of Native Rice Starch Treated with 

Acetate Buffer, pH 4.
1,2,3,4

 

Sample Additive PV MV BD FV 

Control NoAA 2341.5+37.5a 1893.5+30.4a 448.0+7.1a 3433.0+46.7a 

pH 4 

 

NoAA 2083.0+163.6ab 1741.0+123.0a 342.0+45.9b 2556.5+214.8b 

ASP 1485.8+188.1c   981.5+141.2c 504.3+47.1a 1723.8+257.9c 

LEU 1726.8+138.3bc 1415.5+110.8b 311.3+30.5bc 2213.3+166.9b 

LYS 1887.5+53.7b 1651.3+27.5ab 236.3+32.0c 2494.5+111.8b 

TYR 1735.8+126.5bc 1403.5+101.3b 332.3+52.2bc 2238.3+155.7b 

 

Sample Additive SB TSB PTime PT 

Control NoAA  1091.5+9.2a 1539.5+16.3a 6.44+0.0c 81.6+0.0c 

pH 4  

NoAA 473.5+52.7c   815.5+98.3b 6.60+0.1b 90.7+0.4b 

ASP 238.0+69.9d   742.3+116.8b 6.27+0.0d 93.1+1.4ab 

LEU 486.5+37.1bc   797.8+66.3b 6.60+0.0b 93.5+1.5a 

LYS 607.0+62.9b   843.3+94.4b 6.82+0.1a 83.4+0.5c 

TYR 502.5+38.7bc   834.8+90.6b 6.50+0.1bc 93.0+1.0ab 
1
PV=Peak Viscosity; MV=Minimum Viscosity; BD=Breakdown; FV=Final Viscosity; 

 SB=Setback; TSB=Total setback; PTime=Time to peak; PT=Pasting Temperature 
2
NoAA=No Amino Acid; ASP=Aspartic Acid; LEU=Leucine; LYS=Lysine; TYR=Tyrosine 

3
Units: Viscosity (cP); Temperature (°C); Time (minute) 

4
Different letters within a column for each pasting property indicate means are significantly 

different at p≤0.05 

 

 

 



54 

 

 

Figure 3.9 Pasting Curves of Rice Starches with Amino Acids Dispersed in Acetate Buffer,     

pH 4. 
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seen in the BD, TSB, FV, PTime and PT values. Acetate buffer decreased the BD, FV and TSB, 

while it increased the PTime and PT.  Aspartic acid further lowered the PV and MV. It also 

produced a starch with the lowest cold paste viscosity and its pasting occurred the earliest. All 

TSB values, including that without amino acid, were significantly lower than the control, and 

thus the effect may be due to the buffer.  Unlike the previous treatments, lysine added to starch in 

acetate buffer at pH 4 lengthened the PTime, although PT was still unchanged. 

 The results of the RVA test for starches treated at pH 7 with phosphate buffer are shown 

in Table 3.8. Except for MV and PT, the pasting properties of starch dispersed in phosphate 

buffer alone were significantly different from the parent native starch. With the additives, further 

decreases in the paste viscosities were observed (Figure 3.10). ASP had a higher BD than 

without amino acid, confirming the previous findings from the starches with aspartic acid added 

but with different pH systems. ASP also reduced the PTime and raised the PT. Lysine, on the 

other hand, did not affect the temperature of pasting. 

Suspending rice starch in carbonate buffer at pH 10 resulted in a starch sample with 

increased BD and decreased SB and PTime, as shown in Table 3.9. Again, addition of amino 

acids contributed to further lowering of paste viscosities (Figure 3.11), but no differences in 

lowering the PV were observed between these additives. Aspartic acid significantly reduced the 

hot and cold paste viscosities, and retrogradation potential, though cooking stability was neither 

improved nor weakened. Moreover, it was the only additive which altered the PT of native rice 

starch from 81.6+0.0
o
C to 92.9+0.7

 o
C. 

3.3.2.4 Amino Acids with pH and Thermal Treatments 

Application of heat to starch-amino acid mixture in the acidic medium below the 

gelatinization temperature caused significant changes in starch (Table 3.10). Aspartic acid and 
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Table 3.8 Effects of Additives on the Pasting Characteristics of Native Rice Starch Treated with 

Phosphate Buffer, pH 7.
1,2,3,4

 

Sample Additive PV MV BD FV 

Control NoAA 2341.5+37.5a 1893.5+30.4a 448.0+7.1a 3433.0+46.7a 

pH 7 

 

NoAA 2089.3+88.8b 1956.8+95.2a 132.5+8.2c 2346.0+133.4b 

ASP 1544.5+100.2d 1276.5+111.4d 268.0+26.4b 1785.8+160.8d 

LEU 1721.5+87.1cd 1587.3+84.4bc 134.3+8.3c 1955.0+165.6cd 

LYS 1831.0+27.2c 1685.5+18.2b 145.5+9.4c 2128.0+53.4bc 

TYR 1574.8+77.3d 1456.5+64.8cd 118.3+18.2c 1900.6+141.3cd 

 

Sample Additive SB TSB PTime PT 

Control NoAA 1091.5+9.2a 1539.5+16.3a 6.44+0.0c 81.6+0.0d 

pH 7 

 

NoAA 256.8+49.2b 389.3+46.9b 7.00+0.0a 84.4+0.5cd 

ASP 241.3+74.5b 509.3+81.2b 6.63+0.1b 92.9+0.8a 

LEU 233.5+79.4b 367.8+81.3b 6.97+0.1a 86.2+1.3bc 

LYS 297.0+30.9b 442.5+38.5b 6.87+0.1a 84.2+0.4cd 

TYR 325.9+64.9b 444.1+81.3b 6.98+0.0a 87.8+2.4b 
1
PV=Peak Viscosity; MV=Minimum Viscosity; BD=Breakdown; FV=Final Viscosity; 

 SB=Setback; TSB=Total setback; PTime=Time to peak; PT=Pasting Temperature 
2
NoAA=No Amino Acid; ASP=Aspartic Acid; LEU=Leucine; LYS=Lysine; TYR=Tyrosine 

3
Units: Viscosity (cP); Temperature (°C); Time (minute) 

4
Different letters within a column for each pasting property indicate means are significantly 

different at p≤0.05 
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Figure 3.10 Pasting Curves of Rice Starches with Amino Acids Dispersed in Phosphate 

Buffer, pH 7. 
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Table 3.9 Effects of Additives on the Pasting Characteristics of Native Rice Starch Treated with 

Carbonate Buffer, pH 10.
1,2,3,4

 

Sample Additive PV MV BD FV 

Control NoAA 2341.5+37.5a 1893.5+30.4a 448.0+7.1b 3433.0+46.7a 

pH 10 

NoAA 2212.3+111.5a 1623.5+190.4abc 588.8+100.1a 3101.0+145.0a 

ASP 1705.8+170.1b 1366.3+136.3c 339.5+36.2bc 2061.5+222.8c 

LEU 1902.5+77.9b 1658.8+44.0ab 243.8+34.2c 2434.0+132.8b 

LYS 1831.5+108.0b 1578.5+90.4bc 253.0+34.9c 2554.3+146.9b 

TYR 1848.3+47.9b 1480.0+17.5bc 368.3+56.5bc 2575.3+96.0b 

 

Sample Additive SB TSB PTime PT 

Control NoAA  1091.5+9.2a 1539.5+16.3a 6.44+0.0a 81.6+0.0bc 

pH 10 

NoAA 889.3+36.4b 1478.0+80.1a 5.62+0.2d 83.2+0.9b 

ASP 355.8+55.2e   695.3+88.8d 6.55+0.0a 92.9+0.7a 

LEU 531.5+55.1d   775.3+89.3cd 6.28+0.1ab 82.0+0.5bc 

LYS 722.8+56.8c   975.8+77.6bc 6.03+0.1bc 83.2+1.1b 

TYR 727.0+48.8c 1095.3+105.2b 5.92+0.2cd 81.1+0.4c 
1
PV=Peak Viscosity; MV=Minimum Viscosity; BD=Breakdown; FV=Final Viscosity; 

 SB=Setback; TSB=Total setback; PTime=Time to peak; PT=Pasting Temperature 
2
NoAA=No Amino Acid; ASP=Aspartic Acid; LEU=Leucine; LYS=Lysine; TYR=Tyrosine 

3
Units: Viscosity (cP); Temperature (°C); Time (minute) 

4
Different letters within a column for each pasting property indicate means are significantly 

different at p≤0.05 
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Figure 3.11 Pasting Curves of Rice Starches with Amino Acids Dispersed in Carbonate 

Buffer, pH 10. 
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Table 3.10 Effects of Additives on the Pasting Characteristics of Native Rice Starch Dispersed 

in pH 4 Solutions with HCl/NaOH and Heat-Treated.
1,2,3,4

 

Sample Additive PV MV BD FV 

Control NoAA 2341.5+37.5a 1893.5+30.4a 448.0+7.1a 3433.0+46.7a 

pH 4 

 

NoAA 2123.8+21.4b 1756.8+20.4b 367.0+40.3b 3087.0+62.4b 

ASP 1693.0+21.5e 1187.0+7.6f 506.0+23.8a 1978.5+28.5e 

LEU 1808.3+23.5cd 1518.5+3.8c 289.8+25.6c 2615.0+90.2cd 

LYS 1818.0+19.1c 1362.5+11.3e 455.5+10.3a 2585.3+21.9d 

TYR 1760.0+6.3d 1455.3+16.1d 304.8+15.1c 2736.5+35.4c 

 

Sample Additive SB TSB PTime PT 

Control NoAA 1091.5+9.2a 1539.5+16.3a 6.44+0.0b 81.6+0.0c 

pH 4 

 

NoAA   974.5+36.1a 1330.3+82.4b 6.65+0.1a 88.5+3.6b 

ASP   285.5+7.1c   791.5+30.2d 6.54+0.1ab 94.5+0.7a 

LEU   806.8+98.6b 1096.5+87.7c 6.67+0.1a 92.5+0.8ab 

LYS   767.3+16.3b 1222.8+18.9bc 5.67+0.1c 81.3+0.4c 

TYR   976.5+40.9a 1281.3+46.0b 6.50+0.1ab 87.5+0.7b 
1
PV=Peak Viscosity; MV=Minimum Viscosity; BD=Breakdown; FV=Final Viscosity; 

 SB=Setback; TSB=Total setback; PTime=Time to peak; PT=Pasting Temperature 
2
NoAA=No Amino Acid; ASP=Aspartic Acid; LEU=Leucine; LYS=Lysine; TYR=Tyrosine 

3
Units: Viscosity (cP); Temperature (°C); Time (minute) 

4
Different letters within a column for each pasting property indicate means are significantly 

different at p≤0.05 
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Figure 3.12 Pasting Curves of Rice Starches with Amino Acids in pH 4 Solutions with Heat 

Treatment. 
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lysine, however, showed a similar behavior in regards to BD. They both increased the BD of 

starch relative to the sample in pH 4 solution without amino acids, so that their values were 

comparable with that of the parent native starch. Lysine again decreased the PTime without 

changing the PT (Figure 3.12). 

The pasting properties of starches treated in pH 7 solution with heating are presented in 

Table 3.11. Heating alone lowered the PV, BD, FV, SB, and TSB (Figure 3.13), and delayed the 

PTime. Similar trends with respect to elevation of BD by aspartic acid and reduction of PTime 

without change in PT by lysine were observed for this treatment. The neutral amino acids leucine 

and tyrosine, on the other hand, had lower BD than the control, but were not different from pH 7 

solution alone. 

Heating alone similarly caused the lowering of pasting viscosities, notably the PV, BD, 

and FV, and delayed the PTime in pH 10 solution (Table 3.12). Amino acids further lowered the 

FV, resulting in reduced retrogradation potential, except for LEU. ASP and LYS had the lowest 

TSB at 816.8+12.9 cP and 1129.5+22.6 cP, respectively. Their BD values were comparable with 

that of the native starch, whereas LEU and TYR had significantly lower BD levels, but were not 

different from pH 10 solution only samples. 

3.3.2.5 Comparison of Treatments 

The use of different liquids as dispersion agents yielded significantly different pasting 

properties when analyzed using Student’s t test at p<0.05. When the pH of the medium was 

adjusted using HCl and NaOH solutions, pasting viscosities were altered among all amino acids 

relative to those of water-dispersed starches. For aspartic acid-added starches, the SB and TSB 

were higher in the samples with pH solution added. For lysine-added starch, the TSB was higher 

and the PTime was lower in pH 4 solution than when distilled water was used. In pH 10 solution, 
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Table 3.11 Effects of Additives on the Pasting Characteristics of Native Rice Starch Dispersed 

in pH 7 Solutions with HCl/NaOH and Heat-Treated.
1,2,3,4

 

Sample Additive PV MV BD FV 

Control NoAA 2341.5+37.5a 1893.5+30.4a 448.0+7.1b 3433.0+46.7a 

pH 7  

NoAA 2161.0+16.7b 1786.8+48.7a 374.3+42.6cd 3138.5+46.6b 

ASP 1748.0+4.7c 1204.3+16.2d 543.8+14.4a 2024.8+18.8e 

LEU 1816.3+18.1c 1490.3+3.6b 326.0+21.3d 2767.0+45.0c 

LYS 1762.8+121.8c 1325.5+86.7c 437.3+36.5bc 2473.0+150.9d 

TYR 1699.3+23.9c 1359.8+24.9c 339.5+7.4d 2762.5+20.7c 

 

Sample Additive SB TSB PTime PT 

Control NoAA 1091.5+9.2a 1539.5+16.3a 6.44+0.0b 81.6+0.0c 

pH 7  

NoAA   977.5+37.9b 1351.8+75.5b 6.67+0.1a 85.7+6.2bc 

ASP   276.8+19.1d   820.5+30.2d 6.47+0.0b 94.1+0.7a 

LEU   950.8+27.6b 1276.8+48.3b 6.55+0.0ab 90.3+1.4ab 

LYS   710.3+51.4c 1147.5+70.3c 5.64+0.1c 80.8+0.0c 

TYR 1063.3+30.8a 1402.8+31.9b 6.42+0.0b 87.9+4.2abc 
1
PV=Peak Viscosity; MV=Minimum Viscosity; BD=Breakdown; FV=Final Viscosity; 

SB=Setback; TSB=Total setback; PTime=Time to peak; PT=Pasting Temperature 
2
NoAA=No Amino Acid; ASP=Aspartic Acid; LEU=Leucine; LYS=Lysine; TYR=Tyrosine 

3
Units: Viscosity (cP); Temperature (°C); Time (minute) 

4
Different letters within a column for each pasting property indicate means are significantly 

different at p≤0.05 
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Figure 3.13 Pasting Curves of Rice Starches with Amino Acids in pH 7 Solutions with Heat 

Treatment. 
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Table 3.12 Effects of Additives on the Pasting Characteristics of Native Rice Starch Dispersed 

in pH 10 Solutions with HCl/NaOH and Heat-Treated.
1,2,3,4

 

Sample Additive PV MV BD FV 

Control NoAA 2341.5+37.5a 1893.5+30.4a 448.0+7.1ab 3433.0+46.7a 

pH 10  

NoAA 2187.7+28.9b 1815.0+38.4a 372.8+46.0c 3200.5+35.4b 

ASP 1653.5+45.2c 1157.0+29.2d 496.5+23.7a 1973.8+37.6e 

LEU 1649.0+52.6c 1314.3+38.1c 334.8+17.9c 2696.3+76.7c 

LYS 1742.0+6.5c 1305.8+4.8c 436.3+3.9b 2435.3+27.1d 

TYR 1773.5+97.0c 1457.0+105.0b 316.5+11.2c 2726.8+27.3c 

 

Sample Additive SB TSB PTime PT 

Control NoAA 1091.5+9.2a 1539.5+16.3a 6.44+0.0b 81.6+0.0b 

pH 10  

NoAA 1012.8+17.6ab 1385.5+62.1ab 6.65+0.1a 85.4+3.6b 

ASP   320.3+12.1d   816.8+12.9d 6.50+0.0ab 94.5+0.7a 

LEU 1047.3+28.7ab 1382.0+46.2ab 6.42+0.0b 87.1+2.8ab 

LYS   693.3+23.0c 1129.5+22.6c 5.67+0.1c 80.2+0.4b 

TYR   953.3+120.0b 1269.8+126.8cd 6.52+0.1ab 87.9+5.8ab 
1
PV=Peak Viscosity; MV=Minimum Viscosity; BD=Breakdown; FV=Final Viscosity; 

SB=Setback; TSB=Total setback; PTime=Time to peak; PT=Pasting Temperature 
2
NoAA=No Amino Acid; ASP=Aspartic Acid; LEU=Leucine; LYS=Lysine; TYR=Tyrosine 

3
Units: Viscosity (cP); Temperature (°C); Time (minute) 

4
Different letters within a column for each pasting property indicate means are significantly 

different at p≤0.05 
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Figure 3.14 Pasting Curves of Rice Starches with Amino Acids in pH 10 Solutions with Heat 

Treatment. 
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starch with tyrosine had higher BD and shorter PTime than when just distilled water was added. 

Meanwhile, minor change in pasting properties of leucine-added starch was observed.  

Likewise, buffers significantly affected the pasting profiles, especially for samples treated 

with leucine, lysine and tyrosine. Heating mostly lowered the viscosities of the samples, 

lengthened the pasting time and raised the PT.  These results showed that addition of amino acids 

in combination with adjustment of pH with or without heating will yield starches of different 

functionalities, and can therefore be used for certain products depending on the intended 

application. 

3.3.2.6 Starches with Tyrosine at Different pH Treatments Prepared Using the RVA 

 The different pH treatments using solutions of HCl/NaOH with tyrosine did not change 

most of the pasting parameters of native starch (Figure 3.15). Without any pH treatment, tyrosine 

increased the BD by about 18% (Table 3.13). pH 10 reduced the MV and therefore increased the 

BD. TSB also increased with alkalinity. These effects might be due to changes in hydrogen 

bonding that may be occurring. 

Samples with tyrosine dispersed in the buffer systems displayed different pasting 

behaviors than native rice starch (Table 3.14). The PV and MV tended to increase with pH 

treatments, whereas FV, SB and TSB were all reduced. Incorporation of tyrosine in starch using 

pH 7 phosphate buffer as a dispersant produced an end-product with markedly different pasting 

profile than the untreated starch control and starch without pH treatment (Figure 3.16). It had 

higher PV and MV, lower BD, FV and TSB, and longer PTime. At alkaline pH, the cooking time 

was the shortest. The PT, however, was unchanged by the treatments. 

Compared with the pretreatment step of dispersing starch-tyrosine mixture in pH adjusted 

mediums and lyophilizing the suspension, these results were statistically different according to 
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Table 3.13 Effects of Additives on the Pasting Characteristics of Native Rice Starch with 

Tyrosine Dispersed in Solutions of HCl/NaOH and Gelatinized Using the RVA.
1,2,3,4

 

Sample pH PV MV BD FV 

Control None 2341.5+37.5a 1893.5+30.4a 448.0+7.1c 3433.0+46.7a 

 NopH 2369.5+13.4a 1842.5+2.1ab 527.0+11.3b 3457.5+20.5a 

HCl/ 

NaOH 

4 2381.0+1.4a 1882.5+10.6ab 498.5+9.2b 3388.0+9.9a 

7 2359.5+7.8a 1827.5+7.8b 532.0+15.6b 3462.0+0.0a 

10 2330.5+7.8a 1738.5+3.5c 592.0+11.3a 3488.5+44.5a 

 

Sample pH SB TSB PTime PT 

Control None 1091.5+9.2a 1539.5+16.3bc 6.44+0.0a 81.6+0.0a 

 NopH 1088.0+7.1a 1615.0+18.4b 6.40+0.0a 80.8+0.1a 

HCl/ 

NaOH 

4 1007.0+8.5b 1505.5+0.7c 6.44+0.0a 81.6+0.1a 

7 1102.5+7.8a 1634.5+7.8b 6.33+0.0a 81.2+0.6a 

10 1158.0+36.8a 1750.0+48.1a 6.30+0.0a 80.8+0.0a 
1
PV=Peak Viscosity; MV=Minimum Viscosity; BD=Breakdown; FV=Final Viscosity; 

 SB=Setback; TSB=Total setback; PTime=Time to peak; PT=Pasting Temperature 
2
NopH=No pH Treatment (distilled water) 

3
Units: Viscosity (cP); Temperature (°C); Time (minute) 

4
Different letters within a column for each pasting property indicate means are significantly 

different at p≤0.05 
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Figure 3.15 Pasting Curves of RVA Gelatinized Rice Starches with Tyrosine Dispersed in 

Solutions Adjusted to Different pHs Using HCl/NaOH. 
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Table 3.14 Effects of Additives on the Pasting Characteristics of Native Rice Starch with 

Tyrosine Dispersed in Buffer Solutions and Gelatinized Using the RVA.
1,2,3,4,5

 

Sample pH PV MV BD FV 

Control None 2341.5+37.5c 1893.5+30.4c 448.0+7.1c 3433.0+46.7a 

 NopH 2369.5+13.4bc 1842.5+2.1c 527.0+11.3b 3457.5+20.5a 

Buffer 

4 2660.0+0.0a 1903.5+24.7c 756.5+24.7a 3128.5+0.7b 

7 2667.0+14.1a 2464.0+5.7a 203.0+8.5d 2860.0+26.9d 

10 2436.5+12.0b 2051.0+15.6b 385.5+27.6c 2977.5+7.8c 

 

Sample pH SB TSB PTime PT 

Control None 1091.5+9.2a 1539.5+16.3b 6.44+0.0b 81.6+0.0a 

 NopH 1088.0+7.1a 1615.0+18.4a 6.40+0.0b 80.8+0.1a 

Buffer 

4   468.5+0.7c 1225.5+25.5c 6.60+0.1b 84.1+0.0a 

7   193.0+12.7d   396.0+21.2e 6.97+0.0a 84.0+0.0a 

10   541.0+19.8b   926.5+7.8d 6.10+0.0c 72.8+14.7a 
1
PV=Peak Viscosity; MV=Minimum Viscosity; BD=Breakdown; FV=Final Viscosity; 

 SB=Setback; TSB=Total setback; PTime=Time to peak; PT=Pasting Temperature 
2
NopH=No pH Treatment (distilled water) 

3
Units: Viscosity (cP); Temperature (°C); Time (minute) 

4
Buffers used were acetate (pH 4), phosphate (pH 7) and carbonate (pH 10) 

5
Different letters within a column for each pasting property indicate means are significantly 

different at p≤0.05 
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Figure 3.16 Pasting Curves of RVA Gelatinized Rice Starches with Tyrosine Dispersed in 

Solutions Adjusted to Different pHs using Buffers. 
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Student’s t test (p<0.05). All pasting viscosities were lower in the pretreated starch in all 

treatments, while pasting times were generally unchanged. The pretreatment step might have 

allowed more interactions between tyrosine and starch granules so that more pronounced 

changes in the effects on swelling and granular collapse were observed. These interactions might 

also be similar to effects of solutes which can compete with starch for hydration, since tyrosine 

contains a hydroxyl group capable of H bonding (Donald, 2004). 

3.3.3 Thermal Characteristics by DSC 

3.3.3.1 Amino Acids without pH Treatments 

Without pH treatment, aspartic acid and lysine enhanced the ability of the starch to resist 

swelling, as shown by the higher Tp and Tc of LYS (Table 3.15). Starches which are more 

resistant to gelatinization require more energy to disorganize their structure (Biliaderis et al., 

1986) and substances with net charges were shown to provide this resistance. This is attributable 

to the binding ability of these substances to starch (Ito et al., 2004. 2006b). Lysine- and aspartic 

acid-added starches also reduced the formation of amylose-lipid complex in the rice starch, as 

seen from the loss of the characteristic second transition endotherm occurring around 100
o
C in 

their DSC curves (Figure 3.17). The neutral charged leucine and tyrosine had no effect on the 

thermal properties, similar to what was observed by Ito et al. (2006b). 

3.3.3.2 Amino Acids with pH Treatments Using HCl/NaOH Solutions 

Treatment with pH 4 solution did not change the thermal properties of rice starch    

(Table 3.16). This indicates that no cleavage of glycosidic linkages was effected by the mild acid 

treatment (Puchongkavarin et al., 2003). Even with addition of amino acids, no significant 

change was observed, except for lysine. The positive charged lysine increased the Tp and Tc of 

rice starch (Figure 3.18) without changing the enthalpy of melting, which signifies that swelling  
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Table 3.15 DSC Parameters of Rice Starch with Amino Acid Additives and No pH 

Treatment.
1,2,3,4

 

Sample Additive 
Gelatinization Endotherm 

To Tp Tc H 

Control NoAA 58.53+1.26a 74.68+0.47b 87.27+1.34b 13.32+1.94a 

NopH 

ASP 58.74+3.65a 76.33+0.21a 91.45+1.28a 12.52+1.14a 

LEU 57.97+0.51a 74.20+0.32b 86.88+0.50b 14.04+0.56a 

LYS 58.75+4.76a 76.46+0.73a 94.24+1.95a 15.05+1.50a 

TYR 59.85+2.45a 74.44+0.39b 86.48+1.10b 12.23+1.19a 
1
To=onset temperature; Tp=peak temperature; Tc=conclusion temperature; ΔH (Enthalpy) 

2
NoAA= No Amino Acid; ASP= Aspartic Acid; LEU= Leucine; LYS= Lysine; TYR=Tyrosine 

3
Units: Temperature (°C), Enthalpy (J/g, dry matter) 

4
Different letters within column indicate means are significantly different at p≤0.05 
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Figure 3.17 Thermal Curves of Rice Starches with Amino Acids without pH Treatment. 
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Table 3.16 DSC Parameters of Rice Starch with Amino Acid Additives and pH Treatments 

(HCl/NaOH).
1,2,3,4

 

Sample Additive 
Gelatinization Endotherm 

To Tp Tc H 

Control NoAA 58.53+1.26bcd 74.68+0.47cdef 87.27+1.34d 13.32+1.94abc 

pH 4 

 

NoAA 60.17+1.67abcd 75.28+0.86bcd 89.42+1.56abcd 12.59+1.02bc 

ASP 60.17+1.94abcd 74.77+0.36cde 87.82+1.07cd 12.92+0.95bc 

LEU 55.83+2.32d 74.07+0.20ef 87.56+1.16cd 15.24+0.98ab 

LYS 61.35+1.38abc 76.51+0.62a 92.60+0.79ab 15.36+0.67ab 

TYR 57.53+2.44bcd 73.87+0.18abc 86.54+0.62d 13.45+0.55abc 

pH 7 

 

NoAA 57.40+1.62cd 74.46+0.20def 88.91+1.19bcd 13.94+0.78abc 

ASP 63.63+2.55a 75.41+0.45abcd 87.68+0.46cd 11.15+2.04c 

LEU 59.18+1.86abcd 73.75+0.25ef 87.19+0.46d 13.78+1.28abc 

LYS 62.17+0.58ab 76.13+0.39ab 91.24+0.65abc 15.04+0.57ab 

TYR 57.50+0.31bcd 73.78+0.39ef 86.97+0.83d 14.24+0.59abc 

pH 10 

 

NoAA 60.31+2.04abcd 74.65+0.81cdef 88.06+2.07cd 12.39+1.44bc 

ASP 58.45+0.85bcd 74.41+0.35def 87.62+2.15cd 13.74+0.55abc 

LEU 58.62+1.86bcd 73.55+0.12f 87.74+0.82cd 14.61+1.39ab 

LYS 58.92+1.83abcd 75.65+0.20abc 93.25+2.39a 16.46+0.98a 

TYR 58.47+2.19bcd 73.60+0.31ef 86.02+2.76d 13.24+2.11bc 
1
To=onset temperature; Tp=peak temperature; Tc=conclusion temperature; ΔH (Enthalpy) 

2
NoAA= No Amino Acid; ASP= Aspartic Acid; LEU= Leucine; LYS= Lysine; TYR=Tyrosine 

3
Units: Temperature (°C), Enthalpy (J/g, dry matter) 

4
Different letters within column indicate means are significantly different at p≤0.05 
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Figure 3.18 Thermal Curves of Rice Starches with Amino Acids in pH 4 Solution 

(HCl/NaOH). 
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of the granules was restricted but the overall crystallinity was unchanged. These properties were 

similar to those imparted by crosslinking reactions (Chatakanonda et al., 2000). Meanwhile, the 

negative charged aspartic acid did not cause any change in the thermal properties, contrary to 

what was observed by Liang (2001). 

In pH 7 solution, a different gelatinization behavior was displayed by the samples. 

Shifting of gelatinization endotherm to higher Tp was again observed for LYS, while ASP 

delayed the onset of gelatinization (Figure 3.19). 

In pH 10 solution, LYS was the only sample which displayed a different gelatinization 

temperature (Figure 3.20). Its Tc was higher at 93.25
o
C than the control and the other samples at 

the same pH. However, the Tp was unchanged, unlike the treatments at lower pHs, which could 

be due to the reduced number of positive charges. According to Ito et al. (2006a), greater number 

of charges contributed more to increasing the gelatinization temperature. 

3.3.3.3 Amino Acids with pH Treatments Using Buffer Solutions 

Starch treated with acetate buffer at pH 4 without amino acid showed no observable 

difference compared to untreated rice starch (Table 3.17). At pH 7, the phosphate buffer elevated 

the Tp of all treated starch samples, as shown by their endotherms which were shifted to higher 

temperatures (Figure 3.22). The phosphate buffer, and not the amino acids, was primarily 

responsible for the shifting effect since NoAA displayed higher Tp and Tc than the untreated 

control starch. In sweet potato starches, the amount of phosphate was found to be directly 

correlated to the gelatinization temperature (Kitahara et al., 2005). 

All additives caused the starch to resist swelling as shown by their elevated Tp’s at pH 10 

(Figure 3.23), but the buffer itself had the greatest effect on increasing the gelatinization 

temperature of rice starch, as displayed by NoAA. No change in the H suggests that the 
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Figure 3.19 Thermal Curves of Rice Starches with Amino Acids in pH 7 Solution 

(HCl/NaOH). 
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Figure 3.20 Thermal Curves of Rice Starches with Amino Acids in pH 10 Solution 

(HCl/NaOH). 

 

 

 

 

 

 

 

 

 

 

 

 



80 

 

Table 3.17 DSC Parameters of Rice Starch with Amino Acid Additives and pH Treatment 

(Buffers).
1,2,3,4,5

 

Sample Additive 
Gelatinization Endotherm 

To Tp Tc H 

Control NoAA 58.53+1.26bc 74.68+0.47d 87.27+1.34d 13.32+1.94a 

pH 4 

 

NoAA 61.50+1.81abc 76.19+0.71cd 89.96+3.42bcd 12.04+1.67a 

ASP 56.72+2.24ab 75.97+0.69cd 89.58+1.90bcd 13.60+0.57a 

LEU 60.77+2.68abc 76.33+0.72cd 89.35+2.27bcd 12.30+0.74a 

LYS 61.26+3.76abc 78.30+0.65ab 93.81+1.12abc 13.95+0.84a 

TYR 58.58+4.44bc 75.83+0.87cd 87.96+2.26cd 12.07+0.93a 

pH 7 

 

NoAA 63.96+1.56ab 79.87+0.58a 94.41+1.98ab 13.07+0.09a 

ASP 65.14+2.64a 80.24+1.18a 92.66+2.46abcd 11.97+1.30a 

LEU 66.13+2.64a 79.68+0.70a 95.25+2.59ab 12.11+2.25a 

LYS 64.88+1.74ab 80.02+0.86a 96.43+3.92a 13.15+0.64a 

TYR 64.80+2.51ab 78.86+0.90a 93.47+1.30abc 12.37+0.94a 

pH 10 

 

NoAA 64.51+2.09ab 79.26+0.14a 93.73+1.81abc 14.08+1.69a 

ASP 62.40+2.61abc 78.70+1.22ab 92.90+3.00abcd 13.46+0.67a 

LEU 65.30+1.75a 76.75+0.35bc 89.78+1.20bcd 12.01+2.06a 

LYS 62.15+1.02abc 78.30+0.18ab 91.77+1.60abcd 14.60+1.10a 

TYR 61.28+0.54abc 76.80+0.49bc 90.60+1.37abcd 14.21+0.90a 
1
To=onset temperature; Tp=peak temperature; Tc=conclusion temperature; ΔH (Enthalpy) 

2
NoAA=No Amino Acid; ASP=Aspartic Acid; LEU=Leucine; LYS=Lysine; TYR=Tyrosine 

3
Units: Temperature (°C), Enthalpy (J/g, dry matter) 

4
Buffers used were acetate (pH 4), phosphate (pH 7) and carbonate (pH 10) 

5
Different letters within column indicate means are significantly different at p≤0.05 
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Figure 3.21 Thermal Curves of Rice Starches with Amino Acids at pH 4 (Buffer). 
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Figure 3.22 Thermal Curves of Rice Starches with Amino Acids at pH 7 (Buffer). 
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Figure 3.23 Thermal Curves of Rice Starches with Amino Acids at pH 10 (Buffer). 
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treatments did not cause a considerable change in the granular structure of the starch (Biliaderis, 

1991). 

3.3.3.4 Amino Acids with pH and Thermal Treatments 

Heat treatment of starch without amino acid and dispersed in pH 4 solution increased the 

H, and narrowed the range of granule melting (Tc – To) by about 1
o
C (Table 3.18), which 

suggests that reorganization and increased crystallinity occurred (Biliaderis, 1991). However, the 

pH 4-heat treatment decreased the Tp, which could indicate that no significant hydrolysis 

occurred. During acid hydrolysis, the amorphous portions of the starch granule are attacked. The 

amorphous regions destabilize the crystallites, and attack by acids frees the crystallites. As a 

consequence, the crystallites melt at higher temperatures (Hoover, 2000).  LYS was the only 

treatment which altered the gelatinization temperature of rice starch. It increased the Tp and Tc. 

Lysine broadened the gelatinization range which could mean that the starch produced had higher 

crystal heterogeneity (Vandeputte et al., 2003) or irregularly shaped granules (Singh et al., 2003). 

Heating might have increased the LYS-starch interactions, which in turn stabilized the 

amorphous regions. This restricted the hydration and ultimately, delayed the swelling and 

gelatinization of LYS and raised its temperature for gelatinization (Donald, 2004, Vandeputte et 

al., 2003). 

At pH 7, heating caused a lowering of the Tp of native rice starch. LEU and TYR had 

comparable Tp’s with NoAA, suggesting that even without the addition of leucine and tyrosine, 

restriction of gelatinization can be made by the combination of heat and pH treatment. 

Meanwhile, the positive charged LYS again caused an elevation of the Tp. These findings 

verified that neutral substances have little or no effect on gelatinization temperature, while those 

with unbalanced charges have greater contribution (Ito et al., 2006a).  
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Table 3.18 DSC Parameters of Rice Starch with Amino Acid Additives and pH (HCl/NaOH) 

and Heat Treatments.
1,2,3,4

 

Sample Additive 
Gelatinization Endotherm 

To Tp Tc H 

Control NoAA 58.53+1.26ab 74.68+0.47b 87.27+1.34cde 13.32+1.94bcde 

pH 4 

 

NoAA 60.34+1.31ab 73.71+0.45cd 88.01+1.44cde 16.09+1.05a 

ASP 64.08+3.69a 74.67+0.60b 89.58+2.60bcd 12.49+0.55de 

LEU 60.18+3.14ab 73.73+0.36cd 87.05+0.31cde 13.63+1.34abcde 

LYS 61.47+0.97ab 75.80+0.28a 91.62+0.73ab 16.02+0.20a 

TYR 60.37+1.95ab 73.31+0.15d 85.37+0.71e 13.89+0.29abcde 

pH 7 

 

NoAA 62.94+2.27ab 73.63+0.12cd 87.53+0.15cde 14.52+1.21abcde 

ASP 61.53+1.94ab 74.72+0.32b 86.35+0.39de 12.36+1.02e 

LEU 58.86+3.24ab 73.60+0.28cd 86.79+0.42cde 14.24+1.06abcde 

LYS 61.97+1.45ab 75.82+0.64a 89.99+0.59bc 15.27+0.46abc 

TYR 60.25+1.07ab 73.10+0.09d 86.14+1.22e 14.12+2.35abcde 

pH 10 

 

NoAA 60.67+1.06ab 73.75+0.12cd 87.18+0.37cde 15.42+0.63ab 

ASP 57.59+1.30b 74.46+0.09bc 87.44+1.48cde 12.66+0.56cde 

LEU 58.51+2.50ab 73.42+0.28d 87.30+1.22cde 15.15+1.05abcd 

LYS 62.12+3.18ab 75.99+0.35a 93.52+2.34a 15.74+0.41ab 

TYR 59.98+1.13ab 73.64+0.06cd 87.30+1.35cde 14.68+0.35abcde 
1
To=onset temperature; Tp=peak temperature; Tc=conclusion temperature; ΔH (Enthalpy) 

2
NoAA=No Amino Acid; ASP=Aspartic Acid; LEU=Leucine; LYS=Lysine; TYR=Tyrosine 

3
Units: Temperature (°C), Enthalpy (J/g, dry matter) 

4
Different letters within column indicate means are significantly different at the level of p≤0.05 
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Figure 3.24 Thermal Curves of Rice Starches with Amino Acids in pH 4 Solution 

(Heat Treated). 
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Figure 3.25 Thermal Curves of Rice Starches with Amino Acids in pH 7 Solution 

(Heat Treated). 
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Figure 3.26 Thermal Curves of Rice Starches with Amino Acids in pH 10 Solution 

(Heat Treated). 
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The effects of amino acid treatment on the gelatinization temperature of rice starch 

samples in a pH 10 medium were similar to those of starches treated in pH 7 solution.  

3.3.4 Resistant Starch 

3.3.4.1 Non-thermally Treated Starches 

Crystalean
®
 (Opta Food Ingredients, Cambridge, MA), a commercial high amylose maize 

starch, was run along with the samples as check. It had 43.79+1.28% RS, which was close to the 

value (41%) reported by McCleary and Monaghan (2002) using the enzymatic-chemical assay 

described in this study.  

Resistant starch levels of starches with amino acid additives dispersed in water and 

solutions containing HCl or NaOH and assayed by enzymatic-gravimetric approach are shown in 

Table 3.19.  Addition of amino acids without adjusting the pH of the solution did not improve 

the RS formation of rice starch.  

The starches with amino acid additives placed in the different pH solutions were able to 

form RS. The charged ASP and LYS were very effective in elevating the RS content of rice 

starch treated with pH 4 solution.  LEU and TYR, on the other hand, had RS yields which were 

not significantly different from that of the control. For pH 7 treatment, a great increase in RS  

(196.49%) was observed for NoAA. LEU and TYR which both had zero net charge in pH 7 

solution had higher RS yields than the control, but the values were lower than the starch without 

additives. pH 10 treatment, on the other hand, enhanced the RS formation of native rice starch. 

All treatments had RS levels which were at least twice as high as that of the untreated control. 

The higher RS content NoAA had, however, signifies that elevation of RS formation was mainly 

due to the pH 10 solution. Unlike pasting and thermal properties, therefore, amino acid charges  
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Table 3.19 Resistant Starch Yield (%) of Starches with Amino Acid Additives Without and With 

pH Treatments Using HCl/NaOH.
1,2,3

 

Sample Additive Resistant Starch Yield (%) 

Control NoAA   5.70+0.73h  

NopH 

ASP   5.87+2.52h  

LEU   5.41+0.71h  

LYS   6.84+2.27gh  

TYR   6.27+1.22h  

pH 4 

 

NoAA   8.24+0.37fgh  

ASP 16.14+2.31bc 183.37 

LEU   7.94+0.68fgh  

LYS 23.34+1.72a 309.64 

TYR   6.04+0.98h  

pH 7 

 

NoAA 16.89+2.35bc 196.49 

ASP   9.50+1.67efgh  

LEU 10.76+1.27defg 88.87 

LYS   8.72+0.66efgh  

TYR 11.41+1.68def 100.20 

pH 10 

 

NoAA 18.08+2.16b 217.33 

ASP 13.86+0.84bcd 143.37 

LEU 11.77+1.75def 106.71 

LYS 13.01+1.25cde 128.41 

TYR 11.50+0.59def 101.79 
1
NoAA=No Amino Acid; ASP=Aspartic Acid; LEU=Leucine; LYS=Lysine; TYR=Tyrosine 

2
Increase in RS Yield is relative to native rice starch (control) 

3
Different letters within column indicate means are significantly different at p≤0.05 
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were not the controlling factor in the formation of RS in rice starch, except for pH 4 solutions. 

The results of RS determination in starch and amino acid mixtures suspended in buffer 

systems are presented in Table 3.20. Without amino acids, acetate and phosphate buffers 

increased the RS yield of starch, while carbonate buffer did not show an effect. At pH 4, all 

treated starches had significantly higher RS yields than the untreated starch control but not 

different from pH 4 alone. At pH 7 and 10 addition of ASP and LEU further enhanced RS 

formation conferred by the buffer; these amino acids doubled the RS content of native starch 

with phosphate buffer. At the same concentration in starch (6%), these amino acids were 

previously shown to enhance RS formation in unoxidized and oxidized rice starch: ASP on 

untreated laboratory-prepared rice starch and on commercial rice starch treated with pure 

oxygen, and LEU on commercial starch oxidized using ozone (An, 2005). 

3.3.4.2 Thermally Treated Starches  

Heat treatments were reported to contribute to RS formation in starches (Saura-Calixto 

and Abia, 1991). The RS yields of rice starches treated with different amino acids at various pH 

levels with the application of heat are presented in Table 3.21. In pH 4 solution, no increase was 

observed. This is in contrast to the findings when the samples were not heated, where ASP and 

LYS caused substantial RS increases. In pH 7 solution, gain in RS levels was observed for LEU 

and ASP added starches, with levels increasing by 72.93% and 78.6%, respectively (Table 3.21), 

compared to when no heating was employed, 88.87% (Table 3.19). Increasing the temperature 

was beneficial for starch with ASP, which had higher RS with thermal treatment than unheated 

samples. The amino acid additives ASP and TYR also enhanced the formation of RS in pH 10 

solution with heating. However, lower amounts of RS were collected compared with those of the 

unheated samples (Table 3.19), except for TYR.  
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Table 3.20 Resistant Starch Yield (%) of Starches with Amino Acid Additives with pH 

Treatments (Buffers).
1,2,3,4,5

 

Sample Additive Resistant Starch Yield (%) %Increase in RS 

Control NoAA   5.70+0.73d -- 

pH 4 

 

NoAA 11.33+0.88bc 98.96 

ASP 10.24+2.23c 79.77 

LEU   9.61+2.23c 68.75 

LYS 10.70+1.41c 87.75 

TYR 10.47+2.29c 83.76 

pH 7 

 

NoAA 12.48+0.52bc 119.10 

ASP 16.62+0.91a 191.69 

LEU 14.64+1.51ab 157.04 

LYS   4.58+0.53d     NSD 

TYR   2.48+0.28d     NSD 

pH 10 

 

NoAA   4.42+2.20d     NSD 

ASP 14.88+0.84ab 161.21 

LEU 17.06+1.15a 199.52 

LYS   3.48+1.09d     NSD 

TYR   2.89+0.96d     NSD 
1
NoAA=No Amino Acid; ASP=Aspartic Acid; LEU=Leucine; LYS=Lysine; TYR=Tyrosine 

2
Increase in RS Yield is relative to native rice starch (control) 

3
Buffers used were acetate (pH 4), phosphate (pH 7) and carbonate (pH 10) 

4
NSD=Not significantly different from control 

5
Different letters within column indicate means are significantly different at p≤0.05 
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Table 3.21 Resistant Starch Yield (%) of Thermally Treated Starches with Amino Acid 

Additives in Different pH Levels (HCl/NaOH).
1,2,3,4

 

Sample Additive Resistant Starch Yield (%) %Increase in RS 

Control NoAA 5.70+0.73d -- 

pH 4 

 

NoAA 6.89+1.41cd NSD 

ASP 8.54+0.96cd NSD 

LEU 7.11+0.95cd NSD 

LYS 8.06+1.54cd NSD 

TYR 8.72+1.10cd NSD 

pH 7 

 

NoAA 5.36+2.16d NSD 

ASP 10.17+1.56abc 78.60 

LEU   9.85+1.55bc 72.93 

LYS   7.14+1.32cd NSD 

TYR   8.19+1.01cd NSD 

pH 10 

 

NoAA   8.00+0.42cd NSD 

ASP 13.34+1.24ab 134.14 

LEU   9.70+1.66bc 70.31 

LYS   9.42+1.97c 65.40 

TYR 13.66+1.19a 139.81 
1
NoAA=No Amino Acid; ASP=Aspartic Acid; LEU=Leucine; LYS=Lysine; TYR=Tyrosine 

2
Increase in RS Yield is relative to native rice starch (control) 

3
NSD=Not significantly different from control 

4
Different letters within column indicate means are significantly different at p≤0.05 
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3.3.4.3 Starches with Tyrosine at Different pH Treatments Prepared Using the RVA 

The RS levels of starches containing tyrosine under different pH conditions are presented 

in Table 3.22. The use of distilled water was effective in increasing the RS levels of rice starch 

with tyrosine added and after gelatinization in RVA. Using HCl and NaOH solutions in adjusting 

the pH, comparable values were obtained at pH 4 and 7, while RS level was not improved at pH 

10. With buffers, on the other hand, only pH 4 increased the yield but it was not higher than that 

obtained with distilled water. These results verified the findings of García-Alonso et al. (1999) in 

which better RS yields could be obtained generally at lower pHs (3.5 and 5.5). A vital 

implication of the finding that the use of water as suspending medium for starch and tyrosine 

results in high RS yields translates to savings in terms of ingredients or processing aids             

(i.e. chemicals for pH adjustment) and facilities for processors (Garcia-Alonso et al., 1999).  

3.3.4.4 Enzymatic-Chemical Technique (Megazyme) 

Starches dispersed in water and buffers were the only samples analyzed for RS yield 

using the enzymatic-chemical method. The treatments apparently did not cause the formation of 

RS (Table 3.23). High pH, on the other hand, decreased the RS yield. This buffer also generally 

showed no enhancing effect in samples assayed using the enzymatic-gravimetric method.  

There was no observed agreement between the RS values obtained using chemical and 

gravimetric methods. The latter consistently yielded higher RS values. In the Megazyme assay, 

residues remained after enzymatic hydrolysis of the RS fraction even with a high concentration 

of amyloglucosidase, which could indicate that the reaction was not completed under the 

specified experimental conditions. Thus, lower values were obtained using this procedure. 

Incomplete hydrolysis, as well as small polymer size of their modified starch, was also proposed 

by Wolf et al. (1999) as an explanation for the low yields obtained by enzymatic RS methods. 
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Table 3.22 Resistant Starch Yield (%) of RVA Gelatinized Starches with Tyrosine in Different 

pH Systems.
1,2,3,4,5,6

 

Sample Additive Resistant Starch Yield (%) %Increase in RS 

Control NoAA   5.70+0.73d -- 

dH2O NopH 11.68+1.97ab 105.03 

HCl/NaOH 

4 14.69+2.21a 157.90 

7 12.22+1.95a 114.49 

10   5.00+0.15d NSD 

Buffer 

4 10.92+1.21abc 91.64 

7   7.87+0.50bcd NSD 

10   6.99+1.65cd NSD 
1
NoAA=No Amino Acid 

2
NopH=No pH Treatment 

3
Increase in RS Yield is relative to native rice starch (control) 

4
Buffers used were acetate (pH 4), phosphate (pH 7) and carbonate (pH 10) 

5
NSD=Not significantly different from control 

6
Different letters within column indicate means are significantly different at p≤0.05 
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Table 3.23 Resistant Starch (%) of Rice Starches with Amino Acids at with and without pH 

Treatment (Buffers) Assayed by Enzymatic-Chemical Method (Megazyme).
1,2,3,4

 

Sample Additive Resistant Starch Yield (%) 

Control NoAA 2.29+0.28abcde 

NopH 

ASP 2.16+1.23def 

LEU 1.61+0.54cdef 

LYS 1.70+0.37cdef 

TYR 1.17+0.10ef 

pH 4 

 

NoAA 2.44+0.07abcde 

ASP 2.22+0.12bcde 

LEU 2.60+1.05abcd 

LYS 1.97+0.19bcdef 

TYR 2.24+0.07bcde 

pH 7 

 

NoAA 3.57+0.88a 

ASP 3.07+0.66ab 

LEU 2.88+0.13abc 

LYS 2.60+0.16abcd 

TYR 2.70+0.79abcd 

pH 10  

 

NoAA 0.78+0.39f 

ASP 0.81+0.28f 

LEU 0.90+0.23f 

LYS 0.78+0.05f 

TYR 1.22+0.77ef 
1
NoAA=No Amino Acid 

2
NopH=No pH Treatment 

3
Increase in RS Yield is relative to native rice starch (control) 

4
Different letters within column indicate means are significantly different at p≤0.05 
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CHAPTER 4.  SUMMARY AND CONCLUSIONS 

 

 

Modification is an important process used to change functional properties of native 

starch, therefore increasing its utilization. Several physical or chemical modification techniques 

were shown to enhance RS formation. Amino acids have been demonstrated to alter starch 

functionalities. This study was conducted to determine the effect of amino acids in combination 

with different pH treatments on the pasting and thermal characteristics, and RS formation of rice 

starch. 

Adding pH adjusted solutions using HCl and NaOH caused alterations in the pasting 

properties of rice starch. Without amino acids, the pasting properties were unchanged in pH 10 

solution, whereas only the PV was affected in pH 4 solution. With amino acid additives, starches 

with ASP and LYS, consistently had significantly lower TSB and FV than the control and the 

other treatments. Samples with added ASP regardless of pH solution had the highest BD, while 

starches with LYS shortened the cooking time of the starch in all pH solutions. In general, ASP 

and LYS consistently increased the BD and decreased the TSB, which suggests that these amino 

acids had an effect on the starch structure, particularly amylose, since amylose correlates 

positively with setback and negatively with breakdown (Bhattacharya, 2009). The loss or 

reduction of the amylose-lipid complex peak but unchanged gelatinization enthalpy as shown by 

the DSC curves of the starches with these amino acids further support this assumption. It is 

evident that the charges that both of these amino acids contain at the tested pH levels influenced 

the said changes possibly though complex formation with starch, the nature of which needs 

further investigation. However, only lysine was consistent in elevating the gelatinization 

temperatures in all pH solutions, with or without heating. Aspartic acid, which had negative net 

charge at all the pH levels tested, did not show any effect on the first transition endotherm. The 



98 

 

positive charged lysine might have become attached to the starch molecules electrostatically, 

preventing their interaction with water, as seen from the increased gelatinization temperatures of 

LYS-starches in water or pH-adjusted solutions using HCl/NaOH. 

Different trends were observed using buffers. BD, TSB, FV, PTime and PT values were 

altered by acetate buffer at pH 4 without amino acids. ASP reduced the PV, FV and PTime and 

increased the MV. LYS lengthened the PTime. However, no change in gelatinization 

temperatures of all treatments was observed. At pH 7 with phosphate buffer, ASP increased the 

BD and PT and decreased the PTime. No change in PT was observed for LYS. All treated 

starches, including the sample without amino acid, had elevated Tp’s at this pH treatment. At 

alkaline pH using carbonate buffer, ASP had lower MV, FV, and TSB and higher PT. Other 

amino acids had properties comparable with either the control or the starch with buffer alone. 

Similar to the effect of phosphate buffer, carbonate buffer likewise increased the gelatinization 

temperature of rice starch. 

The combination of pH treatment and amino acids proved to have an effect on RS 

formation. In pH 4 solution using HCl/NaOH, ASP and LYS yield high RS levels, while LEU 

and TYR had the same effect in pH 7 solution. ASP and LEU enhanced the RS formation of 

starch when treated with phosphate buffer or heated with HCl/NaOH at pH 7. Unlike pasting and 

thermal properties, therefore, RS formation is not controlled by charges of additives.  

The effect of a hydroxyl containing amino acid on pasting, thermal and RS formation was 

tested using tyrosine. With the exception of BD, all RVA parameters of native rice starch were 

unchanged with tyrosine added in HCl/NaOH adjusted solutions at pH 4 and 7 and gelatinized in 

RVA. In pH 10 solution, MV was lower, while BD and TSB were higher than native starch. 

These results mean that pH 10 solution in combination with tyrosine made the swollen granules 
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of the treated starch easier to disrupt and increased the probability of the formation of three-

dimensional network during cooling (Newport Scientific, 1998). pH solution was also negatively 

correlated with the formation of RS in starch with TYR. Compared with pretreated starch (i.e. 

lyophilized), lower paste viscosities were displayed by gelatinized starches with TYR. 

In conclusion, amino acids alone or in combination with pH treatments would yield rice 

starches with varied functionalities. Significant alterations in the starch structure, particularly 

amylose, might have been exerted by ASP and LYS, and this may need further research. On the 

practical applications of this study, lysine can be incorporated into rice starch even without pH 

adjustment or heat treatments, which in turn would mean savings for the processor. The amino 

acids used in this study may find potential applications in the production of functional food 

ingredients. Further refinement of RS assays and establishment of the safe intakes of RS are thus 

recommended. 
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APPENDIX 1                                                                                                                              

RVA RAW DATA OF RICE STARCHES WITHOUT pH TREATMENT 

 

Treat AA Rep PV MV BD FV SB TSB PTime PT 

1 None 1 2368 1915 453 3466 1098 1551 6.40 81.60 

1 None 2 2315 1872 443 3400 1085 1528 6.47 81.55 

2 Asp 1 1926 1341 585 2200 274 859 6.33 91.85 

2 Asp 2 1885 1295 590 2156 271 861 6.40 91.85 

2 Asp 3 1868 1282 586 2133 265 851 6.33 91.10 

2 Asp 4 1852 1259 593 2120 268 861 6.22 91.80 

3 Leu 1 2028 1641 387 3095 1067 1454 6.47 85.50 

3 Leu 2 2010 1644 366 3142 1132 1498 6.40 88.70 

3 Leu 3 1886 1572 314 2935 1049 1363 6.47 89.45 

3 Leu 4 1880 1555 325 2914 1034 1359 6.47 87.95 

4 Lys 1 2074 1568 506 2902 828 1334 5.60 80.85 

4 Lys 2 2065 1565 500 2908 843 1343 5.60 80.85 

4 Lys 3 2075 1594 481 2913 838 1319 5.60 80.75 

4 Lys 4 2050 1563 487 2857 807 1294 5.60 80.70 

5 Tyr 1 1890 1580 310 2837 947 1257 6.53 90.30 

5 Tyr 2 1924 1619 305 2950 1026 1331 6.47 90.30 

5 Tyr 3 1910 1602 308 2834 924 1232 6.53 90.20 

5 Tyr 4 1891 1577 314 2831 940 1254 6.47 90.25 
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APPENDIX 2                                                                                                                             

RVA DATA OF RICE STARCHES (HCl/NaOH) 

 

Treat pH AA Rep PV MV BD FV SB TSB PTime PT 

6 4 NA 1 2257 1843 414 3398 1141 1555 6.40 82.30 

6 4 NA 2 2276 1838 438 3421 1145 1583 6.40 82.35 

6 4 NA 3 2276 1858 418 3389 1113 1531 6.47 82.45 

6 4 NA 4 2273 1857 416 3387 1114 1530 6.47 83.25 

7 7 NA 1 2110 1713 397 3252 1142 1539 6.47 82.30 

7 7 NA 2 2107 1704 403 3362 1255 1658 6.47 82.30 

7 7 NA 3 2217 1803 414 3315 1098 1512 6.47 82.45 

7 7 NA 4 2234 1808 426 3365 1131 1557 6.40 83.20 

8 10 NA 1 2254 1804 450 3433 1179 1629 6.40 82.25 

8 10 NA 2 2257 1811 446 3396 1139 1585 6.40 82.35 

8 10 NA 3 2168 1735 433 3326 1158 1591 6.40 82.35 

8 10 NA 4 2181 1759 422 3332 1151 1573 6.47 82.45 

9 4 Asp 1 1932 1332 600 2218 286 886 6.40 92.60 

9 4 Asp 2 1902 1309 593 2200 298 891 6.40 91.75 

9 4 Asp 3 1938 1330 608 2225 287 895 6.33 91.85 

9 4 Asp 4 1869 1299 570 2156 287 857 6.40 93.55 

10 7 Asp 1 1971 1341 630 2277 306 936 6.40 91.75 

10 7 Asp 2 1915 1311 604 2233 318 922 6.47 91.90 

10 7 Asp 3 1971 1338 633 2276 305 938 6.40 91.80 

10 7 Asp 4 1886 1272 614 2178 292 906 6.33 91.85 

11 10 Asp 1 1806 1254 552 2127 321 873 6.40 93.50 

11 10 Asp 2 1920 1315 605 2241 321 926 6.40 91.80 

11 10 Asp 3 1837 1226 611 2131 294 905 6.33 92.70 

11 10 Asp 4 1825 1217 608 2121 296 904 6.33 91.15 

12 4 Leu 1 1915 1570 345 2884 969 1314 6.53 88.65 

12 4 Leu 2 1978 1615 363 2984 1006 1369 6.53 88.60 

12 4 Leu 3 1922 1550 372 2902 980 1352 6.47 90.30 

12 4 Leu 4 1919 1546 373 2931 1012 1385 6.47 90.30 

13 7 Leu 1 1997 1596 401 3034 1037 1438 6.47 88.65 

13 7 Leu 2 2006 1607 399 3049 1043 1442 6.53 87.90 

13 7 Leu 3 2011 1588 423 3072 1061 1484 6.40 87.10 

13 7 Leu 4 2006 1602 404 3063 1057 1461 6.47 87.10 

14 10 Leu 1 1990 1572 418 3074 1084 1502 6.40 86.70 

14 10 Leu 2 1920 1512 408 3010 1090 1498 6.40 82.40 

14 10 Leu 3 1906 1533 373 2918 1012 1385 6.53 89.35 

14 10 Leu 4 1891 1540 351 2904 1013 1364 6.47 84.75 

15 4 Lys 1 1964 1416 548 2811 847 1395 5.47 81.70 

15 4 Lys 2 1955 1416 539 2781 826 1365 5.53 81.55 
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Treat pH AA Rep PV MV BD FV SB TSB PTime PT 

15 4 Lys 3 1996 1458 538 2804 808 1346 5.53 80.80 

15 4 Lys 4 1982 1443 539 2827 845 1384 5.53 81.70 

16 7 Lys 1 1930 1428 502 2751 821 1323 5.60 80.75 

16 7 Lys 2 1911 1416 495 2742 831 1326 5.53 81.50 

16 7 Lys 3 1956 1429 527 2770 814 1341 5.60 81.65 

16 7 Lys 4 1957 1457 500 2747 790 1290 5.60 80.80 

17 10 Lys 1 1982 1490 492 2751 770 1261 5.67 81.55 

17 10 Lys 2 2000 1477 523 2772 772 1295 5.53 81.70 

17 10 Lys 3 2063 1499 564 2859 796 1360 5.60 81.60 

17 10 Lys 4 2050 1502 548 2858 808 1356 5.60 81.65 

18 4 Tyr 1 1919 1537 382 2957 1038 1420 6.47 86.30 

18 4 Tyr 2 1913 1524 389 2942 1029 1418 6.40 88.65 

18 4 Tyr 3 1887 1514 373 2883 996 1369 6.47 87.90 

18 4 Tyr 4 1896 1515 381 2914 1018 1399 6.40 87.10 

19 7 Tyr 1 1951 1540 411 3018 1067 1478 6.40 87.20 

19 7 Tyr 2 1961 1537 424 3024 1063 1487 6.33 87.85 

19 7 Tyr 3 1954 1531 423 3003 1049 1472 6.33 86.40 

19 7 Tyr 4 1928 1549 379 2969 1041 1420 6.47 87.85 

20 10 Tyr 1 2000 1537 463 3132 1132 1595 6.33 83.25 

20 10 Tyr 2 1990 1531 459 3126 1136 1595 6.27 83.90 

20 10 Tyr 3 1948 1497 451 3084 1136 1587 6.33 85.55 

20 10 Tyr 4 1922 1498 424 3045 1123 1547 6.33 88.00 
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APPENDIX 3                                                                                                                            

RVA DATA OF RICE STARCHES (BUFFER) 

 

Treat pH AA Rep PV MV BD FV SB TSB PTime PT 

21 4 NA 1 2212 1843 369 2723 511 880 6.60 90.35 

21 4 NA 2 1954 1639 315 2390 436 751 6.60 91.05 

21 4 NA 3 2155 1757 398 2680 525 923 6.53 91.10 

21 4 NA 4 1866 1566 300 2286 420 720 6.67 91.10 

22 7 NA 1 2172 2039 133 2495 323 456 7.00 84.90 

22 7 NA 2 2143 2020 123 2391 248 371 7.00 84.85 

22 7 NA 3 2069 1938 131 2321 252 383 7.00 84.05 

22 7 NA 4 1973 1830 143 2177 204 347 7.00 83.95 

23 10 NA 1 2302 1806 496 3238 936 1432 5.73 83.95 

23 10 NA 2 2107 1543 564 2964 857 1421 5.60 82.40 

23 10 NA 3 2315 1751 564 3215 900 1464 5.73 84.05 

23 10 NA 4 2125 1394 731 2989 864 1595 5.40 82.35 

24 4 Asp 1 1666 1112 554 1968 302 856 6.27 91.85 

24 4 Asp 2 1332 867 465 1509 177 642 6.27 94.35 

24 4 Asp 3 1630 1095 535 1925 295 830 6.27 91.75 

24 4 Asp 4 1315 852 463 1493 178 641 6.27 94.25 

25 7 Asp 1 1606 1351 255 1936 330 585 6.60 93.50 

25 7 Asp 2 1444 1140 304 1668 224 528 6.53 92.70 

25 7 Asp 3 1652 1382 270 1912 260 530 6.67 91.90 

25 7 Asp 4 1476 1233 243 1627 151 394 6.73 93.45 

26 10 Asp 1 1818 1459 359 2233 415 774 6.53 91.95 

26 10 Asp 2 1572 1245 327 1887 315 642 6.53 93.50 

26 10 Asp 3 1884 1507 377 2274 390 767 6.53 92.75 

26 10 Asp 4 1549 1254 295 1852 303 598 6.60 93.45 

27 4 Leu 1 1866 1532 334 2370 504 838 6.60 91.85 

27 4 Leu 2 1631 1353 278 2067 436 714 6.60 94.25 

27 4 Leu 3 1823 1483 340 2345 522 862 6.60 92.75 

27 4 Leu 4 1587 1294 293 2071 484 777 6.60 95.10 

28 7 Leu 1 1741 1612 129 2010 269 398 7.00 86.30 

28 7 Leu 2 1625 1499 126 1777 152 278 7.00 85.60 

28 7 Leu 3 1831 1693 138 2158 327 465 6.87 84.85 

28 7 Leu 4 1689 1545 144 1875 186 330 7.00 87.90 

29 10 Leu 1 1975 1696 279 2565 590 869 6.20 82.30 

29 10 Leu 2 1808 1606 202 2275 467 669 6.33 81.60 

29 10 Leu 3 1957 1694 263 2519 562 825 6.33 82.45 

29 10 Leu 4 1870 1639 231 2377 507 738 6.27 81.60 
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Treat pH AA Rep PV MV BD FV SB TSB PTime PT 

30 4 Lys 1 1872 1627 245 2514 642 887 6.73 83.15 

30 4 Lys 2 1828 1629 199 2354 526 725 6.93 84.10 

30 4 Lys 3 1957 1682 275 2626 669 944 6.73 83.10 

30 4 Lys 4 1893 1667 226 2484 591 817 6.87 83.25 

31 7 Lys 1 1832 1687 145 2155 323 468 6.73 84.00 

31 7 Lys 2 1868 1709 159 2190 322 481 6.87 84.00 

31 7 Lys 3 1804 1665 139 2087 283 422 6.93 84.80 

31 7 Lys 4 1820 1681 139 2080 260 399 6.93 84.00 

32 10 Lys 1 1904 1651 253 2587 683 936 6.13 84.00 

32 10 Lys 2 1720 1462 258 2396 676 934 5.87 81.60 

32 10 Lys 3 1942 1649 293 2741 799 1092 6.00 83.95 

32 10 Lys 4 1760 1552 208 2493 733 941 6.13 83.15 

33 4 Tyr 1 1757 1412 345 2277 520 865 6.40 92.70 

33 4 Tyr 2 1869 1539 330 2371 502 832 6.53 92.75 

33 4 Tyr 3 1753 1363 390 2292 539 929 6.47 91.95 

33 4 Tyr 4 1564 1300 264 2013 449 713 6.60 94.40 

34 7 Tyr 1 1635 1506 129 2018 383 512 7.00 87.80 

34 7 Tyr 2 1504 1384 120 1788 284 404 7.00 91.10 

34 7 Tyr 3 1648 1516 132 2028 380 512 6.90 86.70 

34 7 Tyr 4 1512 1420 92 1769 257 349 7.00 85.65 

35 10 Tyr 1 1796 1486 310 2469 673 983 6.13 81.55 

35 10 Tyr 2 1896 1491 405 2658 762 1167 5.80 80.75 

35 10 Tyr 3 1820 1489 331 2519 699 1030 6.00 81.45 

35 10 Tyr 4 1881 1454 427 2655 774 1201 5.73 80.70 
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APPENDIX 4                                                                                                                            

RVA DATA OF RICE STARCHES (THERMAL) 

 

Treat pH AA Rep PV MV BD FV SB TSB PTime PT 

36 4 NA 1 2120 1754 366 3077 957 1323 6.67 87.15 

36 4 NA 2 2100 1771 329 3044 944 1273 6.73 84.10 

36 4 NA 3 2123 1773 350 3049 971 1276 6.67 91.85 

36 4 NA 4 2152 1729 423 3178 1026 1449 6.53 91.00 

37 7 NA 1 2154 1725 429 3154 1000 1429 6.60 79.25 

37 7 NA 2 2184 1813 371 3195 1011 1382 6.67 91.05 

37 7 NA 3 2161 1836 325 3087 926 1251 6.80 81.55 

37 7 NA 4 2145 1773 372 3118 973 1345 6.60 91.05 

38 10 NA 1 2219 1830 389 3230 1011 1400 6.67 83.20 

38 10 NA 2 2203 1825 378 3211 1008 1386 6.60 90.30 

38 10 NA 3 2154 1846 308 3149 995 1303 6.73 85.60 

38 10 NA 4 2175 1759 416 3212 1037 1453 6.60 82.40 

39 4 Asp 1 1686 1197 489 1971 285 774 6.60 95.05 

39 4 Asp 2 1666 1184 482 1942 276 758 6.60 95.05 

39 4 Asp 3 1706 1179 527 1994 288 815 6.47 93.55 

39 4 Asp 4 1714 1188 526 2007 293 819 6.47 94.25 

40 7 Asp 1 1750 1207 543 2010 260 803 6.47 95.00 

40 7 Asp 2 1751 1194 557 2015 264 821 6.47 93.55 

40 7 Asp 3 1741 1190 551 2022 281 832 6.47 94.25 

40 7 Asp 4 1750 1226 524 2052 302 826 6.47 93.45 

41 10 Asp 1 1699 1196 503 2020 321 824 6.47 93.45 

41 10 Asp 2 1685 1158 527 1988 303 830 6.47 94.30 

41 10 Asp 3 1622 1148 474 1949 327 801 6.53 95.00 

41 10 Asp 4 1608 1126 482 1938 330 812 6.53 95.05 

42 4 Leu 1 1802 1516 286 2492 690 976 6.73 93.50 

42 4 Leu 2 1843 1516 327 2603 760 1087 6.73 92.80 

42 4 Leu 3 1795 1524 271 2684 889 1160 6.60 91.80 

42 4 Leu 4 1793 1518 275 2681 888 1163 6.60 91.85 

43 7 Leu 1 1791 1495 296 2701 910 1206 6.60 91.85 

43 7 Leu 2 1817 1488 329 2783 966 1295 6.53 91.10 

43 7 Leu 3 1833 1487 346 2802 969 1315 6.53 88.70 

43 7 Leu 4 1824 1491 333 2782 958 1291 6.53 89.55 

44 10 Leu 1 1692 1345 347 2749 1057 1404 6.40 88.65 

44 10 Leu 2 1697 1347 350 2773 1076 1426 6.40 90.20 

44 10 Leu 3 1601 1270 331 2649 1048 1379 6.40 84.05 

44 10 Leu 4 1606 1295 311 2614 1008 1319 6.47 85.60 
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Treat pH AA Rep PV MV BD FV SB TSB PTime PT 

45 4 Lys 1 1803 1350 453 2566 763 1216 5.73 81.60 

45 4 Lys 2 1801 1359 442 2572 771 1213 5.73 80.65 

45 4 Lys 3 1828 1364 464 2615 787 1251 5.60 81.55 

45 4 Lys 4 1840 1377 463 2588 748 1211 5.60 81.45 

46 7 Lys 1 1651 1255 396 2360 709 1105 5.67 80.80 

46 7 Lys 2 1664 1246 418 2333 669 1087 5.67 80.85 

46 7 Lys 3 1861 1400 461 2644 783 1244 5.67 80.80 

46 7 Lys 4 1875 1401 474 2555 680 1154 5.53 80.80 

47 10 Lys 1 1751 1311 440 2466 715 1155 5.73 80.00 

47 10 Lys 2 1736 1304 432 2437 701 1133 5.60 80.00 

47 10 Lys 3 1739 1300 439 2400 661 1100 5.67 80.75 

47 10 Lys 4 1742 1308 434 2438 696 1130 5.67 79.95 

48 4 Tyr 1 1766 1478 288 2697 931 1219 6.60 87.95 

48 4 Tyr 2 1752 1454 298 2760 1008 1306 6.53 88.75 

48 4 Tyr 3 1758 1448 310 2772 1014 1324 6.40 82.35 

48 4 Tyr 4 1764 1441 323 2717 953 1276 6.47 91.00 

49 7 Tyr 1 1704 1365 339 2732 1028 1367 6.40 81.65 

49 7 Tyr 2 1731 1390 341 2778 1047 1388 6.40 90.25 

49 7 Tyr 3 1684 1354 330 2770 1086 1416 6.47 89.45 

49 7 Tyr 4 1678 1330 348 2770 1092 1440 6.40 90.25 

50 10 Tyr 1 1857 1545 312 2704 847 1159 6.60 90.95 

50 10 Tyr 2 1858 1550 308 2711 853 1161 6.60 91.10 

50 10 Tyr 3 1687 1354 333 2727 1040 1373 6.47 90.35 

50 10 Tyr 4 1692 1379 313 2765 1073 1386 6.40 79.20 
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APPENDIX 5                                                                                                                               

RVA DATA OF RVA GELATINIZED RICE STARCHES WITH TYROSINE 

 

Treat Type pH Rep PV MV BD FV SB TSB PTime PT 

51 NopH NA 1 2379 1844 535 3472 1093 1628 6.40 80.80 

51 NopH NA 2 2360 1841 519 3443 1083 1602 6.40 80.70 

52 HCl/NaOH 4 1 2380 1875 505 3381 1001 1506 6.40 81.65 

52 HCl/NaOH 4 2 2382 1890 492 3395 1013 1505 6.47 81.50 

53 HCl/NaOH 7 1 2365 1822 543 3462 1097 1640 6.33 81.60 

53 HCl/NaOH 7 2 2354 1833 521 3462 1108 1629 6.33 80.80 

54 HCl/NaOH 10 1 2325 1741 584 3457 1132 1716 6.33 80.80 

54 HCl/NaOH 10 2 2336 1736 600 3520 1184 1784 6.27 80.85 

55 Buffer 4 1 2660 1921 739 3128 468 1207 6.67 84.05 

55 Buffer 4 2 2660 1886 774 3129 469 1243 6.53 84.10 

56 Buffer 7 1 2657 2460 197 2841 184 381 7.00 84.00 

56 Buffer 7 2 2677 2468 209 2879 202 411 6.93 84.00 

57 Buffer 10 1 2445 2040 405 2972 527 932 6.13 62.40 

57 Buffer 10 2 2428 2062 366 2983 555 921 6.07 83.15 
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APPENDIX 6                                                                                                                                

DSC DATA OF RICE STARCHES WITHOUT pH TREATMENT 

 

Treat AA Rep 
Gelatinization Endotherm 

To Tp Tc H 

1 NA 1 59.42 74.35 86.32 11.94 

1 NA 2 57.64 75.01 88.21 14.69 

2 Asp 1 59.42 76.63 92.03 12.29 

2 Asp 2 53.55 76.13 92.79 14.15 

2 Asp 3 62.08 76.28 89.81 11.48 

2 Asp 4 59.90 76.29 91.18 12.16 

3 Leu 1 57.53 74.34 86.91 14.24 

3 Leu 2 57.88 73.87 87.38 14.64 

3 Leu 3 58.71 74.00 87.03 13.94 

3 Leu 4 57.76 74.58 86.20 13.32 

4 Lys 1 61.72 76.67 95.15 13.98 

4 Lys 2 51.72 75.49 91.41 17.15 

4 Lys 3 61.67 77.24 94.61 13.96 

4 Lys 4 59.90 76.42 95.80 15.12 

5 Tyr 1 63.33 74.54 86.44 10.66 

5 Tyr 2 57.64 74.63 86.44 12.28 

5 Tyr 3 58.87 73.86 85.16 13.54 

5 Tyr 4 59.54 74.72 87.86 12.43 
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APPENDIX   7                                                                                                                             

DSC DATA OF RICE STARCHES (HCl/NaOH) 

 

Treat pH AA Rep 
Gelatinization Endotherm 

To Tp Tc H 

6 4 NA 1 61.32 75.99 91.29 12.45 

6 4 NA 2 61.89 75.64 89.09 11.22 

6 4 NA 3 58.67 75.46 89.76 13.13 

6 4 NA 4 58.80 74.03 87.53 13.56 

7 7 NA 1 55.53 74.50 90.51 14.27 

7 7 NA 2 57.95 74.34 87.81 14.08 

7 7 NA 3 59.33 74.72 89.09 12.82 

7 7 NA 4 56.79 74.28 88.23 14.60 

8 10 NA 1 59.09 74.29 88.09 13.92 

8 10 NA 2 63.07 74.58 88.09 10.60 

8 10 NA 3 58.48 73.94 85.49 13.09 

8 10 NA 4 60.61 75.80 90.55 11.95 

9 4 Asp 1 60.96 75.04 87.38 12.77 

9 4 Asp 2 61.55 74.96 89.40 14.22 

9 4 Asp 3 60.86 74.25 87.00 11.94 

9 4 Asp 4 57.29 74.83 87.50 12.76 

10 7 Asp 1 61.67 74.78 87.50 12.69 

10 7 Asp 2 67.24 75.86 87.15 8.14 

10 7 Asp 3 62.03 75.49 87.86 11.80 

10 7 Asp 4 63.57 75.49 88.21 11.96 

11 10 Asp 1 58.83 74.75 89.75 14.53 

11 10 Asp 2 58.83 74.28 84.78 13.30 

11 10 Asp 3 58.95 74.62 87.27 13.45 

11 10 Asp 4 57.17 73.98 88.69 13.69 

12 4 Leu 1 55.16 73.84 87.98 15.87 

12 4 Leu 2 55.27 74.05 88.81 15.94 

12 4 Leu 3 53.73 74.07 87.38 15.32 

12 4 Leu 4 59.14 74.33 86.06 13.82 

13 7 Leu 1 57.88 73.66 86.55 14.29 

13 7 Leu 2 57.41 73.74 87.50 15.33 

13 7 Leu 3 60.06 74.10 87.19 12.95 

13 7 Leu 4 61.36 73.51 87.53 12.53 

14 10 Leu 1 58.24 73.41 87.62 14.61 

14 10 Leu 2 61.08 73.70 87.03 12.81 

14 10 Leu 3 56.58 73.51 87.38 14.81 

14 10 Leu 4 58.59 73.57 88.92 16.20 
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Treat pH AA Rep 
Gelatinization Endotherm 

To Tp Tc H 

15 4 Lys 1 62.15 76.33 92.24 14.79 

15 4 Lys 2 59.30 75.75 92.24 16.26 

15 4 Lys 3 61.79 76.75 92.12 15.48 

15 4 Lys 4 62.15 77.21 93.78 14.91 

16 7 Lys 1 62.74 76.50 91.29 14.45 

16 7 Lys 2 62.50 75.86 92.12 14.79 

16 7 Lys 3 62.00 75.74 90.62 15.78 

16 7 Lys 4 61.44 76.43 90.94 15.15 

17 10 Lys 1 58.12 75.70 93.55 17.62 

17 10 Lys 2 59.78 75.85 96.51 15.51 

17 10 Lys 3 60.96 75.68 91.77 15.80 

17 10 Lys 4 56.81 75.38 91.18 16.89 

18 4 Tyr 1 57.09 74.05 87.38 13.41 

18 4 Tyr 2 54.56 73.65 86.2 13.99 

18 4 Tyr 3 60.46 73.81 86.63 13.69 

18 4 Tyr 4 58.00 73.97 85.96 12.70 

19 7 Tyr 1 57.76 73.49 87.86 14.72 

19 7 Tyr 2 57.17 74.34 86.67 13.54 

19 7 Tyr 3 57.29 73.75 87.38 14.74 

19 7 Tyr 4 57.76 73.54 85.96 13.97 

20 10 Tyr 1 57.76 73.45 86.79 15.52 

20 10 Tyr 2 57.76 73.79 87.86 14.37 

20 10 Tyr 3 56.70 73.24 81.93 10.79 

20 10 Tyr 4 61.67 73.91 87.5 12.28 

 

 

 

 

 

 

 

 

 



118 

 

APPENDIX 8                                                                                                                             

DSC DATA OF RICE STARCHES (BUFFER) 

 

Treat pH AA Rep 
Gelatinization Endotherm 

To Tp Tc H 

21 4 NA 1 60.94 75.37 88.81 13.38 

21 4 NA 2 60.23 76.38 89.52 11.95 

21 4 NA 3 64.18 75.96 86.74 9.705 

21 4 NA 4 60.65 77.06 94.78 13.11 

22 7 NA 1 62.15 79.16 92.12 13.19 

22 7 NA 2 65.94 80.32 95.68 12.96 

22 7 NA 3 64.04 79.63 93.43 13.08 

22 7 NA 4 63.69 80.37 96.39 13.05 

23 10 NA 1 66.96 79.41 92.13 11.89 

23 10 NA 2 64.16 79.15 94.02 15.16 

23 10 NA 3 61.91 79.14 92.60 13.64 

23 10 NA 4 64.99 79.34 96.15 15.64 

24 4 Asp 1 57.37 75.98 87.48 13.32 

24 4 Asp 2 56.93 75.76 90.11 13.99 

24 4 Asp 3 53.62 75.25 88.81 14.14 

24 4 Asp 4 58.95 76.90 91.93 12.94 

25 7 Asp 1 62.50 79.41 92.60 13.33 

25 7 Asp 2 64.28 80.32 95.09 12.83 

25 7 Asp 3 65.01 79.36 89.31 10.72 

25 7 Asp 4 68.76 81.88 93.64 11.01 

26 10 Asp 1 60.49 77.51 89.64 12.98 

26 10 Asp 2 61.67 79.44 95.68 14.13 

26 10 Asp 3 61.20 77.82 91.06 13.93 

26 10 Asp 4 66.25 80.02 95.20 12.79 

27 4 Leu 1 58.95 75.68 88.14 13.20 

27 4 Leu 2 62.79 76.67 92.22 11.74 

27 4 Leu 3 58.00 75.80 87.04 12.61 

27 4 Leu 4 63.33 77.18 89.99 11.64 

28 7 Leu 1 68.76 78.78 93.99 8.80 

28 7 Leu 2 67.00 80.41 98.88 13.03 

28 7 Leu 3 62.50 79.50 92.93 13.82 

28 7 Leu 4 66.25 80.02 95.20 12.79 

29 10 Leu 1 66.59 76.55 88.06 9.84 

29 10 Leu 2 66.94 77.26 89.84 10.97 

29 10 Leu 3 64.35 76.48 90.51 12.69 

29 10 Leu 4 63.33 76.71 90.70 14.55 
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Treat pH AA Rep 
Gelatinization Endotherm 

To Tp Tc H 

30 4 Lys 1 58.59 78.01 93.55 14.78 

30 4 Lys 2 64.63 78.68 94.97 12.99 

30 4 Lys 3 57.46 77.53 92.38 14.51 

30 4 Lys 4 64.35 78.98 94.35 13.50 

31 7 Lys 1 62.74 79.15 93.16 12.94 

31 7 Lys 2 67.00 80.41 98.88 13.03 

31 7 Lys 3 64.92 79.50 93.04 12.55 

31 7 Lys 4 64.87 81.03 100.65 14.06 

32 10 Lys 1 63.45 78.09 90.11 12.99 

32 10 Lys 2 61.67 78.28 91.18 14.83 

32 10 Lys 3 61.08 78.30 91.89 15.07 

32 10 Lys 4 62.38 78.52 93.90 15.49 

33 4 Tyr 1 60.34 74.90 86.72 12.29 

33 4 Tyr 2 60.96 76.95 91.29 11.64 

33 4 Tyr 3 51.94 75.50 87.39 13.26 

33 4 Tyr 4 61.08 75.97 86.44 11.09 

34 7 Tyr 1 64.07 78.02 93.48 13.53 

34 7 Tyr 2 67.07 80.13 94.50 11.43 

34 7 Tyr 3 61.57 78.78 91.63 12.70 

34 7 Tyr 4 66.48 78.50 94.26 11.83 

35 10 Tyr 1 61.70 76.24 89.33 14.60 

35 10 Tyr 2 60.49 77.10 89.52 14.03 

35 10 Tyr 3 61.39 76.55 91.54 15.15 

35 10 Tyr 4 61.55 77.31 92.01 13.04 
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APPENDIX 9                                                                                                                             

DSC DATA OF RICE STARCHES (THERMAL) 

 

Treat pH AA Rep 
Gelatinization Endotherm 

To Tp Tc H 

36 4 NA 1 58.83 74.05 89.28 17.60 

36 4 NA 2 60.37 74.03 89.04 15.76 

36 4 NA 3 62.03 73.09 87.50 15.85 

36 4 NA 4 60.13 73.65 86.20 15.15 

37 7 NA 1 65.20 73.66 87.38 12.88 

37 7 NA 2 62.38 73.46 87.50 14.45 

37 7 NA 3 60.01 73.74 87.50 15.72 

37 7 NA 4 64.16 73.64 87.74 15.02 

38 10 NA 1 59.90 73.80 87.38 16.19 

38 10 NA 2 60.72 73.66 87.50 15.38 

38 10 NA 3 59.90 73.64 86.67 15.46 

38 10 NA 4 62.15 73.89 87.15 14.66 

39 4 Asp 1 66.89 74.20 90.70 12.56 

39 4 Asp 2 67.60 74.10 92.72 11.71 

39 4 Asp 3 60.49 75.20 87.27 12.71 

39 4 Asp 4 61.32 75.18 87.62 12.97 

40 7 Asp 1 59.07 74.42 85.84 13.41 

40 7 Asp 2 61.67 75.15 86.32 11.17 

40 7 Asp 3 63.81 74.75 86.79 11.87 

40 7 Asp 4 61.55 74.57 86.44 12.98 

41 10 Asp 1 59.18 74.36 86.08 12.14 

41 10 Asp 2 58.12 74.41 89.52 12.41 

41 10 Asp 3 56.46 74.51 86.79 12.65 

41 10 Asp 4 56.58 74.57 87.38 13.45 

42 4 Leu 1 57.64 74.05 86.79 14.73 

42 4 Leu 2 57.29 74.02 86.79 14.73 

42 4 Leu 3 62.86 73.45 87.38 13.03 

42 4 Leu 4 62.93 73.39 87.24 12.02 

43 7 Leu 1 62.74 73.49 86.20 12.95 

43 7 Leu 2 60.13 73.28 87.15 13.89 

43 7 Leu 3 57.17 73.93 86.79 14.73 

43 7 Leu 4 55.39 73.68 87.03 15.40 

44 10 Leu 1 59.07 73.52 87.62 15.97 

44 10 Leu 2 61.32 73.77 88.81 13.63 

44 10 Leu 3 55.27 73.25 86.79 15.31 

44 10 Leu 4 58.36 73.14 85.96 15.70 
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Treat pH AA Rep 
Gelatinization Endotherm 

To Tp Tc H 

45 4 Lys 1 60.13 76.15 91.77 15.98 

45 4 Lys 2 62.38 75.79 90.70 15.97 

45 4 Lys 3 61.91 75.78 92.48 16.31 

45 4 Lys 4 61.44 75.46 91.53 15.83 

46 7 Lys 1 62.50 74.89 90.23 15.65 

46 7 Lys 2 63.45 75.96 90.70 15.49 

46 7 Lys 3 60.01 76.31 89.64 15.32 

46 7 Lys 4 61.91 76.13 89.40 14.61 

47 10 Lys 1 64.52 75.68 90.70 15.13 

47 10 Lys 2 64.99 76.48 93.78 15.90 

47 10 Lys 3 58.36 75.79 96.39 15.94 

47 10 Lys 4 60.61 76.01 93.19 15.98 

48 4 Tyr 1 62.03 73.16 86.2 13.94 

48 4 Tyr 2 62.03 73.32 85.13 13.49 

48 4 Tyr 3 59.18 73.24 85.61 13.92 

48 4 Tyr 4 58.24 73.50 84.54 14.20 

49 7 Tyr 1 58.71 73.24 87.50 15.07 

49 7 Tyr 2 60.49 73.09 84.54 10.61 

49 7 Tyr 3 61.20 73.07 86.20 15.39 

49 7 Tyr 4 60.61 73.02 86.32 15.42 

50 10 Tyr 1 60.72 73.73 86.91 14.15 

50 10 Tyr 2 60.96 73.61 86.32 14.79 

50 10 Tyr 3 58.47 73.61 89.28 14.88 

50 10 Tyr 4 59.78 73.60 86.67 14.89 
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APPENDIX 10                                                                                                                                                                                          

RS DATA OF RICE STARCHES (ENZYMATIC-GRAVIMETRIC) 

 

Treat Type pH AA Rep RS   Treat Type pH AA Rep RS 

1 dH2O NopH NA 1 5.18  8 H/N 10 NA 1 16.98 

1 dH2O NopH NA 2 6.21  8 H/N 10 NA 2 15.67 

2 dH2O NopH Asp 1 5.97  8 H/N 10 NA 3 20.48 

2 dH2O NopH Asp 2 3.94  8 H/N 10 NA 4 19.18 

2 dH2O NopH Asp 3 9.39  9 H/N 4 Asp 1 14.48 

2 dH2O NopH Asp 4 4.17  9 H/N 4 Asp 2 17.68 

3 dH2O NopH Leu 1 5.81  9 H/N 4 Asp 3 13.87 

3 dH2O NopH Leu 2 4.41  9 H/N 4 Asp 4 18.53 

3 dH2O NopH Leu 3 6.02  10 H/N 4 Leu 1 7.29 

3 dH2O NopH Leu 4 5.40  10 H/N 4 Leu 2 7.88 

4 dH2O NopH Lys 1 4.90  10 H/N 4 Leu 3 7.70 

4 dH2O NopH Lys 2 5.18  10 H/N 4 Leu 4 8.90 

4 dH2O NopH Lys 3 9.75  11 H/N 4 Lys 1 21.56 

4 dH2O NopH Lys 4 7.54  11 H/N 4 Lys 2 23.43 

5 dH2O NopH Tyr 1 5.89  11 H/N 4 Lys 3 22.70 

5 dH2O NopH Tyr 2 5.43  11 H/N 4 Lys 4 25.65 

5 dH2O NopH Tyr 3 8.08  12 H/N 4 Tyr 1 7.29 

5 dH2O NopH Tyr 4 5.66  12 H/N 4 Tyr 2 5.83 

6 H/N 4 NA 1 8.08  12 H/N 4 Tyr 3 4.91 

6 H/N 4 NA 2 7.98  12 H/N 4 Tyr 4 6.12 

6 H/N 4 NA 3 8.66  13 H/N 7 Asp 1 8.60 

7 H/N 7 NA 1 16.67  13 H/N 7 Asp 2 11.88 

7 H/N 7 NA 2 16.15  13 H/N 7 Asp 3 9.40 

7 H/N 7 NA 3 14.58  13 H/N 7 Asp 4 8.12 

7 H/N 7 NA 4 20.16  14 H/N 7 Leu 1 12.05 
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Treat Type pH AA Rep RS   Treat Type pH AA Rep RS 

14 H/N 7 Leu 2 11.41  21 Bfr 4 NA 3 10.74 

14 H/N 7 Leu 3 10.45  22 Bfr 7 NA 1 12.42 

14 H/N 7 Leu 4 9.13  22 Bfr 7 NA 2 11.76 

15 H/N 7 Lys 1 7.78  22 Bfr 7 NA 3 12.83 

15 H/N 7 Lys 2 8.79  22 Bfr 7 NA 4 12.90 

15 H/N 7 Lys 3 9.25  23 Bfr 10 NA 1 7.22 

15 H/N 7 Lys 4 9.07  23 Bfr 10 NA 2 4.78 

16 H/N 7 Tyr 1 10.60  23 Bfr 10 NA 3 1.94 

16 H/N 7 Tyr 2 13.86  23 Bfr 10 NA 4 3.74 

16 H/N 7 Tyr 3 10.09  24 Bfr 4 Asp 1 12.78 

16 H/N 7 Tyr 4 11.07  24 Bfr 4 Asp 2 9.34 

17 H/N 10 Asp 1 13.68  24 Bfr 4 Asp 3 7.65 

17 H/N 10 Asp 2 15.10  24 Bfr 4 Asp 4 11.18 

17 H/N 10 Asp 3 13.42  25 Bfr 4 Leu 1 11.23 

17 H/N 10 Asp 4 13.25  25 Bfr 4 Leu 2 9.31 

18 H/N 10 Leu 1 11.54  25 Bfr 4 Leu 3 11.33 

18 H/N 10 Leu 2 11.37  25 Bfr 4 Leu 4 6.57 

18 H/N 10 Leu 3 14.18  26 Bfr 4 Lys 1 12.65 

18 H/N 10 Leu 4 10.00  26 Bfr 4 Lys 2 9.66 

19 H/N 10 Lys 1 12.14  26 Bfr 4 Lys 3 10.79 

19 H/N 10 Lys 2 14.86  26 Bfr 4 Lys 4 9.68 

19 H/N 10 Lys 3 12.35  27 Bfr 4 Tyr 1 7.57 

19 H/N 10 Lys 4 12.70  27 Bfr 4 Tyr 2 10.02 

20 H/N 10 Tyr 1 10.95  27 Bfr 4 Tyr 3 13.00 

20 H/N 10 Tyr 3 12.33  27 Bfr 4 Tyr 4 11.29 

20 H/N 10 Tyr 4 11.40  28 Bfr 7 Asp 1 17.58 

21 Bfr 4 NA 1 12.35  28 Bfr 7 Asp 2 16.64 

21 Bfr 4 NA 2 10.91  28 Bfr 7 Asp 3 16.84 
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Treat Type pH AA Rep RS   Treat Type pH AA Rep RS 

28 Bfr 7 Asp 4 15.40  35 Bfr 10 Tyr 4 4.25 

29 Bfr 7 Leu 1 14.68  36 Tml 4 NoAA 1 8.04 

29 Bfr 7 Leu 2 14.97  36 Tml 4 NoAA 2 4.84 

29 Bfr 7 Leu 3 12.63  36 Tml 4 NoAA 3 7.33 

29 Bfr 7 Leu 4 16.28  36 Tml 4 NoAA 4 7.36 

30 Bfr 7 Lys 1 4.31  37 Tml 7 NoAA 1 6.74 

30 Bfr 7 Lys 2 5.34  37 Tml 7 NoAA 2 2.70 

30 Bfr 7 Lys 3 4.14  37 Tml 7 NoAA 3 4.54 

30 Bfr 7 Lys 4 4.52  37 Tml 7 NoAA 4 7.45 

31 Bfr 7 Tyr 1 2.13  38 Tml 10 NoAA 1 7.85 

31 Bfr 7 Tyr 2 2.71  38 Tml 10 NoAA 2 7.75 

31 Bfr 7 Tyr 3 2.37  38 Tml 10 NoAA 3 8.63 

31 Bfr 7 Tyr 4 2.69  38 Tml 10 NoAA 4 7.76 

32 Bfr 10 Asp 1 15.47  39 Tml 4 Asp 1 9.65 

32 Bfr 10 Asp 2 14.21  39 Tml 4 Asp 2 7.30 

32 Bfr 10 Asp 3 15.72  39 Tml 4 Asp 3 8.66 

32 Bfr 10 Asp 4 14.11  39 Tml 4 Asp 4 8.56 

33 Bfr 10 Leu 1 18.52  40 Tml 4 Leu 1 7.14 

33 Bfr 10 Leu 2 16.18  40 Tml 4 Leu 2 7.22 

33 Bfr 10 Leu 3 16.09  40 Tml 4 Leu 3 8.20 

33 Bfr 10 Leu 4 17.45  40 Tml 4 Leu 4 5.88 

34 Bfr 10 Lys 1 4.44  41 Tml 4 Lys 1 9.65 

34 Bfr 10 Lys 2 2.23  41 Tml 4 Lys 2 8.88 

34 Bfr 10 Lys 3 4.34  41 Tml 4 Lys 3 6.15 

34 Bfr 10 Lys 4 2.90  41 Tml 4 Lys 4 7.55 

35 Bfr 10 Tyr 1 2.20  42 Tml 4 Tyr 1 10.10 

35 Bfr 10 Tyr 2 2.88  42 Tml 4 Tyr 2 7.52 

35 Bfr 10 Tyr 3 2.23  42 Tml 4 Tyr 3 8.97 
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Treat Type pH AA Rep RS  Treat Type pH AA Rep RS 

42 Tml 4 Tyr 4 8.28  47 Tml 10 Asp 1 15.14 

43 Tml 7 Asp 1 11.45  47 Tml 10 Asp 2 12.64 

43 Tml 7 Asp 2 11.55  47 Tml 10 Asp 3 12.40 

43 Tml 7 Asp 3 9.19  47 Tml 10 Asp 4 13.17 

43 Tml 7 Asp 4 8.50  48 Tml 10 Leu 1 7.40 

44 Tml 7 Leu 1 7.69  48 Tml 10 Leu 2 9.84 

44 Tml 7 Leu 2 10.48  48 Tml 10 Leu 3 11.35 

44 Tml 7 Leu 3 11.30  48 Tml 10 Leu 4 10.22 

44 Tml 7 Leu 4 9.93  49 Tml 10 Lys 1 7.13 

45 Tml 7 Lys 1 8.25  49 Tml 10 Lys 2 8.61 

45 Tml 7 Lys 2 6.92  49 Tml 10 Lys 3 11.64 

45 Tml 7 Lys 3 8.02  49 Tml 10 Lys 4 10.30 

45 Tml 7 Lys 4 5.36  50 Tml 10 Tyr 1 11.92 

46 Tml 7 Tyr 1 8.90  50 Tml 10 Tyr 2 14.19 

46 Tml 7 Tyr 2 6.70  50 Tml 10 Tyr 3 14.60 

46 Tml 7 Tyr 3 8.48  50 Tml 10 Tyr 4 13.93 

46 Tml 7 Tyr 4 8.68        



126 

 

APPENDIX 11                                                                                                                              

RS DATA OF RVA GELATINIZED RICE STARCHES WITH TYROSINE            

(ENZYMATIC-GRAVIMETRIC) 

 

Treat Type pH Rep RS 

51 dH2O NopH 1 10.03 

51 dH2O NopH 2 11.61 

51 dH2O NopH 3 10.60 

51 dH2O NopH 4 14.47 

52 H/N 4 1 12.34 

52 H/N 4 2 16.98 

52 H/N 4 3 16.11 

52 H/N 4 4 13.33 

53 H/N 7 1 14.59 

53 H/N 7 2 12.86 

53 H/N 7 3 11.37 

53 H/N 7 4 10.05 

54 H/N 10 1 4.59 

54 H/N 10 2 4.85 

54 H/N 10 3 5.57 

55 Bfr 4 1 9.22 

55 Bfr 4 2 12.03 

55 Bfr 4 3 11.02 

55 Bfr 4 4 11.40 

56 Bfr 7 1 7.71 

56 Bfr 7 2 7.29 

56 Bfr 7 3 8.48 

56 Bfr 7 4 7.99 

57 Bfr 10 1 6.94 

57 Bfr 10 2 8.12 

57 Bfr 10 3 8.23 

57 Bfr 10 4 4.68 
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APPENDIX 12                                                                                                                                                                                               

RS DATA OF RICE STARCHES (ENZYMATIC-CHEMICAL) 

 

Treat Type pH AA Rep RS  Treat Type pH AA Rep RS 

1 dH2O NopH NoAA 1 2.61  7 Bfr 7 NA 3 4.87  

1 dH2O NopH NoAA 2 2.17  7 Bfr 7 NA 4 2.98  

1 dH2O NopH NoAA 3 1.97  8 Bfr 10 NA 1 0.82 

1 dH2O NopH NoAA 4 2.40  8 Bfr 10 NA 2 1.27 

2 dH2O NopH Asp 1 1.55  8 Bfr 10 NA 3 0.71 

2 dH2O NopH Asp 2 1.51  8 Bfr 10 NA 4 0.31 

2 dH2O NopH Asp 3 1.57  9 Bfr 4 Asp 1 2.31 

3 dH2O NopH Leu 1 1.19  9 Bfr 4 Asp 2 2.26 

3 dH2O NopH Leu 2 2.30  9 Bfr 4 Asp 3 2.08 

3 dH2O NopH Leu 3 1.77  10 Bfr 4 Leu 1 2.00 

3 dH2O NopH Leu 4 1.19  10 Bfr 4 Leu 2 4.17 

4 dH2O NopH Lys 1 1.26  10 Bfr 4 Leu 3 2.09 

4 dH2O NopH Lys 2 2.11  10 Bfr 4 Leu 4 2.14 

4 dH2O NopH Lys 3 1.90  11 Bfr 4 Lys 1 1.96 

4 dH2O NopH Lys 4 1.55  11 Bfr 4 Lys 2 2.01 

5 dH2O NopH Tyr 1 1.17  11 Bfr 4 Lys 3 2.19 

5 dH2O NopH Tyr 2 1.18  11 Bfr 4 Lys 4 1.73 

5 dH2O NopH Tyr 3 1.29  12 Bfr 4 Tyr 1 2.16 

5 dH2O NopH Tyr 4 1.04  12 Bfr 4 Tyr 2 2.29 

6 Bfr 4 NA 1 2.35  12 Bfr 4 Tyr 3 2.27 

6 Bfr 4 NA 2 2.44  13 Bfr 7 Asp 1 2.77 

6 Bfr 4 NA 3 2.53  13 Bfr 7 Asp 2 3.83 

6 Bfr 4 NA 4 2.45  13 Bfr 7 Asp 3 2.61 

7 Bfr 7 NA 1 3.11  14 Bfr 7 Leu 1 2.71 

7 Bfr 7 NA 2 3.32  14 Bfr 7 Leu 2 3.00 
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Treat Type pH AA Rep RS 

14 Bfr 7 Leu 3 2.97 

14 Bfr 7 Leu 4 2.85 

15 Bfr 7 Lys 1 2.54 

15 Bfr 7 Lys 2 2.69 

15 Bfr 7 Lys 3 2.76 

15 Bfr 7 Lys 4 2.39 

16 Bfr 7 Tyr 1 2.45 

16 Bfr 7 Tyr 2 2.07 

16 Bfr 7 Tyr 3 3.58 

17 Bfr 10 Asp 1 0.67 

17 Bfr 10 Asp 2 0.62 

17 Bfr 10 Asp 3 1.13 

18 Bfr 10 Leu 1 1.01 

18 Bfr 10 Leu 2 1.14 

18 Bfr 10 Leu 3 0.61 

18 Bfr 10 Leu 4 0.83 

19 Bfr 10 Lys 1 0.77 

19 Bfr 10 Lys 2 0.74 

19 Bfr 10 Lys 3 0.75 

19 Bfr 10 Lys 4 0.86 

20 Bfr 10 Tyr 1 2.10 

20 Bfr 10 Tyr 2 0.75 

20 Bfr 10 Tyr 3 0.80 
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APPENDIX 13                                                                                                                           

SAS CODE FOR THE ANOVA OF RVA DATA OF RICE STARCHES 

 

 

dm 'log;clear;output;clear'; 

data one; 

input treat $ pH $ AA $ rep PV MV BD FV SB TSB PTime PT; 

datalines; 

; 

proc sort; by treat; 

proc means mean std n maxdec=2; by treat;  

var PV --- PT; 

proc anova; 

class treat;  

model PV --- PT = treat; 

means treat/tukey lines; 

run; 

quit; 
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APPENDIX 14                                                                                                                            

SAS CODE FOR THE ANOVA OF RVA DATA OF RVA GELATINIZED 

RICE STARCHES WITH TYROSINE 

 

 

dm 'log;clear;output;clear'; 

data one; 

input treat type $ pH $ rep PV MV BD FV SB TSB PTime PT; 

datalines; 

; 

proc sort; by treat; 

proc means mean std n maxdec=2; by treat; 

var PV --- PT; 

proc anova; 

class treat;  

model PV --- PT =treat; 

means treat/tukey lines; 

run; 

quit; 
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APPENDIX 15                                                                                                                           

SAS CODE FOR THE T-TEST OF RVA DATA OF RICE STARCH TREATMENTS 

 
 

dm 'log;clear;output;clear'; 

data one; 

input treat type $ pH $ aa $ rep PV MV BD FV SB TSB PTime PT; 

datalines; 

; 

proc ttest; 

class type;  

var PV -- PT; 

run; 
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APPENDIX 16                                                                                                                           

SAS CODE FOR THE ANOVA OF DSC DATA OF RICE STARCHES 

 

 

dm 'log;clear;output;clear'; 

data one; 

input treat pH $ aa $ rep To Tp Tc dH; 

; 

proc sort; by treat; 

proc means mean std n maxdec=2; by treat;  

var To Tp Tc dH; 

proc anova; 

class treat;  

model To Tp Tc dH= treat; 

means treat/tukey lines; 

run;  

quit; 
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APPENDIX 17                                                                                                                             

SAS CODE FOR THE ANOVA OF RS DATA OF RICE STARCHES 

 

 

dm 'log;clear;output;clear'; 

data one; 

input treat type $ pH $ AA $ rep RS; 

datalines; 

; 

proc sort; by treat; 

proc means mean std n maxdec=2; by treat; 

var RS; 

proc anova; 

class treat;  

model RS=treat; 

means treat/tukey lines; 

run; 

quit; 
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